aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra')
-rw-r--r--src/share/algebra/browse.daase4058
-rw-r--r--src/share/algebra/category.daase5030
-rw-r--r--src/share/algebra/compress.daase4
-rw-r--r--src/share/algebra/interp.daase9636
-rw-r--r--src/share/algebra/operation.daase5913
5 files changed, 12346 insertions, 12295 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index a9fb9d53..1ed6dd1a 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2135125 . 3269429133)
+(2204743 . 3403927923)
(-18 A S)
-NIL
+((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
-NIL
-((-4168 . T) (-4167 . T) (-2951 . T))
+((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,31 +46,31 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4164 . T) (-4162 . T) (-4161 . T) ((-4169 "*") . T) (-4160 . T) (-4165 . T) (-4159 . T) (-2951 . T))
+((-4177 . T) (-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4173 . T) (-4178 . T) (-4172 . T) (-3353 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -2958)
+(-31 R -1696)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))))
+((|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4167)))
+((|HasAttribute| |#1| (QUOTE -4180)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-2951 . T))
+((-3353 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
NIL
NIL
(-35 |Key| |Entry|)
-((|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4167 . T) (-4168 . T) (-2951 . T))
+((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
+((-4180 . T) (-4181 . T) (-3353 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,69 +78,69 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
+((-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-38 UP)
-((|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an.")))
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -2958 UP UPUP -3121)
+(-39 -1696 UP UPUP -1734)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4160 |has| (-375 |#2|) (-331)) (-4165 |has| (-375 |#2|) (-331)) (-4159 |has| (-375 |#2|) (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-375 |#2|) (QUOTE (-132))) (|HasCategory| (-375 |#2|) (QUOTE (-134))) (|HasCategory| (-375 |#2|) (QUOTE (-318))) (|HasCategory| (-375 |#2|) (QUOTE (-331))) (-1405 (|HasCategory| (-375 |#2|) (QUOTE (-331))) (|HasCategory| (-375 |#2|) (QUOTE (-318)))) (|HasCategory| (-375 |#2|) (QUOTE (-336))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-336))) (-1405 (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-318))))) (-12 (|HasCategory| (-375 |#2|) (QUOTE (-206))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-375 |#2|) (QUOTE (-206))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (|HasCategory| (-375 |#2|) (QUOTE (-318)))))
-(-40 R -2958)
+((-4173 |has| (-377 |#2|) (-333)) (-4178 |has| (-377 |#2|) (-333)) (-4172 |has| (-377 |#2|) (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3807 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3807 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
+(-40 R -1696)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -389) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -400) (|devaluate| |#1|)))))
(-41 OV E P)
-((|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
+((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
NIL
(-42 R A)
((|constructor| (NIL "AlgebraPackage assembles a variety of useful functions for general algebras.")) (|basis| (((|Vector| |#2|) (|Vector| |#2|)) "\\spad{basis(va)} selects a basis from the elements of \\spad{va}.")) (|radicalOfLeftTraceForm| (((|List| |#2|)) "\\spad{radicalOfLeftTraceForm()} returns basis for null space of \\spad{leftTraceMatrix()},{} if the algebra is associative,{} alternative or a Jordan algebra,{} then this space equals the radical (maximal nil ideal) of the algebra.")) (|basisOfCentroid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfCentroid()} returns a basis of the centroid,{} \\spadignore{i.e.} the endomorphism ring of \\spad{A} considered as \\spad{(A,{}A)}-bimodule.")) (|basisOfRightNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfRightNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as left module. Note: right nucloid coincides with right nucleus if \\spad{A} has a unit.")) (|basisOfLeftNucloid| (((|List| (|Matrix| |#1|))) "\\spad{basisOfLeftNucloid()} returns a basis of the space of endomorphisms of \\spad{A} as right module. Note: left nucloid coincides with left nucleus if \\spad{A} has a unit.")) (|basisOfCenter| (((|List| |#2|)) "\\spad{basisOfCenter()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{commutator(x,{}a) = 0} and \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfNucleus| (((|List| |#2|)) "\\spad{basisOfNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{associator(x,{}a,{}b) = associator(a,{}x,{}b) = associator(a,{}b,{}x) = 0} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfMiddleNucleus| (((|List| |#2|)) "\\spad{basisOfMiddleNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}x,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightNucleus| (((|List| |#2|)) "\\spad{basisOfRightNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(a,{}b,{}x)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfLeftNucleus| (((|List| |#2|)) "\\spad{basisOfLeftNucleus()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = associator(x,{}a,{}b)} for all \\spad{a},{}\\spad{b} in \\spad{A}.")) (|basisOfRightAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfRightAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = a*x}.")) (|basisOfLeftAnnihilator| (((|List| |#2|) |#2|) "\\spad{basisOfLeftAnnihilator(a)} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = x*a}.")) (|basisOfCommutingElements| (((|List| |#2|)) "\\spad{basisOfCommutingElements()} returns a basis of the space of all \\spad{x} of \\spad{A} satisfying \\spad{0 = commutator(x,{}a)} for all \\spad{a} in \\spad{A}.")) (|biRank| (((|NonNegativeInteger|) |#2|) "\\spad{biRank(x)} determines the number of linearly independent elements in \\spad{x},{} \\spad{x*bi},{} \\spad{bi*x},{} \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis. Note: if \\spad{A} has a unit,{} then \\spadfunFrom{doubleRank}{AlgebraPackage},{} \\spadfunFrom{weakBiRank}{AlgebraPackage} and \\spadfunFrom{biRank}{AlgebraPackage} coincide.")) (|weakBiRank| (((|NonNegativeInteger|) |#2|) "\\spad{weakBiRank(x)} determines the number of linearly independent elements in the \\spad{bi*x*bj},{} \\spad{i,{}j=1,{}...,{}n},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|doubleRank| (((|NonNegativeInteger|) |#2|) "\\spad{doubleRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|rightRank| (((|NonNegativeInteger|) |#2|) "\\spad{rightRank(x)} determines the number of linearly independent elements in \\spad{b1*x},{}...,{}\\spad{bn*x},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")) (|leftRank| (((|NonNegativeInteger|) |#2|) "\\spad{leftRank(x)} determines the number of linearly independent elements in \\spad{x*b1},{}...,{}\\spad{x*bn},{} where \\spad{b=[b1,{}...,{}bn]} is a basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-276))))
+((|HasCategory| |#1| (QUOTE (-278))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4164 |has| |#1| (-508)) (-4162 . T) (-4161 . T))
-((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508))))
+((-4177 |has| |#1| (-509)) (-4175 . T) (-4174 . T))
+((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))))
(-44 |Key| |Entry|)
-NIL
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-777))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-777)))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))))))
+((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-3807 (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|))))))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331))))
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| $ (QUOTE (-959))) (|HasCategory| $ (LIST (QUOTE -950) (QUOTE (-501)))))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")))
NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-50)
-((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
+(-50 S)
+((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
NIL
NIL
-(-51 S)
-((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
+(-51)
+((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}.")) (|showTypeInOutput| (((|String|) (|Boolean|)) "\\spad{showTypeInOutput(bool)} affects the way objects of \\spadtype{Any} are displayed. If \\spad{bool} is \\spad{true} then the type of the original object that was converted to \\spadtype{Any} will be printed. If \\spad{bool} is \\spad{false},{} it will not be printed.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|objectOf| (((|OutputForm|) $) "\\spad{objectOf(a)} returns a printable form of the original object that was converted to \\spadtype{Any}.")) (|domainOf| (((|OutputForm|) $) "\\spad{domainOf(a)} returns a printable form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,{}object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
NIL
NIL
(-52 R M P)
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -2958)
+(-53 |Base| R -1696)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,144 +150,144 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4167 . T) (-4168 . T) (-2951 . T))
+((-4180 . T) (-4181 . T) (-3353 . T))
NIL
-(-56 S)
-((|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-57 A B)
+(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
+(-57 S)
+((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-59 -3986)
-((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-60 -3986)
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-59 -1207)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-61 -3986)
+(-60 -1207)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-62 -3986)
+(-61 -1207)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-63 -3986)
+(-62 -1207)
+((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-63 -1207)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3986)
+(-64 -1207)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3986)
+(-65 -1207)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3986)
+(-66 -1207)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -3986)
+(-67 -1207)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -3986)
+(-68 -1207)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3986)
+(-69 -1207)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -3986)
+(-70 -1207)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -3986)
+(-71 -1207)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -3986)
+(-72 -1207)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-73 -3986)
-((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
-NIL
-NIL
-(-74 |nameOne| |nameTwo| |nameThree|)
+(-73 |nameOne| |nameTwo| |nameThree|)
((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 |nameOne| |nameTwo| |nameThree|)
+(-74 |nameOne| |nameTwo| |nameThree|)
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-76 -3986)
+(-75 -1207)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -3986)
+(-76 -1207)
+((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
+NIL
+NIL
+(-77 -1207)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3986)
+(-78 -1207)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -3986)
+(-79 -1207)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3986)
-((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
-NIL
-NIL
-(-81 -3986)
+(-80 -1207)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -3986)
+(-81 -1207)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3986)
+(-82 -1207)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3986)
+(-83 -1207)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3986)
-((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
+(-84 -1207)
+((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3986)
+(-85 -1207)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3986)
+(-86 -1207)
+((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
+NIL
+NIL
+(-87 -1207)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-88 R L)
((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op,{} m)} returns \\spad{[w,{} eq,{} lw,{} lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,{}...,{}A_n]} such that if \\spad{y = [y_1,{}...,{}y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',{}y_j'',{}...,{}y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op,{} m)} returns \\spad{[M,{}w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-331))))
+((|HasCategory| |#1| (QUOTE (-333))))
(-89 S)
-((|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
+((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-90 S)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
NIL
@@ -297,16 +297,16 @@ NIL
NIL
NIL
(-92)
-((|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4167 . T))
+((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
+((-4180 . T))
NIL
(-93)
-((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} imples \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4167 . T) ((-4169 "*") . T) (-4168 . T) (-4164 . T) (-4162 . T) (-4161 . T) (-4160 . T) (-4165 . T) (-4159 . T) (-4158 . T) (-4157 . T) (-4156 . T) (-4155 . T) (-4163 . T) (-4166 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4154 . T))
+((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
+((-4180 . T) ((-4182 "*") . T) (-4181 . T) (-4177 . T) (-4175 . T) (-4174 . T) (-4173 . T) (-4178 . T) (-4172 . T) (-4171 . T) (-4170 . T) (-4169 . T) (-4168 . T) (-4176 . T) (-4179 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4167 . T))
NIL
(-94 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4164 . T))
+((-4177 . T))
NIL
(-95 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -321,105 +321,105 @@ NIL
NIL
NIL
(-98 S)
-((|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
+((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-99 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4169 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4182 "*"))))
(-100)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4167 . T))
+((-4180 . T))
NIL
(-101 A S)
-((|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
+((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
NIL
NIL
(-102 S)
-((|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4168 . T) (-2951 . T))
+((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
+((-4181 . T) (-3353 . T))
NIL
(-103)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-501) (QUOTE (-830))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-501) (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-134))) (|HasCategory| (-501) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-933))) (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-1046))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-501) (QUOTE (-206))) (|HasCategory| (-501) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-501) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -278) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -256) (QUOTE (-501)) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-276))) (|HasCategory| (-501) (QUOTE (-500))) (|HasCategory| (-501) (QUOTE (-777))) (-1405 (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (QUOTE (-777)))) (|HasCategory| (-501) (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (|HasCategory| (-501) (QUOTE (-132)))))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
(-104)
((|constructor| (NIL "This domain provides an implementation of binary files. Data is accessed one byte at a time as a small integer.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "\\spad{position!(f,{} i)} sets the current byte-position to \\spad{i}.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{f}.")) (|readIfCan!| (((|Union| (|SingleInteger|) "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
(-105)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| (-107) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-107) (QUOTE (-777))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| (-107) (QUOTE (-1001))) (-12 (|HasCategory| (-107) (LIST (QUOTE -278) (QUOTE (-107)))) (|HasCategory| (-107) (QUOTE (-1001)))))
+((-4181 . T) (-4180 . T))
+((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1003))) (-12 (|HasCategory| (-107) (QUOTE (-1003))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))))
(-106 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4162 . T) (-4161 . T))
+((-4175 . T) (-4174 . T))
NIL
(-107)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (((|Boolean|) $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|implies| (($ $ $) "\\spad{implies(a,{}b)} returns the logical implication of Boolean \\spad{a} and \\spad{b}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical inclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of Boolean \\spad{a} and \\spad{b}.")) (|not| (($ $) "\\spad{not n} returns the negation of \\spad{n}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-108)
-((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
+(-108 A)
+((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
NIL
+((|HasCategory| |#1| (QUOTE (-779))))
+(-109)
+((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
-(-109 A)
-((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-777))))
-(-110 -2958 UP)
+(-110 -1696 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-111 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-112 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-111 |#1|) (QUOTE (-830))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-111 |#1|) (QUOTE (-933))) (|HasCategory| (-111 |#1|) (QUOTE (-750))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-111 |#1|) (QUOTE (-1046))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-111 |#1|) (QUOTE (-206))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -278) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -256) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-276))) (|HasCategory| (-111 |#1|) (QUOTE (-500))) (|HasCategory| (-111 |#1|) (QUOTE (-777))) (-1405 (|HasCategory| (-111 |#1|) (QUOTE (-750))) (|HasCategory| (-111 |#1|) (QUOTE (-777)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-830)))) (|HasCategory| (-111 |#1|) (QUOTE (-132)))))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-111 |#1|) (QUOTE (-831))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-111 |#1|) (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-134))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-111 |#1|) (QUOTE (-937))) (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-1049))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-111 |#1|) (QUOTE (-207))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -111) (|devaluate| |#1|)) (LIST (QUOTE -111) (|devaluate| |#1|)))) (|HasCategory| (-111 |#1|) (QUOTE (-278))) (|HasCategory| (-111 |#1|) (QUOTE (-502))) (|HasCategory| (-111 |#1|) (QUOTE (-779))) (-3807 (|HasCategory| (-111 |#1|) (QUOTE (-752))) (|HasCategory| (-111 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-111 |#1|) (QUOTE (-831)))) (|HasCategory| (-111 |#1|) (QUOTE (-132)))))
(-113 A S)
-((|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
+((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4168)))
+((|HasAttribute| |#1| (QUOTE -4181)))
(-114 S)
-((|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-2951 . T))
+((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
+((-3353 . T))
NIL
(-115 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
NIL
NIL
(-116 S)
-((|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
+((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-117 S)
-((|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
+((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-118)
-((|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
(-119 A S)
-((|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
+((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
NIL
NIL
(-120 S)
-((|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4167 . T) (-4168 . T) (-2951 . T))
+((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
+((-4180 . T) (-4181 . T) (-3353 . T))
NIL
(-121 S)
-((|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
+((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-122 S)
-((|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
+((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-123)
((|constructor| (NIL "This is an \\spadtype{AbelianMonoid} with the cancellation property,{} \\spadignore{i.e.} \\spad{ a+b = a+c => b=c }. This is formalised by the partial subtraction operator,{} which satisfies the axioms listed below: \\blankline")) (|subtractIfCan| (((|Union| $ "failed") $ $) "\\spad{subtractIfCan(x,{} y)} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")))
NIL
@@ -430,20 +430,20 @@ NIL
NIL
(-125)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4169 "*") . T))
+(((-4182 "*") . T))
NIL
-(-126 |minix| -2742 R)
-((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
+(-126 |minix| -2806 S T$)
+((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-127 |minix| -2742 S T$)
-((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
+(-127 |minix| -2806 R)
+((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\^= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
(-128)
-((|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4167 . T) (-4157 . T) (-4168 . T))
-((|HasCategory| (-131) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-131) (QUOTE (-336))) (|HasCategory| (-131) (QUOTE (-777))) (|HasCategory| (-131) (QUOTE (-1001))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-336)))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001))))))
+((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
+((-4180 . T) (-4170 . T) (-4181 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3807 (-12 (|HasCategory| (-131) (QUOTE (-338))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
(-129 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -453,12 +453,12 @@ NIL
NIL
NIL
(-131)
-((|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|Integer|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|Integer|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}.")))
+((|constructor| (NIL "This domain provides the basic character data type.")) (|alphanumeric?| (((|Boolean|) $) "\\spad{alphanumeric?(c)} tests if \\spad{c} is either a letter or number,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{z} or A..\\spad{Z}.")) (|lowerCase?| (((|Boolean|) $) "\\spad{lowerCase?(c)} tests if \\spad{c} is an lower case letter,{} \\spadignore{i.e.} one of a..\\spad{z}.")) (|upperCase?| (((|Boolean|) $) "\\spad{upperCase?(c)} tests if \\spad{c} is an upper case letter,{} \\spadignore{i.e.} one of A..\\spad{Z}.")) (|alphabetic?| (((|Boolean|) $) "\\spad{alphabetic?(c)} tests if \\spad{c} is a letter,{} \\spadignore{i.e.} one of a..\\spad{z} or A..\\spad{Z}.")) (|hexDigit?| (((|Boolean|) $) "\\spad{hexDigit?(c)} tests if \\spad{c} is a hexadecimal numeral,{} \\spadignore{i.e.} one of 0..9,{} a..\\spad{f} or A..\\spad{F}.")) (|digit?| (((|Boolean|) $) "\\spad{digit?(c)} tests if \\spad{c} is a digit character,{} \\spadignore{i.e.} one of 0..9.")) (|lowerCase| (($ $) "\\spad{lowerCase(c)} converts an upper case letter to the corresponding lower case letter. If \\spad{c} is not an upper case letter,{} then it is returned unchanged.")) (|upperCase| (($ $) "\\spad{upperCase(c)} converts a lower case letter to the corresponding upper case letter. If \\spad{c} is not a lower case letter,{} then it is returned unchanged.")) (|escape| (($) "\\spad{escape()} provides the escape character,{} \\spad{_},{} which is used to allow quotes and other characters {\\em within} strings.")) (|quote| (($) "\\spad{quote()} provides the string quote character,{} \\spad{\"}.")) (|space| (($) "\\spad{space()} provides the blank character.")) (|char| (($ (|String|)) "\\spad{char(s)} provides a character from a string \\spad{s} of length one.") (($ (|Integer|)) "\\spad{char(i)} provides a character corresponding to the integer code \\spad{i}. It is always \\spad{true} that \\spad{ord char i = i}.")) (|ord| (((|Integer|) $) "\\spad{ord(c)} provides an integral code corresponding to the character \\spad{c}. It is always \\spad{true} that \\spad{char ord c = c}.")))
NIL
NIL
(-132)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4164 . T))
+((-4177 . T))
NIL
(-133 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -466,27 +466,27 @@ NIL
NIL
(-134)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-135 -2958 UP UPUP)
+(-135 -1696 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
(-136 R CR)
-((|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists")))
+((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists")))
NIL
NIL
(-137 A S)
-((|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
+((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasAttribute| |#1| (QUOTE -4167)))
+((|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasAttribute| |#1| (QUOTE -4180)))
(-138 S)
-((|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-2951 . T))
+((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{^=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
+((-3353 . T))
NIL
(-139 |n| K Q)
-((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]}} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4162 . T) (-4161 . T) (-4164 . T))
+((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
+((-4175 . T) (-4174 . T) (-4177 . T))
NIL
(-140)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -497,10 +497,10 @@ NIL
NIL
NIL
(-142)
-((|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
+((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-143 R -2958)
+(-143 R -1696)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -525,40 +525,40 @@ NIL
NIL
NIL
(-149 S R)
-((|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
+((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-967))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-331))) (|HasAttribute| |#2| (QUOTE -4163)) (|HasAttribute| |#2| (QUOTE -4166)) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-777))))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasAttribute| |#2| (QUOTE -4176)) (|HasAttribute| |#2| (QUOTE -4179)) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-779))))
(-150 R)
-((|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4160 -1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4163 |has| |#1| (-6 -4163)) (-4166 |has| |#1| (-6 -4166)) (-1976 . T) (-2951 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
+((-4173 -3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4176 |has| |#1| (-6 -4176)) (-4179 |has| |#1| (-6 -4179)) (-3392 . T) (-3353 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-151 RR PR)
-((|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
+((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
NIL
NIL
-(-152 R)
-NIL
-((-4160 -1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4163 |has| |#1| (-6 -4163)) (-4166 |has| |#1| (-6 -4166)) (-1976 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| |#1| (QUOTE (-967))) (-12 (|HasCategory| |#1| (QUOTE (-967))) (|HasCategory| |#1| (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-500))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-276))) (-1405 (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-206))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-206))) (-12 (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-318)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-751)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-933)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-331))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-830))))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-830))))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasAttribute| |#1| (QUOTE -4163)) (|HasAttribute| |#1| (QUOTE -4166)) (-12 (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-318)))))
-(-153 R S)
-((|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
+(-152 R S)
+((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,{}u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
NIL
+(-153 R)
+((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
+((-4173 -3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4176 |has| |#1| (-6 -4176)) (-4179 |has| |#1| (-6 -4179)) (-3392 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-1094))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| |#1| (QUOTE (-970))) (-12 (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-278))) (-3807 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-207))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-207))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-831))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-831))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasAttribute| |#1| (QUOTE -4176)) (|HasAttribute| |#1| (QUOTE -4179)) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-319)))))
(-154 R S CS)
-((|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
+((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
NIL
(-155)
-((|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")))
+((|constructor| (NIL "This domain implements some global properties of subspaces.")) (|copy| (($ $) "\\spad{copy(x)} \\undocumented")) (|solid| (((|Boolean|) $ (|Boolean|)) "\\spad{solid(x,{}b)} \\undocumented")) (|close| (((|Boolean|) $ (|Boolean|)) "\\spad{close(x,{}b)} \\undocumented")) (|solid?| (((|Boolean|) $) "\\spad{solid?(x)} \\undocumented")) (|closed?| (((|Boolean|) $) "\\spad{closed?(x)} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")))
NIL
NIL
(-156)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-157 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4169 "*") . T) (-4160 . T) (-4165 . T) (-4159 . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") . T) (-4173 . T) (-4178 . T) (-4172 . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-158 R)
((|constructor| (NIL "CoordinateSystems provides coordinate transformation functions for plotting. Functions in this package return conversion functions which take points expressed in other coordinate systems and return points with the corresponding Cartesian coordinates.")) (|conical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1| |#1|) "\\spad{conical(a,{}b)} transforms from conical coordinates to Cartesian coordinates: \\spad{conical(a,{}b)} is a function which will map the point \\spad{(lambda,{}mu,{}nu)} to \\spad{x = lambda*mu*nu/(a*b)},{} \\spad{y = lambda/a*sqrt((mu**2-a**2)*(nu**2-a**2)/(a**2-b**2))},{} \\spad{z = lambda/b*sqrt((mu**2-b**2)*(nu**2-b**2)/(b**2-a**2))}.")) (|toroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{toroidal(a)} transforms from toroidal coordinates to Cartesian coordinates: \\spad{toroidal(a)} is a function which will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = a*sinh(v)*cos(phi)/(cosh(v)-cos(u))},{} \\spad{y = a*sinh(v)*sin(phi)/(cosh(v)-cos(u))},{} \\spad{z = a*sin(u)/(cosh(v)-cos(u))}.")) (|bipolarCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolarCylindrical(a)} transforms from bipolar cylindrical coordinates to Cartesian coordinates: \\spad{bipolarCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))},{} \\spad{z}.")) (|bipolar| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{bipolar(a)} transforms from bipolar coordinates to Cartesian coordinates: \\spad{bipolar(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*sinh(v)/(cosh(v)-cos(u))},{} \\spad{y = a*sin(u)/(cosh(v)-cos(u))}.")) (|oblateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{oblateSpheroidal(a)} transforms from oblate spheroidal coordinates to Cartesian coordinates: \\spad{oblateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|prolateSpheroidal| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{prolateSpheroidal(a)} transforms from prolate spheroidal coordinates to Cartesian coordinates: \\spad{prolateSpheroidal(a)} is a function which will map the point \\spad{(\\spad{xi},{}eta,{}phi)} to \\spad{x = a*sinh(\\spad{xi})*sin(eta)*cos(phi)},{} \\spad{y = a*sinh(\\spad{xi})*sin(eta)*sin(phi)},{} \\spad{z = a*cosh(\\spad{xi})*cos(eta)}.")) (|ellipticCylindrical| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{ellipticCylindrical(a)} transforms from elliptic cylindrical coordinates to Cartesian coordinates: \\spad{ellipticCylindrical(a)} is a function which will map the point \\spad{(u,{}v,{}z)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)},{} \\spad{z}.")) (|elliptic| (((|Mapping| (|Point| |#1|) (|Point| |#1|)) |#1|) "\\spad{elliptic(a)} transforms from elliptic coordinates to Cartesian coordinates: \\spad{elliptic(a)} is a function which will map the point \\spad{(u,{}v)} to \\spad{x = a*cosh(u)*cos(v)},{} \\spad{y = a*sinh(u)*sin(v)}.")) (|paraboloidal| (((|Point| |#1|) (|Point| |#1|)) "\\spad{paraboloidal(pt)} transforms \\spad{pt} from paraboloidal coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}phi)} to \\spad{x = u*v*cos(phi)},{} \\spad{y = u*v*sin(phi)},{} \\spad{z = 1/2 * (u**2 - v**2)}.")) (|parabolicCylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolicCylindrical(pt)} transforms \\spad{pt} from parabolic cylindrical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v,{}z)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v},{} \\spad{z}.")) (|parabolic| (((|Point| |#1|) (|Point| |#1|)) "\\spad{parabolic(pt)} transforms \\spad{pt} from parabolic coordinates to Cartesian coordinates: the function produced will map the point \\spad{(u,{}v)} to \\spad{x = 1/2*(u**2 - v**2)},{} \\spad{y = u*v}.")) (|spherical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{spherical(pt)} transforms \\spad{pt} from spherical coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}phi)} to \\spad{x = r*sin(phi)*cos(theta)},{} \\spad{y = r*sin(phi)*sin(theta)},{} \\spad{z = r*cos(phi)}.")) (|cylindrical| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cylindrical(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta,{}z)} to \\spad{x = r * cos(theta)},{} \\spad{y = r * sin(theta)},{} \\spad{z}.")) (|polar| (((|Point| |#1|) (|Point| |#1|)) "\\spad{polar(pt)} transforms \\spad{pt} from polar coordinates to Cartesian coordinates: the function produced will map the point \\spad{(r,{}theta)} to \\spad{x = r * cos(theta)} ,{} \\spad{y = r * sin(theta)}.")) (|cartesian| (((|Point| |#1|) (|Point| |#1|)) "\\spad{cartesian(pt)} returns the Cartesian coordinates of point \\spad{pt}.")))
@@ -569,9 +569,9 @@ NIL
NIL
NIL
(-160 R S CS)
-((|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
+((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-866 |#2|) (LIST (QUOTE -806) (|devaluate| |#1|))))
+((|HasCategory| (-874 |#2|) (LIST (QUOTE -808) (|devaluate| |#1|))))
(-161 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -584,7 +584,7 @@ NIL
((|constructor| (NIL "This package provides tools for working with cyclic streams.")) (|computeCycleEntry| ((|#2| |#2| |#2|) "\\spad{computeCycleEntry(x,{}cycElt)},{} where \\spad{cycElt} is a pointer to a node in the cyclic part of the cyclic stream \\spad{x},{} returns a pointer to the first node in the cycle")) (|computeCycleLength| (((|NonNegativeInteger|) |#2|) "\\spad{computeCycleLength(s)} returns the length of the cycle of a cyclic stream \\spad{t},{} where \\spad{s} is a pointer to a node in the cyclic part of \\spad{t}.")) (|cycleElt| (((|Union| |#2| "failed") |#2|) "\\spad{cycleElt(s)} returns a pointer to a node in the cycle if the stream \\spad{s} is cyclic and returns \"failed\" if \\spad{s} is not cyclic")))
NIL
NIL
-(-164 R -2958)
+(-164 R -1696)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -601,47 +601,47 @@ NIL
NIL
NIL
(-168)
-((|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points.")))
+((|constructor| (NIL "\\axiomType{d01AgentsPackage} is a package of numerical agents to be used to investigate attributes of an input function so as to decide the \\axiomFun{measure} of an appropriate numerical integration routine. It contains functions \\axiomFun{rangeIsFinite} to test the input range and \\axiomFun{functionIsContinuousAtEndPoints} to check for continuity at the end points of the range.")) (|changeName| (((|Result|) (|Symbol|) (|Symbol|) (|Result|)) "\\spad{changeName(s,{}t,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to \\axiom{\\spad{t}}.")) (|commaSeparate| (((|String|) (|List| (|String|))) "\\spad{commaSeparate(l)} produces a comma separated string from a list of strings.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{singularitiesOf(args)} returns a list of potential singularities of the function within the given range")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function if it can be retracted to \\axiomType{Polynomial DoubleFloat}.")) (|functionIsOscillatory| (((|Float|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsOscillatory(a)} tests whether the function \\spad{a.fn} has many zeros of its derivative.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(x)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{x}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(x)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{x}}")) (|functionIsContinuousAtEndPoints| (((|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsContinuousAtEndPoints(args)} uses power series limits to check for problems at the end points of the range of \\spad{args}.")) (|rangeIsFinite| (((|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{rangeIsFinite(args)} tests the endpoints of \\spad{args.range} for infinite end points.")))
NIL
NIL
(-169)
-NIL
+((|constructor| (NIL "\\axiomType{d01ajfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AJF,{} a general numerical integration routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AJF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-170)
-NIL
+((|constructor| (NIL "\\axiomType{d01akfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AKF,{} a numerical integration routine which is is suitable for oscillating,{} non-singular functions. The function \\axiomFun{measure} measures the usefulness of the routine D01AKF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-171)
-NIL
+((|constructor| (NIL "\\axiomType{d01alfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ALF,{} a general numerical integration routine which can handle a list of singularities. The function \\axiomFun{measure} measures the usefulness of the routine D01ALF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-172)
-NIL
+((|constructor| (NIL "\\axiomType{d01amfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AMF,{} a general numerical integration routine which can handle infinite or semi-infinite range of the input function. The function \\axiomFun{measure} measures the usefulness of the routine D01AMF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-173)
-NIL
+((|constructor| (NIL "\\axiomType{d01anfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ANF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}). The function \\axiomFun{measure} measures the usefulness of the routine D01ANF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-174)
-NIL
+((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-175)
-NIL
+((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-176)
-NIL
+((|constructor| (NIL "\\axiomType{d01asfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01ASF,{} a numerical integration routine which can handle weight functions of the form cos(\\omega \\spad{x}) or sin(\\omega \\spad{x}) on an semi-infinite range. The function \\axiomFun{measure} measures the usefulness of the routine D01ASF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-177)
-NIL
+((|constructor| (NIL "\\axiomType{d01fcfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01FCF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-178)
-NIL
+((|constructor| (NIL "\\axiomType{d01gbfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01GBF,{} a numerical integration routine which can handle multi-dimensional quadrature over a finite region. The function \\axiomFun{measure} measures the usefulness of the routine D01GBF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-179)
@@ -649,27 +649,27 @@ NIL
NIL
NIL
(-180)
-((|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator.")))
+((|constructor| (NIL "\\axiom{d01WeightsPackage} is a package for functions used to investigate whether a function can be divided into a simpler function and a weight function. The types of weights investigated are those giving rise to end-point singularities of the algebraico-logarithmic type,{} and trigonometric weights.")) (|exprHasLogarithmicWeights| (((|Integer|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasLogarithmicWeights} looks for logarithmic weights giving rise to singularities of the function at the end-points.")) (|exprHasAlgebraicWeight| (((|Union| (|List| (|DoubleFloat|)) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasAlgebraicWeight} looks for algebraic weights giving rise to singularities of the function at the end-points.")) (|exprHasWeightCosWXorSinWX| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |w| (|DoubleFloat|))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\axiom{exprHasWeightCosWXorSinWX} looks for trigonometric weights in an expression of the form \\axiom{cos \\omega \\spad{x}} or \\axiom{sin \\omega \\spad{x}},{} returning the value of \\omega (\\notequal 1) and the operator.")))
NIL
NIL
(-181)
-((|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes")))
+((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,{}symbols,{}values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,{}w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,{}L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,{}C2)} is for interacting attributes")))
NIL
NIL
(-182)
-NIL
+((|constructor| (NIL "\\axiomType{d02bbfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BBF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BBF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
(-183)
-NIL
+((|constructor| (NIL "\\axiomType{d02bhfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02BHF,{} a ODE routine which uses an Runge-Kutta method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02BHF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
(-184)
-NIL
+((|constructor| (NIL "\\axiomType{d02cjfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02CJF,{} a ODE routine which uses an Adams-Moulton-Bashworth method to solve a system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02CJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
(-185)
-NIL
+((|constructor| (NIL "\\axiomType{d02ejfAnnaType} is a domain of \\axiomType{OrdinaryDifferentialEquationsInitialValueProblemSolverCategory} for the NAG routine D02EJF,{} a ODE routine which uses a backward differentiation formulae method to handle a stiff system of differential equations. The function \\axiomFun{measure} measures the usefulness of the routine D02EJF for the given problem. The function \\axiomFun{ODESolve} performs the integration by using \\axiomType{NagOrdinaryDifferentialEquationsPackage}.")))
NIL
NIL
(-186)
@@ -677,30 +677,30 @@ NIL
NIL
NIL
(-187)
-NIL
+((|constructor| (NIL "\\axiomType{d03eefAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routines D03EEF/D03EDF.")))
NIL
NIL
(-188)
-NIL
+((|constructor| (NIL "\\axiomType{d03fafAnnaType} is a domain of \\axiomType{PartialDifferentialEquationsSolverCategory} for the NAG routine D03FAF.")))
NIL
NIL
(-189 S)
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-190 -2958 UP UPUP R)
+(-190 -1696 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-191 -2958 FP)
+(-191 -1696 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-192)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-501) (QUOTE (-830))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-501) (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-134))) (|HasCategory| (-501) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-933))) (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-1046))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-501) (QUOTE (-206))) (|HasCategory| (-501) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-501) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -278) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -256) (QUOTE (-501)) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-276))) (|HasCategory| (-501) (QUOTE (-500))) (|HasCategory| (-501) (QUOTE (-777))) (-1405 (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (QUOTE (-777)))) (|HasCategory| (-501) (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (|HasCategory| (-501) (QUOTE (-132)))))
-(-193 R -2958)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
+(-193 R -1696)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -713,3924 +713,3940 @@ NIL
NIL
NIL
(-196 S)
-((|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
+((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
(-197 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-198 R -2958)
+(-198 R -1696)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-199)
-((|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-2391 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
+((-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-200)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
NIL
NIL
-(-201 A S)
-NIL
+(-201 R)
+((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4182 "*"))) (|HasCategory| |#1| (QUOTE (-333))))
+(-202 A S)
+((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
-(-202 S)
+(-203 S)
+((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
+((-4181 . T) (-3353 . T))
NIL
-((-4168 . T) (-2951 . T))
-NIL
-(-203 S R)
+(-204 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))))
-(-204 R)
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))))
+(-205 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-205 S)
+(-206 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
NIL
NIL
-(-206)
+(-207)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-207 A S)
-((|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
+(-208 A S)
+((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4167)))
-(-208 S)
-((|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4168 . T) (-2951 . T))
+((|HasAttribute| |#1| (QUOTE -4180)))
+(-209 S)
+((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
+((-4181 . T) (-3353 . T))
NIL
-(-209)
+(-210)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-210 S -2742 R)
-((* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-NIL
-((|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775))) (|HasAttribute| |#3| (QUOTE -4164)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-657))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-959))) (|HasCategory| |#3| (QUOTE (-1001))))
-(-211 -2742 R)
-((* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4161 |has| |#2| (-959)) (-4162 |has| |#2| (-959)) (-4164 |has| |#2| (-6 -4164)) ((-4169 "*") |has| |#2| (-156)) (-4167 . T) (-2951 . T))
+(-211 S -2806 R)
+((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-(-212 -2742 R)
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasAttribute| |#3| (QUOTE -4177)) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-659))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003))))
+(-212 -2806 R)
+((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
+((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T) (-3353 . T))
NIL
-((-4161 |has| |#2| (-959)) (-4162 |has| |#2| (-959)) (-4164 |has| |#2| (-6 -4164)) ((-4169 "*") |has| |#2| (-156)) (-4167 . T))
-((|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (-1405 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775)))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-657))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasAttribute| |#2| (QUOTE -4164)) (|HasCategory| |#2| (QUOTE (-123))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-25))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))))
-(-213 -2742 A B)
-((|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
+(-213 -2806 A B)
+((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-214)
+(-214 -2806 R)
+((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
+((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3807 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4177)) (|HasCategory| |#2| (QUOTE (-123))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+(-215)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
NIL
-(-215 S)
+(-216 S)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
NIL
NIL
-(-216)
+(-217)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4160 . T) (-4161 . T) (-4162 . T) (-4164 . T))
-NIL
-(-217 S)
-((|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-2951 . T))
+((-4173 . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-218 S)
+((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
+((-3353 . T))
+NIL
+(-219 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-219 M)
-((|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-220 M)
+((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
-(-220 |vl| R)
-((|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-221 |n| R M S)
-((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4164 -1405 (-1280 (|has| |#4| (-959)) (|has| |#4| (-206))) (-1280 (|has| |#4| (-959)) (|has| |#4| (-820 (-1070)))) (|has| |#4| (-6 -4164)) (-1280 (|has| |#4| (-959)) (|has| |#4| (-577 (-501))))) (-4161 |has| |#4| (-959)) (-4162 |has| |#4| (-959)) ((-4169 "*") |has| |#4| (-156)) (-4167 . T))
-((|HasCategory| |#4| (QUOTE (-331))) (|HasCategory| |#4| (QUOTE (-959))) (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-775))) (-1405 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-775)))) (|HasCategory| |#4| (QUOTE (-156))) (-1405 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-331))) (|HasCategory| |#4| (QUOTE (-959)))) (-1405 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-331)))) (-1405 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-959)))) (|HasCategory| |#4| (QUOTE (-336))) (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-206))) (-1405 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-206))) (|HasCategory| |#4| (QUOTE (-959)))) (|HasCategory| |#4| (QUOTE (-1001))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#4| (QUOTE (-657))) (-12 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (QUOTE (-206))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-206)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-331)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-336)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-775)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-206)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-331)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-336)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-775)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (QUOTE (-1001))))) (-1405 (|HasAttribute| |#4| (QUOTE -4164)) (-12 (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (QUOTE (-206))) (|HasCategory| |#4| (QUOTE (-959))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-206)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-331)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-336)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-775)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-959)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001))))))
-(-222 |n| R S)
-((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4164 -1405 (-1280 (|has| |#3| (-959)) (|has| |#3| (-206))) (-1280 (|has| |#3| (-959)) (|has| |#3| (-820 (-1070)))) (|has| |#3| (-6 -4164)) (-1280 (|has| |#3| (-959)) (|has| |#3| (-577 (-501))))) (-4161 |has| |#3| (-959)) (-4162 |has| |#3| (-959)) ((-4169 "*") |has| |#3| (-156)) (-4167 . T))
-((|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775))) (-1405 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775)))) (|HasCategory| |#3| (QUOTE (-156))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331)))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-206))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-1001))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-657))) (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-1001))))) (-1405 (|HasAttribute| |#3| (QUOTE -4164)) (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001))))))
-(-223 A R S V E)
-((|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
+(-221 |vl| R)
+((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
+(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-222)
+((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: October 18,{} 2007. Basic Operations: Related Constructors: Type,{} OutputForm Also See: Type")))
NIL
-((|HasCategory| |#2| (QUOTE (-206))))
-(-224 R S V E)
-((|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
NIL
-(-225 S)
-((|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4167 . T) (-4168 . T) (-2951 . T))
+(-223 |n| R M S)
+((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
+((-4177 -3807 (-4035 (|has| |#4| (-961)) (|has| |#4| (-207))) (-4035 (|has| |#4| (-961)) (|has| |#4| (-822 (-1073)))) (|has| |#4| (-6 -4177)) (-4035 (|has| |#4| (-961)) (|has| |#4| (-579 (-517))))) (-4174 |has| |#4| (-961)) (-4175 |has| |#4| (-961)) ((-4182 "*") |has| |#4| (-156)) (-4180 . T))
+((|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777))) (-3807 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (QUOTE (-777)))) (|HasCategory| |#4| (QUOTE (-156))) (-3807 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-961)))) (-3807 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-333)))) (-3807 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#4| (QUOTE (-207))) (-3807 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#4| (QUOTE (-659))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3807 (|HasCategory| |#4| (QUOTE (-961))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003)))) (-3807 (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-156)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-207)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-333)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-338)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-725)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-777)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (QUOTE (-1003))))) (-3807 (|HasAttribute| |#4| (QUOTE -4177)) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (QUOTE (-961)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#4| (QUOTE (-123))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-3807 (-12 (|HasCategory| |#4| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-207))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-338))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-725))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-777))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-961))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+(-224 |n| R S)
+((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
+((-4177 -3807 (-4035 (|has| |#3| (-961)) (|has| |#3| (-207))) (-4035 (|has| |#3| (-961)) (|has| |#3| (-822 (-1073)))) (|has| |#3| (-6 -4177)) (-4035 (|has| |#3| (-961)) (|has| |#3| (-579 (-517))))) (-4174 |has| |#3| (-961)) (-4175 |has| |#3| (-961)) ((-4182 "*") |has| |#3| (-156)) (-4180 . T))
+((|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3807 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-207))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3807 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3807 (|HasAttribute| |#3| (QUOTE -4177)) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3807 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+(-225 A R S V E)
+((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
-(-226 |Ex|)
-((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
+((|HasCategory| |#2| (QUOTE (-207))))
+(-226 R S V E)
+((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
NIL
+(-227 S)
+((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
+((-4180 . T) (-4181 . T) (-3353 . T))
NIL
-(-227)
+(-228)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
-(-228 R |Ex|)
+(-229 R |Ex|)
((|constructor| (NIL "TopLevelDrawFunctionsForAlgebraicCurves provides top level functions for drawing non-singular algebraic curves.")) (|draw| (((|TwoDimensionalViewport|) (|Equation| |#2|) (|Symbol|) (|Symbol|) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y) = g(x,{}y),{}x,{}y,{}l)} draws the graph of a polynomial equation. The list \\spad{l} of draw options must specify a region in the plane in which the curve is to sketched.")))
NIL
NIL
-(-229)
+(-230)
((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,{}rRange,{}iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f,{} -2..2,{} -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,{}rRange,{}iRange,{}arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f,{} 0.3..3,{} 0..2*\\%\\spad{pi},{} false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
-(-230 R)
+(-231 R)
((|constructor| (NIL "Hack for the draw interface. DrawNumericHack provides a \"coercion\" from something of the form \\spad{x = a..b} where \\spad{a} and \\spad{b} are formal expressions to a binding of the form \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}. This \"coercion\" fails if \\spad{a} and \\spad{b} contains symbolic variables,{} but is meant for expressions involving \\%\\spad{pi}.")) (|coerce| (((|SegmentBinding| (|Float|)) (|SegmentBinding| (|Expression| |#1|))) "\\spad{coerce(x = a..b)} returns \\spad{x = c..d} where \\spad{c} and \\spad{d} are the numerical values of \\spad{a} and \\spad{b}.")))
NIL
NIL
-(-231)
-((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
-NIL
-NIL
-(-232)
-((|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
+(-232 |Ex|)
+((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,{}v),{}g(u,{}v),{}h(u,{}v)),{}u = a..b,{}v = c..d,{}l)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,{}y),{}x = a..b,{}y = c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; \\spad{f(x,{}y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t),{}h(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),{}g(t)),{}t = a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{(f(t),{}g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),{}x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),{}x = a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
NIL
NIL
(-233)
-((|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
-NIL
+((|constructor| (NIL "TopLevelDrawFunctionsForPoints provides top level functions for drawing curves and surfaces described by sets of points.")) (|draw| (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}lz,{}l)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly,{}lz)} draws the surface constructed by projecting the values in the \\axiom{\\spad{lz}} list onto the rectangular grid formed by the \\axiom{\\spad{lx} \\spad{X} \\spad{ly}}.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|))) (|List| (|DrawOption|))) "\\spad{draw(lp,{}l)} plots the curve constructed from the list of points \\spad{lp}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|Point| (|DoubleFloat|)))) "\\spad{draw(lp)} plots the curve constructed from the list of points \\spad{lp}.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{draw(lx,{}ly,{}l)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|List| (|DoubleFloat|)) (|List| (|DoubleFloat|))) "\\spad{draw(lx,{}ly)} plots the curve constructed of points (\\spad{x},{}\\spad{y}) for \\spad{x} in \\spad{lx} for \\spad{y} in \\spad{ly}.")))
NIL
-(-234 S)
-((|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
+(-234)
+((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,{}u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,{}n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,{}r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,{}p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,{}s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,{}ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,{}b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
-(-235 R S V)
NIL
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#3| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#3| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#3| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#3| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-236 A S)
-((|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
+(-235 S)
+((|constructor| (NIL "This package \\undocumented{}")) (|option| (((|Union| |#1| "failed") (|List| (|DrawOption|)) (|Symbol|)) "\\spad{option(l,{}s)} determines whether the indicated drawing option,{} \\spad{s},{} is contained in the list of drawing options,{} \\spad{l},{} which is defined by the draw command.")))
NIL
NIL
-(-237 S)
-((|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
+(-236)
+((|constructor| (NIL "DrawOption allows the user to specify defaults for the creation and rendering of plots.")) (|option?| (((|Boolean|) (|List| $) (|Symbol|)) "\\spad{option?()} is not to be used at the top level; option? internally returns \\spad{true} for drawing options which are indicated in a draw command,{} or \\spad{false} for those which are not.")) (|option| (((|Union| (|Any|) "failed") (|List| $) (|Symbol|)) "\\spad{option()} is not to be used at the top level; option determines internally which drawing options are indicated in a draw command.")) (|unit| (($ (|List| (|Float|))) "\\spad{unit(lf)} will mark off the units according to the indicated list \\spad{lf}. This option is expressed in the form \\spad{unit == [f1,{}f2]}.")) (|coord| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(p)} specifies a change of coordinates of point \\spad{p}. This option is expressed in the form \\spad{coord == p}.")) (|tubePoints| (($ (|PositiveInteger|)) "\\spad{tubePoints(n)} specifies the number of points,{} \\spad{n},{} defining the circle which creates the tube around a 3D curve,{} the default is 6. This option is expressed in the form \\spad{tubePoints == n}.")) (|var2Steps| (($ (|PositiveInteger|)) "\\spad{var2Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the second range variable. This option is expressed in the form \\spad{var2Steps == n}.")) (|var1Steps| (($ (|PositiveInteger|)) "\\spad{var1Steps(n)} indicates the number of subdivisions,{} \\spad{n},{} of the first range variable. This option is expressed in the form \\spad{var1Steps == n}.")) (|space| (($ (|ThreeSpace| (|DoubleFloat|))) "\\spad{space specifies} the space into which we will draw. If none is given then a new space is created.")) (|ranges| (($ (|List| (|Segment| (|Float|)))) "\\spad{ranges(l)} provides a list of user-specified ranges \\spad{l}. This option is expressed in the form \\spad{ranges == l}.")) (|range| (($ (|List| (|Segment| (|Fraction| (|Integer|))))) "\\spad{range([i])} provides a user-specified range \\spad{i}. This option is expressed in the form \\spad{range == [i]}.") (($ (|List| (|Segment| (|Float|)))) "\\spad{range([l])} provides a user-specified range \\spad{l}. This option is expressed in the form \\spad{range == [l]}.")) (|tubeRadius| (($ (|Float|)) "\\spad{tubeRadius(r)} specifies a radius,{} \\spad{r},{} for a tube plot around a 3D curve; is expressed in the form \\spad{tubeRadius == 4}.")) (|colorFunction| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(x,{}y,{}z))} specifies the color for three dimensional plots as a function of \\spad{x},{} \\spad{y},{} and \\spad{z} coordinates. This option is expressed in the form \\spad{colorFunction == f(x,{}y,{}z)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(u,{}v))} specifies the color for three dimensional plots as a function based upon the two parametric variables. This option is expressed in the form \\spad{colorFunction == f(u,{}v)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{colorFunction(f(z))} specifies the color based upon the \\spad{z}-component of three dimensional plots. This option is expressed in the form \\spad{colorFunction == f(z)}.")) (|curveColor| (($ (|Palette|)) "\\spad{curveColor(p)} specifies a color index for 2D graph curves from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{curveColor ==p}.") (($ (|Float|)) "\\spad{curveColor(v)} specifies a color,{} \\spad{v},{} for 2D graph curves. This option is expressed in the form \\spad{curveColor == v}.")) (|pointColor| (($ (|Palette|)) "\\spad{pointColor(p)} specifies a color index for 2D graph points from the spadcolors palette \\spad{p}. This option is expressed in the form \\spad{pointColor == p}.") (($ (|Float|)) "\\spad{pointColor(v)} specifies a color,{} \\spad{v},{} for 2D graph points. This option is expressed in the form \\spad{pointColor == v}.")) (|coordinates| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coordinates(p)} specifies a change of coordinate systems of point \\spad{p}. This option is expressed in the form \\spad{coordinates == p}.")) (|toScale| (($ (|Boolean|)) "\\spad{toScale(b)} specifies whether or not a plot is to be drawn to scale; if \\spad{b} is \\spad{true} it is drawn to scale,{} if \\spad{b} is \\spad{false} it is not. This option is expressed in the form \\spad{toScale == b}.")) (|style| (($ (|String|)) "\\spad{style(s)} specifies the drawing style in which the graph will be plotted by the indicated string \\spad{s}. This option is expressed in the form \\spad{style == s}.")) (|title| (($ (|String|)) "\\spad{title(s)} specifies a title for a plot by the indicated string \\spad{s}. This option is expressed in the form \\spad{title == s}.")) (|viewpoint| (($ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(vp)} creates a viewpoint data structure corresponding to the list of values. The values are interpreted as [theta,{} phi,{} scale,{} scaleX,{} scaleY,{} scaleZ,{} deltaX,{} deltaY]. This option is expressed in the form \\spad{viewpoint == ls}.")) (|clip| (($ (|List| (|Segment| (|Float|)))) "\\spad{clip([l])} provides ranges for user-defined clipping as specified in the list \\spad{l}. This option is expressed in the form \\spad{clip == [l]}.") (($ (|Boolean|)) "\\spad{clip(b)} turns 2D clipping on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{clip == b}.")) (|adaptive| (($ (|Boolean|)) "\\spad{adaptive(b)} turns adaptive 2D plotting on if \\spad{b} is \\spad{true},{} or off if \\spad{b} is \\spad{false}. This option is expressed in the form \\spad{adaptive == b}.")))
NIL
NIL
-(-238)
-((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
+(-237 R S V)
+((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-238 A S)
+((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
-(-239)
-NIL
+(-239 S)
+((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#1| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#1| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
NIL
(-240)
-NIL
+((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,{}r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,{}n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,{}n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,{}b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
NIL
NIL
(-241)
-NIL
+((|constructor| (NIL "\\axiomType{e04dgfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04DGF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04DGF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
(-242)
-NIL
+((|constructor| (NIL "\\axiomType{e04fdfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04FDF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04FDF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
(-243)
-NIL
+((|constructor| (NIL "\\axiomType{e04gcfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04GCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04GCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
(-244)
-NIL
+((|constructor| (NIL "\\axiomType{e04jafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04JAF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04JAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
(-245)
-NIL
+((|constructor| (NIL "\\axiomType{e04mbfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04MBF,{} an optimization routine for Linear functions. The function \\axiomFun{measure} measures the usefulness of the routine E04MBF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
NIL
NIL
(-246)
+((|constructor| (NIL "\\axiomType{e04nafAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04NAF,{} an optimization routine for Quadratic functions. The function \\axiomFun{measure} measures the usefulness of the routine E04NAF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
+NIL
+NIL
+(-247)
+((|constructor| (NIL "\\axiomType{e04ucfAnnaType} is a domain of \\axiomType{NumericalOptimization} for the NAG routine E04UCF,{} a general optimization routine which can handle some singularities in the input function. The function \\axiomFun{measure} measures the usefulness of the routine E04UCF for the given problem. The function \\axiomFun{numericalOptimization} performs the optimization by using \\axiomType{NagOptimisationPackage}.")))
+NIL
+NIL
+(-248)
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-247 R -2958)
+(-249 R -1696)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-248 R -2958)
+(-250 R -1696)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
-(-249 |Coef| UTS ULS)
+(-251 |Coef| UTS ULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of Laurent series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of Laurent series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of Laurent series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of Laurent series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of Laurent series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of Laurent series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of Laurent series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of Laurent series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of Laurent series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of Laurent series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of Laurent series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of Laurent series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of Laurent series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of Laurent series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of Laurent series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of Laurent series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of Laurent series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of Laurent series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of Laurent series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of Laurent series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of Laurent series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of Laurent series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of Laurent series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of Laurent series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of Laurent series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of Laurent series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{s ** r} raises a Laurent series \\spad{s} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-331))))
-(-250 |Coef| ULS UPXS EFULS)
+((|HasCategory| |#1| (QUOTE (-333))))
+(-252 |Coef| ULS UPXS EFULS)
((|constructor| (NIL "\\indented{1}{This package provides elementary functions on any Laurent series} domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return \"failed\" when this is not possible.")) (|acsch| ((|#3| |#3|) "\\spad{acsch(z)} returns the inverse hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|asech| ((|#3| |#3|) "\\spad{asech(z)} returns the inverse hyperbolic secant of a Puiseux series \\spad{z}.")) (|acoth| ((|#3| |#3|) "\\spad{acoth(z)} returns the inverse hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|atanh| ((|#3| |#3|) "\\spad{atanh(z)} returns the inverse hyperbolic tangent of a Puiseux series \\spad{z}.")) (|acosh| ((|#3| |#3|) "\\spad{acosh(z)} returns the inverse hyperbolic cosine of a Puiseux series \\spad{z}.")) (|asinh| ((|#3| |#3|) "\\spad{asinh(z)} returns the inverse hyperbolic sine of a Puiseux series \\spad{z}.")) (|csch| ((|#3| |#3|) "\\spad{csch(z)} returns the hyperbolic cosecant of a Puiseux series \\spad{z}.")) (|sech| ((|#3| |#3|) "\\spad{sech(z)} returns the hyperbolic secant of a Puiseux series \\spad{z}.")) (|coth| ((|#3| |#3|) "\\spad{coth(z)} returns the hyperbolic cotangent of a Puiseux series \\spad{z}.")) (|tanh| ((|#3| |#3|) "\\spad{tanh(z)} returns the hyperbolic tangent of a Puiseux series \\spad{z}.")) (|cosh| ((|#3| |#3|) "\\spad{cosh(z)} returns the hyperbolic cosine of a Puiseux series \\spad{z}.")) (|sinh| ((|#3| |#3|) "\\spad{sinh(z)} returns the hyperbolic sine of a Puiseux series \\spad{z}.")) (|acsc| ((|#3| |#3|) "\\spad{acsc(z)} returns the arc-cosecant of a Puiseux series \\spad{z}.")) (|asec| ((|#3| |#3|) "\\spad{asec(z)} returns the arc-secant of a Puiseux series \\spad{z}.")) (|acot| ((|#3| |#3|) "\\spad{acot(z)} returns the arc-cotangent of a Puiseux series \\spad{z}.")) (|atan| ((|#3| |#3|) "\\spad{atan(z)} returns the arc-tangent of a Puiseux series \\spad{z}.")) (|acos| ((|#3| |#3|) "\\spad{acos(z)} returns the arc-cosine of a Puiseux series \\spad{z}.")) (|asin| ((|#3| |#3|) "\\spad{asin(z)} returns the arc-sine of a Puiseux series \\spad{z}.")) (|csc| ((|#3| |#3|) "\\spad{csc(z)} returns the cosecant of a Puiseux series \\spad{z}.")) (|sec| ((|#3| |#3|) "\\spad{sec(z)} returns the secant of a Puiseux series \\spad{z}.")) (|cot| ((|#3| |#3|) "\\spad{cot(z)} returns the cotangent of a Puiseux series \\spad{z}.")) (|tan| ((|#3| |#3|) "\\spad{tan(z)} returns the tangent of a Puiseux series \\spad{z}.")) (|cos| ((|#3| |#3|) "\\spad{cos(z)} returns the cosine of a Puiseux series \\spad{z}.")) (|sin| ((|#3| |#3|) "\\spad{sin(z)} returns the sine of a Puiseux series \\spad{z}.")) (|log| ((|#3| |#3|) "\\spad{log(z)} returns the logarithm of a Puiseux series \\spad{z}.")) (|exp| ((|#3| |#3|) "\\spad{exp(z)} returns the exponential of a Puiseux series \\spad{z}.")) (** ((|#3| |#3| (|Fraction| (|Integer|))) "\\spad{z ** r} raises a Puiseaux series \\spad{z} to a rational power \\spad{r}")))
NIL
-((|HasCategory| |#1| (QUOTE (-331))))
-(-251 A S)
-((|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
+((|HasCategory| |#1| (QUOTE (-333))))
+(-253 A S)
+((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))))
-(-252 S)
-((|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4168 . T) (-2951 . T))
+((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))))
+(-254 S)
+((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
+((-4181 . T) (-3353 . T))
NIL
-(-253 S)
+(-255 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-254)
+(-256)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
NIL
NIL
-(-255 |Coef| UTS)
+(-257 |Coef| UTS)
((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,{}c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,{}k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,{}k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,{}k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
NIL
NIL
-(-256 S |Index|)
-((|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}.")))
+(-258 S |Index|)
+((|constructor| (NIL "An eltable over domains \\spad{D} and \\spad{I} is a structure which can be viewed as a function from \\spad{D} to \\spad{I}. Examples of eltable structures range from data structures,{} \\spadignore{e.g.} those of type \\spadtype{List},{} to algebraic structures,{} \\spadignore{e.g.} \\spadtype{Polynomial}.")) (|elt| ((|#2| $ |#1|) "\\spad{elt(u,{}i)} (also written: \\spad{u} . \\spad{i}) returns the element of \\spad{u} indexed by \\spad{i}. Error: if \\spad{i} is not an index of \\spad{u}.")))
NIL
NIL
-(-257 S |Dom| |Im|)
-((|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
+(-259 S |Dom| |Im|)
+((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4168)))
-(-258 |Dom| |Im|)
-((|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
+((|HasAttribute| |#1| (QUOTE -4181)))
+(-260 |Dom| |Im|)
+((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-259 S R |Mod| -3220 -3216 |exactQuo|)
+(-261 S R |Mod| -3271 -3237 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-260)
+(-262)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4160 . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-261 R)
+(-263 R)
((|constructor| (NIL "This is a package for the exact computation of eigenvalues and eigenvectors. This package can be made to work for matrices with coefficients which are rational functions over a ring where we can factor polynomials. Rational eigenvalues are always explicitly computed while the non-rational ones are expressed in terms of their minimal polynomial.")) (|eigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvectors(m)} returns the eigenvalues and eigenvectors for the matrix \\spad{m}. The rational eigenvalues and the correspondent eigenvectors are explicitely computed,{} while the non rational ones are given via their minimal polynomial and the corresponding eigenvectors are expressed in terms of a \"generic\" root of such a polynomial.")) (|generalizedEigenvectors| (((|List| (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |geneigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|))))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvectors(m)} returns the generalized eigenvectors of the matrix \\spad{m}.")) (|generalizedEigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Record| (|:| |eigval| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|:| |eigmult| (|NonNegativeInteger|)) (|:| |eigvec| (|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{generalizedEigenvector(eigen,{}m)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{eigen},{} as returned by the function eigenvectors.") (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generalizedEigenvector(alpha,{}m,{}k,{}g)} returns the generalized eigenvectors of the matrix relative to the eigenvalue \\spad{alpha}. The integers \\spad{k} and \\spad{g} are respectively the algebraic and the geometric multiplicity of tye eigenvalue \\spad{alpha}. \\spad{alpha} can be either rational or not. In the seconda case apha is the minimal polynomial of the eigenvalue.")) (|eigenvector| (((|List| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvector(eigval,{}m)} returns the eigenvectors belonging to the eigenvalue \\spad{eigval} for the matrix \\spad{m}.")) (|eigenvalues| (((|List| (|Union| (|Fraction| (|Polynomial| |#1|)) (|SuchThat| (|Symbol|) (|Polynomial| |#1|)))) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eigenvalues(m)} returns the eigenvalues of the matrix \\spad{m} which are expressible as rational functions over the rational numbers.")) (|characteristicPolynomial| (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{characteristicPolynomial(m)} returns the characteristicPolynomial of the matrix \\spad{m} using a new generated symbol symbol as the main variable.") (((|Polynomial| |#1|) (|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}var)} returns the characteristicPolynomial of the matrix \\spad{m} using the symbol \\spad{var} as the main variable.")))
NIL
NIL
-(-262 S)
-((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4164 -1405 (|has| |#1| (-959)) (|has| |#1| (-440))) (-4161 |has| |#1| (-959)) (-4162 |has| |#1| (-959)))
-((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-267))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-440)))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-657))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-657)))) (|HasCategory| |#1| (QUOTE (-1012))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (QUOTE (-21))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-657)))) (|HasCategory| |#1| (QUOTE (-25))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-263 S R)
+(-264 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,{}eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
NIL
-(-264 |Key| |Entry|)
+(-265 S)
+((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
+((-4177 -3807 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4174 |has| |#1| (-961)) (-4175 |has| |#1| (-961)))
+((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-273))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442)))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-659))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-1015))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659)))) (|HasCategory| |#1| (QUOTE (-25))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-1003)))))
+(-266 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))))
-(-265)
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+(-267)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-266 S)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+(-268 -1696 S)
+((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959))))
-(-267)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
+(-269 E -1696)
+((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
-(-268 -2958 S)
-((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
+(-270 A B)
+((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
-(-269 E -2958)
-((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
+(-271)
+((|constructor| (NIL "ExpertSystemContinuityPackage is a package of functions for the use of domains belonging to the category \\axiomType{NumericalIntegration}.")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
-(-270)
-((|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a Stream of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a List of \\axiomType{DoubleFloat} to \\axiomType{List}(\\axiomType{String})")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|polynomialZeros| (((|List| (|DoubleFloat|)) (|Polynomial| (|Fraction| (|Integer|))) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{polynomialZeros(fn,{}var,{}range)} calculates the real zeros of the polynomial which are contained in the given interval. It returns a list of points (\\axiomType{Doublefloat}) for which the univariate polynomial \\spad{fn} is zero.")) (|singularitiesOf| (((|Stream| (|DoubleFloat|)) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(v,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{v} will most likely produce an error. This includes those points which evaluate to 0/0.") (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{singularitiesOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error. This includes those points which evaluate to 0/0.")) (|zerosOf| (((|Stream| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|List| (|Symbol|)) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{zerosOf(e,{}vars,{}range)} returns a list of points (\\axiomType{Doublefloat}) at which a NAG fortran version of \\spad{e} will most likely produce an error.")) (|problemPoints| (((|List| (|DoubleFloat|)) (|Expression| (|DoubleFloat|)) (|Symbol|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{problemPoints(f,{}var,{}range)} returns a list of possible problem points by looking at the zeros of the denominator of the function \\spad{f} if it can be retracted to \\axiomType{Polynomial(DoubleFloat)}.")) (|functionIsFracPolynomial?| (((|Boolean|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{functionIsFracPolynomial?(args)} tests whether the function can be retracted to \\axiomType{Fraction(Polynomial(DoubleFloat))}")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\axiom{\\spad{u}}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\axiom{\\spad{u}}")))
NIL
+(-272 S)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-(-271 A B)
-((|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
+((|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-961))))
+(-273)
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-272)
-((|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
+(-274 R1)
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
-(-273 R1)
-((|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
+(-275 R1 R2)
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
-(-274 R1 R2)
-((|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,{}m)} applies a mapping \\spad{f:R1} \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
+(-276)
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,{}n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,{}b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,{}range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
-(-275 S)
+(-277 S)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
-(-276)
+(-278)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-277 S R)
+(-279 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-278 R)
+(-280 R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-279 -2958)
+(-281 -1696)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
-(-280)
+(-282)
((|constructor| (NIL "A function which does not return directly to its caller should have Exit as its return type. \\blankline Note: It is convenient to have a formal \\spad{coerce} into each type from type Exit. This allows,{} for example,{} errors to be raised in one half of a type-balanced \\spad{if}.")))
NIL
NIL
-(-281 R FE |var| |cen|)
+(-283 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-830))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-933))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-750))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-1046))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-206))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1136) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -278) (LIST (QUOTE -1136) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (LIST (QUOTE -256) (LIST (QUOTE -1136) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1136) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-276))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-500))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-777))) (-1405 (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-750))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-777)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-830)))) (|HasCategory| (-1136 |#1| |#2| |#3| |#4|) (QUOTE (-132)))))
-(-282 R)
-((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4164 -1405 (-1280 (|has| |#1| (-959)) (|has| |#1| (-577 (-501)))) (-12 (|has| |#1| (-508)) (-1405 (-1280 (|has| |#1| (-959)) (|has| |#1| (-577 (-501)))) (|has| |#1| (-959)) (|has| |#1| (-440)))) (|has| |#1| (-959)) (|has| |#1| (-440))) (-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) ((-4169 "*") |has| |#1| (-508)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-508)) (-4159 |has| |#1| (-508)))
-((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-959))) (-1405 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-21))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-21)))) (|HasCategory| |#1| (QUOTE (-25))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-25)))) (|HasCategory| |#1| (QUOTE (-1012))) (-1405 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#1| (QUOTE (-1012)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-1012)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-959)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1012)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))))) (|HasCategory| $ (QUOTE (-959))) (|HasCategory| $ (LIST (QUOTE -950) (QUOTE (-501)))))
-(-283 R S)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-1049))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-207))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -280) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (LIST (QUOTE -258) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-278))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-502))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-779))) (-3807 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-752))) (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-779)))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132)))) (-3807 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-132))) (-12 (|HasCategory| (-1140 |#1| |#2| |#3| |#4|) (QUOTE (-831))) (|HasCategory| $ (QUOTE (-132))))))
+(-284 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
NIL
-(-284 R FE)
+(-285 R FE)
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,{}x = a,{}n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,{}x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,{}n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}x = a,{}n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,{}x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,{}n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,{}x = a,{}n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,{}x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,{}n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,{}x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,{}n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-285 R -2958)
+(-286 R)
+((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
+((-4177 -3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-12 (|has| |#1| (-509)) (-3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (|has| |#1| (-961)) (|has| |#1| (-442)))) (|has| |#1| (-961)) (|has| |#1| (-442))) (-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) ((-4182 "*") |has| |#1| (-509)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-509)) (-4172 |has| |#1| (-509)))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-961))) (-3807 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-961)))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-25))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-961)))) (-3807 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-1015))) (-3807 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (-3807 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-1015)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
+(-287 R -1696)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
-(-286)
+(-288)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tubePlot| (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|) (|String|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n,{}s)} puts a tube of radius \\spad{r(t)} with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. If \\spad{s} = \"closed\",{} the tube is considered to be closed; if \\spad{s} = \"open\",{} the tube is considered to be open.") (((|TubePlot| (|Plot3D|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Integer|)) "\\spad{tubePlot(f,{}g,{}h,{}colorFcn,{}a..b,{}r,{}n)} puts a tube of radius \\spad{r}(\\spad{t}) with \\spad{n} points on each circle about the curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} for \\spad{t} in \\spad{[a,{}b]}. The tube is considered to be open.")) (|constantToUnaryFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|DoubleFloat|)) "\\spad{constantToUnaryFunction(s)} is a local function which takes the value of \\spad{s},{} which may be a function of a constant,{} and returns a function which always returns the value \\spadtype{DoubleFloat} \\spad{s}.")))
NIL
NIL
-(-287 FE |var| |cen|)
+(-289 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))))
-(-288 M)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(-290 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
-(-289 E OV R P)
+(-291 E OV R P)
((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,{}i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly,{} lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly,{} lvar,{} lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
-(-290 S)
+(-292 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4162 . T) (-4161 . T))
-((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| (-501) (QUOTE (-722))))
-(-291 S E)
-((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\spad{\\^}\\spad{e1} ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
+((-4175 . T) (-4174 . T))
+((|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-724))))
+(-293 S E)
+((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
-(-292 S)
+(-294 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-701) (QUOTE (-722))))
-(-293 S R E)
+((|HasCategory| (-703) (QUOTE (-724))))
+(-295 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))))
-(-294 R E)
+((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))))
+(-296 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T))
-NIL
-(-295 S)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-296 S -2958)
-((|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
+(-297 S)
+((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-298 S -1696)
+((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
-((|HasCategory| |#2| (QUOTE (-336))))
-(-297 -2958)
-((|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((|HasCategory| |#2| (QUOTE (-338))))
+(-299 -1696)
+((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-298)
+(-300)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
NIL
NIL
-(-299 E)
+(-301 E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: 12 June 1992 Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the argument of a given sin/cos expressions")) (|sin?| (((|Boolean|) $) "\\spad{sin?(x)} returns \\spad{true} if term is a sin,{} otherwise \\spad{false}")) (|cos| (($ |#1|) "\\spad{cos(x)} makes a cos kernel for use in Fourier series")) (|sin| (($ |#1|) "\\spad{sin(x)} makes a sin kernel for use in Fourier series")))
NIL
NIL
-(-300)
-((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables \\spad{I1},{} \\spad{I2},{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} \\spad{I1} and \\spad{I2}")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
-NIL
-NIL
-(-301 -2958 UP UPUP R)
-((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
+(-302)
+((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,{}p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,{}p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,{}b,{}d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,{}p,{}q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,{}p)} \\undocumented{}")))
NIL
NIL
-(-302 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+(-303 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-303 S -2958 UP UPUP R)
+(-304 S -1696 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-304 -2958 UP UPUP R)
+(-305 -1696 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-305 S R)
+(-306 -1696 UP UPUP R)
+((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
+NIL
+NIL
+(-307 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -256) (|devaluate| |#2|) (|devaluate| |#2|))))
-(-306 R)
+((|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))))
+(-308 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
-(-307 |basicSymbols| |subscriptedSymbols| R)
-((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-346)))) (|HasCategory| $ (QUOTE (-959))) (|HasCategory| $ (LIST (QUOTE -950) (QUOTE (-501)))))
-(-308 |p| |n|)
-((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-826 |#1|) (QUOTE (-134))) (|HasCategory| (-826 |#1|) (QUOTE (-336))) (|HasCategory| (-826 |#1|) (QUOTE (-132))) (-1405 (|HasCategory| (-826 |#1|) (QUOTE (-132))) (|HasCategory| (-826 |#1|) (QUOTE (-336)))))
-(-309 S -2958 UP UPUP)
-((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
+(-309 |basicSymbols| |subscriptedSymbols| R)
+((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
+((-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-349)))) (|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
+(-310 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
+((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-331))))
-(-310 -2958 UP UPUP)
-((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4160 |has| (-375 |#2|) (-331)) (-4165 |has| (-375 |#2|) (-331)) (-4159 |has| (-375 |#2|) (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
NIL
-(-311 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
-((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
+(-311 S -1696 UP UPUP)
+((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
+((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-333))))
+(-312 -1696 UP UPUP)
+((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
+((-4173 |has| (-377 |#2|) (-333)) (-4178 |has| (-377 |#2|) (-333)) (-4172 |has| (-377 |#2|) (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-312 |p| |extdeg|)
+(-313 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-826 |#1|) (QUOTE (-134))) (|HasCategory| (-826 |#1|) (QUOTE (-336))) (|HasCategory| (-826 |#1|) (QUOTE (-132))) (-1405 (|HasCategory| (-826 |#1|) (QUOTE (-132))) (|HasCategory| (-826 |#1|) (QUOTE (-336)))))
-(-313 GF |defpol|)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
+(-314 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336)))))
-(-314 GF |extdeg|)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+(-315 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336)))))
-(-315 GF)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+(-316 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
-(-316 F1 GF F2)
+(-317 F1 GF F2)
((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
-(-317 S)
-((|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
+(-318 S)
+((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
-(-318)
-((|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(-319)
+((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-319 R UP -2958)
+(-320 R UP -1696)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-320 |p| |extdeg|)
+(-321 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-826 |#1|) (QUOTE (-134))) (|HasCategory| (-826 |#1|) (QUOTE (-336))) (|HasCategory| (-826 |#1|) (QUOTE (-132))) (-1405 (|HasCategory| (-826 |#1|) (QUOTE (-132))) (|HasCategory| (-826 |#1|) (QUOTE (-336)))))
-(-321 GF |uni|)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
+(-322 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336)))))
-(-322 GF |extdeg|)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+(-323 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336)))))
-(-323 GF |defpol|)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+(-324 |p| |n|)
+((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-832 |#1|) (QUOTE (-134))) (|HasCategory| (-832 |#1|) (QUOTE (-338))) (|HasCategory| (-832 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-832 |#1|) (QUOTE (-132))) (|HasCategory| (-832 |#1|) (QUOTE (-338)))))
+(-325 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336)))))
-(-324 GF)
-((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+(-326 -1696 GF)
+((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-325 -2958 GF)
-((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
+(-327 GF)
+((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-326 -2958 FP FPP)
-((|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
+(-328 -1696 FP FPP)
+((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-327 GF |n|)
+(-329 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-336)))))
-(-328 R |ls|)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-338)))))
+(-330 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
-(-329 S)
+(-331 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-330 S)
+(-332 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
NIL
NIL
-(-331)
+(-333)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-332 S)
-((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
+(-334 |Name| S)
+((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
-(-333 |Name| S)
-((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
+(-335 S)
+((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result.")))
NIL
NIL
-(-334 S R)
+(-336 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-508))))
-(-335 R)
+((|HasCategory| |#2| (QUOTE (-509))))
+(-337 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4164 |has| |#1| (-508)) (-4162 . T) (-4161 . T))
+((-4177 |has| |#1| (-509)) (-4175 . T) (-4174 . T))
NIL
-(-336)
+(-338)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
NIL
NIL
-(-337 S R UP)
+(-339 S R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
-((|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-331))))
-(-338 R UP)
+((|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-333))))
+(-340 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
+((-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-339 A S)
-((|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
+(-341 S A R B)
+((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4168)) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))))
-(-340 S)
-((|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4167 . T) (-2951 . T))
NIL
-(-341 S A R B)
-((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
+(-342 A S)
+((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
+((|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))))
+(-343 S)
+((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
+((-4180 . T) (-3353 . T))
NIL
-(-342 |VarSet| R)
+(-344 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4162 . T) (-4161 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4175 . T) (-4174 . T))
NIL
-(-343 S V)
+(-345 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
NIL
NIL
-(-344 S R)
+(-346 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))))
-(-345 R)
+((|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))))
+(-347 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-346)
-((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4150 . T) (-4158 . T) (-2391 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(-348 |Par|)
+((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
-(-347 |Par|)
-((|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
+(-349)
+((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\^= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
+((-4163 . T) (-4171 . T) (-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-348 |Par|)
-((|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
+(-350 |Par|)
+((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
-(-349 R S)
-((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4162 . T) (-4161 . T))
-((|HasCategory| |#1| (QUOTE (-156))))
-(-350 R S)
+(-351 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4162 . T) (-4161 . T))
+((-4175 . T) (-4174 . T))
((|HasCategory| |#1| (QUOTE (-156))))
-(-351)
-((|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2951 . T))
-NIL
(-352 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4162 . T) (-4161 . T))
+((-4175 . T) (-4174 . T))
NIL
(-353)
-((|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2951 . T))
+((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
+((-3353 . T))
NIL
-(-354 S)
-((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
+(-354)
+((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
+((-3353 . T))
NIL
-((|HasCategory| |#1| (QUOTE (-777))))
-(-355)
+(-355 R S)
+((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
+((-4175 . T) (-4174 . T))
+((|HasCategory| |#1| (QUOTE (-156))))
+(-356 S)
+((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((|HasCategory| |#1| (QUOTE (-779))))
+(-357)
+((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-356)
+(-358)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-357)
+(-359)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,{}pref,{}e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,{}n,{}e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")) (|coerce| (((|String|) $) "\\spad{coerce(fn)} produces a string for a file name according to operating system-dependent conventions.") (($ (|String|)) "\\spad{coerce(s)} converts a string to a file name according to operating system-dependent conventions.")))
NIL
NIL
-(-358 |n| |class| R)
+(-360 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4162 . T) (-4161 . T))
+((-4175 . T) (-4174 . T))
NIL
-(-359)
+(-361)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-360 -2958 UP UPUP R)
+(-362 -1696 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-361)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
+(-363 S)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-362 S)
-((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
+(-364)
+((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,{}strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to SCRIPT formula format.")))
NIL
NIL
-(-363)
-((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
+(-365)
+((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
+((-3353 . T))
NIL
+(-366)
+((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
+((-3353 . T))
NIL
-(-364)
-((|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-2951 . T))
+(-367)
+((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
-(-365)
-((|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2951 . T))
NIL
-(-366 -3986 |returnType| |arguments| |symbols|)
+(-368 -1207 |returnType| |arguments| |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-367 -2958 UP)
-((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
+(-369 -1696 UP)
+((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-368 R)
+(-370 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-2951 . T))
+((-3353 . T))
NIL
-(-369 S)
-((|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
+(-371 S)
+((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-370)
-((|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(-372)
+((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-371 S)
-((|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
+(-373 S)
+((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4150)) (|HasAttribute| |#1| (QUOTE -4158)))
-(-372)
-((|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-2391 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((|HasAttribute| |#1| (QUOTE -4163)) (|HasAttribute| |#1| (QUOTE -4171)))
+(-374)
+((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
+((-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-373 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -278) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -256) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-1108))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-1108)))))
-(-374 R S)
+(-375 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-375 S)
-((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4154 -12 (|has| |#1| (-6 -4165)) (|has| |#1| (-419)) (|has| |#1| (-6 -4154))) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-500))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751)))) (-12 (|HasAttribute| |#1| (QUOTE -4165)) (|HasAttribute| |#1| (QUOTE -4154)) (|HasCategory| |#1| (QUOTE (-419)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-777)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-751))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
(-376 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-377 S R UP)
+(-377 S)
+((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
+((-4167 -12 (|has| |#1| (-6 -4178)) (|has| |#1| (-421)) (|has| |#1| (-6 -4167))) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-502))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (-12 (|HasAttribute| |#1| (QUOTE -4178)) (|HasAttribute| |#1| (QUOTE -4167)) (|HasCategory| |#1| (QUOTE (-421)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-760))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-378 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-378 R UP)
+(-379 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
+((-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-379 A S)
+(-380 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))))
-(-380 S)
+((|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))
+(-381 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-381 R -2958 UP A)
-((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4164 . T))
-NIL
(-382 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-383 R -2958 UP A |ibasis|)
+(-383 R -1696 UP A)
+((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
+((-4177 . T))
+NIL
+(-384 R -1696 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -950) (|devaluate| |#2|))))
-(-384 AR R AS S)
-((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
+((|HasCategory| |#4| (LIST (QUOTE -952) (|devaluate| |#2|))))
+(-385 AR R AS S)
+((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-385 S R)
+(-386 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-331))))
-(-386 R)
+((|HasCategory| |#2| (QUOTE (-333))))
+(-387 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4164 |has| |#1| (-508)) (-4162 . T) (-4161 . T))
+((-4177 |has| |#1| (-509)) (-4175 . T) (-4174 . T))
NIL
-(-387 R)
+(-388 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -280) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -258) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-1112)))))
+(-389 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
NIL
-(-388 S R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+(-390 R FE |x| |cen|)
+((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-440))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))))
-(-389 R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4164 -1405 (|has| |#1| (-959)) (|has| |#1| (-440))) (-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) ((-4169 "*") |has| |#1| (-508)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-508)) (-4159 |has| |#1| (-508)) (-2951 . T))
NIL
-(-390 R A S B)
+(-391 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-391 R FE |x| |cen|)
-((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,{}posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
-NIL
-NIL
(-392 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,{}posCheck?,{}atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")) (|coerce| (($ |#3|) "\\spad{coerce(e)} converts an 'exponent' \\spad{e} to an 'expression'")))
NIL
NIL
-(-393 A S)
-((|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
+(-393 S A R B)
+((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-336))))
-(-394 S)
-((|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4167 . T) (-4157 . T) (-4168 . T) (-2951 . T))
NIL
-(-395 S A R B)
-((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad {[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
+(-394 A S)
+((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
+((|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
+(-395 S)
+((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
+((-4180 . T) (-4170 . T) (-4181 . T) (-3353 . T))
NIL
-(-396 R -2958)
+(-396 R -1696)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-397 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4154 -12 (|has| |#1| (-6 -4154)) (|has| |#2| (-6 -4154))) (-4161 . T) (-4162 . T) (-4164 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4154)) (|HasAttribute| |#2| (QUOTE -4154))))
-(-398 R -2958)
+((-4167 -12 (|has| |#1| (-6 -4167)) (|has| |#2| (-6 -4167))) (-4174 . T) (-4175 . T) (-4177 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4167)) (|HasAttribute| |#2| (QUOTE -4167))))
+(-398 R -1696)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-399 R -2958)
+(-399 S R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+NIL
+((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-1015))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))))
+(-400 R)
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+((-4177 -3807 (|has| |#1| (-961)) (|has| |#1| (-442))) (-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) ((-4182 "*") |has| |#1| (-509)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-509)) (-4172 |has| |#1| (-509)) (-3353 . T))
+NIL
+(-401 R -1696)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-400 R -2958)
-((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
+(-402 R -1696)
+((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-401 R -2958)
+(-403 R -1696)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-402)
+(-404)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-403 R -2958 UP)
+(-405 R -1696 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-47)))))
-(-404)
-((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
+((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-47)))))
+(-406)
+((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-405)
-((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
+(-407)
+((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,{}dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type") (((|OutputForm|) $) "\\spad{coerce(x)} provides a printable form for \\spad{x}")))
NIL
NIL
-(-406 |f|)
+(-408 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-407)
-((|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-2951 . T))
+(-409)
+((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
+((-3353 . T))
NIL
-(-408)
-((|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-2951 . T))
+(-410)
+((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
+((-3353 . T))
NIL
-(-409 UP)
+(-411 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-410 R UP -2958)
+(-412 R UP -1696)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-411 R UP)
+(-413 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,{}f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,{}f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,{}c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,{}c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-412 R)
+(-414 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,{}r)} returns the binomial coefficient \\spad{C(n,{}r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-372))))
-(-413)
+((|HasCategory| |#1| (QUOTE (-374))))
+(-415)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(\\spad{zi})} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(\\spad{zi})} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-414 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-331))))
-(-415 |Dom| |Expon| |VarSet| |Dpol|)
+(-416 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-416 |Dom| |Expon| |VarSet| |Dpol|)
+(-417 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions,{} info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys,{} nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,{}info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-417 |Dom| |Expon| |VarSet| |Dpol|)
+(-418 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-418 S)
+(-419 |Dom| |Expon| |VarSet| |Dpol|)
+((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,{}gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp,{} \"info\",{} \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp,{} infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-333))))
+(-420 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-419)
+(-421)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-420 R |n| |ls| |gamma|)
+(-422 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4164 |has| (-375 (-866 |#1|)) (-508)) (-4162 . T) (-4161 . T))
-((|HasCategory| (-375 (-866 |#1|)) (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| (-375 (-866 |#1|)) (QUOTE (-508))))
-(-421 |vl| R E)
+((-4177 |has| (-377 (-874 |#1|)) (-509)) (-4175 . T) (-4174 . T))
+((|HasCategory| (-377 (-874 |#1|)) (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-377 (-874 |#1|)) (QUOTE (-509))))
+(-423 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-422 R BP)
+(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-424 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-423 OV E S R P)
+(-425 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-424 E OV R P)
+(-426 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-425 R)
+(-427 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-426 R FE)
+(-428 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),{}n,{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(a(n),{}n,{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),{}x = a,{}r0..,{}r)} returns \\spad{sum(n = r0,{}r0 + r,{}r0 + 2*r...,{} a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),{}x = a,{}r0..r1,{}r)} returns \\spad{sum(n = r0 + k*r while n <= r1,{} a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),{}n,{}x=a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(a(n),{}n,{}x=a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..n1,{}a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),{}n,{}x = a,{}n0..)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(a(n),{}n,{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),{}x = a,{}n0..)} returns \\spad{sum(n=n0..,{}a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),{}x = a,{}n0..n1)} returns \\spad{sum(n = n0..,{}a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),{}n,{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),{}x = a)} returns \\spad{sum(n = 0..,{}a(n)*(x-a)**n)}.")))
NIL
NIL
-(-427 RP TP)
+(-429 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,{}pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,{}lfact,{}prime,{}bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,{}lfacts,{}prime,{}bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-428 |vl| R IS E |ff| P)
+(-430 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4162 . T) (-4161 . T))
+((-4175 . T) (-4174 . T))
NIL
-(-429 E V R P Q)
+(-431 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-430 R E |VarSet| P)
+(-432 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))))
-(-431 S R E)
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))))
+(-433 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-432 R E)
+(-434 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-433)
-((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
+(-435)
+((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,{}n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,{}n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-434)
+(-436)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-435)
-((|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
+(-437)
+((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,{}lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(\\spad{gi})} returns the indicated graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(\\spad{gi},{}pt,{}pal)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(\\spad{gi},{}pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{\\spad{gi}},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}pt,{}pal1,{}pal2,{}ps)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(\\spad{gi},{}pt)} modifies the graph \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(\\spad{gi},{}lp,{}pal1,{}pal2,{}p)} sets the components of the graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{\\spad{gi}} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(\\spad{gi},{}lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{\\spad{gi}}.") (((|List| (|Float|)) $) "\\spad{units(\\spad{gi})} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(\\spad{gi},{}lr)} modifies the list of ranges for the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{\\spad{gi}}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(\\spad{gi})} returns the list of ranges of the point components from the indicated graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(\\spad{gi})} returns the process ID of the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(\\spad{gi})} returns the list of lists of points which compose the given graph,{} \\spad{\\spad{gi}},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp,{}lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,{}lpal1,{}lpal2,{}lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(\\spad{gi})} takes the given graph,{} \\spad{\\spad{gi}} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{\\spad{gi}} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-436 S R E)
+(-438 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-437 R E)
+(-439 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-438 |lv| -2958 R)
+(-440 |lv| -1696 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-439 S)
+(-441 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-440)
+(-442)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-441 |Coef| |var| |cen|)
+(-443 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))))
-(-442 |Key| |Entry| |Tbl| |dent|)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(-444 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4168 . T))
-((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))))
-(-443 R E V P)
+((-4181 . T))
+((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))))
+(-445 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-336))))
-(-444)
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
+(-446)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-445 |Key| |Entry| |hashfn|)
+(-447 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))))
-(-446)
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+(-448)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-447 |vl| R)
-((|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-448 -2742 S)
+(-449 |vl| R)
+((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
+(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-450 -2806 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4161 |has| |#2| (-959)) (-4162 |has| |#2| (-959)) (-4164 |has| |#2| (-6 -4164)) ((-4169 "*") |has| |#2| (-156)) (-4167 . T))
-((|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (-1405 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775)))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-657))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasAttribute| |#2| (QUOTE -4164)) (|HasCategory| |#2| (QUOTE (-123))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-25))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))))
-(-449 S)
-((|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-450 -2958 UP UPUP R)
+((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3807 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4177)) (|HasCategory| |#2| (QUOTE (-123))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+(-451 S)
+((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-452 -1696 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-451 BP)
+(-453 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,{}..,{}ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,{}..,{}fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,{}..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,{}..,{}fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,{}..,{}fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-452)
+(-454)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-501) (QUOTE (-830))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-501) (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-134))) (|HasCategory| (-501) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-933))) (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-1046))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-501) (QUOTE (-206))) (|HasCategory| (-501) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-501) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -278) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -256) (QUOTE (-501)) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-276))) (|HasCategory| (-501) (QUOTE (-500))) (|HasCategory| (-501) (QUOTE (-777))) (-1405 (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (QUOTE (-777)))) (|HasCategory| (-501) (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (|HasCategory| (-501) (QUOTE (-132)))))
-(-453 A S)
-((|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
+(-455 A S)
+((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4167)) (|HasAttribute| |#1| (QUOTE -4168)) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))
-(-454 S)
-((|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-2951 . T))
+((|HasAttribute| |#1| (QUOTE -4180)) (|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-456 S)
+((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
+((-3353 . T))
NIL
-(-455 S)
+(-457 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-456)
+(-458)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-457 -2958 UP |AlExt| |AlPol|)
-((|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
+(-459 -1696 UP |AlExt| |AlPol|)
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-458)
+(-460)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| $ (QUOTE (-959))) (|HasCategory| $ (LIST (QUOTE -950) (QUOTE (-501)))))
-(-459 S |mn|)
-((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-460 R |mnRow| |mnCol|)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| $ (QUOTE (-961))) (|HasCategory| $ (LIST (QUOTE -952) (QUOTE (-517)))))
+(-461 S |mn|)
+((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-462 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-461 K R UP)
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-463 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-462 R UP -2958)
+(-464 R UP -1696)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-463 |mn|)
+(-465 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| (-107) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-107) (QUOTE (-777))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| (-107) (QUOTE (-1001))) (-12 (|HasCategory| (-107) (LIST (QUOTE -278) (QUOTE (-107)))) (|HasCategory| (-107) (QUOTE (-1001)))))
-(-464 K R UP L)
+((-4181 . T) (-4180 . T))
+((|HasCategory| (-107) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-107) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-107) (QUOTE (-1003))) (-12 (|HasCategory| (-107) (QUOTE (-1003))) (|HasCategory| (-107) (LIST (QUOTE -280) (QUOTE (-107))))))
+(-466 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-465)
+(-467)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,{}s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-466 R Q A B)
+(-468 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-467 -2958 |Expon| |VarSet| |DPoly|)
+(-469 -1696 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -556) (QUOTE (-1070)))))
-(-468 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-1073)))))
+(-470 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-469 A S)
+(-471 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-470 A S)
+(-472 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-471 A S)
+(-473 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-472 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
-NIL
-NIL
-(-473 A S)
+(-474 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-474 A S)
+(-475 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-475 S A B)
+(-476 A S)
+((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
+NIL
+NIL
+(-477 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-476 A B)
+(-478 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-477 S E |un|)
+(-479 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-722))))
-(-478 S |mn|)
-((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified \\spad{SMW} \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-479 |p| |n|)
+((|HasCategory| |#2| (QUOTE (-724))))
+(-480 S |mn|)
+((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-481 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-528 |#1|) (QUOTE (-134))) (|HasCategory| (-528 |#1|) (QUOTE (-336))) (|HasCategory| (-528 |#1|) (QUOTE (-132))) (-1405 (|HasCategory| (-528 |#1|) (QUOTE (-132))) (|HasCategory| (-528 |#1|) (QUOTE (-336)))))
-(-480 R |mnRow| |mnCol| |Row| |Col|)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-530 |#1|) (QUOTE (-134))) (|HasCategory| (-530 |#1|) (QUOTE (-338))) (|HasCategory| (-530 |#1|) (QUOTE (-132))) (-3807 (|HasCategory| (-530 |#1|) (QUOTE (-132))) (|HasCategory| (-530 |#1|) (QUOTE (-338)))))
+(-482 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-481 S |mn|)
-NIL
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-482 R |Row| |Col| M)
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-483 S |mn|)
+((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-484 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4168)))
-(-483 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4181)))
+(-485 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4168)))
-(-484 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4181)))
+(-486 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-508))) (|HasAttribute| |#1| (QUOTE (-4169 "*"))) (|HasCategory| |#1| (QUOTE (-331))))
-(-485 GF)
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4182 "*"))) (|HasCategory| |#1| (QUOTE (-333))))
+(-487 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-486 R)
+(-488 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-487 |Varset|)
+(-489 |Varset|)
((|constructor| (NIL "converts entire exponents to OutputForm")))
NIL
NIL
-(-488 K -2958 |Par|)
-((|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
+(-490 K -1696 |Par|)
+((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-489)
+(-491)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-490)
-((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
+(-492 R)
+((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-491 R)
-((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
+(-493)
+((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-492 |Coef| UTS)
+(-494 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-493 K -2958 |Par|)
-((|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
+(-495 K -1696 |Par|)
+((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-494 R BP |pMod| |nextMod|)
+(-496 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-495 OV E R P)
-((|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
+(-497 OV E R P)
+((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-496 K UP |Coef| UTS)
+(-498 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-497 |Coef| UTS)
+(-499 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-498 R UP)
+(-500 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
-(-499 S)
+(-501 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-500)
+(-502)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4165 . T) (-4166 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-NIL
-(-501)
-((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4149 . T) (-4155 . T) (-4159 . T) (-4154 . T) (-4165 . T) (-4166 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-502 |Key| |Entry| |addDom|)
+(-503 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))))
-(-503 R -2958)
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+(-504 R -1696)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-504 R0 -2958 UP UPUP R)
+(-505 R0 -1696 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-505)
+(-506)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-506 R)
-((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category is an implementation of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-2391 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(-507 R)
+((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
+((-3383 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-507 S)
+(-508 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-508)
+(-509)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-509 R -2958)
+(-510 R -1696)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-510 I)
+(-511 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-511)
-((|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
+(-512)
+((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-512 R -2958 L)
+(-513 R -1696 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|))))
-(-513)
-((|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(u1,{}m1,{}u2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = u1 mod m1} and \\spad{w = u2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
+(-514)
+((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ^= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-514 -2958 UP UPUP R)
+(-515 -1696 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-515 -2958 UP)
+(-516 -1696 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-516)
+(-517)
+((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
+((-4162 . T) (-4168 . T) (-4172 . T) (-4167 . T) (-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+NIL
+(-518)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-517 R -2958 L)
+(-519 R -1696 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -593) (|devaluate| |#2|))))
-(-518 R -2958)
+(-520 R -1696)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1034)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-568)))))
-(-519 -2958 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1037)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-569)))))
+(-521 -1696 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-520 S)
+(-522 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-521 -2958)
+(-523 -1696)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-522 R)
+(-524 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-2391 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-3383 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-523)
+(-525)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-524 R -2958)
+(-526 R -1696)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-254))) (|HasCategory| |#2| (QUOTE (-568)))) (-12 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-254)))) (|HasCategory| |#1| (QUOTE (-508))))
-(-525 -2958 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-256))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-256)))) (|HasCategory| |#1| (QUOTE (-509))))
+(-527 -1696 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-526 R -2958)
+(-528 R -1696)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-527 |p| |unBalanced?|)
+(-529 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-528 |p|)
+(-530 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-336))))
-(-529)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338))))
+(-531)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-530 -2958)
-((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4162 . T) (-4161 . T))
-((|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-1070)))))
-(-531 E -2958)
-((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
+(-532 R -1696)
+((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-532 R -2958)
-((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
+(-533 E -1696)
+((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-533 I)
+(-534 -1696)
+((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
+((-4175 . T) (-4174 . T))
+((|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-1073)))))
+(-535 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-534 GF)
+(-536 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-535 R)
+(-537 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-134))))
-(-536)
+(-538)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-537 R E V P TS)
+(-539 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-538 |mn|)
-((|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| (-131) (QUOTE (-1001))) (|HasCategory| (-131) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-131) (QUOTE (-777))) (-1405 (|HasCategory| (-131) (QUOTE (-777))) (|HasCategory| (-131) (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-777)))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001))))))
-(-539 E V R P)
+(-540 |mn|)
+((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-3807 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3807 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))) (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (|HasCategory| (-131) (LIST (QUOTE -557) (QUOTE (-787)))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
+(-541 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-540 |Coef|)
+(-542 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (|HasCategory| (-501) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))))
-(-541 |Coef|)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))))
+(-543 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4162 |has| |#1| (-508)) (-4161 |has| |#1| (-508)) ((-4169 "*") |has| |#1| (-508)) (-4160 |has| |#1| (-508)) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-508))))
-(-542 A B)
+((-4175 |has| |#1| (-509)) (-4174 |has| |#1| (-509)) ((-4182 "*") |has| |#1| (-509)) (-4173 |has| |#1| (-509)) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-509))))
+(-544 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-543 A B C)
+(-545 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-544 R -2958 FG)
+(-546 R -1696 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-545 S)
+(-547 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-546 R |mn|)
-NIL
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-959))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-547 S |Index| |Entry|)
-((|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
+(-548 R |mn|)
+((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-549 S |Index| |Entry|)
+((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4168)) (|HasCategory| |#2| (QUOTE (-777))) (|HasAttribute| |#1| (QUOTE -4167)) (|HasCategory| |#3| (QUOTE (-1001))))
-(-548 |Index| |Entry|)
-((|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-2951 . T))
+((|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-779))) (|HasAttribute| |#1| (QUOTE -4180)) (|HasCategory| |#3| (QUOTE (-1003))))
+(-550 |Index| |Entry|)
+((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
+((-3353 . T))
NIL
-(-549 R A)
+(-551 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4164 -1405 (-1280 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))) (-4162 . T) (-4161 . T))
-((|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|))))))
-(-550 |Entry|)
+((-4177 -3807 (-4035 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4175 . T) (-4174 . T))
+((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
+(-552 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-1053) (QUOTE (-777))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1053))) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001)))))
-(-551 S |Key| |Entry|)
-((|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| (-1056) (QUOTE (-779))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1056))) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#1|)))))))
+(-553 S |Key| |Entry|)
+((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-552 |Key| |Entry|)
-((|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4168 . T) (-2951 . T))
+(-554 |Key| |Entry|)
+((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
+((-4181 . T) (-3353 . T))
NIL
-(-553 S)
-((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
-NIL
-((|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))))
-(-554 R S)
+(-555 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-555 S)
+(-556 S)
+((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
+NIL
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))))
+(-557 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-556 S)
+(-558 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-557 -2958 UP)
+(-559 -1696 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-558 A R S)
-((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-775))))
-(-559 S R)
+(-560 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-560 R)
+(-561 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-561 R -2958)
+(-562 A R S)
+((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-777))))
+(-563 R -1696)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
-(-562 R UP)
+(-564 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4162 . T) (-4161 . T) ((-4169 "*") . T) (-4160 . T) (-4164 . T))
-((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))))
-(-563 R E V P TS ST)
+((-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4173 . T) (-4177 . T))
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))))
+(-565 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-564 OV E Z P)
+(-566 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-565 |VarSet| R |Order|)
+(-567 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-566 R |ls|)
+(-568 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-567 R -2958)
-((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
+(-569)
+((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-568)
-((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
+(-570 R -1696)
+((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-569 |lv| -2958)
+(-571 |lv| -1696)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-570)
+(-572)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4168 . T))
-((|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-1053) (QUOTE (-777))) (|HasCategory| (-50) (QUOTE (-1001))) (-12 (|HasCategory| (-50) (LIST (QUOTE -278) (QUOTE (-50)))) (|HasCategory| (-50) (QUOTE (-1001)))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1053))) (LIST (QUOTE |:|) (QUOTE -2922) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (QUOTE (-1001)))) (-1405 (|HasCategory| (-50) (QUOTE (-1001))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (QUOTE (-1001)))))
-(-571 R A)
-((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4164 -1405 (-1280 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))) (-4162 . T) (-4161 . T))
-((|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -335) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -386) (|devaluate| |#1|))))))
-(-572 S R)
+((-4181 . T))
+((|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-1056) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1056))) (LIST (QUOTE |:|) (QUOTE -1257) (QUOTE (-51))))))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))))
+(-573 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-331))))
-(-573 R)
+((|HasCategory| |#2| (QUOTE (-333))))
+(-574 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4162 . T) (-4161 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4175 . T) (-4174 . T))
NIL
-(-574 R FE)
+(-575 R A)
+((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
+((-4177 -3807 (-4035 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))) (-4175 . T) (-4174 . T))
+((|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -337) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -387) (|devaluate| |#1|))))))
+(-576 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
-(-575 R)
+(-577 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-576 S R)
+(-578 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-331))) (-3031 (|HasCategory| |#1| (QUOTE (-331)))))
-(-577 R)
+((|HasCategory| |#1| (QUOTE (-333))) (-2630 (|HasCategory| |#1| (QUOTE (-333)))))
+(-579 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-578 S)
-((|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-751))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-579 A B)
-((|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
+(-580 A B)
+((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-580 A B)
-((|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+(-581 A B)
+((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-581 A B C)
-((|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
+(-582 A B C)
+((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-582 S)
+(-583 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-760))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-584 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))))
-(-583 R)
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))))
+(-585 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-584 S E |un|)
+(-586 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-585 A S)
-((|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
+(-587 A S)
+((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4168)))
-(-586 S)
-((|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-2951 . T))
+((|HasAttribute| |#1| (QUOTE -4181)))
+(-588 S)
+((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
+((-3353 . T))
NIL
-(-587 M R S)
-((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4162 . T) (-4161 . T))
-((|HasCategory| |#1| (QUOTE (-721))))
-(-588 R -2958 L)
+(-589 R -1696 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-589 A -1331)
-((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-331))))
(-590 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-331))))
+((-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-591 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-331))))
+((-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
(-592 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-331))))
+((|HasCategory| |#2| (QUOTE (-333))))
(-593 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
+((-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-594 -2958 UP)
+(-594 -1696 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-595 A L)
+(-595 A -2252)
+((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
+((-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+(-596 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-596 S)
+(-597 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-597)
+(-598)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-598 R)
+(-599 M R S)
+((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
+((-4175 . T) (-4174 . T))
+((|HasCategory| |#1| (QUOTE (-723))))
+(-600 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-599 |VarSet| R)
+(-601 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4162 . T) (-4161 . T))
-((|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-156))))
-(-600 A S)
-((|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4175 . T) (-4174 . T))
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-156))))
+(-602 A S)
+((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-601 S)
-((|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+(-603 S)
+((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-602 -2958 |Row| |Col| M)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-604 -1696)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-603 -2958)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-605 -1696 |Row| |Col| M)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-604 R E OV P)
+(-606 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-605 |n| R)
+(-607 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4164 . T) (-4167 . T) (-4161 . T) (-4162 . T))
-((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-508))) (-1405 (|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))) (|HasCategory| |#2| (QUOTE (-156))))
-(-606 |VarSet|)
-((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
+((-4177 . T) (-4180 . T) (-4174 . T) (-4175 . T))
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))) (-3807 (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#2| (QUOTE (-156))))
+(-608 |VarSet|)
+((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-607 A S)
+(-609 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-608 S)
+(-610 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-2951 . T))
+((-3353 . T))
NIL
-(-609 R)
+(-611 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-959))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-610 |VarSet|)
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-612 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-611 A)
+(-613 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-612 A C)
+(-614 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument.")))
NIL
NIL
-(-613 A B C)
+(-615 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-614 A)
+(-616 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-615 A C)
+(-617 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-616 A B C)
+(-618 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-617 S R |Row| |Col|)
-((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-NIL
-((|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-508))))
-(-618 R |Row| |Col|)
-((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4167 . T) (-4168 . T) (-2951 . T))
-NIL
(-619 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-620 R |Row| |Col| M)
+(-620 S R |Row| |Col|)
+((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
+NIL
+((|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-509))))
+(-621 R |Row| |Col|)
+((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
+((-4180 . T) (-4181 . T) (-3353 . T))
+NIL
+(-622 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{^=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-508))))
-(-621 R)
+((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))))
+(-623 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-508))) (|HasAttribute| |#1| (QUOTE (-4169 "*"))) (|HasCategory| |#1| (QUOTE (-331))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-622 R)
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-509))) (|HasAttribute| |#1| (QUOTE (-4182 "*"))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-624 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-623 S -2958 FLAF FLAS)
-((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
+(-625 S -1696 FLAF FLAS)
+((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-624 R Q)
+(-626 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-625)
+(-627)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4160 . T) (-4165 |has| (-630) (-331)) (-4159 |has| (-630) (-331)) (-1976 . T) (-4166 |has| (-630) (-6 -4166)) (-4163 |has| (-630) (-6 -4163)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-630) (QUOTE (-134))) (|HasCategory| (-630) (QUOTE (-132))) (|HasCategory| (-630) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-630) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-630) (QUOTE (-336))) (|HasCategory| (-630) (QUOTE (-331))) (|HasCategory| (-630) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-630) (QUOTE (-206))) (|HasCategory| (-630) (QUOTE (-318))) (-1405 (|HasCategory| (-630) (QUOTE (-331))) (|HasCategory| (-630) (QUOTE (-318)))) (|HasCategory| (-630) (LIST (QUOTE -256) (QUOTE (-630)) (QUOTE (-630)))) (|HasCategory| (-630) (LIST (QUOTE -278) (QUOTE (-630)))) (|HasCategory| (-630) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-630)))) (|HasCategory| (-630) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-630) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-630) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-630) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-630) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-630) (QUOTE (-933))) (|HasCategory| (-630) (QUOTE (-1090))) (-12 (|HasCategory| (-630) (QUOTE (-916))) (|HasCategory| (-630) (QUOTE (-1090)))) (|HasCategory| (-630) (QUOTE (-500))) (|HasCategory| (-630) (QUOTE (-967))) (-12 (|HasCategory| (-630) (QUOTE (-967))) (|HasCategory| (-630) (QUOTE (-1090)))) (-1405 (|HasCategory| (-630) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-630) (QUOTE (-331)))) (|HasCategory| (-630) (QUOTE (-276))) (-1405 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-331))) (|HasCategory| (-630) (QUOTE (-318)))) (|HasCategory| (-630) (QUOTE (-830))) (-12 (|HasCategory| (-630) (QUOTE (-206))) (|HasCategory| (-630) (QUOTE (-331)))) (-12 (|HasCategory| (-630) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-630) (QUOTE (-331)))) (|HasCategory| (-630) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-630) (QUOTE (-777))) (|HasCategory| (-630) (QUOTE (-508))) (|HasAttribute| (-630) (QUOTE -4166)) (|HasAttribute| (-630) (QUOTE -4163)) (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-331))) (-12 (|HasCategory| (-630) (QUOTE (-318))) (|HasCategory| (-630) (QUOTE (-830))))) (-1405 (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (-12 (|HasCategory| (-630) (QUOTE (-331))) (|HasCategory| (-630) (QUOTE (-830)))) (-12 (|HasCategory| (-630) (QUOTE (-318))) (|HasCategory| (-630) (QUOTE (-830))))) (-1405 (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-508)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-132)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-630) (QUOTE (-276))) (|HasCategory| (-630) (QUOTE (-830)))) (|HasCategory| (-630) (QUOTE (-318)))))
-(-626 S)
-((|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4168 . T) (-2951 . T))
+((-4173 . T) (-4178 |has| (-632) (-333)) (-4172 |has| (-632) (-333)) (-3392 . T) (-4179 |has| (-632) (-6 -4179)) (-4176 |has| (-632) (-6 -4176)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-632) (QUOTE (-134))) (|HasCategory| (-632) (QUOTE (-132))) (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-338))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-319))) (-3807 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (LIST (QUOTE -258) (QUOTE (-632)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -280) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-632)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-632) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-632) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-632) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-632) (QUOTE (-937))) (|HasCategory| (-632) (QUOTE (-1094))) (-12 (|HasCategory| (-632) (QUOTE (-918))) (|HasCategory| (-632) (QUOTE (-1094)))) (|HasCategory| (-632) (QUOTE (-502))) (|HasCategory| (-632) (QUOTE (-970))) (-12 (|HasCategory| (-632) (QUOTE (-970))) (|HasCategory| (-632) (QUOTE (-1094)))) (-3807 (|HasCategory| (-632) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (QUOTE (-278))) (-3807 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-319)))) (|HasCategory| (-632) (QUOTE (-831))) (-12 (|HasCategory| (-632) (QUOTE (-207))) (|HasCategory| (-632) (QUOTE (-333)))) (-12 (|HasCategory| (-632) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-632) (QUOTE (-333)))) (|HasCategory| (-632) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-632) (QUOTE (-779))) (|HasCategory| (-632) (QUOTE (-509))) (|HasAttribute| (-632) (QUOTE -4179)) (|HasAttribute| (-632) (QUOTE -4176)) (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-333))) (|HasCategory| (-632) (QUOTE (-831)))) (-12 (|HasCategory| (-632) (QUOTE (-319))) (|HasCategory| (-632) (QUOTE (-831))))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-509)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-132)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-632) (QUOTE (-278))) (|HasCategory| (-632) (QUOTE (-831)))) (|HasCategory| (-632) (QUOTE (-319)))))
+(-628 S)
+((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
+((-4181 . T) (-3353 . T))
NIL
-(-627 U)
+(-629 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-628)
+(-630)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-629 OV E -2958 PG)
+(-631 OV E -1696 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-630)
+(-632)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-2391 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-3383 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-631 R)
+(-633 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-632)
+(-634)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4166 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4179 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-633 S D1 D2 I)
+(-635 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-634 S)
+(-636 S)
((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%.")))
NIL
NIL
-(-635 S)
+(-637 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-636 S)
+(-638 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-637 S T$)
-((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}.")))
+(-639 S T$)
+((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-638 S -3584 I)
+(-640 S -2731 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-639 E OV R P)
+(-641 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented")))
NIL
NIL
-(-640 R)
+(-642 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\^= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4161 . T) (-4162 . T) (-4164 . T))
+((-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-641 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-643 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-642 R |Mod| -3220 -3216 |exactQuo|)
+(-644 R |Mod| -3271 -3237 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-643 R |Rep|)
+(-645 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4163 |has| |#1| (-331)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-318))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-644 IS E |ff|)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-319))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-646 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-645 R M)
-((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T))
+(-647 R M)
+((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
+((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))))
-(-646 R |Mod| -3220 -3216 |exactQuo|)
+(-648 R |Mod| -3271 -3237 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-647 S R)
+(-649 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-648 R)
+(-650 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4162 . T) (-4161 . T))
+((-4175 . T) (-4174 . T))
NIL
-(-649 -2958)
+(-651 -1696)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-650 S)
+(-652 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-651)
+(-653)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-652 S)
+(-654 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-653)
+(-655)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-654 S R UP)
+(-656 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
-((|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-336))))
-(-655 R UP)
+((|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))))
+(-657 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4160 |has| |#1| (-331)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 |has| |#1| (-333)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-656 S)
+(-658 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-657)
+(-659)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-658 -2958 UP)
+(-660 -1696 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-659 |VarSet| E1 E2 R S PR PS)
+(-661 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-660 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-662 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-661 E OV R PPR)
+(-663 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-662 |vl| R)
+(-664 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-787 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-663 E OV R PRF)
+(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-789 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-665 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-664 E OV R P)
+(-666 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-665 R S M)
-((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
+(-667 R S M)
+((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-666 R M)
+(-668 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-777))))
-(-667 S)
-((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4167 . T) (-4157 . T) (-4168 . T))
-((|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-668 S)
-NIL
-((-4157 . T) (-4168 . T) (-2951 . T))
+((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-779))))
+(-669 S)
+((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
+((-4170 . T) (-4181 . T) (-3353 . T))
NIL
-(-669)
+(-670 S)
+((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
+((-4180 . T) (-4170 . T) (-4181 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-671)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-670 S)
+(-672 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-671 |Coef| |Var|)
+(-673 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4162 . T) (-4161 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4175 . T) (-4174 . T) (-4177 . T))
NIL
-(-672 OV E R P)
-((|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
+(-674 OV E R P)
+((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-673 E OV R P)
+(-675 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-674 S R)
+(-676 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-675 R)
+(-677 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4162 . T) (-4161 . T))
-NIL
-(-676)
-((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{\\spad{manpageXXc02}}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
-NIL
-NIL
-(-677)
-((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{\\spad{manpageXXc05}}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
-NIL
+((-4175 . T) (-4174 . T))
NIL
(-678)
-((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{\\spad{manpageXXc06}}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
+((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
(-679)
-((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{\\spad{manpageXXd01}}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
(-680)
-((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{\\spad{manpageXXd02}}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains \\spad{Asp12} and \\spad{Asp33} are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
(-681)
-((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{\\spad{manpageXXd03}}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
(-682)
-((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{\\spad{manpageXXe01}}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
(-683)
-((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{\\spad{manpageXXe02}}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
+((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
(-684)
-((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{\\spad{manpageXXe04}}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
(-685)
-((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{\\spad{manpageXXf01}}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
+((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
(-686)
-((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{\\spad{manpageXXf02}}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
+((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
(-687)
-((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{\\spad{manpageXXf04}}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
+((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
(-688)
-((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{\\spad{manpageXXf07}}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
+((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
(-689)
-((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
+((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
(-690)
-((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
+((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-691 S)
-((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
+(-691)
+((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
(-692)
-((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
+((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
(-693 S)
-((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
+((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
(-694)
+((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
+NIL
+NIL
+(-695 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-695 |Par|)
-((|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
+(-696)
+((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
+NIL
NIL
+(-697 |Par|)
+((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
-(-696 -2958)
+NIL
+(-698 -1696)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-697 P -2958)
+(-699 P -1696)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-698 UP -2958)
+(-700 UP -1696)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-699)
+(-701)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-700 R)
+(-702 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-701)
+(-703)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4169 "*") . T))
+(((-4182 "*") . T))
NIL
-(-702 R -2958)
+(-704 R -1696)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-703)
-((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
+(-705 S)
+((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-704 S)
-((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
+(-706)
+((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-705 R |PolR| E |PolE|)
-((|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
+(-707 R |PolR| E |PolE|)
+((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-706 R E V P TS)
-((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
+(-708 R E V P TS)
+((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-707 -2958 |ExtF| |SUEx| |ExtP| |n|)
+(-709 -1696 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-708 BP E OV R P)
+(-710 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-709 |Par|)
-((|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
+(-711 |Par|)
+((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-710 R |VarSet|)
+(-712 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070))))) (|HasCategory| |#1| (QUOTE (-331))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-3031 (|HasCategory| |#1| (QUOTE (-500))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-1070)))) (-3031 (|HasCategory| |#1| (LIST (QUOTE -906) (QUOTE (-501))))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-711 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4163 |has| |#1| (-331)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-712 R S)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073))))) (|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (QUOTE (-502)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-517))))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-1073)))) (-2630 (|HasCategory| |#1| (LIST (QUOTE -909) (QUOTE (-517))))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-713 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-713 R)
+(-714 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-715 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))))
-(-714 R E V P)
-((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))
+(-716 R E V P)
+((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-715 S)
+(-717 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-508))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-777)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-156))))
-(-716)
+((|HasCategory| |#1| (QUOTE (-509))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-779)))) (|HasCategory| |#1| (QUOTE (-961))) (|HasCategory| |#1| (QUOTE (-156))))
+(-718)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-717)
+(-719)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-718)
-((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
+(-720)
+((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-719)
+(-721)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-720 |Curve|)
+(-722 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-721)
+(-723)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-722)
+(-724)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-723)
+(-725)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-724)
+(-726)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-725 S R)
+(-727)
+((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
+NIL
+NIL
+(-728 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (QUOTE (-967))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-336))))
-(-726 R)
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-338))))
+(-729 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
+((-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-727)
-((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
+(-730 -3807 R OS S)
+((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-728 R)
+(-731 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-967))) (|HasCategory| |#1| (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| (-910 |#1|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-910 |#1|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (|HasCategory| (-910 |#1|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (-1405 (|HasCategory| (-910 |#1|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501))))))
-(-729 -1405 R OS S)
-((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
-NIL
-NIL
-(-730)
+((-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (|HasCategory| (-915 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))))
+(-732)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-731 R -2958 L)
+(-733 R -1696 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-732 R -2958)
+(-734 R -1696)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-733)
-((|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
+(-735)
+((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-734 R -2958)
+(-736 R -1696)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-735)
+(-737)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-736 -2958 UP UPUP R)
+(-738 -1696 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-737 -2958 UP L LQ)
+(-739 -1696 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-738)
+(-740)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-739 -2958 UP L LQ)
+(-741 -1696 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-740 -2958 UP)
+(-742 -1696 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-741 -2958 L UP A LO)
+(-743 -1696 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-742 -2958 UP)
+(-744 -1696 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-743 -2958 LO)
+(-745 -1696 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-744 -2958 LODO)
+(-746 -1696 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-745 -2742 S |f|)
+(-747 -2806 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4161 |has| |#2| (-959)) (-4162 |has| |#2| (-959)) (-4164 |has| |#2| (-6 -4164)) ((-4169 "*") |has| |#2| (-156)) (-4167 . T))
-((|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (-1405 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775)))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331)))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-657))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasAttribute| |#2| (QUOTE -4164)) (|HasCategory| |#2| (QUOTE (-123))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (|HasCategory| |#2| (QUOTE (-25))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-775))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1001))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-331)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-775)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-959)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))))
-(-746 R)
-NIL
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-748 (-1070)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-747 |Kernels| R |var|)
+((-4174 |has| |#2| (-961)) (-4175 |has| |#2| (-961)) (-4177 |has| |#2| (-6 -4177)) ((-4182 "*") |has| |#2| (-156)) (-4180 . T))
+((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (-3807 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777)))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333)))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#2| (QUOTE (-659))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#2| (QUOTE (-961))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003)))) (|HasAttribute| |#2| (QUOTE -4177)) (|HasCategory| |#2| (QUOTE (-123))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (|HasCategory| |#2| (QUOTE (-25))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-1003)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-156)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-961)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-123))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-725))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+(-748 R)
+((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-750 (-1073)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-749 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4169 "*") |has| |#2| (-331)) (-4160 |has| |#2| (-331)) (-4165 |has| |#2| (-331)) (-4159 |has| |#2| (-331)) (-4164 . T) (-4162 . T) (-4161 . T))
-((|HasCategory| |#2| (QUOTE (-331))))
-(-748 S)
-NIL
+(((-4182 "*") |has| |#2| (-333)) (-4173 |has| |#2| (-333)) (-4178 |has| |#2| (-333)) (-4172 |has| |#2| (-333)) (-4177 . T) (-4175 . T) (-4174 . T))
+((|HasCategory| |#2| (QUOTE (-333))))
+(-750 S)
+((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-749 S)
+(-751 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-750)
-((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-NIL
-(-751)
-((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
-NIL
-NIL
(-752)
-((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
-NIL
+((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
(-753)
-((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
+((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
(-754)
-((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
+((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
(-755)
-((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
+((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
(-756)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-757 R)
+(-757)
+((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
+NIL
+NIL
+(-758 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-758 P R)
+(-759 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-206))))
-(-759)
+((-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-207))))
+(-760)
+((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
+NIL
+NIL
+(-761)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-760 S)
-((|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4167 . T) (-4157 . T) (-4168 . T) (-2951 . T))
+(-762 S)
+((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
+((-4180 . T) (-4170 . T) (-4181 . T) (-3353 . T))
NIL
-(-761)
+(-763)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-762 R)
-((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4164 |has| |#1| (-775)))
-((|HasCategory| |#1| (QUOTE (-775))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-500))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-775)))) (|HasCategory| |#1| (QUOTE (-21))) (-1405 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-775)))))
-(-763 R S)
+(-764 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-764 R)
+(-765 R)
+((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
+((-4177 |has| |#1| (-777)))
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
+(-766 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T))
+((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))))
-(-765)
+(-767)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-766)
+(-768)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-767)
+(-769)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-768)
+(-770)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-769 R)
-((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4164 |has| |#1| (-775)))
-((|HasCategory| |#1| (QUOTE (-775))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-500))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-775)))) (|HasCategory| |#1| (QUOTE (-21))) (-1405 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-775)))))
-(-770 R S)
+(-771 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-771)
+(-772 R)
+((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
+((-4177 |has| |#1| (-777)))
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-21))) (-3807 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-777)))))
+(-773)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-772 -2742 S)
+(-774 -2806 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-773)
+(-775)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-774 S)
+(-776 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-775)
+(-777)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-776 S)
+(-778 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-777)
+(-779)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-778 S R)
+(-780 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))))
-(-779 R)
+((|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))))
+(-781 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ^= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4161 . T) (-4162 . T) (-4164 . T))
+((-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-780 R C)
+(-782 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508))))
-(-781 R |sigma| -2808)
+((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509))))
+(-783 R |sigma| -1330)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-331))))
-(-782 |x| R |sigma| -2808)
+((-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-333))))
+(-784 |x| R |sigma| -1330)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-331))))
-(-783 R)
+((-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-333))))
+(-785 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))))
-(-784)
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))
+(-786)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-785)
-((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
+(-787)
+((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-786)
-((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (^= (($ $ $) "\\spad{f ^= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+(-788)
+((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-787 |VariableList|)
+(-789 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-788 R |vl| |wl| |wtlevel|)
+(-790 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))))
-(-789 R PS UP)
+((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))))
+(-791 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-790 R |x| |pt|)
+(-792 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-791 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-NIL
-(-792 |p|)
+(-793 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-793 |p|)
+(-794 |p|)
+((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+NIL
+(-795 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-791 |#1|) (QUOTE (-830))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-791 |#1|) (QUOTE (-132))) (|HasCategory| (-791 |#1|) (QUOTE (-134))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-791 |#1|) (QUOTE (-933))) (|HasCategory| (-791 |#1|) (QUOTE (-750))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-791 |#1|) (QUOTE (-1046))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-791 |#1|) (QUOTE (-206))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -791) (|devaluate| |#1|)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -278) (LIST (QUOTE -791) (|devaluate| |#1|)))) (|HasCategory| (-791 |#1|) (LIST (QUOTE -256) (LIST (QUOTE -791) (|devaluate| |#1|)) (LIST (QUOTE -791) (|devaluate| |#1|)))) (|HasCategory| (-791 |#1|) (QUOTE (-276))) (|HasCategory| (-791 |#1|) (QUOTE (-500))) (|HasCategory| (-791 |#1|) (QUOTE (-777))) (-1405 (|HasCategory| (-791 |#1|) (QUOTE (-750))) (|HasCategory| (-791 |#1|) (QUOTE (-777)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-791 |#1|) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-791 |#1|) (QUOTE (-830)))) (|HasCategory| (-791 |#1|) (QUOTE (-132)))))
-(-794 |p| PADIC)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-794 |#1|) (QUOTE (-831))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-794 |#1|) (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-134))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-794 |#1|) (QUOTE (-937))) (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-1049))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-794 |#1|) (QUOTE (-207))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -280) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (LIST (QUOTE -258) (LIST (QUOTE -794) (|devaluate| |#1|)) (LIST (QUOTE -794) (|devaluate| |#1|)))) (|HasCategory| (-794 |#1|) (QUOTE (-278))) (|HasCategory| (-794 |#1|) (QUOTE (-502))) (|HasCategory| (-794 |#1|) (QUOTE (-779))) (-3807 (|HasCategory| (-794 |#1|) (QUOTE (-752))) (|HasCategory| (-794 |#1|) (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-794 |#1|) (QUOTE (-831)))) (|HasCategory| (-794 |#1|) (QUOTE (-132)))))
+(-796 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-206))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -256) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (QUOTE (-777))) (-1405 (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-795)
-((|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-779))) (-3807 (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-797)
+((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-796)
+(-798)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-797 CF1 CF2)
+(-799 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-798 |ComponentFunction|)
+(-800 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-799 CF1 CF2)
+(-801 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-800 |ComponentFunction|)
+(-802 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-801 CF1 CF2)
+(-803 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-802 |ComponentFunction|)
+(-804 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-803)
+(-805)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-804 R)
+(-806 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-805 R S L)
+(-807 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-806 S)
+(-808 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-807 |Base| |Subject| |Pat|)
+(-809 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070)))) (-12 (-3031 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070))))) (-3031 (|HasCategory| |#2| (QUOTE (-959))))) (-12 (|HasCategory| |#2| (QUOTE (-959))) (-3031 (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070)))))))
-(-808 R S)
-((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+((|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))) (-12 (-2630 (|HasCategory| |#2| (QUOTE (-961)))) (-2630 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))))) (-12 (|HasCategory| |#2| (QUOTE (-961))) (-2630 (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))))))
+(-810 R A B)
+((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-809 R A B)
-((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
+(-811 R S)
+((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-810 R)
-((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
-NIL
-NIL
-(-811 R -3584)
+(-812 R -2731)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-812 R S)
+(-813 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-813 |VarSet|)
+(-814 R)
+((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
+NIL
+NIL
+(-815 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-814 UP R)
+(-816 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-815)
+(-817)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-816 UP -2958)
+(-818 UP -1696)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-817)
+(-819)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-818)
+(-820)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-819 A S)
+(-821 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-820 S)
+(-822 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-821 S)
-((|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
+(-823 S)
+((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-822 S)
-((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}.")))
-((-4164 . T))
-((|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-777)))))
-(-823 |n| R)
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-824 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ^= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-824 S)
+(-825 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4164 . T))
+((-4177 . T))
NIL
-(-825 S)
+(-826 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-826 |p|)
-((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-336))))
-(-827 R E |VarSet| S)
+(-827 S)
+((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
+((-4177 . T))
+((|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-779)))))
+(-828 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-828 R S)
+(-829 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-829 S)
+(-830 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-132))))
-(-830)
+(-831)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-831 R0 -2958 UP UPUP R)
+(-832 |p|)
+((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| $ (QUOTE (-134))) (|HasCategory| $ (QUOTE (-132))) (|HasCategory| $ (QUOTE (-338))))
+(-833 R0 -1696 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-832 UP UPUP R)
+(-834 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-833 UP UPUP)
+(-835 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-834 R)
+(-836 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-835 R)
+(-837 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-836 E OV R P)
+(-838 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-837)
+(-839)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-838 -2958)
+(-840 -1696)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-839)
-((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4169 "*") . T))
-NIL
-(-840 R)
+(-841 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-841)
+(-842)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-NIL
-(-842 |xx| -2958)
-((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
+(-843)
+((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
+(((-4182 "*") . T))
NIL
-(-843 -2958 P)
+(-844 -1696 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-844 R |Var| |Expon| GR)
-((|constructor| (NIL "Author: William Sit,{} spring 89")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
+(-845 |xx| -1696)
+((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-845)
-((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
+(-846 R |Var| |Expon| GR)
+((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{^=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-846 S)
-((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
+(-847 S)
+((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-847)
+(-848)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-848)
-((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
+(-849)
+((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-849)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
+(-850)
+((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-850 R -2958)
+(-851 R -1696)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-851 S A B)
+(-852)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
+NIL
+NIL
+(-853 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-852 S R -2958)
+(-854 S R -1696)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-853 I)
+(-855 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-854 S E)
+(-856 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-855 S R L)
+(-857 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-856 S E V R P)
+(-858 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -806) (|devaluate| |#1|))))
-(-857 -3584)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
+((|HasCategory| |#3| (LIST (QUOTE -808) (|devaluate| |#1|))))
+(-859 R -1696 -2731)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-858 R -2958 -3584)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
+(-860 -2731)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-859 S R Q)
+(-861 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-860 S)
+(-862 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-861 S R P)
+(-863 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-862)
-((|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
-NIL
+(-864)
+((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
-(-863 R)
NIL
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-959))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-864 |lv| R)
+(-865 R)
+((|constructor| (NIL "This domain implements points in coordinate space")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-866 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-865 |TheField| |ThePols|)
+(-867 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-775))))
-(-866 R)
-((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-1070) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-867 R S)
+((|HasCategory| |#1| (QUOTE (-777))))
+(-868 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-868 |x| R)
+(-869 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-869 S R E |VarSet|)
+(-870 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-830))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#4| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#4| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#4| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-777))))
-(-870 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-831))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#4| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#4| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-779))))
+(-871 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
NIL
-(-871 E V R P -2958)
+(-872 E V R P -1696)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-872 E |Vars| R P S)
+(-873 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-873 E V R P -2958)
+(-874 R)
+((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-1073) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-875 E V R P -1696)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-419))))
-(-874)
+((|HasCategory| |#3| (QUOTE (-421))))
+(-876)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-875 R E)
-((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (-12 (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-123)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)))
-(-876 R L)
+(-877 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-877 S)
-((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
(-878 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-879)
+(-879 S)
+((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-880)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-880 -2958)
-((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}.")))
+(-881 -1696)
+((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-881 I)
-((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
+(-882 I)
+((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-882)
+(-883)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-883 A B)
+(-884 R E)
+((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-123)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)))
+(-885 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4164 -12 (|has| |#2| (-440)) (|has| |#1| (-440))))
-((-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#2| (QUOTE (-440)))) (-12 (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-336)))) (-12 (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#2| (QUOTE (-657)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#2| (QUOTE (-440)))) (-12 (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#2| (QUOTE (-657))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-440))) (|HasCategory| |#2| (QUOTE (-440)))) (-12 (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#2| (QUOTE (-657)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-12 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-777)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-777))))))
-(-884 S)
-((|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4167 . T) (-4168 . T) (-2951 . T))
+((-4177 -12 (|has| |#2| (-442)) (|has| |#1| (-442))))
+((-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-338)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659))))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-123))) (|HasCategory| |#2| (QUOTE (-123)))) (-12 (|HasCategory| |#1| (QUOTE (-442))) (|HasCategory| |#2| (QUOTE (-442)))) (-12 (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-659)))) (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725))))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-725))) (|HasCategory| |#2| (QUOTE (-725)))) (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-779))))))
+(-886 S)
+((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
+((-4180 . T) (-4181 . T) (-3353 . T))
NIL
-(-885 R |polR|)
-((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
+(-887 R |polR|)
+((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-419))))
-(-886)
+((|HasCategory| |#1| (QUOTE (-421))))
+(-888)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-887 S |Coef| |Expon| |Var|)
+(-889 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-888 |Coef| |Expon| |Var|)
+(-890 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-889)
+(-891)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-890 S R E |VarSet| P)
+(-892 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-508))))
-(-891 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-509))))
+(-893 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4167 . T) (-2951 . T))
+((-4180 . T) (-3353 . T))
NIL
-(-892 R E V P)
-((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
+(-894 R E V P)
+((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-276)))) (|HasCategory| |#1| (QUOTE (-419))))
-(-893 K)
+((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-421))))
+(-895 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-894 |VarSet| E RC P)
+(-896 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-895 R)
-((|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+(-897 R)
+((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-896 R1 R2)
-((|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
+(-898 R1 R2)
+((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-897 R)
-((|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
+(-899 R)
+((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-898 K)
+(-900 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-899 R E OV PPR)
+(-901 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-900 K R UP -2958)
+(-902 K R UP -1696)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-901 R |Var| |Expon| |Dpoly|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
-NIL
-((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-276)))))
-(-902 |vl| |nv|)
+(-903 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-903 R E V P TS)
-((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
+(-904 R |Var| |Expon| |Dpoly|)
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{^=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
+NIL
+((-12 (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-278)))))
+(-905 R E V P TS)
+((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-904)
+(-906)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-905 A S)
-((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-NIL
-((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-750))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1046))))
-(-906 S)
-((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-2951 . T) (-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-NIL
(-907 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-908 |n| K)
+(-908 A S)
+((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
+NIL
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-752))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-1049))))
+(-909 S)
+((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
+((-3353 . T) (-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+NIL
+(-910 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-909 S)
-((|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4167 . T) (-4168 . T) (-2951 . T))
+(-911 S)
+((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
+((-4180 . T) (-4181 . T) (-3353 . T))
NIL
-(-910 R)
-((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4160 |has| |#1| (-260)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-260))) (-1405 (|HasCategory| |#1| (QUOTE (-260))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -256) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-967))) (|HasCategory| |#1| (QUOTE (-500))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))))
-(-911 S R)
+(-912 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (QUOTE (-967))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-260))))
-(-912 R)
+((|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (QUOTE (-970))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-262))))
+(-913 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4160 |has| |#1| (-260)) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 |has| |#1| (-262)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-913 QR R QS S)
+(-914 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-914 S)
-((|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-915 S)
-((** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
+(-915 R)
+((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
+((-4173 |has| |#1| (-262)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-262))) (-3807 (|HasCategory| |#1| (QUOTE (-262))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -258) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-970))) (|HasCategory| |#1| (QUOTE (-502))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))))
+(-916 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-917 S)
+((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-916)
-((** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
+(-918)
+((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-917 -2958 UP UPUP |radicnd| |n|)
+(-919 -1696 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4160 |has| (-375 |#2|) (-331)) (-4165 |has| (-375 |#2|) (-331)) (-4159 |has| (-375 |#2|) (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-375 |#2|) (QUOTE (-132))) (|HasCategory| (-375 |#2|) (QUOTE (-134))) (|HasCategory| (-375 |#2|) (QUOTE (-318))) (|HasCategory| (-375 |#2|) (QUOTE (-331))) (-1405 (|HasCategory| (-375 |#2|) (QUOTE (-331))) (|HasCategory| (-375 |#2|) (QUOTE (-318)))) (|HasCategory| (-375 |#2|) (QUOTE (-336))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-336))) (-1405 (|HasCategory| (-375 |#2|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-12 (|HasCategory| (-375 |#2|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-375 |#2|) (QUOTE (-318))))) (-12 (|HasCategory| (-375 |#2|) (QUOTE (-206))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-375 |#2|) (QUOTE (-206))) (|HasCategory| (-375 |#2|) (QUOTE (-331)))) (|HasCategory| (-375 |#2|) (QUOTE (-318)))))
-(-918 |bb|)
+((-4173 |has| (-377 |#2|) (-333)) (-4178 |has| (-377 |#2|) (-333)) (-4172 |has| (-377 |#2|) (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-377 |#2|) (QUOTE (-132))) (|HasCategory| (-377 |#2|) (QUOTE (-134))) (|HasCategory| (-377 |#2|) (QUOTE (-319))) (|HasCategory| (-377 |#2|) (QUOTE (-333))) (-3807 (|HasCategory| (-377 |#2|) (QUOTE (-333))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))) (|HasCategory| (-377 |#2|) (QUOTE (-338))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338))) (-3807 (|HasCategory| (-377 |#2|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-12 (|HasCategory| (-377 |#2|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-377 |#2|) (QUOTE (-319))))) (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-377 |#2|) (QUOTE (-207))) (|HasCategory| (-377 |#2|) (QUOTE (-333)))) (|HasCategory| (-377 |#2|) (QUOTE (-319)))))
+(-920 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-501) (QUOTE (-830))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| (-501) (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-134))) (|HasCategory| (-501) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-933))) (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-1046))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| (-501) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| (-501) (QUOTE (-206))) (|HasCategory| (-501) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| (-501) (LIST (QUOTE -476) (QUOTE (-1070)) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -278) (QUOTE (-501)))) (|HasCategory| (-501) (LIST (QUOTE -256) (QUOTE (-501)) (QUOTE (-501)))) (|HasCategory| (-501) (QUOTE (-276))) (|HasCategory| (-501) (QUOTE (-500))) (|HasCategory| (-501) (QUOTE (-777))) (-1405 (|HasCategory| (-501) (QUOTE (-750))) (|HasCategory| (-501) (QUOTE (-777)))) (|HasCategory| (-501) (LIST (QUOTE -577) (QUOTE (-501)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-501) (QUOTE (-830)))) (|HasCategory| (-501) (QUOTE (-132)))))
-(-919)
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-517) (QUOTE (-831))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| (-517) (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-134))) (|HasCategory| (-517) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-937))) (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-1049))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| (-517) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| (-517) (QUOTE (-207))) (|HasCategory| (-517) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| (-517) (LIST (QUOTE -478) (QUOTE (-1073)) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -280) (QUOTE (-517)))) (|HasCategory| (-517) (LIST (QUOTE -258) (QUOTE (-517)) (QUOTE (-517)))) (|HasCategory| (-517) (QUOTE (-278))) (|HasCategory| (-517) (QUOTE (-502))) (|HasCategory| (-517) (QUOTE (-779))) (-3807 (|HasCategory| (-517) (QUOTE (-752))) (|HasCategory| (-517) (QUOTE (-779)))) (|HasCategory| (-517) (LIST (QUOTE -579) (QUOTE (-517)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-517) (QUOTE (-831)))) (|HasCategory| (-517) (QUOTE (-132)))))
+(-921)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-920)
+(-922)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-921 RP)
+(-923 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-922 S)
+(-924 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-923 A S)
-((|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
+(-925 A S)
+((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4168)) (|HasCategory| |#2| (QUOTE (-1001))))
-(-924 S)
-((|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-2951 . T))
+((|HasAttribute| |#1| (QUOTE -4181)) (|HasCategory| |#2| (QUOTE (-1003))))
+(-926 S)
+((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
+((-3353 . T))
NIL
-(-925 S)
+(-927 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-926)
+(-928)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|NonNegativeInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4160 . T) (-4165 . T) (-4159 . T) (-4162 . T) (-4161 . T) ((-4169 "*") . T) (-4164 . T))
+((-4173 . T) (-4178 . T) (-4172 . T) (-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4177 . T))
NIL
-(-927 R -2958)
+(-929 R -1696)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-928 R -2958)
+(-930 R -1696)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-929 -2958 UP)
+(-931 -1696 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-930 -2958 UP)
+(-932 -1696 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-931 S)
+(-933 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-932 F1 UP UPUP R F2)
+(-934 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-933)
-NIL
-NIL
-NIL
-(-934 |Pol|)
+(-935 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-935 |Pol|)
+(-936 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-936)
+(-937)
+((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
+NIL
+NIL
+(-938)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-937 |TheField|)
+(-939 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4160 . T) (-4165 . T) (-4159 . T) (-4162 . T) (-4161 . T) ((-4169 "*") . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-375 (-501)) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-375 (-501)) (LIST (QUOTE -950) (QUOTE (-501)))) (-1405 (|HasCategory| (-375 (-501)) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501))))))
-(-938 -2958 L)
+((-4173 . T) (-4178 . T) (-4172 . T) (-4175 . T) (-4174 . T) ((-4182 "*") . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (-3807 (|HasCategory| (-377 (-517)) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517))))))
+(-940 -1696 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-939 S)
+(-941 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1001))))
-(-940 R E V P)
+((|HasCategory| |#1| (QUOTE (-1003))))
+(-942 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-336))))
-(-941)
-((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
+(-943 R)
+((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
+((|HasAttribute| |#1| (QUOTE (-4182 "*"))))
+(-944 R)
+((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-(-942 R)
-((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
+((|HasCategory| |#1| (QUOTE (-333))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-338)))) (|HasCategory| |#1| (QUOTE (-278))))
+(-945 S)
+((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4169 "*"))))
-(-943 R)
-((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
-((|HasCategory| |#1| (QUOTE (-331))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-336)))) (|HasCategory| |#1| (QUOTE (-276))))
-(-944 S)
-((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
+(-946)
+((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-945 S)
+(-947 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-946 S)
+(-948 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-947 -2958 |Expon| |VarSet| |FPol| |LFPol|)
+(-949 -1696 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-948)
+(-950)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2922) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001)))) (|HasCategory| (-1070) (QUOTE (-777))) (|HasCategory| (-50) (QUOTE (-1001))) (-1405 (|HasCategory| (-50) (QUOTE (-1001))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001)))) (-12 (|HasCategory| (-50) (LIST (QUOTE -278) (QUOTE (-50)))) (|HasCategory| (-50) (QUOTE (-1001)))))
-(-949 A S)
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -1257) (QUOTE (-51))))))) (|HasCategory| (-1073) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))))
+(-951 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-950 S)
+(-952 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-951 Q R)
+(-953 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-952 R)
-((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
-NIL
-NIL
-(-953)
+(-954)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-954 UP)
-((|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
+(-955 UP)
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-955 R)
+(-956 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-956 R |ls|)
+(-957 R)
+((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
+NIL
+NIL
+(-958 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| (-710 |#1| (-787 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-710 |#1| (-787 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-710 |#1| (-787 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -710) (|devaluate| |#1|) (LIST (QUOTE -787) (|devaluate| |#2|))))) (|HasCategory| (-710 |#1| (-787 |#2|)) (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| (-787 |#2|) (QUOTE (-336))))
-(-957)
+((-4181 . T) (-4180 . T))
+((|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-712 |#1| (-789 |#2|)) (QUOTE (-1003))) (|HasCategory| (-712 |#1| (-789 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -712) (|devaluate| |#1|) (LIST (QUOTE -789) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| (-789 |#2|) (QUOTE (-338))))
+(-959)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-958 S)
+(-960 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-959)
+(-961)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4164 . T))
+((-4177 . T))
+NIL
+(-962 |xx| -1696)
+((|constructor| (NIL "This package exports rational interpolation algorithms")))
+NIL
NIL
-(-960 S |m| |n| R |Row| |Col|)
+(-963 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-276))) (|HasCategory| |#4| (QUOTE (-331))) (|HasCategory| |#4| (QUOTE (-508))) (|HasCategory| |#4| (QUOTE (-156))))
-(-961 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-278))) (|HasCategory| |#4| (QUOTE (-333))) (|HasCategory| |#4| (QUOTE (-509))) (|HasCategory| |#4| (QUOTE (-156))))
+(-964 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4167 . T) (-2951 . T) (-4162 . T) (-4161 . T))
+((-4180 . T) (-3353 . T) (-4175 . T) (-4174 . T))
NIL
-(-962 |m| |n| R)
+(-965 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4167 . T) (-4162 . T) (-4161 . T))
-((|HasCategory| |#3| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-1001))) (|HasCategory| |#3| (QUOTE (-276))) (|HasCategory| |#3| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-156))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001))))))
-(-963 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4180 . T) (-4175 . T) (-4174 . T))
+((|HasCategory| |#3| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-278))) (|HasCategory| |#3| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-156))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3807 (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))))))
+(-966 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-964 R)
+(-967 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-965)
+(-968)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-966 S)
-((|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
+(-969 S)
+((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-967)
-((|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(-970)
+((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-968 |TheField| |ThePolDom|)
+(-971 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-969)
+(-972)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4155 . T) (-4159 . T) (-4154 . T) (-4165 . T) (-4166 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4168 . T) (-4172 . T) (-4167 . T) (-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-970)
-((|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1070))) (LIST (QUOTE |:|) (QUOTE -2922) (QUOTE (-50)))))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001)))) (|HasCategory| (-1070) (QUOTE (-777))) (|HasCategory| (-50) (QUOTE (-1001))) (-1405 (|HasCategory| (-50) (QUOTE (-1001))) (|HasCategory| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (QUOTE (-1001)))) (-12 (|HasCategory| (-50) (LIST (QUOTE -278) (QUOTE (-50)))) (|HasCategory| (-50) (QUOTE (-1001)))))
-(-971 S R E V)
-((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
+(-973)
+((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -1257) (QUOTE (-51))))))) (|HasCategory| (-1073) (QUOTE (-779))) (|HasCategory| (-51) (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (QUOTE (-1003))) (|HasCategory| (-51) (QUOTE (-1003)))) (-12 (|HasCategory| (-51) (QUOTE (-1003))) (|HasCategory| (-51) (LIST (QUOTE -280) (QUOTE (-51))))))
+(-974 S R E V)
+((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-500))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -906) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-1070)))))
-(-972 R E V)
-((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
+((|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-502))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -909) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-1073)))))
+(-975 R E V)
+((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
NIL
-(-973 S |TheField| |ThePols|)
-((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common access functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
+(-976 S |TheField| |ThePols|)
+((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-974 |TheField| |ThePols|)
-((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common access functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
+(-977 |TheField| |ThePols|)
+((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-975 R E V P TS)
+(-978 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-976 S R E V P)
+(-979 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-977 R E V P)
+(-980 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-978 R E V P TS)
-((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
+(-981 R E V P TS)
+((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-979 |Base| R -2958)
-((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
+(-982 |f|)
+((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-980 |f|)
-((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
+(-983 |Base| R -1696)
+((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-981 |Base| R -2958)
+(-984 |Base| R -1696)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-982 R |ls|)
+(-985 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-983 R UP M)
-((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4160 |has| |#1| (-331)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-318)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-318))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-318)))))
-(-984 UP SAE UPA)
-((|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
+(-986 UP SAE UPA)
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-985 UP SAE UPA)
-((|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
+(-987 R UP M)
+((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
+((-4173 |has| |#1| (-333)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-319)))))
+(-988 UP SAE UPA)
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-986)
+(-989)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-987 S)
+(-990 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-988 R)
+(-991 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-989 R)
-NIL
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-990 (-1070)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-990 S)
-NIL
+(-992 R)
+((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-993 (-1073)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-993 S)
+((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-991 S)
-((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-775))) (|HasCategory| |#1| (QUOTE (-1001))))
-(-992 R S)
+(-994 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-775))))
-(-993 S)
-((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-1001))))
-(-994 R S)
+((|HasCategory| |#1| (QUOTE (-777))))
+(-995 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-995 S)
+(-996 S)
+((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-1003))))
+(-997 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-2951 . T))
+((-3353 . T))
NIL
-(-996 S L)
+(-998 S)
+((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1003))))
+(-999 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-2951 . T))
+((-3353 . T))
NIL
-(-997 S)
-((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4167 . T) (-4157 . T) (-4168 . T))
-((|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-336))) (|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-777))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-336)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-998 A S)
-((|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
+(-1000 A S)
+((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-999 S)
-((|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4157 . T) (-2951 . T))
+(-1001 S)
+((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
+((-4170 . T) (-3353 . T))
NIL
-(-1000 S)
+(-1002 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1001)
+(-1003)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1002 |m| |n|)
-((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
+(-1004 |m| |n|)
+((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1003)
-((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
+(-1005 S)
+((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
+((-4180 . T) (-4170 . T) (-4181 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-779))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-338))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))))
+(-1006 |Str| |Sym| |Int| |Flt| |Expr|)
+((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1004 |Str| |Sym| |Int| |Flt| |Expr|)
-((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns \\spad{a1}.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
+(-1007)
+((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1005 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1008 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1006 R FS)
+(-1009 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1007 R E V P TS)
-((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
+(-1010 R E V P TS)
+((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1008 R E V P TS)
-((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
+(-1011 R E V P TS)
+((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1009 R E V P)
+(-1012 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-1010)
+(-1013)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1011 S)
+(-1014 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1012)
+(-1015)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1013 |dimtot| |dim1| S)
-((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4161 |has| |#3| (-959)) (-4162 |has| |#3| (-959)) (-4164 |has| |#3| (-6 -4164)) ((-4169 "*") |has| |#3| (-156)) (-4167 . T))
-((|HasCategory| |#3| (QUOTE (-1001))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775))) (-1405 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775)))) (|HasCategory| |#3| (QUOTE (-156))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-331)))) (-1405 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-206))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| (-501) (QUOTE (-777))) (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-657))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-1001)))) (|HasAttribute| |#3| (QUOTE -4164)) (|HasCategory| |#3| (QUOTE (-123))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (|HasCategory| |#3| (QUOTE (-25))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-336))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-775))) (|HasCategory| |#3| (QUOTE (-959))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-206))) (|HasCategory| |#3| (QUOTE (-331))) (|HasCategory| |#3| (QUOTE (-959)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#3| (QUOTE (-1001))))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#3| (QUOTE (-1001))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-206)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-331)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-336)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-775)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-959)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -278) (|devaluate| |#3|))) (|HasCategory| |#3| (QUOTE (-1001))))))
-(-1014 R |x|)
-((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and \\spad{c_}{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and \\spad{c_}{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
+(-1016 |dimtot| |dim1| S)
+((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
+((-4174 |has| |#3| (-961)) (-4175 |has| |#3| (-961)) (-4177 |has| |#3| (-6 -4177)) ((-4182 "*") |has| |#3| (-156)) (-4180 . T))
+((|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (-3807 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777)))) (|HasCategory| |#3| (QUOTE (-156))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-333)))) (-3807 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-207))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| (-517) (QUOTE (-779))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (|HasCategory| |#3| (QUOTE (-659))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-3807 (|HasCategory| |#3| (QUOTE (-961))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003)))) (|HasAttribute| |#3| (QUOTE -4177)) (|HasCategory| |#3| (QUOTE (-123))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (|HasCategory| |#3| (QUOTE (-25))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (QUOTE (-1003)))) (-3807 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (QUOTE (-961)))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-123)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-156)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-207)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-333)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-338)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-725)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-777)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-961)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#3| (QUOTE (-1003))))) (-3807 (-12 (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -952) (QUOTE (-517)))))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-3807 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-123))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-156))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-207))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-333))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-338))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-725))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-777))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-961))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1003))) (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -280) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -822) (QUOTE (-1073)))))))
+(-1017 R |x|)
+((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-419))))
-(-1015 R -2958)
+((|HasCategory| |#1| (QUOTE (-421))))
+(-1018 R -1696)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1016 R)
+(-1019 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1017)
+(-1020)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1018)
+(-1021)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4155 . T) (-4159 . T) (-4154 . T) (-4165 . T) (-4166 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4168 . T) (-4172 . T) (-4167 . T) (-4178 . T) (-4179 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1019 S)
-((|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4167 . T) (-4168 . T) (-2951 . T))
+(-1022 S)
+((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
+((-4180 . T) (-4181 . T) (-3353 . T))
NIL
-(-1020 S |ndim| R |Row| |Col|)
+(-1023 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-331))) (|HasAttribute| |#3| (QUOTE (-4169 "*"))) (|HasCategory| |#3| (QUOTE (-156))))
-(-1021 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-333))) (|HasAttribute| |#3| (QUOTE (-4182 "*"))) (|HasCategory| |#3| (QUOTE (-156))))
+(-1024 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-2951 . T) (-4167 . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-3353 . T) (-4180 . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1022 R |Row| |Col| M)
+(-1025 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1023 R |VarSet|)
+(-1026 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1024 |Coef| |Var| SMP)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1027 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-508))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-331))))
-(-1025 R E V P)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
+(-1028 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-1026 UP -2958)
+(-1029 UP -1696)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1027 R)
+(-1030 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1028 R)
-((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
+(-1031 R)
+((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1029 R)
+(-1032 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1030 S A)
+(-1033 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-777))))
-(-1031 R)
+((|HasCategory| |#1| (QUOTE (-779))))
+(-1034 R)
+((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
+(-1035 R)
+((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
-(-1032 R)
-((|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
-NIL
-(-1033)
+(-1036)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1034)
+(-1037)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1035 V C)
-((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
+(-1038 V C)
+((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1036 V C)
+(-1039 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-1035 |#1| |#2|) (QUOTE (-1001))) (-12 (|HasCategory| (-1035 |#1| |#2|) (LIST (QUOTE -278) (LIST (QUOTE -1035) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1035 |#1| |#2|) (QUOTE (-1001)))))
-(-1037 |ndim| R)
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-1038 |#1| |#2|) (QUOTE (-1003))) (-12 (|HasCategory| (-1038 |#1| |#2|) (LIST (QUOTE -280) (LIST (QUOTE -1038) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1038 |#1| |#2|) (QUOTE (-1003)))))
+(-1040 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4164 . T) (-4156 |has| |#2| (-6 (-4169 "*"))) (-4167 . T) (-4161 . T) (-4162 . T))
-((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206))) (|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (QUOTE (-276))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-331))) (-1405 (|HasAttribute| |#2| (QUOTE (-4169 "*"))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-206)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001))))) (|HasCategory| |#2| (QUOTE (-156))))
-(-1038 S)
-((|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
+((-4177 . T) (-4169 |has| |#2| (-6 (-4182 "*"))) (-4180 . T) (-4174 . T) (-4175 . T))
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (QUOTE (-278))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-333))) (-3807 (|HasAttribute| |#2| (QUOTE (-4182 "*"))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#2| (QUOTE (-207)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-3807 (-12 (|HasCategory| |#2| (QUOTE (-207))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))) (|HasCategory| |#2| (QUOTE (-156))))
+(-1041 S)
+((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1039)
-((|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+(-1042)
+((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-1040 R E V P TS)
+(-1043 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1041 R E V P)
+(-1044 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-336))))
-(-1042 S)
-((|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-1043 A S)
-((|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
+(-1045 S)
+((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-1046 A S)
+((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1044 S)
-((|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-2951 . T))
+(-1047 S)
+((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
+((-3353 . T))
NIL
-(-1045 |Key| |Ent| |dent|)
+(-1048 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4168 . T))
-((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))))
-(-1046)
+((-4181 . T))
+((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))))
+(-1049)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1047 |Coef|)
+(-1050 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1048 S)
-((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4168 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-501) (QUOTE (-777))))
-(-1049 S)
+(-1051 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1050 A B)
+(-1052 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1051 A B C)
+(-1053 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1052)
-((|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+(-1054 S)
+((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
+((-4181 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-517) (QUOTE (-779))))
+(-1055)
+((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-1053)
+(-1056)
NIL
-((-4168 . T) (-4167 . T))
-((|HasCategory| (-131) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-131) (QUOTE (-777))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| (-131) (QUOTE (-1001))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-777)))) (-12 (|HasCategory| (-131) (LIST (QUOTE -278) (QUOTE (-131)))) (|HasCategory| (-131) (QUOTE (-1001))))))
-(-1054 |Entry|)
+((-4181 . T) (-4180 . T))
+((|HasCategory| (-131) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| (-131) (QUOTE (-1003))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-3807 (-12 (|HasCategory| (-131) (QUOTE (-779))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131))))) (-12 (|HasCategory| (-131) (QUOTE (-1003))) (|HasCategory| (-131) (LIST (QUOTE -280) (QUOTE (-131)))))))
+(-1057 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (QUOTE (-1053))) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001)))) (|HasCategory| (-1053) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (QUOTE (-1001))) (|HasCategory| |#1| (QUOTE (-1001)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-1055 A)
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (QUOTE (-1056))) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#1|)))))) (|HasCategory| (-1056) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1003)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-1058 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))))
-(-1056 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+((|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))))
+(-1059 |Coef|)
+((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1057 |Coef|)
-((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
+(-1060 |Coef|)
+((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1058 R UP)
+(-1061 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-276))))
-(-1059 |n| R)
-((|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
+((|HasCategory| |#1| (QUOTE (-278))))
+(-1062 |n| R)
+((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1060 S1 S2)
+(-1063 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1061 |Coef| |var| |cen|)
+(-1064 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4169 "*") -1405 (-1280 (|has| |#1| (-331)) (|has| (-1068 |#1| |#2| |#3|) (-750))) (|has| |#1| (-156)) (-1280 (|has| |#1| (-331)) (|has| (-1068 |#1| |#2| |#3|) (-830)))) (-4160 -1405 (-1280 (|has| |#1| (-331)) (|has| (-1068 |#1| |#2| |#3|) (-750))) (|has| |#1| (-508)) (-1280 (|has| |#1| (-331)) (|has| (-1068 |#1| |#2| |#3|) (-830)))) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| (-501) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-134)))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|)))))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -256) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-132)))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -256) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1068) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))) (-1405 (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1068 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1062 R -2958)
-((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
+(((-4182 "*") -3807 (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-831)))) (-4173 -3807 (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4035 (|has| |#1| (-333)) (|has| (-1071 |#1| |#2| |#3|) (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1071) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1071 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1065 R -1696)
+((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1063 R)
+(-1066 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1064 R)
-((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4163 |has| |#1| (-331)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#1| (QUOTE (-206))) (|HasAttribute| |#1| (QUOTE -4165)) (|HasCategory| |#1| (QUOTE (-419))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (|HasCategory| |#1| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1065 R S)
+(-1067 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1066 E OV R P)
+(-1068 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1067 |Coef| |var| |cen|)
+(-1069 R)
+((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#1| (QUOTE (-207))) (|HasAttribute| |#1| (QUOTE -4178)) (|HasCategory| |#1| (QUOTE (-421))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (|HasCategory| |#1| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1070 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))))
-(-1068 |Coef| |var| |cen|)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(-1071 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-701)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-701)) (|devaluate| |#1|))))) (|HasCategory| (-701) (QUOTE (-1012))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-701))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-701))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))))
-(-1069)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(-1072)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1070)
-((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
+(-1073)
+((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1071 R)
+(-1074 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1072 R)
+(-1075 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-6 -4165)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-419))) (-12 (|HasCategory| (-886) (QUOTE (-123))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasAttribute| |#1| (QUOTE -4165)))
-(-1073)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-6 -4178)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-421))) (-12 (|HasCategory| (-888) (QUOTE (-123))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasAttribute| |#1| (QUOTE -4178)))
+(-1076)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1074)
+(-1077)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1075 R)
+(-1078)
+((|constructor| (NIL "\\indented{1}{This domain provides a simple,{} general,{} and arguably} complete representation of Spad programs as objects of a term algebra built from ground terms of type boolean,{} integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity from a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} symbol,{} String,{} SExpression. See Also: SExpression.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) (|List| $)) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}.")) (|buildSyntax| (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|convert| (($ (|String|)) "\\spad{convert(s)} injects the string value \\spad{`s'} into the syntax domain") (($ (|Symbol|)) "\\spad{convert(s)} injects the symbol \\spad{`s'} into the syntax domain.") (($ (|DoubleFloat|)) "\\spad{convert(f)} injects the float value \\spad{`f'} into the syntax domain") (($ (|Integer|)) "\\spad{convert(i)} injects the integer value `i' into the syntax domain") (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to syntax.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
+NIL
+NIL
+(-1079 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1076 S)
-((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
+(-1080 S)
+((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1077 |Key| |Entry|)
-((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4167 . T) (-4168 . T))
-((|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (-12 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (LIST (QUOTE -278) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3626) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2922) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#2| (QUOTE (-1001))) (-1405 (|HasCategory| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (QUOTE (-1001))) (|HasCategory| |#2| (QUOTE (-1001)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1001)))))
-(-1078 S)
+(-1081 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1079 R)
+(-1082 |Key| |Entry|)
+((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
+((-4180 . T) (-4181 . T))
+((|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (-12 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (LIST (QUOTE -280) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3435) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1257) (|devaluate| |#2|)))))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#2| (QUOTE (-1003))) (-3807 (|HasCategory| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1003)))) (-12 (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))))
+(-1083 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1080 S |Key| |Entry|)
-((|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
+(-1084 S |Key| |Entry|)
+((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1081 |Key| |Entry|)
-((|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4168 . T) (-2951 . T))
+(-1085 |Key| |Entry|)
+((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
+((-4181 . T) (-3353 . T))
NIL
-(-1082 |Key| |Entry|)
+(-1086 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1083)
+(-1087)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1084)
-((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
+(-1088 S)
+((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1085 S)
-((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
+(-1089)
+((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1086)
+(-1090)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1087 R)
+(-1091 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1088)
-((|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
+(-1092)
+((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1089 S)
+(-1093 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1090)
+(-1094)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1091 S)
-((|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))))
-(-1092 S)
+(-1095 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (QUOTE (-1003))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))))
+(-1096 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1093)
+(-1097)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1094 R -2958)
+(-1098 R -1696)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1095 R |Row| |Col| M)
+(-1099 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1096 R -2958)
+(-1100 R -1696)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -556) (LIST (QUOTE -810) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -806) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -806) (|devaluate| |#1|)))))
-(-1097 |Coef|)
-((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-508))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-331))))
-(-1098 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -558) (LIST (QUOTE -814) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -808) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -808) (|devaluate| |#1|)))))
+(-1101 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
-((|HasCategory| |#4| (QUOTE (-336))))
-(-1099 R E V P)
+((|HasCategory| |#4| (QUOTE (-338))))
+(-1102 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-1100 |Curve|)
+(-1103 |Coef|)
+((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-509))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-333))))
+(-1104 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1101)
+(-1105)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1102 S)
+(-1106 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1001))))
-(-1103 -2958)
+((|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))))
+(-1107 -1696)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1104)
+(-1108)
((|constructor| (NIL "The fundamental Type.")))
-((-2951 . T))
+((-3353 . T))
NIL
-(-1105 S)
+(-1109 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-777))))
-(-1106)
+((|HasCategory| |#1| (QUOTE (-779))))
+(-1110)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1107 S)
+(-1111 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1108)
+(-1112)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+((-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1109 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4169 "*") -1405 (-1280 (|has| |#1| (-331)) (|has| (-1139 |#1| |#2| |#3|) (-750))) (|has| |#1| (-156)) (-1280 (|has| |#1| (-331)) (|has| (-1139 |#1| |#2| |#3|) (-830)))) (-4160 -1405 (-1280 (|has| |#1| (-331)) (|has| (-1139 |#1| |#2| |#3|) (-750))) (|has| |#1| (-508)) (-1280 (|has| |#1| (-331)) (|has| (-1139 |#1| |#2| |#3|) (-830)))) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| (-501) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-134)))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|)))))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-206))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -256) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-500))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-276))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-132)))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -256) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -278) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -476) (QUOTE (-1070)) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-750))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))) (-1405 (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-830))) (|HasCategory| |#1| (QUOTE (-331)))) (-12 (|HasCategory| (-1139 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331)))) (|HasCategory| |#1| (QUOTE (-132)))))
-(-1110 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1113 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1111 |Coef|)
+(-1114 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1112 S |Coef| UTS)
+(-1115 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-331))))
-(-1113 |Coef| UTS)
+((|HasCategory| |#2| (QUOTE (-333))))
+(-1116 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-2951 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-3353 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1114 |Coef| UTS)
+(-1117 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| (-501) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-134))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-501)) (|devaluate| |#1|))))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-933)))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-750)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -256) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-777)))) (-1405 (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-750)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-777))))) (|HasCategory| |#2| (QUOTE (-830))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-500)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-276)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-1405 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -256) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -278) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -476) (QUOTE (-1070)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-1070))))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-750)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-933)))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-1046))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-132))))))
-(-1115 ZP)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-134))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-134))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779))))) (|HasCategory| |#2| (QUOTE (-831))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-502)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-278)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132))) (-3807 (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -258) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -478) (QUOTE (-1073)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-752)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-779)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -280) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517))))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#1| (QUOTE (-132))) (-12 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-132))))))
+(-1118 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
+(((-4182 "*") -3807 (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-752))) (|has| |#1| (-156)) (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-831)))) (-4173 -3807 (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-752))) (|has| |#1| (-509)) (-4035 (|has| |#1| (-333)) (|has| (-1146 |#1| |#2| |#3|) (-831)))) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| (-517) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-134))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-134)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-207))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-517)) (|devaluate| |#1|))))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-502))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-278))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-132))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-156)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-752))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -258) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -280) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -478) (QUOTE (-1073)) (LIST (QUOTE -1146) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-1073)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))) (-3807 (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-831))) (|HasCategory| |#1| (QUOTE (-333)))) (-12 (|HasCategory| (-1146 |#1| |#2| |#3|) (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-333)))) (|HasCategory| |#1| (QUOTE (-132)))))
+(-1119 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1116 S)
-((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
-NIL
-((|HasCategory| |#1| (QUOTE (-775))) (|HasCategory| |#1| (QUOTE (-1001))))
-(-1117 R S)
+(-1120 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-775))))
-(-1118 |x| R)
-((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4169 "*") |has| |#2| (-156)) (-4160 |has| |#2| (-508)) (-4163 |has| |#2| (-331)) (-4165 |has| |#2| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-830))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-508)))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-346)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-346))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -806) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -806) (QUOTE (-501))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-346)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -556) (LIST (QUOTE -810) (QUOTE (-501)))))) (-12 (|HasCategory| (-986) (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#2| (LIST (QUOTE -556) (QUOTE (-490))))) (|HasCategory| |#2| (QUOTE (-777))) (|HasCategory| |#2| (LIST (QUOTE -577) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (-1405 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| |#2| (QUOTE (-206))) (|HasAttribute| |#2| (QUOTE -4165)) (|HasCategory| |#2| (QUOTE (-419))) (-1405 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-830)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (-1405 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-830)))) (|HasCategory| |#2| (QUOTE (-132)))))
-(-1119 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-777))))
+(-1121 S)
+((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
+NIL
+((|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1003))))
+(-1122 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1120 R Q UP)
+(-1123 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1121 R UP)
+(-1124 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1122 R UP)
+(-1125 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1123 R U)
+(-1126 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1124 S R)
-((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
+(-1127 |x| R)
+((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
+(((-4182 "*") |has| |#2| (-156)) (-4173 |has| |#2| (-509)) (-4176 |has| |#2| (-333)) (-4178 |has| |#2| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-831))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-509)))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-349)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-349))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -808) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -808) (QUOTE (-517))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-349)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -558) (LIST (QUOTE -814) (QUOTE (-517)))))) (-12 (|HasCategory| (-989) (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#2| (LIST (QUOTE -558) (QUOTE (-493))))) (|HasCategory| |#2| (QUOTE (-779))) (|HasCategory| |#2| (LIST (QUOTE -579) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-134))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (-3807 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| |#2| (QUOTE (-207))) (|HasAttribute| |#2| (QUOTE -4178)) (|HasCategory| |#2| (QUOTE (-421))) (-3807 (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-831)))) (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (-3807 (-12 (|HasCategory| $ (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-831)))) (|HasCategory| |#2| (QUOTE (-132)))))
+(-1128 R PR S PS)
+((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))) (|HasCategory| |#2| (QUOTE (-419))) (|HasCategory| |#2| (QUOTE (-508))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1046))))
-(-1125 R)
-((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4163 |has| |#1| (-331)) (-4165 |has| |#1| (-6 -4165)) (-4162 . T) (-4161 . T) (-4164 . T))
NIL
-(-1126 R PR S PS)
-((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
+(-1129 S R)
+((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))) (|HasCategory| |#2| (QUOTE (-421))) (|HasCategory| |#2| (QUOTE (-509))) (|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (QUOTE (-1049))))
+(-1130 R)
+((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4176 |has| |#1| (-333)) (-4178 |has| |#1| (-6 -4178)) (-4175 . T) (-4174 . T) (-4177 . T))
NIL
-(-1127 S |Coef| |Expon|)
+(-1131 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1012))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3691) (LIST (|devaluate| |#2|) (QUOTE (-1070))))))
-(-1128 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1015))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2256) (LIST (|devaluate| |#2|) (QUOTE (-1073))))))
+(-1132 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1129 RC P)
+(-1133 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1130 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))))
-(-1131 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1134 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1132 |Coef|)
+(-1135 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1133 S |Coef| ULS)
+(-1136 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1134 |Coef| ULS)
+(-1137 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1135 |Coef| ULS)
+(-1138 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4165 |has| |#1| (-331)) (-4159 |has| |#1| (-331)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501))) (|devaluate| |#1|))))) (|HasCategory| (-375 (-501)) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (-1405 (|HasCategory| |#1| (QUOTE (-331))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))))
-(-1136 R FE |var| |cen|)
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(-1139 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4178 |has| |#1| (-333)) (-4172 |has| |#1| (-333)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517))) (|devaluate| |#1|))))) (|HasCategory| (-377 (-517)) (QUOTE (-1015))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (-3807 (|HasCategory| |#1| (QUOTE (-333))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(-1140 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4169 "*") |has| (-1130 |#2| |#3| |#4|) (-156)) (-4160 |has| (-1130 |#2| |#3| |#4|) (-508)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -950) (QUOTE (-501)))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-331))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-419))) (-1405 (|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| (-1130 |#2| |#3| |#4|) (LIST (QUOTE -950) (LIST (QUOTE -375) (QUOTE (-501)))))) (|HasCategory| (-1130 |#2| |#3| |#4|) (QUOTE (-508))))
-(-1137 A S)
-((|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
+(((-4182 "*") |has| (-1139 |#2| |#3| |#4|) (-156)) (-4173 |has| (-1139 |#2| |#3| |#4|) (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-132))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-134))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-156))) (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -952) (QUOTE (-517)))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-333))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-421))) (-3807 (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (LIST (QUOTE -952) (LIST (QUOTE -377) (QUOTE (-517)))))) (|HasCategory| (-1139 |#2| |#3| |#4|) (QUOTE (-509))))
+(-1141 A S)
+((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4168)))
-(-1138 S)
-((|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-2951 . T))
+((|HasAttribute| |#1| (QUOTE -4181)))
+(-1142 S)
+((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
+((-3353 . T))
NIL
-(-1139 |Coef| |var| |cen|)
-((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#1| (QUOTE (-156))) (-1405 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-508)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-701)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-1070)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-701)) (|devaluate| |#1|))))) (|HasCategory| (-701) (QUOTE (-1012))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-701))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-701))))) (|HasSignature| |#1| (LIST (QUOTE -3691) (LIST (|devaluate| |#1|) (QUOTE (-1070)))))) (|HasCategory| |#1| (QUOTE (-331))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-879))) (|HasCategory| |#1| (QUOTE (-1090)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasSignature| |#1| (LIST (QUOTE -3188) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1070))))) (|HasSignature| |#1| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#1|)))))))
-(-1140 |Coef1| |Coef2| UTS1 UTS2)
+(-1143 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1141 S |Coef|)
+(-1144 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-879))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasSignature| |#2| (LIST (QUOTE -3800) (LIST (LIST (QUOTE -578) (QUOTE (-1070))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3188) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1070))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-331))))
-(-1142 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#2| (QUOTE (-880))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasSignature| |#2| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4151) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1073))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#2| (QUOTE (-333))))
+(-1145 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4169 "*") |has| |#1| (-156)) (-4160 |has| |#1| (-508)) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1143 |Coef| UTS)
+(-1146 |Coef| |var| |cen|)
+((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
+(((-4182 "*") |has| |#1| (-156)) (-4173 |has| |#1| (-509)) (-4174 . T) (-4175 . T) (-4177 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#1| (QUOTE (-156))) (-3807 (|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-509)))) (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#1| (QUOTE (-134))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -822) (QUOTE (-1073)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-703)) (|devaluate| |#1|))))) (|HasCategory| (-703) (QUOTE (-1015))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-703))))) (|HasSignature| |#1| (LIST (QUOTE -2256) (LIST (|devaluate| |#1|) (QUOTE (-1073)))))) (|HasCategory| |#1| (QUOTE (-333))) (-3807 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-880))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasSignature| |#1| (LIST (QUOTE -4151) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1073))))) (|HasSignature| |#1| (LIST (QUOTE -1364) (LIST (LIST (QUOTE -583) (QUOTE (-1073))) (|devaluate| |#1|)))))))
+(-1147 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1144 -2958 UP L UTS)
+(-1148 -1696 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-508))))
-(-1145 |sym|)
+((|HasCategory| |#1| (QUOTE (-509))))
+(-1149 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1146 S R)
-((|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
+(-1150 S R)
+((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-657))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1147 R)
-((|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4168 . T) (-4167 . T) (-2951 . T))
+((|HasCategory| |#2| (QUOTE (-918))) (|HasCategory| |#2| (QUOTE (-961))) (|HasCategory| |#2| (QUOTE (-659))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1151 R)
+((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
+((-4181 . T) (-4180 . T) (-3353 . T))
NIL
-(-1148 R)
-((|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#1| (QUOTE (-1001))) (|HasCategory| |#1| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#1| (QUOTE (-777))) (-1405 (|HasCategory| |#1| (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-1001)))) (|HasCategory| (-501) (QUOTE (-777))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-657))) (|HasCategory| |#1| (QUOTE (-959))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-959)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001)))) (-1405 (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-777)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -278) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1001))))))
-(-1149 A B)
-((|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
+(-1152 A B)
+((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1150)
-((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
-NIL
-NIL
-(-1151)
-((|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
+(-1153 R)
+((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#1| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| (-517) (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003))) (-3807 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (QUOTE (-1003)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-659))) (|HasCategory| |#1| (QUOTE (-961))) (-12 (|HasCategory| |#1| (QUOTE (-918))) (|HasCategory| |#1| (QUOTE (-961)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-779))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787)))) (-3807 (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (LIST (QUOTE -280) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -557) (QUOTE (-787))))))
+(-1154)
+((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1152)
+(-1155)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1153)
+(-1156)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1154)
+(-1157)
+((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
+NIL
+NIL
+(-1158)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1155 A S)
+(-1159 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1156 S)
+(-1160 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4162 . T) (-4161 . T))
+((-4175 . T) (-4174 . T))
NIL
-(-1157 R)
-((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
+(-1161 R)
+((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1158 K R UP -2958)
+(-1162 K R UP -1696)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1159 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1163 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4162 |has| |#1| (-156)) (-4161 |has| |#1| (-156)) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))))
-(-1160 R E V P)
-((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4168 . T) (-4167 . T))
-((|HasCategory| |#4| (LIST (QUOTE -556) (QUOTE (-490)))) (|HasCategory| |#4| (QUOTE (-1001))) (-12 (|HasCategory| |#4| (LIST (QUOTE -278) (|devaluate| |#4|))) (|HasCategory| |#4| (QUOTE (-1001)))) (|HasCategory| |#1| (QUOTE (-508))) (|HasCategory| |#3| (QUOTE (-336))))
-(-1161 R)
+((-4175 |has| |#1| (-156)) (-4174 |has| |#1| (-156)) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))))
+(-1164 R E V P)
+((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
+((-4181 . T) (-4180 . T))
+((|HasCategory| |#4| (LIST (QUOTE -558) (QUOTE (-493)))) (|HasCategory| |#4| (QUOTE (-1003))) (-12 (|HasCategory| |#4| (QUOTE (-1003))) (|HasCategory| |#4| (LIST (QUOTE -280) (|devaluate| |#4|)))) (|HasCategory| |#1| (QUOTE (-509))) (|HasCategory| |#3| (QUOTE (-338))))
+(-1165 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4161 . T) (-4162 . T) (-4164 . T))
+((-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1162 |vl| R)
+(-1166 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4164 . T) (-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4160)))
-(-1163 R |VarSet| XPOLY)
+((-4177 . T) (-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4173)))
+(-1167 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1164 S -2958)
-((|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
+(-1168 |vl| R)
+((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
+((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
NIL
-((|HasCategory| |#2| (QUOTE (-336))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))))
-(-1165 -2958)
-((|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4159 . T) (-4165 . T) (-4160 . T) ((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(-1169 S -1696)
+((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
-(-1166 |vl| R)
-((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T))
+((|HasCategory| |#2| (QUOTE (-338))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-134))))
+(-1170 -1696)
+((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
+((-4172 . T) (-4178 . T) (-4173 . T) ((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
-(-1167 |VarSet| R)
+(-1171 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -648) (LIST (QUOTE -375) (QUOTE (-501))))) (|HasAttribute| |#2| (QUOTE -4160)))
-(-1168 R)
-((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4160 |has| |#1| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4160)))
-(-1169 |vl| R)
+((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasCategory| |#2| (LIST (QUOTE -650) (LIST (QUOTE -377) (QUOTE (-517))))) (|HasAttribute| |#2| (QUOTE -4173)))
+(-1172 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T))
+((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
NIL
-(-1170 R E)
+(-1173 R)
+((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
+((-4173 |has| |#1| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasAttribute| |#1| (QUOTE -4173)))
+(-1174 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4164 . T) (-4165 |has| |#1| (-6 -4165)) (-4160 |has| |#1| (-6 -4160)) (-4162 . T) (-4161 . T))
-((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-331))) (|HasAttribute| |#1| (QUOTE -4164)) (|HasAttribute| |#1| (QUOTE -4165)) (|HasAttribute| |#1| (QUOTE -4160)))
-(-1171 |VarSet| R)
+((-4177 . T) (-4178 |has| |#1| (-6 -4178)) (-4173 |has| |#1| (-6 -4173)) (-4175 . T) (-4174 . T))
+((|HasCategory| |#1| (QUOTE (-156))) (|HasCategory| |#1| (QUOTE (-333))) (|HasAttribute| |#1| (QUOTE -4177)) (|HasAttribute| |#1| (QUOTE -4178)) (|HasAttribute| |#1| (QUOTE -4173)))
+(-1175 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4160 |has| |#2| (-6 -4160)) (-4162 . T) (-4161 . T) (-4164 . T))
-((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4160)))
-(-1172 A)
+((-4173 |has| |#2| (-6 -4173)) (-4175 . T) (-4174 . T) (-4177 . T))
+((|HasCategory| |#2| (QUOTE (-156))) (|HasAttribute| |#2| (QUOTE -4173)))
+(-1176 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1173 R |ls| |ls2|)
+(-1177 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1174 R)
+(-1178 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1175 |p|)
+(-1179 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4169 "*") . T) (-4161 . T) (-4162 . T) (-4164 . T))
+(((-4182 "*") . T) (-4174 . T) (-4175 . T) (-4177 . T))
NIL
NIL
NIL
@@ -4652,4 +4668,4 @@ NIL
NIL
NIL
NIL
-((-1180 NIL 2135105 2135110 2135115 2135120) (-3 NIL 2135085 2135090 2135095 2135100) (-2 NIL 2135065 2135070 2135075 2135080) (-1 NIL 2135045 2135050 2135055 2135060) (0 NIL 2135025 2135030 2135035 2135040) (-1175 "ZMOD.spad" 2134834 2134847 2134963 2135020) (-1174 "ZLINDEP.spad" 2133878 2133889 2134824 2134829) (-1173 "ZDSOLVE.spad" 2123727 2123749 2133868 2133873) (-1172 "YSTREAM.spad" 2123220 2123231 2123717 2123722) (-1171 "XRPOLY.spad" 2122440 2122460 2123076 2123145) (-1170 "XPR.spad" 2120169 2120182 2122158 2122257) (-1169 "XPOLYC.spad" 2119486 2119502 2120095 2120164) (-1168 "XPOLY.spad" 2119041 2119052 2119342 2119411) (-1167 "XPBWPOLY.spad" 2117478 2117498 2118821 2118890) (-1166 "XFALG.spad" 2114502 2114518 2117404 2117473) (-1165 "XF.spad" 2113070 2113085 2114404 2114497) (-1164 "XF.spad" 2111618 2111635 2112954 2112959) (-1163 "XEXPPKG.spad" 2110869 2110895 2111608 2111613) (-1162 "XDPOLY.spad" 2110483 2110499 2110725 2110794) (-1161 "XALG.spad" 2110081 2110092 2110439 2110478) (-1160 "WUTSET.spad" 2105968 2105985 2109783 2109810) (-1159 "WP.spad" 2104982 2105026 2105826 2105893) (-1158 "WFFINTBS.spad" 2102545 2102567 2104972 2104977) (-1157 "WEIER.spad" 2100751 2100762 2102535 2102540) (-1156 "VSPACE.spad" 2100424 2100435 2100719 2100746) (-1155 "VSPACE.spad" 2100117 2100130 2100414 2100419) (-1154 "VOID.spad" 2099707 2099716 2100107 2100112) (-1153 "VIEWDEF.spad" 2094904 2094913 2099697 2099702) (-1152 "VIEW3D.spad" 2078739 2078748 2094894 2094899) (-1151 "VIEW2D.spad" 2066560 2066569 2078729 2078734) (-1150 "VIEW.spad" 2064182 2064191 2066550 2066555) (-1149 "VECTOR2.spad" 2063137 2063150 2064172 2064177) (-1148 "VECTOR.spad" 2062182 2062193 2062288 2062315) (-1147 "VECTCAT.spad" 2060509 2060520 2062138 2062177) (-1146 "VECTCAT.spad" 2058657 2058670 2060288 2060293) (-1145 "VARIABLE.spad" 2058437 2058452 2058647 2058652) (-1144 "UTSODETL.spad" 2057730 2057754 2058393 2058398) (-1143 "UTSODE.spad" 2055918 2055938 2057720 2057725) (-1142 "UTSCAT.spad" 2053369 2053385 2055816 2055913) (-1141 "UTSCAT.spad" 2050464 2050482 2052913 2052918) (-1140 "UTS2.spad" 2050057 2050092 2050454 2050459) (-1139 "UTS.spad" 2044846 2044874 2048524 2048621) (-1138 "URAGG.spad" 2040016 2040027 2044826 2044841) (-1137 "URAGG.spad" 2035160 2035173 2039972 2039977) (-1136 "UPXSSING.spad" 2032806 2032832 2034244 2034377) (-1135 "UPXSCONS.spad" 2030563 2030583 2030938 2031087) (-1134 "UPXSCCA.spad" 2029021 2029041 2030409 2030558) (-1133 "UPXSCCA.spad" 2027621 2027643 2029011 2029016) (-1132 "UPXSCAT.spad" 2026202 2026218 2027467 2027616) (-1131 "UPXS2.spad" 2025743 2025796 2026192 2026197) (-1130 "UPXS.spad" 2022770 2022798 2023875 2024024) (-1129 "UPSQFREE.spad" 2021182 2021196 2022760 2022765) (-1128 "UPSCAT.spad" 2018775 2018799 2021080 2021177) (-1127 "UPSCAT.spad" 2016074 2016100 2018381 2018386) (-1126 "UPOLYC2.spad" 2015543 2015562 2016064 2016069) (-1125 "UPOLYC.spad" 2010521 2010532 2015385 2015538) (-1124 "UPOLYC.spad" 2005391 2005404 2010257 2010262) (-1123 "UPMP.spad" 2004281 2004294 2005381 2005386) (-1122 "UPDIVP.spad" 2003844 2003858 2004271 2004276) (-1121 "UPDECOMP.spad" 2002081 2002095 2003834 2003839) (-1120 "UPCDEN.spad" 2001288 2001304 2002071 2002076) (-1119 "UP2.spad" 2000650 2000671 2001278 2001283) (-1118 "UP.spad" 1997700 1997715 1998208 1998361) (-1117 "UNISEG2.spad" 1997193 1997206 1997656 1997661) (-1116 "UNISEG.spad" 1996546 1996557 1997112 1997117) (-1115 "UNIFACT.spad" 1995647 1995659 1996536 1996541) (-1114 "ULSCONS.spad" 1989690 1989710 1990062 1990211) (-1113 "ULSCCAT.spad" 1987287 1987307 1989510 1989685) (-1112 "ULSCCAT.spad" 1985018 1985040 1987243 1987248) (-1111 "ULSCAT.spad" 1983234 1983250 1984864 1985013) (-1110 "ULS2.spad" 1982746 1982799 1983224 1983229) (-1109 "ULS.spad" 1973305 1973333 1974398 1974827) (-1108 "UFD.spad" 1972370 1972379 1973231 1973300) (-1107 "UFD.spad" 1971497 1971508 1972360 1972365) (-1106 "UDVO.spad" 1970344 1970353 1971487 1971492) (-1105 "UDPO.spad" 1967771 1967782 1970300 1970305) (-1104 "TYPE.spad" 1967693 1967702 1967751 1967766) (-1103 "TWOFACT.spad" 1966343 1966358 1967683 1967688) (-1102 "TUPLE.spad" 1965785 1965796 1966298 1966303) (-1101 "TUBETOOL.spad" 1962622 1962631 1965775 1965780) (-1100 "TUBE.spad" 1961263 1961280 1962612 1962617) (-1099 "TSETCAT.spad" 1948378 1948395 1961219 1961258) (-1098 "TSETCAT.spad" 1935491 1935510 1948334 1948339) (-1097 "TS.spad" 1934080 1934096 1935056 1935153) (-1096 "TRMANIP.spad" 1928446 1928463 1933786 1933791) (-1095 "TRIMAT.spad" 1927405 1927430 1928436 1928441) (-1094 "TRIGMNIP.spad" 1925922 1925939 1927395 1927400) (-1093 "TRIGCAT.spad" 1925434 1925443 1925912 1925917) (-1092 "TRIGCAT.spad" 1924944 1924955 1925424 1925429) (-1091 "TREE.spad" 1923920 1923931 1924774 1924801) (-1090 "TRANFUN.spad" 1923751 1923760 1923910 1923915) (-1089 "TRANFUN.spad" 1923580 1923591 1923741 1923746) (-1088 "TOPSP.spad" 1923346 1923355 1923570 1923575) (-1087 "TOOLSIGN.spad" 1923009 1923020 1923336 1923341) (-1086 "TEXTFILE.spad" 1921566 1921575 1922999 1923004) (-1085 "TEX1.spad" 1921122 1921133 1921556 1921561) (-1084 "TEX.spad" 1918139 1918148 1921112 1921117) (-1083 "TEMUTL.spad" 1917694 1917703 1918129 1918134) (-1082 "TBCMPPK.spad" 1915787 1915810 1917684 1917689) (-1081 "TBAGG.spad" 1914950 1914973 1915755 1915782) (-1080 "TBAGG.spad" 1914133 1914158 1914940 1914945) (-1079 "TANEXP.spad" 1913509 1913520 1914123 1914128) (-1078 "TABLEAU.spad" 1912990 1913001 1913499 1913504) (-1077 "TABLE.spad" 1911963 1911986 1912233 1912260) (-1076 "TABLBUMP.spad" 1908714 1908725 1911953 1911958) (-1075 "SYSSOLP.spad" 1906187 1906198 1908704 1908709) (-1074 "SYMTAB.spad" 1904243 1904252 1906177 1906182) (-1073 "SYMS.spad" 1900228 1900237 1904233 1904238) (-1072 "SYMPOLY.spad" 1899238 1899249 1899320 1899447) (-1071 "SYMFUNC.spad" 1898713 1898724 1899228 1899233) (-1070 "SYMBOL.spad" 1896041 1896050 1898703 1898708) (-1069 "SWITCH.spad" 1892798 1892807 1896031 1896036) (-1068 "SUTS.spad" 1889697 1889725 1891265 1891362) (-1067 "SUPXS.spad" 1886711 1886739 1887829 1887978) (-1066 "SUPFRACF.spad" 1885816 1885834 1886701 1886706) (-1065 "SUP2.spad" 1885206 1885219 1885806 1885811) (-1064 "SUP.spad" 1881983 1881994 1882764 1882917) (-1063 "SUMRF.spad" 1880949 1880960 1881973 1881978) (-1062 "SUMFS.spad" 1880574 1880591 1880939 1880944) (-1061 "SULS.spad" 1871120 1871148 1872226 1872655) (-1060 "SUCH.spad" 1870800 1870815 1871110 1871115) (-1059 "SUBSPACE.spad" 1862858 1862873 1870790 1870795) (-1058 "SUBRESP.spad" 1862018 1862032 1862814 1862819) (-1057 "STTFNC.spad" 1858486 1858502 1862008 1862013) (-1056 "STTF.spad" 1854585 1854601 1858476 1858481) (-1055 "STTAYLOR.spad" 1846983 1846994 1854466 1854471) (-1054 "STRTBL.spad" 1846062 1846079 1846211 1846238) (-1053 "STRING.spad" 1845529 1845538 1845543 1845570) (-1052 "STRICAT.spad" 1845364 1845373 1845485 1845524) (-1051 "STREAM3.spad" 1844909 1844924 1845354 1845359) (-1050 "STREAM2.spad" 1843977 1843990 1844899 1844904) (-1049 "STREAM1.spad" 1843681 1843692 1843967 1843972) (-1048 "STREAM.spad" 1840672 1840683 1843429 1843444) (-1047 "STINPROD.spad" 1839578 1839594 1840662 1840667) (-1046 "STEP.spad" 1838779 1838788 1839568 1839573) (-1045 "STBL.spad" 1837867 1837895 1838034 1838049) (-1044 "STAGG.spad" 1837322 1837333 1837847 1837862) (-1043 "STAGG.spad" 1836785 1836798 1837312 1837317) (-1042 "STACK.spad" 1836421 1836432 1836615 1836642) (-1041 "SREGSET.spad" 1834181 1834198 1836123 1836150) (-1040 "SRDCMPK.spad" 1832726 1832746 1834171 1834176) (-1039 "SRAGG.spad" 1827932 1827941 1832682 1832721) (-1038 "SRAGG.spad" 1823170 1823181 1827922 1827927) (-1037 "SQMATRIX.spad" 1820852 1820870 1821760 1821847) (-1036 "SPLTREE.spad" 1815719 1815732 1820603 1820630) (-1035 "SPLNODE.spad" 1812259 1812272 1815709 1815714) (-1034 "SPFCAT.spad" 1811036 1811045 1812249 1812254) (-1033 "SPECOUT.spad" 1809586 1809595 1811026 1811031) (-1032 "SPACEC.spad" 1793761 1793772 1809576 1809581) (-1031 "SPACE3.spad" 1793735 1793746 1793751 1793756) (-1030 "SORTPAK.spad" 1793280 1793293 1793691 1793696) (-1029 "SOLVETRA.spad" 1791037 1791048 1793270 1793275) (-1028 "SOLVESER.spad" 1789485 1789496 1791027 1791032) (-1027 "SOLVERAD.spad" 1785495 1785506 1789475 1789480) (-1026 "SOLVEFOR.spad" 1783915 1783933 1785485 1785490) (-1025 "SNTSCAT.spad" 1783503 1783520 1783871 1783910) (-1024 "SMTS.spad" 1781763 1781789 1783068 1783165) (-1023 "SMP.spad" 1779205 1779225 1779595 1779722) (-1022 "SMITH.spad" 1778048 1778073 1779195 1779200) (-1021 "SMATCAT.spad" 1776146 1776176 1777980 1778043) (-1020 "SMATCAT.spad" 1774188 1774220 1776024 1776029) (-1019 "SKAGG.spad" 1773236 1773247 1774144 1774183) (-1018 "SINT.spad" 1771544 1771553 1773102 1773231) (-1017 "SIMPAN.spad" 1771272 1771281 1771534 1771539) (-1016 "SIGNRF.spad" 1770380 1770391 1771262 1771267) (-1015 "SIGNEF.spad" 1769649 1769666 1770370 1770375) (-1014 "SHP.spad" 1767519 1767534 1769605 1769610) (-1013 "SHDP.spad" 1759617 1759644 1760134 1760263) (-1012 "SGROUP.spad" 1759083 1759092 1759607 1759612) (-1011 "SGROUP.spad" 1758547 1758558 1759073 1759078) (-1010 "SGCF.spad" 1751428 1751437 1758537 1758542) (-1009 "SFRTCAT.spad" 1750344 1750361 1751384 1751423) (-1008 "SFRGCD.spad" 1749399 1749419 1750334 1750339) (-1007 "SFQCMPK.spad" 1744020 1744040 1749389 1749394) (-1006 "SFORT.spad" 1743455 1743469 1744010 1744015) (-1005 "SEXOF.spad" 1743298 1743338 1743445 1743450) (-1004 "SEXCAT.spad" 1740386 1740426 1743288 1743293) (-1003 "SEX.spad" 1740278 1740287 1740376 1740381) (-1002 "SETMN.spad" 1738696 1738713 1740268 1740273) (-1001 "SETCAT.spad" 1738181 1738190 1738686 1738691) (-1000 "SETCAT.spad" 1737664 1737675 1738171 1738176) (-999 "SETAGG.spad" 1734531 1734541 1737632 1737659) (-998 "SETAGG.spad" 1731418 1731430 1734521 1734526) (-997 "SET.spad" 1729775 1729785 1730895 1730934) (-996 "SEGXCAT.spad" 1728888 1728900 1729755 1729770) (-995 "SEGCAT.spad" 1727708 1727718 1728868 1728883) (-994 "SEGBIND2.spad" 1727405 1727417 1727698 1727703) (-993 "SEGBIND.spad" 1726478 1726488 1727360 1727365) (-992 "SEG2.spad" 1725904 1725916 1726434 1726439) (-991 "SEG.spad" 1725718 1725728 1725823 1725828) (-990 "SDVAR.spad" 1725693 1725703 1725708 1725713) (-989 "SDPOL.spad" 1723367 1723377 1723382 1723509) (-988 "SCPKG.spad" 1721447 1721457 1723357 1723362) (-987 "SCACHE.spad" 1720130 1720140 1721437 1721442) (-986 "SAOS.spad" 1720003 1720011 1720120 1720125) (-985 "SAERFFC.spad" 1719869 1719888 1719993 1719998) (-984 "SAEFACT.spad" 1719735 1719754 1719859 1719864) (-983 "SAE.spad" 1717914 1717929 1718524 1718659) (-982 "RURPK.spad" 1715556 1715571 1717904 1717909) (-981 "RULESET.spad" 1714998 1715021 1715546 1715551) (-980 "RULECOLD.spad" 1714851 1714863 1714988 1714993) (-979 "RULE.spad" 1713056 1713079 1714841 1714846) (-978 "RSETGCD.spad" 1709427 1709446 1713046 1713051) (-977 "RSETCAT.spad" 1699200 1699216 1709383 1709422) (-976 "RSETCAT.spad" 1689005 1689023 1699190 1699195) (-975 "RSDCMPK.spad" 1687458 1687477 1688995 1689000) (-974 "RRCC.spad" 1685842 1685871 1687448 1687453) (-973 "RRCC.spad" 1684224 1684255 1685832 1685837) (-972 "RPOLCAT.spad" 1663545 1663559 1684092 1684219) (-971 "RPOLCAT.spad" 1642581 1642597 1663130 1663135) (-970 "ROUTINE.spad" 1639165 1639173 1641810 1641837) (-969 "ROMAN.spad" 1638398 1638406 1639031 1639160) (-968 "ROIRC.spad" 1637479 1637510 1638388 1638393) (-967 "RNS.spad" 1636697 1636705 1637381 1637474) (-966 "RNS.spad" 1636001 1636011 1636687 1636692) (-965 "RNG.spad" 1635737 1635745 1635991 1635996) (-964 "RMODULE.spad" 1635376 1635386 1635727 1635732) (-963 "RMCAT2.spad" 1634785 1634841 1635366 1635371) (-962 "RMATRIX.spad" 1633521 1633539 1634008 1634047) (-961 "RMATCAT.spad" 1629043 1629073 1633465 1633516) (-960 "RMATCAT.spad" 1624467 1624499 1628891 1628896) (-959 "RING.spad" 1623825 1623833 1624447 1624462) (-958 "RING.spad" 1623191 1623201 1623815 1623820) (-957 "RIDIST.spad" 1622576 1622584 1623181 1623186) (-956 "RGCHAIN.spad" 1621231 1621246 1622136 1622163) (-955 "RFFACTOR.spad" 1620694 1620704 1621221 1621226) (-954 "RFFACT.spad" 1620568 1620579 1620684 1620689) (-953 "RFDIST.spad" 1619557 1619565 1620558 1620563) (-952 "RF.spad" 1617172 1617182 1619547 1619552) (-951 "RETSOL.spad" 1616590 1616602 1617162 1617167) (-950 "RETRACT.spad" 1615940 1615950 1616580 1616585) (-949 "RETRACT.spad" 1615288 1615300 1615930 1615935) (-948 "RESULT.spad" 1613931 1613939 1614517 1614544) (-947 "RESRING.spad" 1613279 1613325 1613869 1613926) (-946 "RESLATC.spad" 1612604 1612614 1613269 1613274) (-945 "REPSQ.spad" 1612334 1612344 1612594 1612599) (-944 "REPDB.spad" 1612040 1612050 1612324 1612329) (-943 "REP2.spad" 1601605 1601615 1611882 1611887) (-942 "REP1.spad" 1595588 1595598 1601555 1601560) (-941 "REP.spad" 1593141 1593149 1595578 1595583) (-940 "REGSET.spad" 1590995 1591011 1592843 1592870) (-939 "REF.spad" 1590325 1590335 1590950 1590955) (-938 "REDORDER.spad" 1589502 1589518 1590315 1590320) (-937 "RECLOS.spad" 1588292 1588311 1588995 1589088) (-936 "REALSOLV.spad" 1587425 1587433 1588282 1588287) (-935 "REAL0Q.spad" 1584708 1584722 1587415 1587420) (-934 "REAL0.spad" 1581537 1581551 1584698 1584703) (-933 "REAL.spad" 1581514 1581522 1581527 1581532) (-932 "RDIV.spad" 1581166 1581190 1581504 1581509) (-931 "RDIST.spad" 1580730 1580740 1581156 1581161) (-930 "RDETRS.spad" 1579527 1579544 1580720 1580725) (-929 "RDETR.spad" 1577635 1577652 1579517 1579522) (-928 "RDEEFS.spad" 1576709 1576725 1577625 1577630) (-927 "RDEEF.spad" 1575706 1575722 1576699 1576704) (-926 "RCFIELD.spad" 1572890 1572898 1575608 1575701) (-925 "RCFIELD.spad" 1570160 1570170 1572880 1572885) (-924 "RCAGG.spad" 1568529 1568539 1570140 1570155) (-923 "RCAGG.spad" 1566835 1566847 1568448 1568453) (-922 "RATRET.spad" 1566196 1566206 1566825 1566830) (-921 "RATFACT.spad" 1565889 1565900 1566186 1566191) (-920 "RANDSRC.spad" 1565209 1565217 1565879 1565884) (-919 "RADUTIL.spad" 1564964 1564972 1565199 1565204) (-918 "RADIX.spad" 1561757 1561770 1563434 1563527) (-917 "RADFF.spad" 1560174 1560210 1560292 1560448) (-916 "RADCAT.spad" 1559857 1559865 1560164 1560169) (-915 "RADCAT.spad" 1559538 1559548 1559847 1559852) (-914 "QUEUE.spad" 1559166 1559176 1559368 1559395) (-913 "QUATCT2.spad" 1558785 1558803 1559156 1559161) (-912 "QUATCAT.spad" 1556950 1556960 1558715 1558780) (-911 "QUATCAT.spad" 1554867 1554879 1556634 1556639) (-910 "QUAT.spad" 1553453 1553463 1553795 1553860) (-909 "QUAGG.spad" 1552367 1552377 1553409 1553448) (-908 "QFORM.spad" 1551830 1551844 1552357 1552362) (-907 "QFCAT2.spad" 1551521 1551537 1551820 1551825) (-906 "QFCAT.spad" 1550212 1550222 1551411 1551516) (-905 "QFCAT.spad" 1548509 1548521 1549710 1549715) (-904 "QEQUAT.spad" 1548066 1548074 1548499 1548504) (-903 "QCMPACK.spad" 1542797 1542816 1548056 1548061) (-902 "QALGSET2.spad" 1540793 1540811 1542787 1542792) (-901 "QALGSET.spad" 1536868 1536900 1540707 1540712) (-900 "PWFFINTB.spad" 1534178 1534199 1536858 1536863) (-899 "PUSHVAR.spad" 1533507 1533526 1534168 1534173) (-898 "PTRANFN.spad" 1529633 1529643 1533497 1533502) (-897 "PTPACK.spad" 1526773 1526783 1529623 1529628) (-896 "PTFUNC2.spad" 1526646 1526660 1526763 1526768) (-895 "PTCAT.spad" 1525927 1525937 1526602 1526641) (-894 "PSQFR.spad" 1525234 1525258 1525917 1525922) (-893 "PSEUDLIN.spad" 1524092 1524102 1525224 1525229) (-892 "PSETPK.spad" 1509493 1509509 1523970 1523975) (-891 "PSETCAT.spad" 1503401 1503424 1509461 1509488) (-890 "PSETCAT.spad" 1497295 1497320 1503357 1503362) (-889 "PSCURVE.spad" 1496278 1496286 1497285 1497290) (-888 "PSCAT.spad" 1495045 1495074 1496176 1496273) (-887 "PSCAT.spad" 1493902 1493933 1495035 1495040) (-886 "PRTITION.spad" 1492745 1492753 1493892 1493897) (-885 "PRS.spad" 1482211 1482228 1492701 1492706) (-884 "PRQAGG.spad" 1481765 1481775 1482167 1482206) (-883 "PRODUCT.spad" 1479445 1479457 1479731 1479786) (-882 "PRINT.spad" 1479197 1479205 1479435 1479440) (-881 "PRIMES.spad" 1477440 1477450 1479187 1479192) (-880 "PRIMELT.spad" 1475413 1475427 1477430 1477435) (-879 "PRIMCAT.spad" 1475036 1475044 1475403 1475408) (-878 "PRIMARR2.spad" 1473759 1473771 1475026 1475031) (-877 "PRIMARR.spad" 1472987 1472997 1473165 1473192) (-876 "PREASSOC.spad" 1472359 1472371 1472977 1472982) (-875 "PR.spad" 1470748 1470760 1471453 1471580) (-874 "PPCURVE.spad" 1469885 1469893 1470738 1470743) (-873 "POLYROOT.spad" 1468657 1468679 1469841 1469846) (-872 "POLYLIFT.spad" 1467918 1467941 1468647 1468652) (-871 "POLYCATQ.spad" 1466020 1466042 1467908 1467913) (-870 "POLYCAT.spad" 1459426 1459447 1465888 1466015) (-869 "POLYCAT.spad" 1452134 1452157 1458598 1458603) (-868 "POLY2UP.spad" 1451582 1451596 1452124 1452129) (-867 "POLY2.spad" 1451177 1451189 1451572 1451577) (-866 "POLY.spad" 1448477 1448487 1448994 1449121) (-865 "POLUTIL.spad" 1447418 1447447 1448433 1448438) (-864 "POLTOPOL.spad" 1446166 1446181 1447408 1447413) (-863 "POINT.spad" 1445302 1445312 1445317 1445344) (-862 "PNTHEORY.spad" 1442079 1442087 1445292 1445297) (-861 "PMTOOLS.spad" 1440836 1440850 1442069 1442074) (-860 "PMSYM.spad" 1440381 1440391 1440826 1440831) (-859 "PMQFCAT.spad" 1439968 1439982 1440371 1440376) (-858 "PMPREDFS.spad" 1439412 1439434 1439958 1439963) (-857 "PMPRED.spad" 1438881 1438895 1439402 1439407) (-856 "PMPLCAT.spad" 1437951 1437969 1438813 1438818) (-855 "PMLSAGG.spad" 1437532 1437546 1437941 1437946) (-854 "PMKERNEL.spad" 1437099 1437111 1437522 1437527) (-853 "PMINS.spad" 1436675 1436685 1437089 1437094) (-852 "PMFS.spad" 1436248 1436266 1436665 1436670) (-851 "PMDOWN.spad" 1435534 1435548 1436238 1436243) (-850 "PMASSFS.spad" 1434503 1434519 1435524 1435529) (-849 "PMASS.spad" 1433515 1433523 1434493 1434498) (-848 "PLOTTOOL.spad" 1433295 1433303 1433505 1433510) (-847 "PLOT3D.spad" 1429715 1429723 1433285 1433290) (-846 "PLOT1.spad" 1428848 1428858 1429705 1429710) (-845 "PLOT.spad" 1423679 1423687 1428838 1428843) (-844 "PLEQN.spad" 1411360 1411387 1423669 1423674) (-843 "PINTERPA.spad" 1411142 1411158 1411350 1411355) (-842 "PINTERP.spad" 1410758 1410777 1411132 1411137) (-841 "PID.spad" 1409714 1409722 1410684 1410753) (-840 "PICOERCE.spad" 1409371 1409381 1409704 1409709) (-839 "PI.spad" 1408978 1408986 1409345 1409366) (-838 "PGROEB.spad" 1407575 1407589 1408968 1408973) (-837 "PGE.spad" 1398828 1398836 1407565 1407570) (-836 "PGCD.spad" 1397710 1397727 1398818 1398823) (-835 "PFRPAC.spad" 1396853 1396863 1397700 1397705) (-834 "PFR.spad" 1393510 1393520 1396755 1396848) (-833 "PFOTOOLS.spad" 1392768 1392784 1393500 1393505) (-832 "PFOQ.spad" 1392138 1392156 1392758 1392763) (-831 "PFO.spad" 1391557 1391584 1392128 1392133) (-830 "PFECAT.spad" 1389223 1389231 1391483 1391552) (-829 "PFECAT.spad" 1386917 1386927 1389179 1389184) (-828 "PFBRU.spad" 1384787 1384799 1386907 1386912) (-827 "PFBR.spad" 1382325 1382348 1384777 1384782) (-826 "PF.spad" 1381899 1381911 1382130 1382223) (-825 "PERMGRP.spad" 1376635 1376645 1381889 1381894) (-824 "PERMCAT.spad" 1375187 1375197 1376615 1376630) (-823 "PERMAN.spad" 1373719 1373733 1375177 1375182) (-822 "PERM.spad" 1369662 1369672 1373549 1373564) (-821 "PENDTREE.spad" 1369323 1369333 1369514 1369519) (-820 "PDRING.spad" 1367814 1367824 1369303 1369318) (-819 "PDRING.spad" 1366313 1366325 1367804 1367809) (-818 "PDEPROB.spad" 1365270 1365278 1366303 1366308) (-817 "PDEPACK.spad" 1359272 1359280 1365260 1365265) (-816 "PDECOMP.spad" 1358734 1358751 1359262 1359267) (-815 "PDECAT.spad" 1357088 1357096 1358724 1358729) (-814 "PCOMP.spad" 1356939 1356952 1357078 1357083) (-813 "PBWLB.spad" 1355521 1355538 1356929 1356934) (-812 "PATTERN2.spad" 1355257 1355269 1355511 1355516) (-811 "PATTERN1.spad" 1353559 1353575 1355247 1355252) (-810 "PATTERN.spad" 1347990 1348000 1353549 1353554) (-809 "PATRES2.spad" 1347644 1347658 1347980 1347985) (-808 "PATRES.spad" 1345183 1345195 1347634 1347639) (-807 "PATMATCH.spad" 1343345 1343376 1344896 1344901) (-806 "PATMAB.spad" 1342770 1342780 1343335 1343340) (-805 "PATLRES.spad" 1341854 1341868 1342760 1342765) (-804 "PATAB.spad" 1341618 1341628 1341844 1341849) (-803 "PARTPERM.spad" 1338980 1338988 1341608 1341613) (-802 "PARSURF.spad" 1338408 1338436 1338970 1338975) (-801 "PARSU2.spad" 1338203 1338219 1338398 1338403) (-800 "PARSCURV.spad" 1337631 1337659 1338193 1338198) (-799 "PARSC2.spad" 1337420 1337436 1337621 1337626) (-798 "PARPCURV.spad" 1336878 1336906 1337410 1337415) (-797 "PARPC2.spad" 1336667 1336683 1336868 1336873) (-796 "PAN2EXPR.spad" 1336079 1336087 1336657 1336662) (-795 "PALETTE.spad" 1335135 1335143 1336069 1336074) (-794 "PADICRC.spad" 1332468 1332486 1333643 1333736) (-793 "PADICRAT.spad" 1330486 1330498 1330707 1330800) (-792 "PADICCT.spad" 1329027 1329039 1330412 1330481) (-791 "PADIC.spad" 1328722 1328734 1328953 1329022) (-790 "PADEPAC.spad" 1327401 1327420 1328712 1328717) (-789 "PADE.spad" 1326141 1326157 1327391 1327396) (-788 "OWP.spad" 1325125 1325155 1325999 1326066) (-787 "OVAR.spad" 1324906 1324929 1325115 1325120) (-786 "OUTFORM.spad" 1314320 1314328 1324896 1324901) (-785 "OUT.spad" 1313404 1313412 1314310 1314315) (-784 "OSI.spad" 1312879 1312887 1313394 1313399) (-783 "ORTHPOL.spad" 1311340 1311350 1312796 1312801) (-782 "OREUP.spad" 1310700 1310728 1311022 1311061) (-781 "ORESUP.spad" 1310001 1310025 1310382 1310421) (-780 "OREPCTO.spad" 1307820 1307832 1309921 1309926) (-779 "OREPCAT.spad" 1301877 1301887 1307776 1307815) (-778 "OREPCAT.spad" 1295824 1295836 1301725 1301730) (-777 "ORDSET.spad" 1294990 1294998 1295814 1295819) (-776 "ORDSET.spad" 1294154 1294164 1294980 1294985) (-775 "ORDRING.spad" 1293544 1293552 1294134 1294149) (-774 "ORDRING.spad" 1292942 1292952 1293534 1293539) (-773 "ORDMON.spad" 1292797 1292805 1292932 1292937) (-772 "ORDFUNS.spad" 1291923 1291939 1292787 1292792) (-771 "ORDFIN.spad" 1291857 1291865 1291913 1291918) (-770 "ORDCOMP2.spad" 1291142 1291154 1291847 1291852) (-769 "ORDCOMP.spad" 1289610 1289620 1290692 1290721) (-768 "OPTPROB.spad" 1288190 1288198 1289600 1289605) (-767 "OPTPACK.spad" 1280575 1280583 1288180 1288185) (-766 "OPTCAT.spad" 1278250 1278258 1280565 1280570) (-765 "OPQUERY.spad" 1277799 1277807 1278240 1278245) (-764 "OP.spad" 1277541 1277551 1277621 1277688) (-763 "ONECOMP2.spad" 1276959 1276971 1277531 1277536) (-762 "ONECOMP.spad" 1275707 1275717 1276509 1276538) (-761 "OMSERVER.spad" 1274709 1274717 1275697 1275702) (-760 "OMSAGG.spad" 1274540 1274550 1274653 1274704) (-759 "OMPKG.spad" 1273152 1273160 1274530 1274535) (-758 "OMLO.spad" 1272577 1272589 1273038 1273077) (-757 "OMEXPR.spad" 1272411 1272421 1272567 1272572) (-756 "OMERRK.spad" 1271445 1271453 1272401 1272406) (-755 "OMERR.spad" 1270988 1270996 1271435 1271440) (-754 "OMENC.spad" 1270332 1270340 1270978 1270983) (-753 "OMDEV.spad" 1264621 1264629 1270322 1270327) (-752 "OMCONN.spad" 1264030 1264038 1264611 1264616) (-751 "OM.spad" 1262995 1263003 1264020 1264025) (-750 "OINTDOM.spad" 1262758 1262766 1262921 1262990) (-749 "OFMONOID.spad" 1258945 1258955 1262748 1262753) (-748 "ODVAR.spad" 1258920 1258930 1258935 1258940) (-747 "ODR.spad" 1258368 1258394 1258732 1258881) (-746 "ODPOL.spad" 1256042 1256052 1256057 1256184) (-745 "ODP.spad" 1248284 1248304 1248657 1248786) (-744 "ODETOOLS.spad" 1246867 1246886 1248274 1248279) (-743 "ODESYS.spad" 1244517 1244534 1246857 1246862) (-742 "ODERTRIC.spad" 1240458 1240475 1244474 1244479) (-741 "ODERED.spad" 1239845 1239869 1240448 1240453) (-740 "ODERAT.spad" 1237396 1237413 1239835 1239840) (-739 "ODEPRRIC.spad" 1234287 1234309 1237386 1237391) (-738 "ODEPROB.spad" 1233486 1233494 1234277 1234282) (-737 "ODEPRIM.spad" 1230760 1230782 1233476 1233481) (-736 "ODEPAL.spad" 1230136 1230160 1230750 1230755) (-735 "ODEPACK.spad" 1216738 1216746 1230126 1230131) (-734 "ODEINT.spad" 1216169 1216185 1216728 1216733) (-733 "ODEIFTBL.spad" 1213730 1213738 1216159 1216164) (-732 "ODEEF.spad" 1209097 1209113 1213720 1213725) (-731 "ODECONST.spad" 1208616 1208634 1209087 1209092) (-730 "ODECAT.spad" 1207212 1207220 1208606 1208611) (-729 "OCTCT2.spad" 1206848 1206869 1207202 1207207) (-728 "OCT.spad" 1204995 1205005 1205711 1205750) (-727 "OCAMON.spad" 1204843 1204851 1204985 1204990) (-726 "OC.spad" 1202617 1202627 1204799 1204838) (-725 "OC.spad" 1200117 1200129 1202301 1202306) (-724 "OASGP.spad" 1199932 1199940 1200107 1200112) (-723 "OAMONS.spad" 1199452 1199460 1199922 1199927) (-722 "OAMON.spad" 1199313 1199321 1199442 1199447) (-721 "OAGROUP.spad" 1199175 1199183 1199303 1199308) (-720 "NUMTUBE.spad" 1198762 1198778 1199165 1199170) (-719 "NUMQUAD.spad" 1186624 1186632 1198752 1198757) (-718 "NUMODE.spad" 1177752 1177760 1186614 1186619) (-717 "NUMINT.spad" 1175310 1175318 1177742 1177747) (-716 "NUMFMT.spad" 1174150 1174158 1175300 1175305) (-715 "NUMERIC.spad" 1166223 1166233 1173956 1173961) (-714 "NTSCAT.spad" 1164705 1164721 1166179 1166218) (-713 "NTPOLFN.spad" 1164250 1164260 1164622 1164627) (-712 "NSUP2.spad" 1163642 1163654 1164240 1164245) (-711 "NSUP.spad" 1156628 1156638 1161200 1161353) (-710 "NSMP.spad" 1152827 1152846 1153135 1153262) (-709 "NREP.spad" 1151450 1151464 1152817 1152822) (-708 "NPCOEF.spad" 1150696 1150716 1151440 1151445) (-707 "NORMRETR.spad" 1150294 1150333 1150686 1150691) (-706 "NORMPK.spad" 1148188 1148207 1150284 1150289) (-705 "NORMMA.spad" 1148009 1148035 1148178 1148183) (-704 "NONE1.spad" 1147685 1147695 1147999 1148004) (-703 "NONE.spad" 1147426 1147434 1147675 1147680) (-702 "NODE1.spad" 1146895 1146911 1147416 1147421) (-701 "NNI.spad" 1145782 1145790 1146869 1146890) (-700 "NLINSOL.spad" 1144404 1144414 1145772 1145777) (-699 "NIPROB.spad" 1142887 1142895 1144394 1144399) (-698 "NFINTBAS.spad" 1140347 1140364 1142877 1142882) (-697 "NCODIV.spad" 1138545 1138561 1140337 1140342) (-696 "NCNTFRAC.spad" 1138187 1138201 1138535 1138540) (-695 "NCEP.spad" 1136635 1136649 1138177 1138182) (-694 "NASRING.spad" 1136231 1136239 1136625 1136630) (-693 "NASRING.spad" 1135825 1135835 1136221 1136226) (-692 "NARNG.spad" 1135161 1135169 1135815 1135820) (-691 "NARNG.spad" 1134495 1134505 1135151 1135156) (-690 "NAGSP.spad" 1133568 1133576 1134485 1134490) (-689 "NAGS.spad" 1123093 1123101 1133558 1133563) (-688 "NAGF07.spad" 1121478 1121486 1123083 1123088) (-687 "NAGF04.spad" 1115702 1115710 1121468 1121473) (-686 "NAGF02.spad" 1109503 1109511 1115692 1115697) (-685 "NAGF01.spad" 1105098 1105106 1109493 1109498) (-684 "NAGE04.spad" 1098550 1098558 1105088 1105093) (-683 "NAGE02.spad" 1088884 1088892 1098540 1098545) (-682 "NAGE01.spad" 1084760 1084768 1088874 1088879) (-681 "NAGD03.spad" 1082672 1082680 1084750 1084755) (-680 "NAGD02.spad" 1075179 1075187 1082662 1082667) (-679 "NAGD01.spad" 1069284 1069292 1075169 1075174) (-678 "NAGC06.spad" 1065063 1065071 1069274 1069279) (-677 "NAGC05.spad" 1063524 1063532 1065053 1065058) (-676 "NAGC02.spad" 1062771 1062779 1063514 1063519) (-675 "NAALG.spad" 1062306 1062316 1062739 1062766) (-674 "NAALG.spad" 1061861 1061873 1062296 1062301) (-673 "MULTSQFR.spad" 1058819 1058836 1061851 1061856) (-672 "MULTFACT.spad" 1058385 1058402 1058809 1058814) (-671 "MTSCAT.spad" 1056419 1056440 1058283 1058380) (-670 "MTHING.spad" 1056076 1056086 1056409 1056414) (-669 "MSYSCMD.spad" 1055510 1055518 1056066 1056071) (-668 "MSETAGG.spad" 1055451 1055461 1055466 1055505) (-667 "MSET.spad" 1053449 1053459 1055213 1055252) (-666 "MRING.spad" 1050420 1050432 1053157 1053224) (-665 "MRF2.spad" 1049980 1049994 1050410 1050415) (-664 "MRATFAC.spad" 1049526 1049543 1049970 1049975) (-663 "MPRFF.spad" 1047556 1047575 1049516 1049521) (-662 "MPOLY.spad" 1044994 1045009 1045353 1045480) (-661 "MPCPF.spad" 1044258 1044277 1044984 1044989) (-660 "MPC3.spad" 1044073 1044113 1044248 1044253) (-659 "MPC2.spad" 1043715 1043748 1044063 1044068) (-658 "MONOTOOL.spad" 1042050 1042067 1043705 1043710) (-657 "MONOID.spad" 1041224 1041232 1042040 1042045) (-656 "MONOID.spad" 1040396 1040406 1041214 1041219) (-655 "MONOGEN.spad" 1039142 1039155 1040256 1040391) (-654 "MONOGEN.spad" 1037910 1037925 1039026 1039031) (-653 "MONADWU.spad" 1035924 1035932 1037900 1037905) (-652 "MONADWU.spad" 1033936 1033946 1035914 1035919) (-651 "MONAD.spad" 1033080 1033088 1033926 1033931) (-650 "MONAD.spad" 1032222 1032232 1033070 1033075) (-649 "MOEBIUS.spad" 1030908 1030922 1032202 1032217) (-648 "MODULE.spad" 1030778 1030788 1030876 1030903) (-647 "MODULE.spad" 1030668 1030680 1030768 1030773) (-646 "MODRING.spad" 1029999 1030038 1030648 1030663) (-645 "MODOP.spad" 1028650 1028662 1029821 1029888) (-644 "MODMONOM.spad" 1028182 1028200 1028640 1028645) (-643 "MODMON.spad" 1024892 1024908 1025668 1025821) (-642 "MODFIELD.spad" 1024250 1024289 1024794 1024887) (-641 "MMAP.spad" 1023990 1024024 1024240 1024245) (-640 "MLO.spad" 1022417 1022427 1023946 1023985) (-639 "MLIFT.spad" 1020989 1021006 1022407 1022412) (-638 "MKUCFUNC.spad" 1020522 1020540 1020979 1020984) (-637 "MKRECORD.spad" 1020108 1020121 1020512 1020517) (-636 "MKFUNC.spad" 1019489 1019499 1020098 1020103) (-635 "MKFLCFN.spad" 1018445 1018455 1019479 1019484) (-634 "MKCHSET.spad" 1018221 1018231 1018435 1018440) (-633 "MKBCFUNC.spad" 1017706 1017724 1018211 1018216) (-632 "MINT.spad" 1017145 1017153 1017608 1017701) (-631 "MHROWRED.spad" 1015646 1015656 1017135 1017140) (-630 "MFLOAT.spad" 1014091 1014099 1015536 1015641) (-629 "MFINFACT.spad" 1013491 1013513 1014081 1014086) (-628 "MESH.spad" 1011223 1011231 1013481 1013486) (-627 "MDDFACT.spad" 1009416 1009426 1011213 1011218) (-626 "MDAGG.spad" 1008905 1008915 1009384 1009411) (-625 "MCMPLX.spad" 1004885 1004893 1005499 1005700) (-624 "MCDEN.spad" 1004093 1004105 1004875 1004880) (-623 "MCALCFN.spad" 1001171 1001197 1004083 1004088) (-622 "MATSTOR.spad" 998447 998457 1001161 1001166) (-621 "MATRIX.spad" 997374 997384 997858 997885) (-620 "MATLIN.spad" 994700 994724 997258 997263) (-619 "MATCAT2.spad" 993968 994016 994690 994695) (-618 "MATCAT.spad" 985541 985563 993924 993963) (-617 "MATCAT.spad" 976998 977022 985383 985388) (-616 "MAPPKG3.spad" 975897 975911 976988 976993) (-615 "MAPPKG2.spad" 975231 975243 975887 975892) (-614 "MAPPKG1.spad" 974049 974059 975221 975226) (-613 "MAPHACK3.spad" 973857 973871 974039 974044) (-612 "MAPHACK2.spad" 973622 973634 973847 973852) (-611 "MAPHACK1.spad" 973252 973262 973612 973617) (-610 "MAGMA.spad" 971042 971059 973242 973247) (-609 "M3D.spad" 968963 968973 970645 970650) (-608 "LZSTAGG.spad" 966181 966191 968943 968958) (-607 "LZSTAGG.spad" 963407 963419 966171 966176) (-606 "LWORD.spad" 960104 960121 963397 963402) (-605 "LSQM.spad" 958388 958402 958786 958837) (-604 "LSPP.spad" 957921 957938 958378 958383) (-603 "LSMP1.spad" 955725 955739 957911 957916) (-602 "LSMP.spad" 954565 954593 955715 955720) (-601 "LSAGG.spad" 954427 954437 954521 954560) (-600 "LSAGG.spad" 954321 954333 954417 954422) (-599 "LPOLY.spad" 953275 953294 954177 954246) (-598 "LPEFRAC.spad" 952532 952542 953265 953270) (-597 "LOGIC.spad" 952134 952142 952522 952527) (-596 "LOGIC.spad" 951734 951744 952124 952129) (-595 "LODOOPS.spad" 950652 950664 951724 951729) (-594 "LODOF.spad" 949696 949713 950609 950614) (-593 "LODOCAT.spad" 948354 948364 949652 949691) (-592 "LODOCAT.spad" 947010 947022 948310 948315) (-591 "LODO2.spad" 946285 946297 946692 946731) (-590 "LODO1.spad" 945687 945697 945967 946006) (-589 "LODO.spad" 945073 945089 945369 945408) (-588 "LODEEF.spad" 943845 943863 945063 945068) (-587 "LO.spad" 943246 943260 943779 943806) (-586 "LNAGG.spad" 939678 939688 943226 943241) (-585 "LNAGG.spad" 936084 936096 939634 939639) (-584 "LMOPS.spad" 932820 932837 936074 936079) (-583 "LMODULE.spad" 932462 932472 932810 932815) (-582 "LMDICT.spad" 931968 931978 932236 932263) (-581 "LIST3.spad" 931427 931441 931958 931963) (-580 "LIST2MAP.spad" 928743 928755 931417 931422) (-579 "LIST2.spad" 927549 927561 928733 928738) (-578 "LIST.spad" 925797 925807 926919 926946) (-577 "LINEXP.spad" 925229 925239 925777 925792) (-576 "LINDEP.spad" 924006 924018 925141 925146) (-575 "LIMITRF.spad" 921920 921930 923996 924001) (-574 "LIMITPS.spad" 920803 920816 921910 921915) (-573 "LIECAT.spad" 920279 920289 920729 920798) (-572 "LIECAT.spad" 919783 919795 920235 920240) (-571 "LIE.spad" 917797 917809 919073 919218) (-570 "LIB.spad" 916427 916435 917038 917053) (-569 "LGROBP.spad" 913780 913799 916417 916422) (-568 "LFCAT.spad" 912799 912807 913770 913775) (-567 "LF.spad" 911718 911734 912789 912794) (-566 "LEXTRIPK.spad" 907221 907236 911708 911713) (-565 "LEXP.spad" 905224 905251 907201 907216) (-564 "LEADCDET.spad" 903608 903625 905214 905219) (-563 "LAZM3PK.spad" 902312 902334 903598 903603) (-562 "LAUPOL.spad" 901003 901016 901907 901976) (-561 "LAPLACE.spad" 900576 900592 900993 900998) (-560 "LALG.spad" 900352 900362 900556 900571) (-559 "LALG.spad" 900136 900148 900342 900347) (-558 "LA.spad" 899576 899590 900058 900097) (-557 "KOVACIC.spad" 898289 898306 899566 899571) (-556 "KONVERT.spad" 898011 898021 898279 898284) (-555 "KOERCE.spad" 897748 897758 898001 898006) (-554 "KERNEL2.spad" 897451 897463 897738 897743) (-553 "KERNEL.spad" 895986 895996 897235 897240) (-552 "KDAGG.spad" 895203 895225 895954 895981) (-551 "KDAGG.spad" 894440 894464 895193 895198) (-550 "KAFILE.spad" 893552 893568 893787 893814) (-549 "JORDAN.spad" 891379 891391 892842 892987) (-548 "IXAGG.spad" 889768 889792 891359 891374) (-547 "IXAGG.spad" 888022 888048 889615 889620) (-546 "IVECTOR.spad" 887153 887168 887173 887200) (-545 "ITUPLE.spad" 886298 886308 887143 887148) (-544 "ITRIGMNP.spad" 885109 885128 886288 886293) (-543 "ITFUN3.spad" 884603 884617 885099 885104) (-542 "ITFUN2.spad" 884333 884345 884593 884598) (-541 "ITAYLOR.spad" 882125 882140 884169 884294) (-540 "ISUPS.spad" 874536 874551 881099 881196) (-539 "ISUMP.spad" 874033 874049 874526 874531) (-538 "ISTRING.spad" 873328 873341 873429 873456) (-537 "IRURPK.spad" 872041 872060 873318 873323) (-536 "IRSN.spad" 870001 870009 872031 872036) (-535 "IRRF2F.spad" 868476 868486 869957 869962) (-534 "IRREDFFX.spad" 868077 868088 868466 868471) (-533 "IROOT.spad" 866408 866418 868067 868072) (-532 "IR2F.spad" 865608 865624 866398 866403) (-531 "IR2.spad" 864628 864644 865598 865603) (-530 "IR.spad" 862418 862432 864484 864511) (-529 "IPRNTPK.spad" 862178 862186 862408 862413) (-528 "IPF.spad" 861743 861755 861983 862076) (-527 "IPADIC.spad" 861504 861530 861669 861738) (-526 "INVLAPLA.spad" 861149 861165 861494 861499) (-525 "INTTR.spad" 854395 854412 861139 861144) (-524 "INTTOOLS.spad" 852107 852123 853970 853975) (-523 "INTSLPE.spad" 851413 851421 852097 852102) (-522 "INTRVL.spad" 850979 850989 851327 851408) (-521 "INTRF.spad" 849343 849357 850969 850974) (-520 "INTRET.spad" 848775 848785 849333 849338) (-519 "INTRAT.spad" 847450 847467 848765 848770) (-518 "INTPM.spad" 845813 845829 847093 847098) (-517 "INTPAF.spad" 843581 843599 845745 845750) (-516 "INTPACK.spad" 833891 833899 843571 843576) (-515 "INTHERTR.spad" 833157 833174 833881 833886) (-514 "INTHERAL.spad" 832823 832847 833147 833152) (-513 "INTHEORY.spad" 829334 829342 832813 832818) (-512 "INTG0.spad" 822797 822815 829266 829271) (-511 "INTFTBL.spad" 816862 816870 822787 822792) (-510 "INTFACT.spad" 815921 815931 816852 816857) (-509 "INTEF.spad" 814236 814252 815911 815916) (-508 "INTDOM.spad" 812851 812859 814162 814231) (-507 "INTDOM.spad" 811528 811538 812841 812846) (-506 "INTCAT.spad" 809771 809781 811442 811523) (-505 "INTBIT.spad" 809274 809282 809761 809766) (-504 "INTALG.spad" 808456 808483 809264 809269) (-503 "INTAF.spad" 807948 807964 808446 808451) (-502 "INTABL.spad" 807028 807059 807191 807218) (-501 "INT.spad" 806389 806397 806882 807023) (-500 "INS.spad" 803785 803793 806291 806384) (-499 "INS.spad" 801267 801277 803775 803780) (-498 "INPSIGN.spad" 800701 800714 801257 801262) (-497 "INPRODPF.spad" 799767 799786 800691 800696) (-496 "INPRODFF.spad" 798825 798849 799757 799762) (-495 "INNMFACT.spad" 798084 798101 798815 798820) (-494 "INMODGCD.spad" 797568 797598 798074 798079) (-493 "INFSP.spad" 796470 796492 797558 797563) (-492 "INFPROD0.spad" 795520 795539 796460 796465) (-491 "INFORM1.spad" 795145 795155 795510 795515) (-490 "INFORM.spad" 792413 792421 795135 795140) (-489 "INFINITY.spad" 791965 791973 792403 792408) (-488 "INEP.spad" 790685 790707 791955 791960) (-487 "INDE.spad" 790591 790608 790675 790680) (-486 "INCRMAPS.spad" 790012 790022 790581 790586) (-485 "INBFF.spad" 785782 785793 790002 790007) (-484 "IMATRIX.spad" 784950 784976 785462 785489) (-483 "IMATQF.spad" 784044 784088 784906 784911) (-482 "IMATLIN.spad" 782649 782673 784000 784005) (-481 "ILIST.spad" 782035 782050 782055 782082) (-480 "IIARRAY2.spad" 781646 781684 781865 781892) (-479 "IFF.spad" 781056 781072 781327 781420) (-478 "IFARRAY.spad" 778750 778765 780462 780489) (-477 "IFAMON.spad" 778612 778629 778706 778711) (-476 "IEVALAB.spad" 778001 778013 778602 778607) (-475 "IEVALAB.spad" 777388 777402 777991 777996) (-474 "IDPOAMS.spad" 777144 777156 777378 777383) (-473 "IDPOAM.spad" 776864 776876 777134 777139) (-472 "IDPO.spad" 776662 776674 776854 776859) (-471 "IDPC.spad" 775596 775608 776652 776657) (-470 "IDPAM.spad" 775341 775353 775586 775591) (-469 "IDPAG.spad" 775088 775100 775331 775336) (-468 "IDECOMP.spad" 772325 772343 775078 775083) (-467 "IDEAL.spad" 767248 767287 772260 772265) (-466 "ICDEN.spad" 766399 766415 767238 767243) (-465 "ICARD.spad" 765588 765596 766389 766394) (-464 "IBPTOOLS.spad" 764181 764198 765578 765583) (-463 "IBITS.spad" 763438 763451 763875 763902) (-462 "IBATOOL.spad" 760313 760332 763428 763433) (-461 "IBACHIN.spad" 758800 758815 760303 760308) (-460 "IARRAY2.spad" 758011 758037 758630 758657) (-459 "IARRAY1.spad" 757271 757286 757417 757444) (-458 "IAN.spad" 755486 755494 757089 757182) (-457 "IALGFACT.spad" 755245 755278 755476 755481) (-456 "HYPCAT.spad" 754669 754677 755235 755240) (-455 "HYPCAT.spad" 754091 754101 754659 754664) (-454 "HOAGG.spad" 751782 751792 754071 754086) (-453 "HOAGG.spad" 749314 749326 751605 751610) (-452 "HEXADEC.spad" 747186 747194 747784 747877) (-451 "HEUGCD.spad" 746201 746212 747176 747181) (-450 "HELLFDIV.spad" 745791 745815 746191 746196) (-449 "HEAP.spad" 745491 745501 745621 745648) (-448 "HDP.spad" 737729 737745 738106 738235) (-447 "HDMP.spad" 735327 735342 735526 735653) (-446 "HB.spad" 733564 733572 735317 735322) (-445 "HASHTBL.spad" 732596 732627 732807 732834) (-444 "HACKPI.spad" 732079 732087 732498 732591) (-443 "GTSET.spad" 731074 731090 731781 731808) (-442 "GSTBL.spad" 730155 730190 730329 730344) (-441 "GSERIES.spad" 727322 727349 728287 728436) (-440 "GROUP.spad" 726496 726504 727302 727317) (-439 "GROUP.spad" 725678 725688 726486 726491) (-438 "GROEBSOL.spad" 724166 724187 725668 725673) (-437 "GRMOD.spad" 722737 722749 724156 724161) (-436 "GRMOD.spad" 721306 721320 722727 722732) (-435 "GRIMAGE.spad" 714040 714048 721296 721301) (-434 "GRDEF.spad" 712419 712427 714030 714035) (-433 "GRAY.spad" 710882 710890 712409 712414) (-432 "GRALG.spad" 709929 709941 710872 710877) (-431 "GRALG.spad" 708974 708988 709919 709924) (-430 "GPOLSET.spad" 708484 708507 708712 708739) (-429 "GOSPER.spad" 707749 707767 708474 708479) (-428 "GMODPOL.spad" 706887 706914 707717 707744) (-427 "GHENSEL.spad" 705956 705970 706877 706882) (-426 "GENUPS.spad" 702057 702070 705946 705951) (-425 "GENUFACT.spad" 701634 701644 702047 702052) (-424 "GENPGCD.spad" 701218 701235 701624 701629) (-423 "GENMFACT.spad" 700670 700689 701208 701213) (-422 "GENEEZ.spad" 698609 698622 700660 700665) (-421 "GDMP.spad" 695630 695647 696406 696533) (-420 "GCNAALG.spad" 689525 689552 695424 695491) (-419 "GCDDOM.spad" 688697 688705 689451 689520) (-418 "GCDDOM.spad" 687931 687941 688687 688692) (-417 "GBINTERN.spad" 683951 683989 687921 687926) (-416 "GBF.spad" 679708 679746 683941 683946) (-415 "GBEUCLID.spad" 677582 677620 679698 679703) (-414 "GB.spad" 675100 675138 677538 677543) (-413 "GAUSSFAC.spad" 674397 674405 675090 675095) (-412 "GALUTIL.spad" 672719 672729 674353 674358) (-411 "GALPOLYU.spad" 671165 671178 672709 672714) (-410 "GALFACTU.spad" 669330 669349 671155 671160) (-409 "GALFACT.spad" 659463 659474 669320 669325) (-408 "FVFUN.spad" 656645 656653 659443 659458) (-407 "FVC.spad" 655924 655932 656625 656640) (-406 "FUNCTION.spad" 655773 655785 655914 655919) (-405 "FTEM.spad" 654936 654944 655763 655768) (-404 "FT.spad" 653148 653156 654926 654931) (-403 "FSUPFACT.spad" 652049 652068 653085 653090) (-402 "FST.spad" 650135 650143 652039 652044) (-401 "FSRED.spad" 649613 649629 650125 650130) (-400 "FSPRMELT.spad" 648421 648437 649570 649575) (-399 "FSPECF.spad" 646498 646514 648411 648416) (-398 "FSINT.spad" 646156 646172 646488 646493) (-397 "FSERIES.spad" 645343 645355 645976 646075) (-396 "FSCINT.spad" 644656 644672 645333 645338) (-395 "FSAGG2.spad" 643347 643363 644646 644651) (-394 "FSAGG.spad" 642673 642683 643291 643342) (-393 "FSAGG.spad" 641973 641985 642593 642598) (-392 "FS2UPS.spad" 636362 636396 641963 641968) (-391 "FS2EXPXP.spad" 635485 635508 636352 636357) (-390 "FS2.spad" 635130 635146 635475 635480) (-389 "FS.spad" 629165 629175 634894 635125) (-388 "FS.spad" 622991 623003 628722 628727) (-387 "FRUTIL.spad" 621933 621943 622981 622986) (-386 "FRNAALG.spad" 617020 617030 621875 621928) (-385 "FRNAALG.spad" 612119 612131 616976 616981) (-384 "FRNAAF2.spad" 611565 611583 612109 612114) (-383 "FRMOD.spad" 610960 610990 611497 611502) (-382 "FRIDEAL2.spad" 610562 610594 610950 610955) (-381 "FRIDEAL.spad" 609757 609778 610542 610557) (-380 "FRETRCT.spad" 609268 609278 609747 609752) (-379 "FRETRCT.spad" 608647 608659 609128 609133) (-378 "FRAMALG.spad" 606975 606988 608603 608642) (-377 "FRAMALG.spad" 605335 605350 606965 606970) (-376 "FRAC2.spad" 604938 604950 605325 605330) (-375 "FRAC.spad" 602041 602051 602444 602617) (-374 "FR2.spad" 601375 601387 602031 602036) (-373 "FR.spad" 595072 595082 600402 600471) (-372 "FPS.spad" 592925 592933 594962 595067) (-371 "FPS.spad" 590806 590816 592845 592850) (-370 "FPC.spad" 590108 590116 590708 590801) (-369 "FPC.spad" 589496 589506 590098 590103) (-368 "FPATMAB.spad" 589248 589258 589476 589491) (-367 "FPARFRAC.spad" 587713 587730 589238 589243) (-366 "FORTRAN.spad" 586213 586262 587703 587708) (-365 "FORTFN.spad" 583527 583535 586193 586208) (-364 "FORTCAT.spad" 583360 583368 583507 583522) (-363 "FORT.spad" 582289 582297 583350 583355) (-362 "FORMULA1.spad" 581768 581778 582279 582284) (-361 "FORMULA.spad" 579106 579114 581758 581763) (-360 "FORDER.spad" 578797 578821 579096 579101) (-359 "FOP.spad" 577998 578006 578787 578792) (-358 "FNLA.spad" 577422 577444 577966 577993) (-357 "FNCAT.spad" 575750 575758 577412 577417) (-356 "FNAME.spad" 575642 575650 575740 575745) (-355 "FMTC.spad" 575555 575563 575568 575637) (-354 "FMONOID.spad" 572610 572620 575511 575516) (-353 "FMFUN.spad" 569792 569800 572590 572605) (-352 "FMCAT.spad" 567446 567464 569760 569787) (-351 "FMC.spad" 566725 566733 567426 567441) (-350 "FM1.spad" 566082 566094 566659 566686) (-349 "FM.spad" 565777 565789 566016 566043) (-348 "FLOATRP.spad" 563836 563850 565767 565772) (-347 "FLOATCP.spad" 561630 561644 563826 563831) (-346 "FLOAT.spad" 554794 554802 561496 561625) (-345 "FLINEXP.spad" 554506 554516 554774 554789) (-344 "FLINEXP.spad" 554172 554184 554442 554447) (-343 "FLASORT.spad" 553492 553504 554162 554167) (-342 "FLALG.spad" 551138 551157 553418 553487) (-341 "FLAGG2.spad" 549811 549827 551128 551133) (-340 "FLAGG.spad" 547081 547091 549779 549806) (-339 "FLAGG.spad" 544264 544276 546964 546969) (-338 "FINRALG.spad" 542293 542306 544220 544259) (-337 "FINRALG.spad" 540248 540263 542177 542182) (-336 "FINITE.spad" 539400 539408 540238 540243) (-335 "FINAALG.spad" 528381 528391 539342 539395) (-334 "FINAALG.spad" 517374 517386 528337 528342) (-333 "FILECAT.spad" 515892 515909 517364 517369) (-332 "FILE.spad" 515475 515485 515882 515887) (-331 "FIELD.spad" 514881 514889 515377 515470) (-330 "FIELD.spad" 514373 514383 514871 514876) (-329 "FGROUP.spad" 512982 512992 514353 514368) (-328 "FGLMICPK.spad" 511769 511784 512972 512977) (-327 "FFX.spad" 511144 511159 511485 511578) (-326 "FFSLPE.spad" 510751 510772 511134 511139) (-325 "FFPOLY2.spad" 509803 509820 510741 510746) (-324 "FFPOLY.spad" 501055 501066 509793 509798) (-323 "FFP.spad" 500452 500472 500771 500864) (-322 "FFNBX.spad" 498964 498984 500168 500261) (-321 "FFNBP.spad" 497477 497494 498680 498773) (-320 "FFNB.spad" 495942 495963 497158 497251) (-319 "FFINTBAS.spad" 493356 493375 495932 495937) (-318 "FFIELDC.spad" 491008 491016 493258 493351) (-317 "FFIELDC.spad" 488746 488756 490998 491003) (-316 "FFHOM.spad" 487494 487511 488736 488741) (-315 "FFF.spad" 484929 484940 487484 487489) (-314 "FFCGX.spad" 483776 483796 484645 484738) (-313 "FFCGP.spad" 482665 482685 483492 483585) (-312 "FFCG.spad" 481457 481478 482346 482439) (-311 "FFCAT2.spad" 481202 481242 481447 481452) (-310 "FFCAT.spad" 474095 474117 481041 481197) (-309 "FFCAT.spad" 467067 467091 474015 474020) (-308 "FF.spad" 466515 466531 466748 466841) (-307 "FEXPR.spad" 458220 458266 466275 466314) (-306 "FEVALAB.spad" 457926 457936 458210 458215) (-305 "FEVALAB.spad" 457417 457429 457703 457708) (-304 "FDIVCAT.spad" 455459 455483 457407 457412) (-303 "FDIVCAT.spad" 453499 453525 455449 455454) (-302 "FDIV2.spad" 453153 453193 453489 453494) (-301 "FDIV.spad" 452595 452619 453143 453148) (-300 "FCPAK1.spad" 451116 451124 452585 452590) (-299 "FCOMP.spad" 450495 450505 451106 451111) (-298 "FC.spad" 440320 440328 450485 450490) (-297 "FAXF.spad" 434811 434825 440222 440315) (-296 "FAXF.spad" 429354 429370 434767 434772) (-295 "FARRAY.spad" 428745 428755 428760 428787) (-294 "FAMR.spad" 426865 426877 428643 428740) (-293 "FAMR.spad" 424969 424983 426749 426754) (-292 "FAMONOID.spad" 424619 424629 424923 424928) (-291 "FAMONC.spad" 422825 422837 424609 424614) (-290 "FAGROUP.spad" 422431 422441 422721 422748) (-289 "FACUTIL.spad" 420627 420644 422421 422426) (-288 "FACTFUNC.spad" 419803 419813 420617 420622) (-287 "EXPUPXS.spad" 416636 416659 417935 418084) (-286 "EXPRTUBE.spad" 413864 413872 416626 416631) (-285 "EXPRODE.spad" 410736 410752 413854 413859) (-284 "EXPR2UPS.spad" 406828 406841 410726 410731) (-283 "EXPR2.spad" 406531 406543 406818 406823) (-282 "EXPR.spad" 401833 401843 402547 402950) (-281 "EXPEXPAN.spad" 398774 398799 399408 399501) (-280 "EXIT.spad" 398445 398453 398764 398769) (-279 "EVALCYC.spad" 397903 397917 398435 398440) (-278 "EVALAB.spad" 397467 397477 397893 397898) (-277 "EVALAB.spad" 397029 397041 397457 397462) (-276 "EUCDOM.spad" 394571 394579 396955 397024) (-275 "EUCDOM.spad" 392175 392185 394561 394566) (-274 "ESTOOLS2.spad" 391937 391951 392165 392170) (-273 "ESTOOLS1.spad" 391791 391802 391927 391932) (-272 "ESTOOLS.spad" 383778 383786 391781 391786) (-271 "ESCONT1.spad" 383626 383638 383768 383773) (-270 "ESCONT.spad" 380563 380571 383616 383621) (-269 "ES2.spad" 380058 380074 380553 380558) (-268 "ES1.spad" 379624 379640 380048 380053) (-267 "ES.spad" 372171 372179 379614 379619) (-266 "ES.spad" 364626 364636 372071 372076) (-265 "ERROR.spad" 361947 361955 364616 364621) (-264 "EQTBL.spad" 360981 361003 361190 361217) (-263 "EQ2.spad" 360697 360709 360971 360976) (-262 "EQ.spad" 355565 355575 358380 358489) (-261 "EP.spad" 351879 351889 355555 355560) (-260 "ENTIRER.spad" 351547 351555 351823 351874) (-259 "EMR.spad" 350748 350789 351473 351542) (-258 "ELTAGG.spad" 349369 349388 350738 350743) (-257 "ELTAGG.spad" 347954 347975 349325 349330) (-256 "ELTAB.spad" 347735 347753 347944 347949) (-255 "ELFUTS.spad" 347114 347133 347725 347730) (-254 "ELEMFUN.spad" 346803 346811 347104 347109) (-253 "ELEMFUN.spad" 346490 346500 346793 346798) (-252 "ELAGG.spad" 344846 344856 346458 346485) (-251 "ELAGG.spad" 343151 343163 344765 344770) (-250 "EFUPXS.spad" 339927 339957 343107 343112) (-249 "EFULS.spad" 336763 336786 339883 339888) (-248 "EFSTRUC.spad" 334718 334734 336753 336758) (-247 "EF.spad" 329484 329500 334708 334713) (-246 "EAB.spad" 327760 327768 329474 329479) (-245 "E04UCFA.spad" 327737 327745 327750 327755) (-244 "E04NAFA.spad" 327714 327722 327727 327732) (-243 "E04MBFA.spad" 327691 327699 327704 327709) (-242 "E04JAFA.spad" 327668 327676 327681 327686) (-241 "E04GCFA.spad" 327645 327653 327658 327663) (-240 "E04FDFA.spad" 327622 327630 327635 327640) (-239 "E04DGFA.spad" 327599 327607 327612 327617) (-238 "E04AGNT.spad" 323441 323449 327589 327594) (-237 "DVARCAT.spad" 322505 322515 323431 323436) (-236 "DVARCAT.spad" 321567 321579 322495 322500) (-235 "DSMP.spad" 319287 319301 319306 319433) (-234 "DROPT1.spad" 319004 319014 319277 319282) (-233 "DROPT0.spad" 313885 313893 318994 318999) (-232 "DROPT.spad" 307942 307950 313875 313880) (-231 "DRAWPT.spad" 306097 306105 307932 307937) (-230 "DRAWHACK.spad" 305405 305415 306087 306092) (-229 "DRAWCX.spad" 302847 302855 305395 305400) (-228 "DRAWCURV.spad" 302384 302399 302837 302842) (-227 "DRAWCFUN.spad" 291556 291564 302374 302379) (-226 "DRAW.spad" 284156 284169 291546 291551) (-225 "DQAGG.spad" 282509 282519 284112 284151) (-224 "DPOLCAT.spad" 279189 279205 282377 282504) (-223 "DPOLCAT.spad" 275955 275973 279145 279150) (-222 "DPMO.spad" 269998 270014 270136 270432) (-221 "DPMM.spad" 264054 264072 264179 264475) (-220 "DMP.spad" 261652 261667 261851 261978) (-219 "DLP.spad" 261137 261147 261642 261647) (-218 "DLIST.spad" 259772 259782 260543 260570) (-217 "DLAGG.spad" 258397 258407 259752 259767) (-216 "DIVRING.spad" 257844 257852 258341 258392) (-215 "DIVRING.spad" 257335 257345 257834 257839) (-214 "DISPLAY.spad" 255515 255523 257325 257330) (-213 "DIRPROD2.spad" 254664 254682 255505 255510) (-212 "DIRPROD.spad" 247258 247274 247279 247408) (-211 "DIRPCAT.spad" 246365 246381 247112 247253) (-210 "DIRPCAT.spad" 245212 245230 245961 245966) (-209 "DIOSP.spad" 244037 244045 245202 245207) (-208 "DIOPS.spad" 243158 243168 244005 244032) (-207 "DIOPS.spad" 242265 242277 243114 243119) (-206 "DIFRING.spad" 241557 241565 242245 242260) (-205 "DIFRING.spad" 240857 240867 241547 241552) (-204 "DIFEXT.spad" 240016 240026 240837 240852) (-203 "DIFEXT.spad" 239092 239104 239915 239920) (-202 "DIAGG.spad" 239045 239055 239060 239087) (-201 "DIAGG.spad" 239018 239030 239035 239040) (-200 "DFSFUN.spad" 232426 232434 239008 239013) (-199 "DFLOAT.spad" 231028 231036 232316 232421) (-198 "DFINTTLS.spad" 229237 229253 231018 231023) (-197 "DERHAM.spad" 227147 227179 229217 229232) (-196 "DEQUEUE.spad" 226752 226762 226977 227004) (-195 "DEGRED.spad" 226367 226381 226742 226747) (-194 "DEFINTRF.spad" 223892 223902 226357 226362) (-193 "DEFINTEF.spad" 222388 222404 223882 223887) (-192 "DECIMAL.spad" 220272 220280 220858 220951) (-191 "DDFACT.spad" 218071 218088 220262 220267) (-190 "DBLRESP.spad" 217669 217693 218061 218066) (-189 "DBASE.spad" 216241 216251 217659 217664) (-188 "D03FAFA.spad" 216218 216226 216231 216236) (-187 "D03EEFA.spad" 216195 216203 216208 216213) (-186 "D03AGNT.spad" 215275 215283 216185 216190) (-185 "D02EJFA.spad" 215252 215260 215265 215270) (-184 "D02CJFA.spad" 215229 215237 215242 215247) (-183 "D02BHFA.spad" 215206 215214 215219 215224) (-182 "D02BBFA.spad" 215183 215191 215196 215201) (-181 "D02AGNT.spad" 210129 210137 215173 215178) (-180 "D01WGTS.spad" 208775 208783 210119 210124) (-179 "D01TRNS.spad" 208752 208760 208765 208770) (-178 "D01GBFA.spad" 208729 208737 208742 208747) (-177 "D01FCFA.spad" 208706 208714 208719 208724) (-176 "D01ASFA.spad" 208683 208691 208696 208701) (-175 "D01AQFA.spad" 208660 208668 208673 208678) (-174 "D01APFA.spad" 208637 208645 208650 208655) (-173 "D01ANFA.spad" 208614 208622 208627 208632) (-172 "D01AMFA.spad" 208591 208599 208604 208609) (-171 "D01ALFA.spad" 208568 208576 208581 208586) (-170 "D01AKFA.spad" 208545 208553 208558 208563) (-169 "D01AJFA.spad" 208522 208530 208535 208540) (-168 "D01AGNT.spad" 204991 204999 208512 208517) (-167 "CYCLOTOM.spad" 204497 204505 204981 204986) (-166 "CYCLES.spad" 201329 201337 204487 204492) (-165 "CVMP.spad" 200746 200756 201319 201324) (-164 "CTRIGMNP.spad" 199236 199252 200736 200741) (-163 "CSTTOOLS.spad" 198479 198492 199226 199231) (-162 "CRFP.spad" 192183 192196 198469 198474) (-161 "CRAPACK.spad" 191226 191236 192173 192178) (-160 "CPMATCH.spad" 190820 190835 191151 191156) (-159 "CPIMA.spad" 190525 190544 190810 190815) (-158 "COORDSYS.spad" 185418 185428 190515 190520) (-157 "CONTFRAC.spad" 181030 181040 185320 185413) (-156 "COMRING.spad" 180704 180712 180968 181025) (-155 "COMPPROP.spad" 180302 180310 180694 180699) (-154 "COMPLPAT.spad" 180158 180173 180292 180297) (-153 "COMPLEX2.spad" 179985 179997 180148 180153) (-152 "COMPLEX.spad" 174247 174257 174262 174523) (-151 "COMPFACT.spad" 174099 174113 174237 174242) (-150 "COMPCAT.spad" 172260 172270 173821 174094) (-149 "COMPCAT.spad" 170128 170140 171691 171696) (-148 "COMMUPC.spad" 169874 169892 170118 170123) (-147 "COMMONOP.spad" 169407 169415 169864 169869) (-146 "COMM.spad" 169216 169224 169397 169402) (-145 "COMBOPC.spad" 168121 168129 169206 169211) (-144 "COMBINAT.spad" 166866 166876 168111 168116) (-143 "COMBF.spad" 164234 164250 166856 166861) (-142 "COLOR.spad" 163200 163208 164224 164229) (-141 "CMPLXRT.spad" 162909 162926 163190 163195) (-140 "CLIP.spad" 159001 159009 162899 162904) (-139 "CLIF.spad" 157640 157656 158957 158996) (-138 "CLAGG.spad" 154574 154584 157620 157635) (-137 "CLAGG.spad" 151389 151401 154437 154442) (-136 "CINTSLPE.spad" 150857 150870 151379 151384) (-135 "CHVAR.spad" 148935 148957 150847 150852) (-134 "CHARZ.spad" 148850 148858 148915 148930) (-133 "CHARPOL.spad" 148358 148368 148840 148845) (-132 "CHARNZ.spad" 148111 148119 148338 148353) (-131 "CHAR.spad" 146077 146085 148101 148106) (-130 "CFCAT.spad" 145393 145401 146067 146072) (-129 "CDEN.spad" 144551 144565 145383 145388) (-128 "CCLASS.spad" 142866 142874 144020 144059) (-127 "CARTEN2.spad" 142252 142279 142856 142861) (-126 "CARTEN.spad" 137355 137379 142242 142247) (-125 "CARD.spad" 134644 134652 137329 137350) (-124 "CACHSET.spad" 134266 134274 134634 134639) (-123 "CABMON.spad" 133819 133827 134256 134261) (-122 "BTREE.spad" 133361 133371 133649 133676) (-121 "BTOURN.spad" 132902 132912 133191 133218) (-120 "BTCAT.spad" 132514 132524 132858 132897) (-119 "BTCAT.spad" 132158 132170 132504 132509) (-118 "BTAGG.spad" 131290 131298 132114 132153) (-117 "BTAGG.spad" 130454 130464 131280 131285) (-116 "BSTREE.spad" 129713 129723 130284 130311) (-115 "BRILL.spad" 127908 127919 129703 129708) (-114 "BRAGG.spad" 126979 126989 127888 127903) (-113 "BRAGG.spad" 126024 126036 126935 126940) (-112 "BPADICRT.spad" 124008 124020 124263 124356) (-111 "BPADIC.spad" 123672 123684 123934 124003) (-110 "BOUNDZRO.spad" 123328 123345 123662 123667) (-109 "BOP1.spad" 120706 120716 123284 123289) (-108 "BOP.spad" 116122 116130 120696 120701) (-107 "BOOLEAN.spad" 114980 114988 116112 116117) (-106 "BMODULE.spad" 114692 114704 114948 114975) (-105 "BITS.spad" 114169 114177 114386 114413) (-104 "BINFILE.spad" 113512 113520 114159 114164) (-103 "BINARY.spad" 111405 111413 111982 112075) (-102 "BGAGG.spad" 110835 110845 111373 111400) (-101 "BGAGG.spad" 110285 110297 110825 110830) (-100 "BFUNCT.spad" 109849 109857 110265 110280) (-99 "BEZOUT.spad" 108984 109010 109799 109804) (-98 "BBTREE.spad" 106397 106406 108814 108841) (-97 "BASTYPE.spad" 106070 106077 106387 106392) (-96 "BASTYPE.spad" 105741 105750 106060 106065) (-95 "BALFACT.spad" 105181 105193 105731 105736) (-94 "AUTOMOR.spad" 104628 104637 105161 105176) (-93 "ATTREG.spad" 101348 101355 104380 104623) (-92 "ATTRBUT.spad" 98431 98438 101328 101343) (-91 "ATRIG.spad" 97901 97908 98421 98426) (-90 "ATRIG.spad" 97369 97378 97891 97896) (-89 "ASTACK.spad" 96990 96999 97199 97226) (-88 "ASSOCEQ.spad" 95790 95801 96946 96951) (-87 "ASP9.spad" 94871 94884 95780 95785) (-86 "ASP80.spad" 94193 94206 94861 94866) (-85 "ASP8.spad" 93236 93249 94183 94188) (-84 "ASP78.spad" 92687 92700 93226 93231) (-83 "ASP77.spad" 92056 92069 92677 92682) (-82 "ASP74.spad" 91148 91161 92046 92051) (-81 "ASP73.spad" 90419 90432 91138 91143) (-80 "ASP7.spad" 89579 89592 90409 90414) (-79 "ASP6.spad" 88211 88224 89569 89574) (-78 "ASP55.spad" 86720 86733 88201 88206) (-77 "ASP50.spad" 84537 84550 86710 86715) (-76 "ASP49.spad" 83536 83549 84527 84532) (-75 "ASP42.spad" 81943 81982 83526 83531) (-74 "ASP41.spad" 80522 80561 81933 81938) (-73 "ASP4.spad" 79817 79830 80512 80517) (-72 "ASP35.spad" 78805 78818 79807 79812) (-71 "ASP34.spad" 78106 78119 78795 78800) (-70 "ASP33.spad" 77666 77679 78096 78101) (-69 "ASP31.spad" 76806 76819 77656 77661) (-68 "ASP30.spad" 75698 75711 76796 76801) (-67 "ASP29.spad" 75164 75177 75688 75693) (-66 "ASP28.spad" 66437 66450 75154 75159) (-65 "ASP27.spad" 65334 65347 66427 66432) (-64 "ASP24.spad" 64421 64434 65324 65329) (-63 "ASP20.spad" 63637 63650 64411 64416) (-62 "ASP19.spad" 58323 58336 63627 63632) (-61 "ASP12.spad" 57737 57750 58313 58318) (-60 "ASP10.spad" 57008 57021 57727 57732) (-59 "ASP1.spad" 56389 56402 56998 57003) (-58 "ARRAY2.spad" 55972 55981 56219 56246) (-57 "ARRAY12.spad" 54641 54652 55962 55967) (-56 "ARRAY1.spad" 53776 53785 54047 54074) (-55 "ARR2CAT.spad" 49426 49447 53732 53771) (-54 "ARR2CAT.spad" 45108 45131 49416 49421) (-53 "APPRULE.spad" 44352 44374 45098 45103) (-52 "APPLYORE.spad" 43967 43980 44342 44347) (-51 "ANY1.spad" 43038 43047 43957 43962) (-50 "ANY.spad" 41380 41387 43028 43033) (-49 "ANTISYM.spad" 39819 39835 41360 41375) (-48 "ANON.spad" 39732 39739 39809 39814) (-47 "AN.spad" 38035 38042 39550 39643) (-46 "AMR.spad" 36214 36225 37933 38030) (-45 "AMR.spad" 34230 34243 35951 35956) (-44 "ALIST.spad" 32598 32619 32624 32651) (-43 "ALGSC.spad" 31721 31747 32470 32523) (-42 "ALGPKG.spad" 27430 27441 31677 31682) (-41 "ALGMFACT.spad" 26848 26862 27420 27425) (-40 "ALGMANIP.spad" 24269 24284 26646 26651) (-39 "ALGFF.spad" 22587 22614 22804 22960) (-38 "ALGFACT.spad" 21814 21824 22577 22582) (-37 "ALGEBRA.spad" 21545 21554 21770 21809) (-36 "ALGEBRA.spad" 21308 21319 21535 21540) (-35 "ALAGG.spad" 20992 21013 21264 21303) (-34 "AHYP.spad" 20373 20380 20982 20987) (-33 "AGG.spad" 18672 18679 20353 20368) (-32 "AGG.spad" 16945 16954 18628 18633) (-31 "AF.spad" 15371 15386 16881 16886) (-30 "ACPLOT.spad" 13942 13949 15361 15366) (-29 "ACFS.spad" 11681 11690 13832 13937) (-28 "ACFS.spad" 9518 9529 11671 11676) (-27 "ACF.spad" 6120 6127 9420 9513) (-26 "ACF.spad" 2808 2817 6110 6115) (-25 "ABELSG.spad" 2349 2356 2798 2803) (-24 "ABELSG.spad" 1888 1897 2339 2344) (-23 "ABELMON.spad" 1431 1438 1878 1883) (-22 "ABELMON.spad" 972 981 1421 1426) (-21 "ABELGRP.spad" 544 551 962 967) (-20 "ABELGRP.spad" 114 123 534 539) (-19 "A1AGG.spad" 56 65 70 109) (-18 "A1AGG.spad" 30 41 46 51)) \ No newline at end of file
+((-1184 NIL 2204723 2204728 2204733 2204738) (-3 NIL 2204703 2204708 2204713 2204718) (-2 NIL 2204683 2204688 2204693 2204698) (-1 NIL 2204663 2204668 2204673 2204678) (0 NIL 2204643 2204648 2204653 2204658) (-1179 "ZMOD.spad" 2204452 2204465 2204581 2204638) (-1178 "ZLINDEP.spad" 2203496 2203507 2204442 2204447) (-1177 "ZDSOLVE.spad" 2193345 2193367 2203486 2203491) (-1176 "YSTREAM.spad" 2192838 2192849 2193335 2193340) (-1175 "XRPOLY.spad" 2192058 2192078 2192694 2192763) (-1174 "XPR.spad" 2189787 2189800 2191776 2191875) (-1173 "XPOLY.spad" 2189342 2189353 2189643 2189712) (-1172 "XPOLYC.spad" 2188659 2188675 2189268 2189337) (-1171 "XPBWPOLY.spad" 2187096 2187116 2188439 2188508) (-1170 "XF.spad" 2185557 2185572 2186998 2187091) (-1169 "XF.spad" 2183998 2184015 2185441 2185446) (-1168 "XFALG.spad" 2181022 2181038 2183924 2183993) (-1167 "XEXPPKG.spad" 2180273 2180299 2181012 2181017) (-1166 "XDPOLY.spad" 2179887 2179903 2180129 2180198) (-1165 "XALG.spad" 2179485 2179496 2179843 2179882) (-1164 "WUTSET.spad" 2175380 2175397 2179187 2179214) (-1163 "WP.spad" 2174394 2174438 2175238 2175305) (-1162 "WFFINTBS.spad" 2171957 2171979 2174384 2174389) (-1161 "WEIER.spad" 2170171 2170182 2171947 2171952) (-1160 "VSPACE.spad" 2169844 2169855 2170139 2170166) (-1159 "VSPACE.spad" 2169537 2169550 2169834 2169839) (-1158 "VOID.spad" 2169127 2169136 2169527 2169532) (-1157 "VIEW.spad" 2166749 2166758 2169117 2169122) (-1156 "VIEWDEF.spad" 2161946 2161955 2166739 2166744) (-1155 "VIEW3D.spad" 2145781 2145790 2161936 2161941) (-1154 "VIEW2D.spad" 2133518 2133527 2145771 2145776) (-1153 "VECTOR.spad" 2132195 2132206 2132446 2132473) (-1152 "VECTOR2.spad" 2130822 2130835 2132185 2132190) (-1151 "VECTCAT.spad" 2128710 2128721 2130778 2130817) (-1150 "VECTCAT.spad" 2126419 2126432 2128489 2128494) (-1149 "VARIABLE.spad" 2126199 2126214 2126409 2126414) (-1148 "UTSODETL.spad" 2125492 2125516 2126155 2126160) (-1147 "UTSODE.spad" 2123680 2123700 2125482 2125487) (-1146 "UTS.spad" 2118469 2118497 2122147 2122244) (-1145 "UTSCAT.spad" 2115920 2115936 2118367 2118464) (-1144 "UTSCAT.spad" 2113015 2113033 2115464 2115469) (-1143 "UTS2.spad" 2112608 2112643 2113005 2113010) (-1142 "URAGG.spad" 2107230 2107241 2112588 2112603) (-1141 "URAGG.spad" 2101826 2101839 2107186 2107191) (-1140 "UPXSSING.spad" 2099472 2099498 2100910 2101043) (-1139 "UPXS.spad" 2096499 2096527 2097604 2097753) (-1138 "UPXSCONS.spad" 2094256 2094276 2094631 2094780) (-1137 "UPXSCCA.spad" 2092714 2092734 2094102 2094251) (-1136 "UPXSCCA.spad" 2091314 2091336 2092704 2092709) (-1135 "UPXSCAT.spad" 2089895 2089911 2091160 2091309) (-1134 "UPXS2.spad" 2089436 2089489 2089885 2089890) (-1133 "UPSQFREE.spad" 2087848 2087862 2089426 2089431) (-1132 "UPSCAT.spad" 2085441 2085465 2087746 2087843) (-1131 "UPSCAT.spad" 2082740 2082766 2085047 2085052) (-1130 "UPOLYC.spad" 2077718 2077729 2082582 2082735) (-1129 "UPOLYC.spad" 2072588 2072601 2077454 2077459) (-1128 "UPOLYC2.spad" 2072057 2072076 2072578 2072583) (-1127 "UP.spad" 2069107 2069122 2069615 2069768) (-1126 "UPMP.spad" 2067997 2068010 2069097 2069102) (-1125 "UPDIVP.spad" 2067560 2067574 2067987 2067992) (-1124 "UPDECOMP.spad" 2065797 2065811 2067550 2067555) (-1123 "UPCDEN.spad" 2065004 2065020 2065787 2065792) (-1122 "UP2.spad" 2064366 2064387 2064994 2064999) (-1121 "UNISEG.spad" 2063719 2063730 2064285 2064290) (-1120 "UNISEG2.spad" 2063212 2063225 2063675 2063680) (-1119 "UNIFACT.spad" 2062313 2062325 2063202 2063207) (-1118 "ULS.spad" 2052872 2052900 2053965 2054394) (-1117 "ULSCONS.spad" 2046915 2046935 2047287 2047436) (-1116 "ULSCCAT.spad" 2044512 2044532 2046735 2046910) (-1115 "ULSCCAT.spad" 2042243 2042265 2044468 2044473) (-1114 "ULSCAT.spad" 2040459 2040475 2042089 2042238) (-1113 "ULS2.spad" 2039971 2040024 2040449 2040454) (-1112 "UFD.spad" 2039036 2039045 2039897 2039966) (-1111 "UFD.spad" 2038163 2038174 2039026 2039031) (-1110 "UDVO.spad" 2037010 2037019 2038153 2038158) (-1109 "UDPO.spad" 2034437 2034448 2036966 2036971) (-1108 "TYPE.spad" 2034359 2034368 2034417 2034432) (-1107 "TWOFACT.spad" 2033009 2033024 2034349 2034354) (-1106 "TUPLE.spad" 2032395 2032406 2032908 2032913) (-1105 "TUBETOOL.spad" 2029232 2029241 2032385 2032390) (-1104 "TUBE.spad" 2027873 2027890 2029222 2029227) (-1103 "TS.spad" 2026462 2026478 2027438 2027535) (-1102 "TSETCAT.spad" 2013577 2013594 2026418 2026457) (-1101 "TSETCAT.spad" 2000690 2000709 2013533 2013538) (-1100 "TRMANIP.spad" 1995056 1995073 2000396 2000401) (-1099 "TRIMAT.spad" 1994015 1994040 1995046 1995051) (-1098 "TRIGMNIP.spad" 1992532 1992549 1994005 1994010) (-1097 "TRIGCAT.spad" 1992044 1992053 1992522 1992527) (-1096 "TRIGCAT.spad" 1991554 1991565 1992034 1992039) (-1095 "TREE.spad" 1990348 1990359 1991384 1991411) (-1094 "TRANFUN.spad" 1990179 1990188 1990338 1990343) (-1093 "TRANFUN.spad" 1990008 1990019 1990169 1990174) (-1092 "TOPSP.spad" 1989682 1989691 1989998 1990003) (-1091 "TOOLSIGN.spad" 1989345 1989356 1989672 1989677) (-1090 "TEXTFILE.spad" 1987902 1987911 1989335 1989340) (-1089 "TEX.spad" 1984919 1984928 1987892 1987897) (-1088 "TEX1.spad" 1984475 1984486 1984909 1984914) (-1087 "TEMUTL.spad" 1984030 1984039 1984465 1984470) (-1086 "TBCMPPK.spad" 1982123 1982146 1984020 1984025) (-1085 "TBAGG.spad" 1981147 1981170 1982091 1982118) (-1084 "TBAGG.spad" 1980191 1980216 1981137 1981142) (-1083 "TANEXP.spad" 1979567 1979578 1980181 1980186) (-1082 "TABLE.spad" 1978540 1978563 1978810 1978837) (-1081 "TABLEAU.spad" 1978021 1978032 1978530 1978535) (-1080 "TABLBUMP.spad" 1974804 1974815 1978011 1978016) (-1079 "SYSSOLP.spad" 1972277 1972288 1974794 1974799) (-1078 "syntax.spad" 1970748 1970757 1972267 1972272) (-1077 "SYMTAB.spad" 1968804 1968813 1970738 1970743) (-1076 "SYMS.spad" 1964789 1964798 1968794 1968799) (-1075 "SYMPOLY.spad" 1963799 1963810 1963881 1964008) (-1074 "SYMFUNC.spad" 1963274 1963285 1963789 1963794) (-1073 "SYMBOL.spad" 1960610 1960619 1963264 1963269) (-1072 "SWITCH.spad" 1957367 1957376 1960600 1960605) (-1071 "SUTS.spad" 1954266 1954294 1955834 1955931) (-1070 "SUPXS.spad" 1951280 1951308 1952398 1952547) (-1069 "SUP.spad" 1948057 1948068 1948838 1948991) (-1068 "SUPFRACF.spad" 1947162 1947180 1948047 1948052) (-1067 "SUP2.spad" 1946552 1946565 1947152 1947157) (-1066 "SUMRF.spad" 1945518 1945529 1946542 1946547) (-1065 "SUMFS.spad" 1945151 1945168 1945508 1945513) (-1064 "SULS.spad" 1935697 1935725 1936803 1937232) (-1063 "SUCH.spad" 1935377 1935392 1935687 1935692) (-1062 "SUBSPACE.spad" 1927384 1927399 1935367 1935372) (-1061 "SUBRESP.spad" 1926544 1926558 1927340 1927345) (-1060 "STTF.spad" 1922643 1922659 1926534 1926539) (-1059 "STTFNC.spad" 1919111 1919127 1922633 1922638) (-1058 "STTAYLOR.spad" 1911509 1911520 1918992 1918997) (-1057 "STRTBL.spad" 1910588 1910605 1910737 1910764) (-1056 "STRING.spad" 1910055 1910064 1910069 1910096) (-1055 "STRICAT.spad" 1909831 1909840 1910011 1910050) (-1054 "STREAM.spad" 1906822 1906833 1909579 1909594) (-1053 "STREAM3.spad" 1906367 1906382 1906812 1906817) (-1052 "STREAM2.spad" 1905435 1905448 1906357 1906362) (-1051 "STREAM1.spad" 1905139 1905150 1905425 1905430) (-1050 "STINPROD.spad" 1904045 1904061 1905129 1905134) (-1049 "STEP.spad" 1903246 1903255 1904035 1904040) (-1048 "STBL.spad" 1902334 1902362 1902501 1902516) (-1047 "STAGG.spad" 1901399 1901410 1902314 1902329) (-1046 "STAGG.spad" 1900472 1900485 1901389 1901394) (-1045 "STACK.spad" 1900046 1900057 1900302 1900329) (-1044 "SREGSET.spad" 1897806 1897823 1899748 1899775) (-1043 "SRDCMPK.spad" 1896351 1896371 1897796 1897801) (-1042 "SRAGG.spad" 1891436 1891445 1896307 1896346) (-1041 "SRAGG.spad" 1886553 1886564 1891426 1891431) (-1040 "SQMATRIX.spad" 1884235 1884253 1885143 1885230) (-1039 "SPLTREE.spad" 1879102 1879115 1883986 1884013) (-1038 "SPLNODE.spad" 1875690 1875703 1879092 1879097) (-1037 "SPFCAT.spad" 1874467 1874476 1875680 1875685) (-1036 "SPECOUT.spad" 1873017 1873026 1874457 1874462) (-1035 "SPACEC.spad" 1857030 1857041 1873007 1873012) (-1034 "SPACE3.spad" 1856806 1856817 1857020 1857025) (-1033 "SORTPAK.spad" 1856351 1856364 1856762 1856767) (-1032 "SOLVETRA.spad" 1854108 1854119 1856341 1856346) (-1031 "SOLVESER.spad" 1852628 1852639 1854098 1854103) (-1030 "SOLVERAD.spad" 1848638 1848649 1852618 1852623) (-1029 "SOLVEFOR.spad" 1847058 1847076 1848628 1848633) (-1028 "SNTSCAT.spad" 1846646 1846663 1847014 1847053) (-1027 "SMTS.spad" 1844906 1844932 1846211 1846308) (-1026 "SMP.spad" 1842348 1842368 1842738 1842865) (-1025 "SMITH.spad" 1841191 1841216 1842338 1842343) (-1024 "SMATCAT.spad" 1839289 1839319 1841123 1841186) (-1023 "SMATCAT.spad" 1837331 1837363 1839167 1839172) (-1022 "SKAGG.spad" 1836280 1836291 1837287 1837326) (-1021 "SINT.spad" 1834588 1834597 1836146 1836275) (-1020 "SIMPAN.spad" 1834316 1834325 1834578 1834583) (-1019 "SIGNRF.spad" 1833424 1833435 1834306 1834311) (-1018 "SIGNEF.spad" 1832693 1832710 1833414 1833419) (-1017 "SHP.spad" 1830611 1830626 1832649 1832654) (-1016 "SHDP.spad" 1822717 1822744 1823226 1823355) (-1015 "SGROUP.spad" 1822183 1822192 1822707 1822712) (-1014 "SGROUP.spad" 1821647 1821658 1822173 1822178) (-1013 "SGCF.spad" 1814528 1814537 1821637 1821642) (-1012 "SFRTCAT.spad" 1813444 1813461 1814484 1814523) (-1011 "SFRGCD.spad" 1812507 1812527 1813434 1813439) (-1010 "SFQCMPK.spad" 1807144 1807164 1812497 1812502) (-1009 "SFORT.spad" 1806579 1806593 1807134 1807139) (-1008 "SEXOF.spad" 1806422 1806462 1806569 1806574) (-1007 "SEX.spad" 1806314 1806323 1806412 1806417) (-1006 "SEXCAT.spad" 1803418 1803458 1806304 1806309) (-1005 "SET.spad" 1801774 1801785 1802895 1802934) (-1004 "SETMN.spad" 1800208 1800225 1801764 1801769) (-1003 "SETCAT.spad" 1799693 1799702 1800198 1800203) (-1002 "SETCAT.spad" 1799176 1799187 1799683 1799688) (-1001 "SETAGG.spad" 1795699 1795710 1799144 1799171) (-1000 "SETAGG.spad" 1792242 1792255 1795689 1795694) (-999 "SEGXCAT.spad" 1791355 1791367 1792222 1792237) (-998 "SEG.spad" 1791169 1791179 1791274 1791279) (-997 "SEGCAT.spad" 1789989 1789999 1791149 1791164) (-996 "SEGBIND.spad" 1789062 1789072 1789944 1789949) (-995 "SEGBIND2.spad" 1788759 1788771 1789052 1789057) (-994 "SEG2.spad" 1788185 1788197 1788715 1788720) (-993 "SDVAR.spad" 1787462 1787472 1788175 1788180) (-992 "SDPOL.spad" 1784861 1784871 1785151 1785278) (-991 "SCPKG.spad" 1782941 1782951 1784851 1784856) (-990 "SCACHE.spad" 1781624 1781634 1782931 1782936) (-989 "SAOS.spad" 1781497 1781505 1781614 1781619) (-988 "SAERFFC.spad" 1781211 1781230 1781487 1781492) (-987 "SAE.spad" 1779390 1779405 1780000 1780135) (-986 "SAEFACT.spad" 1779092 1779111 1779380 1779385) (-985 "RURPK.spad" 1776734 1776749 1779082 1779087) (-984 "RULESET.spad" 1776176 1776199 1776724 1776729) (-983 "RULE.spad" 1774381 1774404 1776166 1776171) (-982 "RULECOLD.spad" 1774234 1774246 1774371 1774376) (-981 "RSETGCD.spad" 1770613 1770632 1774224 1774229) (-980 "RSETCAT.spad" 1760386 1760402 1770569 1770608) (-979 "RSETCAT.spad" 1750191 1750209 1760376 1760381) (-978 "RSDCMPK.spad" 1748644 1748663 1750181 1750186) (-977 "RRCC.spad" 1747029 1747058 1748634 1748639) (-976 "RRCC.spad" 1745412 1745443 1747019 1747024) (-975 "RPOLCAT.spad" 1724773 1724787 1745280 1745407) (-974 "RPOLCAT.spad" 1703849 1703865 1724358 1724363) (-973 "ROUTINE.spad" 1700295 1700303 1703078 1703105) (-972 "ROMAN.spad" 1699528 1699536 1700161 1700290) (-971 "ROIRC.spad" 1698609 1698640 1699518 1699523) (-970 "RNS.spad" 1697513 1697521 1698511 1698604) (-969 "RNS.spad" 1696503 1696513 1697503 1697508) (-968 "RNG.spad" 1696239 1696247 1696493 1696498) (-967 "RMODULE.spad" 1695878 1695888 1696229 1696234) (-966 "RMCAT2.spad" 1695287 1695343 1695868 1695873) (-965 "RMATRIX.spad" 1694023 1694041 1694510 1694549) (-964 "RMATCAT.spad" 1689545 1689575 1693967 1694018) (-963 "RMATCAT.spad" 1684969 1685001 1689393 1689398) (-962 "RINTERP.spad" 1684858 1684877 1684959 1684964) (-961 "RING.spad" 1684216 1684224 1684838 1684853) (-960 "RING.spad" 1683582 1683592 1684206 1684211) (-959 "RIDIST.spad" 1682967 1682975 1683572 1683577) (-958 "RGCHAIN.spad" 1681622 1681637 1682527 1682554) (-957 "RF.spad" 1679237 1679247 1681612 1681617) (-956 "RFFACTOR.spad" 1678700 1678710 1679227 1679232) (-955 "RFFACT.spad" 1678436 1678447 1678690 1678695) (-954 "RFDIST.spad" 1677425 1677433 1678426 1678431) (-953 "RETSOL.spad" 1676843 1676855 1677415 1677420) (-952 "RETRACT.spad" 1676193 1676203 1676833 1676838) (-951 "RETRACT.spad" 1675541 1675553 1676183 1676188) (-950 "RESULT.spad" 1674184 1674192 1674770 1674797) (-949 "RESRING.spad" 1673532 1673578 1674122 1674179) (-948 "RESLATC.spad" 1672857 1672867 1673522 1673527) (-947 "REPSQ.spad" 1672587 1672597 1672847 1672852) (-946 "REP.spad" 1670140 1670148 1672577 1672582) (-945 "REPDB.spad" 1669846 1669856 1670130 1670135) (-944 "REP2.spad" 1659419 1659429 1669688 1669693) (-943 "REP1.spad" 1653410 1653420 1659369 1659374) (-942 "REGSET.spad" 1651264 1651280 1653112 1653139) (-941 "REF.spad" 1650594 1650604 1651219 1651224) (-940 "REDORDER.spad" 1649771 1649787 1650584 1650589) (-939 "RECLOS.spad" 1648561 1648580 1649264 1649357) (-938 "REALSOLV.spad" 1647694 1647702 1648551 1648556) (-937 "REAL.spad" 1647567 1647575 1647684 1647689) (-936 "REAL0Q.spad" 1644850 1644864 1647557 1647562) (-935 "REAL0.spad" 1641679 1641693 1644840 1644845) (-934 "RDIV.spad" 1641331 1641355 1641669 1641674) (-933 "RDIST.spad" 1640895 1640905 1641321 1641326) (-932 "RDETRS.spad" 1639692 1639709 1640885 1640890) (-931 "RDETR.spad" 1637800 1637817 1639682 1639687) (-930 "RDEEFS.spad" 1636874 1636890 1637790 1637795) (-929 "RDEEF.spad" 1635871 1635887 1636864 1636869) (-928 "RCFIELD.spad" 1633055 1633063 1635773 1635866) (-927 "RCFIELD.spad" 1630325 1630335 1633045 1633050) (-926 "RCAGG.spad" 1628228 1628238 1630305 1630320) (-925 "RCAGG.spad" 1626068 1626080 1628147 1628152) (-924 "RATRET.spad" 1625429 1625439 1626058 1626063) (-923 "RATFACT.spad" 1625122 1625133 1625419 1625424) (-922 "RANDSRC.spad" 1624442 1624450 1625112 1625117) (-921 "RADUTIL.spad" 1624197 1624205 1624432 1624437) (-920 "RADIX.spad" 1620990 1621003 1622667 1622760) (-919 "RADFF.spad" 1619407 1619443 1619525 1619681) (-918 "RADCAT.spad" 1619001 1619009 1619397 1619402) (-917 "RADCAT.spad" 1618593 1618603 1618991 1618996) (-916 "QUEUE.spad" 1618159 1618169 1618423 1618450) (-915 "QUAT.spad" 1616745 1616755 1617087 1617152) (-914 "QUATCT2.spad" 1616364 1616382 1616735 1616740) (-913 "QUATCAT.spad" 1614529 1614539 1616294 1616359) (-912 "QUATCAT.spad" 1612446 1612458 1614213 1614218) (-911 "QUAGG.spad" 1611260 1611270 1612402 1612441) (-910 "QFORM.spad" 1610723 1610737 1611250 1611255) (-909 "QFCAT.spad" 1609414 1609424 1610613 1610718) (-908 "QFCAT.spad" 1607711 1607723 1608912 1608917) (-907 "QFCAT2.spad" 1607402 1607418 1607701 1607706) (-906 "QEQUAT.spad" 1606959 1606967 1607392 1607397) (-905 "QCMPACK.spad" 1601706 1601725 1606949 1606954) (-904 "QALGSET.spad" 1597781 1597813 1601620 1601625) (-903 "QALGSET2.spad" 1595777 1595795 1597771 1597776) (-902 "PWFFINTB.spad" 1593087 1593108 1595767 1595772) (-901 "PUSHVAR.spad" 1592416 1592435 1593077 1593082) (-900 "PTRANFN.spad" 1588542 1588552 1592406 1592411) (-899 "PTPACK.spad" 1585630 1585640 1588532 1588537) (-898 "PTFUNC2.spad" 1585451 1585465 1585620 1585625) (-897 "PTCAT.spad" 1584533 1584543 1585407 1585446) (-896 "PSQFR.spad" 1583840 1583864 1584523 1584528) (-895 "PSEUDLIN.spad" 1582698 1582708 1583830 1583835) (-894 "PSETPK.spad" 1568131 1568147 1582576 1582581) (-893 "PSETCAT.spad" 1562039 1562062 1568099 1568126) (-892 "PSETCAT.spad" 1555933 1555958 1561995 1562000) (-891 "PSCURVE.spad" 1554916 1554924 1555923 1555928) (-890 "PSCAT.spad" 1553683 1553712 1554814 1554911) (-889 "PSCAT.spad" 1552540 1552571 1553673 1553678) (-888 "PRTITION.spad" 1551383 1551391 1552530 1552535) (-887 "PRS.spad" 1540945 1540962 1551339 1551344) (-886 "PRQAGG.spad" 1540364 1540374 1540901 1540940) (-885 "PRODUCT.spad" 1538044 1538056 1538330 1538385) (-884 "PR.spad" 1536433 1536445 1537138 1537265) (-883 "PRINT.spad" 1536185 1536193 1536423 1536428) (-882 "PRIMES.spad" 1534436 1534446 1536175 1536180) (-881 "PRIMELT.spad" 1532417 1532431 1534426 1534431) (-880 "PRIMCAT.spad" 1532040 1532048 1532407 1532412) (-879 "PRIMARR.spad" 1531045 1531055 1531223 1531250) (-878 "PRIMARR2.spad" 1529768 1529780 1531035 1531040) (-877 "PREASSOC.spad" 1529140 1529152 1529758 1529763) (-876 "PPCURVE.spad" 1528277 1528285 1529130 1529135) (-875 "POLYROOT.spad" 1527049 1527071 1528233 1528238) (-874 "POLY.spad" 1524349 1524359 1524866 1524993) (-873 "POLYLIFT.spad" 1523610 1523633 1524339 1524344) (-872 "POLYCATQ.spad" 1521712 1521734 1523600 1523605) (-871 "POLYCAT.spad" 1515118 1515139 1521580 1521707) (-870 "POLYCAT.spad" 1507826 1507849 1514290 1514295) (-869 "POLY2UP.spad" 1507274 1507288 1507816 1507821) (-868 "POLY2.spad" 1506869 1506881 1507264 1507269) (-867 "POLUTIL.spad" 1505810 1505839 1506825 1506830) (-866 "POLTOPOL.spad" 1504558 1504573 1505800 1505805) (-865 "POINT.spad" 1503622 1503632 1503709 1503736) (-864 "PNTHEORY.spad" 1500288 1500296 1503612 1503617) (-863 "PMTOOLS.spad" 1499045 1499059 1500278 1500283) (-862 "PMSYM.spad" 1498590 1498600 1499035 1499040) (-861 "PMQFCAT.spad" 1498177 1498191 1498580 1498585) (-860 "PMPRED.spad" 1497646 1497660 1498167 1498172) (-859 "PMPREDFS.spad" 1497090 1497112 1497636 1497641) (-858 "PMPLCAT.spad" 1496160 1496178 1497022 1497027) (-857 "PMLSAGG.spad" 1495741 1495755 1496150 1496155) (-856 "PMKERNEL.spad" 1495308 1495320 1495731 1495736) (-855 "PMINS.spad" 1494884 1494894 1495298 1495303) (-854 "PMFS.spad" 1494457 1494475 1494874 1494879) (-853 "PMDOWN.spad" 1493743 1493757 1494447 1494452) (-852 "PMASS.spad" 1492755 1492763 1493733 1493738) (-851 "PMASSFS.spad" 1491724 1491740 1492745 1492750) (-850 "PLOTTOOL.spad" 1491504 1491512 1491714 1491719) (-849 "PLOT.spad" 1486335 1486343 1491494 1491499) (-848 "PLOT3D.spad" 1482755 1482763 1486325 1486330) (-847 "PLOT1.spad" 1481896 1481906 1482745 1482750) (-846 "PLEQN.spad" 1469112 1469139 1481886 1481891) (-845 "PINTERP.spad" 1468728 1468747 1469102 1469107) (-844 "PINTERPA.spad" 1468510 1468526 1468718 1468723) (-843 "PI.spad" 1468117 1468125 1468484 1468505) (-842 "PID.spad" 1467073 1467081 1468043 1468112) (-841 "PICOERCE.spad" 1466730 1466740 1467063 1467068) (-840 "PGROEB.spad" 1465327 1465341 1466720 1466725) (-839 "PGE.spad" 1456580 1456588 1465317 1465322) (-838 "PGCD.spad" 1455462 1455479 1456570 1456575) (-837 "PFRPAC.spad" 1454605 1454615 1455452 1455457) (-836 "PFR.spad" 1451262 1451272 1454507 1454600) (-835 "PFOTOOLS.spad" 1450520 1450536 1451252 1451257) (-834 "PFOQ.spad" 1449890 1449908 1450510 1450515) (-833 "PFO.spad" 1449309 1449336 1449880 1449885) (-832 "PF.spad" 1448883 1448895 1449114 1449207) (-831 "PFECAT.spad" 1446549 1446557 1448809 1448878) (-830 "PFECAT.spad" 1444243 1444253 1446505 1446510) (-829 "PFBRU.spad" 1442113 1442125 1444233 1444238) (-828 "PFBR.spad" 1439651 1439674 1442103 1442108) (-827 "PERM.spad" 1435332 1435342 1439481 1439496) (-826 "PERMGRP.spad" 1430068 1430078 1435322 1435327) (-825 "PERMCAT.spad" 1428620 1428630 1430048 1430063) (-824 "PERMAN.spad" 1427152 1427166 1428610 1428615) (-823 "PENDTREE.spad" 1426648 1426658 1427004 1427009) (-822 "PDRING.spad" 1425139 1425149 1426628 1426643) (-821 "PDRING.spad" 1423638 1423650 1425129 1425134) (-820 "PDEPROB.spad" 1422595 1422603 1423628 1423633) (-819 "PDEPACK.spad" 1416597 1416605 1422585 1422590) (-818 "PDECOMP.spad" 1416059 1416076 1416587 1416592) (-817 "PDECAT.spad" 1414413 1414421 1416049 1416054) (-816 "PCOMP.spad" 1414264 1414277 1414403 1414408) (-815 "PBWLB.spad" 1412846 1412863 1414254 1414259) (-814 "PATTERN.spad" 1407277 1407287 1412836 1412841) (-813 "PATTERN2.spad" 1407013 1407025 1407267 1407272) (-812 "PATTERN1.spad" 1405315 1405331 1407003 1407008) (-811 "PATRES.spad" 1402862 1402874 1405305 1405310) (-810 "PATRES2.spad" 1402524 1402538 1402852 1402857) (-809 "PATMATCH.spad" 1400686 1400717 1402237 1402242) (-808 "PATMAB.spad" 1400111 1400121 1400676 1400681) (-807 "PATLRES.spad" 1399195 1399209 1400101 1400106) (-806 "PATAB.spad" 1398959 1398969 1399185 1399190) (-805 "PARTPERM.spad" 1396321 1396329 1398949 1398954) (-804 "PARSURF.spad" 1395749 1395777 1396311 1396316) (-803 "PARSU2.spad" 1395544 1395560 1395739 1395744) (-802 "PARSCURV.spad" 1394972 1395000 1395534 1395539) (-801 "PARSC2.spad" 1394761 1394777 1394962 1394967) (-800 "PARPCURV.spad" 1394219 1394247 1394751 1394756) (-799 "PARPC2.spad" 1394008 1394024 1394209 1394214) (-798 "PAN2EXPR.spad" 1393420 1393428 1393998 1394003) (-797 "PALETTE.spad" 1392390 1392398 1393410 1393415) (-796 "PADICRC.spad" 1389723 1389741 1390898 1390991) (-795 "PADICRAT.spad" 1387741 1387753 1387962 1388055) (-794 "PADIC.spad" 1387436 1387448 1387667 1387736) (-793 "PADICCT.spad" 1385977 1385989 1387362 1387431) (-792 "PADEPAC.spad" 1384656 1384675 1385967 1385972) (-791 "PADE.spad" 1383396 1383412 1384646 1384651) (-790 "OWP.spad" 1382380 1382410 1383254 1383321) (-789 "OVAR.spad" 1382161 1382184 1382370 1382375) (-788 "OUT.spad" 1381245 1381253 1382151 1382156) (-787 "OUTFORM.spad" 1370659 1370667 1381235 1381240) (-786 "OSI.spad" 1370134 1370142 1370649 1370654) (-785 "ORTHPOL.spad" 1368595 1368605 1370051 1370056) (-784 "OREUP.spad" 1367955 1367983 1368277 1368316) (-783 "ORESUP.spad" 1367256 1367280 1367637 1367676) (-782 "OREPCTO.spad" 1365075 1365087 1367176 1367181) (-781 "OREPCAT.spad" 1359132 1359142 1365031 1365070) (-780 "OREPCAT.spad" 1353079 1353091 1358980 1358985) (-779 "ORDSET.spad" 1352245 1352253 1353069 1353074) (-778 "ORDSET.spad" 1351409 1351419 1352235 1352240) (-777 "ORDRING.spad" 1350799 1350807 1351389 1351404) (-776 "ORDRING.spad" 1350197 1350207 1350789 1350794) (-775 "ORDMON.spad" 1350052 1350060 1350187 1350192) (-774 "ORDFUNS.spad" 1349178 1349194 1350042 1350047) (-773 "ORDFIN.spad" 1349112 1349120 1349168 1349173) (-772 "ORDCOMP.spad" 1347580 1347590 1348662 1348691) (-771 "ORDCOMP2.spad" 1346865 1346877 1347570 1347575) (-770 "OPTPROB.spad" 1345445 1345453 1346855 1346860) (-769 "OPTPACK.spad" 1337830 1337838 1345435 1345440) (-768 "OPTCAT.spad" 1335505 1335513 1337820 1337825) (-767 "OPQUERY.spad" 1335054 1335062 1335495 1335500) (-766 "OP.spad" 1334796 1334806 1334876 1334943) (-765 "ONECOMP.spad" 1333544 1333554 1334346 1334375) (-764 "ONECOMP2.spad" 1332962 1332974 1333534 1333539) (-763 "OMSERVER.spad" 1331964 1331972 1332952 1332957) (-762 "OMSAGG.spad" 1331740 1331750 1331908 1331959) (-761 "OMPKG.spad" 1330352 1330360 1331730 1331735) (-760 "OM.spad" 1329317 1329325 1330342 1330347) (-759 "OMLO.spad" 1328742 1328754 1329203 1329242) (-758 "OMEXPR.spad" 1328576 1328586 1328732 1328737) (-757 "OMERR.spad" 1328119 1328127 1328566 1328571) (-756 "OMERRK.spad" 1327153 1327161 1328109 1328114) (-755 "OMENC.spad" 1326497 1326505 1327143 1327148) (-754 "OMDEV.spad" 1320786 1320794 1326487 1326492) (-753 "OMCONN.spad" 1320195 1320203 1320776 1320781) (-752 "OINTDOM.spad" 1319958 1319966 1320121 1320190) (-751 "OFMONOID.spad" 1316145 1316155 1319948 1319953) (-750 "ODVAR.spad" 1315406 1315416 1316135 1316140) (-749 "ODR.spad" 1314854 1314880 1315218 1315367) (-748 "ODPOL.spad" 1312203 1312213 1312543 1312670) (-747 "ODP.spad" 1304445 1304465 1304818 1304947) (-746 "ODETOOLS.spad" 1303028 1303047 1304435 1304440) (-745 "ODESYS.spad" 1300678 1300695 1303018 1303023) (-744 "ODERTRIC.spad" 1296619 1296636 1300635 1300640) (-743 "ODERED.spad" 1296006 1296030 1296609 1296614) (-742 "ODERAT.spad" 1293557 1293574 1295996 1296001) (-741 "ODEPRRIC.spad" 1290448 1290470 1293547 1293552) (-740 "ODEPROB.spad" 1289647 1289655 1290438 1290443) (-739 "ODEPRIM.spad" 1286921 1286943 1289637 1289642) (-738 "ODEPAL.spad" 1286297 1286321 1286911 1286916) (-737 "ODEPACK.spad" 1272899 1272907 1286287 1286292) (-736 "ODEINT.spad" 1272330 1272346 1272889 1272894) (-735 "ODEIFTBL.spad" 1269725 1269733 1272320 1272325) (-734 "ODEEF.spad" 1265092 1265108 1269715 1269720) (-733 "ODECONST.spad" 1264611 1264629 1265082 1265087) (-732 "ODECAT.spad" 1263207 1263215 1264601 1264606) (-731 "OCT.spad" 1261354 1261364 1262070 1262109) (-730 "OCTCT2.spad" 1260998 1261019 1261344 1261349) (-729 "OC.spad" 1258772 1258782 1260954 1260993) (-728 "OC.spad" 1256272 1256284 1258456 1258461) (-727 "OCAMON.spad" 1256120 1256128 1256262 1256267) (-726 "OASGP.spad" 1255935 1255943 1256110 1256115) (-725 "OAMONS.spad" 1255455 1255463 1255925 1255930) (-724 "OAMON.spad" 1255316 1255324 1255445 1255450) (-723 "OAGROUP.spad" 1255178 1255186 1255306 1255311) (-722 "NUMTUBE.spad" 1254765 1254781 1255168 1255173) (-721 "NUMQUAD.spad" 1242627 1242635 1254755 1254760) (-720 "NUMODE.spad" 1233763 1233771 1242617 1242622) (-719 "NUMINT.spad" 1231321 1231329 1233753 1233758) (-718 "NUMFMT.spad" 1230161 1230169 1231311 1231316) (-717 "NUMERIC.spad" 1222234 1222244 1229967 1229972) (-716 "NTSCAT.spad" 1220724 1220740 1222190 1222229) (-715 "NTPOLFN.spad" 1220269 1220279 1220641 1220646) (-714 "NSUP.spad" 1213287 1213297 1217827 1217980) (-713 "NSUP2.spad" 1212679 1212691 1213277 1213282) (-712 "NSMP.spad" 1208878 1208897 1209186 1209313) (-711 "NREP.spad" 1207250 1207264 1208868 1208873) (-710 "NPCOEF.spad" 1206496 1206516 1207240 1207245) (-709 "NORMRETR.spad" 1206094 1206133 1206486 1206491) (-708 "NORMPK.spad" 1203996 1204015 1206084 1206089) (-707 "NORMMA.spad" 1203684 1203710 1203986 1203991) (-706 "NONE.spad" 1203425 1203433 1203674 1203679) (-705 "NONE1.spad" 1203101 1203111 1203415 1203420) (-704 "NODE1.spad" 1202570 1202586 1203091 1203096) (-703 "NNI.spad" 1201457 1201465 1202544 1202565) (-702 "NLINSOL.spad" 1200079 1200089 1201447 1201452) (-701 "NIPROB.spad" 1198562 1198570 1200069 1200074) (-700 "NFINTBAS.spad" 1196022 1196039 1198552 1198557) (-699 "NCODIV.spad" 1194220 1194236 1196012 1196017) (-698 "NCNTFRAC.spad" 1193862 1193876 1194210 1194215) (-697 "NCEP.spad" 1192022 1192036 1193852 1193857) (-696 "NASRING.spad" 1191618 1191626 1192012 1192017) (-695 "NASRING.spad" 1191212 1191222 1191608 1191613) (-694 "NARNG.spad" 1190556 1190564 1191202 1191207) (-693 "NARNG.spad" 1189898 1189908 1190546 1190551) (-692 "NAGSP.spad" 1188971 1188979 1189888 1189893) (-691 "NAGS.spad" 1178496 1178504 1188961 1188966) (-690 "NAGF07.spad" 1176889 1176897 1178486 1178491) (-689 "NAGF04.spad" 1171121 1171129 1176879 1176884) (-688 "NAGF02.spad" 1164930 1164938 1171111 1171116) (-687 "NAGF01.spad" 1160533 1160541 1164920 1164925) (-686 "NAGE04.spad" 1153993 1154001 1160523 1160528) (-685 "NAGE02.spad" 1144335 1144343 1153983 1153988) (-684 "NAGE01.spad" 1140219 1140227 1144325 1144330) (-683 "NAGD03.spad" 1138139 1138147 1140209 1140214) (-682 "NAGD02.spad" 1130670 1130678 1138129 1138134) (-681 "NAGD01.spad" 1124783 1124791 1130660 1130665) (-680 "NAGC06.spad" 1120570 1120578 1124773 1124778) (-679 "NAGC05.spad" 1119039 1119047 1120560 1120565) (-678 "NAGC02.spad" 1118294 1118302 1119029 1119034) (-677 "NAALG.spad" 1117829 1117839 1118262 1118289) (-676 "NAALG.spad" 1117384 1117396 1117819 1117824) (-675 "MULTSQFR.spad" 1114342 1114359 1117374 1117379) (-674 "MULTFACT.spad" 1113725 1113742 1114332 1114337) (-673 "MTSCAT.spad" 1111759 1111780 1113623 1113720) (-672 "MTHING.spad" 1111416 1111426 1111749 1111754) (-671 "MSYSCMD.spad" 1110850 1110858 1111406 1111411) (-670 "MSET.spad" 1108848 1108858 1110612 1110651) (-669 "MSETAGG.spad" 1108681 1108691 1108804 1108843) (-668 "MRING.spad" 1105652 1105664 1108389 1108456) (-667 "MRF2.spad" 1105220 1105234 1105642 1105647) (-666 "MRATFAC.spad" 1104766 1104783 1105210 1105215) (-665 "MPRFF.spad" 1102796 1102815 1104756 1104761) (-664 "MPOLY.spad" 1100234 1100249 1100593 1100720) (-663 "MPCPF.spad" 1099498 1099517 1100224 1100229) (-662 "MPC3.spad" 1099313 1099353 1099488 1099493) (-661 "MPC2.spad" 1098955 1098988 1099303 1099308) (-660 "MONOTOOL.spad" 1097290 1097307 1098945 1098950) (-659 "MONOID.spad" 1096464 1096472 1097280 1097285) (-658 "MONOID.spad" 1095636 1095646 1096454 1096459) (-657 "MONOGEN.spad" 1094382 1094395 1095496 1095631) (-656 "MONOGEN.spad" 1093150 1093165 1094266 1094271) (-655 "MONADWU.spad" 1091164 1091172 1093140 1093145) (-654 "MONADWU.spad" 1089176 1089186 1091154 1091159) (-653 "MONAD.spad" 1088320 1088328 1089166 1089171) (-652 "MONAD.spad" 1087462 1087472 1088310 1088315) (-651 "MOEBIUS.spad" 1086148 1086162 1087442 1087457) (-650 "MODULE.spad" 1086018 1086028 1086116 1086143) (-649 "MODULE.spad" 1085908 1085920 1086008 1086013) (-648 "MODRING.spad" 1085239 1085278 1085888 1085903) (-647 "MODOP.spad" 1083898 1083910 1085061 1085128) (-646 "MODMONOM.spad" 1083430 1083448 1083888 1083893) (-645 "MODMON.spad" 1080140 1080156 1080916 1081069) (-644 "MODFIELD.spad" 1079498 1079537 1080042 1080135) (-643 "MMAP.spad" 1079238 1079272 1079488 1079493) (-642 "MLO.spad" 1077665 1077675 1079194 1079233) (-641 "MLIFT.spad" 1076237 1076254 1077655 1077660) (-640 "MKUCFUNC.spad" 1075770 1075788 1076227 1076232) (-639 "MKRECORD.spad" 1075372 1075385 1075760 1075765) (-638 "MKFUNC.spad" 1074753 1074763 1075362 1075367) (-637 "MKFLCFN.spad" 1073709 1073719 1074743 1074748) (-636 "MKCHSET.spad" 1073485 1073495 1073699 1073704) (-635 "MKBCFUNC.spad" 1072970 1072988 1073475 1073480) (-634 "MINT.spad" 1072409 1072417 1072872 1072965) (-633 "MHROWRED.spad" 1070910 1070920 1072399 1072404) (-632 "MFLOAT.spad" 1069355 1069363 1070800 1070905) (-631 "MFINFACT.spad" 1068755 1068777 1069345 1069350) (-630 "MESH.spad" 1066487 1066495 1068745 1068750) (-629 "MDDFACT.spad" 1064680 1064690 1066477 1066482) (-628 "MDAGG.spad" 1063955 1063965 1064648 1064675) (-627 "MCMPLX.spad" 1059935 1059943 1060549 1060750) (-626 "MCDEN.spad" 1059143 1059155 1059925 1059930) (-625 "MCALCFN.spad" 1056245 1056271 1059133 1059138) (-624 "MATSTOR.spad" 1053521 1053531 1056235 1056240) (-623 "MATRIX.spad" 1052448 1052458 1052932 1052959) (-622 "MATLIN.spad" 1049774 1049798 1052332 1052337) (-621 "MATCAT.spad" 1041347 1041369 1049730 1049769) (-620 "MATCAT.spad" 1032804 1032828 1041189 1041194) (-619 "MATCAT2.spad" 1032072 1032120 1032794 1032799) (-618 "MAPPKG3.spad" 1030971 1030985 1032062 1032067) (-617 "MAPPKG2.spad" 1030305 1030317 1030961 1030966) (-616 "MAPPKG1.spad" 1029123 1029133 1030295 1030300) (-615 "MAPHACK3.spad" 1028931 1028945 1029113 1029118) (-614 "MAPHACK2.spad" 1028696 1028708 1028921 1028926) (-613 "MAPHACK1.spad" 1028326 1028336 1028686 1028691) (-612 "MAGMA.spad" 1026116 1026133 1028316 1028321) (-611 "M3D.spad" 1024037 1024047 1025719 1025724) (-610 "LZSTAGG.spad" 1021255 1021265 1024017 1024032) (-609 "LZSTAGG.spad" 1018481 1018493 1021245 1021250) (-608 "LWORD.spad" 1015186 1015203 1018471 1018476) (-607 "LSQM.spad" 1013470 1013484 1013868 1013919) (-606 "LSPP.spad" 1013003 1013020 1013460 1013465) (-605 "LSMP.spad" 1011843 1011871 1012993 1012998) (-604 "LSMP1.spad" 1009647 1009661 1011833 1011838) (-603 "LSAGG.spad" 1009304 1009314 1009603 1009642) (-602 "LSAGG.spad" 1008993 1009005 1009294 1009299) (-601 "LPOLY.spad" 1007947 1007966 1008849 1008918) (-600 "LPEFRAC.spad" 1007204 1007214 1007937 1007942) (-599 "LO.spad" 1006605 1006619 1007138 1007165) (-598 "LOGIC.spad" 1006207 1006215 1006595 1006600) (-597 "LOGIC.spad" 1005807 1005817 1006197 1006202) (-596 "LODOOPS.spad" 1004725 1004737 1005797 1005802) (-595 "LODO.spad" 1004111 1004127 1004407 1004446) (-594 "LODOF.spad" 1003155 1003172 1004068 1004073) (-593 "LODOCAT.spad" 1001813 1001823 1003111 1003150) (-592 "LODOCAT.spad" 1000469 1000481 1001769 1001774) (-591 "LODO2.spad" 999744 999756 1000151 1000190) (-590 "LODO1.spad" 999146 999156 999426 999465) (-589 "LODEEF.spad" 997918 997936 999136 999141) (-588 "LNAGG.spad" 993710 993720 997898 997913) (-587 "LNAGG.spad" 989476 989488 993666 993671) (-586 "LMOPS.spad" 986212 986229 989466 989471) (-585 "LMODULE.spad" 985854 985864 986202 986207) (-584 "LMDICT.spad" 985360 985370 985628 985655) (-583 "LIST.spad" 983078 983088 984507 984534) (-582 "LIST3.spad" 982369 982383 983068 983073) (-581 "LIST2.spad" 981009 981021 982359 982364) (-580 "LIST2MAP.spad" 977886 977898 980999 981004) (-579 "LINEXP.spad" 977318 977328 977866 977881) (-578 "LINDEP.spad" 976095 976107 977230 977235) (-577 "LIMITRF.spad" 974009 974019 976085 976090) (-576 "LIMITPS.spad" 972892 972905 973999 974004) (-575 "LIE.spad" 970906 970918 972182 972327) (-574 "LIECAT.spad" 970382 970392 970832 970901) (-573 "LIECAT.spad" 969886 969898 970338 970343) (-572 "LIB.spad" 968516 968524 969127 969142) (-571 "LGROBP.spad" 965869 965888 968506 968511) (-570 "LF.spad" 964788 964804 965859 965864) (-569 "LFCAT.spad" 963807 963815 964778 964783) (-568 "LEXTRIPK.spad" 959310 959325 963797 963802) (-567 "LEXP.spad" 957313 957340 959290 959305) (-566 "LEADCDET.spad" 955697 955714 957303 957308) (-565 "LAZM3PK.spad" 954401 954423 955687 955692) (-564 "LAUPOL.spad" 953092 953105 953996 954065) (-563 "LAPLACE.spad" 952665 952681 953082 953087) (-562 "LA.spad" 952105 952119 952587 952626) (-561 "LALG.spad" 951881 951891 952085 952100) (-560 "LALG.spad" 951665 951677 951871 951876) (-559 "KOVACIC.spad" 950378 950395 951655 951660) (-558 "KONVERT.spad" 950100 950110 950368 950373) (-557 "KOERCE.spad" 949837 949847 950090 950095) (-556 "KERNEL.spad" 948372 948382 949621 949626) (-555 "KERNEL2.spad" 948075 948087 948362 948367) (-554 "KDAGG.spad" 947166 947188 948043 948070) (-553 "KDAGG.spad" 946277 946301 947156 947161) (-552 "KAFILE.spad" 945389 945405 945624 945651) (-551 "JORDAN.spad" 943216 943228 944679 944824) (-550 "IXAGG.spad" 941329 941353 943196 943211) (-549 "IXAGG.spad" 939307 939333 941176 941181) (-548 "IVECTOR.spad" 938303 938318 938458 938485) (-547 "ITUPLE.spad" 937448 937458 938293 938298) (-546 "ITRIGMNP.spad" 936259 936278 937438 937443) (-545 "ITFUN3.spad" 935753 935767 936249 936254) (-544 "ITFUN2.spad" 935483 935495 935743 935748) (-543 "ITAYLOR.spad" 933275 933290 935319 935444) (-542 "ISUPS.spad" 925686 925701 932249 932346) (-541 "ISUMP.spad" 925183 925199 925676 925681) (-540 "ISTRING.spad" 924186 924199 924352 924379) (-539 "IRURPK.spad" 922899 922918 924176 924181) (-538 "IRSN.spad" 920859 920867 922889 922894) (-537 "IRRF2F.spad" 919334 919344 920815 920820) (-536 "IRREDFFX.spad" 918935 918946 919324 919329) (-535 "IROOT.spad" 917266 917276 918925 918930) (-534 "IR.spad" 915056 915070 917122 917149) (-533 "IR2.spad" 914076 914092 915046 915051) (-532 "IR2F.spad" 913276 913292 914066 914071) (-531 "IPRNTPK.spad" 913036 913044 913266 913271) (-530 "IPF.spad" 912601 912613 912841 912934) (-529 "IPADIC.spad" 912362 912388 912527 912596) (-528 "INVLAPLA.spad" 912007 912023 912352 912357) (-527 "INTTR.spad" 905253 905270 911997 912002) (-526 "INTTOOLS.spad" 902965 902981 904828 904833) (-525 "INTSLPE.spad" 902271 902279 902955 902960) (-524 "INTRVL.spad" 901837 901847 902185 902266) (-523 "INTRF.spad" 900201 900215 901827 901832) (-522 "INTRET.spad" 899633 899643 900191 900196) (-521 "INTRAT.spad" 898308 898325 899623 899628) (-520 "INTPM.spad" 896671 896687 897951 897956) (-519 "INTPAF.spad" 894439 894457 896603 896608) (-518 "INTPACK.spad" 884749 884757 894429 894434) (-517 "INT.spad" 884110 884118 884603 884744) (-516 "INTHERTR.spad" 883376 883393 884100 884105) (-515 "INTHERAL.spad" 883042 883066 883366 883371) (-514 "INTHEORY.spad" 879455 879463 883032 883037) (-513 "INTG0.spad" 872918 872936 879387 879392) (-512 "INTFTBL.spad" 866947 866955 872908 872913) (-511 "INTFACT.spad" 866006 866016 866937 866942) (-510 "INTEF.spad" 864321 864337 865996 866001) (-509 "INTDOM.spad" 862936 862944 864247 864316) (-508 "INTDOM.spad" 861613 861623 862926 862931) (-507 "INTCAT.spad" 859866 859876 861527 861608) (-506 "INTBIT.spad" 859369 859377 859856 859861) (-505 "INTALG.spad" 858551 858578 859359 859364) (-504 "INTAF.spad" 858043 858059 858541 858546) (-503 "INTABL.spad" 857123 857154 857286 857313) (-502 "INS.spad" 854519 854527 857025 857118) (-501 "INS.spad" 852001 852011 854509 854514) (-500 "INPSIGN.spad" 851435 851448 851991 851996) (-499 "INPRODPF.spad" 850501 850520 851425 851430) (-498 "INPRODFF.spad" 849559 849583 850491 850496) (-497 "INNMFACT.spad" 848530 848547 849549 849554) (-496 "INMODGCD.spad" 848014 848044 848520 848525) (-495 "INFSP.spad" 846299 846321 848004 848009) (-494 "INFPROD0.spad" 845349 845368 846289 846294) (-493 "INFORM.spad" 842617 842625 845339 845344) (-492 "INFORM1.spad" 842242 842252 842607 842612) (-491 "INFINITY.spad" 841794 841802 842232 842237) (-490 "INEP.spad" 840326 840348 841784 841789) (-489 "INDE.spad" 840232 840249 840316 840321) (-488 "INCRMAPS.spad" 839653 839663 840222 840227) (-487 "INBFF.spad" 835423 835434 839643 839648) (-486 "IMATRIX.spad" 834591 834617 835103 835130) (-485 "IMATQF.spad" 833685 833729 834547 834552) (-484 "IMATLIN.spad" 832290 832314 833641 833646) (-483 "ILIST.spad" 830946 830961 831473 831500) (-482 "IIARRAY2.spad" 830557 830595 830776 830803) (-481 "IFF.spad" 829967 829983 830238 830331) (-480 "IFARRAY.spad" 827677 827692 829373 829400) (-479 "IFAMON.spad" 827539 827556 827633 827638) (-478 "IEVALAB.spad" 826928 826940 827529 827534) (-477 "IEVALAB.spad" 826315 826329 826918 826923) (-476 "IDPO.spad" 826113 826125 826305 826310) (-475 "IDPOAMS.spad" 825869 825881 826103 826108) (-474 "IDPOAM.spad" 825589 825601 825859 825864) (-473 "IDPC.spad" 824523 824535 825579 825584) (-472 "IDPAM.spad" 824268 824280 824513 824518) (-471 "IDPAG.spad" 824015 824027 824258 824263) (-470 "IDECOMP.spad" 821252 821270 824005 824010) (-469 "IDEAL.spad" 816175 816214 821187 821192) (-468 "ICDEN.spad" 815326 815342 816165 816170) (-467 "ICARD.spad" 814515 814523 815316 815321) (-466 "IBPTOOLS.spad" 813108 813125 814505 814510) (-465 "IBITS.spad" 812365 812378 812802 812829) (-464 "IBATOOL.spad" 809240 809259 812355 812360) (-463 "IBACHIN.spad" 807727 807742 809230 809235) (-462 "IARRAY2.spad" 806938 806964 807557 807584) (-461 "IARRAY1.spad" 806206 806221 806344 806371) (-460 "IAN.spad" 804421 804429 806024 806117) (-459 "IALGFACT.spad" 804022 804055 804411 804416) (-458 "HYPCAT.spad" 803446 803454 804012 804017) (-457 "HYPCAT.spad" 802868 802878 803436 803441) (-456 "HOAGG.spad" 800126 800136 802848 802863) (-455 "HOAGG.spad" 797169 797181 799893 799898) (-454 "HEXADEC.spad" 795041 795049 795639 795732) (-453 "HEUGCD.spad" 794056 794067 795031 795036) (-452 "HELLFDIV.spad" 793646 793670 794046 794051) (-451 "HEAP.spad" 793261 793271 793476 793503) (-450 "HDP.spad" 785499 785515 785876 786005) (-449 "HDMP.spad" 782678 782693 783296 783423) (-448 "HB.spad" 780915 780923 782668 782673) (-447 "HASHTBL.spad" 779947 779978 780158 780185) (-446 "HACKPI.spad" 779430 779438 779849 779942) (-445 "GTSET.spad" 778425 778441 779132 779159) (-444 "GSTBL.spad" 777506 777541 777680 777695) (-443 "GSERIES.spad" 774673 774700 775638 775787) (-442 "GROUP.spad" 773847 773855 774653 774668) (-441 "GROUP.spad" 773029 773039 773837 773842) (-440 "GROEBSOL.spad" 771517 771538 773019 773024) (-439 "GRMOD.spad" 770088 770100 771507 771512) (-438 "GRMOD.spad" 768657 768671 770078 770083) (-437 "GRIMAGE.spad" 761262 761270 768647 768652) (-436 "GRDEF.spad" 759641 759649 761252 761257) (-435 "GRAY.spad" 758100 758108 759631 759636) (-434 "GRALG.spad" 757147 757159 758090 758095) (-433 "GRALG.spad" 756192 756206 757137 757142) (-432 "GPOLSET.spad" 755702 755725 755930 755957) (-431 "GOSPER.spad" 754967 754985 755692 755697) (-430 "GMODPOL.spad" 754105 754132 754935 754962) (-429 "GHENSEL.spad" 753174 753188 754095 754100) (-428 "GENUPS.spad" 749275 749288 753164 753169) (-427 "GENUFACT.spad" 748852 748862 749265 749270) (-426 "GENPGCD.spad" 748436 748453 748842 748847) (-425 "GENMFACT.spad" 747888 747907 748426 748431) (-424 "GENEEZ.spad" 745827 745840 747878 747883) (-423 "GDMP.spad" 742848 742865 743624 743751) (-422 "GCNAALG.spad" 736743 736770 742642 742709) (-421 "GCDDOM.spad" 735915 735923 736669 736738) (-420 "GCDDOM.spad" 735149 735159 735905 735910) (-419 "GB.spad" 732667 732705 735105 735110) (-418 "GBINTERN.spad" 728687 728725 732657 732662) (-417 "GBF.spad" 724444 724482 728677 728682) (-416 "GBEUCLID.spad" 722318 722356 724434 724439) (-415 "GAUSSFAC.spad" 721615 721623 722308 722313) (-414 "GALUTIL.spad" 719937 719947 721571 721576) (-413 "GALPOLYU.spad" 718383 718396 719927 719932) (-412 "GALFACTU.spad" 716548 716567 718373 718378) (-411 "GALFACT.spad" 706681 706692 716538 716543) (-410 "FVFUN.spad" 703694 703702 706661 706676) (-409 "FVC.spad" 702736 702744 703674 703689) (-408 "FUNCTION.spad" 702585 702597 702726 702731) (-407 "FT.spad" 700797 700805 702575 702580) (-406 "FTEM.spad" 699960 699968 700787 700792) (-405 "FSUPFACT.spad" 698861 698880 699897 699902) (-404 "FST.spad" 696947 696955 698851 698856) (-403 "FSRED.spad" 696425 696441 696937 696942) (-402 "FSPRMELT.spad" 695249 695265 696382 696387) (-401 "FSPECF.spad" 693326 693342 695239 695244) (-400 "FS.spad" 687377 687387 693090 693321) (-399 "FS.spad" 681219 681231 686934 686939) (-398 "FSINT.spad" 680877 680893 681209 681214) (-397 "FSERIES.spad" 680064 680076 680697 680796) (-396 "FSCINT.spad" 679377 679393 680054 680059) (-395 "FSAGG.spad" 678482 678492 679321 679372) (-394 "FSAGG.spad" 677561 677573 678402 678407) (-393 "FSAGG2.spad" 676260 676276 677551 677556) (-392 "FS2UPS.spad" 670649 670683 676250 676255) (-391 "FS2.spad" 670294 670310 670639 670644) (-390 "FS2EXPXP.spad" 669417 669440 670284 670289) (-389 "FRUTIL.spad" 668359 668369 669407 669412) (-388 "FR.spad" 662056 662066 667386 667455) (-387 "FRNAALG.spad" 657143 657153 661998 662051) (-386 "FRNAALG.spad" 652242 652254 657099 657104) (-385 "FRNAAF2.spad" 651696 651714 652232 652237) (-384 "FRMOD.spad" 651091 651121 651628 651633) (-383 "FRIDEAL.spad" 650286 650307 651071 651086) (-382 "FRIDEAL2.spad" 649888 649920 650276 650281) (-381 "FRETRCT.spad" 649399 649409 649878 649883) (-380 "FRETRCT.spad" 648778 648790 649259 649264) (-379 "FRAMALG.spad" 647106 647119 648734 648773) (-378 "FRAMALG.spad" 645466 645481 647096 647101) (-377 "FRAC.spad" 642569 642579 642972 643145) (-376 "FRAC2.spad" 642172 642184 642559 642564) (-375 "FR2.spad" 641506 641518 642162 642167) (-374 "FPS.spad" 638315 638323 641396 641501) (-373 "FPS.spad" 635152 635162 638235 638240) (-372 "FPC.spad" 634194 634202 635054 635147) (-371 "FPC.spad" 633322 633332 634184 634189) (-370 "FPATMAB.spad" 633074 633084 633302 633317) (-369 "FPARFRAC.spad" 631547 631564 633064 633069) (-368 "FORTRAN.spad" 630047 630096 631537 631542) (-367 "FORT.spad" 628976 628984 630037 630042) (-366 "FORTFN.spad" 626136 626144 628956 628971) (-365 "FORTCAT.spad" 625810 625818 626116 626131) (-364 "FORMULA.spad" 623148 623156 625800 625805) (-363 "FORMULA1.spad" 622627 622637 623138 623143) (-362 "FORDER.spad" 622318 622342 622617 622622) (-361 "FOP.spad" 621519 621527 622308 622313) (-360 "FNLA.spad" 620943 620965 621487 621514) (-359 "FNCAT.spad" 619271 619279 620933 620938) (-358 "FNAME.spad" 619163 619171 619261 619266) (-357 "FMTC.spad" 618961 618969 619089 619158) (-356 "FMONOID.spad" 616016 616026 618917 618922) (-355 "FM.spad" 615711 615723 615950 615977) (-354 "FMFUN.spad" 612731 612739 615691 615706) (-353 "FMC.spad" 611773 611781 612711 612726) (-352 "FMCAT.spad" 609427 609445 611741 611768) (-351 "FM1.spad" 608784 608796 609361 609388) (-350 "FLOATRP.spad" 606505 606519 608774 608779) (-349 "FLOAT.spad" 599669 599677 606371 606500) (-348 "FLOATCP.spad" 597086 597100 599659 599664) (-347 "FLINEXP.spad" 596798 596808 597066 597081) (-346 "FLINEXP.spad" 596464 596476 596734 596739) (-345 "FLASORT.spad" 595784 595796 596454 596459) (-344 "FLALG.spad" 593430 593449 595710 595779) (-343 "FLAGG.spad" 590436 590446 593398 593425) (-342 "FLAGG.spad" 587355 587367 590319 590324) (-341 "FLAGG2.spad" 586036 586052 587345 587350) (-340 "FINRALG.spad" 584065 584078 585992 586031) (-339 "FINRALG.spad" 582020 582035 583949 583954) (-338 "FINITE.spad" 581172 581180 582010 582015) (-337 "FINAALG.spad" 570153 570163 581114 581167) (-336 "FINAALG.spad" 559146 559158 570109 570114) (-335 "FILE.spad" 558729 558739 559136 559141) (-334 "FILECAT.spad" 557247 557264 558719 558724) (-333 "FIELD.spad" 556653 556661 557149 557242) (-332 "FIELD.spad" 556145 556155 556643 556648) (-331 "FGROUP.spad" 554754 554764 556125 556140) (-330 "FGLMICPK.spad" 553541 553556 554744 554749) (-329 "FFX.spad" 552916 552931 553257 553350) (-328 "FFSLPE.spad" 552405 552426 552906 552911) (-327 "FFPOLY.spad" 543657 543668 552395 552400) (-326 "FFPOLY2.spad" 542717 542734 543647 543652) (-325 "FFP.spad" 542114 542134 542433 542526) (-324 "FF.spad" 541562 541578 541795 541888) (-323 "FFNBX.spad" 540074 540094 541278 541371) (-322 "FFNBP.spad" 538587 538604 539790 539883) (-321 "FFNB.spad" 537052 537073 538268 538361) (-320 "FFINTBAS.spad" 534466 534485 537042 537047) (-319 "FFIELDC.spad" 532041 532049 534368 534461) (-318 "FFIELDC.spad" 529702 529712 532031 532036) (-317 "FFHOM.spad" 528450 528467 529692 529697) (-316 "FFF.spad" 525885 525896 528440 528445) (-315 "FFCGX.spad" 524732 524752 525601 525694) (-314 "FFCGP.spad" 523621 523641 524448 524541) (-313 "FFCG.spad" 522413 522434 523302 523395) (-312 "FFCAT.spad" 515314 515336 522252 522408) (-311 "FFCAT.spad" 508294 508318 515234 515239) (-310 "FFCAT2.spad" 508039 508079 508284 508289) (-309 "FEXPR.spad" 499752 499798 507799 507838) (-308 "FEVALAB.spad" 499458 499468 499742 499747) (-307 "FEVALAB.spad" 498949 498961 499235 499240) (-306 "FDIV.spad" 498391 498415 498939 498944) (-305 "FDIVCAT.spad" 496433 496457 498381 498386) (-304 "FDIVCAT.spad" 494473 494499 496423 496428) (-303 "FDIV2.spad" 494127 494167 494463 494468) (-302 "FCPAK1.spad" 492680 492688 494117 494122) (-301 "FCOMP.spad" 492059 492069 492670 492675) (-300 "FC.spad" 481884 481892 492049 492054) (-299 "FAXF.spad" 474819 474833 481786 481879) (-298 "FAXF.spad" 467806 467822 474775 474780) (-297 "FARRAY.spad" 466175 466185 467212 467239) (-296 "FAMR.spad" 464295 464307 466073 466170) (-295 "FAMR.spad" 462399 462413 464179 464184) (-294 "FAMONOID.spad" 462049 462059 462353 462358) (-293 "FAMONC.spad" 460271 460283 462039 462044) (-292 "FAGROUP.spad" 459877 459887 460167 460194) (-291 "FACUTIL.spad" 458073 458090 459867 459872) (-290 "FACTFUNC.spad" 457249 457259 458063 458068) (-289 "EXPUPXS.spad" 454082 454105 455381 455530) (-288 "EXPRTUBE.spad" 451310 451318 454072 454077) (-287 "EXPRODE.spad" 448182 448198 451300 451305) (-286 "EXPR.spad" 443484 443494 444198 444601) (-285 "EXPR2UPS.spad" 439576 439589 443474 443479) (-284 "EXPR2.spad" 439279 439291 439566 439571) (-283 "EXPEXPAN.spad" 436220 436245 436854 436947) (-282 "EXIT.spad" 435891 435899 436210 436215) (-281 "EVALCYC.spad" 435349 435363 435881 435886) (-280 "EVALAB.spad" 434913 434923 435339 435344) (-279 "EVALAB.spad" 434475 434487 434903 434908) (-278 "EUCDOM.spad" 432017 432025 434401 434470) (-277 "EUCDOM.spad" 429621 429631 432007 432012) (-276 "ESTOOLS.spad" 421461 421469 429611 429616) (-275 "ESTOOLS2.spad" 421062 421076 421451 421456) (-274 "ESTOOLS1.spad" 420747 420758 421052 421057) (-273 "ES.spad" 413294 413302 420737 420742) (-272 "ES.spad" 405749 405759 413194 413199) (-271 "ESCONT.spad" 402522 402530 405739 405744) (-270 "ESCONT1.spad" 402271 402283 402512 402517) (-269 "ES2.spad" 401766 401782 402261 402266) (-268 "ES1.spad" 401332 401348 401756 401761) (-267 "ERROR.spad" 398653 398661 401322 401327) (-266 "EQTBL.spad" 397687 397709 397896 397923) (-265 "EQ.spad" 392571 392581 395370 395479) (-264 "EQ2.spad" 392287 392299 392561 392566) (-263 "EP.spad" 388601 388611 392277 392282) (-262 "ENTIRER.spad" 388269 388277 388545 388596) (-261 "EMR.spad" 387470 387511 388195 388264) (-260 "ELTAGG.spad" 385710 385729 387460 387465) (-259 "ELTAGG.spad" 383914 383935 385666 385671) (-258 "ELTAB.spad" 383361 383379 383904 383909) (-257 "ELFUTS.spad" 382740 382759 383351 383356) (-256 "ELEMFUN.spad" 382429 382437 382730 382735) (-255 "ELEMFUN.spad" 382116 382126 382419 382424) (-254 "ELAGG.spad" 380047 380057 382084 382111) (-253 "ELAGG.spad" 377927 377939 379966 379971) (-252 "EFUPXS.spad" 374703 374733 377883 377888) (-251 "EFULS.spad" 371539 371562 374659 374664) (-250 "EFSTRUC.spad" 369494 369510 371529 371534) (-249 "EF.spad" 364260 364276 369484 369489) (-248 "EAB.spad" 362536 362544 364250 364255) (-247 "E04UCFA.spad" 362072 362080 362526 362531) (-246 "E04NAFA.spad" 361649 361657 362062 362067) (-245 "E04MBFA.spad" 361229 361237 361639 361644) (-244 "E04JAFA.spad" 360765 360773 361219 361224) (-243 "E04GCFA.spad" 360301 360309 360755 360760) (-242 "E04FDFA.spad" 359837 359845 360291 360296) (-241 "E04DGFA.spad" 359373 359381 359827 359832) (-240 "E04AGNT.spad" 355215 355223 359363 359368) (-239 "DVARCAT.spad" 351900 351910 355205 355210) (-238 "DVARCAT.spad" 348583 348595 351890 351895) (-237 "DSMP.spad" 346017 346031 346322 346449) (-236 "DROPT.spad" 339962 339970 346007 346012) (-235 "DROPT1.spad" 339625 339635 339952 339957) (-234 "DROPT0.spad" 334452 334460 339615 339620) (-233 "DRAWPT.spad" 332607 332615 334442 334447) (-232 "DRAW.spad" 325207 325220 332597 332602) (-231 "DRAWHACK.spad" 324515 324525 325197 325202) (-230 "DRAWCX.spad" 321957 321965 324505 324510) (-229 "DRAWCURV.spad" 321494 321509 321947 321952) (-228 "DRAWCFUN.spad" 310666 310674 321484 321489) (-227 "DQAGG.spad" 308822 308832 310622 310661) (-226 "DPOLCAT.spad" 304163 304179 308690 308817) (-225 "DPOLCAT.spad" 299590 299608 304119 304124) (-224 "DPMO.spad" 293633 293649 293771 294067) (-223 "DPMM.spad" 287689 287707 287814 288110) (-222 "domain.spad" 287458 287466 287679 287684) (-221 "DMP.spad" 284683 284698 285255 285382) (-220 "DLP.spad" 284031 284041 284673 284678) (-219 "DLIST.spad" 282666 282676 283437 283464) (-218 "DLAGG.spad" 281067 281077 282646 282661) (-217 "DIVRING.spad" 280514 280522 281011 281062) (-216 "DIVRING.spad" 280005 280015 280504 280509) (-215 "DISPLAY.spad" 278185 278193 279995 280000) (-214 "DIRPROD.spad" 270160 270176 270800 270929) (-213 "DIRPROD2.spad" 268968 268986 270150 270155) (-212 "DIRPCAT.spad" 267900 267916 268822 268963) (-211 "DIRPCAT.spad" 266572 266590 267496 267501) (-210 "DIOSP.spad" 265397 265405 266562 266567) (-209 "DIOPS.spad" 264369 264379 265365 265392) (-208 "DIOPS.spad" 263327 263339 264325 264330) (-207 "DIFRING.spad" 262619 262627 263307 263322) (-206 "DIFRING.spad" 261919 261929 262609 262614) (-205 "DIFEXT.spad" 261078 261088 261899 261914) (-204 "DIFEXT.spad" 260154 260166 260977 260982) (-203 "DIAGG.spad" 259772 259782 260122 260149) (-202 "DIAGG.spad" 259410 259422 259762 259767) (-201 "DHMATRIX.spad" 257937 257947 259090 259117) (-200 "DFSFUN.spad" 251345 251353 257927 257932) (-199 "DFLOAT.spad" 247868 247876 251235 251340) (-198 "DFINTTLS.spad" 246077 246093 247858 247863) (-197 "DERHAM.spad" 243987 244019 246057 246072) (-196 "DEQUEUE.spad" 243528 243538 243817 243844) (-195 "DEGRED.spad" 243143 243157 243518 243523) (-194 "DEFINTRF.spad" 240668 240678 243133 243138) (-193 "DEFINTEF.spad" 239164 239180 240658 240663) (-192 "DECIMAL.spad" 237048 237056 237634 237727) (-191 "DDFACT.spad" 234847 234864 237038 237043) (-190 "DBLRESP.spad" 234445 234469 234837 234842) (-189 "DBASE.spad" 233017 233027 234435 234440) (-188 "D03FAFA.spad" 232845 232853 233007 233012) (-187 "D03EEFA.spad" 232665 232673 232835 232840) (-186 "D03AGNT.spad" 231745 231753 232655 232660) (-185 "D02EJFA.spad" 231207 231215 231735 231740) (-184 "D02CJFA.spad" 230685 230693 231197 231202) (-183 "D02BHFA.spad" 230175 230183 230675 230680) (-182 "D02BBFA.spad" 229665 229673 230165 230170) (-181 "D02AGNT.spad" 224469 224477 229655 229660) (-180 "D01WGTS.spad" 222788 222796 224459 224464) (-179 "D01TRNS.spad" 222765 222773 222778 222783) (-178 "D01GBFA.spad" 222287 222295 222755 222760) (-177 "D01FCFA.spad" 221809 221817 222277 222282) (-176 "D01ASFA.spad" 221277 221285 221799 221804) (-175 "D01AQFA.spad" 220723 220731 221267 221272) (-174 "D01APFA.spad" 220147 220155 220713 220718) (-173 "D01ANFA.spad" 219641 219649 220137 220142) (-172 "D01AMFA.spad" 219151 219159 219631 219636) (-171 "D01ALFA.spad" 218691 218699 219141 219146) (-170 "D01AKFA.spad" 218217 218225 218681 218686) (-169 "D01AJFA.spad" 217740 217748 218207 218212) (-168 "D01AGNT.spad" 213799 213807 217730 217735) (-167 "CYCLOTOM.spad" 213305 213313 213789 213794) (-166 "CYCLES.spad" 210137 210145 213295 213300) (-165 "CVMP.spad" 209554 209564 210127 210132) (-164 "CTRIGMNP.spad" 208044 208060 209544 209549) (-163 "CSTTOOLS.spad" 207287 207300 208034 208039) (-162 "CRFP.spad" 200991 201004 207277 207282) (-161 "CRAPACK.spad" 200034 200044 200981 200986) (-160 "CPMATCH.spad" 199534 199549 199959 199964) (-159 "CPIMA.spad" 199239 199258 199524 199529) (-158 "COORDSYS.spad" 194132 194142 199229 199234) (-157 "CONTFRAC.spad" 189744 189754 194034 194127) (-156 "COMRING.spad" 189418 189426 189682 189739) (-155 "COMPPROP.spad" 188932 188940 189408 189413) (-154 "COMPLPAT.spad" 188699 188714 188922 188927) (-153 "COMPLEX.spad" 182732 182742 182976 183237) (-152 "COMPLEX2.spad" 182445 182457 182722 182727) (-151 "COMPFACT.spad" 182047 182061 182435 182440) (-150 "COMPCAT.spad" 180103 180113 181769 182042) (-149 "COMPCAT.spad" 177866 177878 179534 179539) (-148 "COMMUPC.spad" 177612 177630 177856 177861) (-147 "COMMONOP.spad" 177145 177153 177602 177607) (-146 "COMM.spad" 176954 176962 177135 177140) (-145 "COMBOPC.spad" 175859 175867 176944 176949) (-144 "COMBINAT.spad" 174604 174614 175849 175854) (-143 "COMBF.spad" 171972 171988 174594 174599) (-142 "COLOR.spad" 170809 170817 171962 171967) (-141 "CMPLXRT.spad" 170518 170535 170799 170804) (-140 "CLIP.spad" 166610 166618 170508 170513) (-139 "CLIF.spad" 165249 165265 166566 166605) (-138 "CLAGG.spad" 161724 161734 165229 165244) (-137 "CLAGG.spad" 158080 158092 161587 161592) (-136 "CINTSLPE.spad" 157405 157418 158070 158075) (-135 "CHVAR.spad" 155483 155505 157395 157400) (-134 "CHARZ.spad" 155398 155406 155463 155478) (-133 "CHARPOL.spad" 154906 154916 155388 155393) (-132 "CHARNZ.spad" 154659 154667 154886 154901) (-131 "CHAR.spad" 152549 152557 154649 154654) (-130 "CFCAT.spad" 151865 151873 152539 152544) (-129 "CDEN.spad" 151023 151037 151855 151860) (-128 "CCLASS.spad" 149230 149238 150492 150531) (-127 "CARTEN.spad" 144333 144357 149220 149225) (-126 "CARTEN2.spad" 143719 143746 144323 144328) (-125 "CARD.spad" 141008 141016 143693 143714) (-124 "CACHSET.spad" 140630 140638 140998 141003) (-123 "CABMON.spad" 140183 140191 140620 140625) (-122 "BTREE.spad" 139475 139485 140013 140040) (-121 "BTOURN.spad" 138701 138711 139305 139332) (-120 "BTCAT.spad" 138077 138087 138657 138696) (-119 "BTCAT.spad" 137485 137497 138067 138072) (-118 "BTAGG.spad" 136501 136509 137441 137480) (-117 "BTAGG.spad" 135549 135559 136491 136496) (-116 "BSTREE.spad" 134507 134517 135379 135406) (-115 "BRILL.spad" 132702 132713 134497 134502) (-114 "BRAGG.spad" 131616 131626 132682 132697) (-113 "BRAGG.spad" 130504 130516 131572 131577) (-112 "BPADICRT.spad" 128488 128500 128743 128836) (-111 "BPADIC.spad" 128152 128164 128414 128483) (-110 "BOUNDZRO.spad" 127808 127825 128142 128147) (-109 "BOP.spad" 123272 123280 127798 127803) (-108 "BOP1.spad" 120658 120668 123228 123233) (-107 "BOOLEAN.spad" 119516 119524 120648 120653) (-106 "BMODULE.spad" 119228 119240 119484 119511) (-105 "BITS.spad" 118705 118713 118922 118949) (-104 "BINFILE.spad" 118048 118056 118695 118700) (-103 "BINARY.spad" 115941 115949 116518 116611) (-102 "BGAGG.spad" 115126 115136 115909 115936) (-101 "BGAGG.spad" 114331 114343 115116 115121) (-100 "BFUNCT.spad" 113895 113903 114311 114326) (-99 "BEZOUT.spad" 113030 113056 113845 113850) (-98 "BBTREE.spad" 110073 110082 112860 112887) (-97 "BASTYPE.spad" 109746 109753 110063 110068) (-96 "BASTYPE.spad" 109417 109426 109736 109741) (-95 "BALFACT.spad" 108857 108869 109407 109412) (-94 "AUTOMOR.spad" 108304 108313 108837 108852) (-93 "ATTREG.spad" 105023 105030 108056 108299) (-92 "ATTRBUT.spad" 101046 101053 105003 105018) (-91 "ATRIG.spad" 100516 100523 101036 101041) (-90 "ATRIG.spad" 99984 99993 100506 100511) (-89 "ASTACK.spad" 99540 99549 99814 99841) (-88 "ASSOCEQ.spad" 98340 98351 99496 99501) (-87 "ASP9.spad" 97421 97434 98330 98335) (-86 "ASP8.spad" 96464 96477 97411 97416) (-85 "ASP80.spad" 95786 95799 96454 96459) (-84 "ASP7.spad" 94946 94959 95776 95781) (-83 "ASP78.spad" 94397 94410 94936 94941) (-82 "ASP77.spad" 93766 93779 94387 94392) (-81 "ASP74.spad" 92858 92871 93756 93761) (-80 "ASP73.spad" 92129 92142 92848 92853) (-79 "ASP6.spad" 90761 90774 92119 92124) (-78 "ASP55.spad" 89270 89283 90751 90756) (-77 "ASP50.spad" 87087 87100 89260 89265) (-76 "ASP4.spad" 86382 86395 87077 87082) (-75 "ASP49.spad" 85381 85394 86372 86377) (-74 "ASP42.spad" 83788 83827 85371 85376) (-73 "ASP41.spad" 82367 82406 83778 83783) (-72 "ASP35.spad" 81355 81368 82357 82362) (-71 "ASP34.spad" 80656 80669 81345 81350) (-70 "ASP33.spad" 80216 80229 80646 80651) (-69 "ASP31.spad" 79356 79369 80206 80211) (-68 "ASP30.spad" 78248 78261 79346 79351) (-67 "ASP29.spad" 77714 77727 78238 78243) (-66 "ASP28.spad" 68987 69000 77704 77709) (-65 "ASP27.spad" 67884 67897 68977 68982) (-64 "ASP24.spad" 66971 66984 67874 67879) (-63 "ASP20.spad" 66187 66200 66961 66966) (-62 "ASP1.spad" 65568 65581 66177 66182) (-61 "ASP19.spad" 60254 60267 65558 65563) (-60 "ASP12.spad" 59668 59681 60244 60249) (-59 "ASP10.spad" 58939 58952 59658 59663) (-58 "ARRAY2.spad" 58522 58531 58769 58796) (-57 "ARRAY1.spad" 57580 57589 57928 57955) (-56 "ARRAY12.spad" 56249 56260 57570 57575) (-55 "ARR2CAT.spad" 51899 51920 56205 56244) (-54 "ARR2CAT.spad" 47581 47604 51889 51894) (-53 "APPRULE.spad" 46825 46847 47571 47576) (-52 "APPLYORE.spad" 46440 46453 46815 46820) (-51 "ANY.spad" 44782 44789 46430 46435) (-50 "ANY1.spad" 43853 43862 44772 44777) (-49 "ANTISYM.spad" 42292 42308 43833 43848) (-48 "ANON.spad" 42205 42212 42282 42287) (-47 "AN.spad" 40508 40515 42023 42116) (-46 "AMR.spad" 38687 38698 40406 40503) (-45 "AMR.spad" 36703 36716 38424 38429) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index dcaf25b4..8812be8f 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1192 +1,1194 @@
-(142351 . 3269429149)
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
+(143833 . 3403927931)
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
(((|#2| |#2|) . T))
-((((-501)) . T))
-((($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) ((|#2| |#2|) . T) (((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501)))))
+((((-517)) . T))
+((($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2| |#2|) . T) (((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
+((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
-((($) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) ((|#2|) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))))
-(|has| |#1| (-830))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((($) . T) (((-375 (-501))) . T))
+((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+(|has| |#1| (-831))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((($) . T) (((-377 (-517))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-131)) . T))
-((((-490)) . T) (((-1053)) . T) (((-199)) . T) (((-346)) . T) (((-810 (-346))) . T))
-(((|#1|) . T))
-((((-199)) . T) (((-786)) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1|) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-775)))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1| |#1|) . T))
-(-1405 (|has| |#1| (-750)) (|has| |#1| (-777)))
-((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T))
-((((-786)) . T))
-((((-786)) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(|has| |#1| (-775))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((((-493)) . T) (((-1056)) . T) (((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
+(((|#1|) . T))
+((((-199)) . T) (((-787)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) . T))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
+(-3807 (|has| |#1| (-752)) (|has| |#1| (-779)))
+((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
+((((-787)) . T))
+((((-787)) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#1| (-777))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T))
-((((-786)) . T))
-((((-786)) |has| |#1| (-1001)))
+((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((((-787)) . T))
+((((-787)) |has| |#1| (-1003)))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(((|#2| (-448 (-3581 |#1|) (-701))) . T))
-(((|#1| (-487 (-1070))) . T))
-((((-791 |#1|) (-791 |#1|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(|has| |#4| (-336))
-(|has| |#3| (-336))
-(((|#1|) . T))
-((((-791 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#2| (-450 (-2296 |#1|) (-703))) . T))
+(((|#1| (-489 (-1073))) . T))
+((((-794 |#1|) (-794 |#1|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(|has| |#4| (-338))
+(|has| |#3| (-338))
+(((|#1|) . T))
+((((-794 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(|has| |#1| (-508))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-((($) . T))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-786)) . T))
-((((-786)) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) (($) . T) ((|#1|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) . T))
-(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
+(|has| |#1| (-509))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((($) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-787)) . T))
+((((-787)) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1| |#2|) . T))
-((((-786)) . T))
+((((-787)) . T))
(((|#1|) . T))
-((((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2| |#2|) . T) (($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
+((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
(((|#1|) . T))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
((($ $) . T))
(((|#2|) . T))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T) (($) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
((($) . T))
-(|has| |#1| (-336))
+(|has| |#1| (-338))
(((|#1|) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-786)) . T))
-((((-786)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-787)) . T))
+((((-787)) . T))
(((|#1| |#2|) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
(((|#1| |#1|) . T))
-(|has| |#1| (-508))
-(((|#2| |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-278 |#2|))) (((-1070) |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-476 (-1070) |#2|))))
-((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-775)))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(|has| |#1| (-1001))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(|has| |#1| (-1001))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(|has| |#1| (-775))
-((($) . T) (((-375 (-501))) . T))
-(((|#1|) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-(-1405 (|has| |#4| (-723)) (|has| |#4| (-775)))
-(-1405 (|has| |#4| (-723)) (|has| |#4| (-775)))
-(-1405 (|has| |#3| (-723)) (|has| |#3| (-775)))
-(-1405 (|has| |#3| (-723)) (|has| |#3| (-775)))
+(|has| |#1| (-509))
+(((|#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) (((-1073) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1073) |#2|))))
+((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(|has| |#1| (-1003))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(|has| |#1| (-1003))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(|has| |#1| (-777))
+((($) . T) (((-377 (-517))) . T))
+(((|#1|) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3807 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3807 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1001))
-(|has| |#1| (-1001))
-(((|#1| (-1070) (-990 (-1070)) (-487 (-990 (-1070)))) . T))
-((((-501) |#1|) . T))
-((((-501)) . T))
-((((-501)) . T))
-((((-826 |#1|)) . T))
-(((|#1| (-487 |#2|)) . T))
-((((-501)) . T))
-((((-501)) . T))
-(((|#1|) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(((|#1| (-701)) . T))
-(|has| |#2| (-723))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-(|has| |#2| (-775))
+(|has| |#1| (-1003))
+(|has| |#1| (-1003))
+(((|#1| (-1073) (-993 (-1073)) (-489 (-993 (-1073)))) . T))
+((((-517) |#1|) . T))
+((((-517)) . T))
+((((-517)) . T))
+((((-832 |#1|)) . T))
+(((|#1| (-489 |#2|)) . T))
+((((-517)) . T))
+((((-517)) . T))
+(((|#1|) . T))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(((|#1| (-703)) . T))
+(|has| |#2| (-725))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(|has| |#2| (-777))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1053) |#1|) . T))
-((((-786)) |has| |#1| (-1001)))
+((((-1056) |#1|) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1|) . T))
-(((|#3| (-701)) . T))
+(((|#3| (-703)) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508)))
-(|has| |#1| (-1001))
-((((-375 (-501))) . T) (((-501)) . T))
-((((-1070) |#2|) |has| |#2| (-476 (-1070) |#2|)) ((|#2| |#2|) |has| |#2| (-278 |#2|)))
-((((-375 (-501))) . T) (((-501)) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#1| (-1003))
+((((-377 (-517))) . T) (((-517)) . T))
+((((-1073) |#2|) |has| |#2| (-478 (-1073) |#2|)) ((|#2| |#2|) |has| |#2| (-280 |#2|)))
+((((-377 (-517))) . T) (((-517)) . T))
(((|#1|) . T) (($) . T))
-((((-501)) . T))
-((((-501)) . T))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) |has| |#1| (-156)))
-((((-501)) . T))
-((((-501)) . T))
-((((-630) (-1064 (-630))) . T))
-((((-375 (-501))) . T) (($) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-((((-501) |#1|) . T))
-((($) . T) (((-501)) . T) (((-375 (-501))) . T))
-(((|#1|) . T))
-(|has| |#2| (-331))
+((((-517)) . T))
+((((-517)) . T))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+((((-517)) . T))
+((((-517)) . T))
+((((-632) (-1069 (-632))) . T))
+((((-377 (-517))) . T) (($) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+((((-517) |#1|) . T))
+((($) . T) (((-517)) . T) (((-377 (-517))) . T))
+(((|#1|) . T))
+(|has| |#2| (-333))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-786)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-1053) |#1|) . T))
+((((-787)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-1056) |#1|) . T))
(((|#3| |#3|) . T))
-((((-786)) . T))
-((((-786)) . T))
+((((-787)) . T))
+((((-787)) . T))
(((|#1| |#1|) . T))
-((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1|) . T))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($) -1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) ((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-501) |#1|) . T))
-((((-786)) . T))
-((((-152 (-199))) |has| |#1| (-933)) (((-152 (-346))) |has| |#1| (-933)) (((-490)) |has| |#1| (-556 (-490))) (((-1064 |#1|)) . T) (((-810 (-501))) |has| |#1| (-556 (-810 (-501)))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346)))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1|) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-775)))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-775)))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#2|) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))))
-(|has| |#1| (-331))
-(-12 (|has| |#4| (-206)) (|has| |#4| (-959)))
-(-12 (|has| |#3| (-206)) (|has| |#3| (-959)))
-(-1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959)))
-(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-((((-786)) . T))
-(((|#1|) . T))
-((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T))
-(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501))))
-(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
-(|has| |#1| (-508))
-(|has| |#1| (-508))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(((|#1|) . T))
-(|has| |#1| (-508))
-(|has| |#1| (-508))
-(|has| |#1| (-508))
-((((-630)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-916)) (|has| |#1| (-1090)))
-(((|#2|) . T) (($) . T) (((-375 (-501))) . T))
-((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) . T))
-(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T))
-(((|#4| |#4|) -1405 (|has| |#4| (-156)) (|has| |#4| (-331)) (|has| |#4| (-959))) (($ $) |has| |#4| (-156)))
-(((|#3| |#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))) (($ $) |has| |#3| (-156)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-490)) |has| |#2| (-556 (-490))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501)))))
-((((-786)) . T))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1|) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-517) |#1|) . T))
+((((-787)) . T))
+((((-153 (-199))) |has| |#1| (-937)) (((-153 (-349))) |has| |#1| (-937)) (((-493)) |has| |#1| (-558 (-493))) (((-1069 |#1|)) . T) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) . T))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+(|has| |#1| (-333))
+(-12 (|has| |#4| (-207)) (|has| |#4| (-961)))
+(-12 (|has| |#3| (-207)) (|has| |#3| (-961)))
+(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
+(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+((((-787)) . T))
+(((|#1|) . T))
+((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
+(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+(|has| |#1| (-509))
+(|has| |#1| (-509))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#1|) . T))
+(|has| |#1| (-509))
+(|has| |#1| (-509))
+(|has| |#1| (-509))
+((((-632)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-918)) (|has| |#1| (-1094)))
+(((|#2|) . T) (($) . T) (((-377 (-517))) . T))
+((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
+(((|#4| |#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($ $) |has| |#4| (-156)))
+(((|#3| |#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156)))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
+((((-787)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-786)) . T))
-((((-490)) |has| |#1| (-556 (-490))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#1| (-556 (-810 (-501)))))
-((((-786)) . T))
-(((|#4|) -1405 (|has| |#4| (-156)) (|has| |#4| (-331)) (|has| |#4| (-959))) (($) |has| |#4| (-156)))
-(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))) (($) |has| |#3| (-156)))
-((((-786)) . T))
-((((-490)) . T) (((-501)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T))
-(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
-((($) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T))
-((((-375 $) (-375 $)) |has| |#2| (-508)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-830))
-((((-1053) (-50)) . T))
-((((-501)) |has| (-375 |#2|) (-577 (-501))) (((-375 |#2|)) . T))
-((((-490)) . T) (((-199)) . T) (((-346)) . T) (((-810 (-346))) . T))
-((((-786)) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)))
+((((-787)) . T))
+((((-493)) |has| |#1| (-558 (-493))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))))
+((((-787)) . T))
+(((|#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))) (($) |has| |#4| (-156)))
+(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156)))
+((((-787)) . T))
+((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
+((((-377 $) (-377 $)) |has| |#2| (-509)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-831))
+((((-1056) (-51)) . T))
+((((-517)) |has| (-377 |#2|) (-579 (-517))) (((-377 |#2|)) . T))
+((((-493)) . T) (((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
+((((-787)) . T))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
(((|#1|) |has| |#1| (-156)))
-(((|#1| $) |has| |#1| (-256 |#1| |#1|)))
-((((-786)) . T))
-((((-786)) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-786)) . T))
-(|has| |#1| (-777))
-(|has| |#1| (-1001))
-(((|#1|) . T))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(|has| |#1| (-206))
-((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1| (-487 (-748 (-1070)))) . T))
-(((|#1| (-886)) . T))
-((((-791 |#1|) $) |has| (-791 |#1|) (-256 (-791 |#1|) (-791 |#1|))))
-((((-501) |#4|) . T))
-((((-501) |#3|) . T))
+(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
+((((-787)) . T))
+((((-787)) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-787)) . T))
+(|has| |#1| (-779))
+(|has| |#1| (-1003))
+(((|#1|) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#1| (-207))
+((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1| (-489 (-750 (-1073)))) . T))
+(((|#1| (-888)) . T))
+((((-794 |#1|) $) |has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))
+((((-517) |#4|) . T))
+((((-517) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1046))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
-(|has| (-1136 |#1| |#2| |#3| |#4|) (-132))
-(|has| (-1136 |#1| |#2| |#3| |#4|) (-134))
+(|has| |#1| (-1049))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+(|has| (-1140 |#1| |#2| |#3| |#4|) (-132))
+(|has| (-1140 |#1| |#2| |#3| |#4|) (-134))
(|has| |#1| (-132))
(|has| |#1| (-134))
(((|#1|) |has| |#1| (-156)))
-((((-1070)) -12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959))))
+((((-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961))))
(((|#2|) . T))
-(|has| |#1| (-1001))
-((((-1053) |#1|) . T))
+(|has| |#1| (-1003))
+((((-1056) |#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501))))
-(|has| |#2| (-336))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
+(|has| |#2| (-338))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-959)))
-((((-786)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
+(((|#2|) |has| |#2| (-961)))
+((((-787)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))))
-((((-501) |#1|) . T))
-((((-786)) . T))
-((((-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#2| (-556 (-490)))) (((-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346))))) (((-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501))))))
-((((-786)) . T))
-((((-786)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))))
+((((-517) |#1|) . T))
+((((-787)) . T))
+((((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349))))) (((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517))))))
+((((-787)) . T))
+((((-787)) . T))
((($) . T))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-786)) . T))
-((((-786)) . T))
-(|has| (-1130 |#2| |#3| |#4|) (-134))
-(|has| (-1130 |#2| |#3| |#4|) (-132))
-(((|#2|) |has| |#2| (-1001)) (((-501)) -12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (((-375 (-501))) -12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-787)) . T))
+((((-787)) . T))
+(|has| (-1139 |#2| |#3| |#4|) (-134))
+(|has| (-1139 |#2| |#3| |#4|) (-132))
+(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))))
(((|#1|) . T))
-(|has| |#1| (-1001))
+(|has| |#1| (-1003))
(((|#1|) . T))
(((|#1|) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
(((|#1|) . T))
-((((-501) |#1|) . T))
+((((-517) |#1|) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-775)))
-((((-786)) |has| |#1| (-1001)))
-(-1405 (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)) (|has| |#1| (-1012)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-((((-826 |#1|)) . T))
-((((-375 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-501) |#1|)))
-((((-375 (-501))) . T) (($) . T))
-(|has| |#1| (-777))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-787)) |has| |#1| (-1003)))
+(-3807 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-832 |#1|)) . T))
+((((-377 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-517) |#1|)))
+((((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-779))
(((|#1|) . T) (($) . T))
-((((-375 (-501))) . T) (($) . T))
+((((-377 (-517))) . T) (($) . T))
(((|#1|) . T))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)))
-(|has| |#1| (-331))
-(-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))
-(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))
-(|has| |#1| (-331))
-(|has| |#1| (-15 * (|#1| (-701) |#1|)))
-((((-501)) . T))
-((((-1037 |#2| (-375 (-866 |#1|)))) . T) (((-375 (-866 |#1|))) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
+(|has| |#1| (-333))
+(-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
+(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
+(|has| |#1| (-333))
+(|has| |#1| (-15 * (|#1| (-703) |#1|)))
+((((-517)) . T))
+((((-1040 |#2| (-377 (-874 |#1|)))) . T) (((-377 (-874 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
-(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T))
-(((|#1|) . T))
-((((-501) |#1|) . T))
-(((|#2|) . T))
-(-1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-(((|#1|) . T))
-((((-1070)) -12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(-12 (|has| |#1| (-331)) (|has| |#2| (-750)))
-(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)) (|has| |#1| (-508)))
-((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))))
-((($ $) |has| |#1| (-508)))
-((((-630) (-1064 (-630))) . T))
-((((-786)) . T))
-((((-786)) . T) (((-1148 |#4|)) . T))
-((((-786)) . T) (((-1148 |#3|)) . T))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))))
-((($) |has| |#1| (-508)))
-((((-786)) . T))
-((($) . T))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) . T))
-(((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))))
-(((|#3|) |has| |#3| (-959)))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(|has| |#1| (-1001))
-(((|#2| (-749 |#1|)) . T))
-(((|#1|) . T))
-(|has| |#1| (-331))
-((((-375 $) (-375 $)) |has| |#1| (-508)) (($ $) . T) ((|#1| |#1|) . T))
-((((-986) |#2|) . T) (((-986) $) . T) (($ $) . T))
-((((-826 |#1|)) . T))
+(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
+(((|#1|) . T))
+((((-517) |#1|) . T))
+(((|#2|) . T))
+(-3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(((|#1|) . T))
+((((-1073)) -12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
+(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($ $) |has| |#1| (-509)))
+((((-632) (-1069 (-632))) . T))
+((((-787)) . T))
+((((-787)) . T) (((-1153 |#4|)) . T))
+((((-787)) . T) (((-1153 |#3|)) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($) |has| |#1| (-509)))
+((((-787)) . T))
+((($) . T))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
+(((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+(((|#3|) |has| |#3| (-961)))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#1| (-1003))
+(((|#2| (-751 |#1|)) . T))
+(((|#1|) . T))
+(|has| |#1| (-333))
+((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
+((((-989) |#2|) . T) (((-989) $) . T) (($ $) . T))
+((((-832 |#1|)) . T))
((((-131)) . T))
((((-131)) . T))
-(((|#3|) |has| |#3| (-1001)) (((-501)) -12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001))) (((-375 (-501))) -12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001))))
-((((-786)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(((|#1|) . T))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
-(|has| |#1| (-331))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-775)))
-((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((|#1| |#1|) |has| |#1| (-278 |#1|)))
-(|has| |#2| (-750))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-775))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-((((-786)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-490)) |has| |#1| (-556 (-490))))
+(((|#3|) |has| |#3| (-1003)) (((-517)) -12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (((-377 (-517))) -12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))
+((((-787)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(((|#1|) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+(|has| |#1| (-333))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
+((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(|has| |#2| (-752))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-777))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+((((-787)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-493)) |has| |#1| (-558 (-493))))
(((|#1| |#2|) . T))
-((((-1070)) -12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070)))))
-((((-1053) |#1|) . T))
-(((|#1| |#2| |#3| (-487 |#3|)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-((((-786)) . T))
-(((|#1|) . T))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(|has| |#1| (-336))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-((((-501)) . T))
-((((-501)) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-((((-786)) . T))
-((((-786)) . T))
-(-12 (|has| |#2| (-206)) (|has| |#2| (-959)))
-((((-1070) (-791 |#1|)) |has| (-791 |#1|) (-476 (-1070) (-791 |#1|))) (((-791 |#1|) (-791 |#1|)) |has| (-791 |#1|) (-278 (-791 |#1|))))
-(((|#1|) . T))
-((((-501) |#4|) . T))
-((((-501) |#3|) . T))
-(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501))))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-((((-1136 |#1| |#2| |#3| |#4|)) . T))
-((((-375 (-501))) . T) (((-501)) . T))
-((((-786)) |has| |#1| (-1001)))
+((((-1073)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073)))))
+((((-1056) |#1|) . T))
+(((|#1| |#2| |#3| (-489 |#3|)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+((((-787)) . T))
+(((|#1|) . T))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(|has| |#1| (-338))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((((-517)) . T))
+((((-517)) . T))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+((((-787)) . T))
+((((-787)) . T))
+(-12 (|has| |#2| (-207)) (|has| |#2| (-961)))
+((((-1073) (-794 |#1|)) |has| (-794 |#1|) (-478 (-1073) (-794 |#1|))) (((-794 |#1|) (-794 |#1|)) |has| (-794 |#1|) (-280 (-794 |#1|))))
+(((|#1|) . T))
+((((-517) |#4|) . T))
+((((-517) |#3|) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-377 (-517))) . T) (((-517)) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-501)) . T) (((-375 (-501))) . T))
-((((-501)) . T))
-((((-501)) . T))
-((($) . T) (((-501)) . T) (((-375 (-501))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
+((($) . T) (((-517)) . T) (((-377 (-517))) . T))
+((((-517)) . T))
+((((-517)) . T))
+((($) . T) (((-517)) . T) (((-377 (-517))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-501) (-501)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T))
-(((|#1|) |has| |#1| (-508)))
-((((-501) |#4|) . T))
-((((-501) |#3|) . T))
-((((-786)) . T))
-((((-501)) . T) (((-375 (-501))) . T) (($) . T))
-((((-786)) . T))
-((((-501) |#1|) . T))
+((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
+(((|#1|) |has| |#1| (-509)))
+((((-517) |#4|) . T))
+((((-517) |#3|) . T))
+((((-787)) . T))
+((((-517)) . T) (((-377 (-517))) . T) (($) . T))
+((((-787)) . T))
+((((-517) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) (((-787 |#1|) $) . T) (((-787 |#1|) |#2|) . T))
+((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
((($) . T))
-((($ $) . T) (((-1070) $) . T) (((-1070) |#1|) . T))
+((($ $) . T) (((-1073) $) . T) (((-1073) |#1|) . T))
(((|#2|) |has| |#2| (-156)))
-((($) -1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) ((|#2|) |has| |#2| (-156)) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))))
-(((|#2| |#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($ $) |has| |#2| (-156)))
+((($) -3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+(((|#2| |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
((((-131)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-336)))
-((((-786)) . T))
-(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($) |has| |#2| (-156)))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-338)))
+((((-787)) . T))
+(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
(((|#1|) . T))
-((((-786)) . T))
-(|has| |#1| (-1001))
+((((-787)) . T))
+(|has| |#1| (-1003))
(|has| $ (-134))
-((((-501) |#1|) . T))
-((($) -1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T))
-((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070)))))
-(|has| |#1| (-331))
-(-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))
-(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))
-(|has| |#1| (-331))
-(|has| |#1| (-15 * (|#1| (-701) |#1|)))
-(((|#1|) . T))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-((((-786)) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(((|#2| (-487 (-787 |#1|))) . T))
-((((-786)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1|) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-((((-528 |#1|)) . T))
+((((-517) |#1|) . T))
+((($) -3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
+(|has| |#1| (-333))
+(-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))
+(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
+(|has| |#1| (-333))
+(|has| |#1| (-15 * (|#1| (-703) |#1|)))
+(((|#1|) . T))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+((((-787)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(((|#2| (-489 (-789 |#1|))) . T))
+((((-787)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((((-530 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
-((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T))
+((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
(((|#4|) . T))
(((|#3|) . T))
-((((-791 |#1|)) . T) (($) . T) (((-375 (-501))) . T))
-((((-1070)) -12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959))))
-(((|#1|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-501) |#2|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
+((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961))))
+(((|#1|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-517) |#2|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#2|) |has| |#2| (-959)))
-(|has| |#1| (-1001))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) . T))
-(((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#2|) |has| |#2| (-961)))
+(|has| |#1| (-1003))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) . T))
+(((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) |has| |#1| (-156)) (($) . T))
(((|#1|) . T))
-((((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2| |#2|) . T) (($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((((-786)) . T))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
+((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-787)) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))))
-((((-986) |#1|) . T) (((-986) $) . T) (($ $) . T))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T) (($) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((($) . T))
-(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(((|#2|) |has| |#1| (-331)))
-(((|#1|) . T))
-(((|#2|) |has| |#2| (-1001)) (((-501)) -12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (((-375 (-501))) -12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001))))
-((((-501) |#1|) . T))
-(((|#1| (-375 (-501))) . T))
-((((-375 |#2|) |#3|) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-375 (-501))) . T) (($) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) . T))
+(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#2|) |has| |#1| (-333)))
+(((|#1|) . T))
+(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))))
+((((-517) |#1|) . T))
+(((|#1| (-377 (-517))) . T))
+((((-377 |#2|) |#3|) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
(|has| |#1| (-132))
(|has| |#1| (-134))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-375 (-501))) . T) (($) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-375 (-501))) . T) (($) . T))
-(((|#2| |#3| (-787 |#1|)) . T))
-((((-1070)) |has| |#2| (-820 (-1070))))
-(((|#1|) . T))
-(((|#1| (-487 |#2|) |#2|) . T))
-(((|#1| (-701) (-986)) . T))
-((((-375 (-501))) |has| |#2| (-331)) (($) . T))
-(((|#1| (-487 (-990 (-1070))) (-990 (-1070))) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(((|#1|) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(|has| |#2| (-723))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#2| (-775))
-((((-813 |#1|)) . T) (((-749 |#1|)) . T))
-((((-749 (-1070))) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-(((|#2|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-578 (-501))) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-490)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T))
-(|has| |#1| (-206))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) . T) (($) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-377 (-517))) . T) (($) . T))
+(((|#2| |#3| (-789 |#1|)) . T))
+((((-1073)) |has| |#2| (-822 (-1073))))
+(((|#1|) . T))
+(((|#1| (-489 |#2|) |#2|) . T))
+(((|#1| (-703) (-989)) . T))
+((((-377 (-517))) |has| |#2| (-333)) (($) . T))
+(((|#1| (-489 (-993 (-1073))) (-993 (-1073))) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#1|) . T))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(|has| |#2| (-725))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#2| (-777))
+((((-815 |#1|)) . T) (((-751 |#1|)) . T))
+((((-751 (-1073))) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+(((|#2|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-583 (-517))) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+(|has| |#1| (-207))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-1139 |#1| |#2| |#3|) $) -12 (|has| (-1139 |#1| |#2| |#3|) (-256 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-1146 |#1| |#2| |#3|) $) -12 (|has| (-1146 |#1| |#2| |#3|) (-258 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1035 |#1| |#2|)) |has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-(((|#2|) . T) (((-501)) |has| |#2| (-950 (-501))) (((-375 (-501))) |has| |#2| (-950 (-375 (-501)))))
-(((|#3| |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
+((((-1038 |#1| |#2|)) |has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
+(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
(((|#2|) . T))
-((((-786)) -1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) (((-1148 |#2|)) . T))
+((((-787)) -3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1153 |#2|)) . T))
(((|#1|) |has| |#1| (-156)))
-((((-501)) . T))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-501) (-131)) . T))
-((($) -1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) ((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959)))
-(((|#1|) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959)))
-(((|#2|) |has| |#1| (-331)))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((((-517)) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-517) (-131)) . T))
+((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(((|#1|) . T))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+(((|#2|) |has| |#1| (-333)))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) |has| |#1| (-156)))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| (-487 (-1070)) (-1070)) . T))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| (-489 (-1073)) (-1073)) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-156))
(|has| |#3| (-156))
-((((-375 (-866 |#1|)) (-375 (-866 |#1|))) . T))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(|has| |#1| (-1001))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(|has| |#1| (-1001))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
+((((-377 (-874 |#1|)) (-377 (-874 |#1|))) . T))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(|has| |#1| (-1003))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(|has| |#1| (-1003))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1| |#1|) |has| |#1| (-156)))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
-((((-375 (-866 |#1|))) . T))
+((((-377 (-874 |#1|))) . T))
(((|#1|) |has| |#1| (-156)))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-((((-786)) . T))
-((((-1136 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-959)) (((-501)) -12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((((-787)) . T))
+((((-1140 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-961)) (((-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))
(((|#1| |#2|) . T))
-(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-(|has| |#3| (-723))
-(-1405 (|has| |#3| (-723)) (|has| |#3| (-775)))
-(|has| |#3| (-775))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#2|) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))))
-(((|#2|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-(((|#1| (-1048 |#1|)) |has| |#1| (-775)))
-((((-501) |#2|) . T))
-(|has| |#1| (-1001))
-(((|#1|) . T))
-(-12 (|has| |#1| (-331)) (|has| |#2| (-1046)))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(|has| |#1| (-1001))
-(((|#2|) . T))
-((((-490)) |has| |#2| (-556 (-490))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501)))))
-(((|#4|) -1405 (|has| |#4| (-156)) (|has| |#4| (-331))))
-(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331))))
-((((-786)) . T))
-(((|#1|) . T))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-830)))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-830)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-830)))
-((($ $) . T) (((-1070) $) |has| |#1| (-206)) (((-1070) |#1|) |has| |#1| (-206)) (((-748 (-1070)) |#1|) . T) (((-748 (-1070)) $) . T))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-830)))
-((((-501) |#2|) . T))
-((((-786)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((($) -1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) ((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))))
-((((-501) |#1|) . T))
-(|has| (-375 |#2|) (-134))
-(|has| (-375 |#2|) (-132))
-(((|#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-278 |#2|))))
-(|has| |#1| (-37 (-375 (-501))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-375 (-501))) . T))
-((((-786)) . T))
-(|has| |#1| (-508))
-(|has| |#1| (-508))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-786)) . T))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
-(|has| |#1| (-37 (-375 (-501))))
-((((-356) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#2| (-1046))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(((|#1|) . T))
-((((-356) (-1053)) . T))
-(|has| |#1| (-508))
+(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(|has| |#3| (-725))
+(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(|has| |#3| (-777))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#2|) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+(((|#2|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+(((|#1| (-1054 |#1|)) |has| |#1| (-777)))
+((((-517) |#2|) . T))
+(|has| |#1| (-1003))
+(((|#1|) . T))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-1049)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(|has| |#1| (-1003))
+(((|#2|) . T))
+((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
+(((|#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333))))
+(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333))))
+((((-787)) . T))
+(((|#1|) . T))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-831)))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
+((($ $) . T) (((-1073) $) |has| |#1| (-207)) (((-1073) |#1|) |has| |#1| (-207)) (((-750 (-1073)) |#1|) . T) (((-750 (-1073)) $) . T))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+((((-517) |#2|) . T))
+((((-787)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((($) -3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))))
+((((-517) |#1|) . T))
+(|has| (-377 |#2|) (-134))
+(|has| (-377 |#2|) (-132))
+(((|#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))))
+(|has| |#1| (-37 (-377 (-517))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-377 (-517))) . T))
+((((-787)) . T))
+(|has| |#1| (-509))
+(|has| |#1| (-509))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-787)) . T))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+(|has| |#1| (-37 (-377 (-517))))
+((((-358) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#2| (-1049))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(((|#1|) . T))
+((((-358) (-1056)) . T))
+(|has| |#1| (-509))
((((-111 |#1|)) . T))
-((((-501) |#1|) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
+((((-517) |#1|) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
(((|#2|) . T))
-((((-786)) . T))
-((((-749 |#1|)) . T))
+((((-787)) . T))
+((((-751 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
-((((-1070) (-50)) . T))
+((((-1073) (-51)) . T))
(((|#1|) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-508))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-509))
(((|#1|) |has| |#1| (-156)))
-((((-786)) . T))
-((((-490)) |has| |#1| (-556 (-490))))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(((|#2|) |has| |#2| (-278 |#2|)))
-((((-501) (-501)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
+((((-787)) . T))
+((((-493)) |has| |#1| (-558 (-493))))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#2|) |has| |#2| (-280 |#2|)))
+((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1064 |#1|)) . T))
+(((|#1| (-1069 |#1|)) . T))
(|has| $ (-134))
(((|#2|) . T))
-((((-501) (-501)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-((($) . T) (((-501)) . T) (((-375 (-501))) . T))
-(|has| |#2| (-336))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-((((-501)) . T) (((-375 (-501))) . T) (($) . T))
+((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+((($) . T) (((-517)) . T) (((-377 (-517))) . T))
+(|has| |#2| (-338))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+((((-517)) . T) (((-377 (-517))) . T) (($) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-501)) . T) (((-375 (-501))) . T) (($) . T))
-((((-1068 |#1| |#2| |#3|) $) -12 (|has| (-1068 |#1| |#2| |#3|) (-256 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))) (($ $) . T))
-((((-786)) . T))
-((((-786)) . T))
-((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-786)) |has| |#1| (-1001)))
+((((-517)) . T) (((-377 (-517))) . T) (($) . T))
+((((-1071 |#1| |#2| |#3|) $) -12 (|has| (-1071 |#1| |#2| |#3|) (-258 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))) (($ $) . T))
+((((-787)) . T))
+((((-787)) . T))
+((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
((($ $) . T))
((($ $) . T))
-((((-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) -12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))) (((-1070) (-1139 |#1| |#2| |#3|)) -12 (|has| (-1139 |#1| |#2| |#3|) (-476 (-1070) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))))
-((((-786)) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((((-787)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) -12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1073) (-1146 |#1| |#2| |#3|)) -12 (|has| (-1146 |#1| |#2| |#3|) (-478 (-1073) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-375 (-501))) . T) (((-501)) . T))
-((((-501) (-131)) . T))
+((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-377 (-517))) . T) (((-517)) . T))
+((((-517) (-131)) . T))
((((-131)) . T))
(((|#1|) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959)))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
((((-107)) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((((-107)) . T))
(((|#1|) . T))
-((((-490)) |has| |#1| (-556 (-490))) (((-199)) |has| |#1| (-933)) (((-346)) |has| |#1| (-933)))
-((((-786)) . T))
-(|has| |#1| (-750))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(|has| |#1| (-777))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-508)))
-(|has| |#1| (-508))
-(|has| |#1| (-830))
-(((|#1|) . T))
-(|has| |#1| (-1001))
-((((-786)) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-508)))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-(((|#1| (-1148 |#1|) (-1148 |#1|)) . T))
-((((-501) (-131)) . T))
-((($) . T))
-(-1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959)))
-(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-((((-786)) . T))
-(|has| |#1| (-1001))
-(((|#1| (-886)) . T))
+((((-493)) |has| |#1| (-558 (-493))) (((-199)) |has| |#1| (-937)) (((-349)) |has| |#1| (-937)))
+((((-787)) . T))
+(|has| |#1| (-752))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(|has| |#1| (-779))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(|has| |#1| (-509))
+(|has| |#1| (-831))
+(((|#1|) . T))
+(|has| |#1| (-1003))
+((((-787)) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+(((|#1| (-1153 |#1|) (-1153 |#1|)) . T))
+((((-517) (-131)) . T))
+((($) . T))
+(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
+(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+((((-787)) . T))
+(|has| |#1| (-1003))
+(((|#1| (-888)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-(-12 (|has| |#1| (-440)) (|has| |#2| (-440)))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657))))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-12 (|has| |#1| (-442)) (|has| |#2| (-442)))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
(((|#1|) . T))
-(|has| |#2| (-723))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
+(|has| |#2| (-725))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(|has| |#2| (-775))
-(-12 (|has| |#1| (-723)) (|has| |#2| (-723)))
-(-12 (|has| |#1| (-723)) (|has| |#2| (-723)))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(|has| |#2| (-777))
+(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
+(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
-((((-786)) . T))
-(|has| |#1| (-318))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-375 (-501))) . T) (($) . T))
-((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) . T))
-(|has| |#1| (-751))
-((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T))
-(|has| |#1| (-1001))
-(((|#1| $) |has| |#1| (-256 |#1| |#1|)))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)))
-((($) |has| |#1| (-508)))
-(((|#4|) |has| |#4| (-1001)))
-(((|#3|) |has| |#3| (-1001)))
-(|has| |#3| (-336))
-(((|#1|) . T) (((-786)) . T))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))))
-((((-786)) . T))
-((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
+((((-787)) . T))
+(|has| |#1| (-319))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-377 (-517))) . T) (($) . T))
+((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
+(|has| |#1| (-760))
+((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
+(|has| |#1| (-1003))
+(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
+((($) |has| |#1| (-509)))
+(((|#4|) |has| |#4| (-1003)))
+(((|#3|) |has| |#3| (-1003)))
+(|has| |#3| (-338))
+(((|#1|) . T) (((-787)) . T))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((((-787)) . T))
+((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#2|) . T))
(((|#1| |#1|) |has| |#1| (-156)))
(((|#1| |#2|) . T))
-(|has| |#2| (-331))
+(|has| |#2| (-333))
(((|#1|) . T))
(((|#1|) |has| |#1| (-156)))
-((((-375 (-501))) . T) (((-501)) . T))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
+((((-377 (-517))) . T) (((-517)) . T))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
((((-131)) . T))
(((|#1|) . T))
((((-131)) . T))
-((($) -1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959))) ((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))))
+((($) -3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961))) ((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))))
((((-131)) . T))
(((|#1| |#2| |#3|) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959)))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
(|has| $ (-134))
(|has| $ (-134))
-(|has| |#1| (-1001))
-((((-786)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-440)) (|has| |#1| (-508)) (|has| |#1| (-959)) (|has| |#1| (-1012)))
-((($ $) |has| |#1| (-256 $ $)) ((|#1| $) |has| |#1| (-256 |#1| |#1|)))
-(((|#1| (-375 (-501))) . T))
-(((|#1|) . T))
-((((-1070)) . T))
-(|has| |#1| (-508))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(|has| |#1| (-508))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-((((-786)) . T))
+(|has| |#1| (-1003))
+((((-787)) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015)))
+((($ $) |has| |#1| (-258 $ $)) ((|#1| $) |has| |#1| (-258 |#1| |#1|)))
+(((|#1| (-377 (-517))) . T))
+(((|#1|) . T))
+((((-1073)) . T))
+(|has| |#1| (-509))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#1| (-509))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+((((-787)) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
(((|#2|) . T) (($) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(|has| |#4| (-775))
-(((|#2| (-212 (-3581 |#1|) (-701)) (-787 |#1|)) . T))
-(|has| |#3| (-775))
-(((|#1| (-487 |#3|) |#3|) . T))
+(|has| |#4| (-777))
+(((|#2| (-214 (-2296 |#1|) (-703)) (-789 |#1|)) . T))
+(|has| |#3| (-777))
+(((|#1| (-489 |#3|) |#3|) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-375 (-501)) (-375 (-501))) |has| |#2| (-331)) (($ $) . T))
-((((-791 |#1|)) . T))
+((((-377 (-517)) (-377 (-517))) |has| |#2| (-333)) (($ $) . T))
+((((-794 |#1|)) . T))
(|has| |#1| (-134))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
(|has| |#1| (-132))
-((((-375 (-501))) |has| |#2| (-331)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(-1405 (|has| |#1| (-318)) (|has| |#1| (-336)))
-((((-1037 |#2| |#1|)) . T) ((|#1|) . T))
+((((-377 (-517))) |has| |#2| (-333)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3807 (|has| |#1| (-319)) (|has| |#1| (-338)))
+((((-1040 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-156))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-206)) (|has| |#2| (-959)))
-(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(-1405 (|has| |#3| (-723)) (|has| |#3| (-775)))
-(-1405 (|has| |#3| (-723)) (|has| |#3| (-775)))
-((((-786)) . T))
+(-12 (|has| |#2| (-207)) (|has| |#2| (-961)))
+(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+((((-787)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-630)) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(|has| |#1| (-508))
+((((-632)) . T))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(|has| |#1| (-509))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1070) (-50)) . T))
-((((-786)) . T))
-((((-490)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T))
+((((-1073) (-51)) . T))
+((((-787)) . T))
+((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1|) . T))
-((((-786)) . T))
-((((-490)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T))
-(((|#1| (-501)) . T))
-((((-786)) . T))
-((((-786)) . T))
+((((-787)) . T))
+((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+(((|#1| (-517)) . T))
+((((-787)) . T))
+((((-787)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-375 (-501))) . T))
-(((|#3|) . T) (((-553 $)) . T))
+(((|#1| (-377 (-517))) . T))
+(((|#3|) . T) (((-556 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-((((-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) -12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))) (((-1070) (-1068 |#1| |#2| |#3|)) -12 (|has| (-1068 |#1| |#2| |#3|) (-476 (-1070) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))))
-((((-501)) . T) (($) . T) (((-375 (-501))) . T))
-((((-786)) . T))
-((((-786)) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+((((-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) -12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))) (((-1073) (-1071 |#1| |#2| |#3|)) -12 (|has| (-1071 |#1| |#2| |#3|) (-478 (-1073) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-517)) . T) (($) . T) (((-377 (-517))) . T))
+((((-787)) . T))
+((((-787)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))))
-((((-786)) . T))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))))
+((((-787)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1070) (-50)) . T))
+((((-1073) (-51)) . T))
(((|#3|) . T))
-((($ $) . T) (((-787 |#1|) $) . T) (((-787 |#1|) |#2|) . T))
-(|has| |#1| (-751))
-(|has| |#1| (-1001))
-(((|#2| |#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($ $) |has| |#2| (-156)))
-(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331))))
-((((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($) |has| |#2| (-156)))
-((((-701)) . T))
-((((-501)) . T))
-(|has| |#1| (-508))
-((((-786)) . T))
-(((|#1| (-375 (-501)) (-986)) . T))
+((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
+(|has| |#1| (-760))
+(|has| |#1| (-1003))
+(((|#2| |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
+(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333))))
+((((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
+((((-703)) . T))
+((((-517)) . T))
+(|has| |#1| (-509))
+((((-787)) . T))
+(((|#1| (-377 (-517)) (-989)) . T))
(|has| |#1| (-132))
(((|#1|) . T))
-(|has| |#1| (-508))
-((((-501)) . T))
+(|has| |#1| (-509))
+((((-517)) . T))
((((-111 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-134))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-508)))
-((((-810 (-501))) . T) (((-810 (-346))) . T) (((-490)) . T) (((-1070)) . T))
-((((-786)) . T))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-((($) . T))
-((((-786)) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+((((-814 (-517))) . T) (((-814 (-349))) . T) (((-493)) . T) (((-1073)) . T))
+((((-787)) . T))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+((($) . T))
+((((-787)) . T))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
(((|#2|) |has| |#2| (-156)))
-((($) -1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))) ((|#2|) |has| |#2| (-156)) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))))
-((((-791 |#1|)) . T))
-(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001)))
-(-12 (|has| |#3| (-206)) (|has| |#3| (-959)))
-(|has| |#2| (-1046))
-((((-50)) . T) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
+((($) -3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))) ((|#2|) |has| |#2| (-156)) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+((((-794 |#1|)) . T))
+(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(-12 (|has| |#3| (-207)) (|has| |#3| (-961)))
+(|has| |#2| (-1049))
+((((-51)) . T) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
(((|#1| |#2|) . T))
-(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-(((|#1| (-501) (-986)) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| (-375 (-501)) (-986)) . T))
-((($) -1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T))
-((((-501) |#2|) . T))
+(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(((|#1| (-517) (-989)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| (-377 (-517)) (-989)) . T))
+((($) -3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((((-517) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#2| (-336))
-(-12 (|has| |#1| (-336)) (|has| |#2| (-336)))
-((((-786)) . T))
-((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((|#1| |#1|) |has| |#1| (-278 |#1|)))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
-(((|#1|) . T))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))))
-((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-786)) . T))
-(|has| |#1| (-318))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
-(|has| |#1| (-508))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-786)) . T))
+(|has| |#2| (-338))
+(-12 (|has| |#1| (-338)) (|has| |#2| (-338)))
+((((-787)) . T))
+((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(((|#1|) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-787)) . T))
+(|has| |#1| (-319))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(|has| |#1| (-509))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-787)) . T))
(((|#1| |#2|) . T))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-830)))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-830)))
-((((-375 (-501))) . T) (((-501)) . T))
-((((-501)) . T))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((($) . T))
-((((-786)) . T))
-(((|#1|) . T))
-((((-791 |#1|)) . T) (($) . T) (((-375 (-501))) . T))
-((((-786)) . T))
-(((|#3| |#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))) (($ $) |has| |#3| (-156)))
-(|has| |#1| (-933))
-((((-786)) . T))
-(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))) (($) |has| |#3| (-156)))
-((((-501) (-107)) . T))
-(((|#1|) |has| |#1| (-278 |#1|)))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-((((-1070) $) |has| |#1| (-476 (-1070) $)) (($ $) |has| |#1| (-278 $)) ((|#1| |#1|) |has| |#1| (-278 |#1|)) (((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)))
-((((-1070)) |has| |#1| (-820 (-1070))))
-(-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))
-((((-356) (-1018)) . T))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-831)))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+((((-377 (-517))) . T) (((-517)) . T))
+((((-517)) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) . T))
+((((-787)) . T))
+(((|#1|) . T))
+((((-794 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-787)) . T))
+(((|#3| |#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($ $) |has| |#3| (-156)))
+(|has| |#1| (-937))
+((((-787)) . T))
+(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))) (($) |has| |#3| (-156)))
+((((-517) (-107)) . T))
+(((|#1|) |has| |#1| (-280 |#1|)))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+((((-1073) $) |has| |#1| (-478 (-1073) $)) (($ $) |has| |#1| (-280 $)) ((|#1| |#1|) |has| |#1| (-280 |#1|)) (((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)))
+((((-1073)) |has| |#1| (-822 (-1073))))
+(-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))
+((((-358) (-1021)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
-((((-356) |#1|) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-(|has| |#1| (-1001))
-((((-786)) . T))
-((((-786)) . T))
-((((-826 |#1|)) . T))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))))
+((((-358) |#1|) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(|has| |#1| (-1003))
+((((-787)) . T))
+((((-787)) . T))
+((((-832 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
-((((-791 |#1|)) |has| (-791 |#1|) (-278 (-791 |#1|))))
+((((-794 |#1|)) |has| (-794 |#1|) (-280 (-794 |#1|))))
(((|#1| |#2|) . T))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-(-12 (|has| |#1| (-723)) (|has| |#2| (-723)))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
(((|#1|) . T))
-(-12 (|has| |#1| (-723)) (|has| |#2| (-723)))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
+(-12 (|has| |#1| (-725)) (|has| |#2| (-725)))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(|has| |#1| (-1090))
-((((-501) (-501)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-((((-375 (-501))) . T) (($) . T))
-(((|#4|) |has| |#4| (-959)))
-(((|#3|) |has| |#3| (-959)))
-(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-(|has| |#1| (-331))
-((((-501)) . T) (((-375 (-501))) . T) (($) . T))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1| |#1|) . T))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T))
-((((-786)) . T))
-((((-786)) . T))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-501) |#3|) . T))
-((((-786)) . T))
-((((-490)) |has| |#3| (-556 (-490))))
-((((-621 |#3|)) . T) (((-786)) . T))
+(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(|has| |#1| (-1094))
+((((-517) (-517)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+((((-377 (-517))) . T) (($) . T))
+(((|#4|) |has| |#4| (-961)))
+(((|#3|) |has| |#3| (-961)))
+(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(|has| |#1| (-333))
+((((-517)) . T) (((-377 (-517))) . T) (($) . T))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1| |#1|) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
+((((-787)) . T))
+((((-787)) . T))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-517) |#3|) . T))
+((((-787)) . T))
+((((-493)) |has| |#3| (-558 (-493))))
+((((-623 |#3|)) . T) (((-787)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-775))
-(|has| |#1| (-775))
-((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-508)))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))))
-((($) . T))
-(|has| |#2| (-777))
-((($) . T))
-(((|#2|) |has| |#2| (-1001)))
-((((-786)) -1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) (((-1148 |#2|)) . T))
(|has| |#1| (-777))
(|has| |#1| (-777))
-((((-1053) (-50)) . T))
+((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))))
+((($) . T))
+(|has| |#2| (-779))
+((($) . T))
+(((|#2|) |has| |#2| (-1003)))
+((((-787)) -3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1153 |#2|)) . T))
+(|has| |#1| (-779))
+(|has| |#1| (-779))
+((((-1056) (-51)) . T))
+(|has| |#1| (-779))
+((((-787)) . T))
+((((-517)) |has| (-377 |#2|) (-579 (-517))) (((-377 |#2|)) . T))
+((((-517) (-131)) . T))
+((((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#1| |#2|) . T))
+((((-377 (-517))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-787)) . T))
+((((-832 |#1|)) . T))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
+(|has| |#1| (-777))
+(|has| |#1| (-333))
(|has| |#1| (-777))
-((((-786)) . T))
-((((-501)) |has| (-375 |#2|) (-577 (-501))) (((-375 |#2|)) . T))
-((((-501) (-131)) . T))
-((((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((|#1| |#2|) . T))
-((((-375 (-501))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-786)) . T))
-((((-826 |#1|)) . T))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))
-(|has| |#1| (-775))
-(|has| |#1| (-331))
-(|has| |#1| (-775))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-775))
-((((-1070)) |has| |#1| (-820 (-1070))))
-(((|#1| (-1070)) . T))
+(|has| |#1| (-777))
+((((-1073)) |has| |#1| (-822 (-1073))))
+(((|#1| (-1073)) . T))
+(((|#1| (-1153 |#1|) (-1153 |#1|)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-(|has| |#1| (-1001))
-(((|#1| (-1070) (-748 (-1070)) (-487 (-748 (-1070)))) . T))
-((((-375 (-866 |#1|))) . T))
-((((-490)) . T))
-((((-786)) . T))
+(|has| |#1| (-1003))
+(((|#1| (-1073) (-750 (-1073)) (-489 (-750 (-1073)))) . T))
+((((-377 (-874 |#1|))) . T))
+((((-493)) . T))
+((((-787)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-156)))
-((((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((|#1| |#2|) . T))
+((((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
-((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-156)))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-490)) |has| |#1| (-556 (-490))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#1| (-556 (-810 (-501)))))
-((((-786)) . T))
-(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(|has| |#2| (-775))
-(-12 (|has| |#2| (-206)) (|has| |#2| (-959)))
-(|has| |#1| (-508))
-(|has| |#1| (-1046))
-((((-1053) |#1|) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-((((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#1| |#1|) . T))
-((((-375 (-501))) |has| |#1| (-950 (-501))) (((-501)) |has| |#1| (-950 (-501))) (((-1070)) |has| |#1| (-950 (-1070))) ((|#1|) . T))
-((((-501) |#2|) . T))
-((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T))
-((((-501)) |has| |#1| (-806 (-501))) (((-346)) |has| |#1| (-806 (-346))))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#1|) . T))
-(((|#1|) . T))
-((((-578 |#4|)) . T) (((-786)) . T))
-((((-490)) |has| |#4| (-556 (-490))))
-((((-490)) |has| |#4| (-556 (-490))))
-((((-786)) . T) (((-578 |#4|)) . T))
-((($) |has| |#1| (-775)))
-(((|#1|) . T))
-((((-578 |#4|)) . T) (((-786)) . T))
-((((-490)) |has| |#4| (-556 (-490))))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1070)) |has| (-375 |#2|) (-820 (-1070))))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-786)) -1405 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-336)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959)) (|has| |#3| (-1001))) (((-1148 |#3|)) . T))
-((((-501) |#2|) . T))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(((|#2| |#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($ $) |has| |#2| (-156)))
-((((-786)) . T))
-((((-786)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((|#2|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-1053) (-1070) (-501) (-199) (-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-((((-786)) . T))
-((((-501) (-107)) . T))
-(((|#1|) . T))
-((((-786)) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-493)) |has| |#1| (-558 (-493))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))))
+((((-787)) . T))
+(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(|has| |#2| (-777))
+(-12 (|has| |#2| (-207)) (|has| |#2| (-961)))
+(|has| |#1| (-509))
+(|has| |#1| (-1049))
+((((-1056) |#1|) . T))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
+((((-377 (-517))) |has| |#1| (-952 (-517))) (((-517)) |has| |#1| (-952 (-517))) (((-1073)) |has| |#1| (-952 (-1073))) ((|#1|) . T))
+((((-517) |#2|) . T))
+((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
+((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349))))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
+(((|#1|) . T))
+((((-583 |#4|)) . T) (((-787)) . T))
+((((-493)) |has| |#4| (-558 (-493))))
+((((-493)) |has| |#4| (-558 (-493))))
+((((-787)) . T) (((-583 |#4|)) . T))
+((($) |has| |#1| (-777)))
+(((|#1|) . T))
+((((-583 |#4|)) . T) (((-787)) . T))
+((((-493)) |has| |#4| (-558 (-493))))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1073)) |has| (-377 |#2|) (-822 (-1073))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-787)) -3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-557 (-787))) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003))) (((-1153 |#3|)) . T))
+((((-517) |#2|) . T))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#2| |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($ $) |has| |#2| (-156)))
+((((-787)) . T))
+((((-787)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((|#2|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-1056) (-1073) (-517) (-199) (-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+((((-787)) . T))
+((((-517) (-107)) . T))
+(((|#1|) . T))
+((((-787)) . T))
((((-107)) . T))
((((-107)) . T))
-((((-786)) . T))
-((((-786)) . T))
+((((-787)) . T))
+((((-787)) . T))
((((-107)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-((((-786)) . T))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-786)) |has| |#1| (-1001)))
-(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-959))) (($) |has| |#2| (-156)))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+((((-787)) . T))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-961))) (($) |has| |#2| (-156)))
(|has| $ (-134))
-((((-375 |#2|)) . T))
-((((-375 (-501))) |has| (-375 |#2|) (-950 (-375 (-501)))) (((-501)) |has| (-375 |#2|) (-950 (-501))) (((-375 |#2|)) . T))
+((((-377 |#2|)) . T))
+((((-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) (((-517)) |has| (-377 |#2|) (-952 (-517))) (((-377 |#2|)) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-156)))
(|has| |#2| (-132))
@@ -1194,169 +1196,171 @@
(((|#3|) |has| |#3| (-156)))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-206))
-((((-1070) (-50)) . T))
-((((-786)) . T))
+(|has| |#2| (-207))
+((((-1073) (-51)) . T))
+((((-787)) . T))
(((|#1| |#1|) . T))
-((((-1070)) |has| |#2| (-820 (-1070))))
-((((-501) (-107)) . T))
-(|has| |#1| (-508))
+((((-1073)) |has| |#2| (-822 (-1073))))
+((((-517) (-107)) . T))
+(|has| |#1| (-509))
(((|#2|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
+(((|#1|) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
(((|#3|) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(((|#1|) . T))
-((((-786)) . T))
-((((-490)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-910 |#1|)) . T) ((|#1|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-375 (-501))) . T) (((-375 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1064 |#1|)) . T))
-((((-501)) . T) (($) . T) (((-375 (-501))) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(((|#1|) . T))
+((((-787)) . T))
+((((-493)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-915 |#1|)) . T) ((|#1|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1069 |#1|)) . T))
+((((-517)) . T) (($) . T) (((-377 (-517))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-777))
+(|has| |#1| (-779))
(((|#2|) . T))
-((((-501)) . T) (($) . T) (((-375 (-501))) . T))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
-((((-501) |#2|) . T))
-((((-786)) |has| |#1| (-1001)))
+((((-517)) . T) (($) . T) (((-377 (-517))) . T))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-517) |#2|) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#2|) . T))
-((((-501) |#3|) . T))
+((((-517) |#3|) . T))
(((|#2|) . T))
-((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-((((-786)) . T))
-(|has| |#1| (-1001))
-(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-(((|#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+((((-787)) . T))
+(|has| |#1| (-1003))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#2| (-331))
-(((|#2|) . T) (((-501)) |has| |#2| (-950 (-501))) (((-375 (-501))) |has| |#2| (-950 (-375 (-501)))))
+(|has| |#2| (-333))
+(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
(((|#2|) . T))
-((((-1053) (-50)) . T))
+((((-1056) (-51)) . T))
(((|#2|) |has| |#2| (-156)))
-((((-501) |#3|) . T))
-((((-501) (-131)) . T))
+((((-517) |#3|) . T))
+((((-517) (-131)) . T))
((((-131)) . T))
-((((-786)) . T))
+((((-787)) . T))
((((-107)) . T))
(|has| |#1| (-134))
(((|#1|) . T))
(|has| |#1| (-132))
((($) . T))
-(|has| |#1| (-508))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+(|has| |#1| (-509))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
((($) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501))))
-((((-786)) . T))
-((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T))
-((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T))
-((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T))
-((((-1053) (-50)) . T))
+(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
+((((-787)) . T))
+((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
+((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
+((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
+((((-1056) (-51)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1| |#2|) . T))
-((((-501) (-131)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
-((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(|has| |#1| (-777))
-(((|#2| (-701) (-986)) . T))
+((((-517) (-131)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#1| (-779))
+(((|#2| (-703) (-989)) . T))
(((|#1| |#2|) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-508)))
-(|has| |#1| (-721))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(|has| |#1| (-723))
(((|#1|) |has| |#1| (-156)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-1405 (|has| |#1| (-134)) (-12 (|has| |#1| (-331)) (|has| |#2| (-134))))
-(-1405 (|has| |#1| (-132)) (-12 (|has| |#1| (-331)) (|has| |#2| (-132))))
+(-3807 (|has| |#1| (-134)) (-12 (|has| |#1| (-333)) (|has| |#2| (-134))))
+(-3807 (|has| |#1| (-132)) (-12 (|has| |#1| (-333)) (|has| |#2| (-132))))
(((|#4|) . T))
(|has| |#1| (-132))
-((((-1053) |#1|) . T))
+((((-1056) |#1|) . T))
(|has| |#1| (-134))
(((|#1|) . T))
-((((-501)) . T))
-((((-786)) . T))
+((((-517)) . T))
+((((-787)) . T))
(((|#1| |#2|) . T))
-((((-786)) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((((-787)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#3|) . T))
-((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(((|#1|) . T))
-((((-786)) |has| |#1| (-1001)))
-((((-786)) |has| |#1| (-1001)) (((-877 |#1|)) . T))
-(|has| |#1| (-775))
-(|has| |#1| (-775))
-(|has| |#2| (-331))
+((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#1|) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))) (((-879 |#1|)) . T))
+(|has| |#1| (-777))
+(|has| |#1| (-777))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(|has| |#2| (-333))
(((|#1|) |has| |#1| (-156)))
-(((|#2|) |has| |#2| (-959)))
-((((-1053) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))
-(((|#2| (-813 |#1|)) . T))
-((($) . T))
-((((-356) (-1053)) . T))
-((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-786)) -1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001))) (((-1148 |#2|)) . T))
-((((-50)) . T) (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T))
-(((|#1|) . T))
-((((-786)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
+(((|#2|) |has| |#2| (-961)))
+((((-1056) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
+(((|#2| (-815 |#1|)) . T))
+((($) . T))
+((((-358) (-1056)) . T))
+((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-787)) -3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-557 (-787))) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003))) (((-1153 |#2|)) . T))
+((((-51)) . T) (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
+(((|#1|) . T))
+((((-787)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
((((-131)) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
-(|has| |#1| (-440))
-(-1405 (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)))
-(|has| |#1| (-331))
-((((-786)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)))
-((($) |has| |#1| (-508)))
-(|has| |#1| (-775))
-(|has| |#1| (-775))
-((((-786)) . T))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))))
-((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
+(|has| |#1| (-442))
+(-3807 (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
+(|has| |#1| (-333))
+((((-787)) . T))
+(|has| |#1| (-37 (-377 (-517))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
+((($) |has| |#1| (-509)))
+(|has| |#1| (-777))
+(|has| |#1| (-777))
+((((-787)) . T))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1| |#2|) . T))
-((((-1070)) |has| |#1| (-820 (-1070))))
-((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
-((((-786)) . T))
-((((-786)) . T))
-(|has| |#1| (-1001))
-(((|#2| (-448 (-3581 |#1|) (-701)) (-787 |#1|)) . T))
-((((-375 (-501))) |has| |#2| (-331)) (($) |has| |#2| (-331)))
-(((|#1| (-487 (-1070)) (-1070)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-786)) . T))
-((((-786)) . T))
+((((-1073)) |has| |#1| (-822 (-1073))))
+((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-787)) . T))
+((((-787)) . T))
+(|has| |#1| (-1003))
+(((|#2| (-450 (-2296 |#1|) (-703)) (-789 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-333)) (($) |has| |#2| (-333)))
+(((|#1| (-489 (-1073)) (-1073)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-787)) . T))
+((((-787)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1370,327 +1374,328 @@
(|has| |#1| (-134))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
-((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-1070) (-50)) . T))
+(((|#1|) . T) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-1073) (-51)) . T))
((($ $) . T))
-(((|#1| (-501)) . T))
-((((-826 |#1|)) . T))
-(((|#1|) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-959))) (($) -1405 (|has| |#1| (-820 (-1070))) (|has| |#1| (-959))))
-(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
+(((|#1| (-517)) . T))
+((((-832 |#1|)) . T))
+(((|#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))) (($) -3807 (|has| |#1| (-822 (-1073))) (|has| |#1| (-961))))
+(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+(|has| |#1| (-779))
+(|has| |#1| (-779))
+((((-517) |#2|) . T))
+((((-517)) . T))
+((((-1146 |#1| |#2| |#3|)) -12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+(|has| |#1| (-779))
+((((-623 |#2|)) . T) (((-787)) . T))
+(((|#1| |#2|) . T))
+((((-377 (-874 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#1|) |has| |#1| (-156)))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333))))
+(|has| |#2| (-779))
+(|has| |#1| (-779))
+(-3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-831)))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+((((-517) |#2|) . T))
+(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333))))
+(|has| |#1| (-319))
+(((|#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
+((($) . T) (((-377 (-517))) . T))
+((((-517) (-107)) . T))
+(|has| |#1| (-752))
+(|has| |#1| (-752))
+(((|#1|) . T))
+(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
(|has| |#1| (-777))
(|has| |#1| (-777))
-((((-501) |#2|) . T))
-((((-501)) . T))
-((((-1139 |#1| |#2| |#3|)) -12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))))
(|has| |#1| (-777))
-((((-621 |#2|)) . T) (((-786)) . T))
-(((|#1| |#2|) . T))
-((((-375 (-866 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-(((|#1|) |has| |#1| (-156)))
-(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331))))
-(|has| |#2| (-777))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-37 (-377 (-517))))
+((((-517)) . T) (($) . T) (((-377 (-517))) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(|has| |#1| (-37 (-377 (-517))))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-1073)) |has| |#1| (-822 (-1073))) (((-989)) . T))
+(((|#1|) . T))
(|has| |#1| (-777))
-(-1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-830)))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-((((-501) |#2|) . T))
-(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331))))
-(|has| |#1| (-318))
-(((|#3| |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))
-((($) . T) (((-375 (-501))) . T))
-((((-501) (-107)) . T))
-(|has| |#1| (-750))
-(|has| |#1| (-750))
-(((|#1|) . T))
-(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)))
-(|has| |#1| (-775))
-(|has| |#1| (-775))
-(|has| |#1| (-775))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-(|has| |#1| (-37 (-375 (-501))))
-((((-501)) . T) (($) . T) (((-375 (-501))) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-(|has| |#1| (-37 (-375 (-501))))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-1070)) |has| |#1| (-820 (-1070))) (((-986)) . T))
-(((|#1|) . T))
-(|has| |#1| (-775))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(|has| |#1| (-1003))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-(((|#1| |#2| |#3| (-212 |#2| |#3|) (-212 |#1| |#3|)) . T))
+(((|#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-487 |#2|) |#2|) . T))
-((((-786)) . T))
-(((|#1| (-701) (-986)) . T))
+(((|#1| (-489 |#2|) |#2|) . T))
+((((-787)) . T))
+(((|#1| (-703) (-989)) . T))
(((|#3|) . T))
(((|#1|) . T))
((((-131)) . T))
(((|#2|) |has| |#2| (-156)))
-(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001)))
+(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
(((|#1|) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#3| (-156))
-(((|#4|) |has| |#4| (-331)))
-(((|#3|) |has| |#3| (-331)))
+(((|#4|) |has| |#4| (-333)))
+(((|#3|) |has| |#3| (-333)))
(((|#1|) . T))
-(((|#2|) |has| |#1| (-331)))
+(((|#2|) |has| |#1| (-333)))
(((|#2|) . T))
-(((|#1| (-1064 |#1|)) . T))
-((((-986)) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
-((($) . T) ((|#1|) . T) (((-375 (-501))) . T))
+(((|#1| (-1069 |#1|)) . T))
+((((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((($) . T) ((|#1|) . T) (((-377 (-517))) . T))
(((|#2|) . T))
-((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)))
-((($) |has| |#1| (-775)))
-(|has| |#1| (-830))
-((((-786)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((($) |has| |#1| (-777)))
+(|has| |#1| (-831))
+((((-787)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-830)))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-830)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-831)))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331))))
-(|has| |#1| (-777))
-(|has| |#1| (-508))
-((((-528 |#1|)) . T))
+(((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333))))
+(|has| |#1| (-779))
+(|has| |#1| (-509))
+((((-530 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-750))) (-12 (|has| |#1| (-331)) (|has| |#2| (-777))))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-((((-826 |#1|)) . T))
-(((|#1| (-459 |#1| |#3|) (-459 |#1| |#2|)) . T))
+(-3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-752))) (-12 (|has| |#1| (-333)) (|has| |#2| (-779))))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((((-832 |#1|)) . T))
+(((|#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-701)) . T))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-156)) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))))
-((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
-((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T))
-((((-606 |#1|)) . T))
+(((|#1| (-703)) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))))
+((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-608 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-490)) . T))
-((((-786)) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-786)) . T))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-(((|#2|) . T))
-(-1405 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-336)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959)) (|has| |#3| (-1001)))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T))
-(|has| |#1| (-1090))
-(|has| |#1| (-1090))
-(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001)))
-(|has| |#1| (-1090))
-(|has| |#1| (-1090))
+((((-493)) . T))
+((((-787)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-787)) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+(((|#2|) . T))
+(-3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003)))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
+(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+(|has| |#1| (-1094))
+(|has| |#1| (-1094))
(((|#3| |#3|) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) . T) (((-375 |#1|) (-375 |#1|)) . T) ((|#1| |#1|) . T))
-((((-501)) . T) (($) . T) (((-375 (-501))) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) . T) (((-377 |#1|) (-377 |#1|)) . T) ((|#1| |#1|) . T))
+((((-517)) . T) (($) . T) (((-377 (-517))) . T))
(((|#3|) . T))
-((($) . T) (((-375 (-501))) . T) (((-375 |#1|)) . T) ((|#1|) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-((((-1053) (-50)) . T))
-(|has| |#1| (-1001))
-(-1405 (|has| |#2| (-750)) (|has| |#2| (-777)))
-(((|#1|) . T))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) . T) (((-377 |#1|)) . T) ((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+((((-1056) (-51)) . T))
+(|has| |#1| (-1003))
+(-3807 (|has| |#2| (-752)) (|has| |#2| (-779)))
+(((|#1|) . T))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
((($) . T))
-((((-1068 |#1| |#2| |#3|)) -12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))))
-((((-786)) . T))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-((($) . T))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-786)) . T))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-830)))
-(|has| |#2| (-830))
-(|has| |#1| (-331))
-(((|#2|) |has| |#2| (-1001)))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
+((((-1071 |#1| |#2| |#3|)) -12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))
+((((-787)) . T))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+((($) . T))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-787)) . T))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(|has| |#2| (-831))
+(|has| |#1| (-333))
+(((|#2|) |has| |#2| (-1003)))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
((($) . T) ((|#2|) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-830)))
-(|has| |#1| (-830))
-(|has| |#1| (-830))
-((((-490)) . T) (((-375 (-1064 (-501)))) . T) (((-199)) . T) (((-346)) . T))
-((((-346)) . T) (((-199)) . T) (((-786)) . T))
-(|has| |#1| (-830))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
+(|has| |#1| (-831))
+(|has| |#1| (-831))
+((((-493)) . T) (((-377 (-1069 (-517)))) . T) (((-199)) . T) (((-349)) . T))
+((((-349)) . T) (((-199)) . T) (((-787)) . T))
+(|has| |#1| (-831))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
((($ $) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
((($ $) . T))
-((((-501) (-107)) . T))
+((((-517) (-107)) . T))
((($) . T))
(((|#1|) . T))
-((((-501)) . T))
+((((-517)) . T))
((((-107)) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508)))
-(|has| |#1| (-37 (-375 (-501))))
-(((|#1| (-501)) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#1| (-37 (-377 (-517))))
+(((|#1| (-517)) . T))
((($) . T))
-(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501))))
-((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T))
+(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
+((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
(((|#1|) . T))
-((((-501)) . T))
+((((-517)) . T))
(((|#1| |#2|) . T))
-((((-1070)) |has| |#1| (-959)))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
+((((-1073)) |has| |#1| (-961)))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
(((|#1|) . T))
-((((-786)) . T))
-(((|#1| (-501)) . T))
-(((|#1| (-1139 |#1| |#2| |#3|)) . T))
+((((-787)) . T))
+(((|#1| (-517)) . T))
+(((|#1| (-1146 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-375 (-501))) . T))
-(((|#1| (-1109 |#1| |#2| |#3|)) . T))
-(((|#1| (-701)) . T))
+(((|#1| (-377 (-517))) . T))
+(((|#1| (-1118 |#1| |#2| |#3|)) . T))
+(((|#1| (-703)) . T))
(((|#1|) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-786)) . T))
-(|has| |#1| (-1001))
-((((-1053) |#1|) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-787)) . T))
+(|has| |#1| (-1003))
+((((-1056) |#1|) . T))
((($) . T))
(|has| |#2| (-134))
(|has| |#2| (-132))
-(((|#1| (-487 (-748 (-1070))) (-748 (-1070))) . T))
-((((-1136 |#1| |#2| |#3| |#4|)) . T))
-((((-1136 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-959)))
-((((-501) (-107)) . T))
-((((-786)) |has| |#1| (-1001)))
+(((|#1| (-489 (-750 (-1073))) (-750 (-1073))) . T))
+((((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-1140 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-961)))
+((((-517) (-107)) . T))
+((((-787)) |has| |#1| (-1003)))
(|has| |#2| (-156))
-((((-501)) . T))
-(|has| |#2| (-775))
+((((-517)) . T))
+(|has| |#2| (-777))
(((|#1|) . T))
-((((-501)) . T))
-((((-786)) . T))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-318)))
-((((-786)) . T))
+((((-517)) . T))
+((((-787)) . T))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-319)))
+((((-787)) . T))
(|has| |#1| (-134))
(((|#3|) . T))
-(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-((((-786)) . T))
-((((-1130 |#2| |#3| |#4|)) . T) (((-1136 |#1| |#2| |#3| |#4|)) . T))
-((((-786)) . T))
-((((-47)) -12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501)))) (((-553 $)) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) -1405 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501)))) (|has| |#1| (-950 (-375 (-501))))) (((-375 (-866 |#1|))) |has| |#1| (-508)) (((-866 |#1|)) |has| |#1| (-959)) (((-1070)) . T))
+(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+((((-787)) . T))
+((((-1139 |#2| |#3| |#4|)) . T) (((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-787)) . T))
+((((-47)) -12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (((-556 $)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) -3807 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))) (((-377 (-874 |#1|))) |has| |#1| (-509)) (((-874 |#1|)) |has| |#1| (-961)) (((-1073)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-701)) . T))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) |has| |#1| (-156)))
-(((|#1|) |has| |#1| (-278 |#1|)))
-((((-1136 |#1| |#2| |#3| |#4|)) . T))
-((((-501)) |has| |#1| (-806 (-501))) (((-346)) |has| |#1| (-806 (-346))))
+(((|#1| (-703)) . T))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
+(((|#1|) |has| |#1| (-280 |#1|)))
+((((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349))))
(((|#1|) . T))
-(|has| |#1| (-508))
+(|has| |#1| (-509))
(((|#1|) . T))
-((((-786)) . T))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
+((((-787)) . T))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
(((|#1|) |has| |#1| (-156)))
-((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
+((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(((|#1|) . T))
-(((|#3|) |has| |#3| (-1001)))
-(((|#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-331))))
-((((-1130 |#2| |#3| |#4|)) . T))
+(((|#3|) |has| |#3| (-1003)))
+(((|#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-333))))
+((((-1139 |#2| |#3| |#4|)) . T))
((((-107)) . T))
-(|has| |#1| (-750))
-(|has| |#1| (-750))
-(((|#1| (-501) (-986)) . T))
-((($) |has| |#1| (-278 $)) ((|#1|) |has| |#1| (-278 |#1|)))
-(|has| |#1| (-775))
-(|has| |#1| (-775))
-(((|#1| (-501) (-986)) . T))
-(-1405 (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(((|#1| (-375 (-501)) (-986)) . T))
-(((|#1| (-701) (-986)) . T))
+(|has| |#1| (-752))
+(|has| |#1| (-752))
+(((|#1| (-517) (-989)) . T))
+((($) |has| |#1| (-280 $)) ((|#1|) |has| |#1| (-280 |#1|)))
(|has| |#1| (-777))
-((((-826 |#1|) (-826 |#1|)) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
+(|has| |#1| (-777))
+(((|#1| (-517) (-989)) . T))
+(-3807 (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(((|#1| (-377 (-517)) (-989)) . T))
+(((|#1| (-703) (-989)) . T))
+(|has| |#1| (-779))
+((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
(((|#2|) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(|has| |#1| (-1001))
-((((-826 |#1|)) . T) (($) . T) (((-375 (-501))) . T))
-(|has| |#1| (-1001))
+(|has| |#1| (-1003))
+((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+(|has| |#1| (-1003))
(((|#1|) . T))
-(|has| |#1| (-1001))
-((((-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-577 (-501)))) ((|#2|) |has| |#1| (-331)))
-(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001)))
+(|has| |#1| (-1003))
+((((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((|#2|) |has| |#1| (-333)))
+(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
-((((-786)) . T))
-(|has| |#3| (-775))
-((((-786)) . T))
-((((-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) . T))
-((((-786)) . T))
-(((|#1| |#1|) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-959))))
-(((|#1|) . T))
-((((-501)) . T))
-((((-501)) . T))
-(((|#1|) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-959))))
-(((|#2|) |has| |#2| (-331)))
-((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-331)))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-787)) . T))
+(|has| |#3| (-777))
+((((-787)) . T))
+((((-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
+((((-787)) . T))
+(((|#1| |#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))))
+(((|#1|) . T))
+((((-517)) . T))
+((((-517)) . T))
+(((|#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-961))))
+(((|#2|) |has| |#2| (-333)))
+((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-333)))
+(|has| |#1| (-779))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-831)))
+(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
+((((-787)) . T))
+((((-787)) . T))
+((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-787)) . T))
+(|has| |#1| (-37 (-377 (-517))))
+((((-517)) . T) (($) . T) (((-377 (-517))) . T))
+((((-517)) . T) (($) . T) (((-377 (-517))) . T))
+(|has| |#1| (-207))
+(((|#1|) . T))
+(((|#1| (-517)) . T))
(|has| |#1| (-777))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-830)))
-(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501))))
-((((-786)) . T))
-((((-786)) . T))
-((((-490)) . T) (((-501)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T))
-((((-786)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-((((-501)) . T) (($) . T) (((-375 (-501))) . T))
-((((-501)) . T) (($) . T) (((-375 (-501))) . T))
-(|has| |#1| (-206))
-(((|#1|) . T))
-(((|#1| (-501)) . T))
-(|has| |#1| (-775))
-(((|#1| (-1068 |#1| |#2| |#3|)) . T))
+(((|#1| (-1071 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-375 (-501))) . T))
-(((|#1| (-1061 |#1| |#2| |#3|)) . T))
-(((|#1| (-701)) . T))
+(((|#1| (-377 (-517))) . T))
+(((|#1| (-1064 |#1| |#2| |#3|)) . T))
+(((|#1| (-703)) . T))
(((|#1|) . T))
-(((|#1| |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) . T))
+(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-132))
@@ -1699,1490 +1704,1495 @@
(|has| |#1| (-132))
(((|#1| |#2|) . T))
((((-131)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(((|#1|) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-((((-786)) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-786)) |has| |#1| (-1001)))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-(|has| (-375 |#2|) (-206))
-(|has| |#1| (-830))
-(((|#2|) |has| |#2| (-959)))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
-(|has| |#1| (-331))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(((|#1|) . T))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+((((-787)) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+(|has| (-377 |#2|) (-207))
+(|has| |#1| (-831))
+(((|#2|) |has| |#2| (-961)))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+(|has| |#1| (-333))
(((|#1|) |has| |#1| (-156)))
(((|#1| |#1|) . T))
-((((-791 |#1|)) . T))
-((((-786)) . T))
+((((-794 |#1|)) . T))
+((((-787)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1001)))
-(|has| |#2| (-777))
+(((|#2|) |has| |#2| (-1003)))
+(|has| |#2| (-779))
(((|#1|) . T))
-((((-375 (-501))) . T) (((-501)) . T) (((-553 $)) . T))
+((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T))
(((|#1|) . T))
-((((-786)) . T))
+((((-787)) . T))
((($) . T))
-(|has| |#1| (-777))
-((((-786)) . T))
-(((|#1| (-487 |#2|) |#2|) . T))
-(((|#1| (-501) (-986)) . T))
-((((-826 |#1|)) . T))
-((((-786)) . T))
+(|has| |#1| (-779))
+((((-787)) . T))
+(((|#1| (-489 |#2|) |#2|) . T))
+(((|#1| (-517) (-989)) . T))
+((((-832 |#1|)) . T))
+((((-787)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-375 (-501)) (-986)) . T))
-(((|#1| (-701) (-986)) . T))
-((((-375 |#2|) (-375 |#2|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-(((|#1|) . T) (((-501)) -1405 (|has| (-375 (-501)) (-950 (-501))) (|has| |#1| (-950 (-501)))) (((-375 (-501))) . T))
-(((|#1| (-546 |#1| |#3|) (-546 |#1| |#2|)) . T))
+(((|#1| (-377 (-517)) (-989)) . T))
+(((|#1| (-703) (-989)) . T))
+((((-377 |#2|) (-377 |#2|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(((|#1|) . T) (((-517)) -3807 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) . T))
+(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T))
-(|has| |#2| (-206))
-(((|#2| (-487 (-787 |#1|)) (-787 |#1|)) . T))
-((((-786)) . T))
-((($) |has| |#1| (-508)) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-786)) . T))
+((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
+(|has| |#2| (-207))
+(((|#2| (-489 (-789 |#1|)) (-789 |#1|)) . T))
+((((-787)) . T))
+((($) |has| |#1| (-509)) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-787)) . T))
(((|#1| |#3|) . T))
-((((-786)) . T))
+((((-787)) . T))
(((|#1|) |has| |#1| (-156)))
-((((-630)) . T))
-((((-630)) . T))
+((((-632)) . T))
+((((-632)) . T))
(((|#2|) |has| |#2| (-156)))
-(|has| |#2| (-775))
-((((-107)) |has| |#1| (-1001)) (((-786)) -1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)) (|has| |#1| (-1012)) (|has| |#1| (-1001))))
+(|has| |#2| (-777))
+((((-107)) |has| |#1| (-1003)) (((-787)) -3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T))
-((((-786)) . T))
-((((-501) |#1|) . T))
-((((-630)) . T) (((-375 (-501))) . T) (((-501)) . T))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
+((((-787)) . T))
+((((-517) |#1|) . T))
+((((-632)) . T) (((-377 (-517))) . T) (((-517)) . T))
(((|#1| |#1|) |has| |#1| (-156)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
-((((-346)) . T))
-((((-630)) . T))
-((((-375 (-501))) |has| |#2| (-331)) (($) |has| |#2| (-331)))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+((((-349)) . T))
+((((-632)) . T))
+((((-377 (-517))) |has| |#2| (-333)) (($) |has| |#2| (-333)))
(((|#1|) |has| |#1| (-156)))
-((((-375 (-866 |#1|))) . T))
+((((-377 (-874 |#1|))) . T))
(((|#2| |#2|) . T))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(((|#2|) . T))
-(|has| |#2| (-777))
-(((|#3|) |has| |#3| (-959)))
-(|has| |#2| (-830))
-(|has| |#1| (-830))
-(|has| |#1| (-331))
-(|has| |#1| (-777))
-((((-1070)) |has| |#2| (-820 (-1070))))
-((((-786)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-375 (-501))) . T) (($) . T))
-(|has| |#1| (-440))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-331))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-440)) (|has| |#1| (-508)) (|has| |#1| (-959)) (|has| |#1| (-1012)))
-(|has| |#1| (-37 (-375 (-501))))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#2|) . T))
+(|has| |#2| (-779))
+(((|#3|) |has| |#3| (-961)))
+(|has| |#2| (-831))
+(|has| |#1| (-831))
+(|has| |#1| (-333))
+(|has| |#1| (-779))
+((((-1073)) |has| |#2| (-822 (-1073))))
+((((-787)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-442))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-333))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-442)) (|has| |#1| (-509)) (|has| |#1| (-961)) (|has| |#1| (-1015)))
+(|has| |#1| (-37 (-377 (-517))))
((((-111 |#1|)) . T))
((((-111 |#1|)) . T))
-(|has| |#1| (-318))
+(|has| |#1| (-319))
((((-131)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-((($) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(((|#2|) . T) (((-786)) . T))
-(((|#2|) . T) (((-786)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-777))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
+(|has| |#1| (-37 (-377 (-517))))
+((($) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(((|#2|) . T) (((-787)) . T))
+(((|#2|) . T) (((-787)) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-779))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) ((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) ((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(((|#2|) . T))
(((|#3|) . T))
((((-111 |#1|)) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-777))
-(((|#2|) . T) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T))
+(|has| |#1| (-338))
+(|has| |#1| (-779))
+(((|#2|) . T) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
((((-111 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) . T))
-((((-501)) . T))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-((((-786)) . T))
-((((-786)) . T))
-((((-490)) |has| |#1| (-556 (-490))) (((-810 (-501))) |has| |#1| (-556 (-810 (-501)))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346)))) (((-346)) |has| |#1| (-933)) (((-199)) |has| |#1| (-933)))
-(((|#1|) |has| |#1| (-331)))
-((((-786)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((($ $) . T) (((-553 $) $) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-((($) . T) (((-1136 |#1| |#2| |#3| |#4|)) . T) (((-375 (-501))) . T))
-((($) -1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-508)))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-((((-346)) . T) (((-501)) . T) (((-375 (-501))) . T))
-((((-578 (-710 |#1| (-787 |#2|)))) . T) (((-786)) . T))
-((((-490)) |has| (-710 |#1| (-787 |#2|)) (-556 (-490))))
-((((-346)) . T))
-(((|#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))
-((((-786)) . T))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-830)))
-(((|#1|) . T))
-(|has| |#1| (-777))
-(|has| |#1| (-777))
-((((-786)) |has| |#1| (-1001)))
-((((-490)) |has| |#1| (-556 (-490))))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
-(|has| |#1| (-1001))
-((((-786)) . T))
-((((-375 (-501))) . T) (((-501)) . T) (((-553 $)) . T))
+((((-517)) . T))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+((((-787)) . T))
+((((-787)) . T))
+((((-493)) |has| |#1| (-558 (-493))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))) (((-349)) |has| |#1| (-937)) (((-199)) |has| |#1| (-937)))
+(((|#1|) |has| |#1| (-333)))
+((((-787)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((($ $) . T) (((-556 $) $) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((($) . T) (((-1140 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T))
+((($) -3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+((((-349)) . T) (((-517)) . T) (((-377 (-517))) . T))
+((((-583 (-712 |#1| (-789 |#2|)))) . T) (((-787)) . T))
+((((-493)) |has| (-712 |#1| (-789 |#2|)) (-558 (-493))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-349)) . T))
+(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
+((((-787)) . T))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-831)))
+(((|#1|) . T))
+(|has| |#1| (-779))
+(|has| |#1| (-779))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+(|has| |#1| (-1003))
+((((-787)) . T))
+((((-377 (-517))) . T) (((-517)) . T) (((-556 $)) . T))
(|has| |#1| (-132))
(|has| |#1| (-134))
-((((-501)) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-((((-1130 |#2| |#3| |#4|)) . T) (((-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501)))) (($) . T))
-((((-501)) . T))
-(-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-134)) (|has| |#1| (-331))) (|has| |#1| (-134)))
-(-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-132)) (|has| |#1| (-331))) (|has| |#1| (-132)))
-(|has| |#1| (-331))
+((((-517)) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((((-1139 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))) (($) . T))
+((((-517)) . T))
+(|has| |#1| (-333))
+(-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
+(-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
+(|has| |#1| (-333))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(|has| |#1| (-331))
(|has| |#1| (-134))
(|has| |#1| (-132))
-(|has| |#1| (-206))
-(|has| |#1| (-331))
+(|has| |#1| (-207))
+(|has| |#1| (-333))
(((|#3|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-501)) |has| |#2| (-577 (-501))) ((|#2|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-517)) |has| |#2| (-579 (-517))) ((|#2|) . T))
(((|#2|) . T))
+(|has| |#1| (-1003))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501))))
+(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
(((|#3|) |has| |#3| (-156)))
-(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001)))
-((((-501)) . T))
-(((|#1| $) |has| |#1| (-256 |#1| |#1|)))
-((((-375 (-501))) . T) (($) . T) (((-375 |#1|)) . T) ((|#1|) . T))
-((((-786)) . T))
+(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+((((-517)) . T))
+(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
+((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T))
+((((-787)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-260)) (|has| |#1| (-331))) (((-375 (-501)) (-375 (-501))) |has| |#1| (-331)))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
-((($) . T))
-((((-501) |#1|) . T))
-((((-1070)) |has| (-375 |#2|) (-820 (-1070))))
-(((|#1|) . T) (($) -1405 (|has| |#1| (-260)) (|has| |#1| (-331))) (((-375 (-501))) |has| |#1| (-331)))
-((((-490)) |has| |#2| (-556 (-490))))
-((((-621 |#2|)) . T) (((-786)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-((((-791 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(-1405 (|has| |#4| (-723)) (|has| |#4| (-775)))
-(-1405 (|has| |#3| (-723)) (|has| |#3| (-775)))
-((((-786)) . T))
-((((-786)) . T))
-(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-(((|#2|) |has| |#2| (-959)))
-(((|#1|) . T))
-((((-375 |#2|)) . T))
-(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))
-((((-501) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-501)) . T) (($) . T) (((-375 (-501))) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-375 (-501))) . T) (($) . T))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-1108)))
-((($) . T))
-((((-375 (-501))) |has| (-375 |#2|) (-950 (-375 (-501)))) (((-501)) |has| (-375 |#2|) (-950 (-501))) (((-375 |#2|)) . T))
-(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501))))
-(((|#1| (-701)) . T))
+(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517)) (-377 (-517))) |has| |#1| (-333)))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((($) . T))
+((((-517) |#1|) . T))
+((((-1073)) |has| (-377 |#2|) (-822 (-1073))))
+(((|#1|) . T) (($) -3807 (|has| |#1| (-262)) (|has| |#1| (-333))) (((-377 (-517))) |has| |#1| (-333)))
+((((-493)) |has| |#2| (-558 (-493))))
+((((-623 |#2|)) . T) (((-787)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+((((-794 |#1|)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(-3807 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+((((-787)) . T))
+((((-787)) . T))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#2|) |has| |#2| (-961)))
+(((|#1|) . T))
+((((-377 |#2|)) . T))
+(((|#1|) . T))
+(((|#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))
+((((-517) |#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-517)) . T) (($) . T) (((-377 (-517))) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-377 (-517))) . T) (($) . T))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-1112)))
+((($) . T))
+((((-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) (((-517)) |has| (-377 |#2|) (-952 (-517))) (((-377 |#2|)) . T))
+(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
+(((|#1| (-703)) . T))
+(|has| |#1| (-779))
+(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((((-517)) . T))
+(|has| |#1| (-37 (-377 (-517))))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(|has| |#1| (-777))
-(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501))))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T))
-((((-501)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(|has| |#1| (-775))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-318))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-319))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
(((|#1| |#2|) . T))
((((-131)) . T))
-((((-710 |#1| (-787 |#2|))) . T))
-((((-786)) |has| |#1| (-1001)))
-(|has| |#1| (-1090))
-(((|#1|) . T))
-(-1405 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-336)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959)) (|has| |#3| (-1001)))
-((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)))
-(((|#2|) . T))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-826 |#1|)) . T))
-((($) . T))
-((((-375 (-866 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-490)) |has| |#4| (-556 (-490))))
-((((-786)) . T) (((-578 |#4|)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(((|#1|) . T))
-(|has| |#1| (-775))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) |has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))))
-(|has| |#1| (-1001))
-(|has| |#1| (-331))
+((((-712 |#1| (-789 |#2|))) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(|has| |#1| (-1094))
+(((|#1|) . T))
+(-3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-338)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)) (|has| |#3| (-1003)))
+((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)))
+(((|#2|) . T))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-832 |#1|)) . T))
+((($) . T))
+((((-377 (-874 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-493)) |has| |#4| (-558 (-493))))
+((((-787)) . T) (((-583 |#4|)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(((|#1|) . T))
(|has| |#1| (-777))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) |has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))))
+(|has| |#1| (-1003))
+(|has| |#1| (-333))
+(|has| |#1| (-779))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-375 (-501))) . T))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) |has| |#1| (-156)))
+((($) . T) (((-377 (-517))) . T))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) |has| |#1| (-156)))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-134)) (|has| |#1| (-331))) (|has| |#1| (-134)))
-(-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-132)) (|has| |#1| (-331))) (|has| |#1| (-132)))
+(-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-134)) (|has| |#1| (-333))) (|has| |#1| (-134)))
+(-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132)))
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-786)) |has| |#1| (-1001)))
-((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)))
-(|has| |#1| (-775))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(|has| |#1| (-777))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501))))
-((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T))
-((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
-(|has| |#1| (-1001))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T) (((-501)) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
+((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
+((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-1003))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T) (((-517)) . T))
(|has| |#2| (-132))
(|has| |#2| (-134))
-((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
-(|has| |#1| (-1001))
+((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-1003))
(((|#2|) |has| |#2| (-156)))
(((|#2|) . T))
(((|#1| |#1|) . T))
-(((|#3|) |has| |#3| (-331)))
-((((-375 |#2|)) . T))
-((((-786)) . T))
-(((|#1|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((|#1| |#1|) |has| |#1| (-278 |#1|)))
-(((|#1|) -1405 (|has| |#1| (-156)) (|has| |#1| (-331))))
-((((-282 |#1|)) . T))
-(((|#2|) |has| |#2| (-331)))
-(((|#2|) . T))
-((((-375 (-501))) . T) (((-630)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) |has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))))
-((((-787 |#1|)) . T))
+(((|#3|) |has| |#3| (-333)))
+((((-377 |#2|)) . T))
+((((-787)) . T))
+(((|#1|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(((|#1|) -3807 (|has| |#1| (-156)) (|has| |#1| (-333))))
+((((-286 |#1|)) . T))
+(((|#2|) |has| |#2| (-333)))
+(((|#2|) . T))
+((((-377 (-517))) . T) (((-632)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))))
+((((-789 |#1|)) . T))
(((|#2|) |has| |#2| (-156)))
(((|#1|) |has| |#1| (-156)))
(((|#2|) . T))
-((((-1070)) |has| |#1| (-820 (-1070))) (((-986)) . T))
-((((-1070)) |has| |#1| (-820 (-1070))) (((-990 (-1070))) . T))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(|has| |#1| (-37 (-375 (-501))))
-(((|#4|) |has| |#4| (-959)) (((-501)) -12 (|has| |#4| (-577 (-501))) (|has| |#4| (-959))))
-(((|#3|) |has| |#3| (-959)) (((-501)) -12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959))))
+((((-1073)) |has| |#1| (-822 (-1073))) (((-989)) . T))
+((((-1073)) |has| |#1| (-822 (-1073))) (((-993 (-1073))) . T))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(|has| |#1| (-37 (-377 (-517))))
+(((|#4|) |has| |#4| (-961)) (((-517)) -12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961))))
+(((|#3|) |has| |#3| (-961)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))
(|has| |#1| (-132))
(|has| |#1| (-134))
((($ $) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)) (|has| |#1| (-1012)) (|has| |#1| (-1001)))
-(|has| |#1| (-508))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003)))
+(|has| |#1| (-509))
(((|#2|) . T))
-((((-501)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
+((((-517)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959)))
-((((-528 |#1|)) . T))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+((((-530 |#1|)) . T))
((($) . T))
-(((|#1| (-56 |#1|) (-56 |#1|)) . T))
+(((|#1| (-57 |#1|) (-57 |#1|)) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-786)) . T))
-(((|#2|) |has| |#2| (-6 (-4169 "*"))))
+((((-787)) . T))
+(((|#2|) |has| |#2| (-6 (-4182 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-375 (-501))) |has| |#2| (-950 (-375 (-501)))) (((-501)) |has| |#2| (-950 (-501))) ((|#2|) . T) (((-787 |#1|)) . T))
-((($) . T) (((-111 |#1|)) . T) (((-375 (-501))) . T))
-((((-1023 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
-((((-1064 |#1|)) . T) (((-986)) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
-((((-1023 |#1| (-1070))) . T) (((-990 (-1070))) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-1070)) . T))
-(|has| |#1| (-1001))
+((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((($) . T) (((-111 |#1|)) . T) (((-377 (-517))) . T))
+((((-1026 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((((-1069 |#1|)) . T) (((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((((-1026 |#1| (-1073))) . T) (((-993 (-1073))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1073)) . T))
+(|has| |#1| (-1003))
((($) . T))
-(|has| |#1| (-1001))
-((((-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#2| (-806 (-501)))) (((-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#2| (-806 (-346)))))
+(|has| |#1| (-1003))
+((((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))) (((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349)))))
(((|#1| |#2|) . T))
-((((-1070) |#1|) . T))
+((((-1073) |#1|) . T))
(((|#4|) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-((((-1070) (-50)) . T))
-((((-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) . T))
-((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T))
-((((-786)) . T))
-(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-336)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)) (|has| |#2| (-1001)))
-((((-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-156)) (((-375 (-501)) (-375 (-501))) |has| |#1| (-508)) (($ $) |has| |#1| (-508)))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T))
-(((|#1| $) |has| |#1| (-256 |#1| |#1|)))
-((((-1136 |#1| |#2| |#3| |#4|)) . T) (((-375 (-501))) . T) (($) . T))
-(((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-508)) (($) |has| |#1| (-508)))
-(|has| |#1| (-331))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-1073) (-51)) . T))
+((((-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) . T))
+((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T))
+((((-787)) . T))
+(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-338)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)) (|has| |#2| (-1003)))
+((((-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-156)) (((-377 (-517)) (-377 (-517))) |has| |#1| (-509)) (($ $) |has| |#1| (-509)))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
+(((|#1| $) |has| |#1| (-258 |#1| |#1|)))
+((((-1140 |#1| |#2| |#3| |#4|)) . T) (((-377 (-517))) . T) (($) . T))
+(((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-509)) (($) |has| |#1| (-509)))
+(|has| |#1| (-333))
(|has| |#1| (-132))
(|has| |#1| (-134))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((((-375 (-501))) . T) (($) . T))
-(((|#3|) |has| |#3| (-331)))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
-((((-1070)) . T))
+((((-377 (-517))) . T) (($) . T))
+(((|#3|) |has| |#3| (-333)))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+((((-1073)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
(((|#2| |#3|) . T))
-(-1405 (|has| |#2| (-331)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(((|#1| (-487 |#2|)) . T))
-(((|#1| (-701)) . T))
-(((|#1| (-487 (-990 (-1070)))) . T))
+(-3807 (|has| |#2| (-333)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(((|#1| (-489 |#2|)) . T))
+(((|#1| (-703)) . T))
+(((|#1| (-489 (-993 (-1073)))) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(|has| |#2| (-830))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-((((-786)) . T))
-((($ $) . T) (((-1130 |#2| |#3| |#4|) (-1130 |#2| |#3| |#4|)) . T) (((-375 (-501)) (-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501)))))
-((((-826 |#1|)) . T))
-(-12 (|has| |#1| (-331)) (|has| |#2| (-750)))
-((($) . T) (((-375 (-501))) . T))
+(|has| |#2| (-831))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+((((-787)) . T))
+((($ $) . T) (((-1139 |#2| |#3| |#4|) (-1139 |#2| |#3| |#4|)) . T) (((-377 (-517)) (-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+((((-832 |#1|)) . T))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
+((($) . T) (((-377 (-517))) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-331))
-(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)) (|has| |#1| (-508)))
-(|has| |#1| (-331))
-((($) . T) (((-1130 |#2| |#3| |#4|)) . T) (((-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501)))))
+(|has| |#1| (-333))
+(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)) (|has| |#1| (-509)))
+(|has| |#1| (-333))
+((($) . T) (((-1139 |#2| |#3| |#4|)) . T) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))
(((|#1| |#2|) . T))
-((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)))
-(-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331)) (|has| |#1| (-318)))
-(-1405 (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)))
-((((-501)) |has| |#1| (-577 (-501))) ((|#1|) . T))
+((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3807 (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)))
+((((-517)) |has| |#1| (-579 (-517))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-786)) . T))
-((((-786)) . T))
+((((-787)) . T))
+((((-787)) . T))
((((-107)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T))
+((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) . T))
-(|has| |#2| (-331))
-(|has| |#1| (-777))
+(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T))
+(|has| |#2| (-333))
+(|has| |#1| (-779))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-786)) . T))
-(|has| |#1| (-1001))
+((((-787)) . T))
+(|has| |#1| (-1003))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-375 $) (-375 $)) |has| |#1| (-508)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-750))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-752))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-786)) . T))
-(((|#1| (-487 (-1070))) . T))
+((((-787)) . T))
+(((|#1| (-489 (-1073))) . T))
(((|#1|) |has| |#1| (-156)))
-((((-786)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-(((|#2|) -1405 (|has| |#2| (-6 (-4169 "*"))) (|has| |#2| (-156))))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(|has| |#2| (-777))
-(|has| |#2| (-830))
-(|has| |#1| (-830))
+((((-787)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(((|#2|) -3807 (|has| |#2| (-6 (-4182 "*"))) (|has| |#2| (-156))))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(|has| |#2| (-779))
+(|has| |#2| (-831))
+(|has| |#1| (-831))
(((|#2|) |has| |#2| (-156)))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)))
-((((-786)) . T))
-((((-786)) . T))
-((((-490)) . T) (((-501)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-787)) . T))
+((((-787)) . T))
+((((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
(((|#1|) . T))
-((((-786)) . T))
+((((-787)) . T))
(((|#1| |#2|) . T))
-(((|#1| (-375 (-501))) . T))
+(((|#1| (-377 (-517))) . T))
(((|#1|) . T))
-(-1405 (|has| |#1| (-260)) (|has| |#1| (-331)))
+(-3807 (|has| |#1| (-262)) (|has| |#1| (-333)))
((((-131)) . T))
-((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T))
-(|has| |#1| (-775))
-((((-786)) . T))
-((((-786)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) . T))
+((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-777))
+((((-787)) . T))
+((((-787)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-490)) |has| |#1| (-556 (-490))) (((-810 (-501))) |has| |#1| (-556 (-810 (-501)))) (((-810 (-346))) |has| |#1| (-556 (-810 (-346)))))
-((((-1070) (-50)) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-578 (-131))) . T) (((-1053)) . T))
-((((-786)) . T))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
-((((-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((|#1| |#1|) |has| |#1| (-278 |#1|)))
+((((-787)) . T))
+((((-787)) . T))
+((((-493)) |has| |#1| (-558 (-493))) (((-814 (-517))) |has| |#1| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#1| (-558 (-814 (-349)))))
+((((-1073) (-51)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-583 (-131))) . T) (((-1056)) . T))
+((((-787)) . T))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((|#1| |#1|) |has| |#1| (-280 |#1|)))
+(|has| |#1| (-779))
+((((-787)) . T))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-787)) . T))
+(((|#2|) |has| |#2| (-333)))
+((((-787)) . T))
+((((-493)) |has| |#4| (-558 (-493))))
+((((-787)) . T) (((-583 |#4|)) . T))
+(((|#2|) . T))
+((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
+(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+((((-1073) (-51)) . T))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(|has| |#1| (-831))
+(|has| |#1| (-831))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-787)) . T))
+((((-517)) . T))
+((((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+((((-377 (-517))) . T) (($) . T))
+(((|#1| (-377 (-517)) (-989)) . T))
+(|has| |#1| (-1003))
+(|has| |#1| (-509))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(|has| |#1| (-752))
+((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+((((-377 |#2|)) . T))
(|has| |#1| (-777))
-((((-786)) . T))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-786)) . T))
-(((|#2|) |has| |#2| (-331)))
-((((-786)) . T))
-((((-490)) |has| |#4| (-556 (-490))))
-((((-786)) . T) (((-578 |#4|)) . T))
-(((|#2|) . T))
-((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
-(-1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959)))
-(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-((((-1070) (-50)) . T))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(|has| |#1| (-830))
-(|has| |#1| (-830))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-786)) . T))
-((((-501)) . T))
-((((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-((((-375 (-501))) . T) (($) . T))
-(((|#1| (-375 (-501)) (-986)) . T))
-(|has| |#1| (-1001))
-(|has| |#1| (-508))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(|has| |#1| (-750))
-((((-826 |#1|) (-826 |#1|)) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-((((-375 |#2|)) . T))
-(|has| |#1| (-775))
-((((-786)) |has| |#1| (-1001)))
-(((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) . T) (((-501) (-501)) . T) (($ $) . T))
-((((-826 |#1|)) . T) (($) . T) (((-375 (-501))) . T))
-(((|#2|) |has| |#2| (-959)) (((-501)) -12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959))))
-(((|#1|) . T) (((-375 (-501))) . T) (((-501)) . T) (($) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) . T) (((-517) (-517)) . T) (($ $) . T))
+((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))))
+(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
(((|#2|) . T))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
-((((-50)) . T) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
-(|has| |#1| (-318))
-((((-501)) . T))
-((((-786)) . T))
-((((-1136 |#1| |#2| |#3| |#4|) $) |has| (-1136 |#1| |#2| |#3| |#4|) (-256 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|))))
-(|has| |#1| (-331))
-((((-986) |#1|) . T) (((-986) $) . T) (($ $) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-((((-375 (-501)) (-375 (-501))) . T) (((-630) (-630)) . T) (($ $) . T))
-((((-282 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-375 (-501))) |has| |#1| (-331)))
-(|has| |#1| (-1001))
-(((|#1|) . T))
-(((|#1|) -1405 (|has| |#2| (-335 |#1|)) (|has| |#2| (-386 |#1|))))
-(((|#1|) -1405 (|has| |#2| (-335 |#1|)) (|has| |#2| (-386 |#1|))))
-(((|#2|) . T))
-((((-375 (-501))) . T) (((-630)) . T) (($) . T))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((((-51)) . T) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+(|has| |#1| (-319))
+((((-517)) . T))
+((((-787)) . T))
+((((-1140 |#1| |#2| |#3| |#4|) $) |has| (-1140 |#1| |#2| |#3| |#4|) (-258 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))))
+(|has| |#1| (-333))
+((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-377 (-517)) (-377 (-517))) . T) (((-632) (-632)) . T) (($ $) . T))
+((((-286 |#1|)) . T) (($) . T))
+(((|#1|) . T) (((-377 (-517))) |has| |#1| (-333)))
+(|has| |#1| (-1003))
+(((|#1|) . T))
+(((|#1|) -3807 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
+(((|#1|) -3807 (|has| |#2| (-337 |#1|)) (|has| |#2| (-387 |#1|))))
+(((|#2|) . T))
+((((-377 (-517))) . T) (((-632)) . T) (($) . T))
(((|#3| |#3|) . T))
-(|has| |#2| (-206))
-((((-787 |#1|)) . T))
-((((-1070)) |has| |#1| (-820 (-1070))) ((|#3|) . T))
-(-12 (|has| |#1| (-331)) (|has| |#2| (-933)))
-((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)))
-((((-786)) . T))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-((((-375 (-501))) . T) (($) . T) (((-375 |#1|)) . T) ((|#1|) . T))
-((((-501)) . T))
-(|has| |#1| (-1001))
+(|has| |#2| (-207))
+((((-789 |#1|)) . T))
+((((-1073)) |has| |#1| (-822 (-1073))) ((|#3|) . T))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-937)))
+((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-787)) . T))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+((((-377 (-517))) . T) (($) . T) (((-377 |#1|)) . T) ((|#1|) . T))
+((((-517)) . T))
+(|has| |#1| (-1003))
(((|#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-((((-501)) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501))))
+((((-517)) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
(((|#1| |#2|) . T))
((($) . T))
-((((-528 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
-((($) . T) (((-375 (-501))) . T))
+((((-530 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((($) . T) (((-377 (-517))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1148 |#1|) (-1148 |#1|)) . T))
+(((|#1| (-1153 |#1|) (-1153 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-111 |#1|) (-111 |#1|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-((((-375 (-501))) |has| |#2| (-950 (-375 (-501)))) (((-501)) |has| |#2| (-950 (-501))) ((|#2|) . T) (((-787 |#1|)) . T))
-((((-1023 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((|#2|) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-111 |#1|) (-111 |#1|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-1026 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($ $) . T))
-((((-606 |#1|)) . T))
-((($) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T))
-((((-111 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
-((((-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))) (((-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346)))))
+((((-608 |#1|)) . T))
+((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
+((((-111 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) (((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))))
(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) (($) . T))
+(((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) (($) . T))
((((-131)) . T))
((($) . T))
-((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
+((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-(|has| |#2| (-830))
-(|has| |#1| (-830))
-(|has| |#1| (-830))
+(|has| |#2| (-831))
+(|has| |#1| (-831))
+(|has| |#1| (-831))
(((|#4|) . T))
-(|has| |#2| (-933))
+(|has| |#2| (-937))
((($) . T))
-(|has| |#1| (-830))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
+(|has| |#1| (-831))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
-(|has| |#1| (-331))
-((((-826 |#1|)) . T))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-(-1405 (|has| |#1| (-336)) (|has| |#1| (-777)))
-(((|#1|) . T))
-((((-786)) . T))
-((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070)))))
-((((-375 |#2|) |#3|) . T))
-((($) . T) (((-375 (-501))) . T))
-((((-701) |#1|) . T))
-(((|#2| (-212 (-3581 |#1|) (-701))) . T))
-(((|#1| (-487 |#3|)) . T))
-((((-375 (-501))) . T))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-((((-786)) . T))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))))
-(|has| |#1| (-830))
-(|has| |#2| (-331))
-(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-((((-152 (-346))) . T) (((-199)) . T) (((-346)) . T))
-((((-786)) . T))
-(((|#1|) . T))
-((((-346)) . T) (((-501)) . T))
-((((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
+(|has| |#1| (-333))
+((((-832 |#1|)) . T))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(-3807 (|has| |#1| (-338)) (|has| |#1| (-779)))
+(((|#1|) . T))
+((((-787)) . T))
+((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
+((((-377 |#2|) |#3|) . T))
+((($) . T) (((-377 (-517))) . T))
+((((-703) |#1|) . T))
+(((|#2| (-214 (-2296 |#1|) (-703))) . T))
+(((|#1| (-489 |#3|)) . T))
+((((-377 (-517))) . T))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((((-787)) . T))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))))
+(|has| |#1| (-831))
+(|has| |#2| (-333))
+(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T))
+((((-787)) . T))
+(((|#1|) . T))
+((((-349)) . T) (((-517)) . T))
+((((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-786)) . T))
-(|has| |#1| (-508))
-((((-375 (-501))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)))
-(|has| |#1| (-37 (-375 (-501))))
-(-12 (|has| |#1| (-500)) (|has| |#1| (-751)))
-((((-786)) . T))
-(|has| |#1| (-331))
-((((-1070)) -1405 (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))) (-12 (|has| |#1| (-331)) (|has| |#2| (-820 (-1070))))))
-(|has| |#1| (-331))
-((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070)))))
-((((-375 (-501))) . T) (($) . T))
-((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T))
-((((-501) |#1|) . T))
-(((|#1|) . T))
-(((|#2|) |has| |#1| (-331)))
-(((|#2|) |has| |#1| (-331)))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
+((((-787)) . T))
+(|has| |#1| (-509))
+((((-377 (-517))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(|has| |#1| (-37 (-377 (-517))))
+(-12 (|has| |#1| (-502)) (|has| |#1| (-760)))
+((((-787)) . T))
+((((-1073)) -3807 (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))) (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1073))))))
+(|has| |#1| (-333))
+((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
+(|has| |#1| (-333))
+((((-377 (-517))) . T) (($) . T))
+((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
+((((-517) |#1|) . T))
+(((|#1|) . T))
+(((|#2|) |has| |#1| (-333)))
+(((|#2|) |has| |#1| (-333)))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-(((|#2|) . T) (((-1070)) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-1070)))) (((-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-501)))) (((-375 (-501))) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-501)))))
+(((|#2|) . T) (((-1073)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1073)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) (((-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))))
(((|#2|) . T))
-((((-1070) (-1136 |#1| |#2| |#3| |#4|)) |has| (-1136 |#1| |#2| |#3| |#4|) (-476 (-1070) (-1136 |#1| |#2| |#3| |#4|))) (((-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) |has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|))))
-((((-553 $) $) . T) (($ $) . T))
-((((-152 (-199))) . T) (((-152 (-346))) . T) (((-1064 (-630))) . T) (((-810 (-346))) . T))
-((((-786)) . T))
-(|has| |#1| (-508))
-(|has| |#1| (-508))
-(|has| (-375 |#2|) (-206))
-(((|#1| (-375 (-501))) . T))
+((((-1073) (-1140 |#1| |#2| |#3| |#4|)) |has| (-1140 |#1| |#2| |#3| |#4|) (-478 (-1073) (-1140 |#1| |#2| |#3| |#4|))) (((-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) |has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|))))
+((((-556 $) $) . T) (($ $) . T))
+((((-153 (-199))) . T) (((-153 (-349))) . T) (((-1069 (-632))) . T) (((-814 (-349))) . T))
+((((-787)) . T))
+(|has| |#1| (-509))
+(|has| |#1| (-509))
+(|has| (-377 |#2|) (-207))
+(((|#1| (-377 (-517))) . T))
((($ $) . T))
-((((-1070)) |has| |#2| (-820 (-1070))))
-((($) . T))
-((((-786)) . T))
-((((-375 (-501))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(|has| |#1| (-331))
-(((|#2|) |has| |#1| (-331)))
-((((-346)) -12 (|has| |#1| (-331)) (|has| |#2| (-806 (-346)))) (((-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-806 (-501)))))
-(|has| |#1| (-331))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(|has| |#1| (-331))
-(|has| |#1| (-508))
-(((|#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
+((((-1073)) |has| |#2| (-822 (-1073))))
+((($) . T))
+((((-787)) . T))
+((((-377 (-517))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#2|) |has| |#1| (-333)))
+((((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-349)))) (((-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-517)))))
+(|has| |#1| (-333))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#1| (-333))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(|has| |#1| (-333))
+(|has| |#1| (-509))
+(((|#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
(((|#3|) . T))
(((|#1|) . T))
-(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)))
+(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#2|) . T))
(((|#2|) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(|has| |#1| (-37 (-375 (-501))))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(|has| |#1| (-37 (-377 (-517))))
(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
+(|has| |#1| (-37 (-377 (-517))))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-((((-1053) |#1|) . T))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
+((((-1056) |#1|) . T))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))
(|has| |#1| (-134))
-((((-528 |#1|)) . T))
+((((-530 |#1|)) . T))
((($) . T))
-((((-375 |#2|)) . T))
-(|has| |#1| (-508))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-318)))
+((((-377 |#2|)) . T))
+(|has| |#1| (-509))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-319)))
(|has| |#1| (-134))
-((((-786)) . T))
+((((-787)) . T))
((($) . T))
-((((-375 (-501))) |has| |#2| (-950 (-501))) (((-501)) |has| |#2| (-950 (-501))) (((-1070)) |has| |#2| (-950 (-1070))) ((|#2|) . T))
-((((-375 |#2|) (-375 |#2|)) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-((((-1035 |#1| |#2|)) . T))
-(((|#1| (-501)) . T))
-(((|#1| (-375 (-501))) . T))
-((((-501)) |has| |#2| (-806 (-501))) (((-346)) |has| |#2| (-806 (-346))))
+((((-377 (-517))) |has| |#2| (-952 (-517))) (((-517)) |has| |#2| (-952 (-517))) (((-1073)) |has| |#2| (-952 (-1073))) ((|#2|) . T))
+((((-377 |#2|) (-377 |#2|)) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+((((-1038 |#1| |#2|)) . T))
+(((|#1| (-517)) . T))
+(((|#1| (-377 (-517))) . T))
+((((-517)) |has| |#2| (-808 (-517))) (((-349)) |has| |#2| (-808 (-349))))
(((|#2|) . T))
-((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T))
+((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
((((-107)) . T))
-(((|#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) . T))
-(((|#2|) . T))
-((((-786)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-1070) (-50)) . T))
-((((-375 |#2|)) . T))
-((((-786)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1001))
-(|has| |#1| (-721))
-(|has| |#1| (-721))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-108)) . T) ((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-199)) . T) (((-346)) . T) (((-810 (-346))) . T))
-((((-786)) . T))
-((((-1136 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-375 (-501))) . T))
-(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)) (((-375 (-501))) |has| |#1| (-508)))
-(((|#2|) . T))
-((((-786)) . T))
-((((-826 |#1|) (-826 |#1|)) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-826 |#1|)) . T) (($) . T) (((-375 (-501))) . T))
-(|has| |#1| (-331))
-(((|#2|) . T))
-((((-501)) . T))
-((((-501)) . T))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-((((-152 (-346))) . T) (((-199)) . T) (((-346)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-1053)) . T) (((-490)) . T) (((-501)) . T) (((-810 (-501))) . T) (((-346)) . T) (((-199)) . T))
-((((-786)) . T))
+(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
+(((|#2|) . T))
+((((-787)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-1073) (-51)) . T))
+((((-377 |#2|)) . T))
+((((-787)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1003))
+(|has| |#1| (-723))
+(|has| |#1| (-723))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-109)) . T) ((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-199)) . T) (((-349)) . T) (((-814 (-349))) . T))
+((((-787)) . T))
+((((-1140 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
+(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509)))
+((((-787)) . T))
+(((|#2|) . T))
+((((-787)) . T))
+((((-832 |#1|) (-832 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-832 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+(|has| |#1| (-333))
+(((|#2|) . T))
+((((-517)) . T))
+((((-517)) . T))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+((((-153 (-349))) . T) (((-199)) . T) (((-349)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-1056)) . T) (((-493)) . T) (((-517)) . T) (((-814 (-517))) . T) (((-349)) . T) (((-199)) . T))
+((((-787)) . T))
(|has| |#1| (-134))
(|has| |#1| (-132))
-((($) . T) (((-1130 |#2| |#3| |#4|)) |has| (-1130 |#2| |#3| |#4|) (-156)) (((-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501)))))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-((((-786)) |has| |#1| (-1001)))
-((((-786)) |has| |#1| (-1001)))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-440)) (|has| |#1| (-657)) (|has| |#1| (-820 (-1070))) (|has| |#1| (-959)) (|has| |#1| (-1012)) (|has| |#1| (-1001)))
-(|has| |#1| (-1046))
-((((-501) |#1|) . T))
-(((|#1|) . T))
-((((-111 |#1|) $) |has| (-111 |#1|) (-256 (-111 |#1|) (-111 |#1|))))
+((($) . T) (((-1139 |#2| |#3| |#4|)) |has| (-1139 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-442)) (|has| |#1| (-659)) (|has| |#1| (-822 (-1073))) (|has| |#1| (-961)) (|has| |#1| (-1015)) (|has| |#1| (-1003)))
+(|has| |#1| (-1049))
+((((-517) |#1|) . T))
+(((|#1|) . T))
+((((-111 |#1|) $) |has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
-((((-108)) . T) ((|#1|) . T))
-((((-786)) . T))
+((((-109)) . T) ((|#1|) . T))
+((((-787)) . T))
(((|#1| |#2|) . T))
-((((-1070) |#1|) . T))
-(((|#1|) |has| |#1| (-278 |#1|)))
-((((-501) |#1|) . T))
+((((-1073) |#1|) . T))
+(((|#1|) |has| |#1| (-280 |#1|)))
+((((-517) |#1|) . T))
(((|#1|) . T))
-((((-501)) . T) (((-375 (-501))) . T))
+((((-517)) . T) (((-377 (-517))) . T))
(((|#1|) . T))
-(|has| |#1| (-508))
-((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-((((-346)) . T))
+(|has| |#1| (-509))
+((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+((((-349)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-(|has| |#1| (-508))
-(|has| |#1| (-1001))
-((((-710 |#1| (-787 |#2|))) |has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+(|has| |#1| (-509))
+(|has| |#1| (-1003))
+((((-712 |#1| (-789 |#2|))) |has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
(((|#1|) . T))
(((|#2| |#3|) . T))
-(|has| |#2| (-830))
+(|has| |#2| (-831))
(((|#1|) . T))
-(((|#1| (-487 |#2|)) . T))
-(((|#1| (-701)) . T))
-(|has| |#1| (-206))
-(((|#1| (-487 (-990 (-1070)))) . T))
-(|has| |#2| (-331))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) . T))
+(((|#1| (-489 |#2|)) . T))
+(((|#1| (-703)) . T))
+(|has| |#1| (-207))
+(((|#1| (-489 (-993 (-1073)))) . T))
+(|has| |#2| (-333))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-786)) . T))
-((((-786)) . T))
-(-1405 (|has| |#3| (-723)) (|has| |#3| (-775)))
-((((-786)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-787)) . T))
+((((-787)) . T))
+(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+((((-787)) . T))
+((((-787)) . T))
(((|#1|) . T))
-((($ $) . T) (((-553 $) $) . T))
+((($ $) . T) (((-556 $) $) . T))
(((|#1|) . T))
-((((-501)) . T))
+((((-517)) . T))
(((|#3|) . T))
-((((-786)) . T))
-(-1405 (|has| |#1| (-276)) (|has| |#1| (-331)) (|has| |#1| (-318)))
-(-1405 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-508)) (|has| |#1| (-959)))
-((((-528 |#1|) (-528 |#1|)) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
+((((-787)) . T))
+(-3807 (|has| |#1| (-278)) (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3807 (|has| |#1| (-132)) (|has| |#1| (-134)) (|has| |#1| (-156)) (|has| |#1| (-509)) (|has| |#1| (-961)))
+((((-530 |#1|) (-530 |#1|)) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
(((|#1|) |has| |#1| (-156)))
-((((-528 |#1|)) . T) (($) . T) (((-375 (-501))) . T))
-((($) . T) (((-375 (-501))) . T))
-((($) . T) (((-375 (-501))) . T))
-(((|#2|) |has| |#2| (-6 (-4169 "*"))))
+(((|#1| (-1153 |#1|) (-1153 |#1|)) . T))
+((((-530 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+((($) . T) (((-377 (-517))) . T))
+((($) . T) (((-377 (-517))) . T))
+(((|#2|) |has| |#2| (-6 (-4182 "*"))))
(((|#1|) . T))
(((|#1|) . T))
-((((-262 |#3|)) . T))
+((((-265 |#3|)) . T))
(((|#1|) . T))
-((((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2| |#2|) . T) (($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
+((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
-((($) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (($) . T))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#2|) . T))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T) (($) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
+((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (($) . T))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#2|) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-786)) . T))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(|has| |#2| (-830))
-(|has| |#1| (-830))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-787)) . T))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#2| (-831))
+(|has| |#1| (-831))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
(((|#1|) . T))
-((((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) . T))
+((((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1001))
-(((|#1|) . T))
-((((-1070)) . T) ((|#1|) . T))
-((((-786)) . T))
-((((-786)) . T))
-(((|#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))
-((((-375 (-501)) (-375 (-501))) . T))
-((((-375 (-501))) . T))
-(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-((((-490)) . T))
-((((-786)) . T))
-((((-1070)) |has| |#2| (-820 (-1070))) (((-986)) . T))
-((((-1130 |#2| |#3| |#4|)) . T))
-((((-826 |#1|)) . T))
-((($) . T) (((-375 (-501))) . T))
-(-12 (|has| |#1| (-331)) (|has| |#2| (-750)))
-(-12 (|has| |#1| (-331)) (|has| |#2| (-750)))
-(|has| |#1| (-1108))
-(((|#2|) . T))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-((((-1070)) |has| |#1| (-820 (-1070))))
-((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
-((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#1|) . T))
-((((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))))
-((($) . T) (((-375 (-501))) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (((-501)) . T) (($) . T))
-(((|#2|) |has| |#2| (-959)) (((-501)) -12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959))))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-508))))
-(|has| |#1| (-508))
-(((|#1|) |has| |#1| (-331)))
-((((-501)) . T))
-(|has| |#1| (-721))
-(|has| |#1| (-721))
-((((-1070) (-111 |#1|)) |has| (-111 |#1|) (-476 (-1070) (-111 |#1|))) (((-111 |#1|) (-111 |#1|)) |has| (-111 |#1|) (-278 (-111 |#1|))))
-(((|#2|) . T) (((-501)) |has| |#2| (-950 (-501))) (((-375 (-501))) |has| |#2| (-950 (-375 (-501)))))
-((((-986)) . T) ((|#2|) . T) (((-501)) |has| |#2| (-950 (-501))) (((-375 (-501))) |has| |#2| (-950 (-375 (-501)))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-501) (-701)) . T) ((|#3| (-701)) . T))
+(|has| |#1| (-1003))
+(((|#1|) . T))
+((((-1073)) . T) ((|#1|) . T))
+((((-787)) . T))
+((((-787)) . T))
+(((|#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))
+((((-377 (-517)) (-377 (-517))) . T))
+((((-377 (-517))) . T))
+(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-493)) . T))
+((((-787)) . T))
+((((-1073)) |has| |#2| (-822 (-1073))) (((-989)) . T))
+((((-1139 |#2| |#3| |#4|)) . T))
+((((-832 |#1|)) . T))
+((($) . T) (((-377 (-517))) . T))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
+(|has| |#1| (-1112))
+(((|#2|) . T))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+((((-1073)) |has| |#1| (-822 (-1073))))
+((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#1|) . T))
+((((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+((($) . T) (((-377 (-517))) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
+(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-509))))
+(|has| |#1| (-509))
+(((|#1|) |has| |#1| (-333)))
+((((-517)) . T))
+(|has| |#1| (-723))
+(|has| |#1| (-723))
+((((-1073) (-111 |#1|)) |has| (-111 |#1|) (-478 (-1073) (-111 |#1|))) (((-111 |#1|) (-111 |#1|)) |has| (-111 |#1|) (-280 (-111 |#1|))))
+(((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
+((((-989)) . T) ((|#2|) . T) (((-517)) |has| |#2| (-952 (-517))) (((-377 (-517))) |has| |#2| (-952 (-377 (-517)))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-517) (-703)) . T) ((|#3| (-703)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-786)) . T))
-(|has| |#2| (-750))
-(|has| |#2| (-750))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#2|) |has| |#1| (-331)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
-((((-501)) |has| |#1| (-806 (-501))) (((-346)) |has| |#1| (-806 (-346))))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-787)) . T))
+(|has| |#2| (-752))
+(|has| |#2| (-752))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((((-517)) |has| |#1| (-808 (-517))) (((-349)) |has| |#1| (-808 (-349))))
(((|#1|) . T))
-((((-791 |#1|)) . T))
-((((-791 |#1|)) . T))
-((((-375 (-501))) . T) (((-630)) . T) (($) . T))
-(|has| |#1| (-331))
-(-12 (|has| |#1| (-331)) (|has| |#2| (-830)))
-(|has| |#1| (-331))
+((((-794 |#1|)) . T))
+((((-794 |#1|)) . T))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-831)))
+((((-377 (-517))) . T) (((-632)) . T) (($) . T))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-(|has| |#1| (-331))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+(|has| |#1| (-333))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-787 |#1|)) . T))
+((((-789 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-701)) . T))
-((((-1070)) . T))
-((((-791 |#1|)) . T))
-(-1405 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-(-1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-((((-786)) . T))
+(((|#2| (-703)) . T))
+((((-1073)) . T))
+((((-794 |#1|)) . T))
+(-3807 (|has| |#3| (-25)) (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+((((-787)) . T))
(((|#1|) . T))
-(-1405 (|has| |#2| (-723)) (|has| |#2| (-775)))
-(-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777))))
-((((-791 |#1|)) . T))
+(-3807 (|has| |#2| (-725)) (|has| |#2| (-777)))
+(-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779))))
+((((-794 |#1|)) . T))
(((|#1|) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
-((($ $) . T) (((-553 $) $) . T))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
+((($ $) . T) (((-556 $) $) . T))
((($) . T))
-((((-786)) . T))
-((((-501)) . T))
+((((-787)) . T))
+((((-517)) . T))
(((|#2|) . T))
-((((-786)) . T))
-(((|#1|) . T) (((-375 (-501))) |has| |#1| (-331)))
-((((-786)) . T))
+((((-787)) . T))
+(((|#1|) . T) (((-377 (-517))) |has| |#1| (-333)))
+((((-787)) . T))
(((|#1|) . T))
-((((-786)) . T))
-((($) . T) ((|#2|) . T) (((-375 (-501))) . T))
-(|has| |#1| (-1001))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((((-787)) . T))
+((($) . T) ((|#2|) . T) (((-377 (-517))) . T))
+(|has| |#1| (-1003))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-786)) . T))
-(|has| |#2| (-830))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
-((((-490)) |has| |#2| (-556 (-490))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501)))))
-((((-786)) . T))
-((((-786)) . T))
-(((|#3|) |has| |#3| (-959)) (((-501)) -12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959))))
-((((-1023 |#1| |#2|)) . T) (((-866 |#1|)) |has| |#2| (-556 (-1070))) (((-786)) . T))
-((((-866 |#1|)) |has| |#2| (-556 (-1070))) (((-1053)) -12 (|has| |#1| (-950 (-501))) (|has| |#2| (-556 (-1070)))) (((-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501))))) (((-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346))))) (((-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#2| (-556 (-490)))))
-((((-1064 |#1|)) . T) (((-786)) . T))
-((((-786)) . T))
-((((-375 (-501))) |has| |#2| (-950 (-375 (-501)))) (((-501)) |has| |#2| (-950 (-501))) ((|#2|) . T) (((-787 |#1|)) . T))
-((((-111 |#1|)) . T) (($) . T) (((-375 (-501))) . T))
-((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T) (((-1070)) . T))
-((((-786)) . T))
-((((-501)) . T))
+((((-787)) . T))
+(|has| |#2| (-831))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
+((((-787)) . T))
+((((-787)) . T))
+(((|#3|) |has| |#3| (-961)) (((-517)) -12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))
+((((-1026 |#1| |#2|)) . T) (((-874 |#1|)) |has| |#2| (-558 (-1073))) (((-787)) . T))
+((((-874 |#1|)) |has| |#2| (-558 (-1073))) (((-1056)) -12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1073)))) (((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))
+((((-1069 |#1|)) . T) (((-787)) . T))
+((((-787)) . T))
+((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T) (((-1073)) . T))
+((((-787)) . T))
+((((-517)) . T))
((($) . T))
-((((-346)) |has| |#1| (-806 (-346))) (((-501)) |has| |#1| (-806 (-501))))
-((((-501)) . T))
+((((-349)) |has| |#1| (-808 (-349))) (((-517)) |has| |#1| (-808 (-517))))
+((((-517)) . T))
(((|#1|) . T))
-((((-786)) . T))
+((((-787)) . T))
(((|#1|) . T))
-((((-786)) . T))
+((((-787)) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
-((((-501)) . T) (((-375 (-501))) . T))
-(((|#1|) |has| |#1| (-278 |#1|)))
-((((-786)) . T))
-((((-346)) . T))
+((((-517)) . T) (((-377 (-517))) . T))
+(((|#1|) |has| |#1| (-280 |#1|)))
+((((-787)) . T))
+((((-349)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-786)) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-375 |#2|) |#3|) . T))
+((((-787)) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-377 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1001))
-(((|#2| (-448 (-3581 |#1|) (-701))) . T))
-((((-501) |#1|) . T))
+(|has| |#1| (-1003))
+(((|#2| (-450 (-2296 |#1|) (-703))) . T))
+((((-517) |#1|) . T))
(((|#2| |#2|) . T))
-(((|#1| (-487 (-1070))) . T))
-(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-((((-501)) . T))
+(((|#1| (-489 (-1073))) . T))
+(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-517)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1070)) |has| |#1| (-820 (-1070))) (((-986)) . T))
-(((|#1|) . T) (((-501)) |has| |#1| (-577 (-501))))
-(|has| |#1| (-508))
-((($) . T) (((-375 (-501))) . T))
+((((-1073)) |has| |#1| (-822 (-1073))) (((-989)) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-579 (-517))))
+(|has| |#1| (-509))
+((($) . T) (((-377 (-517))) . T))
((($) . T))
((($) . T))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
(((|#1|) . T))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-786)) . T))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-787)) . T))
((((-131)) . T))
-(((|#1|) . T) (((-375 (-501))) . T))
+(((|#1|) . T) (((-377 (-517))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-786)) . T))
+((((-787)) . T))
(((|#1|) . T))
-(|has| |#1| (-1046))
-(((|#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) . T))
+(|has| |#1| (-1049))
+(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T))
(((|#1|) . T))
-((((-375 $) (-375 $)) |has| |#1| (-508)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
-((((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-501)) |has| |#1| (-950 (-501))) ((|#1|) . T) ((|#2|) . T))
-((((-986)) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))))
-((((-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#2| (-806 (-346)))) (((-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#2| (-806 (-501)))))
-((((-1136 |#1| |#2| |#3| |#4|)) . T))
-((((-501) |#1|) . T))
+((((-377 $) (-377 $)) |has| |#1| (-509)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-517)) |has| |#1| (-952 (-517))) ((|#1|) . T) ((|#2|) . T))
+((((-989)) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))))
+((((-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349)))) (((-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))
+((((-1140 |#1| |#2| |#3| |#4|)) . T))
+((((-517) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-156)) (($) . T))
((($) . T))
-((((-630)) . T))
-((((-710 |#1| (-787 |#2|))) . T))
-((($) . T))
-((((-375 (-501))) . T) (($) . T))
-(|has| |#1| (-1001))
-(|has| |#1| (-1001))
-(|has| |#2| (-331))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-(|has| |#1| (-37 (-375 (-501))))
-((((-501)) . T))
-((((-1070)) -12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959))))
-((((-1070)) -12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959))))
-(((|#1|) . T))
-(|has| |#1| (-206))
-(((|#1| (-487 |#3|)) . T))
-(|has| |#1| (-336))
-(((|#2| (-212 (-3581 |#1|) (-701))) . T))
-(|has| |#1| (-336))
-(|has| |#1| (-336))
+((((-632)) . T))
+((((-712 |#1| (-789 |#2|))) . T))
+((($) . T))
+((((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-1003))
+(|has| |#1| (-1003))
+(|has| |#2| (-333))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+(|has| |#1| (-37 (-377 (-517))))
+((((-517)) . T))
+((((-1073)) -12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961))))
+((((-1073)) -12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961))))
+(((|#1|) . T))
+(|has| |#1| (-207))
+(((|#1| (-489 |#3|)) . T))
+(|has| |#1| (-338))
+(((|#2| (-214 (-2296 |#1|) (-703))) . T))
+(|has| |#1| (-338))
+(|has| |#1| (-338))
(((|#1|) . T) (($) . T))
-(((|#1| (-487 |#2|)) . T))
-(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(((|#1| (-701)) . T))
-(|has| |#1| (-508))
-(-1405 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-775)) (|has| |#2| (-959)))
+(((|#1| (-489 |#2|)) . T))
+(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(((|#1| (-703)) . T))
+(|has| |#1| (-509))
+(-3807 (|has| |#2| (-25)) (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-786)) . T))
-(-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))
-(-1405 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
+((((-787)) . T))
+(-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+(-3807 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
(((|#1|) |has| |#1| (-156)))
-(((|#4|) |has| |#4| (-959)))
-(((|#3|) |has| |#3| (-959)))
-(-12 (|has| |#1| (-331)) (|has| |#2| (-750)))
-(-12 (|has| |#1| (-331)) (|has| |#2| (-750)))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-375 |#2|)) . T) (((-375 (-501))) . T) (($) . T))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-((((-786)) . T))
-((($) . T) (((-375 (-501))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1001)) (((-501)) -12 (|has| |#4| (-950 (-501))) (|has| |#4| (-1001))) (((-375 (-501))) -12 (|has| |#4| (-950 (-375 (-501)))) (|has| |#4| (-1001))))
-(((|#3|) |has| |#3| (-1001)) (((-501)) -12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001))) (((-375 (-501))) -12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001))))
-(|has| |#2| (-331))
-(((|#2|) |has| |#2| (-959)) (((-501)) -12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959))))
-(((|#1|) . T))
-(|has| |#2| (-331))
-((((-375 (-501)) (-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2| |#2|) . T) (($ $) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1| |#1|) . T) (((-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-(((|#1| |#1|) . T) (($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
+(((|#4|) |has| |#4| (-961)))
+(((|#3|) |has| |#3| (-961)))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
+(-12 (|has| |#1| (-333)) (|has| |#2| (-752)))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-377 |#2|)) . T) (((-377 (-517))) . T) (($) . T))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+((((-787)) . T))
+((($) . T) (((-377 (-517))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1003)) (((-517)) -12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003))) (((-377 (-517))) -12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))
+(((|#3|) |has| |#3| (-1003)) (((-517)) -12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (((-377 (-517))) -12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))
+(|has| |#2| (-333))
+(((|#2|) |has| |#2| (-961)) (((-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))))
+(((|#1|) . T))
+(|has| |#2| (-333))
+((((-377 (-517)) (-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2| |#2|) . T) (($ $) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1| |#1|) . T) (((-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(((|#1| |#1|) . T) (($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
(((|#2| |#2|) . T))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T) (($) -1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T))
-(((|#1|) . T) (($) . T) (((-375 (-501))) . T))
-(((|#2|) . T))
-((($) . T))
-((((-786)) |has| |#1| (-1001)))
-((((-1136 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(|has| |#2| (-750))
-(|has| |#2| (-750))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))
-(|has| |#1| (-331))
-(((|#1|) |has| |#2| (-386 |#1|)))
-(((|#1|) |has| |#2| (-386 |#1|)))
-((((-826 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-786)) . T))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) |has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-((((-501) |#1|) . T))
-((((-501) |#1|) . T))
-((((-501) |#1|) . T))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-((((-501) |#1|) . T))
-(((|#1|) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-((((-1070)) |has| |#1| (-820 (-1070))) (((-748 (-1070))) . T))
-(-1405 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-723)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-((((-749 |#1|)) . T))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T) (($) -3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
+(((|#1|) . T) (($) . T) (((-377 (-517))) . T))
+(((|#2|) . T))
+((($) . T))
+((((-787)) |has| |#1| (-1003)))
+((((-1140 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(|has| |#2| (-752))
+(|has| |#2| (-752))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
+(|has| |#1| (-333))
+(((|#1|) |has| |#2| (-387 |#1|)))
+(((|#1|) |has| |#2| (-387 |#1|)))
+((((-832 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-787)) . T))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) |has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+((((-517) |#1|) . T))
+((((-517) |#1|) . T))
+((((-517) |#1|) . T))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((((-517) |#1|) . T))
+(((|#1|) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((((-1073)) |has| |#1| (-822 (-1073))) (((-750 (-1073))) . T))
+(-3807 (|has| |#3| (-123)) (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-725)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+((((-751 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-786)) . T))
-(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959)))
+((((-787)) . T))
+(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-375 (-501))))
-((((-786)) . T))
-((((-1136 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-375 (-501))) . T))
-(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)) (((-375 (-501))) |has| |#1| (-508)))
-(((|#2|) . T) (((-501)) |has| |#2| (-577 (-501))))
-(|has| |#1| (-331))
-(-1405 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (-12 (|has| |#1| (-331)) (|has| |#2| (-206))))
-(|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))
-(|has| |#1| (-331))
-(((|#1|) . T))
-((((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#1| |#1|) . T))
-((((-501) |#1|) . T))
-((((-282 |#1|)) . T))
-((((-630) (-1064 (-630))) . T))
-((((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) ((|#1|) . T))
+(|has| |#1| (-37 (-377 (-517))))
+((((-787)) . T))
+((((-1140 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-377 (-517))) . T))
+(((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)) (((-377 (-517))) |has| |#1| (-509)))
+(((|#2|) . T) (((-517)) |has| |#2| (-579 (-517))))
+(|has| |#1| (-333))
+(-3807 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (-12 (|has| |#1| (-333)) (|has| |#2| (-207))))
+(|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))
+(|has| |#1| (-333))
+(((|#1|) . T))
+((((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1| |#1|) . T))
+((((-517) |#1|) . T))
+((((-286 |#1|)) . T))
+((((-632) (-1069 (-632))) . T))
+((((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-775))
-((($ $) . T) (((-787 |#1|) $) . T) (((-787 |#1|) |#2|) . T))
-((((-1023 |#1| (-1070))) . T) (((-748 (-1070))) . T) ((|#1|) . T) (((-501)) |has| |#1| (-950 (-501))) (((-375 (-501))) |has| |#1| (-950 (-375 (-501)))) (((-1070)) . T))
+(|has| |#1| (-777))
+((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
+((((-1026 |#1| (-1073))) . T) (((-750 (-1073))) . T) ((|#1|) . T) (((-517)) |has| |#1| (-952 (-517))) (((-377 (-517))) |has| |#1| (-952 (-377 (-517)))) (((-1073)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-((((-986) |#1|) . T) (((-986) $) . T) (($ $) . T))
-((($ $) . T) (((-1070) $) |has| |#1| (-206)) (((-1070) |#1|) |has| |#1| (-206)) (((-990 (-1070)) |#1|) . T) (((-990 (-1070)) $) . T))
+((((-989) |#1|) . T) (((-989) $) . T) (($ $) . T))
+((($ $) . T) (((-1073) $) |has| |#1| (-207)) (((-1073) |#1|) |has| |#1| (-207)) (((-993 (-1073)) |#1|) . T) (((-993 (-1073)) $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))))
-(|has| |#2| (-830))
-((($) . T) (((-1130 |#2| |#3| |#4|)) |has| (-1130 |#2| |#3| |#4|) (-156)) (((-375 (-501))) |has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501)))))
-((((-501) |#1|) . T))
-((((-1136 |#1| |#2| |#3| |#4|)) |has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|))))
+((($) . T) ((|#2|) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))))
+(|has| |#2| (-831))
+((($) . T) (((-1139 |#2| |#3| |#4|)) |has| (-1139 |#2| |#3| |#4|) (-156)) (((-377 (-517))) |has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))
+((((-517) |#1|) . T))
+((((-1140 |#1| |#2| |#3| |#4|)) |has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|))))
((($) . T))
(((|#1|) . T))
-((($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#2| |#2|) |has| |#1| (-331)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))))
-(|has| |#2| (-206))
+((($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2| |#2|) |has| |#1| (-333)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+(|has| |#2| (-207))
(|has| $ (-134))
-((((-786)) . T))
-((($) . T) (((-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-318))) ((|#1|) . T))
-((((-786)) . T))
-(|has| |#1| (-775))
-((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))
-((((-375 |#2|) |#3|) . T))
-(((|#1|) . T))
-((((-786)) . T))
-(((|#2| (-606 |#1|)) . T))
-(-12 (|has| |#1| (-276)) (|has| |#1| (-830)))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+((((-787)) . T))
+((($) . T) (((-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-319))) ((|#1|) . T))
+((((-787)) . T))
+(|has| |#1| (-777))
+((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))
+((((-377 |#2|) |#3|) . T))
+(((|#1|) . T))
+((((-787)) . T))
+(((|#2| (-608 |#1|)) . T))
+(-12 (|has| |#1| (-278)) (|has| |#1| (-831)))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#4|) . T))
-(|has| |#1| (-508))
-((((-1070)) -1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))
-((($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))) ((|#2|) |has| |#1| (-331)) ((|#1|) . T))
-((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070)))))
-(((|#1|) . T) (($) -1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-508))) (((-375 (-501))) -1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-331))))
-((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070)))))
-(((|#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))
-((((-501) |#1|) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(((|#1|) . T))
-(((|#1| (-487 (-748 (-1070)))) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(((|#1|) . T))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-(((|#1|) . T))
-(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))
-((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)))
-((($) . T) (((-791 |#1|)) . T) (((-375 (-501))) . T))
-((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)))
-(|has| |#1| (-508))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-375 |#2|)) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-786)) |has| |#1| (-1001)))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-786)) |has| |#1| (-1001)))
-(((|#1|) . T))
-(((|#2| |#2|) . T) (((-375 (-501)) (-375 (-501))) . T) (($ $) . T))
-((((-501)) . T))
-((((-786)) . T))
-(((|#2|) . T) (((-375 (-501))) . T) (($) . T))
-((((-528 |#1|)) . T) (((-375 (-501))) . T) (($) . T))
-((((-786)) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-501) |#1|) . T))
-((((-786)) . T))
-((($ $) . T) (((-1070) $) . T))
-((((-1139 |#1| |#2| |#3|)) . T))
-((((-1139 |#1| |#2| |#3|)) . T) (((-1109 |#1| |#2| |#3|)) . T))
-(((|#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) . T))
-((((-490)) |has| |#2| (-556 (-490))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501)))))
-((((-786)) . T))
-((((-786)) . T))
-((((-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501))))) (((-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346))))) (((-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490)))))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-(((|#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) . T))
-((((-786)) . T))
-((((-1139 |#1| |#2| |#3|)) |has| |#1| (-331)))
-((((-1070)) . T) (((-786)) . T))
-(|has| |#1| (-331))
-((((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) |has| |#2| (-156)) (($) -1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830))))
+(|has| |#1| (-509))
+((($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))) ((|#2|) |has| |#1| (-333)) ((|#1|) . T))
+((((-1073)) -3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))
+(((|#1|) . T) (($) -3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-509))) (((-377 (-517))) -3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-333))))
+((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
+((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073)))))
+(((|#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))
+((((-517) |#1|) . T))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(((|#1|) . T))
+(((|#1| (-489 (-750 (-1073)))) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#1|) . T))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+(((|#1|) . T))
+(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((($) . T) (((-794 |#1|)) . T) (((-377 (-517))) . T))
+((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+(|has| |#1| (-509))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-377 |#2|)) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) (((-377 (-517)) (-377 (-517))) . T) (($ $) . T))
+((((-517)) . T))
+((((-787)) . T))
+(((|#2|) . T) (((-377 (-517))) . T) (($) . T))
+((((-530 |#1|)) . T) (((-377 (-517))) . T) (($) . T))
+((((-787)) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-517) |#1|) . T))
+((((-787)) . T))
+((($ $) . T) (((-1073) $) . T))
+((((-1146 |#1| |#2| |#3|)) . T))
+((((-1146 |#1| |#2| |#3|)) . T) (((-1118 |#1| |#2| |#3|)) . T))
+(((|#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) . T))
+((((-493)) |has| |#2| (-558 (-493))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))))
+((((-787)) . T))
+((((-787)) . T))
+((((-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) (((-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) (((-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+(((|#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) . T))
+((((-787)) . T))
+((((-1146 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1073)) . T) (((-787)) . T))
+(|has| |#1| (-333))
+((((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) |has| |#2| (-156)) (($) -3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-375 (-501))) |has| |#2| (-37 (-375 (-501)))) ((|#2|) . T))
-((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((($) -1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-((((-1003)) . T))
-((((-786)) . T))
-((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T))
+((($) . T) (((-377 (-517))) |has| |#2| (-37 (-377 (-517)))) ((|#2|) . T))
+((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((($) -3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+((((-1007)) . T))
+((((-787)) . T))
+((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
((($) . T))
-((($) -1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830))) ((|#1|) |has| |#1| (-156)) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(|has| |#2| (-830))
-(|has| |#1| (-830))
+((($) -3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831))) ((|#1|) |has| |#1| (-156)) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(|has| |#2| (-831))
+(|has| |#1| (-831))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-156)))
-((((-630)) . T))
-((((-786)) |has| |#1| (-1001)))
+((((-632)) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1|) |has| |#1| (-156)))
(((|#1|) |has| |#1| (-156)))
-((((-375 (-501))) . T) (($) . T))
-(((|#1| (-501)) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-(|has| |#1| (-331))
-(|has| |#1| (-331))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-(-1405 (|has| |#1| (-156)) (|has| |#1| (-508)))
-(((|#1| (-501)) . T))
-(((|#1| (-375 (-501))) . T))
-(((|#1| (-701)) . T))
-((((-375 (-501))) . T))
-(((|#1| (-487 |#2|) |#2|) . T))
-((((-501) |#1|) . T))
-((((-501) |#1|) . T))
-(|has| |#1| (-1001))
-((((-501) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-810 (-346))) . T) (((-810 (-501))) . T) (((-1070)) . T) (((-490)) . T))
-(((|#1|) . T))
-((((-786)) . T))
-(-1405 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-331)) (|has| |#2| (-723)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-(-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))
-((((-501)) . T))
-((((-501)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
+((((-377 (-517))) . T) (($) . T))
+(((|#1| (-517)) . T))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(|has| |#1| (-333))
+(|has| |#1| (-333))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(-3807 (|has| |#1| (-156)) (|has| |#1| (-509)))
+(((|#1| (-517)) . T))
+(((|#1| (-377 (-517))) . T))
+(((|#1| (-703)) . T))
+((((-377 (-517))) . T))
+(((|#1| (-489 |#2|) |#2|) . T))
+((((-517) |#1|) . T))
+((((-517) |#1|) . T))
+(|has| |#1| (-1003))
+((((-517) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-814 (-349))) . T) (((-814 (-517))) . T) (((-1073)) . T) (((-493)) . T))
+(((|#1|) . T))
+((((-787)) . T))
+(-3807 (|has| |#2| (-123)) (|has| |#2| (-156)) (|has| |#2| (-333)) (|has| |#2| (-725)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+(-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))
+((((-517)) . T))
+((((-517)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-1405 (|has| |#2| (-156)) (|has| |#2| (-775)) (|has| |#2| (-959)))
-((((-1070)) -12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959))))
-(-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657))))
+(-3807 (|has| |#2| (-156)) (|has| |#2| (-777)) (|has| |#2| (-961)))
+((((-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961))))
+(-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))
(|has| |#1| (-132))
(|has| |#1| (-134))
-(|has| |#1| (-331))
+(|has| |#1| (-333))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-206))
-((((-786)) . T))
-(((|#1| (-701) (-986)) . T))
-((((-501) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-501) |#1|) . T))
-((((-501) |#1|) . T))
+(|has| |#1| (-207))
+((((-787)) . T))
+(((|#1| (-703) (-989)) . T))
+((((-517) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-517) |#1|) . T))
+((((-517) |#1|) . T))
((((-111 |#1|)) . T))
-((((-375 (-501))) . T) (((-501)) . T))
-(((|#2|) |has| |#2| (-959)))
-((((-375 (-501))) . T) (($) . T))
-(((|#2|) . T))
-((((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-508)))
-((((-501)) . T))
-((((-501)) . T))
-((((-1053) (-1070) (-501) (-199) (-786)) . T))
+((((-377 (-517))) . T) (((-517)) . T))
+(((|#2|) |has| |#2| (-961)))
+((((-377 (-517))) . T) (($) . T))
+(((|#2|) . T))
+((((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) |has| |#1| (-156)) (($) |has| |#1| (-509)))
+((((-517)) . T))
+((((-517)) . T))
+((((-1056) (-1073) (-517) (-199) (-787)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-1405 (|has| |#1| (-318)) (|has| |#1| (-336)))
+(-3807 (|has| |#1| (-319)) (|has| |#1| (-338)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
-((((-786)) . T))
-((($) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-375 (-501))) |has| |#1| (-37 (-375 (-501)))))
-(((|#2|) |has| |#2| (-1001)) (((-501)) -12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (((-375 (-501))) -12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001))))
-((((-490)) |has| |#1| (-556 (-490))))
-((((-786)) -1405 (|has| |#1| (-777)) (|has| |#1| (-1001))))
-((($) . T) (((-375 (-501))) . T))
-(|has| |#1| (-830))
-(|has| |#1| (-830))
-((((-199)) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) (((-346)) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) (((-810 (-346))) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-810 (-346))))) (((-810 (-501))) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-810 (-501))))) (((-490)) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-490)))))
-((((-786)) . T))
-((((-786)) . T))
+((((-787)) . T))
+((($) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-377 (-517))) |has| |#1| (-37 (-377 (-517)))))
+(((|#2|) |has| |#2| (-1003)) (((-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (((-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))))
+((((-493)) |has| |#1| (-558 (-493))))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-779)) (|has| |#1| (-1003))))
+((($) . T) (((-377 (-517))) . T))
+(|has| |#1| (-831))
+(|has| |#1| (-831))
+((((-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) (((-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) (((-814 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-349))))) (((-814 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-517))))) (((-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))))
+((((-787)) . T))
+((((-787)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-156)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-508)))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-775)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-509)))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
(((|#2|) . T))
-(-1405 (|has| |#1| (-21)) (|has| |#1| (-775)))
+(-3807 (|has| |#1| (-21)) (|has| |#1| (-777)))
(((|#1|) |has| |#1| (-156)))
(((|#1|) . T))
(((|#1|) . T))
-(|has| (-375 |#2|) (-134))
-((((-375 |#2|) |#3|) . T))
-((((-375 (-501))) . T) (($) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-331))
-((($ $) . T) (((-375 (-501)) (-375 (-501))) . T))
-(|has| (-375 |#2|) (-132))
-((((-630)) . T))
-(((|#1|) . T) (((-375 (-501))) . T) (((-501)) . T) (($) . T))
-((((-501) (-501)) . T))
-((($) . T) (((-375 (-501))) . T))
-(-1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959)))
-(-1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959)))
-(|has| |#4| (-723))
-(-1405 (|has| |#4| (-723)) (|has| |#4| (-775)))
-(|has| |#4| (-775))
-(|has| |#3| (-723))
-(-1405 (|has| |#3| (-723)) (|has| |#3| (-775)))
-(|has| |#3| (-775))
-((((-501)) . T))
-(((|#2|) . T))
-((((-1070)) -1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))
-((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070)))))
-((((-1070)) -12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070)))))
+(|has| (-377 |#2|) (-134))
+((((-377 |#2|) |#3|) . T))
+((((-377 (-517))) . T) (($) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-333))
+((($ $) . T) (((-377 (-517)) (-377 (-517))) . T))
+(|has| (-377 |#2|) (-132))
+((((-632)) . T))
+(((|#1|) . T) (((-377 (-517))) . T) (((-517)) . T) (($) . T))
+((((-517) (-517)) . T))
+((($) . T) (((-377 (-517))) . T))
+(-3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961)))
+(-3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961)))
+(|has| |#4| (-725))
+(-3807 (|has| |#4| (-725)) (|has| |#4| (-777)))
+(|has| |#4| (-777))
+(|has| |#3| (-725))
+(-3807 (|has| |#3| (-725)) (|has| |#3| (-777)))
+(|has| |#3| (-777))
+((((-517)) . T))
+(((|#2|) . T))
+((((-1073)) -3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))
+((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))))
+((((-1073)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-787 |#1|)) . T))
-((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)))
-((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)))
-((((-1035 |#1| |#2|)) . T))
-(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
-((($) . T))
-(|has| |#1| (-933))
-(((|#2|) . T) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((((-786)) . T))
-((((-490)) |has| |#2| (-556 (-490))) (((-810 (-501))) |has| |#2| (-556 (-810 (-501)))) (((-810 (-346))) |has| |#2| (-556 (-810 (-346)))) (((-346)) |has| |#2| (-933)) (((-199)) |has| |#2| (-933)))
-((((-1070) (-50)) . T))
-(|has| |#1| (-37 (-375 (-501))))
-(|has| |#1| (-37 (-375 (-501))))
+((((-789 |#1|)) . T))
+((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
+((((-1038 |#1| |#2|)) . T))
+(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+((($) . T))
+(|has| |#1| (-937))
+(((|#2|) . T) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((((-787)) . T))
+((((-493)) |has| |#2| (-558 (-493))) (((-814 (-517))) |has| |#2| (-558 (-814 (-517)))) (((-814 (-349))) |has| |#2| (-558 (-814 (-349)))) (((-349)) |has| |#2| (-937)) (((-199)) |has| |#2| (-937)))
+((((-1073) (-51)) . T))
+(|has| |#1| (-37 (-377 (-517))))
+(|has| |#1| (-37 (-377 (-517))))
(((|#2|) . T))
((($ $) . T))
-((((-375 (-501))) . T) (((-630)) . T) (($) . T))
-((((-1068 |#1| |#2| |#3|)) . T))
-((((-1068 |#1| |#2| |#3|)) . T) (((-1061 |#1| |#2| |#3|)) . T))
-((((-786)) . T))
-((((-786)) |has| |#1| (-1001)))
-((((-501) |#1|) . T))
-((((-1068 |#1| |#2| |#3|)) |has| |#1| (-331)))
+((((-377 (-517))) . T) (((-632)) . T) (($) . T))
+((((-1071 |#1| |#2| |#3|)) . T))
+((((-1071 |#1| |#2| |#3|)) . T) (((-1064 |#1| |#2| |#3|)) . T))
+((((-787)) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-517) |#1|) . T))
+((((-1071 |#1| |#2| |#3|)) |has| |#1| (-333)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
-(|has| |#2| (-331))
-(((|#3|) . T) ((|#2|) . T) (($) -1405 (|has| |#4| (-156)) (|has| |#4| (-775)) (|has| |#4| (-959))) ((|#4|) -1405 (|has| |#4| (-156)) (|has| |#4| (-331)) (|has| |#4| (-959))))
-(((|#2|) . T) (($) -1405 (|has| |#3| (-156)) (|has| |#3| (-775)) (|has| |#3| (-959))) ((|#3|) -1405 (|has| |#3| (-156)) (|has| |#3| (-331)) (|has| |#3| (-959))))
+(|has| |#2| (-333))
+(((|#3|) . T) ((|#2|) . T) (($) -3807 (|has| |#4| (-156)) (|has| |#4| (-777)) (|has| |#4| (-961))) ((|#4|) -3807 (|has| |#4| (-156)) (|has| |#4| (-333)) (|has| |#4| (-961))))
+(((|#2|) . T) (($) -3807 (|has| |#3| (-156)) (|has| |#3| (-777)) (|has| |#3| (-961))) ((|#3|) -3807 (|has| |#3| (-156)) (|has| |#3| (-333)) (|has| |#3| (-961))))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-331))
+(|has| |#1| (-333))
((((-111 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-375 (-501))) |has| |#2| (-950 (-375 (-501)))) (((-501)) |has| |#2| (-950 (-501))) ((|#2|) . T) (((-787 |#1|)) . T))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
+((((-377 (-517))) |has| |#2| (-952 (-377 (-517)))) (((-517)) |has| |#2| (-952 (-517))) ((|#2|) . T) (((-789 |#1|)) . T))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
(((|#1|) . T))
-((((-786)) |has| |#1| (-1001)))
-((((-501) |#1|) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
+((((-517) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| $) -12 (|has| |#1| (-331)) (|has| |#2| (-256 |#2| |#2|))) (($ $) . T))
+(((|#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-419)) (|has| |#1| (-830)))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
-((((-786)) . T))
-((((-786)) . T))
-((((-786)) . T))
-(((|#1| (-487 |#2|)) . T))
-((((-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) . T))
-(((|#1| (-501)) . T))
-(((|#1| (-375 (-501))) . T))
-(((|#1| (-701)) . T))
-((((-111 |#1|)) . T) (($) . T) (((-375 (-501))) . T))
-(-1405 (|has| |#2| (-419)) (|has| |#2| (-508)) (|has| |#2| (-830)))
-(-1405 (|has| |#1| (-419)) (|has| |#1| (-508)) (|has| |#1| (-830)))
-((($) . T))
-(((|#2| (-487 (-787 |#1|))) . T))
-((((-501) |#1|) . T))
-(((|#2|) . T))
-(((|#2| (-701)) . T))
-((((-786)) |has| |#1| (-1001)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-421)) (|has| |#1| (-831)))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
+((((-787)) . T))
+((((-787)) . T))
+((((-787)) . T))
+(((|#1| (-489 |#2|)) . T))
+((((-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) . T))
+(((|#1| (-517)) . T))
+(((|#1| (-377 (-517))) . T))
+(((|#1| (-703)) . T))
+((((-111 |#1|)) . T) (($) . T) (((-377 (-517))) . T))
+(-3807 (|has| |#2| (-421)) (|has| |#2| (-509)) (|has| |#2| (-831)))
+(-3807 (|has| |#1| (-421)) (|has| |#1| (-509)) (|has| |#1| (-831)))
+((($) . T))
+(((|#2| (-489 (-789 |#1|))) . T))
+((((-517) |#1|) . T))
+(((|#2|) . T))
+(((|#2| (-703)) . T))
+((((-787)) -3807 (|has| |#1| (-557 (-787))) (|has| |#1| (-1003))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-1053) |#1|) . T))
-((((-375 |#2|)) . T))
-((((-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-(|has| |#1| (-508))
-(|has| |#1| (-508))
+((((-1056) |#1|) . T))
+((((-377 |#2|)) . T))
+((((-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+(|has| |#1| (-509))
+(|has| |#1| (-509))
((($) . T) ((|#2|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#2| $) |has| |#2| (-256 |#2| |#2|)))
-(((|#1| (-578 |#1|)) |has| |#1| (-775)))
-(-1405 (|has| |#1| (-206)) (|has| |#1| (-318)))
-(-1405 (|has| |#1| (-331)) (|has| |#1| (-318)))
-(|has| |#1| (-1001))
-(((|#1|) . T))
-((((-375 (-501))) . T) (($) . T))
-((((-910 |#1|)) . T) ((|#1|) . T) (((-501)) -1405 (|has| (-910 |#1|) (-950 (-501))) (|has| |#1| (-950 (-501)))) (((-375 (-501))) -1405 (|has| (-910 |#1|) (-950 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-((((-1070)) |has| |#1| (-820 (-1070))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))
-(((|#1| (-546 |#1| |#3|) (-546 |#1| |#2|)) . T))
+(((|#2| $) |has| |#2| (-258 |#2| |#2|)))
+(((|#1| (-583 |#1|)) |has| |#1| (-777)))
+(-3807 (|has| |#1| (-207)) (|has| |#1| (-319)))
+(-3807 (|has| |#1| (-333)) (|has| |#1| (-319)))
+(|has| |#1| (-1003))
+(((|#1|) . T))
+((((-377 (-517))) . T) (($) . T))
+((((-915 |#1|)) . T) ((|#1|) . T) (((-517)) -3807 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517)))) (((-377 (-517))) -3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+((((-1073)) |has| |#1| (-822 (-1073))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))
+(((|#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-1035 |#1| |#2|) (-1035 |#1| |#2|)) |has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))))
-((((-111 |#1|)) |has| (-111 |#1|) (-278 (-111 |#1|))))
-(-1405 (|has| |#1| (-777)) (|has| |#1| (-1001)))
+((((-1038 |#1| |#2|) (-1038 |#1| |#2|)) |has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))))
+((((-111 |#1|)) |has| (-111 |#1|) (-280 (-111 |#1|))))
+(-3807 (|has| |#1| (-779)) (|has| |#1| (-1003)))
((($ $) . T))
-((($ $) . T) (((-787 |#1|) $) . T) (((-787 |#1|) |#2|) . T))
-((($ $) . T) ((|#2| $) |has| |#1| (-206)) ((|#2| |#1|) |has| |#1| (-206)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-587 . -1001) T) ((-235 . -476) 142242) ((-220 . -476) 142180) ((-522 . -106) 142165) ((-487 . -23) T) ((-218 . -1001) 142115) ((-112 . -278) 142059) ((-445 . -476) 141819) ((-625 . -97) T) ((-1036 . -476) 141727) ((-358 . -123) T) ((-1160 . -891) 141696) ((-546 . -454) 141680) ((-558 . -123) T) ((-749 . -773) T) ((-484 . -55) 141630) ((-56 . -476) 141563) ((-480 . -476) 141496) ((-373 . -820) 141455) ((-152 . -959) T) ((-478 . -476) 141388) ((-460 . -476) 141321) ((-459 . -476) 141254) ((-728 . -950) 141041) ((-630 . -37) 141006) ((-312 . -318) T) ((-991 . -995) 140990) ((-991 . -1001) 140968) ((-152 . -216) 140919) ((-152 . -206) 140870) ((-991 . -996) 140828) ((-794 . -256) 140786) ((-199 . -727) T) ((-199 . -722) T) ((-625 . -254) NIL) ((-1045 . -1081) 140765) ((-375 . -906) 140749) ((-632 . -21) T) ((-632 . -25) T) ((-1162 . -583) 140723) ((-282 . -145) 140702) ((-282 . -130) 140681) ((-1045 . -102) 140631) ((-125 . -25) T) ((-39 . -204) 140608) ((-111 . -21) T) ((-111 . -25) T) ((-550 . -258) 140584) ((-442 . -258) 140563) ((-1118 . -959) T) ((-782 . -959) T) ((-728 . -306) 140547) ((-112 . -1046) NIL) ((-89 . -555) 140514) ((-444 . -123) T) ((-538 . -1104) T) ((-1118 . -294) 140491) ((-522 . -959) T) ((-1118 . -206) T) ((-587 . -648) 140475) ((-877 . -258) 140452) ((-58 . -33) T) ((-969 . -727) T) ((-969 . -722) T) ((-746 . -657) T) ((-662 . -46) 140417) ((-562 . -37) 140404) ((-323 . -260) T) ((-321 . -260) T) ((-313 . -260) T) ((-235 . -260) 140335) ((-220 . -260) 140266) ((-937 . -97) T) ((-381 . -657) T) ((-112 . -37) 140211) ((-381 . -440) T) ((-308 . -97) T) ((-1097 . -965) T) ((-642 . -965) T) ((-1068 . -46) 140188) ((-1067 . -46) 140158) ((-1061 . -46) 140135) ((-948 . -138) 140081) ((-826 . -260) T) ((-1024 . -46) 140053) ((-625 . -278) NIL) ((-477 . -555) 140035) ((-473 . -555) 140017) ((-470 . -555) 139999) ((-295 . -1001) 139949) ((-643 . -419) 139880) ((-47 . -97) T) ((-1135 . -256) 139865) ((-1114 . -256) 139785) ((-578 . -601) 139769) ((-578 . -586) 139753) ((-307 . -21) T) ((-307 . -25) T) ((-39 . -318) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-578 . -340) 139737) ((-546 . -256) 139714) ((-356 . -97) T) ((-1018 . -130) T) ((-121 . -555) 139681) ((-795 . -1001) T) ((-589 . -380) 139665) ((-645 . -555) 139647) ((-146 . -555) 139629) ((-142 . -555) 139611) ((-1162 . -657) T) ((-997 . -33) T) ((-793 . -727) NIL) ((-793 . -722) NIL) ((-784 . -777) T) ((-662 . -806) NIL) ((-1171 . -123) T) ((-350 . -123) T) ((-825 . -97) T) ((-662 . -950) 139489) ((-487 . -123) T) ((-989 . -380) 139473) ((-914 . -454) 139457) ((-112 . -368) 139434) ((-1061 . -1104) 139413) ((-711 . -380) 139397) ((-710 . -380) 139381) ((-863 . -33) T) ((-625 . -1046) NIL) ((-222 . -583) 139218) ((-221 . -583) 139042) ((-747 . -841) 139021) ((-421 . -380) 139005) ((-546 . -19) 138989) ((-1041 . -1099) 138958) ((-1061 . -806) NIL) ((-1061 . -804) 138910) ((-546 . -548) 138887) ((-1091 . -555) 138854) ((-1069 . -555) 138836) ((-61 . -364) T) ((-1067 . -950) 138771) ((-1061 . -950) 138737) ((-625 . -37) 138687) ((-441 . -256) 138672) ((-662 . -345) 138656) ((-589 . -965) T) ((-1135 . -916) 138622) ((-1114 . -916) 138588) ((-970 . -1081) 138563) ((-794 . -556) 138366) ((-794 . -555) 138348) ((-1077 . -454) 138285) ((-373 . -933) 138264) ((-47 . -278) 138251) ((-970 . -102) 138197) ((-445 . -454) 138134) ((-481 . -1104) T) ((-1036 . -454) 138105) ((-1061 . -306) 138057) ((-1061 . -345) 138009) ((-404 . -97) T) ((-989 . -965) T) ((-222 . -33) T) ((-221 . -33) T) ((-711 . -965) T) ((-710 . -965) T) ((-662 . -820) 137986) ((-421 . -965) T) ((-56 . -454) 137970) ((-947 . -964) 137944) ((-480 . -454) 137928) ((-478 . -454) 137912) ((-460 . -454) 137896) ((-459 . -454) 137880) ((-218 . -476) 137813) ((-947 . -106) 137780) ((-1068 . -820) 137693) ((-605 . -1012) T) ((-1067 . -820) 137599) ((-1061 . -820) 137432) ((-1024 . -820) 137416) ((-308 . -1046) T) ((-290 . -964) 137398) ((-222 . -721) 137377) ((-222 . -724) 137328) ((-222 . -723) 137307) ((-221 . -721) 137286) ((-221 . -724) 137237) ((-221 . -723) 137216) ((-49 . -965) T) ((-222 . -657) 137147) ((-221 . -657) 137078) ((-1097 . -1001) T) ((-605 . -23) T) ((-528 . -965) T) ((-479 . -965) T) ((-346 . -964) 137043) ((-290 . -106) 137018) ((-71 . -351) T) ((-71 . -364) T) ((-937 . -37) 136955) ((-625 . -368) 136937) ((-94 . -97) T) ((-642 . -1001) T) ((-917 . -132) 136909) ((-346 . -106) 136858) ((-287 . -1108) 136837) ((-441 . -916) 136803) ((-308 . -37) 136768) ((-39 . -338) 136740) ((-917 . -134) 136712) ((-122 . -120) 136696) ((-116 . -120) 136680) ((-764 . -964) 136650) ((-762 . -21) 136602) ((-758 . -964) 136586) ((-762 . -25) 136538) ((-287 . -508) 136489) ((-501 . -751) T) ((-212 . -1104) T) ((-764 . -106) 136454) ((-758 . -106) 136433) ((-1135 . -555) 136415) ((-1114 . -555) 136397) ((-1114 . -556) 136070) ((-1064 . -830) 136049) ((-1023 . -830) 136028) ((-47 . -37) 135993) ((-1168 . -1012) T) ((-546 . -555) 135932) ((-546 . -556) 135893) ((-1167 . -1012) T) ((-212 . -950) 135722) ((-1064 . -583) 135647) ((-1023 . -583) 135572) ((-649 . -555) 135554) ((-781 . -583) 135528) ((-1168 . -23) T) ((-1167 . -23) T) ((-947 . -959) T) ((-1077 . -256) 135507) ((-152 . -336) 135458) ((-918 . -1104) T) ((-43 . -23) T) ((-445 . -256) 135437) ((-530 . -1001) T) ((-1041 . -1009) 135406) ((-1003 . -1004) 135358) ((-358 . -21) T) ((-358 . -25) T) ((-139 . -1012) T) ((-1175 . -97) T) ((-918 . -804) 135340) ((-918 . -806) 135322) ((-1097 . -648) 135219) ((-562 . -204) 135203) ((-558 . -21) T) ((-259 . -508) T) ((-558 . -25) T) ((-1084 . -1001) T) ((-642 . -648) 135168) ((-212 . -345) 135138) ((-918 . -950) 135098) ((-346 . -959) T) ((-197 . -965) T) ((-112 . -204) 135075) ((-56 . -256) 135052) ((-139 . -23) T) ((-478 . -256) 135029) ((-295 . -476) 134962) ((-459 . -256) 134939) ((-346 . -216) T) ((-346 . -206) T) ((-764 . -959) T) ((-758 . -959) T) ((-643 . -870) 134909) ((-632 . -777) T) ((-441 . -555) 134891) ((-758 . -206) 134870) ((-125 . -777) T) ((-589 . -1001) T) ((-1077 . -548) 134849) ((-502 . -1081) 134828) ((-301 . -1001) T) ((-287 . -331) 134807) ((-375 . -134) 134786) ((-375 . -132) 134765) ((-883 . -1012) 134664) ((-212 . -820) 134597) ((-745 . -1012) 134528) ((-591 . -779) 134512) ((-445 . -548) 134491) ((-502 . -102) 134441) ((-918 . -345) 134423) ((-918 . -306) 134405) ((-92 . -1001) T) ((-883 . -23) 134216) ((-444 . -21) T) ((-444 . -25) T) ((-745 . -23) 134087) ((-1070 . -555) 134069) ((-56 . -19) 134053) ((-1070 . -556) 133975) ((-1064 . -657) T) ((-1023 . -657) T) ((-478 . -19) 133959) ((-459 . -19) 133943) ((-56 . -548) 133920) ((-989 . -1001) T) ((-821 . -97) 133898) ((-781 . -657) T) ((-711 . -1001) T) ((-478 . -548) 133875) ((-459 . -548) 133852) ((-710 . -1001) T) ((-710 . -972) 133819) ((-428 . -1001) T) ((-421 . -1001) T) ((-530 . -648) 133794) ((-584 . -1001) T) ((-918 . -820) NIL) ((-1139 . -46) 133771) ((-565 . -1012) T) ((-605 . -123) T) ((-1136 . -97) T) ((-1130 . -46) 133741) ((-1109 . -46) 133718) ((-1097 . -156) 133669) ((-983 . -1108) 133620) ((-246 . -1001) T) ((-84 . -408) T) ((-84 . -364) T) ((-1067 . -276) 133599) ((-1061 . -276) 133578) ((-49 . -1001) T) ((-983 . -508) 133529) ((-642 . -156) T) ((-540 . -46) 133506) ((-199 . -583) 133471) ((-528 . -1001) T) ((-479 . -1001) T) ((-327 . -1108) T) ((-322 . -1108) T) ((-314 . -1108) T) ((-452 . -750) T) ((-452 . -841) T) ((-287 . -1012) T) ((-103 . -1108) T) ((-307 . -777) T) ((-192 . -841) T) ((-192 . -750) T) ((-645 . -964) 133441) ((-327 . -508) T) ((-322 . -508) T) ((-314 . -508) T) ((-103 . -508) T) ((-589 . -648) 133411) ((-1061 . -933) NIL) ((-287 . -23) T) ((-65 . -1104) T) ((-914 . -555) 133378) ((-625 . -204) 133360) ((-645 . -106) 133325) ((-578 . -33) T) ((-218 . -454) 133309) ((-997 . -999) 133293) ((-155 . -1001) T) ((-866 . -830) 133272) ((-447 . -830) 133251) ((-1171 . -21) T) ((-1171 . -25) T) ((-1168 . -123) T) ((-1167 . -123) T) ((-989 . -648) 133100) ((-969 . -583) 133087) ((-866 . -583) 133012) ((-490 . -555) 132994) ((-490 . -556) 132975) ((-711 . -648) 132804) ((-710 . -648) 132653) ((-1160 . -97) T) ((-981 . -97) T) ((-350 . -25) T) ((-350 . -21) T) ((-447 . -583) 132578) ((-428 . -648) 132549) ((-421 . -648) 132398) ((-901 . -97) T) ((-667 . -97) T) ((-487 . -25) T) ((-1109 . -1104) 132377) ((-1145 . -555) 132343) ((-1109 . -806) NIL) ((-1109 . -804) 132295) ((-128 . -97) T) ((-43 . -123) T) ((-1077 . -556) NIL) ((-1077 . -555) 132277) ((-1037 . -1021) 132222) ((-312 . -965) T) ((-599 . -555) 132204) ((-259 . -1012) T) ((-323 . -555) 132186) ((-321 . -555) 132168) ((-313 . -555) 132150) ((-235 . -556) 131898) ((-235 . -555) 131880) ((-220 . -555) 131862) ((-220 . -556) 131723) ((-956 . -1099) 131652) ((-821 . -278) 131590) ((-1175 . -1046) T) ((-1130 . -950) 131525) ((-1109 . -950) 131491) ((-1097 . -476) 131458) ((-1036 . -555) 131440) ((-749 . -657) T) ((-546 . -258) 131417) ((-528 . -648) 131382) ((-445 . -556) NIL) ((-445 . -555) 131364) ((-479 . -648) 131309) ((-282 . -97) T) ((-281 . -97) T) ((-259 . -23) T) ((-139 . -123) T) ((-354 . -657) T) ((-794 . -964) 131261) ((-826 . -555) 131243) ((-826 . -556) 131225) ((-794 . -106) 131156) ((-126 . -97) T) ((-108 . -97) T) ((-643 . -1125) 131140) ((-645 . -959) T) ((-625 . -318) NIL) ((-480 . -555) 131107) ((-346 . -727) T) ((-197 . -1001) T) ((-346 . -722) T) ((-199 . -724) T) ((-199 . -721) T) ((-56 . -556) 131068) ((-56 . -555) 131007) ((-199 . -657) T) ((-478 . -556) 130968) ((-478 . -555) 130907) ((-460 . -555) 130874) ((-459 . -556) 130835) ((-459 . -555) 130774) ((-983 . -331) 130725) ((-39 . -380) 130702) ((-76 . -1104) T) ((-793 . -830) NIL) ((-327 . -297) 130686) ((-327 . -331) T) ((-322 . -297) 130670) ((-322 . -331) T) ((-314 . -297) 130654) ((-314 . -331) T) ((-282 . -254) 130633) ((-103 . -331) T) ((-68 . -1104) T) ((-1109 . -306) 130585) ((-793 . -583) 130530) ((-1109 . -345) 130482) ((-883 . -123) 130337) ((-745 . -123) 130208) ((-877 . -586) 130192) ((-989 . -156) 130103) ((-877 . -340) 130087) ((-969 . -724) T) ((-969 . -721) T) ((-711 . -156) 129978) ((-710 . -156) 129889) ((-746 . -46) 129851) ((-969 . -657) T) ((-295 . -454) 129835) ((-866 . -657) T) ((-421 . -156) 129746) ((-218 . -256) 129723) ((-447 . -657) T) ((-1160 . -278) 129661) ((-1139 . -820) 129574) ((-1135 . -964) 129409) ((-1130 . -820) 129315) ((-1114 . -964) 129123) ((-1109 . -820) 128956) ((-1097 . -260) 128935) ((-1041 . -138) 128919) ((-980 . -97) T) ((-845 . -874) T) ((-74 . -1104) T) ((-667 . -278) 128857) ((-152 . -830) 128810) ((-599 . -352) 128782) ((-30 . -874) T) ((-1 . -555) 128764) ((-1018 . -97) T) ((-983 . -23) T) ((-49 . -560) 128748) ((-983 . -1012) T) ((-917 . -378) 128720) ((-540 . -820) 128633) ((-406 . -97) T) ((-128 . -278) NIL) ((-794 . -959) T) ((-762 . -777) 128612) ((-79 . -1104) T) ((-642 . -260) T) ((-39 . -965) T) ((-528 . -156) T) ((-479 . -156) T) ((-474 . -555) 128594) ((-152 . -583) 128504) ((-469 . -555) 128486) ((-320 . -134) 128468) ((-320 . -132) T) ((-327 . -1012) T) ((-322 . -1012) T) ((-314 . -1012) T) ((-918 . -276) T) ((-834 . -276) T) ((-794 . -216) T) ((-103 . -1012) T) ((-794 . -206) 128447) ((-1135 . -106) 128261) ((-1114 . -106) 128043) ((-218 . -1138) 128027) ((-501 . -775) T) ((-327 . -23) T) ((-308 . -318) T) ((-282 . -278) 128014) ((-281 . -278) 127910) ((-322 . -23) T) ((-287 . -123) T) ((-314 . -23) T) ((-918 . -933) T) ((-103 . -23) T) ((-218 . -548) 127887) ((-1136 . -37) 127744) ((-1118 . -830) 127723) ((-107 . -1001) T) ((-948 . -97) T) ((-1118 . -583) 127648) ((-793 . -724) NIL) ((-782 . -583) 127622) ((-793 . -721) NIL) ((-746 . -806) NIL) ((-793 . -657) T) ((-989 . -476) 127487) ((-711 . -476) 127435) ((-710 . -476) 127387) ((-522 . -583) 127374) ((-746 . -950) 127204) ((-421 . -476) 127142) ((-356 . -357) T) ((-58 . -1104) T) ((-558 . -777) 127121) ((-463 . -597) T) ((-1041 . -891) 127090) ((-917 . -419) T) ((-630 . -775) T) ((-473 . -722) T) ((-441 . -964) 126925) ((-312 . -1001) T) ((-281 . -1046) NIL) ((-259 . -123) T) ((-361 . -1001) T) ((-625 . -338) 126892) ((-791 . -965) T) ((-197 . -560) 126869) ((-295 . -256) 126846) ((-441 . -106) 126660) ((-1135 . -959) T) ((-1114 . -959) T) ((-746 . -345) 126644) ((-152 . -657) T) ((-591 . -97) T) ((-1135 . -216) 126623) ((-1135 . -206) 126575) ((-1114 . -206) 126480) ((-1114 . -216) 126459) ((-917 . -370) NIL) ((-605 . -577) 126407) ((-282 . -37) 126317) ((-281 . -37) 126246) ((-67 . -555) 126228) ((-287 . -456) 126194) ((-1077 . -258) 126173) ((-1013 . -1012) 126104) ((-82 . -1104) T) ((-60 . -555) 126086) ((-445 . -258) 126065) ((-1162 . -950) 126042) ((-1059 . -1001) T) ((-1013 . -23) 125913) ((-746 . -820) 125849) ((-1118 . -657) T) ((-997 . -1104) T) ((-989 . -260) 125780) ((-813 . -97) T) ((-711 . -260) 125691) ((-295 . -19) 125675) ((-56 . -258) 125652) ((-710 . -260) 125583) ((-782 . -657) T) ((-112 . -775) NIL) ((-478 . -258) 125560) ((-295 . -548) 125537) ((-459 . -258) 125514) ((-421 . -260) 125445) ((-948 . -278) 125296) ((-522 . -657) T) ((-587 . -555) 125278) ((-218 . -556) 125239) ((-218 . -555) 125178) ((-1042 . -33) T) ((-863 . -1104) T) ((-312 . -648) 125123) ((-605 . -25) T) ((-605 . -21) T) ((-441 . -959) T) ((-571 . -386) 125088) ((-549 . -386) 125053) ((-1018 . -1046) T) ((-528 . -260) T) ((-479 . -260) T) ((-1130 . -276) 125032) ((-441 . -206) 124984) ((-441 . -216) 124963) ((-1109 . -276) 124942) ((-983 . -123) T) ((-794 . -727) 124921) ((-131 . -97) T) ((-39 . -1001) T) ((-794 . -722) 124900) ((-578 . -924) 124884) ((-527 . -965) T) ((-501 . -965) T) ((-458 . -965) T) ((-375 . -419) T) ((-327 . -123) T) ((-282 . -368) 124868) ((-281 . -368) 124829) ((-322 . -123) T) ((-314 . -123) T) ((-1109 . -933) NIL) ((-991 . -555) 124796) ((-103 . -123) T) ((-1018 . -37) 124783) ((-839 . -1001) T) ((-701 . -1001) T) ((-606 . -1001) T) ((-632 . -134) T) ((-111 . -134) T) ((-1168 . -21) T) ((-1168 . -25) T) ((-1167 . -21) T) ((-1167 . -25) T) ((-599 . -964) 124767) ((-487 . -777) T) ((-463 . -777) T) ((-323 . -964) 124719) ((-321 . -964) 124671) ((-313 . -964) 124623) ((-222 . -1104) T) ((-221 . -1104) T) ((-235 . -964) 124466) ((-220 . -964) 124309) ((-599 . -106) 124288) ((-323 . -106) 124219) ((-321 . -106) 124150) ((-313 . -106) 124081) ((-235 . -106) 123903) ((-220 . -106) 123725) ((-747 . -1108) 123704) ((-562 . -380) 123688) ((-43 . -21) T) ((-43 . -25) T) ((-745 . -577) 123596) ((-747 . -508) 123575) ((-222 . -950) 123404) ((-221 . -950) 123233) ((-121 . -114) 123217) ((-826 . -964) 123182) ((-630 . -965) T) ((-643 . -97) T) ((-312 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-85 . -555) 123164) ((-826 . -106) 123113) ((-39 . -648) 123058) ((-791 . -1001) T) ((-295 . -556) 123019) ((-295 . -555) 122958) ((-1114 . -722) 122911) ((-1114 . -727) 122864) ((-222 . -345) 122834) ((-221 . -345) 122804) ((-591 . -37) 122774) ((-550 . -33) T) ((-448 . -1012) 122705) ((-442 . -33) T) ((-1013 . -123) 122576) ((-883 . -25) 122387) ((-795 . -555) 122369) ((-883 . -21) 122324) ((-745 . -21) 122235) ((-745 . -25) 122087) ((-562 . -965) T) ((-1072 . -508) 122066) ((-1064 . -46) 122043) ((-323 . -959) T) ((-321 . -959) T) ((-448 . -23) 121914) ((-313 . -959) T) ((-235 . -959) T) ((-220 . -959) T) ((-1023 . -46) 121886) ((-112 . -965) T) ((-947 . -583) 121860) ((-877 . -33) T) ((-323 . -206) 121839) ((-323 . -216) T) ((-321 . -206) 121818) ((-321 . -216) T) ((-220 . -294) 121775) ((-313 . -206) 121754) ((-313 . -216) T) ((-235 . -294) 121726) ((-235 . -206) 121705) ((-1048 . -138) 121689) ((-222 . -820) 121622) ((-221 . -820) 121555) ((-986 . -777) T) ((-1116 . -1104) T) ((-383 . -1012) T) ((-962 . -23) T) ((-826 . -959) T) ((-290 . -583) 121537) ((-937 . -775) T) ((-1097 . -916) 121503) ((-1067 . -841) 121482) ((-1061 . -841) 121461) ((-826 . -216) T) ((-747 . -331) 121440) ((-349 . -23) T) ((-122 . -1001) 121418) ((-116 . -1001) 121396) ((-826 . -206) T) ((-1061 . -750) NIL) ((-346 . -583) 121361) ((-791 . -648) 121348) ((-956 . -138) 121313) ((-39 . -156) T) ((-625 . -380) 121295) ((-643 . -278) 121282) ((-764 . -583) 121242) ((-758 . -583) 121216) ((-287 . -25) T) ((-287 . -21) T) ((-589 . -256) 121195) ((-527 . -1001) T) ((-501 . -1001) T) ((-458 . -1001) T) ((-218 . -258) 121172) ((-281 . -204) 121133) ((-1064 . -806) NIL) ((-1023 . -806) 120992) ((-1064 . -950) 120875) ((-1023 . -950) 120760) ((-781 . -950) 120658) ((-711 . -256) 120585) ((-747 . -1012) T) ((-947 . -657) T) ((-546 . -586) 120569) ((-956 . -891) 120498) ((-910 . -97) T) ((-747 . -23) T) ((-643 . -1046) 120476) ((-625 . -965) T) ((-546 . -340) 120460) ((-320 . -419) T) ((-312 . -260) T) ((-1151 . -1001) T) ((-367 . -97) T) ((-259 . -21) T) ((-259 . -25) T) ((-329 . -657) T) ((-630 . -1001) T) ((-329 . -440) T) ((-1097 . -555) 120442) ((-1064 . -345) 120426) ((-1023 . -345) 120410) ((-937 . -380) 120372) ((-128 . -202) 120354) ((-346 . -724) T) ((-346 . -721) T) ((-791 . -156) T) ((-346 . -657) T) ((-642 . -555) 120336) ((-643 . -37) 120165) ((-1148 . -1147) 120149) ((-320 . -370) T) ((-1148 . -1001) 120099) ((-527 . -648) 120086) ((-501 . -648) 120073) ((-458 . -648) 120038) ((-282 . -568) 120017) ((-764 . -657) T) ((-758 . -657) T) ((-578 . -1104) T) ((-983 . -577) 119965) ((-1064 . -820) 119909) ((-1023 . -820) 119893) ((-587 . -964) 119877) ((-103 . -577) 119859) ((-448 . -123) 119730) ((-1072 . -1012) T) ((-866 . -46) 119699) ((-562 . -1001) T) ((-587 . -106) 119678) ((-295 . -258) 119655) ((-447 . -46) 119612) ((-1072 . -23) T) ((-112 . -1001) T) ((-98 . -97) 119590) ((-1159 . -1012) T) ((-962 . -123) T) ((-937 . -965) T) ((-749 . -950) 119574) ((-917 . -655) 119546) ((-1159 . -23) T) ((-630 . -648) 119511) ((-530 . -555) 119493) ((-354 . -950) 119477) ((-308 . -965) T) ((-349 . -123) T) ((-292 . -950) 119461) ((-199 . -806) 119443) ((-918 . -841) T) ((-89 . -33) T) ((-918 . -750) T) ((-834 . -841) T) ((-452 . -1108) T) ((-1084 . -555) 119425) ((-1005 . -1001) T) ((-192 . -1108) T) ((-910 . -278) 119390) ((-199 . -950) 119350) ((-39 . -260) T) ((-983 . -21) T) ((-983 . -25) T) ((-1018 . -751) T) ((-452 . -508) T) ((-327 . -25) T) ((-192 . -508) T) ((-327 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-645 . -583) 119310) ((-314 . -25) T) ((-314 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -965) T) ((-527 . -156) T) ((-501 . -156) T) ((-458 . -156) T) ((-589 . -555) 119292) ((-667 . -668) 119276) ((-301 . -555) 119258) ((-66 . -351) T) ((-66 . -364) T) ((-997 . -102) 119242) ((-969 . -806) 119224) ((-866 . -806) 119149) ((-590 . -1012) T) ((-562 . -648) 119136) ((-447 . -806) NIL) ((-1041 . -97) T) ((-969 . -950) 119118) ((-92 . -555) 119100) ((-444 . -134) T) ((-866 . -950) 118982) ((-112 . -648) 118927) ((-590 . -23) T) ((-447 . -950) 118805) ((-989 . -556) NIL) ((-989 . -555) 118787) ((-711 . -556) NIL) ((-711 . -555) 118748) ((-710 . -556) 118383) ((-710 . -555) 118297) ((-1013 . -577) 118205) ((-428 . -555) 118187) ((-421 . -555) 118169) ((-421 . -556) 118030) ((-948 . -202) 117976) ((-121 . -33) T) ((-747 . -123) T) ((-794 . -830) 117955) ((-584 . -555) 117937) ((-323 . -1165) 117921) ((-321 . -1165) 117905) ((-313 . -1165) 117889) ((-122 . -476) 117822) ((-116 . -476) 117755) ((-474 . -722) T) ((-474 . -727) T) ((-473 . -724) T) ((-98 . -278) 117693) ((-196 . -97) 117671) ((-625 . -1001) T) ((-630 . -156) T) ((-794 . -583) 117623) ((-63 . -353) T) ((-246 . -555) 117605) ((-63 . -364) T) ((-866 . -345) 117589) ((-791 . -260) T) ((-49 . -555) 117571) ((-910 . -37) 117519) ((-528 . -555) 117501) ((-447 . -345) 117485) ((-528 . -556) 117467) ((-479 . -555) 117449) ((-826 . -1165) 117436) ((-793 . -1104) T) ((-632 . -419) T) ((-458 . -476) 117402) ((-452 . -331) T) ((-323 . -336) 117381) ((-321 . -336) 117360) ((-313 . -336) 117339) ((-192 . -331) T) ((-645 . -657) T) ((-111 . -419) T) ((-1170 . -1161) 117323) ((-793 . -804) 117300) ((-793 . -806) NIL) ((-883 . -777) 117199) ((-745 . -777) 117150) ((-591 . -593) 117134) ((-1091 . -33) T) ((-155 . -555) 117116) ((-1013 . -21) 117027) ((-1013 . -25) 116879) ((-793 . -950) 116856) ((-866 . -820) 116837) ((-1118 . -46) 116814) ((-826 . -336) T) ((-56 . -586) 116798) ((-478 . -586) 116782) ((-447 . -820) 116759) ((-69 . -408) T) ((-69 . -364) T) ((-459 . -586) 116743) ((-56 . -340) 116727) ((-562 . -156) T) ((-478 . -340) 116711) ((-459 . -340) 116695) ((-758 . -640) 116679) ((-1064 . -276) 116658) ((-1072 . -123) T) ((-112 . -156) T) ((-1041 . -278) 116596) ((-152 . -1104) T) ((-571 . -675) 116580) ((-549 . -675) 116564) ((-1159 . -123) T) ((-1130 . -841) 116543) ((-1114 . -830) 116496) ((-1109 . -841) 116475) ((-625 . -648) 116425) ((-1109 . -750) NIL) ((-937 . -1001) T) ((-793 . -345) 116402) ((-793 . -306) 116379) ((-822 . -1012) T) ((-152 . -804) 116363) ((-152 . -806) 116288) ((-452 . -1012) T) ((-192 . -1012) T) ((-308 . -1001) T) ((-75 . -408) T) ((-75 . -364) T) ((-152 . -950) 116186) ((-287 . -777) T) ((-1148 . -476) 116119) ((-1135 . -583) 116016) ((-1114 . -583) 115886) ((-794 . -724) 115865) ((-794 . -721) 115844) ((-794 . -657) T) ((-452 . -23) T) ((-197 . -555) 115826) ((-157 . -419) T) ((-196 . -278) 115764) ((-80 . -408) T) ((-80 . -364) T) ((-192 . -23) T) ((-1171 . -1166) 115743) ((-527 . -260) T) ((-501 . -260) T) ((-610 . -950) 115727) ((-458 . -260) T) ((-126 . -437) 115682) ((-47 . -1001) T) ((-643 . -204) 115666) ((-793 . -820) NIL) ((-1118 . -806) NIL) ((-808 . -97) T) ((-805 . -97) T) ((-356 . -1001) T) ((-152 . -345) 115650) ((-152 . -306) 115634) ((-1118 . -950) 115517) ((-782 . -950) 115415) ((-1037 . -97) T) ((-590 . -123) T) ((-112 . -476) 115278) ((-587 . -722) 115257) ((-587 . -727) 115236) ((-522 . -950) 115218) ((-262 . -1156) 115188) ((-788 . -97) T) ((-875 . -508) 115167) ((-1097 . -964) 115050) ((-448 . -577) 114958) ((-825 . -1001) T) ((-937 . -648) 114895) ((-642 . -964) 114860) ((-546 . -33) T) ((-1042 . -1104) T) ((-1097 . -106) 114722) ((-441 . -583) 114619) ((-308 . -648) 114564) ((-152 . -820) 114523) ((-630 . -260) T) ((-625 . -156) T) ((-642 . -106) 114472) ((-1175 . -965) T) ((-1118 . -345) 114456) ((-373 . -1108) 114434) ((-281 . -775) NIL) ((-373 . -508) T) ((-199 . -276) T) ((-1114 . -721) 114387) ((-1114 . -724) 114340) ((-1135 . -657) T) ((-1114 . -657) T) ((-47 . -648) 114305) ((-199 . -933) T) ((-320 . -1156) 114282) ((-1136 . -380) 114248) ((-649 . -657) T) ((-1118 . -820) 114192) ((-107 . -555) 114174) ((-107 . -556) 114156) ((-649 . -440) T) ((-448 . -21) 114067) ((-122 . -454) 114051) ((-116 . -454) 114035) ((-448 . -25) 113887) ((-562 . -260) T) ((-530 . -964) 113862) ((-404 . -1001) T) ((-969 . -276) T) ((-112 . -260) T) ((-1003 . -97) T) ((-917 . -97) T) ((-530 . -106) 113823) ((-1037 . -278) 113761) ((-1097 . -959) T) ((-969 . -933) T) ((-64 . -1104) T) ((-962 . -25) T) ((-962 . -21) T) ((-642 . -959) T) ((-349 . -21) T) ((-349 . -25) T) ((-625 . -476) NIL) ((-937 . -156) T) ((-642 . -216) T) ((-969 . -500) T) ((-465 . -97) T) ((-312 . -555) 113743) ((-308 . -156) T) ((-361 . -555) 113725) ((-441 . -657) T) ((-1018 . -775) T) ((-810 . -950) 113693) ((-103 . -777) T) ((-589 . -964) 113677) ((-452 . -123) T) ((-1136 . -965) T) ((-192 . -123) T) ((-1048 . -97) 113655) ((-94 . -1001) T) ((-218 . -601) 113639) ((-218 . -586) 113623) ((-589 . -106) 113602) ((-282 . -380) 113586) ((-218 . -340) 113570) ((-1054 . -208) 113517) ((-910 . -204) 113501) ((-72 . -1104) T) ((-47 . -156) T) ((-632 . -355) T) ((-632 . -130) T) ((-1170 . -97) T) ((-989 . -964) 113344) ((-235 . -830) 113323) ((-220 . -830) 113302) ((-711 . -964) 113125) ((-710 . -964) 112968) ((-550 . -1104) T) ((-1059 . -555) 112950) ((-989 . -106) 112772) ((-956 . -97) T) ((-442 . -1104) T) ((-428 . -964) 112743) ((-421 . -964) 112586) ((-599 . -583) 112570) ((-793 . -276) T) ((-711 . -106) 112372) ((-710 . -106) 112194) ((-323 . -583) 112146) ((-321 . -583) 112098) ((-313 . -583) 112050) ((-235 . -583) 111975) ((-220 . -583) 111900) ((-1053 . -777) T) ((-428 . -106) 111861) ((-421 . -106) 111683) ((-990 . -950) 111667) ((-979 . -950) 111644) ((-914 . -33) T) ((-877 . -1104) T) ((-121 . -924) 111628) ((-875 . -1012) T) ((-793 . -933) NIL) ((-666 . -1012) T) ((-646 . -1012) T) ((-1148 . -454) 111612) ((-1037 . -37) 111572) ((-875 . -23) T) ((-769 . -97) T) ((-747 . -21) T) ((-747 . -25) T) ((-666 . -23) T) ((-646 . -23) T) ((-105 . -597) T) ((-826 . -583) 111537) ((-528 . -964) 111502) ((-479 . -964) 111447) ((-420 . -23) T) ((-375 . -97) T) ((-232 . -97) T) ((-625 . -260) T) ((-788 . -37) 111417) ((-528 . -106) 111366) ((-479 . -106) 111283) ((-373 . -1012) T) ((-282 . -965) 111174) ((-281 . -965) T) ((-589 . -959) T) ((-1175 . -1001) T) ((-152 . -276) 111105) ((-373 . -23) T) ((-39 . -555) 111087) ((-39 . -556) 111071) ((-103 . -906) 111053) ((-111 . -792) 111037) ((-47 . -476) 111003) ((-1091 . -924) 110987) ((-1077 . -33) T) ((-839 . -555) 110969) ((-1013 . -777) 110920) ((-701 . -555) 110902) ((-606 . -555) 110884) ((-1048 . -278) 110822) ((-445 . -33) T) ((-993 . -1104) T) ((-444 . -419) T) ((-989 . -959) T) ((-1036 . -33) T) ((-711 . -959) T) ((-710 . -959) T) ((-582 . -208) 110806) ((-570 . -208) 110752) ((-1118 . -276) 110731) ((-989 . -294) 110693) ((-421 . -959) T) ((-1072 . -21) T) ((-989 . -206) 110672) ((-711 . -294) 110649) ((-711 . -206) T) ((-710 . -294) 110621) ((-295 . -586) 110605) ((-662 . -1108) 110584) ((-1072 . -25) T) ((-56 . -33) T) ((-480 . -33) T) ((-478 . -33) T) ((-421 . -294) 110563) ((-295 . -340) 110547) ((-460 . -33) T) ((-459 . -33) T) ((-917 . -1046) NIL) ((-571 . -97) T) ((-549 . -97) T) ((-662 . -508) 110478) ((-323 . -657) T) ((-321 . -657) T) ((-313 . -657) T) ((-235 . -657) T) ((-220 . -657) T) ((-956 . -278) 110386) ((-821 . -1001) 110364) ((-49 . -959) T) ((-1159 . -21) T) ((-1159 . -25) T) ((-1068 . -508) 110343) ((-1067 . -1108) 110322) ((-528 . -959) T) ((-479 . -959) T) ((-1061 . -1108) 110301) ((-329 . -950) 110285) ((-290 . -950) 110269) ((-937 . -260) T) ((-346 . -806) 110251) ((-1067 . -508) 110202) ((-1061 . -508) 110153) ((-917 . -37) 110098) ((-728 . -1012) T) ((-826 . -657) T) ((-528 . -216) T) ((-528 . -206) T) ((-479 . -206) T) ((-479 . -216) T) ((-1024 . -508) 110077) ((-308 . -260) T) ((-582 . -626) 110061) ((-346 . -950) 110021) ((-1018 . -965) T) ((-98 . -120) 110005) ((-728 . -23) T) ((-1148 . -256) 109982) ((-375 . -278) 109947) ((-1168 . -1166) 109923) ((-1167 . -1166) 109902) ((-1136 . -1001) T) ((-791 . -555) 109884) ((-764 . -950) 109853) ((-179 . -717) T) ((-178 . -717) T) ((-177 . -717) T) ((-176 . -717) T) ((-175 . -717) T) ((-174 . -717) T) ((-173 . -717) T) ((-172 . -717) T) ((-171 . -717) T) ((-170 . -717) T) ((-458 . -916) T) ((-245 . -766) T) ((-244 . -766) T) ((-243 . -766) T) ((-242 . -766) T) ((-47 . -260) T) ((-241 . -766) T) ((-240 . -766) T) ((-239 . -766) T) ((-169 . -717) T) ((-553 . -777) T) ((-591 . -380) 109837) ((-105 . -777) T) ((-590 . -21) T) ((-590 . -25) T) ((-1170 . -37) 109807) ((-112 . -256) 109737) ((-1148 . -19) 109721) ((-1148 . -548) 109698) ((-1160 . -1001) T) ((-981 . -1001) T) ((-901 . -1001) T) ((-875 . -123) T) ((-667 . -1001) T) ((-666 . -123) T) ((-646 . -123) T) ((-474 . -723) T) ((-375 . -1046) 109676) ((-420 . -123) T) ((-474 . -724) T) ((-197 . -959) T) ((-262 . -97) 109459) ((-128 . -1001) T) ((-630 . -916) T) ((-89 . -1104) T) ((-122 . -555) 109426) ((-116 . -555) 109393) ((-1175 . -156) T) ((-1067 . -331) 109372) ((-1061 . -331) 109351) ((-282 . -1001) T) ((-373 . -123) T) ((-281 . -1001) T) ((-375 . -37) 109303) ((-1031 . -97) T) ((-1136 . -648) 109160) ((-591 . -965) T) ((-287 . -132) 109139) ((-287 . -134) 109118) ((-126 . -1001) T) ((-108 . -1001) T) ((-784 . -97) T) ((-527 . -555) 109100) ((-501 . -556) 108999) ((-501 . -555) 108981) ((-458 . -555) 108963) ((-458 . -556) 108908) ((-450 . -23) T) ((-448 . -777) 108859) ((-452 . -577) 108841) ((-192 . -577) 108823) ((-199 . -372) T) ((-587 . -583) 108807) ((-1064 . -841) 108786) ((-662 . -1012) T) ((-320 . -97) T) ((-748 . -777) T) ((-662 . -23) T) ((-312 . -964) 108731) ((-1053 . -1052) T) ((-1042 . -102) 108715) ((-1068 . -1012) T) ((-1067 . -1012) T) ((-477 . -950) 108699) ((-1061 . -1012) T) ((-1024 . -1012) T) ((-312 . -106) 108616) ((-918 . -1108) T) ((-121 . -1104) T) ((-834 . -1108) T) ((-625 . -256) NIL) ((-1151 . -555) 108598) ((-1068 . -23) T) ((-918 . -508) T) ((-1067 . -23) T) ((-834 . -508) T) ((-1061 . -23) T) ((-1037 . -204) 108582) ((-1024 . -23) T) ((-980 . -1001) T) ((-728 . -123) T) ((-282 . -648) 108492) ((-281 . -648) 108421) ((-630 . -555) 108403) ((-630 . -556) 108348) ((-375 . -368) 108332) ((-406 . -1001) T) ((-452 . -25) T) ((-452 . -21) T) ((-1018 . -1001) T) ((-192 . -25) T) ((-192 . -21) T) ((-643 . -380) 108316) ((-645 . -950) 108285) ((-1148 . -555) 108224) ((-1148 . -556) 108185) ((-1136 . -156) T) ((-218 . -33) T) ((-847 . -889) T) ((-1091 . -1104) T) ((-587 . -721) 108164) ((-587 . -724) 108143) ((-366 . -364) T) ((-484 . -97) 108121) ((-948 . -1001) T) ((-196 . -909) 108105) ((-467 . -97) T) ((-562 . -555) 108087) ((-44 . -777) NIL) ((-562 . -556) 108064) ((-948 . -552) 108039) ((-821 . -476) 107972) ((-312 . -959) T) ((-112 . -556) NIL) ((-112 . -555) 107954) ((-794 . -1104) T) ((-605 . -386) 107938) ((-605 . -1021) 107883) ((-463 . -138) 107865) ((-312 . -206) T) ((-312 . -216) T) ((-39 . -964) 107810) ((-794 . -804) 107794) ((-794 . -806) 107719) ((-643 . -965) T) ((-625 . -916) NIL) ((-1135 . -46) 107689) ((-1114 . -46) 107666) ((-1036 . -924) 107637) ((-199 . -841) T) ((-39 . -106) 107554) ((-794 . -950) 107421) ((-1018 . -648) 107408) ((-1005 . -555) 107390) ((-983 . -134) 107369) ((-983 . -132) 107320) ((-918 . -331) T) ((-287 . -1093) 107286) ((-346 . -276) T) ((-287 . -1090) 107252) ((-282 . -156) 107231) ((-281 . -156) T) ((-917 . -204) 107208) ((-834 . -331) T) ((-528 . -1165) 107195) ((-479 . -1165) 107172) ((-327 . -134) 107151) ((-327 . -132) 107102) ((-322 . -134) 107081) ((-322 . -132) 107032) ((-550 . -1081) 107008) ((-314 . -134) 106987) ((-314 . -132) 106938) ((-287 . -34) 106904) ((-442 . -1081) 106883) ((0 . |EnumerationCategory|) T) ((-287 . -91) 106849) ((-346 . -933) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -208) 106799) ((-591 . -1001) T) ((-550 . -102) 106746) ((-450 . -123) T) ((-442 . -102) 106696) ((-212 . -1012) 106627) ((-794 . -345) 106611) ((-794 . -306) 106595) ((-212 . -23) 106466) ((-969 . -841) T) ((-969 . -750) T) ((-528 . -336) T) ((-479 . -336) T) ((-320 . -1046) T) ((-295 . -33) T) ((-43 . -386) 106450) ((-358 . -675) 106434) ((-1160 . -476) 106367) ((-662 . -123) T) ((-1139 . -508) 106346) ((-1130 . -1108) 106325) ((-1130 . -508) 106276) ((-667 . -476) 106209) ((-1114 . -1104) 106188) ((-1114 . -806) 106061) ((-813 . -1001) T) ((-131 . -771) T) ((-1114 . -804) 106031) ((-1109 . -1108) 106010) ((-1109 . -508) 105961) ((-484 . -278) 105899) ((-1068 . -123) T) ((-128 . -476) NIL) ((-1067 . -123) T) ((-1061 . -123) T) ((-1024 . -123) T) ((-937 . -916) T) ((-320 . -37) 105864) ((-918 . -1012) T) ((-834 . -1012) T) ((-81 . -555) 105846) ((-39 . -959) T) ((-791 . -964) 105833) ((-918 . -23) T) ((-794 . -820) 105792) ((-632 . -97) T) ((-917 . -318) NIL) ((-546 . -1104) T) ((-886 . -23) T) ((-834 . -23) T) ((-791 . -106) 105777) ((-397 . -1012) T) ((-441 . -46) 105747) ((-125 . -97) T) ((-39 . -206) 105719) ((-39 . -216) T) ((-111 . -97) T) ((-541 . -508) 105698) ((-540 . -508) 105677) ((-625 . -555) 105659) ((-625 . -556) 105567) ((-282 . -476) 105533) ((-281 . -476) 105284) ((-1135 . -950) 105268) ((-1114 . -950) 105057) ((-910 . -380) 105041) ((-397 . -23) T) ((-1018 . -156) T) ((-1136 . -260) T) ((-591 . -648) 105011) ((-131 . -1001) T) ((-47 . -916) T) ((-375 . -204) 104995) ((-264 . -208) 104945) ((-793 . -841) T) ((-793 . -750) NIL) ((-787 . -777) T) ((-1114 . -306) 104915) ((-1114 . -345) 104885) ((-196 . -1019) 104869) ((-1148 . -258) 104846) ((-1097 . -583) 104771) ((-875 . -21) T) ((-875 . -25) T) ((-666 . -21) T) ((-666 . -25) T) ((-646 . -21) T) ((-646 . -25) T) ((-642 . -583) 104736) ((-420 . -21) T) ((-420 . -25) T) ((-307 . -97) T) ((-157 . -97) T) ((-910 . -965) T) ((-791 . -959) T) ((-703 . -97) T) ((-1135 . -820) 104642) ((-1130 . -331) 104621) ((-1114 . -820) 104472) ((-1109 . -331) 104451) ((-937 . -555) 104433) ((-375 . -751) 104386) ((-1068 . -456) 104352) ((-152 . -841) 104283) ((-1067 . -456) 104249) ((-1061 . -456) 104215) ((-643 . -1001) T) ((-1024 . -456) 104181) ((-527 . -964) 104168) ((-501 . -964) 104155) ((-458 . -964) 104120) ((-282 . -260) 104099) ((-281 . -260) T) ((-308 . -555) 104081) ((-373 . -25) T) ((-373 . -21) T) ((-94 . -256) 104060) ((-527 . -106) 104045) ((-501 . -106) 104030) ((-458 . -106) 103979) ((-1070 . -806) 103946) ((-821 . -454) 103930) ((-47 . -555) 103912) ((-47 . -556) 103857) ((-212 . -123) 103728) ((-1118 . -841) 103707) ((-746 . -1108) 103686) ((-948 . -476) 103494) ((-356 . -555) 103476) ((-746 . -508) 103407) ((-530 . -583) 103382) ((-235 . -46) 103354) ((-220 . -46) 103311) ((-487 . -471) 103288) ((-914 . -1104) T) ((-630 . -964) 103253) ((-1139 . -1012) T) ((-1130 . -1012) T) ((-1109 . -1012) T) ((-917 . -338) 103225) ((-107 . -336) T) ((-441 . -820) 103131) ((-1139 . -23) T) ((-1130 . -23) T) ((-825 . -555) 103113) ((-89 . -102) 103097) ((-1097 . -657) T) ((-822 . -777) 103048) ((-632 . -1046) T) ((-630 . -106) 102997) ((-1109 . -23) T) ((-541 . -1012) T) ((-540 . -1012) T) ((-643 . -648) 102826) ((-642 . -657) T) ((-1018 . -260) T) ((-918 . -123) T) ((-452 . -777) T) ((-886 . -123) T) ((-834 . -123) T) ((-527 . -959) T) ((-192 . -777) T) ((-501 . -959) T) ((-728 . -25) T) ((-728 . -21) T) ((-458 . -959) T) ((-541 . -23) T) ((-312 . -1165) 102803) ((-287 . -419) 102782) ((-307 . -278) 102769) ((-540 . -23) T) ((-397 . -123) T) ((-589 . -583) 102743) ((-218 . -924) 102727) ((-794 . -276) T) ((-1171 . -1161) 102711) ((-632 . -37) 102698) ((-501 . -206) T) ((-458 . -216) T) ((-458 . -206) T) ((-701 . -722) T) ((-701 . -727) T) ((-1045 . -208) 102648) ((-989 . -830) 102627) ((-111 . -37) 102614) ((-185 . -730) T) ((-184 . -730) T) ((-183 . -730) T) ((-182 . -730) T) ((-794 . -933) 102593) ((-1160 . -454) 102577) ((-711 . -830) 102556) ((-710 . -830) 102535) ((-1077 . -1104) T) ((-421 . -830) 102514) ((-667 . -454) 102498) ((-989 . -583) 102423) ((-711 . -583) 102348) ((-562 . -964) 102335) ((-445 . -1104) T) ((-312 . -336) T) ((-128 . -454) 102317) ((-710 . -583) 102242) ((-1036 . -1104) T) ((-428 . -583) 102213) ((-235 . -806) 102072) ((-220 . -806) NIL) ((-112 . -964) 102017) ((-421 . -583) 101942) ((-599 . -950) 101919) ((-562 . -106) 101904) ((-323 . -950) 101888) ((-321 . -950) 101872) ((-313 . -950) 101856) ((-235 . -950) 101702) ((-220 . -950) 101580) ((-112 . -106) 101497) ((-56 . -1104) T) ((-480 . -1104) T) ((-478 . -1104) T) ((-460 . -1104) T) ((-459 . -1104) T) ((-404 . -555) 101479) ((-402 . -555) 101461) ((-3 . -97) T) ((-940 . -1099) 101430) ((-762 . -97) T) ((-621 . -55) 101388) ((-630 . -959) T) ((-49 . -583) 101362) ((-259 . -419) T) ((-443 . -1099) 101331) ((0 . -97) T) ((-528 . -583) 101296) ((-479 . -583) 101241) ((-48 . -97) T) ((-826 . -950) 101228) ((-630 . -216) T) ((-983 . -378) 101207) ((-662 . -577) 101155) ((-910 . -1001) T) ((-643 . -156) 101046) ((-452 . -906) 101028) ((-235 . -345) 101012) ((-220 . -345) 100996) ((-367 . -1001) T) ((-307 . -37) 100980) ((-939 . -97) 100958) ((-192 . -906) 100940) ((-157 . -37) 100872) ((-1135 . -276) 100851) ((-1114 . -276) 100830) ((-589 . -657) T) ((-94 . -555) 100812) ((-1061 . -577) 100764) ((-450 . -25) T) ((-450 . -21) T) ((-1114 . -933) 100717) ((-562 . -959) T) ((-346 . -372) T) ((-358 . -97) T) ((-235 . -820) 100663) ((-220 . -820) 100640) ((-112 . -959) T) ((-746 . -1012) T) ((-989 . -657) T) ((-562 . -206) 100619) ((-558 . -97) T) ((-711 . -657) T) ((-710 . -657) T) ((-381 . -1012) T) ((-112 . -216) T) ((-39 . -336) NIL) ((-112 . -206) NIL) ((-421 . -657) T) ((-746 . -23) T) ((-662 . -25) T) ((-662 . -21) T) ((-634 . -777) T) ((-981 . -256) 100598) ((-73 . -365) T) ((-73 . -364) T) ((-625 . -964) 100548) ((-1139 . -123) T) ((-1130 . -123) T) ((-1109 . -123) T) ((-1037 . -380) 100532) ((-571 . -335) 100464) ((-549 . -335) 100396) ((-1048 . -1044) 100380) ((-98 . -1001) 100358) ((-1068 . -25) T) ((-1068 . -21) T) ((-1067 . -21) T) ((-910 . -648) 100306) ((-197 . -583) 100273) ((-625 . -106) 100200) ((-49 . -657) T) ((-1067 . -25) T) ((-320 . -318) T) ((-1061 . -21) T) ((-983 . -419) 100151) ((-1061 . -25) T) ((-643 . -476) 100099) ((-528 . -657) T) ((-479 . -657) T) ((-1024 . -21) T) ((-1024 . -25) T) ((-541 . -123) T) ((-540 . -123) T) ((-327 . -419) T) ((-322 . -419) T) ((-314 . -419) T) ((-441 . -276) 100078) ((-281 . -256) 99944) ((-103 . -419) T) ((-77 . -408) T) ((-77 . -364) T) ((-444 . -97) T) ((-1175 . -555) 99926) ((-1175 . -556) 99908) ((-983 . -370) 99887) ((-948 . -454) 99819) ((-501 . -727) T) ((-501 . -722) T) ((-970 . -208) 99765) ((-327 . -370) 99716) ((-322 . -370) 99667) ((-314 . -370) 99618) ((-1162 . -1012) T) ((-1162 . -23) T) ((-1152 . -97) T) ((-1037 . -965) T) ((-605 . -675) 99602) ((-1072 . -132) 99581) ((-1072 . -134) 99560) ((-1041 . -1001) T) ((-1041 . -977) 99529) ((-67 . -1104) T) ((-937 . -964) 99466) ((-788 . -965) T) ((-212 . -577) 99374) ((-625 . -959) T) ((-308 . -964) 99319) ((-60 . -1104) T) ((-937 . -106) 99228) ((-821 . -555) 99195) ((-625 . -216) T) ((-625 . -206) NIL) ((-769 . -775) 99174) ((-630 . -727) T) ((-630 . -722) T) ((-917 . -380) 99151) ((-308 . -106) 99068) ((-346 . -841) T) ((-375 . -775) 99047) ((-643 . -260) 98958) ((-197 . -657) T) ((-1139 . -456) 98924) ((-1130 . -456) 98890) ((-1109 . -456) 98856) ((-282 . -916) 98835) ((-196 . -1001) 98813) ((-287 . -888) 98776) ((-100 . -97) T) ((-47 . -964) 98741) ((-1171 . -97) T) ((-350 . -97) T) ((-47 . -106) 98690) ((-918 . -577) 98672) ((-1136 . -555) 98654) ((-487 . -97) T) ((-463 . -97) T) ((-1031 . -1032) 98638) ((-139 . -1156) 98622) ((-218 . -1104) T) ((-1064 . -1108) 98601) ((-1023 . -1108) 98580) ((-212 . -21) 98491) ((-212 . -25) 98343) ((-122 . -114) 98327) ((-116 . -114) 98311) ((-43 . -675) 98295) ((-1064 . -508) 98206) ((-1023 . -508) 98137) ((-948 . -256) 98112) ((-746 . -123) T) ((-112 . -727) NIL) ((-112 . -722) NIL) ((-323 . -276) T) ((-321 . -276) T) ((-313 . -276) T) ((-991 . -1104) T) ((-222 . -1012) 98043) ((-221 . -1012) 97974) ((-937 . -959) T) ((-917 . -965) T) ((-312 . -583) 97919) ((-558 . -37) 97903) ((-1160 . -555) 97865) ((-1160 . -556) 97826) ((-981 . -555) 97808) ((-937 . -216) T) ((-308 . -959) T) ((-745 . -1156) 97778) ((-222 . -23) T) ((-221 . -23) T) ((-901 . -555) 97760) ((-667 . -556) 97721) ((-667 . -555) 97703) ((-728 . -777) 97682) ((-910 . -476) 97594) ((-308 . -206) T) ((-308 . -216) T) ((-1054 . -138) 97541) ((-918 . -25) T) ((-128 . -555) 97523) ((-128 . -556) 97482) ((-826 . -276) T) ((-918 . -21) T) ((-886 . -25) T) ((-834 . -21) T) ((-834 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-769 . -380) 97466) ((-47 . -959) T) ((-1168 . -1161) 97450) ((-1167 . -1161) 97434) ((-948 . -548) 97409) ((-282 . -556) 97270) ((-282 . -555) 97252) ((-281 . -556) NIL) ((-281 . -555) 97234) ((-47 . -216) T) ((-47 . -206) T) ((-591 . -256) 97195) ((-502 . -208) 97145) ((-126 . -555) 97127) ((-108 . -555) 97109) ((-444 . -37) 97074) ((-1171 . -1169) 97053) ((-1162 . -123) T) ((-1170 . -965) T) ((-986 . -97) T) ((-85 . -1104) T) ((-463 . -278) NIL) ((-914 . -102) 97037) ((-808 . -1001) T) ((-805 . -1001) T) ((-1148 . -586) 97021) ((-1148 . -340) 97005) ((-295 . -1104) T) ((-538 . -777) T) ((-1037 . -1001) T) ((-1037 . -961) 96945) ((-98 . -476) 96878) ((-845 . -555) 96860) ((-312 . -657) T) ((-30 . -555) 96842) ((-788 . -1001) T) ((-769 . -965) 96821) ((-39 . -583) 96766) ((-199 . -1108) T) ((-375 . -965) T) ((-1053 . -138) 96748) ((-910 . -260) 96699) ((-199 . -508) T) ((-287 . -1132) 96683) ((-287 . -1128) 96653) ((-1077 . -1081) 96632) ((-980 . -555) 96614) ((-582 . -138) 96598) ((-570 . -138) 96544) ((-1077 . -102) 96494) ((-445 . -1081) 96473) ((-452 . -134) T) ((-452 . -132) NIL) ((-1018 . -556) 96388) ((-406 . -555) 96370) ((-192 . -134) T) ((-192 . -132) NIL) ((-1018 . -555) 96352) ((-50 . -97) T) ((-1109 . -577) 96304) ((-445 . -102) 96254) ((-908 . -23) T) ((-1171 . -37) 96224) ((-1064 . -1012) T) ((-1023 . -1012) T) ((-969 . -1108) T) ((-781 . -1012) T) ((-866 . -1108) 96203) ((-447 . -1108) 96182) ((-662 . -777) 96161) ((-969 . -508) T) ((-866 . -508) 96092) ((-1064 . -23) T) ((-1023 . -23) T) ((-781 . -23) T) ((-447 . -508) 96023) ((-1037 . -648) 95955) ((-1041 . -476) 95888) ((-948 . -556) NIL) ((-948 . -555) 95870) ((-788 . -648) 95840) ((-1097 . -46) 95809) ((-222 . -123) T) ((-221 . -123) T) ((-1003 . -1001) T) ((-917 . -1001) T) ((-61 . -555) 95791) ((-1061 . -777) NIL) ((-937 . -722) T) ((-937 . -727) T) ((-1175 . -964) 95778) ((-1175 . -106) 95763) ((-791 . -583) 95750) ((-1139 . -25) T) ((-1139 . -21) T) ((-1130 . -21) T) ((-1130 . -25) T) ((-1109 . -21) T) ((-1109 . -25) T) ((-940 . -138) 95734) ((-794 . -750) 95713) ((-794 . -841) T) ((-643 . -256) 95640) ((-541 . -21) T) ((-541 . -25) T) ((-540 . -21) T) ((-39 . -657) T) ((-196 . -476) 95573) ((-540 . -25) T) ((-443 . -138) 95557) ((-430 . -138) 95541) ((-839 . -657) T) ((-701 . -723) T) ((-701 . -724) T) ((-465 . -1001) T) ((-701 . -657) T) ((-199 . -331) T) ((-1048 . -1001) 95519) ((-793 . -1108) T) ((-591 . -555) 95501) ((-793 . -508) T) ((-625 . -336) NIL) ((-327 . -1156) 95485) ((-605 . -97) T) ((-322 . -1156) 95469) ((-314 . -1156) 95453) ((-1170 . -1001) T) ((-481 . -777) 95432) ((-747 . -419) 95411) ((-956 . -1001) T) ((-956 . -977) 95340) ((-940 . -891) 95309) ((-749 . -1012) T) ((-917 . -648) 95254) ((-354 . -1012) T) ((-443 . -891) 95223) ((-430 . -891) 95192) ((-105 . -138) 95174) ((-71 . -555) 95156) ((-813 . -555) 95138) ((-983 . -655) 95117) ((-1175 . -959) T) ((-746 . -577) 95065) ((-262 . -965) 95008) ((-152 . -1108) 94913) ((-199 . -1012) T) ((-292 . -23) T) ((-1061 . -906) 94865) ((-769 . -1001) T) ((-1024 . -671) 94844) ((-1136 . -964) 94733) ((-1135 . -841) 94712) ((-791 . -657) T) ((-152 . -508) 94623) ((-1114 . -841) 94602) ((-527 . -583) 94589) ((-375 . -1001) T) ((-501 . -583) 94576) ((-232 . -1001) T) ((-458 . -583) 94541) ((-199 . -23) T) ((-1114 . -750) 94494) ((-1168 . -97) T) ((-308 . -1165) 94471) ((-1167 . -97) T) ((-1136 . -106) 94321) ((-131 . -555) 94303) ((-908 . -123) T) ((-43 . -97) T) ((-212 . -777) 94254) ((-1118 . -1108) 94233) ((-98 . -454) 94217) ((-1170 . -648) 94187) ((-989 . -46) 94149) ((-969 . -1012) T) ((-866 . -1012) T) ((-122 . -33) T) ((-116 . -33) T) ((-711 . -46) 94126) ((-710 . -46) 94098) ((-1118 . -508) 94009) ((-308 . -336) T) ((-447 . -1012) T) ((-1064 . -123) T) ((-1023 . -123) T) ((-421 . -46) 93988) ((-793 . -331) T) ((-781 . -123) T) ((-139 . -97) T) ((-969 . -23) T) ((-866 . -23) T) ((-522 . -508) T) ((-746 . -25) T) ((-746 . -21) T) ((-1037 . -476) 93921) ((-530 . -950) 93905) ((-447 . -23) T) ((-320 . -965) T) ((-1097 . -820) 93886) ((-605 . -278) 93824) ((-1013 . -1156) 93794) ((-630 . -583) 93759) ((-917 . -156) T) ((-875 . -132) 93738) ((-571 . -1001) T) ((-549 . -1001) T) ((-875 . -134) 93717) ((-918 . -777) T) ((-666 . -134) 93696) ((-666 . -132) 93675) ((-886 . -777) T) ((-441 . -841) 93654) ((-282 . -964) 93564) ((-281 . -964) 93493) ((-910 . -256) 93451) ((-375 . -648) 93403) ((-632 . -775) T) ((-1136 . -959) T) ((-282 . -106) 93292) ((-281 . -106) 93177) ((-883 . -97) T) ((-745 . -97) 92988) ((-643 . -556) NIL) ((-643 . -555) 92970) ((-589 . -950) 92868) ((-1136 . -294) 92812) ((-948 . -258) 92787) ((-527 . -657) T) ((-501 . -724) T) ((-152 . -331) 92738) ((-501 . -721) T) ((-501 . -657) T) ((-458 . -657) T) ((-1041 . -454) 92722) ((-989 . -806) NIL) ((-793 . -1012) T) ((-112 . -830) NIL) ((-1168 . -1169) 92698) ((-1167 . -1169) 92677) ((-711 . -806) NIL) ((-710 . -806) 92536) ((-1162 . -25) T) ((-1162 . -21) T) ((-1102 . -97) 92514) ((-1006 . -364) T) ((-562 . -583) 92501) ((-421 . -806) NIL) ((-609 . -97) 92479) ((-989 . -950) 92309) ((-793 . -23) T) ((-711 . -950) 92171) ((-710 . -950) 92030) ((-112 . -583) 91975) ((-421 . -950) 91853) ((-584 . -950) 91837) ((-565 . -97) T) ((-196 . -454) 91821) ((-1148 . -33) T) ((-571 . -648) 91805) ((-549 . -648) 91789) ((-605 . -37) 91749) ((-287 . -97) T) ((-84 . -555) 91731) ((-49 . -950) 91715) ((-1018 . -964) 91702) ((-989 . -345) 91686) ((-58 . -55) 91648) ((-630 . -724) T) ((-630 . -721) T) ((-528 . -950) 91635) ((-479 . -950) 91612) ((-630 . -657) T) ((-282 . -959) 91503) ((-292 . -123) T) ((-281 . -959) T) ((-152 . -1012) T) ((-711 . -345) 91487) ((-710 . -345) 91471) ((-44 . -138) 91421) ((-918 . -906) 91403) ((-421 . -345) 91387) ((-375 . -156) T) ((-282 . -216) 91366) ((-281 . -216) T) ((-281 . -206) NIL) ((-262 . -1001) 91149) ((-199 . -123) T) ((-1018 . -106) 91134) ((-152 . -23) T) ((-728 . -134) 91113) ((-728 . -132) 91092) ((-222 . -577) 91000) ((-221 . -577) 90908) ((-287 . -254) 90874) ((-1048 . -476) 90807) ((-1031 . -1001) T) ((-199 . -967) T) ((-745 . -278) 90745) ((-989 . -820) 90681) ((-711 . -820) 90625) ((-710 . -820) 90609) ((-1168 . -37) 90579) ((-1167 . -37) 90549) ((-1118 . -1012) T) ((-782 . -1012) T) ((-421 . -820) 90526) ((-784 . -1001) T) ((-1118 . -23) T) ((-522 . -1012) T) ((-782 . -23) T) ((-562 . -657) T) ((-323 . -841) T) ((-321 . -841) T) ((-259 . -97) T) ((-313 . -841) T) ((-969 . -123) T) ((-866 . -123) T) ((-112 . -724) NIL) ((-112 . -721) NIL) ((-112 . -657) T) ((-625 . -830) NIL) ((-956 . -476) 90410) ((-447 . -123) T) ((-522 . -23) T) ((-609 . -278) 90348) ((-571 . -692) T) ((-549 . -692) T) ((-1109 . -777) NIL) ((-917 . -260) T) ((-222 . -21) T) ((-625 . -583) 90298) ((-320 . -1001) T) ((-222 . -25) T) ((-221 . -21) T) ((-221 . -25) T) ((-139 . -37) 90282) ((-2 . -97) T) ((-826 . -841) T) ((-448 . -1156) 90252) ((-197 . -950) 90229) ((-1018 . -959) T) ((-642 . -276) T) ((-262 . -648) 90171) ((-632 . -965) T) ((-452 . -419) T) ((-375 . -476) 90083) ((-192 . -419) T) ((-1018 . -206) T) ((-264 . -138) 90033) ((-910 . -556) 89994) ((-910 . -555) 89976) ((-904 . -555) 89958) ((-111 . -965) T) ((-591 . -964) 89942) ((-199 . -456) T) ((-367 . -555) 89924) ((-367 . -556) 89901) ((-962 . -1156) 89871) ((-591 . -106) 89850) ((-1037 . -454) 89834) ((-745 . -37) 89804) ((-62 . -408) T) ((-62 . -364) T) ((-1054 . -97) T) ((-793 . -123) T) ((-449 . -97) 89782) ((-1175 . -336) T) ((-983 . -97) T) ((-968 . -97) T) ((-320 . -648) 89727) ((-662 . -134) 89706) ((-662 . -132) 89685) ((-937 . -583) 89622) ((-484 . -1001) 89600) ((-327 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-103 . -97) T) ((-467 . -1001) T) ((-308 . -583) 89545) ((-1064 . -577) 89493) ((-1023 . -577) 89441) ((-349 . -471) 89420) ((-762 . -775) 89399) ((-346 . -1108) T) ((-625 . -657) T) ((-307 . -965) T) ((-1109 . -906) 89351) ((-157 . -965) T) ((-98 . -555) 89318) ((-1068 . -132) 89297) ((-1068 . -134) 89276) ((-346 . -508) T) ((-1067 . -134) 89255) ((-1067 . -132) 89234) ((-1061 . -132) 89141) ((-375 . -260) T) ((-1061 . -134) 89048) ((-1024 . -134) 89027) ((-1024 . -132) 89006) ((-287 . -37) 88847) ((-152 . -123) T) ((-281 . -727) NIL) ((-281 . -722) NIL) ((-591 . -959) T) ((-47 . -583) 88812) ((-908 . -21) T) ((-122 . -924) 88796) ((-116 . -924) 88780) ((-908 . -25) T) ((-821 . -114) 88764) ((-1053 . -97) T) ((-746 . -777) 88743) ((-1118 . -123) T) ((-1064 . -25) T) ((-1064 . -21) T) ((-782 . -123) T) ((-1023 . -25) T) ((-1023 . -21) T) ((-781 . -25) T) ((-781 . -21) T) ((-711 . -276) 88722) ((-582 . -97) 88700) ((-570 . -97) T) ((-1054 . -278) 88495) ((-522 . -123) T) ((-558 . -775) 88474) ((-1048 . -454) 88458) ((-1045 . -138) 88408) ((-1041 . -555) 88370) ((-1041 . -556) 88331) ((-937 . -721) T) ((-937 . -724) T) ((-937 . -657) T) ((-449 . -278) 88269) ((-420 . -386) 88239) ((-320 . -156) T) ((-259 . -37) 88226) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-240 . -97) T) ((-239 . -97) T) ((-312 . -950) 88203) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-643 . -964) 88026) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-308 . -657) T) ((-643 . -106) 87828) ((-605 . -204) 87812) ((-528 . -276) T) ((-479 . -276) T) ((-262 . -476) 87761) ((-103 . -278) NIL) ((-70 . -364) T) ((-1013 . -97) 87572) ((-762 . -380) 87556) ((-1018 . -727) T) ((-1018 . -722) T) ((-632 . -1001) T) ((-346 . -331) T) ((-152 . -456) 87534) ((-196 . -555) 87501) ((-125 . -1001) T) ((-111 . -1001) T) ((-47 . -657) T) ((-956 . -454) 87466) ((-128 . -394) 87448) ((-128 . -336) T) ((-940 . -97) T) ((-472 . -471) 87427) ((-443 . -97) T) ((-430 . -97) T) ((-947 . -1012) T) ((-1068 . -34) 87393) ((-1068 . -91) 87359) ((-1068 . -1093) 87325) ((-1068 . -1090) 87291) ((-1053 . -278) NIL) ((-87 . -365) T) ((-87 . -364) T) ((-983 . -1046) 87270) ((-1067 . -1090) 87236) ((-1067 . -1093) 87202) ((-947 . -23) T) ((-1067 . -91) 87168) ((-522 . -456) T) ((-1067 . -34) 87134) ((-1061 . -1090) 87100) ((-1061 . -1093) 87066) ((-1061 . -91) 87032) ((-329 . -1012) T) ((-327 . -1046) 87011) ((-322 . -1046) 86990) ((-314 . -1046) 86969) ((-1061 . -34) 86935) ((-1024 . -34) 86901) ((-1024 . -91) 86867) ((-103 . -1046) T) ((-1024 . -1093) 86833) ((-762 . -965) 86812) ((-582 . -278) 86750) ((-570 . -278) 86601) ((-1024 . -1090) 86567) ((-643 . -959) T) ((-969 . -577) 86549) ((-983 . -37) 86417) ((-866 . -577) 86365) ((-918 . -134) T) ((-918 . -132) NIL) ((-346 . -1012) T) ((-292 . -25) T) ((-290 . -23) T) ((-863 . -777) 86344) ((-643 . -294) 86321) ((-447 . -577) 86269) ((-39 . -950) 86146) ((-632 . -648) 86133) ((-643 . -206) T) ((-307 . -1001) T) ((-157 . -1001) T) ((-299 . -777) T) ((-373 . -419) 86083) ((-346 . -23) T) ((-327 . -37) 86048) ((-322 . -37) 86013) ((-314 . -37) 85978) ((-78 . -408) T) ((-78 . -364) T) ((-199 . -25) T) ((-199 . -21) T) ((-764 . -1012) T) ((-103 . -37) 85928) ((-758 . -1012) T) ((-703 . -1001) T) ((-111 . -648) 85915) ((-606 . -950) 85899) ((-553 . -97) T) ((-764 . -23) T) ((-758 . -23) T) ((-1048 . -256) 85876) ((-1013 . -278) 85814) ((-997 . -208) 85798) ((-59 . -365) T) ((-59 . -364) T) ((-105 . -97) T) ((-39 . -345) 85775) ((-590 . -779) 85759) ((-969 . -21) T) ((-969 . -25) T) ((-745 . -204) 85729) ((-866 . -25) T) ((-866 . -21) T) ((-558 . -965) T) ((-447 . -25) T) ((-447 . -21) T) ((-940 . -278) 85667) ((-808 . -555) 85649) ((-805 . -555) 85631) ((-222 . -777) 85582) ((-221 . -777) 85533) ((-484 . -476) 85466) ((-793 . -577) 85443) ((-443 . -278) 85381) ((-430 . -278) 85319) ((-320 . -260) T) ((-1048 . -1138) 85303) ((-1037 . -555) 85265) ((-1037 . -556) 85226) ((-1035 . -97) T) ((-910 . -964) 85122) ((-39 . -820) 85074) ((-1048 . -548) 85051) ((-1175 . -583) 85038) ((-970 . -138) 84984) ((-794 . -1108) T) ((-910 . -106) 84859) ((-307 . -648) 84843) ((-788 . -555) 84825) ((-157 . -648) 84757) ((-375 . -256) 84715) ((-794 . -508) T) ((-103 . -368) 84697) ((-83 . -353) T) ((-83 . -364) T) ((-632 . -156) T) ((-94 . -657) T) ((-448 . -97) 84508) ((-94 . -440) T) ((-111 . -156) T) ((-1013 . -37) 84478) ((-152 . -577) 84426) ((-962 . -97) T) ((-793 . -25) T) ((-745 . -211) 84405) ((-793 . -21) T) ((-748 . -97) T) ((-383 . -97) T) ((-349 . -97) T) ((-105 . -278) NIL) ((-122 . -1104) T) ((-116 . -1104) T) ((-947 . -123) T) ((-605 . -335) 84389) ((-910 . -959) T) ((-1118 . -577) 84337) ((-1003 . -555) 84319) ((-917 . -555) 84301) ((-477 . -23) T) ((-473 . -23) T) ((-312 . -276) T) ((-470 . -23) T) ((-290 . -123) T) ((-3 . -1001) T) ((-917 . -556) 84285) ((-910 . -216) 84264) ((-910 . -206) 84243) ((-1175 . -657) T) ((-1139 . -132) 84222) ((-762 . -1001) T) ((-1139 . -134) 84201) ((-1135 . -1108) 84180) ((-1130 . -134) 84159) ((-1130 . -132) 84138) ((-1114 . -1108) 84117) ((-1109 . -132) 84024) ((-1109 . -134) 83931) ((-346 . -123) T) ((-501 . -806) 83913) ((0 . -1001) T) ((-157 . -156) T) ((-152 . -21) T) ((-152 . -25) T) ((-48 . -1001) T) ((-1136 . -583) 83802) ((-1135 . -508) 83753) ((-645 . -1012) T) ((-1114 . -508) 83704) ((-501 . -950) 83686) ((-540 . -134) 83665) ((-540 . -132) 83644) ((-458 . -950) 83587) ((-86 . -353) T) ((-86 . -364) T) ((-794 . -331) T) ((-764 . -123) T) ((-758 . -123) T) ((-645 . -23) T) ((-465 . -555) 83569) ((-1171 . -965) T) ((-346 . -967) T) ((-939 . -1001) 83547) ((-821 . -33) T) ((-448 . -278) 83485) ((-1048 . -556) 83446) ((-1048 . -555) 83413) ((-1064 . -777) 83392) ((-44 . -97) T) ((-1023 . -777) 83371) ((-747 . -97) T) ((-1118 . -25) T) ((-1118 . -21) T) ((-782 . -25) T) ((-43 . -335) 83355) ((-782 . -21) T) ((-662 . -419) 83306) ((-1170 . -555) 83288) ((-522 . -25) T) ((-522 . -21) T) ((-358 . -1001) T) ((-962 . -278) 83226) ((-558 . -1001) T) ((-630 . -806) 83208) ((-1148 . -1104) T) ((-131 . -336) T) ((-956 . -556) 83150) ((-956 . -555) 83093) ((-281 . -830) NIL) ((-630 . -950) 83038) ((-642 . -841) T) ((-441 . -1108) 83017) ((-1067 . -419) 82996) ((-1061 . -419) 82975) ((-298 . -97) T) ((-794 . -1012) T) ((-282 . -583) 82797) ((-281 . -583) 82726) ((-441 . -508) 82677) ((-307 . -476) 82643) ((-502 . -138) 82593) ((-39 . -276) T) ((-769 . -555) 82575) ((-632 . -260) T) ((-794 . -23) T) ((-346 . -456) T) ((-983 . -204) 82545) ((-472 . -97) T) ((-375 . -556) 82348) ((-375 . -555) 82330) ((-232 . -555) 82312) ((-111 . -260) T) ((-1136 . -657) T) ((-1135 . -331) 82291) ((-1114 . -331) 82270) ((-1160 . -33) T) ((-112 . -1104) T) ((-103 . -204) 82252) ((-1072 . -97) T) ((-444 . -1001) T) ((-484 . -454) 82236) ((-667 . -33) T) ((-448 . -37) 82206) ((-128 . -33) T) ((-112 . -804) 82183) ((-112 . -806) NIL) ((-562 . -950) 82068) ((-578 . -777) 82047) ((-1159 . -97) T) ((-264 . -97) T) ((-643 . -336) 82026) ((-112 . -950) 82003) ((-358 . -648) 81987) ((-558 . -648) 81971) ((-44 . -278) 81775) ((-746 . -132) 81754) ((-746 . -134) 81733) ((-1170 . -352) 81712) ((-749 . -777) T) ((-1152 . -1001) T) ((-1054 . -202) 81659) ((-354 . -777) 81638) ((-1139 . -1093) 81604) ((-1139 . -1090) 81570) ((-1130 . -1090) 81536) ((-477 . -123) T) ((-1130 . -1093) 81502) ((-1109 . -1090) 81468) ((-1109 . -1093) 81434) ((-1139 . -34) 81400) ((-1139 . -91) 81366) ((-571 . -555) 81335) ((-549 . -555) 81304) ((-199 . -777) T) ((-1135 . -1012) T) ((-1130 . -91) 81270) ((-1130 . -34) 81236) ((-1018 . -583) 81223) ((-1114 . -1012) T) ((-1109 . -91) 81189) ((-538 . -138) 81171) ((-983 . -318) 81150) ((-112 . -345) 81127) ((-112 . -306) 81104) ((-157 . -260) T) ((-1109 . -34) 81070) ((-791 . -276) T) ((-281 . -724) NIL) ((-281 . -721) NIL) ((-282 . -657) 80920) ((-281 . -657) T) ((-441 . -331) 80899) ((-327 . -318) 80878) ((-322 . -318) 80857) ((-314 . -318) 80836) ((-282 . -440) 80815) ((-1135 . -23) T) ((-1114 . -23) T) ((-649 . -1012) T) ((-645 . -123) T) ((-590 . -97) T) ((-444 . -648) 80780) ((-44 . -252) 80730) ((-100 . -1001) T) ((-66 . -555) 80712) ((-787 . -97) T) ((-562 . -820) 80671) ((-1171 . -1001) T) ((-350 . -1001) T) ((-81 . -1104) T) ((-969 . -777) T) ((-866 . -777) 80650) ((-112 . -820) NIL) ((-711 . -841) 80629) ((-644 . -777) T) ((-487 . -1001) T) ((-463 . -1001) T) ((-323 . -1108) T) ((-321 . -1108) T) ((-313 . -1108) T) ((-235 . -1108) 80608) ((-220 . -1108) 80587) ((-1013 . -204) 80557) ((-447 . -777) 80536) ((-1037 . -964) 80520) ((-358 . -692) T) ((-1053 . -751) T) ((-625 . -1104) T) ((-323 . -508) T) ((-321 . -508) T) ((-313 . -508) T) ((-235 . -508) 80451) ((-220 . -508) 80382) ((-1037 . -106) 80361) ((-420 . -675) 80331) ((-788 . -964) 80301) ((-747 . -37) 80238) ((-625 . -804) 80220) ((-625 . -806) 80202) ((-264 . -278) 80006) ((-826 . -1108) T) ((-605 . -380) 79990) ((-788 . -106) 79955) ((-625 . -950) 79900) ((-918 . -419) T) ((-826 . -508) T) ((-528 . -841) T) ((-441 . -1012) T) ((-479 . -841) T) ((-1048 . -258) 79877) ((-834 . -419) T) ((-63 . -555) 79859) ((-570 . -202) 79805) ((-441 . -23) T) ((-1018 . -724) T) ((-794 . -123) T) ((-1018 . -721) T) ((-1162 . -1166) 79784) ((-1018 . -657) T) ((-591 . -583) 79758) ((-262 . -555) 79500) ((-948 . -33) T) ((-745 . -775) 79479) ((-527 . -276) T) ((-501 . -276) T) ((-458 . -276) T) ((-1171 . -648) 79449) ((-625 . -345) 79431) ((-625 . -306) 79413) ((-444 . -156) T) ((-350 . -648) 79383) ((-793 . -777) NIL) ((-501 . -933) T) ((-458 . -933) T) ((-1031 . -555) 79365) ((-1013 . -211) 79344) ((-189 . -97) T) ((-1045 . -97) T) ((-69 . -555) 79326) ((-1037 . -959) T) ((-1072 . -37) 79223) ((-784 . -555) 79205) ((-501 . -500) T) ((-605 . -965) T) ((-662 . -870) 79158) ((-1037 . -206) 79137) ((-986 . -1001) T) ((-947 . -25) T) ((-947 . -21) T) ((-917 . -964) 79082) ((-822 . -97) T) ((-788 . -959) T) ((-625 . -820) NIL) ((-323 . -297) 79066) ((-323 . -331) T) ((-321 . -297) 79050) ((-321 . -331) T) ((-313 . -297) 79034) ((-313 . -331) T) ((-452 . -97) T) ((-1159 . -37) 79004) ((-484 . -618) 78954) ((-192 . -97) T) ((-937 . -950) 78836) ((-917 . -106) 78753) ((-1068 . -888) 78723) ((-1067 . -888) 78686) ((-481 . -138) 78670) ((-983 . -338) 78649) ((-320 . -555) 78631) ((-290 . -21) T) ((-308 . -950) 78608) ((-290 . -25) T) ((-1061 . -888) 78578) ((-1024 . -888) 78545) ((-75 . -555) 78527) ((-630 . -276) T) ((-152 . -777) 78506) ((-826 . -331) T) ((-346 . -25) T) ((-346 . -21) T) ((-826 . -297) 78493) ((-80 . -555) 78475) ((-630 . -933) T) ((-610 . -777) T) ((-1135 . -123) T) ((-1114 . -123) T) ((-821 . -924) 78459) ((-764 . -21) T) ((-47 . -950) 78402) ((-764 . -25) T) ((-758 . -25) T) ((-758 . -21) T) ((-1168 . -965) T) ((-1167 . -965) T) ((-591 . -657) T) ((-1170 . -964) 78386) ((-1118 . -777) 78365) ((-745 . -380) 78334) ((-98 . -114) 78318) ((-50 . -1001) T) ((-847 . -555) 78300) ((-793 . -906) 78277) ((-754 . -97) T) ((-1170 . -106) 78256) ((-590 . -37) 78226) ((-522 . -777) T) ((-323 . -1012) T) ((-321 . -1012) T) ((-313 . -1012) T) ((-235 . -1012) T) ((-220 . -1012) T) ((-562 . -276) 78205) ((-1045 . -278) 78009) ((-599 . -23) T) ((-448 . -204) 77979) ((-139 . -965) T) ((-323 . -23) T) ((-321 . -23) T) ((-313 . -23) T) ((-112 . -276) T) ((-235 . -23) T) ((-220 . -23) T) ((-917 . -959) T) ((-643 . -830) 77958) ((-917 . -206) 77930) ((-917 . -216) T) ((-112 . -933) NIL) ((-826 . -1012) T) ((-1130 . -419) 77909) ((-1109 . -419) 77888) ((-484 . -555) 77855) ((-643 . -583) 77780) ((-375 . -964) 77732) ((-467 . -555) 77714) ((-826 . -23) T) ((-452 . -278) NIL) ((-441 . -123) T) ((-192 . -278) NIL) ((-375 . -106) 77645) ((-745 . -965) 77576) ((-667 . -999) 77560) ((-1135 . -456) 77526) ((-1114 . -456) 77492) ((-128 . -999) 77474) ((-444 . -260) T) ((-1170 . -959) T) ((-970 . -97) T) ((-463 . -476) NIL) ((-634 . -97) T) ((-448 . -211) 77453) ((-1064 . -132) 77432) ((-1064 . -134) 77411) ((-1023 . -134) 77390) ((-1023 . -132) 77369) ((-571 . -964) 77353) ((-549 . -964) 77337) ((-605 . -1001) T) ((-605 . -961) 77277) ((-1068 . -1142) 77261) ((-1068 . -1128) 77238) ((-452 . -1046) T) ((-1067 . -1134) 77199) ((-1067 . -1128) 77169) ((-1067 . -1132) 77153) ((-192 . -1046) T) ((-312 . -841) T) ((-748 . -237) 77137) ((-571 . -106) 77116) ((-549 . -106) 77095) ((-1061 . -1113) 77056) ((-769 . -959) 77035) ((-1061 . -1128) 77012) ((-477 . -25) T) ((-458 . -267) T) ((-474 . -23) T) ((-473 . -25) T) ((-470 . -25) T) ((-469 . -23) T) ((-1061 . -1111) 76996) ((-375 . -959) T) ((-287 . -965) T) ((-625 . -276) T) ((-103 . -775) T) ((-375 . -216) T) ((-375 . -206) 76975) ((-643 . -657) T) ((-452 . -37) 76925) ((-192 . -37) 76875) ((-441 . -456) 76841) ((-1053 . -1039) T) ((-1002 . -97) T) ((-632 . -555) 76823) ((-632 . -556) 76738) ((-645 . -21) T) ((-645 . -25) T) ((-125 . -555) 76720) ((-111 . -555) 76702) ((-142 . -25) T) ((-1168 . -1001) T) ((-794 . -577) 76650) ((-1167 . -1001) T) ((-875 . -97) T) ((-666 . -97) T) ((-646 . -97) T) ((-420 . -97) T) ((-746 . -419) 76601) ((-43 . -1001) T) ((-990 . -777) T) ((-599 . -123) T) ((-970 . -278) 76452) ((-605 . -648) 76436) ((-259 . -965) T) ((-323 . -123) T) ((-321 . -123) T) ((-313 . -123) T) ((-235 . -123) T) ((-220 . -123) T) ((-373 . -97) T) ((-139 . -1001) T) ((-44 . -202) 76386) ((-877 . -777) 76365) ((-910 . -583) 76303) ((-212 . -1156) 76273) ((-937 . -276) T) ((-262 . -964) 76195) ((-826 . -123) T) ((-39 . -841) T) ((-452 . -368) 76177) ((-308 . -276) T) ((-192 . -368) 76159) ((-983 . -380) 76143) ((-262 . -106) 76060) ((-794 . -25) T) ((-794 . -21) T) ((-307 . -555) 76042) ((-1136 . -46) 75986) ((-199 . -134) T) ((-157 . -555) 75968) ((-1013 . -775) 75947) ((-703 . -555) 75929) ((-550 . -208) 75876) ((-442 . -208) 75826) ((-1168 . -648) 75796) ((-47 . -276) T) ((-1167 . -648) 75766) ((-883 . -1001) T) ((-745 . -1001) 75577) ((-280 . -97) T) ((-821 . -1104) T) ((-47 . -933) T) ((-1114 . -577) 75485) ((-621 . -97) 75463) ((-43 . -648) 75447) ((-502 . -97) T) ((-65 . -351) T) ((-65 . -364) T) ((-587 . -23) T) ((-605 . -692) T) ((-1102 . -1001) 75425) ((-320 . -964) 75370) ((-609 . -1001) 75348) ((-969 . -134) T) ((-866 . -134) 75327) ((-866 . -132) 75306) ((-728 . -97) T) ((-139 . -648) 75290) ((-447 . -134) 75269) ((-447 . -132) 75248) ((-320 . -106) 75165) ((-983 . -965) T) ((-290 . -777) 75144) ((-1139 . -888) 75114) ((-565 . -1001) T) ((-1130 . -888) 75077) ((-474 . -123) T) ((-469 . -123) T) ((-264 . -202) 75027) ((-327 . -965) T) ((-322 . -965) T) ((-314 . -965) T) ((-262 . -959) 74970) ((-1109 . -888) 74940) ((-346 . -777) T) ((-103 . -965) T) ((-910 . -657) T) ((-791 . -841) T) ((-769 . -727) 74919) ((-769 . -722) 74898) ((-373 . -278) 74837) ((-435 . -97) T) ((-540 . -888) 74807) ((-287 . -1001) T) ((-375 . -727) 74786) ((-375 . -722) 74765) ((-463 . -454) 74747) ((-1136 . -950) 74713) ((-1135 . -21) T) ((-1135 . -25) T) ((-1114 . -21) T) ((-1114 . -25) T) ((-745 . -648) 74655) ((-630 . -372) T) ((-1160 . -1104) T) ((-1013 . -380) 74624) ((-917 . -336) NIL) ((-98 . -33) T) ((-667 . -1104) T) ((-43 . -692) T) ((-538 . -97) T) ((-76 . -365) T) ((-76 . -364) T) ((-590 . -593) 74608) ((-128 . -1104) T) ((-793 . -134) T) ((-793 . -132) NIL) ((-320 . -959) T) ((-68 . -351) T) ((-68 . -364) T) ((-1060 . -97) T) ((-605 . -476) 74541) ((-621 . -278) 74479) ((-875 . -37) 74376) ((-666 . -37) 74346) ((-502 . -278) 74150) ((-282 . -1104) T) ((-320 . -206) T) ((-320 . -216) T) ((-281 . -1104) T) ((-259 . -1001) T) ((-1074 . -555) 74132) ((-642 . -1108) T) ((-1048 . -586) 74116) ((-1097 . -508) 74095) ((-642 . -508) T) ((-282 . -804) 74079) ((-282 . -806) 74004) ((-281 . -804) 73965) ((-281 . -806) NIL) ((-728 . -278) 73930) ((-287 . -648) 73771) ((-292 . -291) 73748) ((-450 . -97) T) ((-441 . -25) T) ((-441 . -21) T) ((-373 . -37) 73722) ((-282 . -950) 73390) ((-199 . -1090) T) ((-199 . -1093) T) ((-3 . -555) 73372) ((-281 . -950) 73302) ((-2 . -1001) T) ((-2 . |RecordCategory|) T) ((-762 . -555) 73284) ((-1013 . -965) 73215) ((-527 . -841) T) ((-501 . -750) T) ((-501 . -841) T) ((-458 . -841) T) ((-126 . -950) 73199) ((-199 . -91) T) ((-152 . -134) 73178) ((-74 . -408) T) ((0 . -555) 73160) ((-74 . -364) T) ((-152 . -132) 73111) ((-199 . -34) T) ((-48 . -555) 73093) ((-444 . -965) T) ((-452 . -204) 73075) ((-449 . -884) 73059) ((-448 . -775) 73038) ((-192 . -204) 73020) ((-79 . -408) T) ((-79 . -364) T) ((-1041 . -33) T) ((-745 . -156) 72999) ((-662 . -97) T) ((-939 . -555) 72966) ((-463 . -256) 72941) ((-282 . -345) 72911) ((-281 . -345) 72872) ((-281 . -306) 72833) ((-746 . -870) 72780) ((-587 . -123) T) ((-1118 . -132) 72759) ((-1118 . -134) 72738) ((-1068 . -97) T) ((-1067 . -97) T) ((-1061 . -97) T) ((-1054 . -1001) T) ((-1024 . -97) T) ((-196 . -33) T) ((-259 . -648) 72725) ((-1054 . -552) 72701) ((-538 . -278) NIL) ((-449 . -1001) 72679) ((-358 . -555) 72661) ((-473 . -777) T) ((-1045 . -202) 72611) ((-1139 . -1142) 72595) ((-1139 . -1128) 72572) ((-1130 . -1134) 72533) ((-1130 . -1128) 72503) ((-1130 . -1132) 72487) ((-1109 . -1113) 72448) ((-1109 . -1128) 72425) ((-558 . -555) 72407) ((-1109 . -1111) 72391) ((-630 . -841) T) ((-1068 . -254) 72357) ((-1067 . -254) 72323) ((-1061 . -254) 72289) ((-983 . -1001) T) ((-968 . -1001) T) ((-47 . -267) T) ((-282 . -820) 72256) ((-281 . -820) NIL) ((-968 . -974) 72235) ((-1018 . -806) 72217) ((-728 . -37) 72201) ((-235 . -577) 72149) ((-220 . -577) 72097) ((-632 . -964) 72084) ((-540 . -1128) 72061) ((-1024 . -254) 72027) ((-287 . -156) 71958) ((-327 . -1001) T) ((-322 . -1001) T) ((-314 . -1001) T) ((-463 . -19) 71940) ((-1018 . -950) 71922) ((-997 . -138) 71906) ((-103 . -1001) T) ((-111 . -964) 71893) ((-642 . -331) T) ((-463 . -548) 71868) ((-632 . -106) 71853) ((-405 . -97) T) ((-44 . -1044) 71803) ((-111 . -106) 71788) ((-571 . -651) T) ((-549 . -651) T) ((-745 . -476) 71721) ((-948 . -1104) T) ((-863 . -138) 71705) ((-481 . -97) 71655) ((-989 . -1108) 71634) ((-444 . -555) 71586) ((-444 . -556) 71508) ((-61 . -1104) T) ((-711 . -1108) 71487) ((-710 . -1108) 71466) ((-1064 . -419) 71397) ((-1053 . -1001) T) ((-1037 . -583) 71371) ((-989 . -508) 71302) ((-448 . -380) 71271) ((-562 . -841) 71250) ((-421 . -1108) 71229) ((-1023 . -419) 71180) ((-366 . -555) 71162) ((-609 . -476) 71095) ((-711 . -508) 71006) ((-710 . -508) 70937) ((-662 . -278) 70924) ((-599 . -25) T) ((-599 . -21) T) ((-421 . -508) 70855) ((-112 . -841) T) ((-112 . -750) NIL) ((-323 . -25) T) ((-323 . -21) T) ((-321 . -25) T) ((-321 . -21) T) ((-313 . -25) T) ((-313 . -21) T) ((-235 . -25) T) ((-235 . -21) T) ((-82 . -353) T) ((-82 . -364) T) ((-220 . -25) T) ((-220 . -21) T) ((-1152 . -555) 70837) ((-1097 . -1012) T) ((-1097 . -23) T) ((-1061 . -278) 70722) ((-1024 . -278) 70709) ((-788 . -583) 70669) ((-983 . -648) 70537) ((-863 . -895) 70521) ((-259 . -156) T) ((-826 . -21) T) ((-826 . -25) T) ((-794 . -777) 70472) ((-642 . -1012) T) ((-642 . -23) T) ((-582 . -1001) 70450) ((-570 . -552) 70425) ((-570 . -1001) T) ((-528 . -1108) T) ((-479 . -1108) T) ((-528 . -508) T) ((-479 . -508) T) ((-327 . -648) 70377) ((-322 . -648) 70329) ((-157 . -964) 70261) ((-307 . -964) 70245) ((-103 . -648) 70195) ((-157 . -106) 70094) ((-314 . -648) 70046) ((-307 . -106) 70025) ((-245 . -1001) T) ((-244 . -1001) T) ((-243 . -1001) T) ((-242 . -1001) T) ((-632 . -959) T) ((-241 . -1001) T) ((-240 . -1001) T) ((-239 . -1001) T) ((-188 . -1001) T) ((-187 . -1001) T) ((-185 . -1001) T) ((-152 . -1093) 70003) ((-152 . -1090) 69981) ((-184 . -1001) T) ((-183 . -1001) T) ((-111 . -959) T) ((-182 . -1001) T) ((-179 . -1001) T) ((-632 . -206) T) ((-178 . -1001) T) ((-177 . -1001) T) ((-176 . -1001) T) ((-175 . -1001) T) ((-174 . -1001) T) ((-173 . -1001) T) ((-172 . -1001) T) ((-171 . -1001) T) ((-170 . -1001) T) ((-169 . -1001) T) ((-212 . -97) 69792) ((-152 . -34) 69770) ((-152 . -91) 69748) ((-591 . -950) 69646) ((-448 . -965) 69577) ((-1013 . -1001) 69388) ((-1037 . -33) T) ((-605 . -454) 69372) ((-71 . -1104) T) ((-100 . -555) 69354) ((-1171 . -555) 69336) ((-350 . -555) 69318) ((-522 . -1093) T) ((-522 . -1090) T) ((-662 . -37) 69167) ((-487 . -555) 69149) ((-481 . -278) 69087) ((-463 . -555) 69069) ((-463 . -556) 69051) ((-1061 . -1046) NIL) ((-940 . -977) 69020) ((-940 . -1001) T) ((-918 . -97) T) ((-886 . -97) T) ((-834 . -97) T) ((-813 . -950) 68997) ((-1037 . -657) T) ((-917 . -583) 68942) ((-443 . -1001) T) ((-430 . -1001) T) ((-530 . -23) T) ((-522 . -34) T) ((-522 . -91) T) ((-397 . -97) T) ((-970 . -202) 68888) ((-1068 . -37) 68785) ((-788 . -657) T) ((-625 . -841) T) ((-474 . -25) T) ((-469 . -21) T) ((-469 . -25) T) ((-1067 . -37) 68626) ((-307 . -959) T) ((-1061 . -37) 68422) ((-983 . -156) T) ((-157 . -959) T) ((-1024 . -37) 68319) ((-643 . -46) 68296) ((-327 . -156) T) ((-322 . -156) T) ((-480 . -55) 68270) ((-460 . -55) 68220) ((-320 . -1165) 68197) ((-199 . -419) T) ((-287 . -260) 68148) ((-314 . -156) T) ((-157 . -216) T) ((-1114 . -777) 68047) ((-103 . -156) T) ((-794 . -906) 68031) ((-589 . -1012) T) ((-528 . -331) T) ((-528 . -297) 68018) ((-479 . -297) 67995) ((-479 . -331) T) ((-282 . -276) 67974) ((-281 . -276) T) ((-546 . -777) 67953) ((-1013 . -648) 67895) ((-481 . -252) 67879) ((-589 . -23) T) ((-373 . -204) 67863) ((-281 . -933) NIL) ((-301 . -23) T) ((-98 . -924) 67847) ((-44 . -35) 67826) ((-553 . -1001) T) ((-320 . -336) T) ((-458 . -27) T) ((-212 . -278) 67764) ((-989 . -1012) T) ((-1170 . -583) 67738) ((-711 . -1012) T) ((-710 . -1012) T) ((-421 . -1012) T) ((-969 . -419) T) ((-866 . -419) 67689) ((-105 . -1001) T) ((-989 . -23) T) ((-747 . -965) T) ((-711 . -23) T) ((-710 . -23) T) ((-447 . -419) 67640) ((-1054 . -476) 67388) ((-350 . -352) 67367) ((-1072 . -380) 67351) ((-428 . -23) T) ((-421 . -23) T) ((-449 . -476) 67284) ((-259 . -260) T) ((-986 . -555) 67266) ((-375 . -830) 67245) ((-49 . -1012) T) ((-937 . -841) T) ((-917 . -657) T) ((-643 . -806) NIL) ((-528 . -1012) T) ((-479 . -1012) T) ((-769 . -583) 67218) ((-1097 . -123) T) ((-1061 . -368) 67170) ((-918 . -278) NIL) ((-745 . -454) 67154) ((-308 . -841) T) ((-1048 . -33) T) ((-375 . -583) 67106) ((-49 . -23) T) ((-642 . -123) T) ((-643 . -950) 66989) ((-528 . -23) T) ((-103 . -476) NIL) ((-479 . -23) T) ((-152 . -378) 66960) ((-1035 . -1001) T) ((-1162 . -1161) 66944) ((-632 . -727) T) ((-632 . -722) T) ((-346 . -134) T) ((-1018 . -276) T) ((-1114 . -906) 66914) ((-47 . -841) T) ((-609 . -454) 66898) ((-222 . -1156) 66868) ((-221 . -1156) 66838) ((-1070 . -777) T) ((-1013 . -156) 66817) ((-1018 . -933) T) ((-956 . -33) T) ((-764 . -134) 66796) ((-764 . -132) 66775) ((-667 . -102) 66759) ((-553 . -124) T) ((-448 . -1001) 66570) ((-1072 . -965) T) ((-793 . -419) T) ((-84 . -1104) T) ((-212 . -37) 66540) ((-128 . -102) 66522) ((-643 . -345) 66506) ((-1018 . -500) T) ((-358 . -964) 66490) ((-1170 . -657) T) ((-1064 . -870) 66460) ((-50 . -555) 66442) ((-1023 . -870) 66409) ((-590 . -380) 66393) ((-1159 . -965) T) ((-558 . -964) 66377) ((-587 . -25) T) ((-587 . -21) T) ((-1053 . -476) NIL) ((-1139 . -97) T) ((-1130 . -97) T) ((-358 . -106) 66356) ((-196 . -225) 66340) ((-1109 . -97) T) ((-962 . -1001) T) ((-918 . -1046) T) ((-962 . -961) 66280) ((-748 . -1001) T) ((-312 . -1108) T) ((-571 . -583) 66264) ((-558 . -106) 66243) ((-549 . -583) 66227) ((-541 . -97) T) ((-530 . -123) T) ((-540 . -97) T) ((-383 . -1001) T) ((-349 . -1001) T) ((-582 . -476) 66160) ((-570 . -476) 65968) ((-762 . -959) 65947) ((-578 . -138) 65931) ((-312 . -508) T) ((-643 . -820) 65875) ((-502 . -202) 65825) ((-1139 . -254) 65791) ((-983 . -260) 65742) ((-452 . -775) T) ((-197 . -1012) T) ((-1130 . -254) 65708) ((-1109 . -254) 65674) ((-918 . -37) 65624) ((-192 . -775) T) ((-1097 . -456) 65590) ((-834 . -37) 65542) ((-769 . -724) 65521) ((-769 . -721) 65500) ((-769 . -657) 65479) ((-327 . -260) T) ((-322 . -260) T) ((-314 . -260) T) ((-152 . -419) 65410) ((-397 . -37) 65394) ((-103 . -260) T) ((-197 . -23) T) ((-375 . -724) 65373) ((-375 . -721) 65352) ((-375 . -657) T) ((-463 . -258) 65327) ((-444 . -964) 65292) ((-589 . -123) T) ((-1013 . -476) 65225) ((-301 . -123) T) ((-152 . -370) 65204) ((-448 . -648) 65146) ((-745 . -256) 65123) ((-444 . -106) 65072) ((-590 . -965) T) ((-1118 . -419) 65003) ((-989 . -123) T) ((-235 . -777) 64982) ((-220 . -777) 64961) ((-711 . -123) T) ((-710 . -123) T) ((-522 . -419) T) ((-962 . -648) 64903) ((-558 . -959) T) ((-940 . -476) 64836) ((-428 . -123) T) ((-421 . -123) T) ((-44 . -1001) T) ((-349 . -648) 64806) ((-747 . -1001) T) ((-443 . -476) 64739) ((-430 . -476) 64672) ((-420 . -335) 64642) ((-44 . -552) 64621) ((-282 . -267) T) ((-605 . -555) 64583) ((-56 . -777) 64562) ((-1109 . -278) 64447) ((-918 . -368) 64429) ((-745 . -548) 64406) ((-478 . -777) 64385) ((-459 . -777) 64364) ((-39 . -1108) T) ((-910 . -950) 64262) ((-49 . -123) T) ((-528 . -123) T) ((-479 . -123) T) ((-262 . -583) 64124) ((-312 . -297) 64101) ((-312 . -331) T) ((-290 . -291) 64078) ((-287 . -256) 64063) ((-39 . -508) T) ((-346 . -1090) T) ((-346 . -1093) T) ((-948 . -1081) 64038) ((-1077 . -208) 63988) ((-1061 . -204) 63940) ((-298 . -1001) T) ((-346 . -91) T) ((-346 . -34) T) ((-948 . -102) 63886) ((-444 . -959) T) ((-445 . -208) 63836) ((-1054 . -454) 63770) ((-1171 . -964) 63754) ((-350 . -964) 63738) ((-444 . -216) T) ((-746 . -97) T) ((-645 . -134) 63717) ((-645 . -132) 63696) ((-449 . -454) 63680) ((-450 . -304) 63649) ((-1171 . -106) 63628) ((-472 . -1001) T) ((-448 . -156) 63607) ((-910 . -345) 63591) ((-381 . -97) T) ((-350 . -106) 63570) ((-910 . -306) 63554) ((-250 . -898) 63538) ((-249 . -898) 63522) ((-1168 . -555) 63504) ((-1167 . -555) 63486) ((-105 . -476) NIL) ((-1064 . -1125) 63470) ((-781 . -779) 63454) ((-1072 . -1001) T) ((-98 . -1104) T) ((-866 . -870) 63415) ((-747 . -648) 63352) ((-1109 . -1046) NIL) ((-447 . -870) 63297) ((-969 . -130) T) ((-58 . -97) 63275) ((-43 . -555) 63257) ((-73 . -555) 63239) ((-320 . -583) 63184) ((-1159 . -1001) T) ((-474 . -777) T) ((-312 . -1012) T) ((-264 . -1001) T) ((-910 . -820) 63143) ((-264 . -552) 63122) ((-1139 . -37) 63019) ((-1130 . -37) 62860) ((-452 . -965) T) ((-1109 . -37) 62656) ((-192 . -965) T) ((-312 . -23) T) ((-139 . -555) 62638) ((-762 . -727) 62617) ((-762 . -722) 62596) ((-541 . -37) 62569) ((-540 . -37) 62466) ((-791 . -508) T) ((-197 . -123) T) ((-287 . -916) 62432) ((-77 . -555) 62414) ((-643 . -276) 62393) ((-262 . -657) 62296) ((-756 . -97) T) ((-787 . -771) T) ((-262 . -440) 62275) ((-1162 . -97) T) ((-39 . -331) T) ((-794 . -134) 62254) ((-794 . -132) 62233) ((-1053 . -454) 62215) ((-1171 . -959) T) ((-448 . -476) 62148) ((-1041 . -1104) T) ((-883 . -555) 62130) ((-582 . -454) 62114) ((-570 . -454) 62046) ((-745 . -555) 61825) ((-47 . -27) T) ((-1072 . -648) 61722) ((-590 . -1001) T) ((-405 . -333) 61696) ((-997 . -97) T) ((-746 . -278) 61683) ((-787 . -1001) T) ((-1167 . -352) 61655) ((-962 . -476) 61588) ((-1054 . -256) 61564) ((-212 . -204) 61534) ((-1159 . -648) 61504) ((-747 . -156) 61483) ((-558 . -727) 61462) ((-558 . -722) 61441) ((-1102 . -555) 61388) ((-196 . -1104) T) ((-609 . -555) 61355) ((-1048 . -924) 61339) ((-320 . -657) T) ((-863 . -97) 61289) ((-1109 . -368) 61241) ((-1013 . -454) 61225) ((-58 . -278) 61163) ((-299 . -97) T) ((-1097 . -21) T) ((-1097 . -25) T) ((-39 . -1012) T) ((-642 . -21) T) ((-565 . -555) 61145) ((-477 . -291) 61124) ((-642 . -25) T) ((-103 . -256) NIL) ((-839 . -1012) T) ((-39 . -23) T) ((-701 . -1012) T) ((-501 . -1108) T) ((-458 . -1108) T) ((-287 . -555) 61106) ((-918 . -204) 61088) ((-152 . -150) 61072) ((-527 . -508) T) ((-501 . -508) T) ((-458 . -508) T) ((-701 . -23) T) ((-1135 . -134) 61051) ((-1054 . -548) 61027) ((-1135 . -132) 61006) ((-940 . -454) 60990) ((-1114 . -132) 60915) ((-1114 . -134) 60840) ((-1162 . -1169) 60819) ((-443 . -454) 60803) ((-430 . -454) 60787) ((-484 . -33) T) ((-590 . -648) 60757) ((-587 . -777) 60736) ((-1072 . -156) 60687) ((-332 . -97) T) ((-212 . -211) 60666) ((-222 . -97) T) ((-221 . -97) T) ((-1118 . -870) 60636) ((-104 . -97) T) ((-218 . -777) 60615) ((-746 . -37) 60464) ((-44 . -476) 60224) ((-1053 . -256) 60199) ((-189 . -1001) T) ((-1045 . -1001) T) ((-1045 . -552) 60178) ((-530 . -25) T) ((-530 . -21) T) ((-997 . -278) 60116) ((-875 . -380) 60100) ((-630 . -1108) T) ((-570 . -256) 60075) ((-989 . -577) 60023) ((-711 . -577) 59971) ((-710 . -577) 59919) ((-312 . -123) T) ((-259 . -555) 59901) ((-630 . -508) T) ((-822 . -1001) T) ((-791 . -1012) T) ((-421 . -577) 59849) ((-822 . -824) 59833) ((-346 . -419) T) ((-452 . -1001) T) ((-632 . -583) 59820) ((-863 . -278) 59758) ((-192 . -1001) T) ((-282 . -841) 59737) ((-281 . -841) T) ((-281 . -750) NIL) ((-358 . -651) T) ((-791 . -23) T) ((-111 . -583) 59724) ((-441 . -132) 59703) ((-373 . -380) 59687) ((-441 . -134) 59666) ((-105 . -454) 59648) ((-2 . -555) 59630) ((-1053 . -19) 59612) ((-1053 . -548) 59587) ((-589 . -21) T) ((-589 . -25) T) ((-538 . -1039) T) ((-1013 . -256) 59564) ((-301 . -25) T) ((-301 . -21) T) ((-458 . -331) T) ((-1162 . -37) 59534) ((-1037 . -1104) T) ((-570 . -548) 59509) ((-989 . -25) T) ((-989 . -21) T) ((-487 . -722) T) ((-487 . -727) T) ((-112 . -1108) T) ((-875 . -965) T) ((-562 . -508) T) ((-666 . -965) T) ((-646 . -965) T) ((-711 . -25) T) ((-711 . -21) T) ((-710 . -21) T) ((-710 . -25) T) ((-605 . -964) 59493) ((-428 . -25) T) ((-112 . -508) T) ((-428 . -21) T) ((-421 . -25) T) ((-421 . -21) T) ((-1037 . -950) 59391) ((-747 . -260) 59370) ((-754 . -1001) T) ((-605 . -106) 59349) ((-264 . -476) 59109) ((-1168 . -964) 59093) ((-1167 . -964) 59077) ((-222 . -278) 59015) ((-221 . -278) 58953) ((-1116 . -97) 58931) ((-1054 . -556) NIL) ((-1054 . -555) 58913) ((-1135 . -1090) 58879) ((-1135 . -1093) 58845) ((-1114 . -1090) 58811) ((-1114 . -1093) 58777) ((-1109 . -204) 58729) ((-1037 . -345) 58713) ((-1018 . -750) T) ((-1018 . -841) T) ((-1013 . -548) 58690) ((-983 . -556) 58674) ((-449 . -555) 58641) ((-745 . -258) 58618) ((-550 . -138) 58565) ((-373 . -965) T) ((-452 . -648) 58515) ((-448 . -454) 58499) ((-295 . -777) 58478) ((-307 . -583) 58452) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -648) 58402) ((-152 . -655) 58373) ((-157 . -583) 58305) ((-528 . -21) T) ((-528 . -25) T) ((-479 . -25) T) ((-479 . -21) T) ((-442 . -138) 58255) ((-983 . -555) 58237) ((-968 . -555) 58219) ((-908 . -97) T) ((-786 . -97) T) ((-728 . -380) 58183) ((-39 . -123) T) ((-630 . -331) T) ((-188 . -815) T) ((-632 . -724) T) ((-632 . -721) T) ((-527 . -1012) T) ((-501 . -1012) T) ((-458 . -1012) T) ((-632 . -657) T) ((-327 . -555) 58165) ((-322 . -555) 58147) ((-314 . -555) 58129) ((-64 . -365) T) ((-64 . -364) T) ((-103 . -556) 58059) ((-103 . -555) 58041) ((-187 . -815) T) ((-877 . -138) 58025) ((-1135 . -91) 57991) ((-701 . -123) T) ((-125 . -657) T) ((-111 . -657) T) ((-1135 . -34) 57957) ((-962 . -454) 57941) ((-527 . -23) T) ((-501 . -23) T) ((-458 . -23) T) ((-1114 . -91) 57907) ((-1114 . -34) 57873) ((-1064 . -97) T) ((-1023 . -97) T) ((-781 . -97) T) ((-1168 . -106) 57852) ((-1167 . -106) 57831) ((-43 . -964) 57815) ((-1118 . -1125) 57799) ((-782 . -779) 57783) ((-1072 . -260) 57762) ((-105 . -256) 57737) ((-1037 . -820) 57696) ((-43 . -106) 57675) ((-605 . -959) T) ((-1053 . -556) NIL) ((-1053 . -555) 57657) ((-970 . -552) 57632) ((-970 . -1001) T) ((-72 . -408) T) ((-72 . -364) T) ((-605 . -206) 57611) ((-139 . -964) 57595) ((-522 . -506) 57579) ((-323 . -134) 57558) ((-323 . -132) 57509) ((-321 . -134) 57488) ((-634 . -1001) T) ((-321 . -132) 57439) ((-313 . -134) 57418) ((-313 . -132) 57369) ((-235 . -132) 57348) ((-235 . -134) 57327) ((-222 . -37) 57297) ((-220 . -134) 57276) ((-112 . -331) T) ((-220 . -132) 57255) ((-221 . -37) 57225) ((-139 . -106) 57204) ((-917 . -950) 57081) ((-1061 . -775) NIL) ((-625 . -1108) T) ((-728 . -965) T) ((-630 . -1012) T) ((-1168 . -959) T) ((-1167 . -959) T) ((-1048 . -1104) T) ((-917 . -345) 57058) ((-826 . -132) T) ((-826 . -134) 57040) ((-791 . -123) T) ((-745 . -964) 56938) ((-625 . -508) T) ((-630 . -23) T) ((-582 . -555) 56905) ((-582 . -556) 56866) ((-570 . -556) NIL) ((-570 . -555) 56848) ((-452 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-441 . -1093) 56814) ((-441 . -1090) 56780) ((-245 . -555) 56762) ((-244 . -555) 56744) ((-243 . -555) 56726) ((-242 . -555) 56708) ((-241 . -555) 56690) ((-463 . -586) 56672) ((-240 . -555) 56654) ((-307 . -657) T) ((-239 . -555) 56636) ((-105 . -19) 56618) ((-157 . -657) T) ((-463 . -340) 56600) ((-188 . -555) 56582) ((-481 . -1044) 56566) ((-463 . -118) T) ((-105 . -548) 56541) ((-187 . -555) 56523) ((-441 . -34) 56489) ((-441 . -91) 56455) ((-185 . -555) 56437) ((-184 . -555) 56419) ((-183 . -555) 56401) ((-182 . -555) 56383) ((-179 . -555) 56365) ((-178 . -555) 56347) ((-177 . -555) 56329) ((-176 . -555) 56311) ((-175 . -555) 56293) ((-174 . -555) 56275) ((-173 . -555) 56257) ((-490 . -1004) 56209) ((-172 . -555) 56191) ((-171 . -555) 56173) ((-44 . -454) 56110) ((-170 . -555) 56092) ((-169 . -555) 56074) ((-745 . -106) 55965) ((-578 . -97) 55915) ((-448 . -256) 55892) ((-1013 . -555) 55671) ((-1002 . -1001) T) ((-956 . -1104) T) ((-562 . -1012) T) ((-1170 . -950) 55655) ((-1064 . -278) 55642) ((-1023 . -278) 55629) ((-112 . -1012) T) ((-749 . -97) T) ((-562 . -23) T) ((-1045 . -476) 55389) ((-354 . -97) T) ((-292 . -97) T) ((-917 . -820) 55341) ((-875 . -1001) T) ((-139 . -959) T) ((-112 . -23) T) ((-662 . -380) 55325) ((-666 . -1001) T) ((-646 . -1001) T) ((-634 . -124) T) ((-420 . -1001) T) ((-282 . -389) 55309) ((-375 . -1104) T) ((-940 . -556) 55270) ((-937 . -1108) T) ((-199 . -97) T) ((-940 . -555) 55232) ((-746 . -204) 55216) ((-937 . -508) T) ((-762 . -583) 55189) ((-308 . -1108) T) ((-443 . -555) 55151) ((-443 . -556) 55112) ((-430 . -556) 55073) ((-430 . -555) 55035) ((-375 . -804) 55019) ((-287 . -964) 54854) ((-375 . -806) 54779) ((-769 . -950) 54677) ((-452 . -476) NIL) ((-448 . -548) 54654) ((-308 . -508) T) ((-192 . -476) NIL) ((-794 . -419) T) ((-373 . -1001) T) ((-375 . -950) 54521) ((-287 . -106) 54335) ((-625 . -331) T) ((-199 . -254) T) ((-47 . -1108) T) ((-745 . -959) 54266) ((-527 . -123) T) ((-501 . -123) T) ((-458 . -123) T) ((-47 . -508) T) ((-1054 . -258) 54242) ((-1064 . -1046) 54220) ((-282 . -27) 54199) ((-969 . -97) T) ((-745 . -206) 54152) ((-212 . -775) 54131) ((-866 . -97) T) ((-644 . -97) T) ((-264 . -454) 54068) ((-447 . -97) T) ((-662 . -965) T) ((-553 . -555) 54050) ((-553 . -556) 53911) ((-375 . -345) 53895) ((-375 . -306) 53879) ((-1064 . -37) 53708) ((-1023 . -37) 53557) ((-781 . -37) 53527) ((-358 . -583) 53511) ((-578 . -278) 53449) ((-875 . -648) 53346) ((-196 . -102) 53330) ((-44 . -256) 53255) ((-666 . -648) 53225) ((-558 . -583) 53199) ((-280 . -1001) T) ((-259 . -964) 53186) ((-105 . -555) 53168) ((-105 . -556) 53150) ((-420 . -648) 53120) ((-746 . -224) 53059) ((-621 . -1001) 53037) ((-502 . -1001) T) ((-1068 . -965) T) ((-1067 . -965) T) ((-259 . -106) 53022) ((-1061 . -965) T) ((-1024 . -965) T) ((-502 . -552) 53001) ((-918 . -775) T) ((-625 . -1012) T) ((-1097 . -671) 52977) ((-287 . -959) T) ((-312 . -25) T) ((-312 . -21) T) ((-375 . -820) 52936) ((-66 . -1104) T) ((-762 . -724) 52915) ((-373 . -648) 52889) ((-728 . -1001) T) ((-762 . -721) 52868) ((-630 . -123) T) ((-643 . -841) 52847) ((-625 . -23) T) ((-452 . -260) T) ((-762 . -657) 52826) ((-287 . -206) 52778) ((-287 . -216) 52757) ((-192 . -260) T) ((-937 . -331) T) ((-1135 . -419) 52736) ((-1114 . -419) 52715) ((-308 . -297) 52692) ((-308 . -331) T) ((-1035 . -555) 52674) ((-44 . -1138) 52624) ((-793 . -97) T) ((-578 . -252) 52608) ((-630 . -967) T) ((-444 . -583) 52573) ((-435 . -1001) T) ((-44 . -548) 52498) ((-1053 . -258) 52473) ((-39 . -577) 52407) ((-47 . -331) T) ((-1006 . -555) 52389) ((-989 . -777) 52368) ((-570 . -258) 52343) ((-711 . -777) 52322) ((-710 . -777) 52301) ((-448 . -555) 52080) ((-212 . -380) 52049) ((-866 . -278) 52036) ((-421 . -777) 52015) ((-63 . -1104) T) ((-562 . -123) T) ((-447 . -278) 52002) ((-970 . -476) 51810) ((-259 . -959) T) ((-112 . -123) T) ((-420 . -692) T) ((-875 . -156) 51761) ((-983 . -964) 51671) ((-558 . -724) 51650) ((-538 . -1001) T) ((-558 . -721) 51629) ((-558 . -657) T) ((-264 . -256) 51608) ((-262 . -1104) T) ((-962 . -555) 51570) ((-962 . -556) 51531) ((-937 . -1012) T) ((-152 . -97) T) ((-246 . -777) T) ((-748 . -555) 51513) ((-1060 . -1001) T) ((-1013 . -258) 51490) ((-997 . -202) 51474) ((-728 . -648) 51458) ((-327 . -964) 51410) ((-322 . -964) 51362) ((-308 . -1012) T) ((-383 . -555) 51344) ((-349 . -555) 51326) ((-314 . -964) 51278) ((-917 . -276) T) ((-983 . -106) 51167) ((-937 . -23) T) ((-103 . -964) 51117) ((-818 . -97) T) ((-768 . -97) T) ((-738 . -97) T) ((-699 . -97) T) ((-610 . -97) T) ((-441 . -419) 51096) ((-373 . -156) T) ((-327 . -106) 51027) ((-322 . -106) 50958) ((-314 . -106) 50889) ((-222 . -204) 50859) ((-221 . -204) 50829) ((-308 . -23) T) ((-69 . -1104) T) ((-199 . -37) 50794) ((-103 . -106) 50721) ((-39 . -25) T) ((-39 . -21) T) ((-605 . -651) T) ((-152 . -254) 50699) ((-47 . -1012) T) ((-839 . -25) T) ((-701 . -25) T) ((-1045 . -454) 50636) ((-450 . -1001) T) ((-1171 . -583) 50610) ((-1118 . -97) T) ((-782 . -97) T) ((-212 . -965) 50541) ((-969 . -1046) T) ((-883 . -722) 50494) ((-350 . -583) 50478) ((-47 . -23) T) ((-883 . -727) 50431) ((-745 . -727) 50382) ((-745 . -722) 50333) ((-264 . -548) 50312) ((-444 . -657) T) ((-522 . -97) T) ((-793 . -278) 50256) ((-590 . -256) 50235) ((-107 . -597) T) ((-75 . -1104) T) ((-969 . -37) 50222) ((-599 . -342) 50201) ((-866 . -37) 50050) ((-662 . -1001) T) ((-447 . -37) 49899) ((-80 . -1104) T) ((-522 . -254) T) ((-1109 . -775) NIL) ((-1068 . -1001) T) ((-1067 . -1001) T) ((-1061 . -1001) T) ((-320 . -950) 49876) ((-983 . -959) T) ((-918 . -965) T) ((-44 . -555) 49858) ((-44 . -556) NIL) ((-834 . -965) T) ((-747 . -555) 49840) ((-1042 . -97) 49818) ((-983 . -216) 49769) ((-397 . -965) T) ((-327 . -959) T) ((-322 . -959) T) ((-332 . -333) 49746) ((-314 . -959) T) ((-222 . -211) 49725) ((-221 . -211) 49704) ((-104 . -333) 49678) ((-983 . -206) 49603) ((-1024 . -1001) T) ((-262 . -820) 49562) ((-103 . -959) T) ((-625 . -123) T) ((-373 . -476) 49404) ((-327 . -206) 49383) ((-327 . -216) T) ((-43 . -651) T) ((-322 . -206) 49362) ((-322 . -216) T) ((-314 . -206) 49341) ((-314 . -216) T) ((-152 . -278) 49306) ((-103 . -216) T) ((-103 . -206) T) ((-287 . -722) T) ((-791 . -21) T) ((-791 . -25) T) ((-375 . -276) T) ((-463 . -33) T) ((-105 . -258) 49281) ((-1013 . -964) 49179) ((-793 . -1046) NIL) ((-298 . -555) 49161) ((-375 . -933) 49140) ((-1013 . -106) 49031) ((-405 . -1001) T) ((-1171 . -657) T) ((-62 . -555) 49013) ((-793 . -37) 48958) ((-484 . -1104) T) ((-546 . -138) 48942) ((-472 . -555) 48924) ((-1118 . -278) 48911) ((-662 . -648) 48760) ((-487 . -723) T) ((-487 . -724) T) ((-501 . -577) 48742) ((-458 . -577) 48702) ((-323 . -419) T) ((-321 . -419) T) ((-313 . -419) T) ((-235 . -419) 48653) ((-481 . -1001) 48603) ((-220 . -419) 48554) ((-1045 . -256) 48533) ((-1072 . -555) 48515) ((-621 . -476) 48448) ((-875 . -260) 48427) ((-502 . -476) 48187) ((-1064 . -204) 48171) ((-152 . -1046) 48150) ((-1159 . -555) 48132) ((-1068 . -648) 48029) ((-1067 . -648) 47870) ((-810 . -97) T) ((-1061 . -648) 47666) ((-1024 . -648) 47563) ((-1048 . -608) 47547) ((-323 . -370) 47498) ((-321 . -370) 47449) ((-313 . -370) 47400) ((-937 . -123) T) ((-728 . -476) 47312) ((-264 . -556) NIL) ((-264 . -555) 47294) ((-826 . -419) T) ((-883 . -336) 47247) ((-745 . -336) 47226) ((-473 . -471) 47205) ((-470 . -471) 47184) ((-452 . -256) NIL) ((-448 . -258) 47161) ((-373 . -260) T) ((-308 . -123) T) ((-192 . -256) NIL) ((-625 . -456) NIL) ((-94 . -1012) T) ((-152 . -37) 46989) ((-1135 . -888) 46952) ((-1042 . -278) 46890) ((-1114 . -888) 46860) ((-826 . -370) T) ((-1013 . -959) 46791) ((-1136 . -508) T) ((-1045 . -548) 46770) ((-107 . -777) T) ((-970 . -454) 46702) ((-527 . -21) T) ((-527 . -25) T) ((-501 . -21) T) ((-501 . -25) T) ((-458 . -25) T) ((-458 . -21) T) ((-1118 . -1046) 46680) ((-1013 . -206) 46633) ((-47 . -123) T) ((-1086 . -97) T) ((-212 . -1001) 46444) ((-793 . -368) 46421) ((-990 . -97) T) ((-979 . -97) T) ((-550 . -97) T) ((-442 . -97) T) ((-1118 . -37) 46250) ((-782 . -37) 46220) ((-662 . -156) 46131) ((-590 . -555) 46113) ((-522 . -37) 46100) ((-877 . -97) 46050) ((-787 . -555) 46032) ((-787 . -556) 45954) ((-538 . -476) NIL) ((-1139 . -965) T) ((-1130 . -965) T) ((-1109 . -965) T) ((-541 . -965) T) ((-540 . -965) T) ((-1175 . -1012) T) ((-1068 . -156) 45905) ((-1067 . -156) 45836) ((-1061 . -156) 45767) ((-1024 . -156) 45718) ((-918 . -1001) T) ((-886 . -1001) T) ((-834 . -1001) T) ((-1097 . -134) 45697) ((-728 . -726) 45681) ((-630 . -25) T) ((-630 . -21) T) ((-112 . -577) 45658) ((-632 . -806) 45640) ((-397 . -1001) T) ((-282 . -1108) 45619) ((-281 . -1108) T) ((-152 . -368) 45603) ((-1097 . -132) 45582) ((-441 . -888) 45545) ((-70 . -555) 45527) ((-103 . -727) T) ((-103 . -722) T) ((-282 . -508) 45506) ((-632 . -950) 45488) ((-281 . -508) T) ((-1175 . -23) T) ((-125 . -950) 45470) ((-448 . -964) 45368) ((-44 . -258) 45293) ((-212 . -648) 45235) ((-448 . -106) 45126) ((-993 . -97) 45104) ((-947 . -97) T) ((-578 . -751) 45083) ((-662 . -476) 45021) ((-962 . -964) 45005) ((-562 . -21) T) ((-562 . -25) T) ((-970 . -256) 44980) ((-329 . -97) T) ((-290 . -97) T) ((-605 . -583) 44954) ((-349 . -964) 44938) ((-962 . -106) 44917) ((-746 . -380) 44901) ((-112 . -25) T) ((-87 . -555) 44883) ((-112 . -21) T) ((-550 . -278) 44678) ((-442 . -278) 44482) ((-1045 . -556) NIL) ((-349 . -106) 44461) ((-346 . -97) T) ((-189 . -555) 44443) ((-1045 . -555) 44425) ((-918 . -648) 44375) ((-1061 . -476) 44109) ((-834 . -648) 44061) ((-1024 . -476) 44031) ((-320 . -276) T) ((-1077 . -138) 43981) ((-877 . -278) 43919) ((-764 . -97) T) ((-397 . -648) 43903) ((-199 . -751) T) ((-758 . -97) T) ((-755 . -97) T) ((-445 . -138) 43853) ((-1135 . -1134) 43832) ((-1018 . -1108) T) ((-307 . -950) 43799) ((-1135 . -1128) 43769) ((-1135 . -1132) 43753) ((-1114 . -1113) 43732) ((-78 . -555) 43714) ((-822 . -555) 43696) ((-1114 . -1128) 43673) ((-1018 . -508) T) ((-839 . -777) T) ((-452 . -556) 43603) ((-452 . -555) 43585) ((-701 . -777) T) ((-346 . -254) T) ((-606 . -777) T) ((-1114 . -1111) 43569) ((-1136 . -1012) T) ((-192 . -556) 43499) ((-192 . -555) 43481) ((-970 . -548) 43456) ((-56 . -138) 43440) ((-478 . -138) 43424) ((-459 . -138) 43408) ((-327 . -1165) 43392) ((-322 . -1165) 43376) ((-314 . -1165) 43360) ((-282 . -331) 43339) ((-281 . -331) T) ((-448 . -959) 43270) ((-625 . -577) 43252) ((-1168 . -583) 43226) ((-1167 . -583) 43200) ((-1136 . -23) T) ((-621 . -454) 43184) ((-59 . -555) 43166) ((-1013 . -727) 43117) ((-1013 . -722) 43068) ((-502 . -454) 43005) ((-605 . -33) T) ((-448 . -206) 42958) ((-264 . -258) 42937) ((-212 . -156) 42916) ((-746 . -965) T) ((-43 . -583) 42874) ((-983 . -336) 42825) ((-662 . -260) 42756) ((-481 . -476) 42689) ((-747 . -964) 42640) ((-989 . -132) 42619) ((-327 . -336) 42598) ((-322 . -336) 42577) ((-314 . -336) 42556) ((-989 . -134) 42535) ((-793 . -204) 42512) ((-747 . -106) 42447) ((-711 . -132) 42426) ((-711 . -134) 42405) ((-235 . -870) 42372) ((-222 . -775) 42351) ((-220 . -870) 42296) ((-221 . -775) 42275) ((-710 . -132) 42254) ((-710 . -134) 42233) ((-139 . -583) 42207) ((-421 . -134) 42186) ((-421 . -132) 42165) ((-605 . -657) T) ((-754 . -555) 42147) ((-1139 . -1001) T) ((-1130 . -1001) T) ((-1109 . -1001) T) ((-1097 . -1093) 42113) ((-1097 . -1090) 42079) ((-1068 . -260) 42058) ((-1067 . -260) 42009) ((-1061 . -260) 41960) ((-1024 . -260) 41939) ((-307 . -820) 41920) ((-918 . -156) T) ((-834 . -156) T) ((-541 . -1001) T) ((-540 . -1001) T) ((-625 . -21) T) ((-625 . -25) T) ((-441 . -1132) 41904) ((-441 . -1128) 41874) ((-373 . -256) 41802) ((-282 . -1012) 41652) ((-281 . -1012) T) ((-1097 . -34) 41618) ((-1097 . -91) 41584) ((-83 . -555) 41566) ((-89 . -97) 41544) ((-1175 . -123) T) ((-528 . -132) T) ((-528 . -134) 41526) ((-479 . -134) 41508) ((-479 . -132) T) ((-282 . -23) 41361) ((-39 . -310) 41335) ((-281 . -23) T) ((-1053 . -586) 41317) ((-745 . -583) 41167) ((-1162 . -965) T) ((-1053 . -340) 41149) ((-152 . -204) 41133) ((-538 . -454) 41115) ((-212 . -476) 41048) ((-1168 . -657) T) ((-1167 . -657) T) ((-1072 . -964) 40931) ((-1072 . -106) 40793) ((-747 . -959) T) ((-477 . -97) T) ((-47 . -577) 40753) ((-473 . -97) T) ((-470 . -97) T) ((-1159 . -964) 40723) ((-947 . -37) 40707) ((-747 . -206) T) ((-747 . -216) 40686) ((-502 . -256) 40665) ((-1159 . -106) 40630) ((-1118 . -204) 40614) ((-1139 . -648) 40511) ((-970 . -556) NIL) ((-970 . -555) 40493) ((-1130 . -648) 40334) ((-1109 . -648) 40130) ((-917 . -841) T) ((-634 . -555) 40099) ((-139 . -657) T) ((-1013 . -336) 40078) ((-918 . -476) NIL) ((-222 . -380) 40047) ((-221 . -380) 40016) ((-937 . -25) T) ((-937 . -21) T) ((-541 . -648) 39989) ((-540 . -648) 39886) ((-728 . -256) 39844) ((-121 . -97) 39822) ((-762 . -950) 39720) ((-152 . -751) 39699) ((-287 . -583) 39596) ((-745 . -33) T) ((-645 . -97) T) ((-1018 . -1012) T) ((-939 . -1104) T) ((-346 . -37) 39561) ((-308 . -25) T) ((-308 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-323 . -1156) 39545) ((-321 . -1156) 39529) ((-313 . -1156) 39513) ((-152 . -318) 39492) ((-501 . -777) T) ((-458 . -777) T) ((-1018 . -23) T) ((-86 . -555) 39474) ((-632 . -276) T) ((-764 . -37) 39444) ((-758 . -37) 39414) ((-1136 . -123) T) ((-1045 . -258) 39393) ((-883 . -723) 39346) ((-883 . -724) 39299) ((-745 . -721) 39278) ((-111 . -276) T) ((-89 . -278) 39216) ((-609 . -33) T) ((-502 . -548) 39195) ((-47 . -25) T) ((-47 . -21) T) ((-745 . -724) 39146) ((-745 . -723) 39125) ((-632 . -933) T) ((-590 . -964) 39109) ((-883 . -657) 39008) ((-745 . -657) 38939) ((-883 . -440) 38892) ((-448 . -727) 38843) ((-448 . -722) 38794) ((-826 . -1156) 38781) ((-1072 . -959) T) ((-590 . -106) 38760) ((-1072 . -294) 38737) ((-1091 . -97) 38715) ((-1002 . -555) 38697) ((-632 . -500) T) ((-746 . -1001) T) ((-1159 . -959) T) ((-381 . -1001) T) ((-222 . -965) 38628) ((-221 . -965) 38559) ((-259 . -583) 38546) ((-538 . -256) 38521) ((-621 . -618) 38479) ((-875 . -555) 38461) ((-794 . -97) T) ((-666 . -555) 38443) ((-646 . -555) 38425) ((-1139 . -156) 38376) ((-1130 . -156) 38307) ((-1109 . -156) 38238) ((-630 . -777) T) ((-918 . -260) T) ((-420 . -555) 38220) ((-565 . -657) T) ((-58 . -1001) 38198) ((-218 . -138) 38182) ((-834 . -260) T) ((-937 . -926) T) ((-565 . -440) T) ((-643 . -1108) 38161) ((-541 . -156) 38140) ((-540 . -156) 38091) ((-1148 . -777) 38070) ((-643 . -508) 37981) ((-375 . -841) T) ((-375 . -750) 37960) ((-287 . -724) T) ((-287 . -657) T) ((-373 . -555) 37942) ((-373 . -556) 37845) ((-578 . -1044) 37829) ((-105 . -586) 37811) ((-121 . -278) 37749) ((-105 . -340) 37731) ((-157 . -276) T) ((-366 . -1104) T) ((-282 . -123) 37603) ((-281 . -123) T) ((-67 . -364) T) ((-105 . -118) T) ((-481 . -454) 37587) ((-591 . -1012) T) ((-538 . -19) 37569) ((-60 . -408) T) ((-60 . -364) T) ((-756 . -1001) T) ((-538 . -548) 37544) ((-444 . -950) 37504) ((-590 . -959) T) ((-591 . -23) T) ((-1162 . -1001) T) ((-746 . -648) 37353) ((-112 . -777) NIL) ((-1064 . -380) 37337) ((-1023 . -380) 37321) ((-781 . -380) 37305) ((-1135 . -97) T) ((-1114 . -97) T) ((-1091 . -278) 37243) ((-280 . -555) 37225) ((-1109 . -476) 36959) ((-997 . -1001) T) ((-1068 . -256) 36944) ((-1067 . -256) 36929) ((-259 . -657) T) ((-103 . -830) NIL) ((-621 . -555) 36896) ((-621 . -556) 36857) ((-983 . -583) 36767) ((-545 . -555) 36749) ((-502 . -556) NIL) ((-502 . -555) 36731) ((-1061 . -256) 36579) ((-452 . -964) 36529) ((-642 . -419) T) ((-474 . -471) 36508) ((-469 . -471) 36487) ((-192 . -964) 36437) ((-327 . -583) 36389) ((-322 . -583) 36341) ((-199 . -775) T) ((-314 . -583) 36293) ((-546 . -97) 36243) ((-448 . -336) 36222) ((-103 . -583) 36172) ((-452 . -106) 36099) ((-212 . -454) 36083) ((-312 . -134) 36065) ((-312 . -132) T) ((-152 . -338) 36036) ((-863 . -1147) 36020) ((-192 . -106) 35947) ((-794 . -278) 35912) ((-863 . -1001) 35862) ((-728 . -556) 35823) ((-728 . -555) 35805) ((-649 . -97) T) ((-299 . -1001) T) ((-1018 . -123) T) ((-645 . -37) 35775) ((-282 . -456) 35754) ((-463 . -1104) T) ((-1135 . -254) 35720) ((-1114 . -254) 35686) ((-295 . -138) 35670) ((-970 . -258) 35645) ((-1162 . -648) 35615) ((-1054 . -33) T) ((-1171 . -950) 35592) ((-435 . -555) 35574) ((-449 . -33) T) ((-350 . -950) 35558) ((-1064 . -965) T) ((-1023 . -965) T) ((-781 . -965) T) ((-969 . -775) T) ((-746 . -156) 35469) ((-481 . -256) 35446) ((-112 . -906) 35423) ((-1139 . -260) 35402) ((-1086 . -333) 35376) ((-990 . -237) 35360) ((-441 . -97) T) ((-332 . -1001) T) ((-222 . -1001) T) ((-221 . -1001) T) ((-1130 . -260) 35311) ((-104 . -1001) T) ((-1109 . -260) 35262) ((-794 . -1046) 35240) ((-1068 . -916) 35206) ((-550 . -333) 35146) ((-1067 . -916) 35112) ((-550 . -202) 35059) ((-538 . -555) 35041) ((-538 . -556) NIL) ((-625 . -777) T) ((-442 . -202) 34991) ((-452 . -959) T) ((-1061 . -916) 34957) ((-85 . -407) T) ((-85 . -364) T) ((-192 . -959) T) ((-1024 . -916) 34923) ((-983 . -657) T) ((-643 . -1012) T) ((-541 . -260) 34902) ((-540 . -260) 34881) ((-452 . -216) T) ((-452 . -206) T) ((-192 . -216) T) ((-192 . -206) T) ((-1060 . -555) 34863) ((-794 . -37) 34815) ((-327 . -657) T) ((-322 . -657) T) ((-314 . -657) T) ((-103 . -724) T) ((-103 . -721) T) ((-481 . -1138) 34799) ((-103 . -657) T) ((-643 . -23) T) ((-1175 . -25) T) ((-441 . -254) 34765) ((-1175 . -21) T) ((-1114 . -278) 34704) ((-1070 . -97) T) ((-39 . -132) 34676) ((-39 . -134) 34648) ((-481 . -548) 34625) ((-1013 . -583) 34475) ((-546 . -278) 34413) ((-44 . -586) 34363) ((-44 . -601) 34313) ((-44 . -340) 34263) ((-1053 . -33) T) ((-793 . -775) NIL) ((-591 . -123) T) ((-450 . -555) 34245) ((-212 . -256) 34222) ((-582 . -33) T) ((-570 . -33) T) ((-989 . -419) 34173) ((-746 . -476) 34038) ((-711 . -419) 33969) ((-710 . -419) 33920) ((-421 . -419) 33871) ((-866 . -380) 33855) ((-662 . -555) 33837) ((-222 . -648) 33779) ((-221 . -648) 33721) ((-662 . -556) 33582) ((-447 . -380) 33566) ((-307 . -267) T) ((-320 . -841) T) ((-914 . -97) 33544) ((-937 . -777) T) ((-58 . -476) 33477) ((-1114 . -1046) 33429) ((-918 . -256) NIL) ((-199 . -965) T) ((-346 . -751) T) ((-1013 . -33) T) ((-528 . -419) T) ((-479 . -419) T) ((-1116 . -995) 33413) ((-1116 . -1001) 33391) ((-212 . -548) 33368) ((-1116 . -996) 33325) ((-1068 . -555) 33307) ((-1067 . -555) 33289) ((-1061 . -555) 33271) ((-1061 . -556) NIL) ((-1024 . -555) 33253) ((-794 . -368) 33237) ((-490 . -97) T) ((-1135 . -37) 33078) ((-1114 . -37) 32892) ((-791 . -134) T) ((-528 . -370) T) ((-47 . -777) T) ((-479 . -370) T) ((-1136 . -21) T) ((-1136 . -25) T) ((-1013 . -721) 32871) ((-1013 . -724) 32822) ((-1013 . -723) 32801) ((-908 . -1001) T) ((-940 . -33) T) ((-786 . -1001) T) ((-1145 . -97) T) ((-1013 . -657) 32732) ((-599 . -97) T) ((-502 . -258) 32711) ((-1077 . -97) T) ((-443 . -33) T) ((-430 . -33) T) ((-323 . -97) T) ((-321 . -97) T) ((-313 . -97) T) ((-235 . -97) T) ((-220 . -97) T) ((-444 . -276) T) ((-969 . -965) T) ((-866 . -965) T) ((-282 . -577) 32619) ((-281 . -577) 32580) ((-447 . -965) T) ((-445 . -97) T) ((-405 . -555) 32562) ((-1064 . -1001) T) ((-1023 . -1001) T) ((-781 . -1001) T) ((-1036 . -97) T) ((-746 . -260) 32493) ((-875 . -964) 32376) ((-444 . -933) T) ((-666 . -964) 32346) ((-420 . -964) 32316) ((-1042 . -1019) 32300) ((-997 . -476) 32233) ((-875 . -106) 32095) ((-826 . -97) T) ((-666 . -106) 32060) ((-56 . -97) 32010) ((-481 . -556) 31971) ((-481 . -555) 31910) ((-480 . -97) 31888) ((-478 . -97) 31838) ((-460 . -97) 31816) ((-459 . -97) 31766) ((-420 . -106) 31717) ((-222 . -156) 31696) ((-221 . -156) 31675) ((-373 . -964) 31649) ((-1097 . -888) 31610) ((-910 . -1012) T) ((-863 . -476) 31543) ((-452 . -727) T) ((-441 . -37) 31384) ((-373 . -106) 31351) ((-452 . -722) T) ((-914 . -278) 31289) ((-192 . -727) T) ((-192 . -722) T) ((-910 . -23) T) ((-643 . -123) T) ((-1114 . -368) 31259) ((-282 . -25) 31112) ((-152 . -380) 31096) ((-282 . -21) 30968) ((-281 . -25) T) ((-281 . -21) T) ((-787 . -336) T) ((-105 . -33) T) ((-448 . -583) 30818) ((-793 . -965) T) ((-538 . -258) 30793) ((-527 . -134) T) ((-501 . -134) T) ((-458 . -134) T) ((-1064 . -648) 30622) ((-1023 . -648) 30471) ((-1018 . -577) 30453) ((-781 . -648) 30423) ((-605 . -1104) T) ((-1 . -97) T) ((-212 . -555) 30202) ((-1118 . -380) 30186) ((-1077 . -278) 29990) ((-875 . -959) T) ((-666 . -959) T) ((-646 . -959) T) ((-578 . -1001) 29940) ((-962 . -583) 29924) ((-782 . -380) 29908) ((-474 . -97) T) ((-469 . -97) T) ((-220 . -278) 29895) ((-235 . -278) 29882) ((-875 . -294) 29861) ((-349 . -583) 29845) ((-445 . -278) 29649) ((-222 . -476) 29582) ((-605 . -950) 29480) ((-221 . -476) 29413) ((-1036 . -278) 29339) ((-749 . -1001) T) ((-728 . -964) 29323) ((-1139 . -256) 29308) ((-1130 . -256) 29293) ((-1109 . -256) 29141) ((-354 . -1001) T) ((-292 . -1001) T) ((-373 . -959) T) ((-152 . -965) T) ((-56 . -278) 29079) ((-728 . -106) 29058) ((-540 . -256) 29043) ((-480 . -278) 28981) ((-478 . -278) 28919) ((-460 . -278) 28857) ((-459 . -278) 28795) ((-373 . -206) 28774) ((-448 . -33) T) ((-918 . -556) 28704) ((-199 . -1001) T) ((-918 . -555) 28686) ((-886 . -555) 28668) ((-886 . -556) 28643) ((-834 . -555) 28625) ((-630 . -134) T) ((-632 . -841) T) ((-632 . -750) T) ((-397 . -555) 28607) ((-1018 . -21) T) ((-1018 . -25) T) ((-605 . -345) 28591) ((-111 . -841) T) ((-794 . -204) 28575) ((-73 . -1104) T) ((-121 . -120) 28559) ((-962 . -33) T) ((-1168 . -950) 28533) ((-1167 . -950) 28490) ((-1118 . -965) T) ((-782 . -965) T) ((-448 . -721) 28469) ((-323 . -1046) 28448) ((-321 . -1046) 28427) ((-313 . -1046) 28406) ((-448 . -724) 28357) ((-448 . -723) 28336) ((-448 . -657) 28267) ((-58 . -454) 28251) ((-522 . -965) T) ((-1064 . -156) 28142) ((-1023 . -156) 28053) ((-969 . -1001) T) ((-989 . -870) 28000) ((-866 . -1001) T) ((-747 . -583) 27951) ((-711 . -870) 27921) ((-644 . -1001) T) ((-710 . -870) 27888) ((-478 . -252) 27872) ((-605 . -820) 27831) ((-447 . -1001) T) ((-421 . -870) 27798) ((-77 . -1104) T) ((-323 . -37) 27763) ((-321 . -37) 27728) ((-313 . -37) 27693) ((-235 . -37) 27542) ((-220 . -37) 27391) ((-826 . -1046) T) ((-562 . -134) 27370) ((-562 . -132) 27349) ((-112 . -134) T) ((-112 . -132) NIL) ((-383 . -657) T) ((-728 . -959) T) ((-312 . -419) T) ((-1139 . -916) 27315) ((-1130 . -916) 27281) ((-1109 . -916) 27247) ((-826 . -37) 27212) ((-199 . -648) 27177) ((-39 . -378) 27149) ((-287 . -46) 27119) ((-910 . -123) T) ((-745 . -1104) T) ((-157 . -841) T) ((-312 . -370) T) ((-481 . -258) 27096) ((-44 . -33) T) ((-745 . -950) 26925) ((-591 . -21) T) ((-587 . -97) T) ((-591 . -25) T) ((-997 . -454) 26909) ((-1114 . -204) 26879) ((-609 . -1104) T) ((-218 . -97) 26829) ((-793 . -1001) T) ((-1072 . -583) 26754) ((-969 . -648) 26741) ((-662 . -964) 26584) ((-1064 . -476) 26532) ((-866 . -648) 26381) ((-1023 . -476) 26333) ((-447 . -648) 26182) ((-65 . -555) 26164) ((-662 . -106) 25986) ((-863 . -454) 25970) ((-1159 . -583) 25930) ((-747 . -657) T) ((-1068 . -964) 25813) ((-1067 . -964) 25648) ((-1061 . -964) 25438) ((-1024 . -964) 25321) ((-917 . -1108) T) ((-991 . -97) 25299) ((-745 . -345) 25269) ((-917 . -508) T) ((-1068 . -106) 25131) ((-1067 . -106) 24945) ((-1061 . -106) 24691) ((-1024 . -106) 24553) ((-1005 . -1004) 24517) ((-346 . -775) T) ((-1139 . -555) 24499) ((-1130 . -555) 24481) ((-1109 . -555) 24463) ((-1109 . -556) NIL) ((-212 . -258) 24440) ((-39 . -419) T) ((-199 . -156) T) ((-152 . -1001) T) ((-625 . -134) T) ((-625 . -132) NIL) ((-541 . -555) 24422) ((-540 . -555) 24404) ((-818 . -1001) T) ((-768 . -1001) T) ((-738 . -1001) T) ((-699 . -1001) T) ((-589 . -779) 24388) ((-610 . -1001) T) ((-745 . -820) 24321) ((-39 . -370) NIL) ((-1018 . -597) T) ((-793 . -648) 24266) ((-222 . -454) 24250) ((-221 . -454) 24234) ((-643 . -577) 24182) ((-590 . -583) 24156) ((-264 . -33) T) ((-662 . -959) T) ((-528 . -1156) 24143) ((-479 . -1156) 24120) ((-1118 . -1001) T) ((-1064 . -260) 24031) ((-1023 . -260) 23962) ((-969 . -156) T) ((-782 . -1001) T) ((-866 . -156) 23873) ((-711 . -1125) 23857) ((-578 . -476) 23790) ((-76 . -555) 23772) ((-662 . -294) 23737) ((-1072 . -657) T) ((-522 . -1001) T) ((-447 . -156) 23648) ((-218 . -278) 23586) ((-1037 . -1012) T) ((-68 . -555) 23568) ((-1159 . -657) T) ((-1068 . -959) T) ((-1067 . -959) T) ((-295 . -97) 23518) ((-1061 . -959) T) ((-1037 . -23) T) ((-1024 . -959) T) ((-89 . -1019) 23502) ((-788 . -1012) T) ((-1068 . -206) 23461) ((-1067 . -216) 23440) ((-1067 . -206) 23392) ((-1061 . -206) 23279) ((-1061 . -216) 23258) ((-287 . -820) 23164) ((-788 . -23) T) ((-152 . -648) 22992) ((-375 . -1108) T) ((-1002 . -336) T) ((-937 . -134) T) ((-917 . -331) T) ((-791 . -419) T) ((-863 . -256) 22969) ((-282 . -777) T) ((-281 . -777) NIL) ((-795 . -97) T) ((-643 . -25) T) ((-375 . -508) T) ((-643 . -21) T) ((-308 . -134) 22951) ((-308 . -132) T) ((-1042 . -1001) 22929) ((-420 . -651) T) ((-74 . -555) 22911) ((-108 . -777) T) ((-218 . -252) 22895) ((-212 . -964) 22793) ((-79 . -555) 22775) ((-666 . -336) 22728) ((-1070 . -751) T) ((-667 . -208) 22712) ((-1054 . -1104) T) ((-128 . -208) 22694) ((-212 . -106) 22585) ((-1118 . -648) 22414) ((-47 . -134) T) ((-793 . -156) T) ((-782 . -648) 22384) ((-449 . -1104) T) ((-866 . -476) 22330) ((-590 . -657) T) ((-522 . -648) 22317) ((-947 . -965) T) ((-447 . -476) 22255) ((-863 . -19) 22239) ((-863 . -548) 22216) ((-746 . -556) NIL) ((-746 . -555) 22198) ((-918 . -964) 22148) ((-381 . -555) 22130) ((-222 . -256) 22107) ((-221 . -256) 22084) ((-452 . -830) NIL) ((-282 . -29) 22054) ((-103 . -1104) T) ((-917 . -1012) T) ((-192 . -830) NIL) ((-834 . -964) 22006) ((-983 . -950) 21904) ((-918 . -106) 21831) ((-235 . -204) 21815) ((-667 . -626) 21799) ((-397 . -964) 21783) ((-346 . -965) T) ((-917 . -23) T) ((-834 . -106) 21714) ((-625 . -1093) NIL) ((-452 . -583) 21664) ((-103 . -804) 21646) ((-103 . -806) 21628) ((-625 . -1090) NIL) ((-192 . -583) 21578) ((-327 . -950) 21562) ((-322 . -950) 21546) ((-295 . -278) 21484) ((-314 . -950) 21468) ((-199 . -260) T) ((-397 . -106) 21447) ((-58 . -555) 21414) ((-152 . -156) T) ((-1018 . -777) T) ((-103 . -950) 21374) ((-810 . -1001) T) ((-764 . -965) T) ((-758 . -965) T) ((-625 . -34) NIL) ((-625 . -91) NIL) ((-281 . -906) 21335) ((-527 . -419) T) ((-501 . -419) T) ((-458 . -419) T) ((-375 . -331) T) ((-212 . -959) 21266) ((-1045 . -33) T) ((-444 . -841) T) ((-910 . -577) 21214) ((-222 . -548) 21191) ((-221 . -548) 21168) ((-983 . -345) 21152) ((-793 . -476) 21015) ((-212 . -206) 20968) ((-1053 . -1104) T) ((-756 . -555) 20950) ((-1170 . -1012) T) ((-1162 . -555) 20932) ((-1118 . -156) 20823) ((-103 . -345) 20805) ((-103 . -306) 20787) ((-969 . -260) T) ((-866 . -260) 20718) ((-728 . -336) 20697) ((-582 . -1104) T) ((-570 . -1104) T) ((-447 . -260) 20628) ((-522 . -156) T) ((-295 . -252) 20612) ((-1170 . -23) T) ((-1097 . -97) T) ((-1086 . -1001) T) ((-990 . -1001) T) ((-979 . -1001) T) ((-82 . -555) 20594) ((-642 . -97) T) ((-323 . -318) 20573) ((-550 . -1001) T) ((-321 . -318) 20552) ((-313 . -318) 20531) ((-442 . -1001) T) ((-1077 . -202) 20481) ((-235 . -224) 20443) ((-1037 . -123) T) ((-550 . -552) 20419) ((-983 . -820) 20352) ((-918 . -959) T) ((-834 . -959) T) ((-442 . -552) 20331) ((-1061 . -722) NIL) ((-1061 . -727) NIL) ((-997 . -556) 20292) ((-445 . -202) 20242) ((-997 . -555) 20224) ((-918 . -216) T) ((-918 . -206) T) ((-397 . -959) T) ((-877 . -1001) 20174) ((-834 . -216) T) ((-788 . -123) T) ((-630 . -419) T) ((-769 . -1012) 20153) ((-103 . -820) NIL) ((-1097 . -254) 20119) ((-794 . -775) 20098) ((-1013 . -1104) T) ((-822 . -657) T) ((-152 . -476) 20010) ((-910 . -25) T) ((-822 . -440) T) ((-375 . -1012) T) ((-452 . -724) T) ((-452 . -721) T) ((-826 . -318) T) ((-452 . -657) T) ((-192 . -724) T) ((-192 . -721) T) ((-910 . -21) T) ((-192 . -657) T) ((-769 . -23) 19962) ((-287 . -276) 19941) ((-948 . -208) 19887) ((-375 . -23) T) ((-863 . -556) 19848) ((-863 . -555) 19787) ((-578 . -454) 19771) ((-44 . -924) 19721) ((-299 . -555) 19703) ((-1013 . -950) 19532) ((-538 . -586) 19514) ((-538 . -340) 19496) ((-312 . -1156) 19473) ((-940 . -1104) T) ((-793 . -260) T) ((-1118 . -476) 19421) ((-443 . -1104) T) ((-430 . -1104) T) ((-530 . -97) T) ((-1064 . -256) 19348) ((-562 . -419) 19327) ((-914 . -909) 19311) ((-1162 . -352) 19283) ((-112 . -419) T) ((-1084 . -97) T) ((-993 . -1001) 19261) ((-947 . -1001) T) ((-813 . -777) T) ((-320 . -1108) T) ((-1139 . -964) 19144) ((-1013 . -345) 19114) ((-1130 . -964) 18949) ((-1109 . -964) 18739) ((-1139 . -106) 18601) ((-1130 . -106) 18415) ((-1109 . -106) 18161) ((-1097 . -278) 18148) ((-320 . -508) T) ((-332 . -555) 18130) ((-259 . -276) T) ((-541 . -964) 18103) ((-540 . -964) 17986) ((-329 . -1001) T) ((-290 . -1001) T) ((-222 . -555) 17947) ((-221 . -555) 17908) ((-917 . -123) T) ((-104 . -555) 17890) ((-571 . -23) T) ((-625 . -378) 17857) ((-549 . -23) T) ((-589 . -97) T) ((-541 . -106) 17828) ((-540 . -106) 17690) ((-346 . -1001) T) ((-301 . -97) T) ((-152 . -260) 17601) ((-1114 . -775) 17554) ((-645 . -965) T) ((-1042 . -476) 17487) ((-1013 . -820) 17420) ((-764 . -1001) T) ((-758 . -1001) T) ((-755 . -1001) T) ((-92 . -97) T) ((-131 . -777) T) ((-553 . -804) 17404) ((-105 . -1104) T) ((-989 . -97) T) ((-970 . -33) T) ((-711 . -97) T) ((-710 . -97) T) ((-428 . -97) T) ((-421 . -97) T) ((-212 . -727) 17355) ((-212 . -722) 17306) ((-584 . -97) T) ((-1118 . -260) 17217) ((-599 . -573) 17201) ((-578 . -256) 17178) ((-947 . -648) 17162) ((-522 . -260) T) ((-875 . -583) 17087) ((-1170 . -123) T) ((-666 . -583) 17047) ((-646 . -583) 17034) ((-246 . -97) T) ((-420 . -583) 16964) ((-49 . -97) T) ((-528 . -97) T) ((-479 . -97) T) ((-1139 . -959) T) ((-1130 . -959) T) ((-1109 . -959) T) ((-290 . -648) 16946) ((-1139 . -206) 16905) ((-1130 . -216) 16884) ((-1130 . -206) 16836) ((-1109 . -206) 16723) ((-1109 . -216) 16702) ((-1097 . -37) 16599) ((-541 . -959) T) ((-540 . -959) T) ((-918 . -727) T) ((-918 . -722) T) ((-886 . -727) T) ((-886 . -722) T) ((-794 . -965) T) ((-791 . -792) 16583) ((-625 . -419) T) ((-346 . -648) 16548) ((-373 . -583) 16522) ((-643 . -777) 16501) ((-642 . -37) 16466) ((-540 . -206) 16425) ((-39 . -655) 16397) ((-320 . -297) 16374) ((-320 . -331) T) ((-983 . -276) 16325) ((-262 . -1012) 16207) ((-1006 . -1104) T) ((-155 . -97) T) ((-1116 . -555) 16174) ((-769 . -123) 16126) ((-578 . -1138) 16110) ((-764 . -648) 16080) ((-758 . -648) 16050) ((-448 . -1104) T) ((-327 . -276) T) ((-322 . -276) T) ((-314 . -276) T) ((-578 . -548) 16027) ((-375 . -123) T) ((-481 . -601) 16011) ((-103 . -276) T) ((-262 . -23) 15895) ((-481 . -586) 15879) ((-625 . -370) NIL) ((-481 . -340) 15863) ((-89 . -1001) 15841) ((-103 . -933) T) ((-501 . -130) T) ((-1148 . -138) 15825) ((-448 . -950) 15654) ((-1136 . -132) 15615) ((-1136 . -134) 15576) ((-962 . -1104) T) ((-908 . -555) 15558) ((-786 . -555) 15540) ((-746 . -964) 15383) ((-989 . -278) 15370) ((-711 . -278) 15357) ((-710 . -278) 15344) ((-746 . -106) 15166) ((-421 . -278) 15153) ((-1064 . -556) NIL) ((-1064 . -555) 15135) ((-1023 . -555) 15117) ((-1023 . -556) 14865) ((-947 . -156) T) ((-781 . -555) 14847) ((-863 . -258) 14824) ((-550 . -476) 14572) ((-748 . -950) 14556) ((-442 . -476) 14316) ((-875 . -657) T) ((-666 . -657) T) ((-646 . -657) T) ((-320 . -1012) T) ((-1073 . -555) 14298) ((-197 . -97) T) ((-448 . -345) 14268) ((-477 . -1001) T) ((-473 . -1001) T) ((-470 . -1001) T) ((-728 . -583) 14242) ((-937 . -419) T) ((-877 . -476) 14175) ((-320 . -23) T) ((-571 . -123) T) ((-549 . -123) T) ((-308 . -419) T) ((-212 . -336) 14154) ((-346 . -156) T) ((-1135 . -965) T) ((-1114 . -965) T) ((-199 . -916) T) ((-630 . -355) T) ((-373 . -657) T) ((-632 . -1108) T) ((-1037 . -577) 14102) ((-527 . -792) 14086) ((-1054 . -1081) 14062) ((-632 . -508) T) ((-121 . -1001) 14040) ((-1162 . -964) 14024) ((-645 . -1001) T) ((-448 . -820) 13957) ((-589 . -37) 13927) ((-308 . -370) T) ((-282 . -134) 13906) ((-282 . -132) 13885) ((-111 . -508) T) ((-281 . -134) 13841) ((-281 . -132) 13797) ((-47 . -419) T) ((-146 . -1001) T) ((-142 . -1001) T) ((-1054 . -102) 13744) ((-711 . -1046) 13722) ((-621 . -33) T) ((-1162 . -106) 13701) ((-502 . -33) T) ((-449 . -102) 13685) ((-222 . -258) 13662) ((-221 . -258) 13639) ((-793 . -256) 13569) ((-44 . -1104) T) ((-746 . -959) T) ((-1072 . -46) 13546) ((-746 . -294) 13508) ((-989 . -37) 13357) ((-746 . -206) 13336) ((-711 . -37) 13165) ((-710 . -37) 13014) ((-421 . -37) 12863) ((-578 . -556) 12824) ((-578 . -555) 12763) ((-528 . -1046) T) ((-479 . -1046) T) ((-1042 . -454) 12747) ((-1091 . -1001) 12725) ((-1037 . -25) T) ((-1037 . -21) T) ((-441 . -965) T) ((-1109 . -722) NIL) ((-1109 . -727) NIL) ((-910 . -777) 12704) ((-749 . -555) 12686) ((-788 . -21) T) ((-788 . -25) T) ((-728 . -657) T) ((-157 . -1108) T) ((-528 . -37) 12651) ((-479 . -37) 12616) ((-354 . -555) 12598) ((-292 . -555) 12580) ((-152 . -256) 12538) ((-62 . -1104) T) ((-107 . -97) T) ((-794 . -1001) T) ((-157 . -508) T) ((-645 . -648) 12508) ((-262 . -123) 12392) ((-199 . -555) 12374) ((-199 . -556) 12304) ((-917 . -577) 12238) ((-1162 . -959) T) ((-1018 . -134) T) ((-570 . -1081) 12213) ((-662 . -830) 12192) ((-538 . -33) T) ((-582 . -102) 12176) ((-570 . -102) 12122) ((-1118 . -256) 12049) ((-662 . -583) 11974) ((-264 . -1104) T) ((-1072 . -950) 11872) ((-1061 . -830) NIL) ((-969 . -556) 11787) ((-969 . -555) 11769) ((-312 . -97) T) ((-222 . -964) 11667) ((-221 . -964) 11565) ((-361 . -97) T) ((-866 . -555) 11547) ((-866 . -556) 11408) ((-644 . -555) 11390) ((-1160 . -1099) 11359) ((-447 . -555) 11341) ((-447 . -556) 11202) ((-220 . -380) 11186) ((-235 . -380) 11170) ((-222 . -106) 11061) ((-221 . -106) 10952) ((-1068 . -583) 10877) ((-1067 . -583) 10774) ((-1061 . -583) 10626) ((-1024 . -583) 10551) ((-320 . -123) T) ((-81 . -408) T) ((-81 . -364) T) ((-917 . -25) T) ((-917 . -21) T) ((-794 . -648) 10503) ((-346 . -260) T) ((-152 . -916) 10455) ((-625 . -355) T) ((-910 . -912) 10439) ((-632 . -1012) T) ((-625 . -150) 10421) ((-1135 . -1001) T) ((-1114 . -1001) T) ((-282 . -1090) 10400) ((-282 . -1093) 10379) ((-1059 . -97) T) ((-282 . -879) 10358) ((-125 . -1012) T) ((-111 . -1012) T) ((-546 . -1147) 10342) ((-632 . -23) T) ((-546 . -1001) 10292) ((-89 . -476) 10225) ((-157 . -331) T) ((-282 . -91) 10204) ((-282 . -34) 10183) ((-550 . -454) 10117) ((-125 . -23) T) ((-111 . -23) T) ((-649 . -1001) T) ((-442 . -454) 10054) ((-375 . -577) 10002) ((-590 . -950) 9900) ((-877 . -454) 9884) ((-323 . -965) T) ((-321 . -965) T) ((-313 . -965) T) ((-235 . -965) T) ((-220 . -965) T) ((-793 . -556) NIL) ((-793 . -555) 9866) ((-1170 . -21) T) ((-522 . -916) T) ((-662 . -657) T) ((-1170 . -25) T) ((-222 . -959) 9797) ((-221 . -959) 9728) ((-70 . -1104) T) ((-222 . -206) 9681) ((-221 . -206) 9634) ((-39 . -97) T) ((-826 . -965) T) ((-1068 . -657) T) ((-1067 . -657) T) ((-1061 . -657) T) ((-1061 . -721) NIL) ((-1061 . -724) NIL) ((-839 . -97) T) ((-1024 . -657) T) ((-701 . -97) T) ((-606 . -97) T) ((-441 . -1001) T) ((-307 . -1012) T) ((-157 . -1012) T) ((-287 . -841) 9613) ((-1135 . -648) 9454) ((-794 . -156) T) ((-1114 . -648) 9268) ((-769 . -21) 9220) ((-769 . -25) 9172) ((-218 . -1044) 9156) ((-121 . -476) 9089) ((-375 . -25) T) ((-375 . -21) T) ((-307 . -23) T) ((-152 . -556) 8857) ((-152 . -555) 8839) ((-157 . -23) T) ((-578 . -258) 8816) ((-481 . -33) T) ((-818 . -555) 8798) ((-87 . -1104) T) ((-768 . -555) 8780) ((-738 . -555) 8762) ((-699 . -555) 8744) ((-610 . -555) 8726) ((-212 . -583) 8576) ((-1070 . -1001) T) ((-1064 . -964) 8399) ((-1045 . -1104) T) ((-1023 . -964) 8242) ((-781 . -964) 8226) ((-1064 . -106) 8028) ((-1023 . -106) 7850) ((-781 . -106) 7829) ((-1118 . -556) NIL) ((-1118 . -555) 7811) ((-312 . -1046) T) ((-782 . -555) 7793) ((-979 . -256) 7772) ((-78 . -1104) T) ((-918 . -830) NIL) ((-550 . -256) 7748) ((-1091 . -476) 7681) ((-452 . -1104) T) ((-522 . -555) 7663) ((-442 . -256) 7642) ((-192 . -1104) T) ((-989 . -204) 7626) ((-259 . -841) T) ((-747 . -276) 7605) ((-791 . -97) T) ((-711 . -204) 7589) ((-918 . -583) 7539) ((-877 . -256) 7516) ((-834 . -583) 7468) ((-571 . -21) T) ((-571 . -25) T) ((-549 . -21) T) ((-312 . -37) 7433) ((-625 . -655) 7400) ((-452 . -804) 7382) ((-452 . -806) 7364) ((-441 . -648) 7205) ((-192 . -804) 7187) ((-59 . -1104) T) ((-192 . -806) 7169) ((-549 . -25) T) ((-397 . -583) 7143) ((-452 . -950) 7103) ((-794 . -476) 7015) ((-192 . -950) 6975) ((-212 . -33) T) ((-914 . -1001) 6953) ((-1135 . -156) 6884) ((-1114 . -156) 6815) ((-643 . -132) 6794) ((-643 . -134) 6773) ((-632 . -123) T) ((-126 . -432) 6750) ((-589 . -593) 6734) ((-1042 . -555) 6701) ((-111 . -123) T) ((-444 . -1108) T) ((-550 . -548) 6677) ((-442 . -548) 6656) ((-301 . -304) 6625) ((-490 . -1001) T) ((-444 . -508) T) ((-1064 . -959) T) ((-1023 . -959) T) ((-781 . -959) T) ((-212 . -721) 6604) ((-212 . -724) 6555) ((-212 . -723) 6534) ((-1064 . -294) 6511) ((-212 . -657) 6442) ((-877 . -19) 6426) ((-452 . -345) 6408) ((-452 . -306) 6390) ((-1023 . -294) 6362) ((-308 . -1156) 6339) ((-192 . -345) 6321) ((-192 . -306) 6303) ((-877 . -548) 6280) ((-1064 . -206) T) ((-599 . -1001) T) ((-1145 . -1001) T) ((-1077 . -1001) T) ((-989 . -224) 6219) ((-323 . -1001) T) ((-321 . -1001) T) ((-313 . -1001) T) ((-235 . -1001) T) ((-220 . -1001) T) ((-83 . -1104) T) ((-122 . -97) 6197) ((-116 . -97) 6175) ((-1077 . -552) 6154) ((-445 . -1001) T) ((-1036 . -1001) T) ((-445 . -552) 6133) ((-222 . -727) 6084) ((-222 . -722) 6035) ((-221 . -727) 5986) ((-39 . -1046) NIL) ((-221 . -722) 5937) ((-983 . -841) 5888) ((-918 . -724) T) ((-918 . -721) T) ((-918 . -657) T) ((-886 . -724) T) ((-834 . -657) T) ((-89 . -454) 5872) ((-452 . -820) NIL) ((-826 . -1001) T) ((-199 . -964) 5837) ((-794 . -260) T) ((-192 . -820) NIL) ((-762 . -1012) 5816) ((-56 . -1001) 5766) ((-480 . -1001) 5744) ((-478 . -1001) 5694) ((-460 . -1001) 5672) ((-459 . -1001) 5622) ((-527 . -97) T) ((-501 . -97) T) ((-458 . -97) T) ((-441 . -156) 5553) ((-327 . -841) T) ((-322 . -841) T) ((-314 . -841) T) ((-199 . -106) 5502) ((-762 . -23) 5454) ((-397 . -657) T) ((-103 . -841) T) ((-39 . -37) 5399) ((-103 . -750) T) ((-528 . -318) T) ((-479 . -318) T) ((-1114 . -476) 5259) ((-282 . -419) 5238) ((-281 . -419) T) ((-764 . -256) 5217) ((-307 . -123) T) ((-157 . -123) T) ((-262 . -25) 5082) ((-262 . -21) 4966) ((-44 . -1081) 4945) ((-64 . -555) 4927) ((-810 . -555) 4909) ((-546 . -476) 4842) ((-44 . -102) 4792) ((-997 . -394) 4776) ((-997 . -336) 4755) ((-970 . -1104) T) ((-969 . -964) 4742) ((-866 . -964) 4585) ((-447 . -964) 4428) ((-599 . -648) 4412) ((-969 . -106) 4397) ((-866 . -106) 4219) ((-444 . -331) T) ((-323 . -648) 4171) ((-321 . -648) 4123) ((-313 . -648) 4075) ((-235 . -648) 3924) ((-220 . -648) 3773) ((-863 . -586) 3757) ((-447 . -106) 3579) ((-1151 . -97) T) ((-863 . -340) 3563) ((-1109 . -830) NIL) ((-72 . -555) 3545) ((-875 . -46) 3524) ((-558 . -1012) T) ((-1 . -1001) T) ((-630 . -97) T) ((-1148 . -97) 3474) ((-1139 . -583) 3399) ((-1130 . -583) 3296) ((-121 . -454) 3280) ((-1086 . -555) 3262) ((-990 . -555) 3244) ((-358 . -23) T) ((-979 . -555) 3226) ((-86 . -1104) T) ((-1109 . -583) 3078) ((-826 . -648) 3043) ((-558 . -23) T) ((-550 . -555) 3025) ((-550 . -556) NIL) ((-442 . -556) NIL) ((-442 . -555) 3007) ((-474 . -1001) T) ((-469 . -1001) T) ((-320 . -25) T) ((-320 . -21) T) ((-122 . -278) 2945) ((-116 . -278) 2883) ((-541 . -583) 2870) ((-199 . -959) T) ((-540 . -583) 2795) ((-346 . -916) T) ((-199 . -216) T) ((-199 . -206) T) ((-877 . -556) 2756) ((-877 . -555) 2695) ((-791 . -37) 2682) ((-1135 . -260) 2633) ((-1114 . -260) 2584) ((-1018 . -419) T) ((-465 . -777) T) ((-282 . -1034) 2563) ((-910 . -134) 2542) ((-910 . -132) 2521) ((-458 . -278) 2508) ((-264 . -1081) 2487) ((-444 . -1012) T) ((-793 . -964) 2432) ((-562 . -97) T) ((-1091 . -454) 2416) ((-222 . -336) 2395) ((-221 . -336) 2374) ((-264 . -102) 2324) ((-969 . -959) T) ((-112 . -97) T) ((-866 . -959) T) ((-793 . -106) 2241) ((-444 . -23) T) ((-447 . -959) T) ((-969 . -206) T) ((-866 . -294) 2210) ((-447 . -294) 2167) ((-323 . -156) T) ((-321 . -156) T) ((-313 . -156) T) ((-235 . -156) 2078) ((-220 . -156) 1989) ((-875 . -950) 1887) ((-666 . -950) 1858) ((-1005 . -97) T) ((-993 . -555) 1825) ((-947 . -555) 1807) ((-1139 . -657) T) ((-1130 . -657) T) ((-1109 . -721) NIL) ((-152 . -964) 1717) ((-1109 . -724) NIL) ((-826 . -156) T) ((-1109 . -657) T) ((-1160 . -138) 1701) ((-917 . -310) 1675) ((-914 . -476) 1608) ((-769 . -777) 1587) ((-501 . -1046) T) ((-441 . -260) 1538) ((-541 . -657) T) ((-329 . -555) 1520) ((-290 . -555) 1502) ((-373 . -950) 1400) ((-540 . -657) T) ((-375 . -777) 1351) ((-152 . -106) 1240) ((-762 . -123) 1192) ((-667 . -138) 1176) ((-1148 . -278) 1114) ((-452 . -276) T) ((-346 . -555) 1081) ((-481 . -924) 1065) ((-346 . -556) 979) ((-192 . -276) T) ((-128 . -138) 961) ((-645 . -256) 940) ((-452 . -933) T) ((-527 . -37) 927) ((-501 . -37) 914) ((-458 . -37) 879) ((-192 . -933) T) ((-793 . -959) T) ((-764 . -555) 861) ((-758 . -555) 843) ((-755 . -555) 825) ((-746 . -830) 804) ((-1171 . -1012) T) ((-1118 . -964) 627) ((-782 . -964) 611) ((-793 . -216) T) ((-793 . -206) NIL) ((-621 . -1104) T) ((-1171 . -23) T) ((-746 . -583) 536) ((-502 . -1104) T) ((-373 . -306) 520) ((-522 . -964) 507) ((-1118 . -106) 309) ((-632 . -577) 291) ((-782 . -106) 270) ((-350 . -23) T) ((-1077 . -476) 30)) \ No newline at end of file
+((($ $) . T) (((-789 |#1|) $) . T) (((-789 |#1|) |#2|) . T))
+((($ $) . T) ((|#2| $) |has| |#1| (-207)) ((|#2| |#1|) |has| |#1| (-207)) ((|#3| |#1|) . T) ((|#3| $) . T))
+(((-599 . -1003) T) ((-237 . -478) 143724) ((-221 . -478) 143662) ((-524 . -106) 143647) ((-489 . -23) T) ((-219 . -1003) 143597) ((-112 . -280) 143541) ((-447 . -478) 143301) ((-627 . -97) T) ((-1039 . -478) 143209) ((-360 . -123) T) ((-1164 . -893) 143178) ((-548 . -456) 143162) ((-562 . -123) T) ((-751 . -775) T) ((-486 . -55) 143112) ((-57 . -478) 143045) ((-482 . -478) 142978) ((-388 . -822) 142937) ((-153 . -961) T) ((-480 . -478) 142870) ((-462 . -478) 142803) ((-461 . -478) 142736) ((-731 . -952) 142523) ((-632 . -37) 142488) ((-313 . -319) T) ((-998 . -997) 142472) ((-998 . -1003) 142450) ((-153 . -217) 142401) ((-153 . -207) 142352) ((-998 . -999) 142310) ((-796 . -258) 142268) ((-199 . -727) T) ((-199 . -724) T) ((-627 . -256) NIL) ((-1048 . -1085) 142247) ((-377 . -909) 142231) ((-634 . -21) T) ((-634 . -25) T) ((-1166 . -585) 142205) ((-286 . -145) 142184) ((-286 . -130) 142163) ((-1048 . -102) 142113) ((-125 . -25) T) ((-39 . -205) 142090) ((-111 . -21) T) ((-111 . -25) T) ((-552 . -260) 142066) ((-444 . -260) 142045) ((-1127 . -961) T) ((-784 . -961) T) ((-731 . -308) 142029) ((-112 . -1049) NIL) ((-89 . -557) 141961) ((-446 . -123) T) ((-540 . -1108) T) ((-1127 . -296) 141938) ((-524 . -961) T) ((-1127 . -207) T) ((-599 . -650) 141922) ((-879 . -260) 141899) ((-58 . -33) T) ((-972 . -727) T) ((-972 . -724) T) ((-748 . -659) T) ((-664 . -46) 141864) ((-564 . -37) 141851) ((-325 . -262) T) ((-322 . -262) T) ((-314 . -262) T) ((-237 . -262) 141782) ((-221 . -262) 141713) ((-939 . -97) T) ((-383 . -659) T) ((-112 . -37) 141658) ((-383 . -442) T) ((-324 . -97) T) ((-1103 . -968) T) ((-644 . -968) T) ((-1071 . -46) 141635) ((-1070 . -46) 141605) ((-1064 . -46) 141582) ((-950 . -138) 141528) ((-832 . -262) T) ((-1027 . -46) 141500) ((-627 . -280) NIL) ((-479 . -557) 141482) ((-474 . -557) 141464) ((-472 . -557) 141446) ((-297 . -1003) 141396) ((-645 . -421) 141327) ((-47 . -97) T) ((-1138 . -258) 141312) ((-1117 . -258) 141232) ((-583 . -603) 141216) ((-583 . -588) 141200) ((-309 . -21) T) ((-309 . -25) T) ((-39 . -319) NIL) ((-157 . -21) T) ((-157 . -25) T) ((-583 . -343) 141184) ((-548 . -258) 141161) ((-358 . -97) T) ((-1021 . -130) T) ((-121 . -557) 141093) ((-797 . -1003) T) ((-595 . -381) 141077) ((-647 . -557) 141059) ((-146 . -557) 141041) ((-142 . -557) 141023) ((-1166 . -659) T) ((-1005 . -33) T) ((-795 . -727) NIL) ((-795 . -724) NIL) ((-786 . -779) T) ((-664 . -808) NIL) ((-1175 . -123) T) ((-351 . -123) T) ((-826 . -97) T) ((-664 . -952) 140901) ((-489 . -123) T) ((-992 . -381) 140885) ((-916 . -456) 140869) ((-112 . -370) 140846) ((-1064 . -1108) 140825) ((-714 . -381) 140809) ((-712 . -381) 140793) ((-865 . -33) T) ((-627 . -1049) NIL) ((-224 . -585) 140630) ((-223 . -585) 140454) ((-749 . -842) 140433) ((-423 . -381) 140417) ((-548 . -19) 140401) ((-1044 . -1102) 140370) ((-1064 . -808) NIL) ((-1064 . -806) 140322) ((-548 . -550) 140299) ((-1095 . -557) 140231) ((-1072 . -557) 140213) ((-60 . -365) T) ((-1070 . -952) 140148) ((-1064 . -952) 140114) ((-627 . -37) 140064) ((-443 . -258) 140049) ((-664 . -347) 140033) ((-595 . -968) T) ((-1138 . -918) 139999) ((-1117 . -918) 139965) ((-973 . -1085) 139940) ((-796 . -558) 139743) ((-796 . -557) 139725) ((-1082 . -456) 139662) ((-388 . -937) 139641) ((-47 . -280) 139628) ((-973 . -102) 139574) ((-447 . -456) 139511) ((-483 . -1108) T) ((-1039 . -456) 139482) ((-1064 . -308) 139434) ((-1064 . -347) 139386) ((-407 . -97) T) ((-992 . -968) T) ((-224 . -33) T) ((-223 . -33) T) ((-714 . -968) T) ((-712 . -968) T) ((-664 . -822) 139363) ((-423 . -968) T) ((-57 . -456) 139347) ((-949 . -967) 139321) ((-482 . -456) 139305) ((-480 . -456) 139289) ((-462 . -456) 139273) ((-461 . -456) 139257) ((-219 . -478) 139190) ((-949 . -106) 139157) ((-1071 . -822) 139070) ((-607 . -1015) T) ((-1070 . -822) 138976) ((-1064 . -822) 138809) ((-1027 . -822) 138793) ((-324 . -1049) T) ((-292 . -967) 138775) ((-224 . -723) 138754) ((-224 . -726) 138705) ((-224 . -725) 138684) ((-223 . -723) 138663) ((-223 . -726) 138614) ((-223 . -725) 138593) ((-49 . -968) T) ((-224 . -659) 138524) ((-223 . -659) 138455) ((-1103 . -1003) T) ((-607 . -23) T) ((-530 . -968) T) ((-481 . -968) T) ((-349 . -967) 138420) ((-292 . -106) 138395) ((-71 . -353) T) ((-71 . -365) T) ((-939 . -37) 138332) ((-627 . -370) 138314) ((-94 . -97) T) ((-644 . -1003) T) ((-919 . -132) 138286) ((-349 . -106) 138235) ((-289 . -1112) 138214) ((-443 . -918) 138180) ((-324 . -37) 138145) ((-39 . -340) 138117) ((-919 . -134) 138089) ((-122 . -120) 138073) ((-116 . -120) 138057) ((-766 . -967) 138027) ((-765 . -21) 137979) ((-759 . -967) 137963) ((-765 . -25) 137915) ((-289 . -509) 137866) ((-517 . -760) T) ((-214 . -1108) T) ((-766 . -106) 137831) ((-759 . -106) 137810) ((-1138 . -557) 137792) ((-1117 . -557) 137774) ((-1117 . -558) 137447) ((-1069 . -831) 137426) ((-1026 . -831) 137405) ((-47 . -37) 137370) ((-1173 . -1015) T) ((-548 . -557) 137282) ((-548 . -558) 137243) ((-1171 . -1015) T) ((-214 . -952) 137072) ((-1069 . -585) 136997) ((-1026 . -585) 136922) ((-651 . -557) 136904) ((-783 . -585) 136878) ((-1173 . -23) T) ((-1171 . -23) T) ((-949 . -961) T) ((-1082 . -258) 136857) ((-153 . -338) 136808) ((-920 . -1108) T) ((-43 . -23) T) ((-447 . -258) 136787) ((-534 . -1003) T) ((-1044 . -1012) 136756) ((-1007 . -1006) 136708) ((-360 . -21) T) ((-360 . -25) T) ((-139 . -1015) T) ((-1179 . -97) T) ((-920 . -806) 136690) ((-920 . -808) 136672) ((-1103 . -650) 136569) ((-564 . -205) 136553) ((-562 . -21) T) ((-261 . -509) T) ((-562 . -25) T) ((-1089 . -1003) T) ((-644 . -650) 136518) ((-214 . -347) 136488) ((-920 . -952) 136448) ((-349 . -961) T) ((-197 . -968) T) ((-112 . -205) 136425) ((-57 . -258) 136402) ((-139 . -23) T) ((-480 . -258) 136379) ((-297 . -478) 136312) ((-461 . -258) 136289) ((-349 . -217) T) ((-349 . -207) T) ((-766 . -961) T) ((-759 . -961) T) ((-645 . -871) 136259) ((-634 . -779) T) ((-443 . -557) 136241) ((-759 . -207) 136220) ((-125 . -779) T) ((-595 . -1003) T) ((-1082 . -550) 136199) ((-503 . -1085) 136178) ((-306 . -1003) T) ((-289 . -333) 136157) ((-377 . -134) 136136) ((-377 . -132) 136115) ((-885 . -1015) 136014) ((-214 . -822) 135947) ((-747 . -1015) 135878) ((-591 . -781) 135862) ((-447 . -550) 135841) ((-503 . -102) 135791) ((-920 . -347) 135773) ((-920 . -308) 135755) ((-92 . -1003) T) ((-885 . -23) 135566) ((-446 . -21) T) ((-446 . -25) T) ((-747 . -23) 135437) ((-1073 . -557) 135419) ((-57 . -19) 135403) ((-1073 . -558) 135325) ((-1069 . -659) T) ((-1026 . -659) T) ((-480 . -19) 135309) ((-461 . -19) 135293) ((-57 . -550) 135270) ((-992 . -1003) T) ((-823 . -97) 135248) ((-783 . -659) T) ((-714 . -1003) T) ((-480 . -550) 135225) ((-461 . -550) 135202) ((-712 . -1003) T) ((-712 . -975) 135169) ((-430 . -1003) T) ((-423 . -1003) T) ((-534 . -650) 135144) ((-586 . -1003) T) ((-920 . -822) NIL) ((-1146 . -46) 135121) ((-567 . -1015) T) ((-607 . -123) T) ((-1140 . -97) T) ((-1139 . -46) 135091) ((-1118 . -46) 135068) ((-1103 . -156) 135019) ((-987 . -1112) 134970) ((-248 . -1003) T) ((-83 . -410) T) ((-83 . -365) T) ((-1070 . -278) 134949) ((-1064 . -278) 134928) ((-49 . -1003) T) ((-987 . -509) 134879) ((-644 . -156) T) ((-542 . -46) 134856) ((-199 . -585) 134821) ((-530 . -1003) T) ((-481 . -1003) T) ((-329 . -1112) T) ((-323 . -1112) T) ((-315 . -1112) T) ((-454 . -752) T) ((-454 . -842) T) ((-289 . -1015) T) ((-103 . -1112) T) ((-309 . -779) T) ((-192 . -842) T) ((-192 . -752) T) ((-647 . -967) 134791) ((-329 . -509) T) ((-323 . -509) T) ((-315 . -509) T) ((-103 . -509) T) ((-595 . -650) 134761) ((-1064 . -937) NIL) ((-289 . -23) T) ((-65 . -1108) T) ((-916 . -557) 134693) ((-627 . -205) 134675) ((-647 . -106) 134640) ((-583 . -33) T) ((-219 . -456) 134624) ((-1005 . -1001) 134608) ((-155 . -1003) T) ((-874 . -831) 134587) ((-449 . -831) 134566) ((-1175 . -21) T) ((-1175 . -25) T) ((-1173 . -123) T) ((-1171 . -123) T) ((-992 . -650) 134415) ((-972 . -585) 134402) ((-874 . -585) 134327) ((-493 . -557) 134309) ((-493 . -558) 134290) ((-714 . -650) 134119) ((-712 . -650) 133968) ((-1164 . -97) T) ((-984 . -97) T) ((-351 . -25) T) ((-351 . -21) T) ((-449 . -585) 133893) ((-430 . -650) 133864) ((-423 . -650) 133713) ((-904 . -97) T) ((-670 . -97) T) ((-489 . -25) T) ((-1118 . -1108) 133692) ((-1149 . -557) 133658) ((-1118 . -808) NIL) ((-1118 . -806) 133610) ((-128 . -97) T) ((-43 . -123) T) ((-1082 . -558) NIL) ((-1082 . -557) 133592) ((-1040 . -1024) 133537) ((-313 . -968) T) ((-601 . -557) 133519) ((-261 . -1015) T) ((-325 . -557) 133501) ((-322 . -557) 133483) ((-314 . -557) 133465) ((-237 . -558) 133213) ((-237 . -557) 133195) ((-221 . -557) 133177) ((-221 . -558) 133038) ((-958 . -1102) 132967) ((-823 . -280) 132905) ((-1179 . -1049) T) ((-1139 . -952) 132840) ((-1118 . -952) 132806) ((-1103 . -478) 132773) ((-1039 . -557) 132755) ((-751 . -659) T) ((-548 . -260) 132732) ((-530 . -650) 132697) ((-447 . -558) NIL) ((-447 . -557) 132679) ((-481 . -650) 132624) ((-286 . -97) T) ((-283 . -97) T) ((-261 . -23) T) ((-139 . -123) T) ((-356 . -659) T) ((-796 . -967) 132576) ((-832 . -557) 132558) ((-832 . -558) 132540) ((-796 . -106) 132471) ((-127 . -97) T) ((-109 . -97) T) ((-645 . -1130) 132455) ((-647 . -961) T) ((-627 . -319) NIL) ((-482 . -557) 132387) ((-349 . -727) T) ((-197 . -1003) T) ((-349 . -724) T) ((-199 . -726) T) ((-199 . -723) T) ((-57 . -558) 132348) ((-57 . -557) 132260) ((-199 . -659) T) ((-480 . -558) 132221) ((-480 . -557) 132133) ((-462 . -557) 132065) ((-461 . -558) 132026) ((-461 . -557) 131938) ((-987 . -333) 131889) ((-39 . -381) 131866) ((-75 . -1108) T) ((-795 . -831) NIL) ((-329 . -299) 131850) ((-329 . -333) T) ((-323 . -299) 131834) ((-323 . -333) T) ((-315 . -299) 131818) ((-315 . -333) T) ((-286 . -256) 131797) ((-103 . -333) T) ((-68 . -1108) T) ((-1118 . -308) 131749) ((-795 . -585) 131694) ((-1118 . -347) 131646) ((-885 . -123) 131501) ((-747 . -123) 131372) ((-879 . -588) 131356) ((-992 . -156) 131267) ((-879 . -343) 131251) ((-972 . -726) T) ((-972 . -723) T) ((-714 . -156) 131142) ((-712 . -156) 131053) ((-748 . -46) 131015) ((-972 . -659) T) ((-297 . -456) 130999) ((-874 . -659) T) ((-423 . -156) 130910) ((-219 . -258) 130887) ((-449 . -659) T) ((-1164 . -280) 130825) ((-1146 . -822) 130738) ((-1139 . -822) 130644) ((-1138 . -967) 130479) ((-1118 . -822) 130312) ((-1117 . -967) 130120) ((-1103 . -262) 130099) ((-1044 . -138) 130083) ((-982 . -97) T) ((-849 . -876) T) ((-73 . -1108) T) ((-670 . -280) 130021) ((-153 . -831) 129974) ((-601 . -352) 129946) ((-30 . -876) T) ((-1 . -557) 129928) ((-1021 . -97) T) ((-987 . -23) T) ((-49 . -561) 129912) ((-987 . -1015) T) ((-919 . -379) 129884) ((-542 . -822) 129797) ((-408 . -97) T) ((-128 . -280) NIL) ((-796 . -961) T) ((-765 . -779) 129776) ((-79 . -1108) T) ((-644 . -262) T) ((-39 . -968) T) ((-530 . -156) T) ((-481 . -156) T) ((-475 . -557) 129758) ((-153 . -585) 129668) ((-471 . -557) 129650) ((-321 . -134) 129632) ((-321 . -132) T) ((-329 . -1015) T) ((-323 . -1015) T) ((-315 . -1015) T) ((-920 . -278) T) ((-836 . -278) T) ((-796 . -217) T) ((-103 . -1015) T) ((-796 . -207) 129611) ((-1138 . -106) 129425) ((-1117 . -106) 129207) ((-219 . -1142) 129191) ((-517 . -777) T) ((-329 . -23) T) ((-324 . -319) T) ((-286 . -280) 129178) ((-283 . -280) 129074) ((-323 . -23) T) ((-289 . -123) T) ((-315 . -23) T) ((-920 . -937) T) ((-103 . -23) T) ((-219 . -550) 129051) ((-1140 . -37) 128908) ((-1127 . -831) 128887) ((-107 . -1003) T) ((-950 . -97) T) ((-1127 . -585) 128812) ((-795 . -726) NIL) ((-784 . -585) 128786) ((-795 . -723) NIL) ((-748 . -808) NIL) ((-795 . -659) T) ((-992 . -478) 128651) ((-714 . -478) 128599) ((-712 . -478) 128551) ((-524 . -585) 128538) ((-748 . -952) 128368) ((-423 . -478) 128306) ((-358 . -359) T) ((-58 . -1108) T) ((-562 . -779) 128285) ((-465 . -598) T) ((-1044 . -893) 128254) ((-919 . -421) T) ((-632 . -777) T) ((-474 . -724) T) ((-443 . -967) 128089) ((-313 . -1003) T) ((-283 . -1049) NIL) ((-261 . -123) T) ((-364 . -1003) T) ((-627 . -340) 128056) ((-794 . -968) T) ((-197 . -561) 128033) ((-297 . -258) 128010) ((-443 . -106) 127824) ((-1138 . -961) T) ((-1117 . -961) T) ((-748 . -347) 127808) ((-153 . -659) T) ((-591 . -97) T) ((-1138 . -217) 127787) ((-1138 . -207) 127739) ((-1117 . -207) 127644) ((-1117 . -217) 127623) ((-919 . -372) NIL) ((-607 . -579) 127571) ((-286 . -37) 127481) ((-283 . -37) 127410) ((-67 . -557) 127392) ((-289 . -458) 127358) ((-1082 . -260) 127337) ((-1016 . -1015) 127268) ((-81 . -1108) T) ((-59 . -557) 127250) ((-447 . -260) 127229) ((-1166 . -952) 127206) ((-1062 . -1003) T) ((-1016 . -23) 127077) ((-748 . -822) 127013) ((-1127 . -659) T) ((-1005 . -1108) T) ((-992 . -262) 126944) ((-815 . -97) T) ((-714 . -262) 126855) ((-297 . -19) 126839) ((-57 . -260) 126816) ((-712 . -262) 126747) ((-784 . -659) T) ((-112 . -777) NIL) ((-480 . -260) 126724) ((-297 . -550) 126701) ((-461 . -260) 126678) ((-423 . -262) 126609) ((-950 . -280) 126460) ((-524 . -659) T) ((-599 . -557) 126442) ((-219 . -558) 126403) ((-219 . -557) 126315) ((-1045 . -33) T) ((-865 . -1108) T) ((-313 . -650) 126260) ((-607 . -25) T) ((-607 . -21) T) ((-443 . -961) T) ((-575 . -387) 126225) ((-551 . -387) 126190) ((-1021 . -1049) T) ((-530 . -262) T) ((-481 . -262) T) ((-1139 . -278) 126169) ((-443 . -207) 126121) ((-443 . -217) 126100) ((-1118 . -278) 126079) ((-987 . -123) T) ((-796 . -727) 126058) ((-131 . -97) T) ((-39 . -1003) T) ((-796 . -724) 126037) ((-583 . -926) 126021) ((-529 . -968) T) ((-517 . -968) T) ((-460 . -968) T) ((-377 . -421) T) ((-329 . -123) T) ((-286 . -370) 126005) ((-283 . -370) 125966) ((-323 . -123) T) ((-315 . -123) T) ((-1118 . -937) NIL) ((-998 . -557) 125933) ((-103 . -123) T) ((-1021 . -37) 125920) ((-843 . -1003) T) ((-703 . -1003) T) ((-608 . -1003) T) ((-634 . -134) T) ((-111 . -134) T) ((-1173 . -21) T) ((-1173 . -25) T) ((-1171 . -21) T) ((-1171 . -25) T) ((-601 . -967) 125904) ((-489 . -779) T) ((-465 . -779) T) ((-325 . -967) 125856) ((-322 . -967) 125808) ((-314 . -967) 125760) ((-224 . -1108) T) ((-223 . -1108) T) ((-237 . -967) 125603) ((-221 . -967) 125446) ((-601 . -106) 125425) ((-325 . -106) 125356) ((-322 . -106) 125287) ((-314 . -106) 125218) ((-237 . -106) 125040) ((-221 . -106) 124862) ((-749 . -1112) 124841) ((-564 . -381) 124825) ((-43 . -21) T) ((-43 . -25) T) ((-747 . -579) 124733) ((-749 . -509) 124712) ((-224 . -952) 124541) ((-223 . -952) 124370) ((-121 . -114) 124354) ((-832 . -967) 124319) ((-632 . -968) T) ((-645 . -97) T) ((-313 . -156) T) ((-139 . -21) T) ((-139 . -25) T) ((-86 . -557) 124301) ((-832 . -106) 124250) ((-39 . -650) 124195) ((-794 . -1003) T) ((-297 . -558) 124156) ((-297 . -557) 124068) ((-1117 . -724) 124021) ((-1117 . -727) 123974) ((-224 . -347) 123944) ((-223 . -347) 123914) ((-591 . -37) 123884) ((-552 . -33) T) ((-450 . -1015) 123815) ((-444 . -33) T) ((-1016 . -123) 123686) ((-885 . -25) 123497) ((-797 . -557) 123479) ((-885 . -21) 123434) ((-747 . -21) 123345) ((-747 . -25) 123197) ((-564 . -968) T) ((-1075 . -509) 123176) ((-1069 . -46) 123153) ((-325 . -961) T) ((-322 . -961) T) ((-450 . -23) 123024) ((-314 . -961) T) ((-237 . -961) T) ((-221 . -961) T) ((-1026 . -46) 122996) ((-112 . -968) T) ((-949 . -585) 122970) ((-879 . -33) T) ((-325 . -207) 122949) ((-325 . -217) T) ((-322 . -207) 122928) ((-221 . -296) 122885) ((-322 . -217) T) ((-314 . -207) 122864) ((-314 . -217) T) ((-237 . -296) 122836) ((-237 . -207) 122815) ((-1054 . -138) 122799) ((-224 . -822) 122732) ((-223 . -822) 122665) ((-989 . -779) T) ((-1121 . -1108) T) ((-384 . -1015) T) ((-965 . -23) T) ((-832 . -961) T) ((-292 . -585) 122647) ((-939 . -777) T) ((-1103 . -918) 122613) ((-1070 . -842) 122592) ((-1064 . -842) 122571) ((-832 . -217) T) ((-749 . -333) 122550) ((-355 . -23) T) ((-122 . -1003) 122528) ((-116 . -1003) 122506) ((-832 . -207) T) ((-1064 . -752) NIL) ((-349 . -585) 122471) ((-794 . -650) 122458) ((-958 . -138) 122423) ((-39 . -156) T) ((-627 . -381) 122405) ((-645 . -280) 122392) ((-766 . -585) 122352) ((-759 . -585) 122326) ((-289 . -25) T) ((-289 . -21) T) ((-595 . -258) 122305) ((-529 . -1003) T) ((-517 . -1003) T) ((-460 . -1003) T) ((-219 . -260) 122282) ((-283 . -205) 122243) ((-1069 . -808) NIL) ((-1026 . -808) 122102) ((-1069 . -952) 121985) ((-1026 . -952) 121870) ((-783 . -952) 121768) ((-714 . -258) 121695) ((-749 . -1015) T) ((-949 . -659) T) ((-548 . -588) 121679) ((-958 . -893) 121608) ((-915 . -97) T) ((-749 . -23) T) ((-645 . -1049) 121586) ((-627 . -968) T) ((-548 . -343) 121570) ((-321 . -421) T) ((-313 . -262) T) ((-1154 . -1003) T) ((-369 . -97) T) ((-261 . -21) T) ((-261 . -25) T) ((-331 . -659) T) ((-632 . -1003) T) ((-331 . -442) T) ((-1103 . -557) 121552) ((-1069 . -347) 121536) ((-1026 . -347) 121520) ((-939 . -381) 121482) ((-128 . -203) 121464) ((-349 . -726) T) ((-349 . -723) T) ((-794 . -156) T) ((-349 . -659) T) ((-644 . -557) 121446) ((-645 . -37) 121275) ((-1153 . -1151) 121259) ((-321 . -372) T) ((-1153 . -1003) 121209) ((-529 . -650) 121196) ((-517 . -650) 121183) ((-460 . -650) 121148) ((-286 . -569) 121127) ((-766 . -659) T) ((-759 . -659) T) ((-583 . -1108) T) ((-987 . -579) 121075) ((-1069 . -822) 121019) ((-1026 . -822) 121003) ((-599 . -967) 120987) ((-103 . -579) 120969) ((-450 . -123) 120840) ((-1075 . -1015) T) ((-874 . -46) 120809) ((-564 . -1003) T) ((-599 . -106) 120788) ((-297 . -260) 120765) ((-449 . -46) 120722) ((-1075 . -23) T) ((-112 . -1003) T) ((-98 . -97) 120700) ((-1163 . -1015) T) ((-965 . -123) T) ((-939 . -968) T) ((-751 . -952) 120684) ((-919 . -657) 120656) ((-1163 . -23) T) ((-632 . -650) 120621) ((-534 . -557) 120603) ((-356 . -952) 120587) ((-324 . -968) T) ((-355 . -123) T) ((-294 . -952) 120571) ((-199 . -808) 120553) ((-920 . -842) T) ((-89 . -33) T) ((-920 . -752) T) ((-836 . -842) T) ((-454 . -1112) T) ((-1089 . -557) 120535) ((-1008 . -1003) T) ((-192 . -1112) T) ((-915 . -280) 120500) ((-199 . -952) 120460) ((-39 . -262) T) ((-987 . -21) T) ((-987 . -25) T) ((-1021 . -760) T) ((-454 . -509) T) ((-329 . -25) T) ((-192 . -509) T) ((-329 . -21) T) ((-323 . -25) T) ((-323 . -21) T) ((-647 . -585) 120420) ((-315 . -25) T) ((-315 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -968) T) ((-529 . -156) T) ((-517 . -156) T) ((-460 . -156) T) ((-595 . -557) 120402) ((-670 . -669) 120386) ((-306 . -557) 120368) ((-66 . -353) T) ((-66 . -365) T) ((-1005 . -102) 120352) ((-972 . -808) 120334) ((-874 . -808) 120259) ((-590 . -1015) T) ((-564 . -650) 120246) ((-449 . -808) NIL) ((-1044 . -97) T) ((-972 . -952) 120228) ((-92 . -557) 120210) ((-446 . -134) T) ((-874 . -952) 120092) ((-112 . -650) 120037) ((-590 . -23) T) ((-449 . -952) 119915) ((-992 . -558) NIL) ((-992 . -557) 119897) ((-714 . -558) NIL) ((-714 . -557) 119858) ((-712 . -558) 119493) ((-712 . -557) 119407) ((-1016 . -579) 119315) ((-430 . -557) 119297) ((-423 . -557) 119279) ((-423 . -558) 119140) ((-950 . -203) 119086) ((-121 . -33) T) ((-749 . -123) T) ((-796 . -831) 119065) ((-586 . -557) 119047) ((-325 . -1170) 119031) ((-322 . -1170) 119015) ((-314 . -1170) 118999) ((-122 . -478) 118932) ((-116 . -478) 118865) ((-475 . -724) T) ((-475 . -727) T) ((-474 . -726) T) ((-98 . -280) 118803) ((-196 . -97) 118781) ((-627 . -1003) T) ((-632 . -156) T) ((-796 . -585) 118733) ((-63 . -354) T) ((-248 . -557) 118715) ((-63 . -365) T) ((-874 . -347) 118699) ((-794 . -262) T) ((-49 . -557) 118681) ((-915 . -37) 118629) ((-530 . -557) 118611) ((-449 . -347) 118595) ((-530 . -558) 118577) ((-481 . -557) 118559) ((-832 . -1170) 118546) ((-795 . -1108) T) ((-634 . -421) T) ((-460 . -478) 118512) ((-454 . -333) T) ((-325 . -338) 118491) ((-322 . -338) 118470) ((-314 . -338) 118449) ((-192 . -333) T) ((-647 . -659) T) ((-111 . -421) T) ((-1174 . -1165) 118433) ((-795 . -806) 118410) ((-795 . -808) NIL) ((-885 . -779) 118309) ((-747 . -779) 118260) ((-591 . -593) 118244) ((-1095 . -33) T) ((-155 . -557) 118226) ((-1016 . -21) 118137) ((-1016 . -25) 117989) ((-795 . -952) 117966) ((-874 . -822) 117947) ((-1127 . -46) 117924) ((-832 . -338) T) ((-57 . -588) 117908) ((-480 . -588) 117892) ((-449 . -822) 117869) ((-69 . -410) T) ((-69 . -365) T) ((-461 . -588) 117853) ((-57 . -343) 117837) ((-564 . -156) T) ((-480 . -343) 117821) ((-461 . -343) 117805) ((-759 . -642) 117789) ((-1069 . -278) 117768) ((-1075 . -123) T) ((-112 . -156) T) ((-1044 . -280) 117706) ((-153 . -1108) T) ((-575 . -677) 117690) ((-551 . -677) 117674) ((-1163 . -123) T) ((-1139 . -842) 117653) ((-1118 . -842) 117632) ((-1118 . -752) NIL) ((-627 . -650) 117582) ((-1117 . -831) 117535) ((-939 . -1003) T) ((-795 . -347) 117512) ((-795 . -308) 117489) ((-827 . -1015) T) ((-153 . -806) 117473) ((-153 . -808) 117398) ((-454 . -1015) T) ((-324 . -1003) T) ((-192 . -1015) T) ((-74 . -410) T) ((-74 . -365) T) ((-153 . -952) 117296) ((-289 . -779) T) ((-1153 . -478) 117229) ((-1138 . -585) 117126) ((-1117 . -585) 116996) ((-796 . -726) 116975) ((-796 . -723) 116954) ((-796 . -659) T) ((-454 . -23) T) ((-197 . -557) 116936) ((-157 . -421) T) ((-196 . -280) 116874) ((-84 . -410) T) ((-84 . -365) T) ((-192 . -23) T) ((-1175 . -1168) 116853) ((-529 . -262) T) ((-517 . -262) T) ((-612 . -952) 116837) ((-460 . -262) T) ((-127 . -439) 116792) ((-47 . -1003) T) ((-645 . -205) 116776) ((-795 . -822) NIL) ((-1127 . -808) NIL) ((-811 . -97) T) ((-807 . -97) T) ((-358 . -1003) T) ((-153 . -347) 116760) ((-153 . -308) 116744) ((-1127 . -952) 116627) ((-784 . -952) 116525) ((-1040 . -97) T) ((-590 . -123) T) ((-112 . -478) 116388) ((-599 . -724) 116367) ((-599 . -727) 116346) ((-524 . -952) 116328) ((-265 . -1160) 116298) ((-790 . -97) T) ((-884 . -509) 116277) ((-1103 . -967) 116160) ((-450 . -579) 116068) ((-826 . -1003) T) ((-939 . -650) 116005) ((-644 . -967) 115970) ((-548 . -33) T) ((-1045 . -1108) T) ((-1103 . -106) 115832) ((-443 . -585) 115729) ((-324 . -650) 115674) ((-153 . -822) 115633) ((-632 . -262) T) ((-627 . -156) T) ((-644 . -106) 115582) ((-1179 . -968) T) ((-1127 . -347) 115566) ((-388 . -1112) 115544) ((-283 . -777) NIL) ((-388 . -509) T) ((-199 . -278) T) ((-1117 . -723) 115497) ((-1117 . -726) 115450) ((-1138 . -659) T) ((-1117 . -659) T) ((-47 . -650) 115415) ((-199 . -937) T) ((-321 . -1160) 115392) ((-1140 . -381) 115358) ((-651 . -659) T) ((-1127 . -822) 115302) ((-107 . -557) 115284) ((-107 . -558) 115266) ((-651 . -442) T) ((-450 . -21) 115177) ((-122 . -456) 115161) ((-116 . -456) 115145) ((-450 . -25) 114997) ((-564 . -262) T) ((-534 . -967) 114972) ((-407 . -1003) T) ((-972 . -278) T) ((-112 . -262) T) ((-1007 . -97) T) ((-919 . -97) T) ((-534 . -106) 114933) ((-1040 . -280) 114871) ((-1103 . -961) T) ((-972 . -937) T) ((-64 . -1108) T) ((-965 . -25) T) ((-965 . -21) T) ((-644 . -961) T) ((-355 . -21) T) ((-355 . -25) T) ((-627 . -478) NIL) ((-939 . -156) T) ((-644 . -217) T) ((-972 . -502) T) ((-467 . -97) T) ((-324 . -156) T) ((-313 . -557) 114853) ((-364 . -557) 114835) ((-443 . -659) T) ((-1021 . -777) T) ((-814 . -952) 114803) ((-103 . -779) T) ((-595 . -967) 114787) ((-454 . -123) T) ((-1140 . -968) T) ((-192 . -123) T) ((-1054 . -97) 114765) ((-94 . -1003) T) ((-219 . -603) 114749) ((-219 . -588) 114733) ((-595 . -106) 114712) ((-286 . -381) 114696) ((-219 . -343) 114680) ((-1057 . -209) 114627) ((-915 . -205) 114611) ((-72 . -1108) T) ((-47 . -156) T) ((-634 . -357) T) ((-634 . -130) T) ((-1174 . -97) T) ((-992 . -967) 114454) ((-237 . -831) 114433) ((-221 . -831) 114412) ((-714 . -967) 114235) ((-712 . -967) 114078) ((-552 . -1108) T) ((-1062 . -557) 114060) ((-992 . -106) 113882) ((-958 . -97) T) ((-444 . -1108) T) ((-430 . -967) 113853) ((-423 . -967) 113696) ((-601 . -585) 113680) ((-795 . -278) T) ((-714 . -106) 113482) ((-712 . -106) 113304) ((-325 . -585) 113256) ((-322 . -585) 113208) ((-314 . -585) 113160) ((-237 . -585) 113085) ((-221 . -585) 113010) ((-1056 . -779) T) ((-430 . -106) 112971) ((-423 . -106) 112793) ((-993 . -952) 112777) ((-983 . -952) 112754) ((-916 . -33) T) ((-879 . -1108) T) ((-121 . -926) 112738) ((-884 . -1015) T) ((-795 . -937) NIL) ((-668 . -1015) T) ((-648 . -1015) T) ((-1153 . -456) 112722) ((-1040 . -37) 112682) ((-884 . -23) T) ((-772 . -97) T) ((-749 . -21) T) ((-749 . -25) T) ((-668 . -23) T) ((-648 . -23) T) ((-105 . -598) T) ((-832 . -585) 112647) ((-530 . -967) 112612) ((-481 . -967) 112557) ((-201 . -55) 112515) ((-422 . -23) T) ((-377 . -97) T) ((-236 . -97) T) ((-627 . -262) T) ((-790 . -37) 112485) ((-530 . -106) 112434) ((-481 . -106) 112351) ((-388 . -1015) T) ((-286 . -968) 112242) ((-283 . -968) T) ((-595 . -961) T) ((-1179 . -1003) T) ((-153 . -278) 112173) ((-388 . -23) T) ((-39 . -557) 112155) ((-39 . -558) 112139) ((-103 . -909) 112121) ((-111 . -793) 112105) ((-47 . -478) 112071) ((-1095 . -926) 112055) ((-1078 . -557) 112037) ((-1082 . -33) T) ((-843 . -557) 112019) ((-1016 . -779) 111970) ((-703 . -557) 111952) ((-608 . -557) 111934) ((-1054 . -280) 111872) ((-447 . -33) T) ((-996 . -1108) T) ((-446 . -421) T) ((-992 . -961) T) ((-1039 . -33) T) ((-714 . -961) T) ((-712 . -961) T) ((-584 . -209) 111856) ((-572 . -209) 111802) ((-1127 . -278) 111781) ((-992 . -296) 111743) ((-423 . -961) T) ((-1075 . -21) T) ((-992 . -207) 111722) ((-714 . -296) 111699) ((-714 . -207) T) ((-712 . -296) 111671) ((-297 . -588) 111655) ((-664 . -1112) 111634) ((-1075 . -25) T) ((-57 . -33) T) ((-482 . -33) T) ((-480 . -33) T) ((-423 . -296) 111613) ((-297 . -343) 111597) ((-462 . -33) T) ((-461 . -33) T) ((-919 . -1049) NIL) ((-575 . -97) T) ((-551 . -97) T) ((-664 . -509) 111528) ((-325 . -659) T) ((-322 . -659) T) ((-314 . -659) T) ((-237 . -659) T) ((-221 . -659) T) ((-958 . -280) 111436) ((-823 . -1003) 111414) ((-49 . -961) T) ((-1163 . -21) T) ((-1163 . -25) T) ((-1071 . -509) 111393) ((-1070 . -1112) 111372) ((-530 . -961) T) ((-481 . -961) T) ((-1064 . -1112) 111351) ((-331 . -952) 111335) ((-292 . -952) 111319) ((-939 . -262) T) ((-349 . -808) 111301) ((-1070 . -509) 111252) ((-1064 . -509) 111203) ((-919 . -37) 111148) ((-731 . -1015) T) ((-832 . -659) T) ((-530 . -217) T) ((-530 . -207) T) ((-481 . -207) T) ((-481 . -217) T) ((-1027 . -509) 111127) ((-324 . -262) T) ((-584 . -628) 111111) ((-349 . -952) 111071) ((-1021 . -968) T) ((-98 . -120) 111055) ((-731 . -23) T) ((-1153 . -258) 111032) ((-377 . -280) 110997) ((-1173 . -1168) 110973) ((-1171 . -1168) 110952) ((-1140 . -1003) T) ((-794 . -557) 110934) ((-766 . -952) 110903) ((-179 . -719) T) ((-178 . -719) T) ((-177 . -719) T) ((-176 . -719) T) ((-175 . -719) T) ((-174 . -719) T) ((-173 . -719) T) ((-172 . -719) T) ((-171 . -719) T) ((-170 . -719) T) ((-460 . -918) T) ((-247 . -768) T) ((-246 . -768) T) ((-245 . -768) T) ((-244 . -768) T) ((-47 . -262) T) ((-243 . -768) T) ((-242 . -768) T) ((-241 . -768) T) ((-169 . -719) T) ((-556 . -779) T) ((-591 . -381) 110887) ((-105 . -779) T) ((-590 . -21) T) ((-590 . -25) T) ((-1174 . -37) 110857) ((-112 . -258) 110787) ((-1153 . -19) 110771) ((-1153 . -550) 110748) ((-1164 . -1003) T) ((-984 . -1003) T) ((-904 . -1003) T) ((-884 . -123) T) ((-670 . -1003) T) ((-668 . -123) T) ((-648 . -123) T) ((-475 . -725) T) ((-377 . -1049) 110726) ((-422 . -123) T) ((-475 . -726) T) ((-197 . -961) T) ((-265 . -97) 110509) ((-128 . -1003) T) ((-632 . -918) T) ((-89 . -1108) T) ((-122 . -557) 110441) ((-116 . -557) 110373) ((-1179 . -156) T) ((-1070 . -333) 110352) ((-1064 . -333) 110331) ((-286 . -1003) T) ((-388 . -123) T) ((-283 . -1003) T) ((-377 . -37) 110283) ((-1034 . -97) T) ((-1140 . -650) 110140) ((-591 . -968) T) ((-289 . -132) 110119) ((-289 . -134) 110098) ((-127 . -1003) T) ((-109 . -1003) T) ((-786 . -97) T) ((-529 . -557) 110080) ((-517 . -558) 109979) ((-517 . -557) 109961) ((-460 . -557) 109943) ((-460 . -558) 109888) ((-452 . -23) T) ((-450 . -779) 109839) ((-454 . -579) 109821) ((-192 . -579) 109803) ((-199 . -374) T) ((-599 . -585) 109787) ((-1069 . -842) 109766) ((-664 . -1015) T) ((-321 . -97) T) ((-750 . -779) T) ((-664 . -23) T) ((-313 . -967) 109711) ((-1056 . -1055) T) ((-1045 . -102) 109695) ((-1071 . -1015) T) ((-1070 . -1015) T) ((-479 . -952) 109679) ((-1064 . -1015) T) ((-1027 . -1015) T) ((-313 . -106) 109596) ((-920 . -1112) T) ((-121 . -1108) T) ((-836 . -1112) T) ((-627 . -258) NIL) ((-1154 . -557) 109578) ((-1071 . -23) T) ((-1070 . -23) T) ((-920 . -509) T) ((-1064 . -23) T) ((-836 . -509) T) ((-1040 . -205) 109562) ((-222 . -557) 109544) ((-1027 . -23) T) ((-982 . -1003) T) ((-731 . -123) T) ((-286 . -650) 109454) ((-283 . -650) 109383) ((-632 . -557) 109365) ((-632 . -558) 109310) ((-377 . -370) 109294) ((-408 . -1003) T) ((-454 . -25) T) ((-454 . -21) T) ((-1021 . -1003) T) ((-192 . -25) T) ((-192 . -21) T) ((-645 . -381) 109278) ((-647 . -952) 109247) ((-1153 . -557) 109159) ((-1153 . -558) 109120) ((-1140 . -156) T) ((-219 . -33) T) ((-848 . -891) T) ((-1095 . -1108) T) ((-599 . -723) 109099) ((-599 . -726) 109078) ((-368 . -365) T) ((-486 . -97) 109056) ((-950 . -1003) T) ((-196 . -911) 109040) ((-469 . -97) T) ((-564 . -557) 109022) ((-44 . -779) NIL) ((-564 . -558) 108999) ((-950 . -554) 108974) ((-823 . -478) 108907) ((-313 . -961) T) ((-112 . -558) NIL) ((-112 . -557) 108889) ((-796 . -1108) T) ((-607 . -387) 108873) ((-607 . -1024) 108818) ((-465 . -138) 108800) ((-313 . -207) T) ((-313 . -217) T) ((-39 . -967) 108745) ((-796 . -806) 108729) ((-796 . -808) 108654) ((-645 . -968) T) ((-627 . -918) NIL) ((-1138 . -46) 108624) ((-1117 . -46) 108601) ((-1039 . -926) 108572) ((-199 . -842) T) ((-39 . -106) 108489) ((-796 . -952) 108356) ((-1021 . -650) 108343) ((-1008 . -557) 108325) ((-987 . -134) 108304) ((-987 . -132) 108255) ((-920 . -333) T) ((-289 . -1097) 108221) ((-349 . -278) T) ((-289 . -1094) 108187) ((-286 . -156) 108166) ((-283 . -156) T) ((-919 . -205) 108143) ((-836 . -333) T) ((-530 . -1170) 108130) ((-481 . -1170) 108107) ((-329 . -134) 108086) ((-329 . -132) 108037) ((-323 . -134) 108016) ((-323 . -132) 107967) ((-552 . -1085) 107943) ((-315 . -134) 107922) ((-315 . -132) 107873) ((-289 . -34) 107839) ((-444 . -1085) 107818) ((0 . |EnumerationCategory|) T) ((-289 . -91) 107784) ((-349 . -937) T) ((-103 . -134) T) ((-103 . -132) NIL) ((-44 . -209) 107734) ((-591 . -1003) T) ((-552 . -102) 107681) ((-452 . -123) T) ((-444 . -102) 107631) ((-214 . -1015) 107562) ((-796 . -347) 107546) ((-796 . -308) 107530) ((-214 . -23) 107401) ((-972 . -842) T) ((-972 . -752) T) ((-530 . -338) T) ((-481 . -338) T) ((-321 . -1049) T) ((-297 . -33) T) ((-43 . -387) 107385) ((-360 . -677) 107369) ((-1164 . -478) 107302) ((-664 . -123) T) ((-1146 . -509) 107281) ((-1139 . -1112) 107260) ((-1139 . -509) 107211) ((-670 . -478) 107144) ((-1118 . -1112) 107123) ((-1118 . -509) 107074) ((-815 . -1003) T) ((-131 . -773) T) ((-1117 . -1108) 107053) ((-1117 . -808) 106926) ((-1117 . -806) 106896) ((-486 . -280) 106834) ((-1071 . -123) T) ((-128 . -478) NIL) ((-1070 . -123) T) ((-1064 . -123) T) ((-1027 . -123) T) ((-939 . -918) T) ((-321 . -37) 106799) ((-920 . -1015) T) ((-836 . -1015) T) ((-80 . -557) 106781) ((-39 . -961) T) ((-794 . -967) 106768) ((-920 . -23) T) ((-796 . -822) 106727) ((-634 . -97) T) ((-919 . -319) NIL) ((-548 . -1108) T) ((-888 . -23) T) ((-836 . -23) T) ((-794 . -106) 106712) ((-397 . -1015) T) ((-443 . -46) 106682) ((-125 . -97) T) ((-39 . -207) 106654) ((-39 . -217) T) ((-111 . -97) T) ((-543 . -509) 106633) ((-542 . -509) 106612) ((-627 . -557) 106594) ((-627 . -558) 106502) ((-286 . -478) 106468) ((-283 . -478) 106219) ((-1138 . -952) 106203) ((-1117 . -952) 105992) ((-915 . -381) 105976) ((-397 . -23) T) ((-1021 . -156) T) ((-1140 . -262) T) ((-591 . -650) 105946) ((-131 . -1003) T) ((-47 . -918) T) ((-377 . -205) 105930) ((-266 . -209) 105880) ((-795 . -842) T) ((-795 . -752) NIL) ((-789 . -779) T) ((-1117 . -308) 105850) ((-1117 . -347) 105820) ((-196 . -1022) 105804) ((-1153 . -260) 105781) ((-1103 . -585) 105706) ((-884 . -21) T) ((-884 . -25) T) ((-668 . -21) T) ((-668 . -25) T) ((-648 . -21) T) ((-648 . -25) T) ((-644 . -585) 105671) ((-422 . -21) T) ((-422 . -25) T) ((-309 . -97) T) ((-157 . -97) T) ((-915 . -968) T) ((-794 . -961) T) ((-706 . -97) T) ((-1139 . -333) 105650) ((-1138 . -822) 105556) ((-1118 . -333) 105535) ((-1117 . -822) 105386) ((-939 . -557) 105368) ((-377 . -760) 105321) ((-1071 . -458) 105287) ((-153 . -842) 105218) ((-1070 . -458) 105184) ((-1064 . -458) 105150) ((-645 . -1003) T) ((-1027 . -458) 105116) ((-529 . -967) 105103) ((-517 . -967) 105090) ((-460 . -967) 105055) ((-286 . -262) 105034) ((-283 . -262) T) ((-324 . -557) 105016) ((-388 . -25) T) ((-388 . -21) T) ((-94 . -258) 104995) ((-529 . -106) 104980) ((-517 . -106) 104965) ((-460 . -106) 104914) ((-1073 . -808) 104881) ((-823 . -456) 104865) ((-47 . -557) 104847) ((-47 . -558) 104792) ((-214 . -123) 104663) ((-1127 . -842) 104642) ((-748 . -1112) 104621) ((-950 . -478) 104429) ((-358 . -557) 104411) ((-748 . -509) 104342) ((-534 . -585) 104317) ((-237 . -46) 104289) ((-221 . -46) 104246) ((-489 . -473) 104223) ((-916 . -1108) T) ((-632 . -967) 104188) ((-1146 . -1015) T) ((-1139 . -1015) T) ((-1118 . -1015) T) ((-919 . -340) 104160) ((-107 . -338) T) ((-443 . -822) 104066) ((-1146 . -23) T) ((-1139 . -23) T) ((-826 . -557) 104048) ((-89 . -102) 104032) ((-1103 . -659) T) ((-827 . -779) 103983) ((-634 . -1049) T) ((-632 . -106) 103932) ((-1118 . -23) T) ((-543 . -1015) T) ((-542 . -1015) T) ((-645 . -650) 103761) ((-644 . -659) T) ((-1021 . -262) T) ((-920 . -123) T) ((-454 . -779) T) ((-888 . -123) T) ((-836 . -123) T) ((-529 . -961) T) ((-192 . -779) T) ((-517 . -961) T) ((-731 . -25) T) ((-731 . -21) T) ((-460 . -961) T) ((-543 . -23) T) ((-313 . -1170) 103738) ((-289 . -421) 103717) ((-309 . -280) 103704) ((-542 . -23) T) ((-397 . -123) T) ((-595 . -585) 103678) ((-219 . -926) 103662) ((-796 . -278) T) ((-1175 . -1165) 103646) ((-634 . -37) 103633) ((-517 . -207) T) ((-460 . -217) T) ((-460 . -207) T) ((-703 . -724) T) ((-703 . -727) T) ((-1048 . -209) 103583) ((-992 . -831) 103562) ((-111 . -37) 103549) ((-185 . -732) T) ((-184 . -732) T) ((-183 . -732) T) ((-182 . -732) T) ((-796 . -937) 103528) ((-1164 . -456) 103512) ((-714 . -831) 103491) ((-712 . -831) 103470) ((-1082 . -1108) T) ((-423 . -831) 103449) ((-670 . -456) 103433) ((-992 . -585) 103358) ((-714 . -585) 103283) ((-564 . -967) 103270) ((-447 . -1108) T) ((-313 . -338) T) ((-128 . -456) 103252) ((-712 . -585) 103177) ((-1039 . -1108) T) ((-430 . -585) 103148) ((-237 . -808) 103007) ((-221 . -808) NIL) ((-112 . -967) 102952) ((-423 . -585) 102877) ((-601 . -952) 102854) ((-564 . -106) 102839) ((-325 . -952) 102823) ((-322 . -952) 102807) ((-314 . -952) 102791) ((-237 . -952) 102637) ((-221 . -952) 102515) ((-112 . -106) 102432) ((-57 . -1108) T) ((-482 . -1108) T) ((-480 . -1108) T) ((-462 . -1108) T) ((-461 . -1108) T) ((-407 . -557) 102414) ((-404 . -557) 102396) ((-3 . -97) T) ((-942 . -1102) 102365) ((-765 . -97) T) ((-623 . -55) 102323) ((-632 . -961) T) ((-49 . -585) 102297) ((-261 . -421) T) ((-445 . -1102) 102266) ((0 . -97) T) ((-530 . -585) 102231) ((-481 . -585) 102176) ((-48 . -97) T) ((-832 . -952) 102163) ((-632 . -217) T) ((-987 . -379) 102142) ((-664 . -579) 102090) ((-915 . -1003) T) ((-645 . -156) 101981) ((-454 . -909) 101963) ((-237 . -347) 101947) ((-221 . -347) 101931) ((-369 . -1003) T) ((-309 . -37) 101915) ((-941 . -97) 101893) ((-192 . -909) 101875) ((-157 . -37) 101807) ((-1138 . -278) 101786) ((-1117 . -278) 101765) ((-595 . -659) T) ((-94 . -557) 101747) ((-1064 . -579) 101699) ((-452 . -25) T) ((-452 . -21) T) ((-1117 . -937) 101652) ((-564 . -961) T) ((-349 . -374) T) ((-360 . -97) T) ((-237 . -822) 101598) ((-221 . -822) 101575) ((-112 . -961) T) ((-748 . -1015) T) ((-992 . -659) T) ((-564 . -207) 101554) ((-562 . -97) T) ((-714 . -659) T) ((-712 . -659) T) ((-383 . -1015) T) ((-112 . -217) T) ((-39 . -338) NIL) ((-112 . -207) NIL) ((-423 . -659) T) ((-748 . -23) T) ((-664 . -25) T) ((-664 . -21) T) ((-636 . -779) T) ((-984 . -258) 101533) ((-76 . -366) T) ((-76 . -365) T) ((-627 . -967) 101483) ((-1146 . -123) T) ((-1139 . -123) T) ((-1118 . -123) T) ((-1040 . -381) 101467) ((-575 . -337) 101399) ((-551 . -337) 101331) ((-1054 . -1047) 101315) ((-98 . -1003) 101293) ((-1071 . -25) T) ((-1071 . -21) T) ((-1070 . -21) T) ((-915 . -650) 101241) ((-197 . -585) 101208) ((-627 . -106) 101135) ((-49 . -659) T) ((-1070 . -25) T) ((-321 . -319) T) ((-1064 . -21) T) ((-987 . -421) 101086) ((-1064 . -25) T) ((-645 . -478) 101034) ((-530 . -659) T) ((-481 . -659) T) ((-1027 . -21) T) ((-1027 . -25) T) ((-543 . -123) T) ((-542 . -123) T) ((-329 . -421) T) ((-323 . -421) T) ((-315 . -421) T) ((-443 . -278) 101013) ((-283 . -258) 100879) ((-103 . -421) T) ((-77 . -410) T) ((-77 . -365) T) ((-446 . -97) T) ((-1179 . -557) 100861) ((-1179 . -558) 100843) ((-987 . -372) 100822) ((-950 . -456) 100754) ((-517 . -727) T) ((-517 . -724) T) ((-973 . -209) 100700) ((-329 . -372) 100651) ((-323 . -372) 100602) ((-315 . -372) 100553) ((-1166 . -1015) T) ((-1166 . -23) T) ((-1155 . -97) T) ((-1040 . -968) T) ((-607 . -677) 100537) ((-1075 . -132) 100516) ((-1075 . -134) 100495) ((-1044 . -1003) T) ((-1044 . -980) 100464) ((-67 . -1108) T) ((-939 . -967) 100401) ((-790 . -968) T) ((-214 . -579) 100309) ((-627 . -961) T) ((-324 . -967) 100254) ((-59 . -1108) T) ((-939 . -106) 100163) ((-823 . -557) 100095) ((-627 . -217) T) ((-627 . -207) NIL) ((-772 . -777) 100074) ((-632 . -727) T) ((-632 . -724) T) ((-919 . -381) 100051) ((-324 . -106) 99968) ((-349 . -842) T) ((-377 . -777) 99947) ((-645 . -262) 99858) ((-197 . -659) T) ((-1146 . -458) 99824) ((-1139 . -458) 99790) ((-1118 . -458) 99756) ((-286 . -918) 99735) ((-196 . -1003) 99713) ((-289 . -890) 99676) ((-100 . -97) T) ((-47 . -967) 99641) ((-1175 . -97) T) ((-351 . -97) T) ((-47 . -106) 99590) ((-920 . -579) 99572) ((-1140 . -557) 99554) ((-489 . -97) T) ((-465 . -97) T) ((-1034 . -1035) 99538) ((-139 . -1160) 99522) ((-219 . -1108) T) ((-1069 . -1112) 99501) ((-1026 . -1112) 99480) ((-214 . -21) 99391) ((-214 . -25) 99243) ((-122 . -114) 99227) ((-116 . -114) 99211) ((-43 . -677) 99195) ((-1069 . -509) 99106) ((-1026 . -509) 99037) ((-950 . -258) 99012) ((-748 . -123) T) ((-112 . -727) NIL) ((-112 . -724) NIL) ((-325 . -278) T) ((-322 . -278) T) ((-314 . -278) T) ((-998 . -1108) T) ((-224 . -1015) 98943) ((-223 . -1015) 98874) ((-939 . -961) T) ((-919 . -968) T) ((-313 . -585) 98819) ((-562 . -37) 98803) ((-1164 . -557) 98765) ((-1164 . -558) 98726) ((-984 . -557) 98708) ((-939 . -217) T) ((-324 . -961) T) ((-747 . -1160) 98678) ((-224 . -23) T) ((-223 . -23) T) ((-904 . -557) 98660) ((-670 . -558) 98621) ((-670 . -557) 98603) ((-731 . -779) 98582) ((-915 . -478) 98494) ((-324 . -207) T) ((-324 . -217) T) ((-1057 . -138) 98441) ((-920 . -25) T) ((-128 . -557) 98423) ((-128 . -558) 98382) ((-832 . -278) T) ((-920 . -21) T) ((-888 . -25) T) ((-836 . -21) T) ((-836 . -25) T) ((-397 . -21) T) ((-397 . -25) T) ((-772 . -381) 98366) ((-47 . -961) T) ((-1173 . -1165) 98350) ((-1171 . -1165) 98334) ((-950 . -550) 98309) ((-286 . -558) 98170) ((-286 . -557) 98152) ((-283 . -558) NIL) ((-283 . -557) 98134) ((-47 . -217) T) ((-47 . -207) T) ((-591 . -258) 98095) ((-503 . -209) 98045) ((-127 . -557) 98027) ((-109 . -557) 98009) ((-446 . -37) 97974) ((-1175 . -1172) 97953) ((-1166 . -123) T) ((-1174 . -968) T) ((-989 . -97) T) ((-86 . -1108) T) ((-465 . -280) NIL) ((-916 . -102) 97937) ((-811 . -1003) T) ((-807 . -1003) T) ((-1153 . -588) 97921) ((-1153 . -343) 97905) ((-297 . -1108) T) ((-540 . -779) T) ((-1040 . -1003) T) ((-1040 . -964) 97845) ((-98 . -478) 97778) ((-849 . -557) 97760) ((-313 . -659) T) ((-30 . -557) 97742) ((-790 . -1003) T) ((-772 . -968) 97721) ((-39 . -585) 97666) ((-199 . -1112) T) ((-377 . -968) T) ((-1056 . -138) 97648) ((-915 . -262) 97599) ((-199 . -509) T) ((-289 . -1135) 97583) ((-289 . -1132) 97553) ((-1082 . -1085) 97532) ((-982 . -557) 97514) ((-584 . -138) 97498) ((-572 . -138) 97444) ((-1082 . -102) 97394) ((-447 . -1085) 97373) ((-454 . -134) T) ((-454 . -132) NIL) ((-1021 . -558) 97288) ((-408 . -557) 97270) ((-192 . -134) T) ((-192 . -132) NIL) ((-1021 . -557) 97252) ((-51 . -97) T) ((-1118 . -579) 97204) ((-447 . -102) 97154) ((-910 . -23) T) ((-1175 . -37) 97124) ((-1069 . -1015) T) ((-1026 . -1015) T) ((-972 . -1112) T) ((-783 . -1015) T) ((-874 . -1112) 97103) ((-449 . -1112) 97082) ((-664 . -779) 97061) ((-972 . -509) T) ((-874 . -509) 96992) ((-1069 . -23) T) ((-1026 . -23) T) ((-783 . -23) T) ((-449 . -509) 96923) ((-1040 . -650) 96855) ((-1044 . -478) 96788) ((-950 . -558) NIL) ((-950 . -557) 96770) ((-790 . -650) 96740) ((-1103 . -46) 96709) ((-224 . -123) T) ((-223 . -123) T) ((-1007 . -1003) T) ((-919 . -1003) T) ((-60 . -557) 96691) ((-1064 . -779) NIL) ((-939 . -724) T) ((-939 . -727) T) ((-1179 . -967) 96678) ((-1179 . -106) 96663) ((-794 . -585) 96650) ((-1146 . -25) T) ((-1146 . -21) T) ((-1139 . -21) T) ((-1139 . -25) T) ((-1118 . -21) T) ((-1118 . -25) T) ((-942 . -138) 96634) ((-796 . -752) 96613) ((-796 . -842) T) ((-645 . -258) 96540) ((-543 . -21) T) ((-543 . -25) T) ((-542 . -21) T) ((-39 . -659) T) ((-196 . -478) 96473) ((-542 . -25) T) ((-445 . -138) 96457) ((-432 . -138) 96441) ((-843 . -659) T) ((-703 . -725) T) ((-703 . -726) T) ((-467 . -1003) T) ((-703 . -659) T) ((-199 . -333) T) ((-1054 . -1003) 96419) ((-795 . -1112) T) ((-591 . -557) 96401) ((-795 . -509) T) ((-627 . -338) NIL) ((-329 . -1160) 96385) ((-607 . -97) T) ((-323 . -1160) 96369) ((-315 . -1160) 96353) ((-1174 . -1003) T) ((-483 . -779) 96332) ((-749 . -421) 96311) ((-958 . -1003) T) ((-958 . -980) 96240) ((-942 . -893) 96209) ((-751 . -1015) T) ((-919 . -650) 96154) ((-356 . -1015) T) ((-445 . -893) 96123) ((-432 . -893) 96092) ((-105 . -138) 96074) ((-71 . -557) 96056) ((-815 . -557) 96038) ((-987 . -657) 96017) ((-1179 . -961) T) ((-748 . -579) 95965) ((-265 . -968) 95908) ((-153 . -1112) 95813) ((-199 . -1015) T) ((-294 . -23) T) ((-1064 . -909) 95765) ((-772 . -1003) T) ((-1027 . -673) 95744) ((-1140 . -967) 95633) ((-1138 . -842) 95612) ((-794 . -659) T) ((-153 . -509) 95523) ((-1117 . -842) 95502) ((-529 . -585) 95489) ((-377 . -1003) T) ((-517 . -585) 95476) ((-236 . -1003) T) ((-460 . -585) 95441) ((-199 . -23) T) ((-1117 . -752) 95394) ((-1173 . -97) T) ((-324 . -1170) 95371) ((-1171 . -97) T) ((-1140 . -106) 95221) ((-131 . -557) 95203) ((-910 . -123) T) ((-43 . -97) T) ((-214 . -779) 95154) ((-1127 . -1112) 95133) ((-98 . -456) 95117) ((-1174 . -650) 95087) ((-992 . -46) 95049) ((-972 . -1015) T) ((-874 . -1015) T) ((-122 . -33) T) ((-116 . -33) T) ((-714 . -46) 95026) ((-712 . -46) 94998) ((-1127 . -509) 94909) ((-324 . -338) T) ((-449 . -1015) T) ((-1069 . -123) T) ((-1026 . -123) T) ((-423 . -46) 94888) ((-795 . -333) T) ((-783 . -123) T) ((-139 . -97) T) ((-972 . -23) T) ((-874 . -23) T) ((-524 . -509) T) ((-748 . -25) T) ((-748 . -21) T) ((-1040 . -478) 94821) ((-534 . -952) 94805) ((-449 . -23) T) ((-321 . -968) T) ((-1103 . -822) 94786) ((-607 . -280) 94724) ((-1016 . -1160) 94694) ((-632 . -585) 94659) ((-919 . -156) T) ((-884 . -132) 94638) ((-575 . -1003) T) ((-551 . -1003) T) ((-884 . -134) 94617) ((-920 . -779) T) ((-668 . -134) 94596) ((-668 . -132) 94575) ((-888 . -779) T) ((-443 . -842) 94554) ((-286 . -967) 94464) ((-283 . -967) 94393) ((-915 . -258) 94351) ((-377 . -650) 94303) ((-634 . -777) T) ((-1140 . -961) T) ((-286 . -106) 94192) ((-283 . -106) 94077) ((-885 . -97) T) ((-747 . -97) 93888) ((-645 . -558) NIL) ((-645 . -557) 93870) ((-595 . -952) 93768) ((-1140 . -296) 93712) ((-950 . -260) 93687) ((-529 . -659) T) ((-517 . -726) T) ((-153 . -333) 93638) ((-517 . -723) T) ((-517 . -659) T) ((-460 . -659) T) ((-1044 . -456) 93622) ((-992 . -808) NIL) ((-795 . -1015) T) ((-112 . -831) NIL) ((-1173 . -1172) 93598) ((-1171 . -1172) 93577) ((-714 . -808) NIL) ((-712 . -808) 93436) ((-1166 . -25) T) ((-1166 . -21) T) ((-1106 . -97) 93414) ((-1009 . -365) T) ((-564 . -585) 93401) ((-423 . -808) NIL) ((-611 . -97) 93379) ((-992 . -952) 93209) ((-795 . -23) T) ((-714 . -952) 93071) ((-712 . -952) 92930) ((-112 . -585) 92875) ((-423 . -952) 92753) ((-586 . -952) 92737) ((-567 . -97) T) ((-196 . -456) 92721) ((-1153 . -33) T) ((-575 . -650) 92705) ((-551 . -650) 92689) ((-607 . -37) 92649) ((-289 . -97) T) ((-83 . -557) 92631) ((-49 . -952) 92615) ((-1021 . -967) 92602) ((-992 . -347) 92586) ((-58 . -55) 92548) ((-632 . -726) T) ((-632 . -723) T) ((-530 . -952) 92535) ((-481 . -952) 92512) ((-632 . -659) T) ((-286 . -961) 92403) ((-294 . -123) T) ((-283 . -961) T) ((-153 . -1015) T) ((-714 . -347) 92387) ((-712 . -347) 92371) ((-44 . -138) 92321) ((-920 . -909) 92303) ((-423 . -347) 92287) ((-377 . -156) T) ((-286 . -217) 92266) ((-283 . -217) T) ((-283 . -207) NIL) ((-265 . -1003) 92049) ((-199 . -123) T) ((-1021 . -106) 92034) ((-153 . -23) T) ((-731 . -134) 92013) ((-731 . -132) 91992) ((-224 . -579) 91900) ((-223 . -579) 91808) ((-289 . -256) 91774) ((-1054 . -478) 91707) ((-1034 . -1003) T) ((-199 . -970) T) ((-747 . -280) 91645) ((-992 . -822) 91581) ((-714 . -822) 91525) ((-712 . -822) 91509) ((-1173 . -37) 91479) ((-1171 . -37) 91449) ((-1127 . -1015) T) ((-784 . -1015) T) ((-423 . -822) 91426) ((-786 . -1003) T) ((-1127 . -23) T) ((-524 . -1015) T) ((-784 . -23) T) ((-564 . -659) T) ((-325 . -842) T) ((-322 . -842) T) ((-261 . -97) T) ((-314 . -842) T) ((-972 . -123) T) ((-874 . -123) T) ((-112 . -726) NIL) ((-112 . -723) NIL) ((-112 . -659) T) ((-627 . -831) NIL) ((-958 . -478) 91310) ((-449 . -123) T) ((-524 . -23) T) ((-611 . -280) 91248) ((-575 . -694) T) ((-551 . -694) T) ((-1118 . -779) NIL) ((-919 . -262) T) ((-224 . -21) T) ((-627 . -585) 91198) ((-321 . -1003) T) ((-224 . -25) T) ((-223 . -21) T) ((-223 . -25) T) ((-139 . -37) 91182) ((-2 . -97) T) ((-832 . -842) T) ((-450 . -1160) 91152) ((-197 . -952) 91129) ((-1021 . -961) T) ((-644 . -278) T) ((-265 . -650) 91071) ((-634 . -968) T) ((-454 . -421) T) ((-377 . -478) 90983) ((-192 . -421) T) ((-1021 . -207) T) ((-266 . -138) 90933) ((-915 . -558) 90894) ((-915 . -557) 90876) ((-906 . -557) 90858) ((-111 . -968) T) ((-591 . -967) 90842) ((-199 . -458) T) ((-369 . -557) 90824) ((-369 . -558) 90801) ((-965 . -1160) 90771) ((-591 . -106) 90750) ((-1040 . -456) 90734) ((-747 . -37) 90704) ((-61 . -410) T) ((-61 . -365) T) ((-1057 . -97) T) ((-795 . -123) T) ((-451 . -97) 90682) ((-1179 . -338) T) ((-987 . -97) T) ((-971 . -97) T) ((-321 . -650) 90627) ((-664 . -134) 90606) ((-664 . -132) 90585) ((-939 . -585) 90522) ((-486 . -1003) 90500) ((-329 . -97) T) ((-323 . -97) T) ((-315 . -97) T) ((-103 . -97) T) ((-469 . -1003) T) ((-324 . -585) 90445) ((-1069 . -579) 90393) ((-1026 . -579) 90341) ((-355 . -473) 90320) ((-765 . -777) 90299) ((-349 . -1112) T) ((-627 . -659) T) ((-309 . -968) T) ((-1118 . -909) 90251) ((-157 . -968) T) ((-98 . -557) 90183) ((-1071 . -132) 90162) ((-1071 . -134) 90141) ((-349 . -509) T) ((-1070 . -134) 90120) ((-1070 . -132) 90099) ((-1064 . -132) 90006) ((-377 . -262) T) ((-1064 . -134) 89913) ((-1027 . -134) 89892) ((-1027 . -132) 89871) ((-289 . -37) 89712) ((-153 . -123) T) ((-283 . -727) NIL) ((-283 . -724) NIL) ((-591 . -961) T) ((-47 . -585) 89677) ((-910 . -21) T) ((-122 . -926) 89661) ((-116 . -926) 89645) ((-910 . -25) T) ((-823 . -114) 89629) ((-1056 . -97) T) ((-748 . -779) 89608) ((-1127 . -123) T) ((-1069 . -25) T) ((-1069 . -21) T) ((-784 . -123) T) ((-1026 . -25) T) ((-1026 . -21) T) ((-783 . -25) T) ((-783 . -21) T) ((-714 . -278) 89587) ((-584 . -97) 89565) ((-572 . -97) T) ((-1057 . -280) 89360) ((-524 . -123) T) ((-562 . -777) 89339) ((-1054 . -456) 89323) ((-1048 . -138) 89273) ((-1044 . -557) 89235) ((-1044 . -558) 89196) ((-939 . -723) T) ((-939 . -726) T) ((-939 . -659) T) ((-451 . -280) 89134) ((-422 . -387) 89104) ((-321 . -156) T) ((-261 . -37) 89091) ((-247 . -97) T) ((-246 . -97) T) ((-245 . -97) T) ((-244 . -97) T) ((-243 . -97) T) ((-242 . -97) T) ((-241 . -97) T) ((-313 . -952) 89068) ((-188 . -97) T) ((-187 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-183 . -97) T) ((-182 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-645 . -967) 88891) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-174 . -97) T) ((-173 . -97) T) ((-172 . -97) T) ((-171 . -97) T) ((-170 . -97) T) ((-169 . -97) T) ((-324 . -659) T) ((-645 . -106) 88693) ((-607 . -205) 88677) ((-530 . -278) T) ((-481 . -278) T) ((-265 . -478) 88626) ((-103 . -280) NIL) ((-70 . -365) T) ((-1016 . -97) 88437) ((-765 . -381) 88421) ((-1021 . -727) T) ((-1021 . -724) T) ((-634 . -1003) T) ((-349 . -333) T) ((-153 . -458) 88399) ((-196 . -557) 88331) ((-125 . -1003) T) ((-111 . -1003) T) ((-47 . -659) T) ((-958 . -456) 88296) ((-128 . -395) 88278) ((-128 . -338) T) ((-942 . -97) T) ((-476 . -473) 88257) ((-445 . -97) T) ((-432 . -97) T) ((-949 . -1015) T) ((-1071 . -34) 88223) ((-1071 . -91) 88189) ((-1071 . -1097) 88155) ((-1071 . -1094) 88121) ((-1056 . -280) NIL) ((-87 . -366) T) ((-87 . -365) T) ((-987 . -1049) 88100) ((-1070 . -1094) 88066) ((-1070 . -1097) 88032) ((-949 . -23) T) ((-1070 . -91) 87998) ((-524 . -458) T) ((-1070 . -34) 87964) ((-1064 . -1094) 87930) ((-1064 . -1097) 87896) ((-1064 . -91) 87862) ((-331 . -1015) T) ((-329 . -1049) 87841) ((-323 . -1049) 87820) ((-315 . -1049) 87799) ((-1064 . -34) 87765) ((-1027 . -34) 87731) ((-1027 . -91) 87697) ((-103 . -1049) T) ((-1027 . -1097) 87663) ((-765 . -968) 87642) ((-584 . -280) 87580) ((-572 . -280) 87431) ((-1027 . -1094) 87397) ((-645 . -961) T) ((-972 . -579) 87379) ((-987 . -37) 87247) ((-874 . -579) 87195) ((-920 . -134) T) ((-920 . -132) NIL) ((-349 . -1015) T) ((-294 . -25) T) ((-292 . -23) T) ((-865 . -779) 87174) ((-645 . -296) 87151) ((-449 . -579) 87099) ((-39 . -952) 86976) ((-634 . -650) 86963) ((-645 . -207) T) ((-309 . -1003) T) ((-157 . -1003) T) ((-301 . -779) T) ((-388 . -421) 86913) ((-349 . -23) T) ((-329 . -37) 86878) ((-323 . -37) 86843) ((-315 . -37) 86808) ((-78 . -410) T) ((-78 . -365) T) ((-199 . -25) T) ((-199 . -21) T) ((-766 . -1015) T) ((-103 . -37) 86758) ((-759 . -1015) T) ((-706 . -1003) T) ((-111 . -650) 86745) ((-608 . -952) 86729) ((-556 . -97) T) ((-766 . -23) T) ((-759 . -23) T) ((-1054 . -258) 86706) ((-1016 . -280) 86644) ((-1005 . -209) 86628) ((-62 . -366) T) ((-62 . -365) T) ((-105 . -97) T) ((-39 . -347) 86605) ((-590 . -781) 86589) ((-972 . -21) T) ((-972 . -25) T) ((-747 . -205) 86559) ((-874 . -25) T) ((-874 . -21) T) ((-562 . -968) T) ((-449 . -25) T) ((-449 . -21) T) ((-942 . -280) 86497) ((-811 . -557) 86479) ((-807 . -557) 86461) ((-224 . -779) 86412) ((-223 . -779) 86363) ((-486 . -478) 86296) ((-795 . -579) 86273) ((-445 . -280) 86211) ((-432 . -280) 86149) ((-321 . -262) T) ((-1054 . -1142) 86133) ((-1040 . -557) 86095) ((-1040 . -558) 86056) ((-1038 . -97) T) ((-915 . -967) 85952) ((-39 . -822) 85904) ((-1054 . -550) 85881) ((-1179 . -585) 85868) ((-973 . -138) 85814) ((-796 . -1112) T) ((-915 . -106) 85689) ((-309 . -650) 85673) ((-790 . -557) 85655) ((-157 . -650) 85587) ((-377 . -258) 85545) ((-796 . -509) T) ((-103 . -370) 85527) ((-82 . -354) T) ((-82 . -365) T) ((-634 . -156) T) ((-94 . -659) T) ((-450 . -97) 85338) ((-94 . -442) T) ((-111 . -156) T) ((-1016 . -37) 85308) ((-153 . -579) 85256) ((-965 . -97) T) ((-795 . -25) T) ((-747 . -212) 85235) ((-795 . -21) T) ((-750 . -97) T) ((-384 . -97) T) ((-355 . -97) T) ((-105 . -280) NIL) ((-201 . -97) 85213) ((-122 . -1108) T) ((-116 . -1108) T) ((-949 . -123) T) ((-607 . -337) 85197) ((-915 . -961) T) ((-1127 . -579) 85145) ((-1007 . -557) 85127) ((-919 . -557) 85109) ((-479 . -23) T) ((-474 . -23) T) ((-313 . -278) T) ((-472 . -23) T) ((-292 . -123) T) ((-3 . -1003) T) ((-919 . -558) 85093) ((-915 . -217) 85072) ((-915 . -207) 85051) ((-1179 . -659) T) ((-1146 . -132) 85030) ((-765 . -1003) T) ((-1146 . -134) 85009) ((-1139 . -134) 84988) ((-1139 . -132) 84967) ((-1138 . -1112) 84946) ((-1118 . -132) 84853) ((-1118 . -134) 84760) ((-1117 . -1112) 84739) ((-349 . -123) T) ((-517 . -808) 84721) ((0 . -1003) T) ((-157 . -156) T) ((-153 . -21) T) ((-153 . -25) T) ((-48 . -1003) T) ((-1140 . -585) 84610) ((-1138 . -509) 84561) ((-647 . -1015) T) ((-1117 . -509) 84512) ((-517 . -952) 84494) ((-542 . -134) 84473) ((-542 . -132) 84452) ((-460 . -952) 84395) ((-85 . -354) T) ((-85 . -365) T) ((-796 . -333) T) ((-766 . -123) T) ((-759 . -123) T) ((-647 . -23) T) ((-467 . -557) 84377) ((-1175 . -968) T) ((-349 . -970) T) ((-941 . -1003) 84355) ((-823 . -33) T) ((-450 . -280) 84293) ((-1054 . -558) 84254) ((-1054 . -557) 84186) ((-1069 . -779) 84165) ((-44 . -97) T) ((-1026 . -779) 84144) ((-749 . -97) T) ((-1127 . -25) T) ((-1127 . -21) T) ((-784 . -25) T) ((-43 . -337) 84128) ((-784 . -21) T) ((-664 . -421) 84079) ((-1174 . -557) 84061) ((-524 . -25) T) ((-524 . -21) T) ((-360 . -1003) T) ((-965 . -280) 83999) ((-562 . -1003) T) ((-632 . -808) 83981) ((-1153 . -1108) T) ((-201 . -280) 83919) ((-131 . -338) T) ((-958 . -558) 83861) ((-958 . -557) 83804) ((-283 . -831) NIL) ((-632 . -952) 83749) ((-644 . -842) T) ((-443 . -1112) 83728) ((-1070 . -421) 83707) ((-1064 . -421) 83686) ((-300 . -97) T) ((-796 . -1015) T) ((-286 . -585) 83508) ((-283 . -585) 83437) ((-443 . -509) 83388) ((-309 . -478) 83354) ((-503 . -138) 83304) ((-39 . -278) T) ((-772 . -557) 83286) ((-634 . -262) T) ((-796 . -23) T) ((-349 . -458) T) ((-987 . -205) 83256) ((-476 . -97) T) ((-377 . -558) 83059) ((-377 . -557) 83041) ((-236 . -557) 83023) ((-111 . -262) T) ((-1140 . -659) T) ((-1138 . -333) 83002) ((-1117 . -333) 82981) ((-1164 . -33) T) ((-112 . -1108) T) ((-103 . -205) 82963) ((-1075 . -97) T) ((-446 . -1003) T) ((-486 . -456) 82947) ((-670 . -33) T) ((-450 . -37) 82917) ((-128 . -33) T) ((-112 . -806) 82894) ((-112 . -808) NIL) ((-564 . -952) 82779) ((-583 . -779) 82758) ((-1163 . -97) T) ((-266 . -97) T) ((-645 . -338) 82737) ((-112 . -952) 82714) ((-360 . -650) 82698) ((-562 . -650) 82682) ((-44 . -280) 82486) ((-748 . -132) 82465) ((-748 . -134) 82444) ((-1174 . -352) 82423) ((-751 . -779) T) ((-1155 . -1003) T) ((-1057 . -203) 82370) ((-356 . -779) 82349) ((-1146 . -1097) 82315) ((-1146 . -1094) 82281) ((-1139 . -1094) 82247) ((-479 . -123) T) ((-1139 . -1097) 82213) ((-1118 . -1094) 82179) ((-1118 . -1097) 82145) ((-1146 . -34) 82111) ((-1146 . -91) 82077) ((-575 . -557) 82046) ((-551 . -557) 82015) ((-199 . -779) T) ((-1139 . -91) 81981) ((-1139 . -34) 81947) ((-1138 . -1015) T) ((-1021 . -585) 81934) ((-1118 . -91) 81900) ((-1117 . -1015) T) ((-540 . -138) 81882) ((-987 . -319) 81861) ((-112 . -347) 81838) ((-112 . -308) 81815) ((-157 . -262) T) ((-1118 . -34) 81781) ((-794 . -278) T) ((-283 . -726) NIL) ((-283 . -723) NIL) ((-286 . -659) 81631) ((-283 . -659) T) ((-443 . -333) 81610) ((-329 . -319) 81589) ((-323 . -319) 81568) ((-315 . -319) 81547) ((-286 . -442) 81526) ((-1138 . -23) T) ((-1117 . -23) T) ((-651 . -1015) T) ((-647 . -123) T) ((-590 . -97) T) ((-446 . -650) 81491) ((-44 . -254) 81441) ((-100 . -1003) T) ((-66 . -557) 81423) ((-789 . -97) T) ((-564 . -822) 81382) ((-1175 . -1003) T) ((-351 . -1003) T) ((-80 . -1108) T) ((-972 . -779) T) ((-874 . -779) 81361) ((-112 . -822) NIL) ((-714 . -842) 81340) ((-646 . -779) T) ((-489 . -1003) T) ((-465 . -1003) T) ((-325 . -1112) T) ((-322 . -1112) T) ((-314 . -1112) T) ((-237 . -1112) 81319) ((-221 . -1112) 81298) ((-1016 . -205) 81268) ((-449 . -779) 81247) ((-1040 . -967) 81231) ((-360 . -694) T) ((-1056 . -760) T) ((-627 . -1108) T) ((-325 . -509) T) ((-322 . -509) T) ((-314 . -509) T) ((-237 . -509) 81162) ((-221 . -509) 81093) ((-1040 . -106) 81072) ((-422 . -677) 81042) ((-790 . -967) 81012) ((-749 . -37) 80949) ((-627 . -806) 80931) ((-627 . -808) 80913) ((-266 . -280) 80717) ((-832 . -1112) T) ((-607 . -381) 80701) ((-790 . -106) 80666) ((-627 . -952) 80611) ((-920 . -421) T) ((-832 . -509) T) ((-530 . -842) T) ((-443 . -1015) T) ((-481 . -842) T) ((-1054 . -260) 80588) ((-836 . -421) T) ((-63 . -557) 80570) ((-572 . -203) 80516) ((-443 . -23) T) ((-1021 . -726) T) ((-796 . -123) T) ((-1021 . -723) T) ((-1166 . -1168) 80495) ((-1021 . -659) T) ((-591 . -585) 80469) ((-265 . -557) 80211) ((-950 . -33) T) ((-747 . -777) 80190) ((-529 . -278) T) ((-517 . -278) T) ((-460 . -278) T) ((-1175 . -650) 80160) ((-627 . -347) 80142) ((-627 . -308) 80124) ((-446 . -156) T) ((-351 . -650) 80094) ((-795 . -779) NIL) ((-517 . -937) T) ((-460 . -937) T) ((-1034 . -557) 80076) ((-1016 . -212) 80055) ((-189 . -97) T) ((-1048 . -97) T) ((-69 . -557) 80037) ((-1040 . -961) T) ((-1075 . -37) 79934) ((-786 . -557) 79916) ((-517 . -502) T) ((-607 . -968) T) ((-664 . -871) 79869) ((-1040 . -207) 79848) ((-989 . -1003) T) ((-949 . -25) T) ((-949 . -21) T) ((-919 . -967) 79793) ((-827 . -97) T) ((-790 . -961) T) ((-627 . -822) NIL) ((-325 . -299) 79777) ((-325 . -333) T) ((-322 . -299) 79761) ((-322 . -333) T) ((-314 . -299) 79745) ((-314 . -333) T) ((-454 . -97) T) ((-1163 . -37) 79715) ((-486 . -621) 79665) ((-192 . -97) T) ((-939 . -952) 79547) ((-919 . -106) 79464) ((-1071 . -890) 79434) ((-1070 . -890) 79397) ((-483 . -138) 79381) ((-987 . -340) 79360) ((-321 . -557) 79342) ((-292 . -21) T) ((-324 . -952) 79319) ((-292 . -25) T) ((-1064 . -890) 79289) ((-1027 . -890) 79256) ((-74 . -557) 79238) ((-632 . -278) T) ((-153 . -779) 79217) ((-832 . -333) T) ((-349 . -25) T) ((-349 . -21) T) ((-832 . -299) 79204) ((-84 . -557) 79186) ((-632 . -937) T) ((-612 . -779) T) ((-1138 . -123) T) ((-1117 . -123) T) ((-823 . -926) 79170) ((-766 . -21) T) ((-47 . -952) 79113) ((-766 . -25) T) ((-759 . -25) T) ((-759 . -21) T) ((-1173 . -968) T) ((-1171 . -968) T) ((-591 . -659) T) ((-1174 . -967) 79097) ((-1127 . -779) 79076) ((-747 . -381) 79045) ((-98 . -114) 79029) ((-51 . -1003) T) ((-848 . -557) 79011) ((-795 . -909) 78988) ((-755 . -97) T) ((-1174 . -106) 78967) ((-590 . -37) 78937) ((-524 . -779) T) ((-325 . -1015) T) ((-322 . -1015) T) ((-314 . -1015) T) ((-237 . -1015) T) ((-221 . -1015) T) ((-564 . -278) 78916) ((-1048 . -280) 78720) ((-601 . -23) T) ((-450 . -205) 78690) ((-139 . -968) T) ((-325 . -23) T) ((-322 . -23) T) ((-314 . -23) T) ((-112 . -278) T) ((-237 . -23) T) ((-221 . -23) T) ((-919 . -961) T) ((-645 . -831) 78669) ((-919 . -207) 78641) ((-919 . -217) T) ((-112 . -937) NIL) ((-832 . -1015) T) ((-1139 . -421) 78620) ((-1118 . -421) 78599) ((-486 . -557) 78531) ((-645 . -585) 78456) ((-377 . -967) 78408) ((-469 . -557) 78390) ((-832 . -23) T) ((-454 . -280) NIL) ((-443 . -123) T) ((-192 . -280) NIL) ((-377 . -106) 78321) ((-747 . -968) 78252) ((-670 . -1001) 78236) ((-1138 . -458) 78202) ((-1117 . -458) 78168) ((-128 . -1001) 78150) ((-446 . -262) T) ((-1174 . -961) T) ((-973 . -97) T) ((-465 . -478) NIL) ((-636 . -97) T) ((-450 . -212) 78129) ((-1069 . -132) 78108) ((-1069 . -134) 78087) ((-1026 . -134) 78066) ((-1026 . -132) 78045) ((-575 . -967) 78029) ((-551 . -967) 78013) ((-607 . -1003) T) ((-607 . -964) 77953) ((-1071 . -1145) 77937) ((-1071 . -1132) 77914) ((-454 . -1049) T) ((-1070 . -1137) 77875) ((-1070 . -1132) 77845) ((-1070 . -1135) 77829) ((-192 . -1049) T) ((-313 . -842) T) ((-750 . -239) 77813) ((-575 . -106) 77792) ((-551 . -106) 77771) ((-1064 . -1116) 77732) ((-772 . -961) 77711) ((-1064 . -1132) 77688) ((-479 . -25) T) ((-460 . -273) T) ((-475 . -23) T) ((-474 . -25) T) ((-472 . -25) T) ((-471 . -23) T) ((-1064 . -1114) 77672) ((-377 . -961) T) ((-289 . -968) T) ((-627 . -278) T) ((-103 . -777) T) ((-377 . -217) T) ((-377 . -207) 77651) ((-645 . -659) T) ((-454 . -37) 77601) ((-192 . -37) 77551) ((-443 . -458) 77517) ((-1056 . -1042) T) ((-1004 . -97) T) ((-634 . -557) 77499) ((-634 . -558) 77414) ((-647 . -21) T) ((-647 . -25) T) ((-125 . -557) 77396) ((-111 . -557) 77378) ((-142 . -25) T) ((-1173 . -1003) T) ((-796 . -579) 77326) ((-1171 . -1003) T) ((-884 . -97) T) ((-668 . -97) T) ((-648 . -97) T) ((-422 . -97) T) ((-748 . -421) 77277) ((-43 . -1003) T) ((-993 . -779) T) ((-601 . -123) T) ((-973 . -280) 77128) ((-607 . -650) 77112) ((-261 . -968) T) ((-325 . -123) T) ((-322 . -123) T) ((-314 . -123) T) ((-237 . -123) T) ((-221 . -123) T) ((-388 . -97) T) ((-139 . -1003) T) ((-44 . -203) 77062) ((-879 . -779) 77041) ((-915 . -585) 76979) ((-214 . -1160) 76949) ((-939 . -278) T) ((-265 . -967) 76871) ((-832 . -123) T) ((-39 . -842) T) ((-454 . -370) 76853) ((-324 . -278) T) ((-192 . -370) 76835) ((-987 . -381) 76819) ((-265 . -106) 76736) ((-796 . -25) T) ((-796 . -21) T) ((-309 . -557) 76718) ((-1140 . -46) 76662) ((-199 . -134) T) ((-157 . -557) 76644) ((-1016 . -777) 76623) ((-706 . -557) 76605) ((-552 . -209) 76552) ((-444 . -209) 76502) ((-1173 . -650) 76472) ((-47 . -278) T) ((-1171 . -650) 76442) ((-885 . -1003) T) ((-747 . -1003) 76253) ((-282 . -97) T) ((-823 . -1108) T) ((-47 . -937) T) ((-1117 . -579) 76161) ((-623 . -97) 76139) ((-43 . -650) 76123) ((-503 . -97) T) ((-65 . -353) T) ((-65 . -365) T) ((-599 . -23) T) ((-607 . -694) T) ((-1106 . -1003) 76101) ((-321 . -967) 76046) ((-611 . -1003) 76024) ((-972 . -134) T) ((-874 . -134) 76003) ((-874 . -132) 75982) ((-731 . -97) T) ((-139 . -650) 75966) ((-449 . -134) 75945) ((-449 . -132) 75924) ((-321 . -106) 75841) ((-987 . -968) T) ((-292 . -779) 75820) ((-1146 . -890) 75790) ((-567 . -1003) T) ((-1139 . -890) 75753) ((-475 . -123) T) ((-471 . -123) T) ((-266 . -203) 75703) ((-329 . -968) T) ((-323 . -968) T) ((-315 . -968) T) ((-265 . -961) 75646) ((-1118 . -890) 75616) ((-349 . -779) T) ((-103 . -968) T) ((-915 . -659) T) ((-794 . -842) T) ((-772 . -727) 75595) ((-772 . -724) 75574) ((-388 . -280) 75513) ((-437 . -97) T) ((-542 . -890) 75483) ((-289 . -1003) T) ((-377 . -727) 75462) ((-377 . -724) 75441) ((-465 . -456) 75423) ((-1140 . -952) 75389) ((-1138 . -21) T) ((-1138 . -25) T) ((-1117 . -21) T) ((-1117 . -25) T) ((-747 . -650) 75331) ((-632 . -374) T) ((-1164 . -1108) T) ((-1016 . -381) 75300) ((-919 . -338) NIL) ((-98 . -33) T) ((-670 . -1108) T) ((-43 . -694) T) ((-540 . -97) T) ((-75 . -366) T) ((-75 . -365) T) ((-590 . -593) 75284) ((-128 . -1108) T) ((-795 . -134) T) ((-795 . -132) NIL) ((-321 . -961) T) ((-68 . -353) T) ((-68 . -365) T) ((-1063 . -97) T) ((-607 . -478) 75217) ((-623 . -280) 75155) ((-884 . -37) 75052) ((-668 . -37) 75022) ((-503 . -280) 74826) ((-286 . -1108) T) ((-321 . -207) T) ((-321 . -217) T) ((-283 . -1108) T) ((-261 . -1003) T) ((-1077 . -557) 74808) ((-644 . -1112) T) ((-1054 . -588) 74792) ((-1103 . -509) 74771) ((-644 . -509) T) ((-286 . -806) 74755) ((-286 . -808) 74680) ((-283 . -806) 74641) ((-283 . -808) NIL) ((-731 . -280) 74606) ((-289 . -650) 74447) ((-294 . -293) 74424) ((-452 . -97) T) ((-443 . -25) T) ((-443 . -21) T) ((-388 . -37) 74398) ((-286 . -952) 74066) ((-199 . -1094) T) ((-199 . -1097) T) ((-3 . -557) 74048) ((-283 . -952) 73978) ((-2 . -1003) T) ((-2 . |RecordCategory|) T) ((-765 . -557) 73960) ((-1016 . -968) 73891) ((-529 . -842) T) ((-517 . -752) T) ((-517 . -842) T) ((-460 . -842) T) ((-127 . -952) 73875) ((-199 . -91) T) ((-153 . -134) 73854) ((-73 . -410) T) ((0 . -557) 73836) ((-73 . -365) T) ((-153 . -132) 73787) ((-199 . -34) T) ((-48 . -557) 73769) ((-446 . -968) T) ((-454 . -205) 73751) ((-451 . -886) 73735) ((-450 . -777) 73714) ((-192 . -205) 73696) ((-79 . -410) T) ((-79 . -365) T) ((-1044 . -33) T) ((-747 . -156) 73675) ((-664 . -97) T) ((-941 . -557) 73642) ((-465 . -258) 73617) ((-286 . -347) 73587) ((-283 . -347) 73548) ((-283 . -308) 73509) ((-748 . -871) 73456) ((-599 . -123) T) ((-1127 . -132) 73435) ((-1127 . -134) 73414) ((-1071 . -97) T) ((-1070 . -97) T) ((-1064 . -97) T) ((-1057 . -1003) T) ((-1027 . -97) T) ((-196 . -33) T) ((-261 . -650) 73401) ((-1057 . -554) 73377) ((-540 . -280) NIL) ((-451 . -1003) 73355) ((-360 . -557) 73337) ((-474 . -779) T) ((-1048 . -203) 73287) ((-1146 . -1145) 73271) ((-1146 . -1132) 73248) ((-1139 . -1137) 73209) ((-1139 . -1132) 73179) ((-1139 . -1135) 73163) ((-1118 . -1116) 73124) ((-1118 . -1132) 73101) ((-562 . -557) 73083) ((-1118 . -1114) 73067) ((-632 . -842) T) ((-1071 . -256) 73033) ((-1070 . -256) 72999) ((-1064 . -256) 72965) ((-987 . -1003) T) ((-971 . -1003) T) ((-47 . -273) T) ((-286 . -822) 72932) ((-283 . -822) NIL) ((-971 . -977) 72911) ((-1021 . -808) 72893) ((-731 . -37) 72877) ((-237 . -579) 72825) ((-221 . -579) 72773) ((-634 . -967) 72760) ((-542 . -1132) 72737) ((-1027 . -256) 72703) ((-289 . -156) 72634) ((-329 . -1003) T) ((-323 . -1003) T) ((-315 . -1003) T) ((-465 . -19) 72616) ((-1021 . -952) 72598) ((-1005 . -138) 72582) ((-103 . -1003) T) ((-111 . -967) 72569) ((-644 . -333) T) ((-465 . -550) 72544) ((-634 . -106) 72529) ((-406 . -97) T) ((-44 . -1047) 72479) ((-111 . -106) 72464) ((-575 . -653) T) ((-551 . -653) T) ((-747 . -478) 72397) ((-950 . -1108) T) ((-865 . -138) 72381) ((-483 . -97) 72331) ((-992 . -1112) 72310) ((-446 . -557) 72262) ((-446 . -558) 72184) ((-60 . -1108) T) ((-714 . -1112) 72163) ((-712 . -1112) 72142) ((-1069 . -421) 72073) ((-1056 . -1003) T) ((-1040 . -585) 72047) ((-992 . -509) 71978) ((-450 . -381) 71947) ((-564 . -842) 71926) ((-423 . -1112) 71905) ((-1026 . -421) 71856) ((-368 . -557) 71838) ((-611 . -478) 71771) ((-714 . -509) 71682) ((-712 . -509) 71613) ((-664 . -280) 71600) ((-601 . -25) T) ((-601 . -21) T) ((-423 . -509) 71531) ((-112 . -842) T) ((-112 . -752) NIL) ((-325 . -25) T) ((-325 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-314 . -25) T) ((-314 . -21) T) ((-237 . -25) T) ((-237 . -21) T) ((-81 . -354) T) ((-81 . -365) T) ((-221 . -25) T) ((-221 . -21) T) ((-1155 . -557) 71513) ((-1103 . -1015) T) ((-1103 . -23) T) ((-1064 . -280) 71398) ((-1027 . -280) 71385) ((-790 . -585) 71345) ((-987 . -650) 71213) ((-865 . -897) 71197) ((-261 . -156) T) ((-832 . -21) T) ((-832 . -25) T) ((-796 . -779) 71148) ((-644 . -1015) T) ((-644 . -23) T) ((-584 . -1003) 71126) ((-572 . -554) 71101) ((-572 . -1003) T) ((-530 . -1112) T) ((-481 . -1112) T) ((-530 . -509) T) ((-481 . -509) T) ((-329 . -650) 71053) ((-323 . -650) 71005) ((-157 . -967) 70937) ((-309 . -967) 70921) ((-103 . -650) 70871) ((-157 . -106) 70770) ((-315 . -650) 70722) ((-309 . -106) 70701) ((-247 . -1003) T) ((-246 . -1003) T) ((-245 . -1003) T) ((-244 . -1003) T) ((-634 . -961) T) ((-243 . -1003) T) ((-242 . -1003) T) ((-241 . -1003) T) ((-188 . -1003) T) ((-187 . -1003) T) ((-185 . -1003) T) ((-153 . -1097) 70679) ((-153 . -1094) 70657) ((-184 . -1003) T) ((-183 . -1003) T) ((-111 . -961) T) ((-182 . -1003) T) ((-179 . -1003) T) ((-634 . -207) T) ((-178 . -1003) T) ((-177 . -1003) T) ((-176 . -1003) T) ((-175 . -1003) T) ((-174 . -1003) T) ((-173 . -1003) T) ((-172 . -1003) T) ((-171 . -1003) T) ((-170 . -1003) T) ((-169 . -1003) T) ((-214 . -97) 70468) ((-153 . -34) 70446) ((-153 . -91) 70424) ((-591 . -952) 70322) ((-450 . -968) 70253) ((-1016 . -1003) 70064) ((-1040 . -33) T) ((-607 . -456) 70048) ((-71 . -1108) T) ((-100 . -557) 70030) ((-1175 . -557) 70012) ((-351 . -557) 69994) ((-524 . -1097) T) ((-524 . -1094) T) ((-664 . -37) 69843) ((-489 . -557) 69825) ((-483 . -280) 69763) ((-465 . -557) 69745) ((-465 . -558) 69727) ((-1064 . -1049) NIL) ((-942 . -980) 69696) ((-942 . -1003) T) ((-920 . -97) T) ((-888 . -97) T) ((-836 . -97) T) ((-815 . -952) 69673) ((-1040 . -659) T) ((-919 . -585) 69618) ((-445 . -1003) T) ((-432 . -1003) T) ((-534 . -23) T) ((-524 . -34) T) ((-524 . -91) T) ((-397 . -97) T) ((-973 . -203) 69564) ((-1071 . -37) 69461) ((-790 . -659) T) ((-627 . -842) T) ((-475 . -25) T) ((-471 . -21) T) ((-471 . -25) T) ((-1070 . -37) 69302) ((-309 . -961) T) ((-1064 . -37) 69098) ((-987 . -156) T) ((-157 . -961) T) ((-1027 . -37) 68995) ((-645 . -46) 68972) ((-329 . -156) T) ((-323 . -156) T) ((-482 . -55) 68946) ((-462 . -55) 68896) ((-321 . -1170) 68873) ((-199 . -421) T) ((-289 . -262) 68824) ((-315 . -156) T) ((-157 . -217) T) ((-1117 . -779) 68723) ((-103 . -156) T) ((-796 . -909) 68707) ((-595 . -1015) T) ((-530 . -333) T) ((-530 . -299) 68694) ((-481 . -299) 68671) ((-481 . -333) T) ((-286 . -278) 68650) ((-283 . -278) T) ((-548 . -779) 68629) ((-1016 . -650) 68571) ((-483 . -254) 68555) ((-595 . -23) T) ((-388 . -205) 68539) ((-283 . -937) NIL) ((-306 . -23) T) ((-98 . -926) 68523) ((-44 . -35) 68502) ((-556 . -1003) T) ((-321 . -338) T) ((-460 . -27) T) ((-214 . -280) 68440) ((-992 . -1015) T) ((-1174 . -585) 68414) ((-714 . -1015) T) ((-712 . -1015) T) ((-423 . -1015) T) ((-972 . -421) T) ((-874 . -421) 68365) ((-105 . -1003) T) ((-992 . -23) T) ((-749 . -968) T) ((-714 . -23) T) ((-712 . -23) T) ((-449 . -421) 68316) ((-1057 . -478) 68064) ((-351 . -352) 68043) ((-1075 . -381) 68027) ((-430 . -23) T) ((-423 . -23) T) ((-451 . -478) 67960) ((-261 . -262) T) ((-989 . -557) 67942) ((-377 . -831) 67921) ((-49 . -1015) T) ((-939 . -842) T) ((-919 . -659) T) ((-645 . -808) NIL) ((-530 . -1015) T) ((-481 . -1015) T) ((-772 . -585) 67894) ((-1103 . -123) T) ((-1064 . -370) 67846) ((-920 . -280) NIL) ((-747 . -456) 67830) ((-324 . -842) T) ((-1054 . -33) T) ((-377 . -585) 67782) ((-49 . -23) T) ((-644 . -123) T) ((-645 . -952) 67665) ((-530 . -23) T) ((-103 . -478) NIL) ((-481 . -23) T) ((-153 . -379) 67636) ((-1038 . -1003) T) ((-1166 . -1165) 67620) ((-634 . -727) T) ((-634 . -724) T) ((-349 . -134) T) ((-1021 . -278) T) ((-1117 . -909) 67590) ((-47 . -842) T) ((-611 . -456) 67574) ((-224 . -1160) 67544) ((-223 . -1160) 67514) ((-1073 . -779) T) ((-1016 . -156) 67493) ((-1021 . -937) T) ((-958 . -33) T) ((-766 . -134) 67472) ((-766 . -132) 67451) ((-670 . -102) 67435) ((-556 . -124) T) ((-450 . -1003) 67246) ((-1075 . -968) T) ((-795 . -421) T) ((-83 . -1108) T) ((-214 . -37) 67216) ((-128 . -102) 67198) ((-645 . -347) 67182) ((-1021 . -502) T) ((-360 . -967) 67166) ((-1174 . -659) T) ((-1069 . -871) 67136) ((-51 . -557) 67118) ((-1026 . -871) 67085) ((-590 . -381) 67069) ((-1163 . -968) T) ((-562 . -967) 67053) ((-599 . -25) T) ((-599 . -21) T) ((-1056 . -478) NIL) ((-1146 . -97) T) ((-1139 . -97) T) ((-360 . -106) 67032) ((-196 . -227) 67016) ((-1118 . -97) T) ((-965 . -1003) T) ((-920 . -1049) T) ((-965 . -964) 66956) ((-750 . -1003) T) ((-313 . -1112) T) ((-575 . -585) 66940) ((-562 . -106) 66919) ((-551 . -585) 66903) ((-543 . -97) T) ((-534 . -123) T) ((-542 . -97) T) ((-384 . -1003) T) ((-355 . -1003) T) ((-201 . -1003) 66881) ((-584 . -478) 66814) ((-572 . -478) 66622) ((-765 . -961) 66601) ((-583 . -138) 66585) ((-313 . -509) T) ((-645 . -822) 66529) ((-503 . -203) 66479) ((-1146 . -256) 66445) ((-987 . -262) 66396) ((-454 . -777) T) ((-197 . -1015) T) ((-1139 . -256) 66362) ((-1118 . -256) 66328) ((-920 . -37) 66278) ((-192 . -777) T) ((-1103 . -458) 66244) ((-836 . -37) 66196) ((-772 . -726) 66175) ((-772 . -723) 66154) ((-772 . -659) 66133) ((-329 . -262) T) ((-323 . -262) T) ((-315 . -262) T) ((-153 . -421) 66064) ((-397 . -37) 66048) ((-103 . -262) T) ((-197 . -23) T) ((-377 . -726) 66027) ((-377 . -723) 66006) ((-377 . -659) T) ((-465 . -260) 65981) ((-446 . -967) 65946) ((-595 . -123) T) ((-1016 . -478) 65879) ((-306 . -123) T) ((-153 . -372) 65858) ((-450 . -650) 65800) ((-747 . -258) 65777) ((-446 . -106) 65726) ((-590 . -968) T) ((-1127 . -421) 65657) ((-992 . -123) T) ((-237 . -779) 65636) ((-221 . -779) 65615) ((-714 . -123) T) ((-712 . -123) T) ((-524 . -421) T) ((-965 . -650) 65557) ((-562 . -961) T) ((-942 . -478) 65490) ((-430 . -123) T) ((-423 . -123) T) ((-44 . -1003) T) ((-355 . -650) 65460) ((-749 . -1003) T) ((-445 . -478) 65393) ((-432 . -478) 65326) ((-422 . -337) 65296) ((-44 . -554) 65275) ((-286 . -273) T) ((-607 . -557) 65237) ((-57 . -779) 65216) ((-1118 . -280) 65101) ((-920 . -370) 65083) ((-747 . -550) 65060) ((-480 . -779) 65039) ((-461 . -779) 65018) ((-39 . -1112) T) ((-915 . -952) 64916) ((-49 . -123) T) ((-530 . -123) T) ((-481 . -123) T) ((-265 . -585) 64778) ((-313 . -299) 64755) ((-313 . -333) T) ((-292 . -293) 64732) ((-289 . -258) 64717) ((-39 . -509) T) ((-349 . -1094) T) ((-349 . -1097) T) ((-950 . -1085) 64692) ((-1082 . -209) 64642) ((-1064 . -205) 64594) ((-300 . -1003) T) ((-349 . -91) T) ((-349 . -34) T) ((-950 . -102) 64540) ((-446 . -961) T) ((-447 . -209) 64490) ((-1057 . -456) 64424) ((-1175 . -967) 64408) ((-351 . -967) 64392) ((-446 . -217) T) ((-748 . -97) T) ((-647 . -134) 64371) ((-647 . -132) 64350) ((-451 . -456) 64334) ((-452 . -305) 64303) ((-1175 . -106) 64282) ((-476 . -1003) T) ((-450 . -156) 64261) ((-915 . -347) 64245) ((-383 . -97) T) ((-351 . -106) 64224) ((-915 . -308) 64208) ((-252 . -900) 64192) ((-251 . -900) 64176) ((-1173 . -557) 64158) ((-1171 . -557) 64140) ((-105 . -478) NIL) ((-1069 . -1130) 64124) ((-783 . -781) 64108) ((-1075 . -1003) T) ((-98 . -1108) T) ((-874 . -871) 64069) ((-749 . -650) 64006) ((-1118 . -1049) NIL) ((-449 . -871) 63951) ((-972 . -130) T) ((-58 . -97) 63929) ((-43 . -557) 63911) ((-76 . -557) 63893) ((-321 . -585) 63838) ((-1163 . -1003) T) ((-475 . -779) T) ((-313 . -1015) T) ((-266 . -1003) T) ((-915 . -822) 63797) ((-266 . -554) 63776) ((-1146 . -37) 63673) ((-1139 . -37) 63514) ((-454 . -968) T) ((-1118 . -37) 63310) ((-192 . -968) T) ((-313 . -23) T) ((-139 . -557) 63292) ((-765 . -727) 63271) ((-765 . -724) 63250) ((-543 . -37) 63223) ((-542 . -37) 63120) ((-794 . -509) T) ((-197 . -123) T) ((-289 . -918) 63086) ((-77 . -557) 63068) ((-645 . -278) 63047) ((-265 . -659) 62950) ((-756 . -97) T) ((-789 . -773) T) ((-265 . -442) 62929) ((-1166 . -97) T) ((-39 . -333) T) ((-796 . -134) 62908) ((-796 . -132) 62887) ((-1056 . -456) 62869) ((-1175 . -961) T) ((-450 . -478) 62802) ((-1044 . -1108) T) ((-885 . -557) 62784) ((-584 . -456) 62768) ((-572 . -456) 62700) ((-747 . -557) 62452) ((-47 . -27) T) ((-1075 . -650) 62349) ((-590 . -1003) T) ((-406 . -334) 62323) ((-1005 . -97) T) ((-748 . -280) 62310) ((-789 . -1003) T) ((-1171 . -352) 62282) ((-965 . -478) 62215) ((-1057 . -258) 62191) ((-214 . -205) 62161) ((-1163 . -650) 62131) ((-749 . -156) 62110) ((-201 . -478) 62043) ((-562 . -727) 62022) ((-562 . -724) 62001) ((-1106 . -557) 61913) ((-196 . -1108) T) ((-611 . -557) 61845) ((-1054 . -926) 61829) ((-321 . -659) T) ((-865 . -97) 61779) ((-1118 . -370) 61731) ((-1016 . -456) 61715) ((-58 . -280) 61653) ((-301 . -97) T) ((-1103 . -21) T) ((-1103 . -25) T) ((-39 . -1015) T) ((-644 . -21) T) ((-567 . -557) 61635) ((-479 . -293) 61614) ((-644 . -25) T) ((-103 . -258) NIL) ((-843 . -1015) T) ((-39 . -23) T) ((-703 . -1015) T) ((-517 . -1112) T) ((-460 . -1112) T) ((-289 . -557) 61596) ((-920 . -205) 61578) ((-153 . -150) 61562) ((-529 . -509) T) ((-517 . -509) T) ((-460 . -509) T) ((-703 . -23) T) ((-1138 . -134) 61541) ((-1057 . -550) 61517) ((-1138 . -132) 61496) ((-942 . -456) 61480) ((-1117 . -132) 61405) ((-1117 . -134) 61330) ((-1166 . -1172) 61309) ((-445 . -456) 61293) ((-432 . -456) 61277) ((-486 . -33) T) ((-590 . -650) 61247) ((-599 . -779) 61226) ((-1075 . -156) 61177) ((-335 . -97) T) ((-214 . -212) 61156) ((-224 . -97) T) ((-223 . -97) T) ((-1127 . -871) 61126) ((-104 . -97) T) ((-219 . -779) 61105) ((-748 . -37) 60954) ((-44 . -478) 60714) ((-1056 . -258) 60689) ((-189 . -1003) T) ((-1048 . -1003) T) ((-1048 . -554) 60668) ((-534 . -25) T) ((-534 . -21) T) ((-1005 . -280) 60606) ((-884 . -381) 60590) ((-632 . -1112) T) ((-572 . -258) 60565) ((-992 . -579) 60513) ((-714 . -579) 60461) ((-712 . -579) 60409) ((-313 . -123) T) ((-261 . -557) 60391) ((-632 . -509) T) ((-827 . -1003) T) ((-794 . -1015) T) ((-423 . -579) 60339) ((-827 . -825) 60323) ((-349 . -421) T) ((-454 . -1003) T) ((-634 . -585) 60310) ((-865 . -280) 60248) ((-192 . -1003) T) ((-286 . -842) 60227) ((-283 . -842) T) ((-283 . -752) NIL) ((-360 . -653) T) ((-794 . -23) T) ((-111 . -585) 60214) ((-443 . -132) 60193) ((-388 . -381) 60177) ((-443 . -134) 60156) ((-105 . -456) 60138) ((-2 . -557) 60120) ((-1056 . -19) 60102) ((-1056 . -550) 60077) ((-595 . -21) T) ((-595 . -25) T) ((-540 . -1042) T) ((-1016 . -258) 60054) ((-306 . -25) T) ((-306 . -21) T) ((-460 . -333) T) ((-1166 . -37) 60024) ((-1040 . -1108) T) ((-572 . -550) 59999) ((-992 . -25) T) ((-992 . -21) T) ((-489 . -724) T) ((-489 . -727) T) ((-112 . -1112) T) ((-884 . -968) T) ((-564 . -509) T) ((-668 . -968) T) ((-648 . -968) T) ((-714 . -25) T) ((-714 . -21) T) ((-712 . -21) T) ((-712 . -25) T) ((-607 . -967) 59983) ((-430 . -25) T) ((-112 . -509) T) ((-430 . -21) T) ((-423 . -25) T) ((-423 . -21) T) ((-1040 . -952) 59881) ((-749 . -262) 59860) ((-755 . -1003) T) ((-607 . -106) 59839) ((-266 . -478) 59599) ((-1173 . -967) 59583) ((-1171 . -967) 59567) ((-224 . -280) 59505) ((-223 . -280) 59443) ((-1121 . -97) 59421) ((-1057 . -558) NIL) ((-1057 . -557) 59403) ((-1138 . -1094) 59369) ((-1138 . -1097) 59335) ((-1118 . -205) 59287) ((-1117 . -1094) 59253) ((-1117 . -1097) 59219) ((-1040 . -347) 59203) ((-1021 . -752) T) ((-1021 . -842) T) ((-1016 . -550) 59180) ((-987 . -558) 59164) ((-451 . -557) 59096) ((-747 . -260) 59073) ((-552 . -138) 59020) ((-388 . -968) T) ((-454 . -650) 58970) ((-450 . -456) 58954) ((-297 . -779) 58933) ((-309 . -585) 58907) ((-49 . -21) T) ((-49 . -25) T) ((-192 . -650) 58857) ((-153 . -657) 58828) ((-157 . -585) 58760) ((-530 . -21) T) ((-530 . -25) T) ((-481 . -25) T) ((-481 . -21) T) ((-444 . -138) 58710) ((-987 . -557) 58692) ((-971 . -557) 58674) ((-910 . -97) T) ((-787 . -97) T) ((-731 . -381) 58638) ((-39 . -123) T) ((-632 . -333) T) ((-188 . -817) T) ((-634 . -726) T) ((-634 . -723) T) ((-529 . -1015) T) ((-517 . -1015) T) ((-460 . -1015) T) ((-634 . -659) T) ((-329 . -557) 58620) ((-323 . -557) 58602) ((-315 . -557) 58584) ((-64 . -366) T) ((-64 . -365) T) ((-103 . -558) 58514) ((-103 . -557) 58496) ((-187 . -817) T) ((-879 . -138) 58480) ((-1138 . -91) 58446) ((-703 . -123) T) ((-125 . -659) T) ((-111 . -659) T) ((-1138 . -34) 58412) ((-965 . -456) 58396) ((-529 . -23) T) ((-517 . -23) T) ((-460 . -23) T) ((-1117 . -91) 58362) ((-1117 . -34) 58328) ((-1069 . -97) T) ((-1026 . -97) T) ((-783 . -97) T) ((-201 . -456) 58312) ((-1173 . -106) 58291) ((-1171 . -106) 58270) ((-43 . -967) 58254) ((-1127 . -1130) 58238) ((-784 . -781) 58222) ((-1075 . -262) 58201) ((-105 . -258) 58176) ((-1040 . -822) 58135) ((-43 . -106) 58114) ((-607 . -961) T) ((-1056 . -558) NIL) ((-1056 . -557) 58096) ((-973 . -554) 58071) ((-973 . -1003) T) ((-72 . -410) T) ((-72 . -365) T) ((-607 . -207) 58050) ((-139 . -967) 58034) ((-524 . -507) 58018) ((-325 . -134) 57997) ((-325 . -132) 57948) ((-322 . -134) 57927) ((-636 . -1003) T) ((-322 . -132) 57878) ((-314 . -134) 57857) ((-314 . -132) 57808) ((-237 . -132) 57787) ((-237 . -134) 57766) ((-224 . -37) 57736) ((-221 . -134) 57715) ((-112 . -333) T) ((-221 . -132) 57694) ((-223 . -37) 57664) ((-139 . -106) 57643) ((-919 . -952) 57520) ((-1064 . -777) NIL) ((-627 . -1112) T) ((-731 . -968) T) ((-632 . -1015) T) ((-1173 . -961) T) ((-1171 . -961) T) ((-1054 . -1108) T) ((-919 . -347) 57497) ((-832 . -132) T) ((-832 . -134) 57479) ((-794 . -123) T) ((-747 . -967) 57377) ((-627 . -509) T) ((-632 . -23) T) ((-584 . -557) 57309) ((-584 . -558) 57270) ((-572 . -558) NIL) ((-572 . -557) 57252) ((-454 . -156) T) ((-197 . -21) T) ((-192 . -156) T) ((-197 . -25) T) ((-443 . -1097) 57218) ((-443 . -1094) 57184) ((-247 . -557) 57166) ((-246 . -557) 57148) ((-245 . -557) 57130) ((-244 . -557) 57112) ((-243 . -557) 57094) ((-465 . -588) 57076) ((-242 . -557) 57058) ((-309 . -659) T) ((-241 . -557) 57040) ((-105 . -19) 57022) ((-157 . -659) T) ((-465 . -343) 57004) ((-188 . -557) 56986) ((-483 . -1047) 56970) ((-465 . -118) T) ((-105 . -550) 56945) ((-187 . -557) 56927) ((-443 . -34) 56893) ((-443 . -91) 56859) ((-185 . -557) 56841) ((-184 . -557) 56823) ((-183 . -557) 56805) ((-182 . -557) 56787) ((-179 . -557) 56769) ((-178 . -557) 56751) ((-177 . -557) 56733) ((-176 . -557) 56715) ((-175 . -557) 56697) ((-174 . -557) 56679) ((-173 . -557) 56661) ((-493 . -1006) 56613) ((-172 . -557) 56595) ((-171 . -557) 56577) ((-44 . -456) 56514) ((-170 . -557) 56496) ((-169 . -557) 56478) ((-747 . -106) 56369) ((-583 . -97) 56319) ((-450 . -258) 56296) ((-1016 . -557) 56048) ((-1004 . -1003) T) ((-958 . -1108) T) ((-564 . -1015) T) ((-1174 . -952) 56032) ((-1069 . -280) 56019) ((-1026 . -280) 56006) ((-112 . -1015) T) ((-751 . -97) T) ((-564 . -23) T) ((-1048 . -478) 55766) ((-356 . -97) T) ((-294 . -97) T) ((-919 . -822) 55718) ((-884 . -1003) T) ((-139 . -961) T) ((-112 . -23) T) ((-664 . -381) 55702) ((-668 . -1003) T) ((-648 . -1003) T) ((-636 . -124) T) ((-422 . -1003) T) ((-286 . -400) 55686) ((-377 . -1108) T) ((-942 . -558) 55647) ((-939 . -1112) T) ((-199 . -97) T) ((-942 . -557) 55609) ((-748 . -205) 55593) ((-939 . -509) T) ((-765 . -585) 55566) ((-324 . -1112) T) ((-445 . -557) 55528) ((-445 . -558) 55489) ((-432 . -558) 55450) ((-432 . -557) 55412) ((-377 . -806) 55396) ((-289 . -967) 55231) ((-377 . -808) 55156) ((-772 . -952) 55054) ((-454 . -478) NIL) ((-450 . -550) 55031) ((-324 . -509) T) ((-192 . -478) NIL) ((-796 . -421) T) ((-388 . -1003) T) ((-377 . -952) 54898) ((-289 . -106) 54712) ((-627 . -333) T) ((-199 . -256) T) ((-47 . -1112) T) ((-747 . -961) 54643) ((-529 . -123) T) ((-517 . -123) T) ((-460 . -123) T) ((-47 . -509) T) ((-1057 . -260) 54619) ((-1069 . -1049) 54597) ((-286 . -27) 54576) ((-972 . -97) T) ((-747 . -207) 54529) ((-214 . -777) 54508) ((-874 . -97) T) ((-646 . -97) T) ((-266 . -456) 54445) ((-449 . -97) T) ((-664 . -968) T) ((-556 . -557) 54427) ((-556 . -558) 54288) ((-377 . -347) 54272) ((-377 . -308) 54256) ((-1069 . -37) 54085) ((-1026 . -37) 53934) ((-783 . -37) 53904) ((-360 . -585) 53888) ((-583 . -280) 53826) ((-884 . -650) 53723) ((-196 . -102) 53707) ((-44 . -258) 53632) ((-668 . -650) 53602) ((-562 . -585) 53576) ((-282 . -1003) T) ((-261 . -967) 53563) ((-105 . -557) 53545) ((-105 . -558) 53527) ((-422 . -650) 53497) ((-748 . -226) 53436) ((-623 . -1003) 53414) ((-503 . -1003) T) ((-1071 . -968) T) ((-1070 . -968) T) ((-261 . -106) 53399) ((-1064 . -968) T) ((-1027 . -968) T) ((-503 . -554) 53378) ((-920 . -777) T) ((-201 . -621) 53336) ((-627 . -1015) T) ((-1103 . -673) 53312) ((-289 . -961) T) ((-313 . -25) T) ((-313 . -21) T) ((-377 . -822) 53271) ((-66 . -1108) T) ((-765 . -726) 53250) ((-388 . -650) 53224) ((-731 . -1003) T) ((-765 . -723) 53203) ((-632 . -123) T) ((-645 . -842) 53182) ((-627 . -23) T) ((-454 . -262) T) ((-765 . -659) 53161) ((-289 . -207) 53113) ((-289 . -217) 53092) ((-192 . -262) T) ((-939 . -333) T) ((-1138 . -421) 53071) ((-1117 . -421) 53050) ((-324 . -299) 53027) ((-324 . -333) T) ((-1038 . -557) 53009) ((-44 . -1142) 52959) ((-795 . -97) T) ((-583 . -254) 52943) ((-632 . -970) T) ((-446 . -585) 52908) ((-437 . -1003) T) ((-44 . -550) 52833) ((-1056 . -260) 52808) ((-39 . -579) 52742) ((-47 . -333) T) ((-1009 . -557) 52724) ((-992 . -779) 52703) ((-572 . -260) 52678) ((-714 . -779) 52657) ((-712 . -779) 52636) ((-450 . -557) 52388) ((-214 . -381) 52357) ((-874 . -280) 52344) ((-423 . -779) 52323) ((-63 . -1108) T) ((-564 . -123) T) ((-449 . -280) 52310) ((-973 . -478) 52118) ((-261 . -961) T) ((-112 . -123) T) ((-422 . -694) T) ((-884 . -156) 52069) ((-987 . -967) 51979) ((-562 . -726) 51958) ((-540 . -1003) T) ((-562 . -723) 51937) ((-562 . -659) T) ((-266 . -258) 51916) ((-265 . -1108) T) ((-965 . -557) 51878) ((-965 . -558) 51839) ((-939 . -1015) T) ((-153 . -97) T) ((-248 . -779) T) ((-1063 . -1003) T) ((-750 . -557) 51821) ((-1016 . -260) 51798) ((-1005 . -203) 51782) ((-919 . -278) T) ((-731 . -650) 51766) ((-329 . -967) 51718) ((-324 . -1015) T) ((-323 . -967) 51670) ((-384 . -557) 51652) ((-355 . -557) 51634) ((-315 . -967) 51586) ((-201 . -557) 51518) ((-987 . -106) 51407) ((-939 . -23) T) ((-103 . -967) 51357) ((-820 . -97) T) ((-770 . -97) T) ((-740 . -97) T) ((-701 . -97) T) ((-612 . -97) T) ((-443 . -421) 51336) ((-388 . -156) T) ((-329 . -106) 51267) ((-323 . -106) 51198) ((-315 . -106) 51129) ((-224 . -205) 51099) ((-223 . -205) 51069) ((-324 . -23) T) ((-69 . -1108) T) ((-199 . -37) 51034) ((-103 . -106) 50961) ((-39 . -25) T) ((-39 . -21) T) ((-607 . -653) T) ((-153 . -256) 50939) ((-47 . -1015) T) ((-843 . -25) T) ((-703 . -25) T) ((-1048 . -456) 50876) ((-452 . -1003) T) ((-1175 . -585) 50850) ((-1127 . -97) T) ((-784 . -97) T) ((-214 . -968) 50781) ((-972 . -1049) T) ((-885 . -724) 50734) ((-351 . -585) 50718) ((-47 . -23) T) ((-885 . -727) 50671) ((-747 . -727) 50622) ((-747 . -724) 50573) ((-266 . -550) 50552) ((-446 . -659) T) ((-524 . -97) T) ((-795 . -280) 50496) ((-590 . -258) 50475) ((-107 . -598) T) ((-74 . -1108) T) ((-972 . -37) 50462) ((-601 . -344) 50441) ((-874 . -37) 50290) ((-664 . -1003) T) ((-449 . -37) 50139) ((-84 . -1108) T) ((-524 . -256) T) ((-1118 . -777) NIL) ((-1071 . -1003) T) ((-1070 . -1003) T) ((-1064 . -1003) T) ((-321 . -952) 50116) ((-987 . -961) T) ((-920 . -968) T) ((-44 . -557) 50098) ((-44 . -558) NIL) ((-836 . -968) T) ((-749 . -557) 50080) ((-1045 . -97) 50058) ((-987 . -217) 50009) ((-397 . -968) T) ((-329 . -961) T) ((-323 . -961) T) ((-335 . -334) 49986) ((-315 . -961) T) ((-224 . -212) 49965) ((-223 . -212) 49944) ((-104 . -334) 49918) ((-987 . -207) 49843) ((-1027 . -1003) T) ((-265 . -822) 49802) ((-103 . -961) T) ((-627 . -123) T) ((-388 . -478) 49644) ((-329 . -207) 49623) ((-329 . -217) T) ((-43 . -653) T) ((-323 . -207) 49602) ((-323 . -217) T) ((-315 . -207) 49581) ((-315 . -217) T) ((-153 . -280) 49546) ((-103 . -217) T) ((-103 . -207) T) ((-289 . -724) T) ((-794 . -21) T) ((-794 . -25) T) ((-377 . -278) T) ((-465 . -33) T) ((-105 . -260) 49521) ((-1016 . -967) 49419) ((-795 . -1049) NIL) ((-300 . -557) 49401) ((-377 . -937) 49380) ((-1016 . -106) 49271) ((-406 . -1003) T) ((-1175 . -659) T) ((-61 . -557) 49253) ((-795 . -37) 49198) ((-486 . -1108) T) ((-548 . -138) 49182) ((-476 . -557) 49164) ((-1127 . -280) 49151) ((-664 . -650) 49000) ((-489 . -725) T) ((-489 . -726) T) ((-517 . -579) 48982) ((-460 . -579) 48942) ((-325 . -421) T) ((-322 . -421) T) ((-314 . -421) T) ((-237 . -421) 48893) ((-483 . -1003) 48843) ((-221 . -421) 48794) ((-1048 . -258) 48773) ((-1075 . -557) 48755) ((-623 . -478) 48688) ((-884 . -262) 48667) ((-503 . -478) 48427) ((-1069 . -205) 48411) ((-153 . -1049) 48390) ((-1163 . -557) 48372) ((-1071 . -650) 48269) ((-1070 . -650) 48110) ((-814 . -97) T) ((-1064 . -650) 47906) ((-1027 . -650) 47803) ((-1054 . -610) 47787) ((-325 . -372) 47738) ((-322 . -372) 47689) ((-314 . -372) 47640) ((-939 . -123) T) ((-731 . -478) 47552) ((-266 . -558) NIL) ((-266 . -557) 47534) ((-832 . -421) T) ((-885 . -338) 47487) ((-747 . -338) 47466) ((-474 . -473) 47445) ((-472 . -473) 47424) ((-454 . -258) NIL) ((-450 . -260) 47401) ((-388 . -262) T) ((-324 . -123) T) ((-192 . -258) NIL) ((-627 . -458) NIL) ((-94 . -1015) T) ((-153 . -37) 47229) ((-1138 . -890) 47192) ((-1045 . -280) 47130) ((-1117 . -890) 47100) ((-832 . -372) T) ((-1016 . -961) 47031) ((-1140 . -509) T) ((-1048 . -550) 47010) ((-107 . -779) T) ((-973 . -456) 46942) ((-529 . -21) T) ((-529 . -25) T) ((-517 . -21) T) ((-517 . -25) T) ((-460 . -25) T) ((-460 . -21) T) ((-1127 . -1049) 46920) ((-1016 . -207) 46873) ((-47 . -123) T) ((-1090 . -97) T) ((-214 . -1003) 46684) ((-795 . -370) 46661) ((-993 . -97) T) ((-983 . -97) T) ((-552 . -97) T) ((-444 . -97) T) ((-1127 . -37) 46490) ((-784 . -37) 46460) ((-664 . -156) 46371) ((-590 . -557) 46353) ((-524 . -37) 46340) ((-879 . -97) 46290) ((-789 . -557) 46272) ((-789 . -558) 46194) ((-540 . -478) NIL) ((-1146 . -968) T) ((-1139 . -968) T) ((-1118 . -968) T) ((-543 . -968) T) ((-542 . -968) T) ((-1179 . -1015) T) ((-1071 . -156) 46145) ((-1070 . -156) 46076) ((-1064 . -156) 46007) ((-1027 . -156) 45958) ((-920 . -1003) T) ((-888 . -1003) T) ((-836 . -1003) T) ((-1103 . -134) 45937) ((-731 . -729) 45921) ((-632 . -25) T) ((-632 . -21) T) ((-112 . -579) 45898) ((-634 . -808) 45880) ((-397 . -1003) T) ((-286 . -1112) 45859) ((-283 . -1112) T) ((-153 . -370) 45843) ((-1103 . -132) 45822) ((-443 . -890) 45785) ((-70 . -557) 45767) ((-103 . -727) T) ((-103 . -724) T) ((-286 . -509) 45746) ((-634 . -952) 45728) ((-283 . -509) T) ((-1179 . -23) T) ((-125 . -952) 45710) ((-450 . -967) 45608) ((-44 . -260) 45533) ((-214 . -650) 45475) ((-450 . -106) 45366) ((-996 . -97) 45344) ((-949 . -97) T) ((-583 . -760) 45323) ((-664 . -478) 45261) ((-965 . -967) 45245) ((-564 . -21) T) ((-564 . -25) T) ((-973 . -258) 45220) ((-331 . -97) T) ((-292 . -97) T) ((-607 . -585) 45194) ((-355 . -967) 45178) ((-965 . -106) 45157) ((-748 . -381) 45141) ((-112 . -25) T) ((-87 . -557) 45123) ((-112 . -21) T) ((-552 . -280) 44918) ((-444 . -280) 44722) ((-1048 . -558) NIL) ((-355 . -106) 44701) ((-349 . -97) T) ((-189 . -557) 44683) ((-1048 . -557) 44665) ((-920 . -650) 44615) ((-1064 . -478) 44349) ((-836 . -650) 44301) ((-1027 . -478) 44271) ((-321 . -278) T) ((-1082 . -138) 44221) ((-879 . -280) 44159) ((-766 . -97) T) ((-397 . -650) 44143) ((-199 . -760) T) ((-759 . -97) T) ((-757 . -97) T) ((-447 . -138) 44093) ((-1138 . -1137) 44072) ((-1021 . -1112) T) ((-309 . -952) 44039) ((-1138 . -1132) 44009) ((-1138 . -1135) 43993) ((-1117 . -1116) 43972) ((-78 . -557) 43954) ((-827 . -557) 43936) ((-1117 . -1132) 43913) ((-1021 . -509) T) ((-843 . -779) T) ((-454 . -558) 43843) ((-454 . -557) 43825) ((-703 . -779) T) ((-349 . -256) T) ((-608 . -779) T) ((-1117 . -1114) 43809) ((-1140 . -1015) T) ((-192 . -558) 43739) ((-192 . -557) 43721) ((-973 . -550) 43696) ((-57 . -138) 43680) ((-480 . -138) 43664) ((-461 . -138) 43648) ((-329 . -1170) 43632) ((-323 . -1170) 43616) ((-315 . -1170) 43600) ((-286 . -333) 43579) ((-283 . -333) T) ((-450 . -961) 43510) ((-627 . -579) 43492) ((-1173 . -585) 43466) ((-1171 . -585) 43440) ((-1140 . -23) T) ((-623 . -456) 43424) ((-62 . -557) 43406) ((-1016 . -727) 43357) ((-1016 . -724) 43308) ((-503 . -456) 43245) ((-607 . -33) T) ((-450 . -207) 43198) ((-266 . -260) 43177) ((-214 . -156) 43156) ((-748 . -968) T) ((-43 . -585) 43114) ((-987 . -338) 43065) ((-664 . -262) 42996) ((-483 . -478) 42929) ((-749 . -967) 42880) ((-992 . -132) 42859) ((-329 . -338) 42838) ((-323 . -338) 42817) ((-315 . -338) 42796) ((-992 . -134) 42775) ((-795 . -205) 42752) ((-749 . -106) 42687) ((-714 . -132) 42666) ((-714 . -134) 42645) ((-237 . -871) 42612) ((-224 . -777) 42591) ((-221 . -871) 42536) ((-223 . -777) 42515) ((-712 . -132) 42494) ((-712 . -134) 42473) ((-139 . -585) 42447) ((-423 . -134) 42426) ((-423 . -132) 42405) ((-607 . -659) T) ((-755 . -557) 42387) ((-1146 . -1003) T) ((-1139 . -1003) T) ((-1118 . -1003) T) ((-1103 . -1097) 42353) ((-1103 . -1094) 42319) ((-1071 . -262) 42298) ((-1070 . -262) 42249) ((-1064 . -262) 42200) ((-1027 . -262) 42179) ((-309 . -822) 42160) ((-920 . -156) T) ((-836 . -156) T) ((-543 . -1003) T) ((-542 . -1003) T) ((-627 . -21) T) ((-627 . -25) T) ((-443 . -1135) 42144) ((-443 . -1132) 42114) ((-388 . -258) 42042) ((-286 . -1015) 41892) ((-283 . -1015) T) ((-1103 . -34) 41858) ((-1103 . -91) 41824) ((-82 . -557) 41806) ((-89 . -97) 41784) ((-1179 . -123) T) ((-530 . -132) T) ((-530 . -134) 41766) ((-481 . -134) 41748) ((-481 . -132) T) ((-286 . -23) 41601) ((-39 . -312) 41575) ((-283 . -23) T) ((-1056 . -588) 41557) ((-747 . -585) 41407) ((-1166 . -968) T) ((-1056 . -343) 41389) ((-153 . -205) 41373) ((-540 . -456) 41355) ((-214 . -478) 41288) ((-1173 . -659) T) ((-1171 . -659) T) ((-1075 . -967) 41171) ((-1075 . -106) 41033) ((-749 . -961) T) ((-479 . -97) T) ((-47 . -579) 40993) ((-474 . -97) T) ((-472 . -97) T) ((-1163 . -967) 40963) ((-949 . -37) 40947) ((-749 . -207) T) ((-749 . -217) 40926) ((-503 . -258) 40905) ((-1163 . -106) 40870) ((-1127 . -205) 40854) ((-1146 . -650) 40751) ((-973 . -558) NIL) ((-973 . -557) 40733) ((-1139 . -650) 40574) ((-1118 . -650) 40370) ((-919 . -842) T) ((-636 . -557) 40339) ((-139 . -659) T) ((-1016 . -338) 40318) ((-920 . -478) NIL) ((-224 . -381) 40287) ((-223 . -381) 40256) ((-939 . -25) T) ((-939 . -21) T) ((-543 . -650) 40229) ((-542 . -650) 40126) ((-731 . -258) 40084) ((-121 . -97) 40062) ((-765 . -952) 39960) ((-153 . -760) 39939) ((-289 . -585) 39836) ((-747 . -33) T) ((-647 . -97) T) ((-1021 . -1015) T) ((-941 . -1108) T) ((-349 . -37) 39801) ((-324 . -25) T) ((-324 . -21) T) ((-146 . -97) T) ((-142 . -97) T) ((-325 . -1160) 39785) ((-322 . -1160) 39769) ((-314 . -1160) 39753) ((-153 . -319) 39732) ((-517 . -779) T) ((-460 . -779) T) ((-1021 . -23) T) ((-85 . -557) 39714) ((-634 . -278) T) ((-766 . -37) 39684) ((-759 . -37) 39654) ((-1140 . -123) T) ((-1048 . -260) 39633) ((-885 . -725) 39586) ((-885 . -726) 39539) ((-747 . -723) 39518) ((-111 . -278) T) ((-89 . -280) 39456) ((-611 . -33) T) ((-503 . -550) 39435) ((-47 . -25) T) ((-47 . -21) T) ((-747 . -726) 39386) ((-747 . -725) 39365) ((-634 . -937) T) ((-590 . -967) 39349) ((-885 . -659) 39248) ((-747 . -659) 39179) ((-885 . -442) 39132) ((-450 . -727) 39083) ((-450 . -724) 39034) ((-832 . -1160) 39021) ((-1075 . -961) T) ((-590 . -106) 39000) ((-1075 . -296) 38977) ((-1095 . -97) 38955) ((-1004 . -557) 38937) ((-634 . -502) T) ((-748 . -1003) T) ((-1163 . -961) T) ((-383 . -1003) T) ((-224 . -968) 38868) ((-223 . -968) 38799) ((-261 . -585) 38786) ((-540 . -258) 38761) ((-623 . -621) 38719) ((-884 . -557) 38701) ((-796 . -97) T) ((-668 . -557) 38683) ((-648 . -557) 38665) ((-1146 . -156) 38616) ((-1139 . -156) 38547) ((-1118 . -156) 38478) ((-632 . -779) T) ((-920 . -262) T) ((-422 . -557) 38460) ((-567 . -659) T) ((-58 . -1003) 38438) ((-219 . -138) 38422) ((-836 . -262) T) ((-939 . -928) T) ((-567 . -442) T) ((-645 . -1112) 38401) ((-543 . -156) 38380) ((-542 . -156) 38331) ((-1153 . -779) 38310) ((-645 . -509) 38221) ((-377 . -842) T) ((-377 . -752) 38200) ((-289 . -726) T) ((-289 . -659) T) ((-388 . -557) 38182) ((-388 . -558) 38085) ((-583 . -1047) 38069) ((-105 . -588) 38051) ((-121 . -280) 37989) ((-105 . -343) 37971) ((-157 . -278) T) ((-368 . -1108) T) ((-286 . -123) 37843) ((-283 . -123) T) ((-67 . -365) T) ((-105 . -118) T) ((-483 . -456) 37827) ((-591 . -1015) T) ((-540 . -19) 37809) ((-59 . -410) T) ((-59 . -365) T) ((-756 . -1003) T) ((-540 . -550) 37784) ((-446 . -952) 37744) ((-590 . -961) T) ((-591 . -23) T) ((-1166 . -1003) T) ((-748 . -650) 37593) ((-112 . -779) NIL) ((-1069 . -381) 37577) ((-1026 . -381) 37561) ((-783 . -381) 37545) ((-1138 . -97) T) ((-1118 . -478) 37279) ((-1095 . -280) 37217) ((-282 . -557) 37199) ((-1117 . -97) T) ((-1005 . -1003) T) ((-1071 . -258) 37184) ((-1070 . -258) 37169) ((-261 . -659) T) ((-103 . -831) NIL) ((-623 . -557) 37101) ((-623 . -558) 37062) ((-987 . -585) 36972) ((-547 . -557) 36954) ((-503 . -558) NIL) ((-503 . -557) 36936) ((-1064 . -258) 36784) ((-454 . -967) 36734) ((-644 . -421) T) ((-475 . -473) 36713) ((-471 . -473) 36692) ((-192 . -967) 36642) ((-329 . -585) 36594) ((-323 . -585) 36546) ((-199 . -777) T) ((-315 . -585) 36498) ((-548 . -97) 36448) ((-450 . -338) 36427) ((-103 . -585) 36377) ((-454 . -106) 36304) ((-214 . -456) 36288) ((-313 . -134) 36270) ((-313 . -132) T) ((-153 . -340) 36241) ((-865 . -1151) 36225) ((-192 . -106) 36152) ((-796 . -280) 36117) ((-865 . -1003) 36067) ((-731 . -558) 36028) ((-731 . -557) 36010) ((-651 . -97) T) ((-301 . -1003) T) ((-1021 . -123) T) ((-647 . -37) 35980) ((-286 . -458) 35959) ((-465 . -1108) T) ((-1138 . -256) 35925) ((-1117 . -256) 35891) ((-297 . -138) 35875) ((-973 . -260) 35850) ((-1166 . -650) 35820) ((-1057 . -33) T) ((-1175 . -952) 35797) ((-437 . -557) 35779) ((-451 . -33) T) ((-351 . -952) 35763) ((-1069 . -968) T) ((-1026 . -968) T) ((-783 . -968) T) ((-972 . -777) T) ((-748 . -156) 35674) ((-483 . -258) 35651) ((-112 . -909) 35628) ((-1146 . -262) 35607) ((-1090 . -334) 35581) ((-993 . -239) 35565) ((-443 . -97) T) ((-335 . -1003) T) ((-224 . -1003) T) ((-223 . -1003) T) ((-1139 . -262) 35516) ((-104 . -1003) T) ((-1118 . -262) 35467) ((-796 . -1049) 35445) ((-1071 . -918) 35411) ((-552 . -334) 35351) ((-1070 . -918) 35317) ((-552 . -203) 35264) ((-540 . -557) 35246) ((-540 . -558) NIL) ((-627 . -779) T) ((-444 . -203) 35196) ((-454 . -961) T) ((-1064 . -918) 35162) ((-86 . -409) T) ((-86 . -365) T) ((-192 . -961) T) ((-1027 . -918) 35128) ((-987 . -659) T) ((-645 . -1015) T) ((-543 . -262) 35107) ((-542 . -262) 35086) ((-454 . -217) T) ((-454 . -207) T) ((-192 . -217) T) ((-192 . -207) T) ((-1063 . -557) 35068) ((-796 . -37) 35020) ((-329 . -659) T) ((-323 . -659) T) ((-315 . -659) T) ((-103 . -726) T) ((-103 . -723) T) ((-483 . -1142) 35004) ((-103 . -659) T) ((-645 . -23) T) ((-1179 . -25) T) ((-443 . -256) 34970) ((-1179 . -21) T) ((-1117 . -280) 34909) ((-1073 . -97) T) ((-39 . -132) 34881) ((-39 . -134) 34853) ((-483 . -550) 34830) ((-1016 . -585) 34680) ((-548 . -280) 34618) ((-44 . -588) 34568) ((-44 . -603) 34518) ((-44 . -343) 34468) ((-1056 . -33) T) ((-795 . -777) NIL) ((-591 . -123) T) ((-452 . -557) 34450) ((-214 . -258) 34427) ((-584 . -33) T) ((-572 . -33) T) ((-992 . -421) 34378) ((-748 . -478) 34243) ((-714 . -421) 34174) ((-712 . -421) 34125) ((-423 . -421) 34076) ((-874 . -381) 34060) ((-664 . -557) 34042) ((-224 . -650) 33984) ((-223 . -650) 33926) ((-664 . -558) 33787) ((-449 . -381) 33771) ((-309 . -273) T) ((-321 . -842) T) ((-916 . -97) 33749) ((-939 . -779) T) ((-58 . -478) 33682) ((-1117 . -1049) 33634) ((-920 . -258) NIL) ((-199 . -968) T) ((-349 . -760) T) ((-1016 . -33) T) ((-530 . -421) T) ((-481 . -421) T) ((-1121 . -997) 33618) ((-1121 . -1003) 33596) ((-214 . -550) 33573) ((-1121 . -999) 33530) ((-1071 . -557) 33512) ((-1070 . -557) 33494) ((-1064 . -557) 33476) ((-1064 . -558) NIL) ((-1027 . -557) 33458) ((-796 . -370) 33442) ((-493 . -97) T) ((-1138 . -37) 33283) ((-1117 . -37) 33097) ((-794 . -134) T) ((-530 . -372) T) ((-47 . -779) T) ((-481 . -372) T) ((-1140 . -21) T) ((-1140 . -25) T) ((-1016 . -723) 33076) ((-1016 . -726) 33027) ((-1016 . -725) 33006) ((-910 . -1003) T) ((-942 . -33) T) ((-787 . -1003) T) ((-1149 . -97) T) ((-1016 . -659) 32937) ((-601 . -97) T) ((-503 . -260) 32916) ((-1082 . -97) T) ((-445 . -33) T) ((-432 . -33) T) ((-325 . -97) T) ((-322 . -97) T) ((-314 . -97) T) ((-237 . -97) T) ((-221 . -97) T) ((-446 . -278) T) ((-972 . -968) T) ((-874 . -968) T) ((-286 . -579) 32824) ((-283 . -579) 32785) ((-449 . -968) T) ((-447 . -97) T) ((-406 . -557) 32767) ((-1069 . -1003) T) ((-1026 . -1003) T) ((-783 . -1003) T) ((-1039 . -97) T) ((-748 . -262) 32698) ((-884 . -967) 32581) ((-446 . -937) T) ((-668 . -967) 32551) ((-422 . -967) 32521) ((-1045 . -1022) 32505) ((-1005 . -478) 32438) ((-884 . -106) 32300) ((-832 . -97) T) ((-668 . -106) 32265) ((-57 . -97) 32215) ((-483 . -558) 32176) ((-483 . -557) 32088) ((-482 . -97) 32066) ((-480 . -97) 32016) ((-462 . -97) 31994) ((-461 . -97) 31944) ((-422 . -106) 31895) ((-224 . -156) 31874) ((-223 . -156) 31853) ((-388 . -967) 31827) ((-1103 . -890) 31788) ((-915 . -1015) T) ((-865 . -478) 31721) ((-454 . -727) T) ((-443 . -37) 31562) ((-388 . -106) 31529) ((-454 . -724) T) ((-916 . -280) 31467) ((-192 . -727) T) ((-192 . -724) T) ((-915 . -23) T) ((-645 . -123) T) ((-1117 . -370) 31437) ((-286 . -25) 31290) ((-153 . -381) 31274) ((-286 . -21) 31146) ((-283 . -25) T) ((-283 . -21) T) ((-789 . -338) T) ((-105 . -33) T) ((-450 . -585) 30996) ((-795 . -968) T) ((-540 . -260) 30971) ((-529 . -134) T) ((-517 . -134) T) ((-460 . -134) T) ((-1069 . -650) 30800) ((-1026 . -650) 30649) ((-1021 . -579) 30631) ((-783 . -650) 30601) ((-607 . -1108) T) ((-1 . -97) T) ((-214 . -557) 30353) ((-1127 . -381) 30337) ((-1082 . -280) 30141) ((-884 . -961) T) ((-668 . -961) T) ((-648 . -961) T) ((-583 . -1003) 30091) ((-965 . -585) 30075) ((-784 . -381) 30059) ((-475 . -97) T) ((-471 . -97) T) ((-221 . -280) 30046) ((-237 . -280) 30033) ((-884 . -296) 30012) ((-355 . -585) 29996) ((-447 . -280) 29800) ((-224 . -478) 29733) ((-607 . -952) 29631) ((-223 . -478) 29564) ((-1039 . -280) 29490) ((-751 . -1003) T) ((-731 . -967) 29474) ((-1146 . -258) 29459) ((-1139 . -258) 29444) ((-1118 . -258) 29292) ((-356 . -1003) T) ((-294 . -1003) T) ((-388 . -961) T) ((-153 . -968) T) ((-57 . -280) 29230) ((-731 . -106) 29209) ((-542 . -258) 29194) ((-482 . -280) 29132) ((-480 . -280) 29070) ((-462 . -280) 29008) ((-461 . -280) 28946) ((-388 . -207) 28925) ((-450 . -33) T) ((-920 . -558) 28855) ((-199 . -1003) T) ((-920 . -557) 28837) ((-888 . -557) 28819) ((-888 . -558) 28794) ((-836 . -557) 28776) ((-632 . -134) T) ((-634 . -842) T) ((-634 . -752) T) ((-397 . -557) 28758) ((-1021 . -21) T) ((-1021 . -25) T) ((-607 . -347) 28742) ((-111 . -842) T) ((-796 . -205) 28726) ((-76 . -1108) T) ((-121 . -120) 28710) ((-965 . -33) T) ((-1173 . -952) 28684) ((-1171 . -952) 28641) ((-1127 . -968) T) ((-784 . -968) T) ((-450 . -723) 28620) ((-325 . -1049) 28599) ((-322 . -1049) 28578) ((-314 . -1049) 28557) ((-450 . -726) 28508) ((-450 . -725) 28487) ((-201 . -33) T) ((-450 . -659) 28418) ((-58 . -456) 28402) ((-524 . -968) T) ((-1069 . -156) 28293) ((-1026 . -156) 28204) ((-972 . -1003) T) ((-992 . -871) 28151) ((-874 . -1003) T) ((-749 . -585) 28102) ((-714 . -871) 28072) ((-646 . -1003) T) ((-712 . -871) 28039) ((-480 . -254) 28023) ((-607 . -822) 27982) ((-449 . -1003) T) ((-423 . -871) 27949) ((-77 . -1108) T) ((-325 . -37) 27914) ((-322 . -37) 27879) ((-314 . -37) 27844) ((-237 . -37) 27693) ((-221 . -37) 27542) ((-832 . -1049) T) ((-564 . -134) 27521) ((-564 . -132) 27500) ((-112 . -134) T) ((-112 . -132) NIL) ((-384 . -659) T) ((-731 . -961) T) ((-313 . -421) T) ((-1146 . -918) 27466) ((-1139 . -918) 27432) ((-1118 . -918) 27398) ((-832 . -37) 27363) ((-199 . -650) 27328) ((-39 . -379) 27300) ((-289 . -46) 27270) ((-915 . -123) T) ((-747 . -1108) T) ((-157 . -842) T) ((-313 . -372) T) ((-483 . -260) 27247) ((-44 . -33) T) ((-747 . -952) 27076) ((-599 . -97) T) ((-591 . -21) T) ((-591 . -25) T) ((-1005 . -456) 27060) ((-1117 . -205) 27030) ((-611 . -1108) T) ((-219 . -97) 26980) ((-795 . -1003) T) ((-1075 . -585) 26905) ((-972 . -650) 26892) ((-664 . -967) 26735) ((-1069 . -478) 26683) ((-874 . -650) 26532) ((-1026 . -478) 26484) ((-449 . -650) 26333) ((-65 . -557) 26315) ((-664 . -106) 26137) ((-865 . -456) 26121) ((-1163 . -585) 26081) ((-749 . -659) T) ((-1071 . -967) 25964) ((-1070 . -967) 25799) ((-1064 . -967) 25589) ((-1027 . -967) 25472) ((-919 . -1112) T) ((-998 . -97) 25450) ((-747 . -347) 25420) ((-919 . -509) T) ((-1071 . -106) 25282) ((-1070 . -106) 25096) ((-1064 . -106) 24842) ((-1027 . -106) 24704) ((-1008 . -1006) 24668) ((-349 . -777) T) ((-1146 . -557) 24650) ((-1139 . -557) 24632) ((-1118 . -557) 24614) ((-1118 . -558) NIL) ((-214 . -260) 24591) ((-39 . -421) T) ((-199 . -156) T) ((-153 . -1003) T) ((-627 . -134) T) ((-627 . -132) NIL) ((-543 . -557) 24573) ((-542 . -557) 24555) ((-820 . -1003) T) ((-770 . -1003) T) ((-740 . -1003) T) ((-701 . -1003) T) ((-595 . -781) 24539) ((-612 . -1003) T) ((-747 . -822) 24472) ((-39 . -372) NIL) ((-1021 . -598) T) ((-795 . -650) 24417) ((-224 . -456) 24401) ((-223 . -456) 24385) ((-645 . -579) 24333) ((-590 . -585) 24307) ((-266 . -33) T) ((-664 . -961) T) ((-530 . -1160) 24294) ((-481 . -1160) 24271) ((-1127 . -1003) T) ((-1069 . -262) 24182) ((-1026 . -262) 24113) ((-972 . -156) T) ((-784 . -1003) T) ((-874 . -156) 24024) ((-714 . -1130) 24008) ((-583 . -478) 23941) ((-75 . -557) 23923) ((-664 . -296) 23888) ((-1075 . -659) T) ((-524 . -1003) T) ((-449 . -156) 23799) ((-219 . -280) 23737) ((-1040 . -1015) T) ((-68 . -557) 23719) ((-1163 . -659) T) ((-1071 . -961) T) ((-1070 . -961) T) ((-297 . -97) 23669) ((-1064 . -961) T) ((-1040 . -23) T) ((-1027 . -961) T) ((-89 . -1022) 23653) ((-790 . -1015) T) ((-1071 . -207) 23612) ((-1070 . -217) 23591) ((-1070 . -207) 23543) ((-1064 . -207) 23430) ((-1064 . -217) 23409) ((-289 . -822) 23315) ((-790 . -23) T) ((-153 . -650) 23143) ((-377 . -1112) T) ((-1004 . -338) T) ((-939 . -134) T) ((-919 . -333) T) ((-794 . -421) T) ((-865 . -258) 23120) ((-286 . -779) T) ((-283 . -779) NIL) ((-797 . -97) T) ((-645 . -25) T) ((-377 . -509) T) ((-645 . -21) T) ((-324 . -134) 23102) ((-324 . -132) T) ((-1045 . -1003) 23080) ((-422 . -653) T) ((-73 . -557) 23062) ((-109 . -779) T) ((-219 . -254) 23046) ((-214 . -967) 22944) ((-79 . -557) 22926) ((-668 . -338) 22879) ((-1073 . -760) T) ((-670 . -209) 22863) ((-1057 . -1108) T) ((-128 . -209) 22845) ((-214 . -106) 22736) ((-1127 . -650) 22565) ((-47 . -134) T) ((-795 . -156) T) ((-784 . -650) 22535) ((-451 . -1108) T) ((-874 . -478) 22481) ((-590 . -659) T) ((-524 . -650) 22468) ((-949 . -968) T) ((-449 . -478) 22406) ((-865 . -19) 22390) ((-865 . -550) 22367) ((-748 . -558) NIL) ((-748 . -557) 22349) ((-920 . -967) 22299) ((-383 . -557) 22281) ((-224 . -258) 22258) ((-223 . -258) 22235) ((-454 . -831) NIL) ((-286 . -29) 22205) ((-103 . -1108) T) ((-919 . -1015) T) ((-192 . -831) NIL) ((-836 . -967) 22157) ((-987 . -952) 22055) ((-920 . -106) 21982) ((-237 . -205) 21966) ((-670 . -628) 21950) ((-397 . -967) 21934) ((-349 . -968) T) ((-919 . -23) T) ((-836 . -106) 21865) ((-627 . -1097) NIL) ((-454 . -585) 21815) ((-103 . -806) 21797) ((-103 . -808) 21779) ((-627 . -1094) NIL) ((-192 . -585) 21729) ((-329 . -952) 21713) ((-323 . -952) 21697) ((-297 . -280) 21635) ((-315 . -952) 21619) ((-199 . -262) T) ((-397 . -106) 21598) ((-58 . -557) 21530) ((-153 . -156) T) ((-1021 . -779) T) ((-103 . -952) 21490) ((-814 . -1003) T) ((-766 . -968) T) ((-759 . -968) T) ((-627 . -34) NIL) ((-627 . -91) NIL) ((-283 . -909) 21451) ((-529 . -421) T) ((-517 . -421) T) ((-460 . -421) T) ((-377 . -333) T) ((-214 . -961) 21382) ((-1048 . -33) T) ((-446 . -842) T) ((-915 . -579) 21330) ((-224 . -550) 21307) ((-223 . -550) 21284) ((-987 . -347) 21268) ((-795 . -478) 21131) ((-214 . -207) 21084) ((-1056 . -1108) T) ((-756 . -557) 21066) ((-1174 . -1015) T) ((-1166 . -557) 21048) ((-1127 . -156) 20939) ((-103 . -347) 20921) ((-103 . -308) 20903) ((-972 . -262) T) ((-874 . -262) 20834) ((-731 . -338) 20813) ((-584 . -1108) T) ((-572 . -1108) T) ((-449 . -262) 20744) ((-524 . -156) T) ((-297 . -254) 20728) ((-1174 . -23) T) ((-1103 . -97) T) ((-1090 . -1003) T) ((-993 . -1003) T) ((-983 . -1003) T) ((-81 . -557) 20710) ((-644 . -97) T) ((-325 . -319) 20689) ((-552 . -1003) T) ((-322 . -319) 20668) ((-314 . -319) 20647) ((-444 . -1003) T) ((-1082 . -203) 20597) ((-237 . -226) 20559) ((-1040 . -123) T) ((-552 . -554) 20535) ((-987 . -822) 20468) ((-920 . -961) T) ((-836 . -961) T) ((-444 . -554) 20447) ((-1064 . -724) NIL) ((-1064 . -727) NIL) ((-1005 . -558) 20408) ((-447 . -203) 20358) ((-1005 . -557) 20340) ((-920 . -217) T) ((-920 . -207) T) ((-397 . -961) T) ((-879 . -1003) 20290) ((-836 . -217) T) ((-790 . -123) T) ((-632 . -421) T) ((-772 . -1015) 20269) ((-103 . -822) NIL) ((-1103 . -256) 20235) ((-796 . -777) 20214) ((-1016 . -1108) T) ((-827 . -659) T) ((-153 . -478) 20126) ((-915 . -25) T) ((-827 . -442) T) ((-377 . -1015) T) ((-454 . -726) T) ((-454 . -723) T) ((-832 . -319) T) ((-454 . -659) T) ((-192 . -726) T) ((-192 . -723) T) ((-915 . -21) T) ((-192 . -659) T) ((-772 . -23) 20078) ((-289 . -278) 20057) ((-950 . -209) 20003) ((-377 . -23) T) ((-865 . -558) 19964) ((-865 . -557) 19876) ((-583 . -456) 19860) ((-44 . -926) 19810) ((-301 . -557) 19792) ((-1016 . -952) 19621) ((-540 . -588) 19603) ((-540 . -343) 19585) ((-313 . -1160) 19562) ((-942 . -1108) T) ((-795 . -262) T) ((-1127 . -478) 19510) ((-445 . -1108) T) ((-432 . -1108) T) ((-534 . -97) T) ((-1069 . -258) 19437) ((-564 . -421) 19416) ((-916 . -911) 19400) ((-1166 . -352) 19372) ((-112 . -421) T) ((-1089 . -97) T) ((-996 . -1003) 19350) ((-949 . -1003) T) ((-815 . -779) T) ((-321 . -1112) T) ((-1146 . -967) 19233) ((-1016 . -347) 19203) ((-1139 . -967) 19038) ((-1118 . -967) 18828) ((-1146 . -106) 18690) ((-1139 . -106) 18504) ((-1118 . -106) 18250) ((-1103 . -280) 18237) ((-321 . -509) T) ((-335 . -557) 18219) ((-261 . -278) T) ((-543 . -967) 18192) ((-542 . -967) 18075) ((-331 . -1003) T) ((-292 . -1003) T) ((-224 . -557) 18036) ((-223 . -557) 17997) ((-919 . -123) T) ((-104 . -557) 17979) ((-575 . -23) T) ((-627 . -379) 17946) ((-551 . -23) T) ((-595 . -97) T) ((-543 . -106) 17917) ((-542 . -106) 17779) ((-349 . -1003) T) ((-306 . -97) T) ((-153 . -262) 17690) ((-1117 . -777) 17643) ((-647 . -968) T) ((-1045 . -478) 17576) ((-1016 . -822) 17509) ((-766 . -1003) T) ((-759 . -1003) T) ((-757 . -1003) T) ((-92 . -97) T) ((-131 . -779) T) ((-556 . -806) 17493) ((-105 . -1108) T) ((-992 . -97) T) ((-973 . -33) T) ((-714 . -97) T) ((-712 . -97) T) ((-430 . -97) T) ((-423 . -97) T) ((-214 . -727) 17444) ((-214 . -724) 17395) ((-586 . -97) T) ((-1127 . -262) 17306) ((-601 . -574) 17290) ((-583 . -258) 17267) ((-949 . -650) 17251) ((-524 . -262) T) ((-884 . -585) 17176) ((-1174 . -123) T) ((-668 . -585) 17136) ((-648 . -585) 17123) ((-248 . -97) T) ((-422 . -585) 17053) ((-49 . -97) T) ((-530 . -97) T) ((-481 . -97) T) ((-1146 . -961) T) ((-1139 . -961) T) ((-1118 . -961) T) ((-292 . -650) 17035) ((-1146 . -207) 16994) ((-1139 . -217) 16973) ((-1139 . -207) 16925) ((-1118 . -207) 16812) ((-1118 . -217) 16791) ((-1103 . -37) 16688) ((-543 . -961) T) ((-542 . -961) T) ((-920 . -727) T) ((-920 . -724) T) ((-888 . -727) T) ((-888 . -724) T) ((-796 . -968) T) ((-794 . -793) 16672) ((-627 . -421) T) ((-349 . -650) 16637) ((-388 . -585) 16611) ((-645 . -779) 16590) ((-644 . -37) 16555) ((-542 . -207) 16514) ((-39 . -657) 16486) ((-321 . -299) 16463) ((-321 . -333) T) ((-987 . -278) 16414) ((-265 . -1015) 16296) ((-1009 . -1108) T) ((-155 . -97) T) ((-1121 . -557) 16263) ((-772 . -123) 16215) ((-583 . -1142) 16199) ((-766 . -650) 16169) ((-759 . -650) 16139) ((-450 . -1108) T) ((-329 . -278) T) ((-323 . -278) T) ((-315 . -278) T) ((-583 . -550) 16116) ((-377 . -123) T) ((-483 . -603) 16100) ((-103 . -278) T) ((-265 . -23) 15984) ((-483 . -588) 15968) ((-627 . -372) NIL) ((-483 . -343) 15952) ((-89 . -1003) 15930) ((-103 . -937) T) ((-517 . -130) T) ((-1153 . -138) 15914) ((-450 . -952) 15743) ((-1140 . -132) 15704) ((-1140 . -134) 15665) ((-965 . -1108) T) ((-910 . -557) 15647) ((-787 . -557) 15629) ((-748 . -967) 15472) ((-992 . -280) 15459) ((-201 . -1108) T) ((-714 . -280) 15446) ((-712 . -280) 15433) ((-748 . -106) 15255) ((-423 . -280) 15242) ((-1069 . -558) NIL) ((-1069 . -557) 15224) ((-1026 . -557) 15206) ((-1026 . -558) 14954) ((-949 . -156) T) ((-783 . -557) 14936) ((-865 . -260) 14913) ((-552 . -478) 14661) ((-750 . -952) 14645) ((-444 . -478) 14405) ((-884 . -659) T) ((-668 . -659) T) ((-648 . -659) T) ((-321 . -1015) T) ((-1076 . -557) 14387) ((-197 . -97) T) ((-450 . -347) 14357) ((-479 . -1003) T) ((-474 . -1003) T) ((-472 . -1003) T) ((-731 . -585) 14331) ((-939 . -421) T) ((-879 . -478) 14264) ((-321 . -23) T) ((-575 . -123) T) ((-551 . -123) T) ((-324 . -421) T) ((-214 . -338) 14243) ((-349 . -156) T) ((-1138 . -968) T) ((-1117 . -968) T) ((-199 . -918) T) ((-632 . -357) T) ((-388 . -659) T) ((-634 . -1112) T) ((-1040 . -579) 14191) ((-529 . -793) 14175) ((-1057 . -1085) 14151) ((-634 . -509) T) ((-121 . -1003) 14129) ((-1166 . -967) 14113) ((-647 . -1003) T) ((-450 . -822) 14046) ((-595 . -37) 14016) ((-324 . -372) T) ((-286 . -134) 13995) ((-286 . -132) 13974) ((-111 . -509) T) ((-283 . -134) 13930) ((-283 . -132) 13886) ((-47 . -421) T) ((-146 . -1003) T) ((-142 . -1003) T) ((-1057 . -102) 13833) ((-714 . -1049) 13811) ((-623 . -33) T) ((-1166 . -106) 13790) ((-503 . -33) T) ((-451 . -102) 13774) ((-224 . -260) 13751) ((-223 . -260) 13728) ((-795 . -258) 13658) ((-44 . -1108) T) ((-748 . -961) T) ((-1075 . -46) 13635) ((-748 . -296) 13597) ((-992 . -37) 13446) ((-748 . -207) 13425) ((-714 . -37) 13254) ((-712 . -37) 13103) ((-423 . -37) 12952) ((-583 . -558) 12913) ((-583 . -557) 12825) ((-530 . -1049) T) ((-481 . -1049) T) ((-1045 . -456) 12809) ((-1095 . -1003) 12787) ((-1040 . -25) T) ((-1040 . -21) T) ((-443 . -968) T) ((-1118 . -724) NIL) ((-1118 . -727) NIL) ((-915 . -779) 12766) ((-751 . -557) 12748) ((-790 . -21) T) ((-790 . -25) T) ((-731 . -659) T) ((-157 . -1112) T) ((-530 . -37) 12713) ((-481 . -37) 12678) ((-356 . -557) 12660) ((-294 . -557) 12642) ((-153 . -258) 12600) ((-61 . -1108) T) ((-107 . -97) T) ((-796 . -1003) T) ((-157 . -509) T) ((-647 . -650) 12570) ((-265 . -123) 12454) ((-199 . -557) 12436) ((-199 . -558) 12366) ((-919 . -579) 12300) ((-1166 . -961) T) ((-1021 . -134) T) ((-572 . -1085) 12275) ((-664 . -831) 12254) ((-540 . -33) T) ((-584 . -102) 12238) ((-572 . -102) 12184) ((-1127 . -258) 12111) ((-664 . -585) 12036) ((-266 . -1108) T) ((-1075 . -952) 11934) ((-1064 . -831) NIL) ((-972 . -558) 11849) ((-972 . -557) 11831) ((-313 . -97) T) ((-224 . -967) 11729) ((-223 . -967) 11627) ((-364 . -97) T) ((-874 . -557) 11609) ((-874 . -558) 11470) ((-646 . -557) 11452) ((-1164 . -1102) 11421) ((-449 . -557) 11403) ((-449 . -558) 11264) ((-221 . -381) 11248) ((-237 . -381) 11232) ((-224 . -106) 11123) ((-223 . -106) 11014) ((-1071 . -585) 10939) ((-1070 . -585) 10836) ((-1064 . -585) 10688) ((-1027 . -585) 10613) ((-321 . -123) T) ((-80 . -410) T) ((-80 . -365) T) ((-919 . -25) T) ((-919 . -21) T) ((-796 . -650) 10565) ((-349 . -262) T) ((-153 . -918) 10517) ((-627 . -357) T) ((-915 . -913) 10501) ((-634 . -1015) T) ((-627 . -150) 10483) ((-1138 . -1003) T) ((-1117 . -1003) T) ((-286 . -1094) 10462) ((-286 . -1097) 10441) ((-1062 . -97) T) ((-286 . -880) 10420) ((-125 . -1015) T) ((-111 . -1015) T) ((-548 . -1151) 10404) ((-634 . -23) T) ((-548 . -1003) 10354) ((-89 . -478) 10287) ((-157 . -333) T) ((-286 . -91) 10266) ((-286 . -34) 10245) ((-552 . -456) 10179) ((-125 . -23) T) ((-111 . -23) T) ((-651 . -1003) T) ((-444 . -456) 10116) ((-377 . -579) 10064) ((-590 . -952) 9962) ((-879 . -456) 9946) ((-325 . -968) T) ((-322 . -968) T) ((-314 . -968) T) ((-237 . -968) T) ((-221 . -968) T) ((-795 . -558) NIL) ((-795 . -557) 9928) ((-1174 . -21) T) ((-524 . -918) T) ((-664 . -659) T) ((-1174 . -25) T) ((-224 . -961) 9859) ((-223 . -961) 9790) ((-70 . -1108) T) ((-224 . -207) 9743) ((-223 . -207) 9696) ((-39 . -97) T) ((-832 . -968) T) ((-1071 . -659) T) ((-1070 . -659) T) ((-1064 . -659) T) ((-1064 . -723) NIL) ((-1064 . -726) NIL) ((-843 . -97) T) ((-1027 . -659) T) ((-703 . -97) T) ((-608 . -97) T) ((-443 . -1003) T) ((-309 . -1015) T) ((-157 . -1015) T) ((-289 . -842) 9675) ((-1138 . -650) 9516) ((-796 . -156) T) ((-1117 . -650) 9330) ((-772 . -21) 9282) ((-772 . -25) 9234) ((-219 . -1047) 9218) ((-121 . -478) 9151) ((-377 . -25) T) ((-377 . -21) T) ((-309 . -23) T) ((-153 . -558) 8919) ((-153 . -557) 8901) ((-157 . -23) T) ((-583 . -260) 8878) ((-483 . -33) T) ((-820 . -557) 8860) ((-87 . -1108) T) ((-770 . -557) 8842) ((-740 . -557) 8824) ((-701 . -557) 8806) ((-612 . -557) 8788) ((-214 . -585) 8638) ((-1073 . -1003) T) ((-1069 . -967) 8461) ((-1048 . -1108) T) ((-1026 . -967) 8304) ((-783 . -967) 8288) ((-1069 . -106) 8090) ((-1026 . -106) 7912) ((-783 . -106) 7891) ((-1127 . -558) NIL) ((-1127 . -557) 7873) ((-313 . -1049) T) ((-784 . -557) 7855) ((-983 . -258) 7834) ((-78 . -1108) T) ((-920 . -831) NIL) ((-552 . -258) 7810) ((-1095 . -478) 7743) ((-454 . -1108) T) ((-524 . -557) 7725) ((-444 . -258) 7704) ((-192 . -1108) T) ((-992 . -205) 7688) ((-261 . -842) T) ((-749 . -278) 7667) ((-794 . -97) T) ((-714 . -205) 7651) ((-920 . -585) 7601) ((-879 . -258) 7578) ((-836 . -585) 7530) ((-575 . -21) T) ((-575 . -25) T) ((-551 . -21) T) ((-313 . -37) 7495) ((-627 . -657) 7462) ((-454 . -806) 7444) ((-454 . -808) 7426) ((-443 . -650) 7267) ((-192 . -806) 7249) ((-62 . -1108) T) ((-192 . -808) 7231) ((-551 . -25) T) ((-397 . -585) 7205) ((-454 . -952) 7165) ((-796 . -478) 7077) ((-192 . -952) 7037) ((-214 . -33) T) ((-916 . -1003) 7015) ((-1138 . -156) 6946) ((-1117 . -156) 6877) ((-645 . -132) 6856) ((-645 . -134) 6835) ((-634 . -123) T) ((-127 . -434) 6812) ((-595 . -593) 6796) ((-1045 . -557) 6728) ((-111 . -123) T) ((-446 . -1112) T) ((-552 . -550) 6704) ((-444 . -550) 6683) ((-306 . -305) 6652) ((-493 . -1003) T) ((-446 . -509) T) ((-1069 . -961) T) ((-1026 . -961) T) ((-783 . -961) T) ((-214 . -723) 6631) ((-214 . -726) 6582) ((-214 . -725) 6561) ((-1069 . -296) 6538) ((-214 . -659) 6469) ((-879 . -19) 6453) ((-454 . -347) 6435) ((-454 . -308) 6417) ((-1026 . -296) 6389) ((-324 . -1160) 6366) ((-192 . -347) 6348) ((-192 . -308) 6330) ((-879 . -550) 6307) ((-1069 . -207) T) ((-601 . -1003) T) ((-1149 . -1003) T) ((-1082 . -1003) T) ((-992 . -226) 6246) ((-325 . -1003) T) ((-322 . -1003) T) ((-314 . -1003) T) ((-237 . -1003) T) ((-221 . -1003) T) ((-82 . -1108) T) ((-122 . -97) 6224) ((-116 . -97) 6202) ((-1082 . -554) 6181) ((-447 . -1003) T) ((-1039 . -1003) T) ((-447 . -554) 6160) ((-224 . -727) 6111) ((-224 . -724) 6062) ((-223 . -727) 6013) ((-39 . -1049) NIL) ((-223 . -724) 5964) ((-987 . -842) 5915) ((-920 . -726) T) ((-920 . -723) T) ((-920 . -659) T) ((-888 . -726) T) ((-836 . -659) T) ((-89 . -456) 5899) ((-454 . -822) NIL) ((-832 . -1003) T) ((-199 . -967) 5864) ((-796 . -262) T) ((-192 . -822) NIL) ((-765 . -1015) 5843) ((-57 . -1003) 5793) ((-482 . -1003) 5771) ((-480 . -1003) 5721) ((-462 . -1003) 5699) ((-461 . -1003) 5649) ((-529 . -97) T) ((-517 . -97) T) ((-460 . -97) T) ((-443 . -156) 5580) ((-329 . -842) T) ((-323 . -842) T) ((-315 . -842) T) ((-199 . -106) 5529) ((-765 . -23) 5481) ((-397 . -659) T) ((-103 . -842) T) ((-39 . -37) 5426) ((-103 . -752) T) ((-530 . -319) T) ((-481 . -319) T) ((-1117 . -478) 5286) ((-286 . -421) 5265) ((-283 . -421) T) ((-766 . -258) 5244) ((-309 . -123) T) ((-157 . -123) T) ((-265 . -25) 5109) ((-265 . -21) 4993) ((-44 . -1085) 4972) ((-64 . -557) 4954) ((-814 . -557) 4936) ((-548 . -478) 4869) ((-44 . -102) 4819) ((-1005 . -395) 4803) ((-1005 . -338) 4782) ((-973 . -1108) T) ((-972 . -967) 4769) ((-874 . -967) 4612) ((-449 . -967) 4455) ((-601 . -650) 4439) ((-972 . -106) 4424) ((-874 . -106) 4246) ((-446 . -333) T) ((-325 . -650) 4198) ((-322 . -650) 4150) ((-314 . -650) 4102) ((-237 . -650) 3951) ((-221 . -650) 3800) ((-865 . -588) 3784) ((-449 . -106) 3606) ((-1154 . -97) T) ((-865 . -343) 3590) ((-1118 . -831) NIL) ((-72 . -557) 3572) ((-884 . -46) 3551) ((-562 . -1015) T) ((-1 . -1003) T) ((-632 . -97) T) ((-1153 . -97) 3501) ((-1146 . -585) 3426) ((-1139 . -585) 3323) ((-121 . -456) 3307) ((-1090 . -557) 3289) ((-993 . -557) 3271) ((-360 . -23) T) ((-983 . -557) 3253) ((-85 . -1108) T) ((-1118 . -585) 3105) ((-832 . -650) 3070) ((-562 . -23) T) ((-552 . -557) 3052) ((-552 . -558) NIL) ((-444 . -558) NIL) ((-444 . -557) 3034) ((-475 . -1003) T) ((-471 . -1003) T) ((-321 . -25) T) ((-321 . -21) T) ((-122 . -280) 2972) ((-116 . -280) 2910) ((-543 . -585) 2897) ((-199 . -961) T) ((-542 . -585) 2822) ((-349 . -918) T) ((-199 . -217) T) ((-199 . -207) T) ((-879 . -558) 2783) ((-879 . -557) 2695) ((-794 . -37) 2682) ((-1138 . -262) 2633) ((-1117 . -262) 2584) ((-1021 . -421) T) ((-467 . -779) T) ((-286 . -1037) 2563) ((-915 . -134) 2542) ((-915 . -132) 2521) ((-460 . -280) 2508) ((-266 . -1085) 2487) ((-446 . -1015) T) ((-795 . -967) 2432) ((-564 . -97) T) ((-1095 . -456) 2416) ((-224 . -338) 2395) ((-223 . -338) 2374) ((-266 . -102) 2324) ((-972 . -961) T) ((-112 . -97) T) ((-874 . -961) T) ((-795 . -106) 2241) ((-446 . -23) T) ((-449 . -961) T) ((-972 . -207) T) ((-874 . -296) 2210) ((-449 . -296) 2167) ((-325 . -156) T) ((-322 . -156) T) ((-314 . -156) T) ((-237 . -156) 2078) ((-221 . -156) 1989) ((-884 . -952) 1887) ((-668 . -952) 1858) ((-1008 . -97) T) ((-996 . -557) 1825) ((-949 . -557) 1807) ((-1146 . -659) T) ((-1139 . -659) T) ((-1118 . -723) NIL) ((-153 . -967) 1717) ((-1118 . -726) NIL) ((-832 . -156) T) ((-1118 . -659) T) ((-1164 . -138) 1701) ((-919 . -312) 1675) ((-916 . -478) 1608) ((-772 . -779) 1587) ((-517 . -1049) T) ((-443 . -262) 1538) ((-543 . -659) T) ((-331 . -557) 1520) ((-292 . -557) 1502) ((-388 . -952) 1400) ((-542 . -659) T) ((-377 . -779) 1351) ((-153 . -106) 1240) ((-765 . -123) 1192) ((-670 . -138) 1176) ((-1153 . -280) 1114) ((-454 . -278) T) ((-349 . -557) 1081) ((-483 . -926) 1065) ((-349 . -558) 979) ((-192 . -278) T) ((-128 . -138) 961) ((-647 . -258) 940) ((-454 . -937) T) ((-529 . -37) 927) ((-517 . -37) 914) ((-460 . -37) 879) ((-192 . -937) T) ((-795 . -961) T) ((-766 . -557) 861) ((-759 . -557) 843) ((-757 . -557) 825) ((-748 . -831) 804) ((-1175 . -1015) T) ((-1127 . -967) 627) ((-784 . -967) 611) ((-795 . -217) T) ((-795 . -207) NIL) ((-623 . -1108) T) ((-1175 . -23) T) ((-748 . -585) 536) ((-503 . -1108) T) ((-388 . -308) 520) ((-524 . -967) 507) ((-1127 . -106) 309) ((-634 . -579) 291) ((-784 . -106) 270) ((-351 . -23) T) ((-1082 . -478) 30)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 35fc1d7b..e4492c87 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,3 +1,3 @@
-(30 . 3269429128)
-(4170 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |Any| |AnyFunctions1| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArray| |OneDimensionalArrayFunctions2| |TwoDimensionalArray| |Asp1| |Asp10| |Asp12| |Asp19| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp4| |Asp41| |Asp42| |Asp49| |Asp50| |Asp55| |Asp6| |Asp7| |Asp73| |Asp74| |Asp77| |Asp78| |Asp8| |Asp80| |Asp9| |AssociatedEquations| |ArrayStack| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |BinaryFile| |Bits| |BiModule| |Boolean| |BasicOperator| |BasicOperatorFunctions1| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensor| |CartesianTensorFunctions2| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |Complex| |ComplexFunctions2| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| |DirectProductCategory| |DirectProduct| |DirectProductFunctions2| |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctionsForPoints| |DrawOption| |DrawOptionFunctions0| |DrawOptionFunctions1| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| |EntireRing| |EigenPackage| |Equation| |EquationFunctions2| |EqTable| |ErrorFunctions| |ExpressionSpace&| |ExpressionSpace| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage| |ExpertSystemContinuityPackage1| |ExpertSystemToolsPackage| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |EuclideanDomain&| |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| |ExponentialExpansion| |Expression| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |ExpressionSpaceODESolver| |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| |FortranCodePackage1| |FiniteDivisor| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| |FiniteField| |FunctionFieldCategory&| |FunctionFieldCategory| |FunctionFieldCategoryFunctions2| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldNormalBasisExtension| |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage| |FiniteFieldPolynomialPackage2| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |File| |FileCategory| |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FiniteLinearAggregateFunctions2| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |Float| |FloatingComplexPackage| |FloatingRealPackage| |FreeModule| |FreeModule1| |FortranMatrixCategory| |FreeModuleCat| |FortranMatrixFunctionCategory| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat| |ScriptFormulaFormat1| |FortranPackage| |FortranProgramCategory| |FortranFunctionCategory| |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |Factored| |FactoredFunctions2| |Fraction| |FractionFunctions2| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdeal| |FractionalIdealFunctions2| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |FactoredFunctionUtilities| |FunctionSpace&| |FunctionSpace| |FunctionSpaceFunctions2| |FunctionSpaceToExponentialExpansion| |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregate&| |FiniteSetAggregate| |FiniteSetAggregateFunctions2| |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranType| |FortranTemplate| |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |GroebnerPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GcdDomain&| |GcdDomain| |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductObject| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputForm| |InputFormFunctions1| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| |Integer| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| |IntegrationResult| |IntegrationResultFunctions2| |IntegrationResultToFunction| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |Kernel| |KernelFunctions2| |CoercibleTo| |ConvertibleTo| |Kovacic| |LocalAlgebra| |LeftAlgebra&| |LeftAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunction| |LiouvillianFunctionCategory| |LinGroebnerPackage| |Library| |AssociatedLieAlgebra| |LieAlgebra&| |LieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |List| |ListFunctions2| |ListToMap| |ListFunctions3| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |Localize| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage| |LinearSystemMatrixPackage1| |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategory&| |MatrixCategory| |MatrixCategoryFunctions2| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |Multiset| |MultisetAggregate| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| |None| |NoneFunctions1| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OctonionCategory&| |OctonionCategory| |OrderedCancellationAbelianMonoid| |Octonion| |OctonionCategoryFunctions2| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OpenMath| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathError| |OpenMathErrorKind| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| |OnePointCompletion| |OnePointCompletionFunctions2| |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletion| |OrderedCompletionFunctions2| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrdSetInts| |OutputPackage| |OutputForm| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| |PAdicInteger| |PAdicIntegerCategory| |PAdicRational| |PAdicRationalConstructor| |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResult| |PatternMatchResultFunctions2| |Pattern| |PatternFunctions1| |PatternFunctions2| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| |Permutation| |Permanent| |PermutationCategory| |PermutationGroup| |PrimeField| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| |PositiveInteger| |PiCoercions| |PrincipalIdealDomain| |PolynomialInterpolation| |PolynomialInterpolationAlgorithms| |ParametricLinearEquations| |Plot| |PlotFunctions1| |Plot3D| |PlotTools| |PatternMatchAssertions| |FunctionSpaceAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| |AttachPredicates| |FunctionSpaceAttachPredicates| |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| |PolToPol| |RealPolynomialUtilitiesPackage| |Polynomial| |PolynomialFunctions2| |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| |PolynomialRoots| |PlottablePlaneCurveCategory| |PolynomialRing| |PrecomputedAssociatedEquations| |PrimitiveArray| |PrimitiveArrayFunctions2| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |Product| |PriorityQueueAggregate| |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| |PushVariables| |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet| |QuasiAlgebraicSet2| |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategory&| |QuotientFieldCategory| |QuotientFieldCategoryFunctions2| |QuadraticForm| |QueueAggregate| |Quaternion| |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| |RealConstant| |RealZeroPackage| |RealZeroPackageQ| |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RadicalEigenPackage| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RationalFunction| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RewriteRule| |RuleCalled| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtension| |SimpleAlgebraicExtensionAlgFactor| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |Segment| |SegmentFunctions2| |SegmentBinding| |SegmentBindingFunctions2| |SegmentCategory| |SegmentExpansionCategory| |Set| |SetAggregate&| |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |SExpression| |SExpressionCategory| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| |Stream| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctions| |StreamTranscendentalFunctionsNonCommutative| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomial| |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |SystemSolvePackage| |TableauxBumpers| |Table| |Tableau| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat| |TexFormat1| |TextFile| |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TaylorSeries| |TriangularSetCategory&| |TriangularSetCategory| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateLaurentSeries| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructor| |UnivariateFactorize| |UniversalSegment| |UniversalSegmentFunctions2| |UnivariatePolynomial| |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePolynomialCategoryFunctions2| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeries| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeriesODESolver| |UTSodetools| |Variable| |VectorCategory&| |VectorCategory| |Vector| |VectorFunctions2| |ViewportPackage| |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |ExtensionField&| |ExtensionField| |XFreeAlgebra| |XPBWPolynomial| |XPolynomial| |XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| |Union| |Category| |sincos| |intPatternMatch| |apply| |axes| |compdegd| |concat!| |setLabelValue| |ptFunc| |triangular?| |first| |ratDenom| |realEigenvalues| |toroidal| |inverseLaplace| |ravel| |iitanh| |lSpaceBasis| |swapRows!| |rest| |any?| |degree| |removeRoughlyRedundantFactorsInPol| |sec2cos| |setelt!| |reshape| |numberOfComponents| |overlabel| |removeRedundantFactors| |purelyAlgebraicLeadingMonomial?| |replaceKthElement| |startStats!| |map| |gcdcofact| |mapmult| |generateIrredPoly| |isAbsolutelyIrreducible?| |unrankImproperPartitions1| |collectQuasiMonic| |laguerre| |algebraicOf| |select!| |pointColorPalette| |besselY| |leftExtendedGcd| |readIfCan!| |bipolar| |printInfo!| |iicsch| |coerceImages| |setStatus| |changeThreshhold| |laplacian| |mathieu24| |multiEuclidean| |cAcos| |yRange| |decimal| |makeSeries| |curryRight| |OMgetError| |expenseOfEvaluationIF| |aLinear| |update| |double?| |sumOfSquares| |prevPrime| |oddlambert| |convert| GE |allRootsOf| |extract!| |maxrow| |resultantEuclideannaif| |wordInStrongGenerators| |findCycle| |imagk| |monic?| |rules| |cubic| |pop!| |explimitedint| |eq?| |brillhartTrials| |doubleDisc| |cond| |check| |complete| |reducedDiscriminant| |endSubProgram| |useNagFunctions| |rootsOf| |clipWithRanges| |associative?| |charthRoot| |inverseIntegralMatrixAtInfinity| |integralDerivationMatrix| |inf| |assign| |subNodeOf?| |and| |divisor| |fixedDivisor| |OMreadFile| |inverseColeman| |isPlus| |rationalPoints| |areEquivalent?| |leastAffineMultiple| |opeval| |rdregime| |resultantEuclidean| |scalarMatrix| |dot| |exprToUPS| |factorsOfCyclicGroupSize| |showTypeInOutput| |safetyMargin| |primintfldpoly| |binomial| |OMunhandledSymbol| |extractSplittingLeaf| |getMultiplicationTable| |coefficients| |romberg| |symmetricSquare| |split!| |matrixGcd| |fortranCompilerName| |increment| |evaluateInverse| |acothIfCan| |OMputError| |left| |startPolynomial| |normalForm| |lift| |primitiveElement| |integralRepresents| |supDimElseRittWu?| |right| |car| |OMbindTCP| |max| |OMputEndApp| |genericRightTraceForm| |uniform| |highCommonTerms| |inspect| |cdr| |closedCurve| |diff| |selectFiniteRoutines| |changeWeightLevel| |jacobi| |moduleSum| |option?| |separate| |quoByVar| |kmax| |symbolIfCan| |partialQuotients| |nthRoot| |totalGroebner| |comparison| |closeComponent| |alternatingGroup| |supersub| |t| |createPrimitiveElement| |SFunction| |doubleRank| |integralLastSubResultant| |outputFloating| |invertible?| |one?| |module| |level| |trueEqual| |elRow1!| |atanIfCan| |monomRDEsys| |character?| |associator| |linearDependence| |redmat| |listexp| |rightMult| |compactFraction| |BumInSepFFE| |stFunc1| |separateFactors| |viewSizeDefault| |c02aff| |reducedForm| |reverse!| |limitedIntegrate| |c02agf| |setchildren!| |reduceByQuasiMonic| |rectangularMatrix| |sortConstraints| |strongGenerators| |last| |simplifyPower| |iiasin| |delete!| |completeSmith| |c05adf| |checkPrecision| |representationType| |printingInfo?| |An| |cardinality| |scripted?| |terms| |c05nbf| NOT |rootPower| |iFTable| |subPolSet?| |csubst| |nullary?| |redPol| |c05pbf| OR |applyRules| |empty?| |roughEqualIdeals?| |removeSquaresIfCan| |localAbs| |stiffnessAndStabilityFactor| |c06eaf| AND |iiperm| |orthonormalBasis| |complementaryBasis| |sign| |laurentRep| |LyndonWordsList1| |c06ebf| |zeroVector| |complexEigenvectors| |youngGroup| |c06ecf| |radicalEigenvalues| |child| |OMputBind| |adaptive| |duplicates?| |groebSolve| |multiset| |c06ekf| |complexElementary| |expandTrigProducts| |makeVariable| |ramified?| |outputFixed| |c06fpf| |trapezoidal| |coerceListOfPairs| |supRittWu?| |union| |logGamma| |scaleRoots| |expenseOfEvaluation| |subspace| |computePowers| |c06fqf| |viewThetaDefault| |twist| |prime| |horizConcat| |round| |intChoose| |cycleTail| |c06frf| |modTree| |expint| |getCurve| |linearMatrix| |moreAlgebraic?| |createLowComplexityTable| |c06fuf| |homogeneous?| |lowerPolynomial| |myDegree| |tanhIfCan| |delete| |whatInfinity| |c06gbf| |viewWriteDefault| |leftRegularRepresentation| |insert| |reorder| |cExp| |OMputInteger| |options| |c06gcf| |mainVariable?| |stoseLastSubResultant| |assoc| * |eigenvector| |edf2fi| |rootBound| |bumprow| |ranges| |taylorRep| |c06gqf| |differentialVariables| |integerIfCan| |monicRightFactorIfCan| |mainPrimitivePart| |infieldIntegrate| |approxSqrt| |c06gsf| |normalDeriv| |genericRightMinimalPolynomial| |overbar| |keys| |tanSum| |commutativeEquality| |d01ajf| |tab| |range| |weight| UTS2UP |d01akf| |OMgetEndBind| |asinIfCan| |tail| |pushup| |associatedSystem| |cartesian| |stop| |unitNormal| |outputMeasure| |makeResult| |d01alf| |indicialEquation| |bitCoef| |maxIndex| |d01amf| |maxPoints3D| |shift| |remove| |OMgetVariable| |generic?| |quotientByP| |showFortranOutputStack| |fortranCarriageReturn| |radicalRoots| |d01anf| |rubiksGroup| |rightLcm| |null?| |decreasePrecision| |unexpand| |d01apf| |generalInfiniteProduct| |particularSolution| |curve| |OMputEndAttr| |argscript| |algintegrate| |useSingleFactorBound?| |linearPart| |expintfldpoly| |stronglyReduced?| |bitTruth| |zeroDimensional?| |OMputEndError| |d01aqf| |monicDivide| |pdf2df| |generalizedEigenvector| |changeName| |prinshINFO| |squareFree| |diagonals| |d01asf| |univariatePolynomial| |iilog| |second| |d01bbf| |diagonal| |minRowIndex| |gramschmidt| |typeList| |wordsForStrongGenerators| |parabolicCylindrical| |morphism| |d01fcf| |removeZeroes| |factors| |insertionSort!| |quasiComponent| |gderiv| |mkPrim| |d01gaf| |SturmHabicht| |UpTriBddDenomInv| |hasTopPredicate?| |bernoulliB| |linearDependenceOverZ| |sizeMultiplication| |hasSolution?| |modularGcd| |d01gbf| |initiallyReduced?| |rst| |computeBasis| |d02bbf| |setvalue!| |viewport3D| |basicSet| |mathieu12| |univariatePolynomials| |flexibleArray| |leftDiscriminant| |returnTypeOf| |cscIfCan| |d02bhf| |OMcloseConn| |complexExpand| |clearTable!| |nonSingularModel| |cyclicParents| |getBadValues| |harmonic| |d02cjf| |accuracyIF| |unrankImproperPartitions0| |biRank| |socf2socdf| |inverse| |univariateSolve| |invertibleSet| |d02ejf| |mapExpon| |chiSquare| |exprHasLogarithmicWeights| |top!| |lazyPseudoQuotient| |triangSolve| |exQuo| |d02gaf| |prime?| |identityMatrix| |singleFactorBound| |elRow2!| |stoseInternalLastSubResultant| |resultantReduit| |positiveSolve| |log| |d02gbf| |numberOfOperations| |collectUpper| |unit?| |normal01| |taylorIfCan| |stoseInvertible?sqfreg| |d02kef| |commonDenominator| |subQuasiComponent?| |makeSketch| |high| |nrows| |iflist2Result| |d02raf| |diagonalProduct| |nextsousResultant2| |rangeIsFinite| |points| |nextSubsetGray| |d03edf| |head| |ode1| |iiacsc| |functionIsOscillatory| |d03eef| |roughBase?| |colorDef| |OMgetEndAttr| |drawComplexVectorField| |lowerCase!| |repeatUntilLoop| |genericPosition| |d03faf| |poisson| |modifyPointData| |slex| |deepestInitial| |someBasis| |append| |interpolate| |oddInfiniteProduct| |OMgetBind| |e01baf| |integer?| |asimpson| |lambda| |rowEchelonLocal| |function| |e01bef| |B1solve| |yCoord| |decompose| |roughBasicSet| |cRationalPower| |graphStates| |e01bff| |OMconnectTCP| |extendedResultant| |interReduce| |rational?| |lcm| |e01bgf| |totalDegree| |cosSinInfo| |patternVariable| |setOrder| |slash| |makeSUP| |basisOfCommutingElements| |innerSolve1| |irreducibleFactors| |e01bhf| |augment| |critM| |const| |polar| |clikeUniv| |e01daf| |phiCoord| RF2UTS |complexRoots| |HenselLift| |fortranComplex| |abs| |e01saf| |rightFactorIfCan| |viewPhiDefault| |clipPointsDefault| |quasiAlgebraicSet| |makeFR| |lprop| |e01sbf| |halfExtendedSubResultantGcd1| |besselJ| |dmp2rfi| |transcendenceDegree| |lfextendedint| |content| |mathieu23| |e01sef| |extractPoint| |unit| |tan2cot| |seriesSolve| |mainForm| |e01sff| |minimize| |e02adf| |returns| |compiledFunction| |partialNumerators| |e02aef| |resultant| |mathieu22| |initializeGroupForWordProblem| |padecf| |innerSolve| |oblateSpheroidal| |smith| |e02agf| |blankSeparate| |product| |boundOfCauchy| |e02ahf| |resetVariableOrder| |initiallyReduce| |structuralConstants| |symmetricProduct| |leftUnits| |decrease| |bezoutResultant| |printCode| |multMonom| |e02ajf| |interpret| |getOrder| |recolor| |subResultantGcdEuclidean| |e02akf| |aCubic| |simpleBounds?| |removeZero| |e02baf| |simplify| |qqq| |lazyPrem| |width| |halfExtendedSubResultantGcd2| |exactQuotient!| |sparsityIF| |logical?| |e02bbf| |factorSquareFreeByRecursion| |iisqrt2| |lfintegrate| |minimalPolynomial| |e02bcf| |radicalEigenvectors| |OMputApp| |block| |cCoth| |paraboloidal| |e02bdf| |ridHack1| |point| |exponential| |createMultiplicationTable| |dimensionOfIrreducibleRepresentation| |e02bef| |linearAssociatedLog| |bottom!| |bit?| |OMputEndBind| |e02daf| |OMReadError?| |OMgetAtp| |rangePascalTriangle| |RittWuCompare| |e02dcf| |isOp| |viewPosDefault| |red| |e02ddf| |acoshIfCan| |changeBase| |unitVector| |e02def| |OMgetEndAtp| |preprocess| |getStream| |pushdown| |mantissa| |primeFactor| |e02dff| |box| |LiePolyIfCan| |complexZeros| |mapSolve| |elliptic?| |e02gaf| |internalSubQuasiComponent?| |leftDivide| |debug| |e02zaf| |viewDeltaXDefault| |iisech| |palgextint| |meshFun2Var| |e04dgf| |generalTwoFactor| |torsion?| |palgLODE| |e04fdf| |Zero| |LazardQuotient| |remainder| |operator| |e04gcf| |subResultantGcd| |nextPrime| |e04jaf| |makeYoungTableau| |outputAsScript| |OMgetEndError| |e04mbf| |dequeue!| |mapBivariate| |euclideanSize| |e04naf| |reverseLex| |moebiusMu| |selectNonFiniteRoutines| |e04ucf| |imagi| |plotPolar| |fglmIfCan| |e04ycf| |genericLeftTraceForm| |lflimitedint| |graphImage| |f01brf| |virtualDegree| |showScalarValues| |rationalFunction| |f01bsf| |numericalIntegration| |cfirst| |iiacoth| |f01maf| |fullPartialFraction| |rightRecip| LE |infinite?| |f01mcf| |palgextint0| |reduceLODE| Y |removeSuperfluousCases| |f01qcf| |setright!| |integralBasis| |firstNumer| |f01qdf| |PDESolve| |lyndon?| |clearTheIFTable| |f01qef| |viewZoomDefault| |qelt| |dequeue| |f01rcf| |optpair| |rightTrace| |subresultantVector| |f01rdf| |LyndonCoordinates| |filename| |ListOfTerms| |makeFloatFunction| |f01ref| |birth| |univcase| |divisors| |f02aaf| |removeConstantTerm| |legendreP| |primes| |f02abf| |One| |btwFact| LODO2FUN |normal?| |f02adf| |euclideanNormalForm| |f02aef| |distance| |rowEchelon| |position| |LyndonWordsList| |pquo| |selectPolynomials| |f02aff| |f02agf| |completeEchelonBasis| |coth2tanh| |lagrange| |createPrimitiveNormalPoly| |f02ajf| |midpoint| |repeating| |unaryFunction| |f02akf| |generate| |xor| |simplifyExp| |f02awf| |makeprod| |hcrf| |monicModulo| |rightUnit| |incrementBy| |f02axf| |symFunc| |withPredicates| |children| |f02bbf| |solveRetract| |normalized?| |base| |errorKind| |expand| |clearCache| |nand| |generalizedContinuumHypothesisAssumed| |null| |purelyAlgebraic?| |f02bjf| |filterWhile| |eyeDistance| |complex| |commutative?| |numberOfDivisors| |complexLimit| |f02fjf| |filterUntil| |zeroDimPrime?| |minPoly| |discreteLog| |listConjugateBases| |f02wef| |select| |nilFactor| |exp| |multiEuclideanTree| |swap!| |leftRecip| |f02xef| |queue| |cn| |var2Steps| |ScanArabic| |reopen!| |f04adf| |isPower| |iicosh| |positiveRemainder| |pi| |integer| |f04arf| |lhs| |elt| |drawCurves| |asecIfCan| |hexDigit| |string| |redPo| |f04asf| |mesh?| |rhs| |expintegrate| |float| |neglist| |lastSubResultant| |topFortranOutputStack| |f04atf| |tanIfCan| |rootPoly| |makeRecord| |extractIndex| |f04axf| |numberOfFractionalTerms| |gbasis| |infinity| |f04faf| |univariatePolynomialsGcds| |sylvesterSequence| |antiCommutator| |selectOrPolynomials| |clipParametric| |lfunc| |f04jgf| |relativeApprox| |selectPDERoutines| |plusInfinity| |iroot| |prepareSubResAlgo| |Ci| |f04maf| |sorted?| |iisqrt3| |enqueue!| |f04mbf| |subHeight| |hyperelliptic| |minusInfinity| |mapMatrixIfCan| |bumptab1| |f04mcf| |trunc| |getPickedPoints| |modularGcdPrimitive| |normalise| |generalLambert| |f04qaf| |cyclotomicDecomposition| |f07adf| |atrapezoidal| |lastSubResultantElseSplit| |bat1| |unparse| |getZechTable| |createLowComplexityNormalBasis| |octon| |f07aef| |normDeriv2| |extractTop!| |zeroSetSplit| |sts2stst| |f07fdf| |simplifyLog| |sdf2lst| |rur| |f07fef| |csc2sin| |LagrangeInterpolation| |s01eaf| |quasiRegular?| |leftRemainder| |coordinates| |rarrow| |setRealSteps| |monomialIntegrate| |cAtanh| |s13aaf| |normal| |untab| |escape| |problemPoints| |gradient| |call| |s13acf| |acschIfCan| |curry| |makeop| |s13adf| |discriminantEuclidean| |checkRur| |vark| |pr2dmp| |s14aaf| |cotIfCan| |besselI| |close| |shiftRoots| |OMserve| |coefChoose| |s14abf| |addBadValue| |Nul| |ksec| |numerator| |s14baf| |generalPosition| |style| |limit| |s15adf| |outerProduct| |calcRanges| |display| |basisOfNucleus| |OMgetType| |cyclicCopy| |s15aef| |reduced?| |integral?| |super| |s17acf| |airyBi| |ScanFloatIgnoreSpaces| |binaryTree| |dioSolve| |OMgetInteger| |s17adf| |appendPoint| |leftZero| |rationalPoint?| |s17aef| |commutator| |safeFloor| |constantOpIfCan| |outputGeneral| |s17aff| |abelianGroup| |value| |certainlySubVariety?| |s17agf| |nthFactor| |ParCond| |imagE| |qsetelt!| |s17ahf| |divideExponents| |evenlambert| |rightQuotient| |packageCall| |library| |palgintegrate| |positive?| |s17ajf| |rightFactorCandidate| |stoseInvertibleSetreg| |oneDimensionalArray| |rationalPower| |inc| |s17akf| |leftAlternative?| |s17dcf| |recip| |midpoints| |numberOfCycles| |constDsolve| |s17def| |lineColorDefault| |optimize| |removeSinhSq| |OMgetEndObject| |selectIntegrationRoutines| |rootOfIrreduciblePoly| |musserTrials| |write!| |s17dgf| |separateDegrees| |spherical| |coleman| |s17dhf| |postfix| |setlast!| |rquo| |KrullNumber| |binaryFunction| |wholePart| |set| |writable?| |headRemainder| |ReduceOrder| |useEisensteinCriterion?| |show| |makeCos| |lazyIrreducibleFactors| |singularitiesOf| |pToHdmp| |sumSquares| |complexNormalize| |mapCoef| |member?| |true| |merge!| |cCot| |fortranTypeOf| |evenInfiniteProduct| |invertibleElseSplit?| |satisfy?| |iiatan| |cross| |prepareDecompose| |shiftLeft| |expextendedint| |Lazard| |trace| |lazyPremWithDefault| |newSubProgram| |rspace| |arity| |drawStyle| |derivationCoordinates| |seed| |iitan| |constantToUnaryFunction| |pointData| |cAcoth| |listOfLists| |basisOfRightNucloid| |traceMatrix| |parametersOf| |symmetricGroup| |corrPoly| |multiple?| |clearTheSymbolTable| |mainCharacterization| |rightRank| |rischNormalize| |crushedSet| |exteriorDifferential| |distdfact| |semiSubResultantGcdEuclidean1| |OMsend| |rotate!| |gethi| |inGroundField?| |remove!| |groebnerFactorize| |input| |parametric?| |lex| |dimensionsOf| |gcdPrimitive| |newLine| |definingPolynomial| |traverse| |realEigenvectors| |insertTop!| |splitLinear| |quadraticForm| |leftCharacteristicPolynomial| |setProperty| |palgLODE0| |printStatement| |mainCoefficients| |bumptab| |doubleComplex?| |realRoots| |component| |probablyZeroDim?| |gcdcofactprim| |stiffnessAndStabilityOfODEIF| |qroot| |polyred| |cyclicGroup| |minimumDegree| |palgint0| |log2| |edf2df| |subresultantSequence| |addPoint| |setFormula!| |rightMinimalPolynomial| |OMputEndBVar| |factorset| |deepestTail| |unvectorise| |internalAugment| |shrinkable| |extractIfCan| |showRegion| |zCoord| |modularFactor| |nextNormalPrimitivePoly| |inRadical?| |factorSquareFreePolynomial| |quartic| |expPot| ~ |tanQ| |htrigs| |rightTraceMatrix| |regime| |yellow| |ef2edf| |hermiteH| |linSolve| |aspFilename| |addiag| |prindINFO| |cyclicSubmodule| |pair?| |linGenPos| |tRange| |rootSimp| |perfectSqrt| |weierstrass| |stripCommentsAndBlanks| |firstSubsetGray| |iteratedInitials| |singular?| |primintegrate| |univariate?| |pushucoef| |setMaxPoints| |monicCompleteDecompose| |safeCeiling| |internalLastSubResultant| |airyAi| |rewriteIdealWithHeadRemainder| |setTopPredicate| |leaf?| |open| |FormatArabic| |mindeg| |setStatus!| |power!| |whileLoop| |f2df| |rootSplit| |fortranDouble| |declare| |pseudoDivide| |ScanFloatIgnoreSpacesIfCan| |OMputAttr| |copyInto!| |exprToXXP| |polCase| |row| |normalDenom| |setTex!| |mvar| |rCoord| |denomLODE| |move| |createNormalPrimitivePoly| |back| |linear?| |inverseIntegralMatrix| |every?| |float?| |logIfCan| |fTable| EQ |permutationRepresentation| |conditionP| |brillhartIrreducible?| |internalIntegrate0| |beauzamyBound| |df2ef| |tan2trig| |toseSquareFreePart| |maximumExponent| |validExponential| |fortranReal| |tanh2coth| |makeViewport3D| |primaryDecomp| |binaryTournament| |operators| |error| |approximate| |interval| |pile| |stopTable!| |approxNthRoot| |setFieldInfo| |groebnerIdeal| |rightDiscriminant| |basisOfRightNucleus| |setRow!| |radicalSimplify| |assert| |edf2ef| |OMlistSymbols| |constantKernel| |binary| |lepol| |diophantineSystem| |in?| |fixPredicate| |rotate| |vertConcat| |acosIfCan| |setprevious!| |notelem| |oddintegers| |jordanAdmissible?| |acotIfCan| |divide| |bubbleSort!| |noLinearFactor?| |testModulus| |setScreenResolution3D| |jacobian| |top| |quickSort| |dominantTerm| |mkAnswer| |basisOfCentroid| |Aleph| |ran| |continue| |lfextlimint| |exptMod| |elliptic| |computeInt| |cyclePartition| |trace2PowMod| |iidsum| |cAtan| |curryLeft| |associates?| |moduloP| |pascalTriangle| |acscIfCan| |paren| |doublyTransitive?| |rootRadius| |numberOfIrreduciblePoly| |printTypes| |mapGen| |factorSquareFree| |rule| |conjug| |sinhcosh| |weights| |zeroMatrix| |qfactor| |central?| |cos2sec| |removeCosSq| |upperCase?| |basisOfLeftAnnihilator| |extractBottom!| |critT| |integralMatrixAtInfinity| |colorFunction| |linearAssociatedExp| |stopTableGcd!| |constantRight| |radPoly| |Hausdorff| |connect| |trim| |hermite| |quadraticNorm| |thetaCoord| |superscript| |putColorInfo| |setColumn!| |setnext!| |collectUnder| |leadingIdeal| |OMgetEndApp| |getMultiplicationMatrix| |leader| |hMonic| |symbolTable| |physicalLength!| |constant?| |numericalOptimization| |genericRightTrace| |dAndcExp| |symbol?| |coefficient| |say| |OMsetEncoding| |addPoint2| |eq| |perspective| |userOrdered?| |outputAsTex| |heapSort| |removeRoughlyRedundantFactorsInPols| |pushFortranOutputStack| |previous| |quadratic?| |quatern| |hitherPlane| |kovacic| |llprop| |prolateSpheroidal| |systemSizeIF| |popFortranOutputStack| |specialTrigs| |ramifiedAtInfinity?| |iter| |putGraph| |map!| |find| |bivariatePolynomials| |outputAsFortran| |objectOf| |definingInequation| |badValues| |failed?| |pmComplexintegrate| |eigenvalues| |rightExactQuotient| |leftQuotient| |imagJ| |discriminant| |limitPlus| |stirling1| |setfirst!| |critBonD| |kroneckerDelta| |mainSquareFreePart| |var1Steps| |sample| |OMgetAttr| |processTemplate| |plus| |digit| |semiSubResultantGcdEuclidean2| |definingEquations| |next| |algSplitSimple| |hdmpToP| |zeroDimPrimary?| |isExpt| |divergence| |unitsColorDefault| |firstUncouplingMatrix| |SturmHabichtMultiple| |changeMeasure| |solid?| |sumOfKthPowerDivisors| |exponents| |autoReduced?| |bitLength| |infLex?| |zero| |nary?| |dec| |eulerE| |fractRadix| |indicialEquationAtInfinity| |basisOfMiddleNucleus| |mapUp!| |cSech| |factorPolynomial| |iExquo| |imaginary| |leastPower| |OMlistCDs| |initial| |critMTonD1| |middle| |pastel| |stoseInvertibleSet| |leftRankPolynomial| |prinb| |times| |iicsc| |li| |rowEch| |string?| |setref| |symmetricTensors| |flatten| |removeRoughlyRedundantFactorsInContents| |pdct| |critB| |mdeg| |differentiate| |OMputFloat| |meshPar2Var| |stronglyReduce| |direction| |asinhIfCan| |setAdaptive| |euclideanGroebner| |nthRootIfCan| |radicalSolve| |roughSubIdeal?| |monom| |drawComplex| |maxrank| |mergeDifference| |primPartElseUnitCanonical!| |inrootof| |vector| |inR?| |critpOrder| |listBranches| |algebraicVariables| |iiacsch| |symmetricRemainder| |common| |deriv| |cyclic?| |setPredicates| |subResultantsChain| |antiCommutative?| |norm| |stoseInvertible?| |linearPolynomials| |cAcsch| |matrix| |fixedPointExquo| |viewWriteAvailable| |ellipticCylindrical| |stopTableInvSet!| |addMatch| |rename!| |isList| |algebraicSort| |functionIsContinuousAtEndPoints| |solve1| |sin2csc| |iisec| |droot| |plus!| |void| |semiResultantReduitEuclidean| |pushdterm| |expressIdealMember| |ratPoly| |palgRDE0| |transcendentalDecompose| |bernoulli| |leftUnit| |OMreadStr| |complement| |firstDenom| |tryFunctionalDecomposition| |indices| |algebraic?| |startTable!| |showClipRegion| |messagePrint| |pol| |integralBasisAtInfinity| |nlde| |OMputEndObject| |headReduced?| |leadingSupport| |ratDsolve| |tanNa| |isQuotient| |continuedFraction| |removeDuplicates| |numberOfVariables| |branchPointAtInfinity?| |transpose| |minPol| |setDifference| |realSolve| |epilogue| |exprHasWeightCosWXorSinWX| |mainMonomial| |setIntersection| |ode2| |infieldint| |nonQsign| |selectAndPolynomials| |listRepresentation| |patternMatchTimes| |stoseIntegralLastSubResultant| |factorGroebnerBasis| |setUnion| |rationalApproximation| |linear| |getMeasure| |height| |OMputBVar| |substitute| |completeHensel| |numFunEvals3D| |plot| |stoseSquareFreePart| |OMencodingXML| |standardBasisOfCyclicSubmodule| |physicalLength| |monomial?| |npcoef| |linkToFortran| |maxPoints| |absolutelyIrreducible?| |explogs2trigs| |charpol| |monomials| |mapdiv| |complexNumericIfCan| |fortranLinkerArgs| |skewSFunction| |pureLex| |heap| |cCsch| |HermiteIntegrate| |hypergeometric0F1| |tubePointsDefault| |nthExponent| |innerEigenvectors| |polygamma| |sturmVariationsOf| |squareFreeLexTriangular| |genericLeftMinimalPolynomial| |ddFact| |mainDefiningPolynomial| |parts| |palglimint| |minColIndex| |power| |over| |sncndn| |linearlyDependentOverZ?| |iibinom| |sech2cosh| |lexTriangular| |dim| |iiacosh| |ptree| |localUnquote| |makeGraphImage| |denominators| |principal?| |pointColor| |atom?| |bits| |mainVariable| |leftGcd| |rroot| |lastSubResultantEuclidean| |flagFactor| |imagI| |sin?| |contractSolve| |OMputVariable| |coord| |output| |addPointLast| |coth2trigh| |permanent| |rightOne| |scanOneDimSubspaces| |makeTerm| |cAsin| |toScale| |doubleResultant| |roughUnitIdeal?| |derivative| |build| |primlimitedint| |result| |triangularSystems| |solve| |optional?| |flexible?| |sizeLess?| |monomialIntPoly| |curveColor| |cot2trig| |listLoops| |third| |cycleEntry| |polyRDE| |mainKernel| |iCompose| |clip| |OMconnInDevice| |selectODEIVPRoutines| |jacobiIdentity?| |surface| |integralMatrix| |pade| |nodeOf?| |rombergo| |solveLinearlyOverQ| |fractionPart| |sequences| |ceiling| |setCondition!| |truncate| |pointLists| |largest| |delta| |equality| |tube| |finiteBound| |numericIfCan| |showArrayValues| |medialSet| |s17dlf| |freeOf?| |internal?| |OMencodingSGML| |hexDigit?| |s18acf| |createIrreduciblePoly| |changeNameToObjf| |cycles| |GospersMethod| |s18adf| |lists| |createMultiplicationMatrix| |factorsOfDegree| |expIfCan| |s18aef| |hconcat| |ffactor| |root| |printStats!| |s18aff| |subscript| |option| |lieAlgebra?| |rischDE| |sturmSequence| |s18dcf| |indicialEquations| |printHeader| |outputArgs| |entry?| |s18def| |setAdaptive3D| |unravel| |stFunc2| |s19aaf| |sinhIfCan| |index?| |numberOfComputedEntries| |s19abf| |OMgetString| |copy!| |zoom| |s19acf| |rename| |OMopenString| |sort| |permutationGroup| |s19adf| |outlineRender| |unitCanonical| |bag| |s20acf| |currentSubProgram| |showTheIFTable| |rationalIfCan| |s20adf| |atanhIfCan| |setMinPoints3D| |lowerCase| |s21baf| |stirling2| |setMaxPoints3D| |stopMusserTrials| |s21bbf| |karatsuba| |complex?| |setProperties| |s21bcf| |fixedPoint| |makeCrit| |anticoord| |s21bdf| |times!| |sqfree| |random| |setMinPoints| |symbol| |radical| |ODESolve| |hdmpToDmp| |center| |decomposeFunc| |lazyEvaluate| |rootOf| |iicot| |debug3D| |choosemon| |stosePrepareSubResAlgo| |axesColorDefault| |objects| |extensionDegree| |blue| |duplicates| |Si| |associatedEquations| |rightPower| |RemainderList| |matrixConcat3D| |makeViewport2D| |label| |perfectNthPower?| |multiplyExponents| |branchIfCan| |setleft!| |viewDefaults| |removeDuplicates!| |entry| |systemCommand| |semiDiscriminantEuclidean| |number?| |cosIfCan| |algDsolve| |symbolTableOf| |rightDivide| |tubePoints| |OMgetApp| |drawToScale| |tubeRadius| |weighted| |arg1| |scalarTypeOf| |rk4a| |arg2| |lazyResidueClass| |permutation| |OMputAtp| |characteristicPolynomial| |bfEntry| |properties| |parabolic| |numer| |stack| |isTimes| |denom| |goto| |nil| |column| |translate| |open?| |euler| |noKaratsuba| |quasiRegular| F |genericRightNorm| |sayLength| |lazyPseudoRemainder| |countRealRoots| |OMUnknownSymbol?| |insertRoot!| |leadingIndex| |elColumn2!| |leftFactorIfCan| |status| |maxRowIndex| |child?| |bsolve| |graphCurves| |series| |hspace| |getMatch| |nextLatticePermutation| |baseRDEsys| |mat| |dfRange| |degreeSubResultant| |symmetric?| |clipBoolean| |po| |singRicDE| |monicLeftDivide| |primextintfrac| |getButtonValue| |push!| |script| |curveColorPalette| |cAsec| |argument| |meshPar1Var| |sechIfCan| |prefix| |reset| |size?| |resultantReduitEuclidean| |inHallBasis?| |write| |LyndonBasis| |tubePlot| |edf2efi| |cyclotomicFactorization| BY |tex| |rischDEsys| |Vectorise| |internalIntegrate| |modifyPoint| |ignore?| |sPol| |dictionary| |low| |irreducibleRepresentation| |zeroSetSplitIntoTriangularSystems| |tensorProduct| |swap| |cCosh| |generic| |nonLinearPart| |sinh2csch| |rem| |f2st| |backOldPos| |closedCurve?| |exponent| |integral| |tab1| |vspace| |not| |And| |OMmakeConn| |quo| |fixedPoints| |algebraicCoefficients?| |cAcosh| |Or| |increasePrecision| |div| |digamma| |radicalEigenvector| |iiasech| |point?| |Not| |comment| |fillPascalTriangle| |nthFlag| |lquo| |adaptive3D?| |OMread| |shade| |parent| |rightUnits| |figureUnits| |conditionsForIdempotents| |ocf2ocdf| |alphanumeric| |pdf2ef| |showTheFTable| |seriesToOutputForm| |presuper| |cache| |laurentIfCan| |viewport2D| |idealiser| |primeFrobenius| |fortranInteger| |tanintegrate| |regularRepresentation| |ratpart| |recur| |reciprocalPolynomial| |qinterval| |bat| |besselK| |vectorise| |externalList| |errorInfo| |primextendedint| |unmakeSUP| |generalSqFr| |quoted?| |fill!| |front| |condition| |returnType!| |revert| |int| |prem| |internalInfRittWu?| |/\\| |ricDsolve| |forLoop| |extendedSubResultantGcd| |xRange| |conjugate| |constantOperator| |\\/| |fractionFreeGauss!| |finite?| |cot2tan| |wronskianMatrix| |lookup| |xCoord| |cCsc| |generalizedContinuumHypothesisAssumed?| |rightZero| |is?| |conjugates| |removeRedundantFactorsInContents| |knownInfBasis| |reseed| |pack!| |unprotectedRemoveRedundantFactors| |LiePoly| |lowerCase?| |e| |semiIndiceSubResultantEuclidean| |henselFact| |modulus| |empty| |linearlyDependent?| |lllip| |cothIfCan| |exprToGenUPS| |randomLC| |optAttributes| |powern| |cSec| |computeCycleEntry| |quasiMonic?| |diagonalMatrix| |nor| |factorSFBRlcUnit| |kernel| |perfectNthRoot| |genericRightDiscriminant| |dn| |approximants| |overset?| |represents| |list| |leadingCoefficientRicDE| |iiexp| |graphs| |domainOf| |ldf2lst| |OMconnOutDevice| |draw| |OMsupportsCD?| |external?| |asechIfCan| |leastMonomial| |less?| |setleaves!| |leftOne| |LazardQuotient2| |nthExpon| |nthFractionalTerm| |bright| |scan| |lighting| |normalizedAssociate| |exists?| |hessian| |factorFraction| |powerAssociative?| |order| |explicitlyEmpty?| |getCode| |even?| |squareTop| |alphabetic?| |resultantnaif| |makeObject| |subtractIfCan| |genericLeftDiscriminant| |karatsubaDivide| |purelyTranscendental?| |cTanh| |primitivePart!| |setClosed| |Frobenius| |powmod| |setOfMinN| |loopPoints| |integrate| |coef| |numberOfNormalPoly| |linears| |fortran| |createRandomElement| |cPower| |eval| |leftMult| |position!| |cons| |geometric| |SturmHabichtCoefficients| |node?| |coshIfCan| |magnitude| |resetNew| |split| |nsqfree| |rootProduct| |polygon| |reindex| |exponentialOrder| |semiLastSubResultantEuclidean| |laguerreL| |innerint| |mapDown!| |prod| |merge| |symmetricDifference| |semiDegreeSubResultantEuclidean| |fortranLiteralLine| |reduction| |algebraicDecompose| |chainSubResultants| |localReal?| |rightRemainder| |OMencodingBinary| |iiacos| |makeEq| |legendre| |implies| |makingStats?| |newReduc| |setEpilogue!| |iicoth| |tanh2trigh| |secIfCan| |quotient| |refine| |UnVectorise| |completeEval| |solveid| |numeric| |cyclicEqual?| |removeIrreducibleRedundantFactors| |leftRank| |save| |removeRedundantFactorsInPols| |squareFreePrim| |ncols| |composites| |deepCopy| |setsubMatrix!| |setImagSteps| |updateStatus!| |iiGamma| |cschIfCan| |getRef| |pow| |alternative?| |OMgetEndBVar| |factorial| |cycleRagits| ** |identitySquareMatrix| |consnewpol| |radix| |log10| |squareFreeFactors| |var2StepsDefault| |indiceSubResultant| |exprHasAlgebraicWeight| |iiatanh| |bandedJacobian| |partition| |region| |possiblyInfinite?| |lazyPseudoDivide| |curve?| |cycleLength| |complexIntegrate| |lyndon| |invertIfCan| |setLegalFortranSourceExtensions| |zRange| |goodnessOfFit| |singularAtInfinity?| |minPoints| |dihedral| |balancedBinaryTree| |normFactors| |testDim| |createPrimitivePoly| |zero?| |makeUnit| |lyndonIfCan| |maxdeg| |coerceP| |chvar| |balancedFactorisation| |splitConstant| |listYoungTableaus| |nthCoef| |sylvesterMatrix| |lazyPquo| |argumentList!| |root?| |fractRagits| |denominator| |df2mf| |moebius| |solid| |OMopenFile| |getGoodPrime| |cyclic| |torsionIfCan| |determinant| |critMonD1| |outputForm| |halfExtendedResultant2| |setrest!| |leadingBasisTerm| |sh| |chiSquare1| |toseInvertibleSet| |squareFreePolynomial| |deleteProperty!| |internalZeroSetSplit| |difference| |factorList| |orbit| |cAcot| |pole?| |factorials| |rightCharacteristicPolynomial| |subscriptedVariables| |setAttributeButtonStep| |changeVar| |weakBiRank| |mkcomm| |signAround| |closed?| |constantCoefficientRicDE| |unary?| |elements| |startTableGcd!| |repeating?| |lazy?| |totolex| |bracket| |selectfirst| |compBound| |showAll?| |extractProperty| |usingTable?| |PollardSmallFactor| |defineProperty| |variationOfParameters| |simpson| |measure2Result| |taylorQuoByVar| |Beta| |groebgen| |fortranDoubleComplex| |selectMultiDimensionalRoutines| |numberOfFactors| |cAsech| |csch2sinh| |characteristicSerie| |cap| |BasicMethod| |mapUnivariateIfCan| |close!| |leadingExponent| |normalize| |distFact| |irreducible?| |iicos| |pointColorDefault| |fibonacci| |more?| |members| |leftPower| |companionBlocks| |floor| |hasPredicate?| |basisOfLeftNucloid| |leaves| |varselect| |cycleElt| |var1StepsDefault| |cyclicEntries| FG2F |stFuncN| |permutations| |iiasec| |iprint| |OMreceive| |cSin| |rewriteIdealWithQuasiMonicGenerators| |dimensions| |randnum| |numberOfComposites| |quasiMonicPolynomials| |setEmpty!| |cAsinh| |sup| |fi2df| |frobenius| |showTheSymbolTable| |directSum| |bivariate?| |presub| |mapUnivariate| |rightScalarTimes!| |bipolarCylindrical| |shuffle| |subSet| |compose| |integralCoordinates| |se2rfi| |intersect| |stoseInvertibleSetsqfreg| |subCase?| |eigenvectors| |gcdPolynomial| |bezoutMatrix| |increase| |goodPoint| |totalDifferential| |addmod| |polynomial| |tableForDiscreteLogarithm| |tanAn| |solveLinearPolynomialEquationByFractions| |badNum| |infinityNorm| |outputSpacing| |invmod| |padicFraction| |iiacot| |powers| |sort!| |getGraph| |aQuadratic| |df2fi| |shanksDiscLogAlgorithm| |Lazard2| |restorePrecision| |zeroOf| |upperCase!| |resetAttributeButtons| |endOfFile?| |factorOfDegree| |mainVariables| |computeCycleLength| |laplace| |ldf2vmf| |separant| |insertBottom!| |karatsubaOnce| |latex| |solveLinearPolynomialEquationByRecursion| |createZechTable| |ideal| |pToDmp| |arrayStack| |setPoly| |genericLeftTrace| |polygon?| |nextPrimitiveNormalPoly| |pseudoQuotient| |trigs| |functionIsFracPolynomial?| |splitDenominator| |leftMinimalPolynomial| |isMult| |saturate| |numberOfChildren| |extendIfCan| |color| |fortranCharacter| |createNormalElement| |trivialIdeal?| |psolve| |variable| |stoseInvertible?reg| |showAllElements| |scale| |imagj| |basisOfCenter| |retract| |maxColIndex| |measure| |nextItem| |subTriSet?| |chebyshevT| |normalizedDivide| |removeSinSq| |space| |polyPart| |eigenMatrix| |solveLinear| |cosh2sech| |pomopo!| |startTableInvSet!| |read!| |index| |matrixDimensions| |evaluate| |countRealRootsMultiple| |binarySearchTree| |divideIfCan| |fullDisplay| |nextNormalPoly| |varList| |mapExponents| |getlo| |fintegrate| |rational| |graeffe| |relationsIdeal| |primitive?| |palgint| |infRittWu?| |universe| |nextColeman| |readLine!| |lazyIntegrate| |pushuconst| |elementary| |shallowCopy| |hue| |iisinh| |primitivePart| |tracePowMod| |message| |screenResolution| |extendedint| |splitSquarefree| |totalfract| |logpart| |expandPower| |bringDown| |leviCivitaSymbol| |fortranLogical| |prinpolINFO| |explicitEntries?| |reduce| |subMatrix| |complexSolve| |acsch| |removeSuperfluousQuasiComponents| |nullSpace| |gcdprim| |plenaryPower| |minset| |cCos| |redpps| |toseInvertible?| |resize| |hasoln| |sumOfDivisors| |eisensteinIrreducible?| |getDatabase| |froot| |FormatRoman| |reduceBasisAtInfinity| |powerSum| |unitNormalize| |create3Space| |trapezoidalo| |wreath| |minordet| |cyclotomic| |initials| |rootKerSimp| |key?| |setErrorBound| |rowEchLocal| |bandedHessian| |combineFeatureCompatibility| |#| |indiceSubResultantEuclidean| |realElementary| D |complexForm| |controlPanel| |quotedOperators| |zerosOf| |possiblyNewVariety?| |transcendent?| |contract| |nthr| |getVariableOrder| |irreducibleFactor| |antisymmetricTensors| |imagK| |isobaric?| |OMputEndAtp| |subset?| |OMclose| |numberOfImproperPartitions| |uniform01| |lifting| |nodes| |useSingleFactorBound| |sub| |symmetricPower| |multiplyCoefficients| |sinIfCan| |qPot| |id| |upperCase| |dimension| |wrregime| |prologue| |removeCoshSq| |pointSizeDefault| |headReduce| |vedf2vef| |radicalOfLeftTraceForm| |table| |mindegTerm| |predicates| |graphState| |nextPartition| |key| |minIndex| |numFunEvals| |partialFraction| |df2st| |subst| |dark| |screenResolution3D| |new| |multisect| |rootNormalize| |zeroSquareMatrix| |lintgcd| |polyRicDE| |prefixRagits| |leftLcm| |anfactor| |shiftRight| |ipow| |tree| |enumerate| |resetBadValues| |frst| |palglimint0| |hclf| |semiResultantEuclidean1| |bombieriNorm| |enterPointData| |explicitlyFinite?| |rewriteSetByReducingWithParticularGenerators| |rightAlternative?| |iiasinh| |recoverAfterFail| |alphabetic| |mirror| |depth| |finiteBasis| |cTan| |gcd| |rightRankPolynomial| |predicate| |false| |cAcsc| |squareMatrix| |denomRicDE| |OMwrite| |integralAtInfinity?| |createThreeSpace| |iisin| |antiAssociative?| |squareFreePart| |fracPart| |numerators| |internalDecompose| |rk4f| |zeroDim?| |clearTheFTable| |pattern| |contains?| |cSinh| SEGMENT |alternating| |interpretString| |rank| |OMgetSymbol| |coerce| |routines| |setScreenResolution| |exquo| |iidprod| |minGbasis| |diagonal?| |coordinate| |construct| |obj| |compile| |sn| |operation| |mesh| |Gamma| |numberOfMonomials| |lfinfieldint| |hash| |tower| |enterInCache| |lifting1| |infix| |count| |countable?| |meatAxe| |chineseRemainder| |complexNumeric| |extend| |antisymmetric?| |padicallyExpand| |linearAssociatedOrder| |SturmHabichtSequence| |mainMonomials| |kernels| |fprindINFO| |monicDecomposeIfCan| |groebner| |univariate| |odd?| |principalIdeal| F2FG |multinomial| |printInfo| |credPol| |checkForZero| ~= |collect| |crest| |factor| |normalizeAtInfinity| |tablePow| |idealSimplify| |sqrt| |factor1| |insertMatch| |init| |mathieu11| |test| |real| |selectSumOfSquaresRoutines| = |nullity| |idealiserMatrix| |setelt| |imag| |leftExactQuotient| |cup| |xn| |directProduct| |intermediateResultsIF| |degreeSubResultantEuclidean| < |lazyVariations| |copy| |retractIfCan| |solveInField| |yCoordinates| > |mightHaveRoots| |destruct| |binomThmExpt| |formula| <= |adjoint| ^= |extendedEuclidean| |cLog| >= |ScanRoman| |simpsono| |rk4qc| |setPosition| |exponential1| |leftNorm| |reverse| |mainValue| |monomial| |constantIfCan| |setValue!| + |setVariableOrder| |digit?| |exp1| |multivariate| |minPoints3D| |size| - |limitedint| |semicolonSeparate| |variables| |typeLists| |print| / |roman| |characteristicSet| |incrementKthElement| |bezoutDiscriminant| |jordanAlgebra?| |patternMatch| |primlimintfrac| |belong?| |leftScalarTimes!| |ParCondList| |dmpToHdmp| |comp| |maxint| |basisOfRightAnnihilator| |taylor| |localIntegralBasis| |complexEigenvalues| |leftTrace| |laurent| |cycle| |intensity| |basisOfLeftNucleus| |puiseux| |hex| |tableau| |updatD| |setButtonValue| |newTypeLists| |mix| |inv| |replace| |green| |leftFactor| |ground?| |wholeRagits| |relerror| |overlap| |ground| |tryFunctionalDecomposition?| |generalizedEigenvectors| |minrank| |leadingMonomial| |copies| |wordInGenerators| |perfectSquare?| |directory| |leadingCoefficient| |nextPrimitivePoly| |generalizedInverse| |viewDeltaYDefault| |primitiveMonomials| |primPartElseUnitCanonical| |intcompBasis| |lazyGintegrate| |reductum| |expandLog| |shellSort| |splitNodeOf!| |OMputSymbol| |repSq| |selectsecond| |quadratic| |property| |rightRegularRepresentation| |reducedSystem| |createGenericMatrix| |OMgetBVar| |createNormalPoly| |shallowExpand| |cycleSplit!| |lieAdmissible?| |pointPlot| |units| |useEisensteinCriterion| |Ei| |deleteRoutine!| |sizePascalTriangle| |minus!| |internalSubPolSet?| |commaSeparate| |att2Result| |listOfMonoms| |code| |submod| |argumentListOf| |list?| |expt| |partitions| |infiniteProduct| |transform| |mainContent| |tValues| |nullary| |constant| |clearFortranOutputStack| |genericLeftNorm| |rightExtendedGcd| |factorByRecursion| |conical| |tubeRadiusDefault| |light| |atoms| |janko2| |mkIntegral| |erf| |create| |brace| |quote| |rightGcd| |composite| |invmultisect| |realZeros| |conditions| |diag| |lp| |vconcat| |makeMulti| |match| |semiResultantEuclideannaif| |dflist| |dilog| |rightNorm| |dom| |rdHack1| |groebner?| |sin| |noncommutativeJordanAlgebra?| |fortranLiteral| |initTable!| |cos| |concat| |swapColumns!| |subResultantChain| |tan| |adaptive?| |coercePreimagesImages| |cot| |shufflein| |char| |precision| |polynomialZeros| |sec| |totalLex| |iomode| ^ |csc| |leadingTerm| |readLineIfCan!| |asin| |showTheRoutinesTable| |showIntensityFunctions| |acos| GF2FG |LowTriBddDenomInv| |atan| |randomR| |digits| |acot| |elem?| |raisePolynomial| |asec| |characteristic| |OMsupportsSymbol?| |acsc| |degreePartition| |branchPoint?| |sinh| |title| |double| |minimumExponent| |bfKeys| |cosh| |OMputObject| |summation| |tanh| |upDateBranches| |schwerpunkt| |coth| |exactQuotient| |generators| |sech| |reducedContinuedFraction| |name| |generator| |eulerPhi| |lexico| |match?| |csch| |makeSin| |deref| |omError| |asinh| |op| |completeHermite| |retractable?| |acosh| |lexGroebner| |convergents| |solveLinearPolynomialEquation| |atanh| |topPredicate| |iipow| |aromberg| |square?| |acoth| |viewpoint| |declare!| LT |OMputString| |asech| |nextsubResultant2| |ord| |dmpToP| |superHeight| |iifact| |search| |multiple| |components| |equation| |OMgetObject| |OMgetFloat| |nextIrreduciblePoly| |divideIfCan!| |toseLastSubResultant| |optional| |mergeFactors| |partialDenominators| |element?| |substring?| |movedPoints| |addMatchRestricted| |trailingCoefficient| |lllp| |ode| |mpsode| |numberOfHues| |extendedIntegrate| |bivariateSLPEBR| |suffix?| |applyQuote| |schema| |lo| |palginfieldint| |clipSurface| |iiabs| |factorAndSplit| |deepExpand| |updatF| |OMencodingUnknown| |incr| |outputList| |expr| |prefix?| |or| |semiResultantEuclidean2| |setClipValue| |hi| |monomRDE| |ruleset| |sum| |monicRightDivide| |normalElement| |nextSublist| |negative?| |cylindrical| |integerBound| |palgRDE| |dihedralGroup| |node| |constantLeft| |numberOfPrimitivePoly| |alphanumeric?| |normalizeIfCan| |rk4| |any| |charClass| |chebyshevU| |suchThat| |leftTrim| |halfExtendedResultant1| |normInvertible?| |wholeRadix| |delay| |segment| |ref| |rightTrim| |polarCoordinates| |subNode?| |extractClosed| |sqfrFactor| |pseudoRemainder| |infix?| |trigs2explogs| |UP2ifCan| |OMUnknownCD?| |has?| |mask| |Is| |associatorDependence| |setPrologue!| |coHeight| |baseRDE| |distribute| |lambert| |uncouplingMatrices| |integers| |rewriteIdealWithRemainder| |min| |selectOptimizationRoutines| |rewriteSetWithReduction| |insert!| |datalist| |pleskenSplit| |divisorCascade| |readable?| |basis| |extension| |triangulate| |genus| |writeLine!| |mulmod| |reducedQPowers| |hasHi| |identification| |algint| |showAttributes| |pmintegrate| |twoFactor| |clearDenominator| |real?| |zag| GT UP2UTS |entries| |fmecg| |length| |OMParseError?| |mr| |failed| |orbits| |aQuartic| |getExplanations| |leftTraceMatrix| |scripts| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+(30 . 3403927921)
+(4183 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| |AbelianMonoid| |AbelianSemiGroup&| |AbelianSemiGroup| |AlgebraicallyClosedField&| |AlgebraicallyClosedField| |AlgebraicallyClosedFunctionSpace&| |AlgebraicallyClosedFunctionSpace| |PlaneAlgebraicCurvePlot| |AlgebraicFunction| |Aggregate&| |Aggregate| |ArcHyperbolicFunctionCategory| |AssociationListAggregate| |Algebra&| |Algebra| |AlgFactor| |AlgebraicFunctionField| |AlgebraicManipulations| |AlgebraicMultFact| |AlgebraPackage| |AlgebraGivenByStructuralConstants| |AssociationList| |AbelianMonoidRing&| |AbelianMonoidRing| |AlgebraicNumber| |AnonymousFunction| |AntiSymm| |AnyFunctions1| |Any| |ApplyUnivariateSkewPolynomial| |ApplyRules| |TwoDimensionalArrayCategory&| |TwoDimensionalArrayCategory| |OneDimensionalArrayFunctions2| |OneDimensionalArray| |TwoDimensionalArray| |Asp10| |Asp12| |Asp19| |Asp1| |Asp20| |Asp24| |Asp27| |Asp28| |Asp29| |Asp30| |Asp31| |Asp33| |Asp34| |Asp35| |Asp41| |Asp42| |Asp49| |Asp4| |Asp50| |Asp55| |Asp6| |Asp73| |Asp74| |Asp77| |Asp78| |Asp7| |Asp80| |Asp8| |Asp9| |AssociatedEquations| |ArrayStack| |ArcTrigonometricFunctionCategory&| |ArcTrigonometricFunctionCategory| |AttributeButtons| |AttributeRegistry| |Automorphism| |BalancedFactorisation| |BasicType&| |BasicType| |BalancedBinaryTree| |BezoutMatrix| |BasicFunctions| |BagAggregate&| |BagAggregate| |BinaryExpansion| |BinaryFile| |Bits| |BiModule| |Boolean| |BasicOperatorFunctions1| |BasicOperator| |BoundIntegerRoots| |BalancedPAdicInteger| |BalancedPAdicRational| |BinaryRecursiveAggregate&| |BinaryRecursiveAggregate| |BrillhartTests| |BinarySearchTree| |BitAggregate&| |BitAggregate| |BinaryTreeCategory&| |BinaryTreeCategory| |BinaryTournament| |BinaryTree| |CancellationAbelianMonoid| |CachableSet| |CardinalNumber| |CartesianTensorFunctions2| |CartesianTensor| |CharacterClass| |CommonDenominator| |CombinatorialFunctionCategory| |Character| |CharacteristicNonZero| |CharacteristicPolynomialPackage| |CharacteristicZero| |ChangeOfVariable| |ComplexIntegerSolveLinearPolynomialEquation| |Collection&| |Collection| |CliffordAlgebra| |TwoDimensionalPlotClipping| |ComplexRootPackage| |Color| |CombinatorialFunction| |IntegerCombinatoricFunctions| |CombinatorialOpsCategory| |Commutator| |CommonOperators| |CommuteUnivariatePolynomialCategory| |ComplexCategory&| |ComplexCategory| |ComplexFactorization| |ComplexFunctions2| |Complex| |ComplexPattern| |SubSpaceComponentProperty| |CommutativeRing| |ContinuedFraction| |CoordinateSystems| |CharacteristicPolynomialInMonogenicalAlgebra| |ComplexPatternMatch| |CRApackage| |ComplexRootFindingPackage| |CyclicStreamTools| |ComplexTrigonometricManipulations| |CoerceVectorMatrixPackage| |CycleIndicators| |CyclotomicPolynomialPackage| |d01AgentsPackage| |d01ajfAnnaType| |d01akfAnnaType| |d01alfAnnaType| |d01amfAnnaType| |d01anfAnnaType| |d01apfAnnaType| |d01aqfAnnaType| |d01asfAnnaType| |d01fcfAnnaType| |d01gbfAnnaType| |d01TransformFunctionType| |d01WeightsPackage| |d02AgentsPackage| |d02bbfAnnaType| |d02bhfAnnaType| |d02cjfAnnaType| |d02ejfAnnaType| |d03AgentsPackage| |d03eefAnnaType| |d03fafAnnaType| |Database| |DoubleResultantPackage| |DistinctDegreeFactorize| |DecimalExpansion| |ElementaryFunctionDefiniteIntegration| |RationalFunctionDefiniteIntegration| |DegreeReductionPackage| |Dequeue| |DeRhamComplex| |DefiniteIntegrationTools| |DoubleFloat| |DoubleFloatSpecialFunctions| |DenavitHartenbergMatrix| |Dictionary&| |Dictionary| |DifferentialExtension&| |DifferentialExtension| |DifferentialRing&| |DifferentialRing| |DictionaryOperations&| |DictionaryOperations| |DiophantineSolutionPackage| |DirectProductCategory&| |DirectProductCategory| |DirectProductFunctions2| |DirectProduct| |DisplayPackage| |DivisionRing&| |DivisionRing| |DoublyLinkedAggregate| |DataList| |DiscreteLogarithmPackage| |DistributedMultivariatePolynomial| |Domain| |DirectProductMatrixModule| |DirectProductModule| |DifferentialPolynomialCategory&| |DifferentialPolynomialCategory| |DequeueAggregate| |TopLevelDrawFunctionsForCompiledFunctions| |TopLevelDrawFunctionsForAlgebraicCurves| |DrawComplex| |DrawNumericHack| |TopLevelDrawFunctions| |TopLevelDrawFunctionsForPoints| |DrawOptionFunctions0| |DrawOptionFunctions1| |DrawOption| |DifferentialSparseMultivariatePolynomial| |DifferentialVariableCategory&| |DifferentialVariableCategory| |e04AgentsPackage| |e04dgfAnnaType| |e04fdfAnnaType| |e04gcfAnnaType| |e04jafAnnaType| |e04mbfAnnaType| |e04nafAnnaType| |e04ucfAnnaType| |ExtAlgBasis| |ElementaryFunction| |ElementaryFunctionStructurePackage| |ElementaryFunctionsUnivariateLaurentSeries| |ElementaryFunctionsUnivariatePuiseuxSeries| |ExtensibleLinearAggregate&| |ExtensibleLinearAggregate| |ElementaryFunctionCategory&| |ElementaryFunctionCategory| |EllipticFunctionsUnivariateTaylorSeries| |Eltable| |EltableAggregate&| |EltableAggregate| |EuclideanModularRing| |EntireRing| |EigenPackage| |EquationFunctions2| |Equation| |EqTable| |ErrorFunctions| |ExpressionSpaceFunctions1| |ExpressionSpaceFunctions2| |ExpertSystemContinuityPackage1| |ExpertSystemContinuityPackage| |ExpressionSpace&| |ExpressionSpace| |ExpertSystemToolsPackage1| |ExpertSystemToolsPackage2| |ExpertSystemToolsPackage| |EuclideanDomain&| |EuclideanDomain| |Evalable&| |Evalable| |EvaluateCycleIndicators| |Exit| |ExponentialExpansion| |ExpressionFunctions2| |ExpressionToUnivariatePowerSeries| |Expression| |ExpressionSpaceODESolver| |ExpressionTubePlot| |ExponentialOfUnivariatePuiseuxSeries| |FactoredFunctions| |FactoringUtilities| |FreeAbelianGroup| |FreeAbelianMonoidCategory| |FreeAbelianMonoid| |FiniteAbelianMonoidRing&| |FiniteAbelianMonoidRing| |FlexibleArray| |FiniteAlgebraicExtensionField&| |FiniteAlgebraicExtensionField| |FortranCode| |FourierComponent| |FortranCodePackage1| |FiniteDivisorFunctions2| |FiniteDivisorCategory&| |FiniteDivisorCategory| |FiniteDivisor| |FullyEvalableOver&| |FullyEvalableOver| |FortranExpression| |FunctionFieldCategoryFunctions2| |FunctionFieldCategory&| |FunctionFieldCategory| |FiniteFieldCyclicGroup| |FiniteFieldCyclicGroupExtensionByPolynomial| |FiniteFieldCyclicGroupExtension| |FiniteFieldFunctions| |FiniteFieldHomomorphisms| |FiniteFieldCategory&| |FiniteFieldCategory| |FunctionFieldIntegralBasis| |FiniteFieldNormalBasis| |FiniteFieldNormalBasisExtensionByPolynomial| |FiniteFieldNormalBasisExtension| |FiniteField| |FiniteFieldExtensionByPolynomial| |FiniteFieldPolynomialPackage2| |FiniteFieldPolynomialPackage| |FiniteFieldSolveLinearPolynomialEquation| |FiniteFieldExtension| |FGLMIfCanPackage| |FreeGroup| |Field&| |Field| |FileCategory| |File| |FiniteRankNonAssociativeAlgebra&| |FiniteRankNonAssociativeAlgebra| |Finite| |FiniteRankAlgebra&| |FiniteRankAlgebra| |FiniteLinearAggregateFunctions2| |FiniteLinearAggregate&| |FiniteLinearAggregate| |FreeLieAlgebra| |FiniteLinearAggregateSort| |FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver| |FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1| |FreeModuleCat| |FortranMatrixCategory| |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid| |FortranMachineTypeCategory| |FileName| |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage| |FortranProgram| |FullPartialFractionExpansion| |FullyPatternMatchable| |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic| |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal| |FramedModule| |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities| |FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2| |FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2| |FiniteSetAggregate&| |FiniteSetAggregate| |FunctionSpaceComplexIntegration| |FourierSeries| |FunctionSpaceIntegration| |FunctionSpace&| |FunctionSpace| |FunctionalSpecialFunction| |FunctionSpacePrimitiveElement| |FunctionSpaceReduce| |FortranScalarType| |FunctionSpaceUnivariatePolynomialFactor| |FortranTemplate| |FortranType| |FunctionCalled| |FortranVectorCategory| |FortranVectorFunctionCategory| |GaloisGroupFactorizer| |GaloisGroupFactorizationUtilities| |GaloisGroupPolynomialUtilities| |GaloisGroupUtilities| |GaussianFactorizationPackage| |EuclideanGroebnerBasisPackage| |GroebnerFactorizationPackage| |GroebnerInternalPackage| |GroebnerPackage| |GcdDomain&| |GcdDomain| |GenericNonAssociativeAlgebra| |GeneralDistributedMultivariatePolynomial| |GenExEuclid| |GeneralizedMultivariateFactorize| |GeneralPolynomialGcdPackage| |GenUFactorize| |GenerateUnivariatePowerSeries| |GeneralHenselPackage| |GeneralModulePolynomial| |GosperSummationMethod| |GeneralPolynomialSet| |GradedAlgebra&| |GradedAlgebra| |GrayCode| |GraphicsDefaults| |GraphImage| |GradedModule&| |GradedModule| |GroebnerSolve| |Group&| |Group| |GeneralUnivariatePowerSeries| |GeneralSparseTable| |GeneralTriangularSet| |Pi| |HashTable| |HallBasis| |HomogeneousDistributedMultivariatePolynomial| |HomogeneousDirectProduct| |Heap| |HyperellipticFiniteDivisor| |HeuGcd| |HexadecimalExpansion| |HomogeneousAggregate&| |HomogeneousAggregate| |HyperbolicFunctionCategory&| |HyperbolicFunctionCategory| |InnerAlgFactor| |InnerAlgebraicNumber| |IndexedOneDimensionalArray| |IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases| |IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools| |IndexCard| |InnerCommonDenominator| |PolynomialIdeals| |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory| |IndexedDirectProductOrderedAbelianMonoid| |IndexedDirectProductOrderedAbelianMonoidSup| |IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable| |InnerFreeAbelianMonoid| |IndexedFlexibleArray| |InnerFiniteField| |InnerIndexedTwoDimensionalArray| |IndexedList| |InnerMatrixLinearAlgebraFunctions| |InnerMatrixQuotientFieldFunctions| |IndexedMatrix| |InnerNormalBasisFieldFunctions| |IncrementingMaps| |IndexedExponents| |InnerNumericEigenPackage| |Infinity| |InputFormFunctions1| |InputForm| |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| |IntegerNumberSystem| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| |IntegrationFunctionsTable| |GenusZeroIntegration| |IntegerNumberTheoryFunctions| |AlgebraicHermiteIntegration| |TranscendentalHermiteIntegration| |Integer| |AnnaNumericalIntegrationPackage| |PureAlgebraicIntegration| |PatternMatchIntegration| |RationalIntegration| |IntegerRetractions| |RationalFunctionIntegration| |Interval| |IntegerSolveLinearPolynomialEquation| |IntegrationTools| |TranscendentalIntegration| |InverseLaplaceTransform| |InnerPAdicInteger| |InnerPrimeField| |InternalPrintPackage| |IntegrationResultToFunction| |IntegrationResultFunctions2| |IntegrationResult| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| |InternalRationalUnivariateRepresentationPackage| |IndexedString| |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |AssociatedJordanAlgebra| |KeyedAccessFile| |KeyedDictionary&| |KeyedDictionary| |KernelFunctions2| |Kernel| |CoercibleTo| |ConvertibleTo| |Kovacic| |LeftAlgebra&| |LeftAlgebra| |LocalAlgebra| |LaplaceTransform| |LaurentPolynomial| |LazardSetSolvingPackage| |LeadingCoefDetermination| |LieExponentials| |LexTriangularPackage| |LiouvillianFunctionCategory| |LiouvillianFunction| |LinGroebnerPackage| |Library| |LieAlgebra&| |LieAlgebra| |AssociatedLieAlgebra| |PowerSeriesLimitPackage| |RationalFunctionLimitPackage| |LinearDependence| |LinearlyExplicitRingOver| |ListToMap| |ListFunctions2| |ListFunctions3| |List| |ListMultiDictionary| |LeftModule| |ListMonoidOps| |LinearAggregate&| |LinearAggregate| |ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1| |LinearOrdinaryDifferentialOperator2| |LinearOrdinaryDifferentialOperatorCategory&| |LinearOrdinaryDifferentialOperatorCategory| |LinearOrdinaryDifferentialOperatorFactorizer| |LinearOrdinaryDifferentialOperator| |LinearOrdinaryDifferentialOperatorsOps| |Logic&| |Logic| |Localize| |LinearPolynomialEquationByFractions| |LiePolynomial| |ListAggregate&| |ListAggregate| |LinearSystemMatrixPackage1| |LinearSystemMatrixPackage| |LinearSystemPolynomialPackage| |LieSquareMatrix| |LyndonWord| |LazyStreamAggregate&| |LazyStreamAggregate| |ThreeDimensionalMatrix| |Magma| |MappingPackageInternalHacks1| |MappingPackageInternalHacks2| |MappingPackageInternalHacks3| |MappingPackage1| |MappingPackage2| |MappingPackage3| |MatrixCategoryFunctions2| |MatrixCategory&| |MatrixCategory| |MatrixLinearAlgebraFunctions| |Matrix| |StorageEfficientMatrixOperations| |MultiVariableCalculusFunctions| |MatrixCommonDenominator| |MachineComplex| |MultiDictionary| |ModularDistinctDegreeFactorizer| |MeshCreationRoutinesForThreeDimensions| |MultFiniteFactorize| |MachineFloat| |ModularHermitianRowReduction| |MachineInteger| |MakeBinaryCompiledFunction| |MakeCachableSet| |MakeFloatCompiledFunction| |MakeFunction| |MakeRecord| |MakeUnaryCompiledFunction| |MultivariateLifting| |MonogenicLinearOperator| |MultipleMap| |ModularField| |ModMonic| |ModuleMonomial| |ModuleOperator| |ModularRing| |Module&| |Module| |MoebiusTransform| |Monad&| |Monad| |MonadWithUnit&| |MonadWithUnit| |MonogenicAlgebra&| |MonogenicAlgebra| |Monoid&| |Monoid| |MonomialExtensionTools| |MPolyCatFunctions2| |MPolyCatFunctions3| |MPolyCatPolyFactorizer| |MultivariatePolynomial| |MPolyCatRationalFunctionFactorizer| |MRationalFactorize| |MonoidRingFunctions2| |MonoidRing| |MultisetAggregate| |Multiset| |MoreSystemCommands| |MergeThing| |MultivariateTaylorSeriesCategory| |MultivariateFactorize| |MultivariateSquareFree| |NonAssociativeAlgebra&| |NonAssociativeAlgebra| |NagPolynomialRootsPackage| |NagRootFindingPackage| |NagSeriesSummationPackage| |NagIntegrationPackage| |NagOrdinaryDifferentialEquationsPackage| |NagPartialDifferentialEquationsPackage| |NagInterpolationPackage| |NagFittingPackage| |NagOptimisationPackage| |NagMatrixOperationsPackage| |NagEigenPackage| |NagLinearEquationSolvingPackage| |NagLapack| |NagSpecialFunctionsPackage| |NAGLinkSupportPackage| |NonAssociativeRng&| |NonAssociativeRng| |NonAssociativeRing&| |NonAssociativeRing| |NumericComplexEigenPackage| |NumericContinuedFraction| |NonCommutativeOperatorDivision| |NumberFieldIntegralBasis| |NumericalIntegrationProblem| |NonLinearSolvePackage| |NonNegativeInteger| |NonLinearFirstOrderODESolver| |NoneFunctions1| |None| |NormInMonogenicAlgebra| |NormalizationPackage| |NormRetractPackage| |NPCoef| |NumericRealEigenPackage| |NewSparseMultivariatePolynomial| |NewSparseUnivariatePolynomialFunctions2| |NewSparseUnivariatePolynomial| |NumberTheoreticPolynomialFunctions| |NormalizedTriangularSetCategory| |Numeric| |NumberFormats| |NumericalIntegrationCategory| |NumericalOrdinaryDifferentialEquations| |NumericalQuadrature| |NumericTubePlot| |OrderedAbelianGroup| |OrderedAbelianMonoid| |OrderedAbelianMonoidSup| |OrderedAbelianSemiGroup| |OrderedCancellationAbelianMonoid| |OctonionCategory&| |OctonionCategory| |OctonionCategoryFunctions2| |Octonion| |OrdinaryDifferentialEquationsSolverCategory| |ConstantLODE| |ElementaryFunctionODESolver| |ODEIntensityFunctionsTable| |ODEIntegration| |AnnaOrdinaryDifferentialEquationPackage| |PureAlgebraicLODE| |PrimitiveRatDE| |NumericalODEProblem| |PrimitiveRatRicDE| |RationalLODE| |ReduceLODE| |RationalRicDE| |SystemODESolver| |ODETools| |OrderedDirectProduct| |OrderlyDifferentialPolynomial| |OrdinaryDifferentialRing| |OrderlyDifferentialVariable| |OrderedFreeMonoid| |OrderedIntegralDomain| |OpenMathConnection| |OpenMathDevice| |OpenMathEncoding| |OpenMathErrorKind| |OpenMathError| |ExpressionToOpenMath| |OppositeMonogenicLinearOperator| |OpenMath| |OpenMathPackage| |OrderedMultisetAggregate| |OpenMathServerPackage| |OnePointCompletionFunctions2| |OnePointCompletion| |Operator| |OperationsQuery| |NumericalOptimizationCategory| |AnnaNumericalOptimizationPackage| |NumericalOptimizationProblem| |OrderedCompletionFunctions2| |OrderedCompletion| |OrderedFinite| |OrderingFunctions| |OrderedMonoid| |OrderedRing&| |OrderedRing| |OrderedSet&| |OrderedSet| |UnivariateSkewPolynomialCategory&| |UnivariateSkewPolynomialCategory| |UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial| |UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions| |OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants| |PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger| |PAdicRational| |PAdicRationalConstructor| |Palette| |PolynomialAN2Expression| |ParametricPlaneCurveFunctions2| |ParametricPlaneCurve| |ParametricSpaceCurveFunctions2| |ParametricSpaceCurve| |ParametricSurfaceFunctions2| |ParametricSurface| |PartitionsAndPermutations| |Patternable| |PatternMatchListResult| |PatternMatchable| |PatternMatch| |PatternMatchResultFunctions2| |PatternMatchResult| |PatternFunctions1| |PatternFunctions2| |Pattern| |PoincareBirkhoffWittLyndonBasis| |PolynomialComposition| |PartialDifferentialEquationsSolverCategory| |PolynomialDecomposition| |AnnaPartialDifferentialEquationPackage| |NumericalPDEProblem| |PartialDifferentialRing&| |PartialDifferentialRing| |PendantTree| |Permanent| |PermutationCategory| |PermutationGroup| |Permutation| |PolynomialFactorizationByRecursion| |PolynomialFactorizationByRecursionUnivariate| |PolynomialFactorizationExplicit&| |PolynomialFactorizationExplicit| |PrimeField| |PointsOfFiniteOrder| |PointsOfFiniteOrderRational| |PointsOfFiniteOrderTools| |PartialFraction| |PartialFractionPackage| |PolynomialGcdPackage| |PermutationGroupExamples| |PolyGroebner| |PiCoercions| |PrincipalIdealDomain| |PositiveInteger| |PolynomialInterpolationAlgorithms| |PolynomialInterpolation| |ParametricLinearEquations| |PlotFunctions1| |Plot3D| |Plot| |PlotTools| |FunctionSpaceAssertions| |PatternMatchAssertions| |PatternMatchPushDown| |PatternMatchFunctionSpace| |PatternMatchIntegerNumberSystem| |PatternMatchKernel| |PatternMatchListAggregate| |PatternMatchPolynomialCategory| |FunctionSpaceAttachPredicates| |AttachPredicates| |PatternMatchQuotientFieldCategory| |PatternMatchSymbol| |PatternMatchTools| |PolynomialNumberTheoryFunctions| |Point| |PolToPol| |RealPolynomialUtilitiesPackage| |PolynomialFunctions2| |PolynomialToUnivariatePolynomial| |PolynomialCategory&| |PolynomialCategory| |PolynomialCategoryQuotientFunctions| |PolynomialCategoryLifting| |Polynomial| |PolynomialRoots| |PlottablePlaneCurveCategory| |PrecomputedAssociatedEquations| |PrimitiveArrayFunctions2| |PrimitiveArray| |PrimitiveFunctionCategory| |PrimitiveElement| |IntegerPrimesPackage| |PrintPackage| |PolynomialRing| |Product| |PriorityQueueAggregate| |PseudoRemainderSequence| |Partition| |PowerSeriesCategory&| |PowerSeriesCategory| |PlottableSpaceCurveCategory| |PolynomialSetCategory&| |PolynomialSetCategory| |PolynomialSetUtilitiesPackage| |PseudoLinearNormalForm| |PolynomialSquareFree| |PointCategory| |PointFunctions2| |PointPackage| |PartialTranscendentalFunctions| |PushVariables| |PAdicWildFunctionFieldIntegralBasis| |QuasiAlgebraicSet2| |QuasiAlgebraicSet| |QuasiComponentPackage| |QueryEquation| |QuotientFieldCategoryFunctions2| |QuotientFieldCategory&| |QuotientFieldCategory| |QuadraticForm| |QueueAggregate| |QuaternionCategory&| |QuaternionCategory| |QuaternionCategoryFunctions2| |Quaternion| |Queue| |RadicalCategory&| |RadicalCategory| |RadicalFunctionField| |RadixExpansion| |RadixUtilities| |RandomNumberSource| |RationalFactorize| |RationalRetractions| |RecursiveAggregate&| |RecursiveAggregate| |RealClosedField&| |RealClosedField| |ElementaryRischDE| |ElementaryRischDESystem| |TranscendentalRischDE| |TranscendentalRischDESystem| |RandomDistributions| |ReducedDivisor| |RealZeroPackage| |RealZeroPackageQ| |RealConstant| |RealSolvePackage| |RealClosure| |ReductionOfOrder| |Reference| |RegularTriangularSet| |RepresentationPackage1| |RepresentationPackage2| |RepeatedDoubling| |RadicalEigenPackage| |RepeatedSquaring| |ResolveLatticeCompletion| |ResidueRing| |Result| |RetractableTo&| |RetractableTo| |RetractSolvePackage| |RandomFloatDistributions| |RationalFunctionFactor| |RationalFunctionFactorizer| |RationalFunction| |RegularChain| |RandomIntegerDistributions| |Ring&| |Ring| |RationalInterpolation| |RectangularMatrixCategory&| |RectangularMatrixCategory| |RectangularMatrix| |RectangularMatrixCategoryFunctions2| |RightModule| |Rng| |RealNumberSystem&| |RealNumberSystem| |RightOpenIntervalRootCharacterization| |RomanNumeral| |RoutinesTable| |RecursivePolynomialCategory&| |RecursivePolynomialCategory| |RealRootCharacterizationCategory&| |RealRootCharacterizationCategory| |RegularSetDecompositionPackage| |RegularTriangularSetCategory&| |RegularTriangularSetCategory| |RegularTriangularSetGcdPackage| |RuleCalled| |RewriteRule| |Ruleset| |RationalUnivariateRepresentationPackage| |SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension| |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache| |StructuralConstantsPackage| |SequentialDifferentialPolynomial| |SequentialDifferentialVariable| |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set| |SExpressionCategory| |SExpression| |SExpressionOf| |SimpleFortranProgram| |SquareFreeQuasiComponentPackage| |SquareFreeRegularTriangularSetGcdPackage| |SquareFreeRegularTriangularSetCategory| |SymmetricGroupCombinatoricFunctions| |SemiGroup&| |SemiGroup| |SplitHomogeneousDirectProduct| |SturmHabichtPackage| |ElementaryFunctionSign| |RationalFunctionSign| |SimplifyAlgebraicNumberConvertPackage| |SingleInteger| |StackAggregate| |SquareMatrixCategory&| |SquareMatrixCategory| |SmithNormalForm| |SparseMultivariatePolynomial| |SparseMultivariateTaylorSeries| |SquareFreeNormalizedTriangularSetCategory| |PolynomialSolveByFormulas| |RadicalSolvePackage| |TransSolvePackageService| |TransSolvePackage| |SortPackage| |ThreeSpace| |ThreeSpaceCategory| |SpecialOutputPackage| |SpecialFunctionCategory| |SplittingNode| |SplittingTree| |SquareMatrix| |StringAggregate&| |StringAggregate| |SquareFreeRegularSetDecompositionPackage| |SquareFreeRegularTriangularSet| |Stack| |StreamAggregate&| |StreamAggregate| |SparseTable| |StepThrough| |StreamInfiniteProduct| |StreamFunctions1| |StreamFunctions2| |StreamFunctions3| |Stream| |StringCategory| |String| |StringTable| |StreamTaylorSeriesOperations| |StreamTranscendentalFunctionsNonCommutative| |StreamTranscendentalFunctions| |SubResultantPackage| |SubSpace| |SuchThat| |SparseUnivariateLaurentSeries| |FunctionSpaceSum| |RationalFunctionSum| |SparseUnivariatePolynomialFunctions2| |SupFractionFactorizer| |SparseUnivariatePolynomial| |SparseUnivariatePuiseuxSeries| |SparseUnivariateTaylorSeries| |Switch| |Symbol| |SymmetricFunctions| |SymmetricPolynomial| |TheSymbolTable| |SymbolTable| |Syntax| |SystemSolvePackage| |TableauxBumpers| |Tableau| |Table| |TangentExpansions| |TableAggregate&| |TableAggregate| |TabulatedComputationPackage| |TemplateUtilities| |TexFormat1| |TexFormat| |TextFile| |ToolsForSign| |TopLevelThreeSpace| |TranscendentalFunctionCategory&| |TranscendentalFunctionCategory| |Tree| |TrigonometricFunctionCategory&| |TrigonometricFunctionCategory| |TrigonometricManipulations| |TriangularMatrixOperations| |TranscendentalManipulations| |TriangularSetCategory&| |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| |UniqueFactorizationDomain| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| |UnivariateLaurentSeriesConstructor| |UnivariateLaurentSeries| |UnivariateFactorize| |UniversalSegmentFunctions2| |UniversalSegment| |UnivariatePolynomialFunctions2| |UnivariatePolynomialCommonDenominator| |UnivariatePolynomialDecompositionPackage| |UnivariatePolynomialDivisionPackage| |UnivariatePolynomialMultiplicationPackage| |UnivariatePolynomial| |UnivariatePolynomialCategoryFunctions2| |UnivariatePolynomialCategory&| |UnivariatePolynomialCategory| |UnivariatePowerSeriesCategory&| |UnivariatePowerSeriesCategory| |UnivariatePolynomialSquareFree| |UnivariatePuiseuxSeriesFunctions2| |UnivariatePuiseuxSeriesCategory| |UnivariatePuiseuxSeriesConstructorCategory&| |UnivariatePuiseuxSeriesConstructorCategory| |UnivariatePuiseuxSeriesConstructor| |UnivariatePuiseuxSeries| |UnivariatePuiseuxSeriesWithExponentialSingularity| |UnaryRecursiveAggregate&| |UnaryRecursiveAggregate| |UnivariateTaylorSeriesFunctions2| |UnivariateTaylorSeriesCategory&| |UnivariateTaylorSeriesCategory| |UnivariateTaylorSeries| |UnivariateTaylorSeriesODESolver| |UTSodetools| |Variable| |VectorCategory&| |VectorCategory| |VectorFunctions2| |Vector| |TwoDimensionalViewport| |ThreeDimensionalViewport| |ViewDefaultsPackage| |ViewportPackage| |Void| |VectorSpace&| |VectorSpace| |WeierstrassPreparation| |WildFunctionFieldIntegralBasis| |WeightedPolynomials| |WuWenTsunTriangularSet| |XAlgebra| |XDistributedPolynomial| |XExponentialPackage| |XFreeAlgebra| |ExtensionField&| |ExtensionField| |XPBWPolynomial| |XPolynomialsCat| |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| |Record| |Union| |Category| |char| |numberOfNormalPoly| |cAtanh| |leftTrace| |heap| |cubic| |leadingCoefficient| |s19abf| |permutationGroup| |diophantineSystem| |extendIfCan| |linears| |untab| |cCsch| |cycle| |pop!| |primitiveMonomials| |s19acf| |outlineRender| |in?| |color| |escape| |name| |HermiteIntegrate| |createRandomElement| |close| |intensity| |reductum| |unitCanonical| |s19adf| |fortranCharacter| |fixPredicate| |exprToUPS| |problemPoints| |cPower| |basisOfLeftNucleus| |hypergeometric0F1| |bag| |s20acf| |createNormalElement| |rotate| |factorsOfCyclicGroupSize| |leftMult| |gradient| |hex| |tubePointsDefault| |vertConcat| |s20adf| |currentSubProgram| |function| |trivialIdeal?| |showTypeInOutput| |position!| |nthExponent| |d01fcf| |acschIfCan| |tableau| |display| |label| |s21baf| |showTheIFTable| |psolve| |acosIfCan| |safetyMargin| |updatD| |curry| |geometric| |innerEigenvectors| |d01gaf| |setprevious!| |s21bbf| |rationalIfCan| |entry| |stoseInvertible?reg| |setButtonValue| |primintfldpoly| |makeop| |SturmHabichtCoefficients| |d01gbf| |polygamma| |s21bcf| |atanhIfCan| |notelem| |showAllElements| |d02bbf| |binomial| |discriminantEuclidean| |node?| |sturmVariationsOf| |newTypeLists| |s21bdf| |setMinPoints3D| |oddintegers| |scale| |checkRur| |OMunhandledSymbol| |squareFreeLexTriangular| |coshIfCan| |d02bhf| |mix| |lowerCase| |jordanAdmissible?| |imagj| |input| |green| |extractSplittingLeaf| |vark| |magnitude| |genericLeftMinimalPolynomial| |d02cjf| |stirling2| |basisOfCenter| |acotIfCan| |getMultiplicationTable| |library| |ddFact| |pr2dmp| |resetNew| |d02ejf| |leftFactor| |setMaxPoints3D| |divide| |maxColIndex| |measure| |match?| |d02gaf| |coefficients| |cotIfCan| |split| |wholeRagits| |mainDefiningPolynomial| |associative?| |stopMusserTrials| |bubbleSort!| |nextItem| |relerror| BY |romberg| |nsqfree| |besselI| |palglimint| |d02gbf| |noLinearFactor?| |charthRoot| |karatsuba| |delta| |subTriSet?| |extendedResultant| |rootProduct| |symmetricSquare| |shiftRoots| |d02kef| |overlap| |minColIndex| |monomial| |complex?| |testModulus| |chebyshevT| |interReduce| |tryFunctionalDecomposition?| |split!| |OMserve| |polygon| |d02raf| |power| |multivariate| |setProperties| |normalizedDivide| |setScreenResolution3D| |reindex| |rational?| |rotatez| |generalizedEigenvectors| |matrixGcd| |coefChoose| |d03edf| |over| |set| |shift| |variables| |lcm| |fixedPoint| |jacobian| |removeSinSq| |totalDegree| |rotatey| |sncndn| |fortranCompilerName| |exponentialOrder| |addBadValue| |d03eef| |minrank| |qelt| |makeCrit| |space| |quickSort| |cosSinInfo| |copies| |increment| |Nul| |semiLastSubResultantEuclidean| |d03faf| |linearlyDependentOverZ?| |polyPart| |dominantTerm| |iibinom| |ksec| |evaluateInverse| |e01baf| |laguerreL| |wordInGenerators| |clearCache| |xRange| |bits| |mkAnswer| |eigenMatrix| |gcd| |innerint| |acothIfCan| |perfectSquare?| |numerator| |e01bef| |sech2cosh| |yRange| |mainVariable| |basisOfCentroid| |lambda| |solveLinear| |union| |substring?| |formula| |mapDown!| |OMputError| |nextPrimitivePoly| |generalPosition| |lexTriangular| |e01bff| |zRange| |leftGcd| |debug| |false| |Aleph| |cosh2sech| |rotatex| |startPolynomial| |iiacosh| |generalizedInverse| |e01bgf| |map!| |rroot| |ran| |pomopo!| |suffix?| |identity| |monicModulo| |prem| |normalForm| |localUnquote| |e01bhf| |viewDeltaYDefault| |qsetelt!| |lastSubResultantEuclidean| |lfextlimint| |startTableInvSet!| |elt| |rightUnit| |internalInfRittWu?| |makeGraphImage| |e01daf| |primPartElseUnitCanonical| |show| |flagFactor| |read!| |exptMod| |prefix?| ~ |ricDsolve| |outputList| |symFunc| |denominators| |intcompBasis| |e01saf| |imagI| |forLoop| |withPredicates| |principal?| |e01sbf| |trace| |lazyGintegrate| |sin?| |hermiteH| |cyclicEntries| |nrows| |extendedSubResultantGcd| |children| |pointColor| |e01sef| |expandLog| |contractSolve| FG2F |linSolve| |ncols| |conjugate| |solveRetract| |shellSort| |e02adf| |atom?| |acsch| |OMputVariable| |aspFilename| |stFuncN| |constantOperator| |normalized?| |e02aef| |coord| |permutations| |addiag| |filename| |fractionFreeGauss!| |errorKind| |minGbasis| |norm| |e02agf| |addPointLast| |iiasec| |prindINFO| |infix?| |patternVariable| |open| |nand| |finite?| |diagonal?| |stoseInvertible?| |e02ahf| |coth2trigh| |iprint| |cyclicSubmodule| |mask| |setOrder| |generalizedContinuumHypothesisAssumed| |options| |coordinate| |cot2tan| |linearPolynomials| |list| |e02ajf| |permanent| |OMreceive| |pair?| |slash| |sn| |parts| |wronskianMatrix| |purelyAlgebraic?| |cAcsch| |cons| |e02akf| |rightOne| |cSin| |linGenPos| |complete| |OMUnknownCD?| = |makeSUP| |lookup| |setDifference| |eyeDistance| |mesh| |fixedPointExquo| |e02baf| |scanOneDimSubspaces| |expr| |tRange| |rewriteIdealWithQuasiMonicGenerators| |has?| |basisOfCommutingElements| |commutative?| |setIntersection| |xCoord| |Gamma| |viewWriteAvailable| |e02bbf| |rootSimp| |makeTerm| |true| |dimensions| |Is| < |ellipticCylindrical| |numberOfDivisors| |cCsc| |setUnion| |numberOfMonomials| |e02bcf| |cAsin| |perfectSqrt| |randnum| |associatorDependence| > |generalizedContinuumHypothesisAssumed?| |lfinfieldint| |complexLimit| |apply| |stopTableInvSet!| |e02bdf| |taylor| |toScale| |numberOfComposites| |weierstrass| |setPrologue!| <= |rightZero| |zeroDimPrime?| |addMatch| |enterInCache| |e02bef| |laurent| |doubleResultant| |quasiMonicPolynomials| |stripCommentsAndBlanks| |coHeight| >= |minPoly| |lifting1| |is?| |rename!| |size| |e02daf| |puiseux| |firstSubsetGray| |roughUnitIdeal?| |reducedDiscriminant| |setEmpty!| |baseRDE| |constant| |discreteLog| |infix| |conjugates| |prefix| |isList| |e02dcf| |derivative| |cAsinh| |iteratedInitials| |endSubProgram| |distribute| |listConjugateBases| |removeRedundantFactorsInContents| |countable?| |algebraicSort| |e02ddf| |useNagFunctions| |build| |variable| |singular?| |sup| |lambert| + |knownInfBasis| |functionIsContinuousAtEndPoints| |nilFactor| |meatAxe| |first| |e02def| |rootsOf| |primlimitedint| |fi2df| |primintegrate| |uncouplingMatrices| - |erf| |multiEuclideanTree| |solve1| |reseed| |chineseRemainder| |rest| |e02dff| |clipWithRanges| |triangularSystems| |frobenius| |univariate?| |integers| / |swap!| |pack!| |substitute| |sin2csc| |extend| |e02gaf| |solve| |pushucoef| |showTheSymbolTable| |rewriteIdealWithRemainder| |say| |removeDuplicates| |leftRecip| |unprotectedRemoveRedundantFactors| |iisec| |antisymmetric?| |e02zaf| |optional?| |directSum| |setMaxPoints| |selectOptimizationRoutines| |dilog| |droot| |LiePoly| |queue| |padicallyExpand| |depth| |e04dgf| F |flexible?| |bivariate?| |monicCompleteDecompose| |rewriteSetWithReduction| |sin| |lowerCase?| |var2Steps| |linearAssociatedOrder| |plus!| |e04fdf| |sizeLess?| |safeCeiling| |presub| |insert!| |cos| |ScanArabic| |semiIndiceSubResultantEuclidean| |semiResultantReduitEuclidean| |SturmHabichtSequence| |e04gcf| |monomialIntPoly| |mapUnivariate| |internalLastSubResultant| |pleskenSplit| |tan| |comparison| |reopen!| |henselFact| |pushdterm| |mainMonomials| |e04jaf| |curveColor| |rightScalarTimes!| |airyAi| |divisorCascade| |cot| |closeComponent| |modulus| |isPower| |fprindINFO| |expressIdealMember| |e04mbf| |cot2trig| |bipolarCylindrical| |rewriteIdealWithHeadRemainder| |readable?| |sec| |alternatingGroup| |iicosh| |empty| |ratPoly| |monicDecomposeIfCan| |e04naf| |listLoops| |shuffle| |setTopPredicate| |basis| |csc| |supersub| |positiveRemainder| |linearlyDependent?| |palgRDE0| |groebner| |e04ucf| |cycleEntry| |subSet| |leaf?| |extension| |asin| |createPrimitiveElement| |lllip| |drawCurves| |odd?| |transcendentalDecompose| |e04ycf| |retractIfCan| |polyRDE| |FormatArabic| |compose| |triangulate| |acos| |asecIfCan| |cothIfCan| |principalIdeal| |bernoulli| |f01brf| |mainKernel| |integralCoordinates| |mindeg| |genus| |numer| |atan| |hexDigit| |numberOfComponents| |exprToGenUPS| |mainVariable?| |leftUnit| F2FG |f01bsf| |operation| |iCompose| |se2rfi| |setStatus!| |denom| |writeLine!| |acot| |randomLC| |overlabel| |redPo| |stoseLastSubResultant| |multinomial| |OMreadStr| |f01maf| |clip| |power!| |intersect| |mulmod| |asec| |optAttributes| |removeRedundantFactors| |eigenvector| |mesh?| |complement| |credPol| |f01mcf| |OMconnInDevice| |whileLoop| |stoseInvertibleSetsqfreg| |reducedQPowers| |doubleFloatFormat| |acsc| |edf2fi| |purelyAlgebraicLeadingMonomial?| |expintegrate| |powern| |checkForZero| |firstDenom| |f01qcf| |selectODEIVPRoutines| |f2df| |subCase?| |hasHi| |sinh| |matrix| |neglist| |replaceKthElement| |rootBound| |cSec| |tryFunctionalDecomposition| |collect| |f01qdf| |jacobiIdentity?| |rootSplit| |eigenvectors| |kernel| |identification| |cosh| |computeCycleEntry| |lastSubResultant| |bumprow| |indices| |crest| |f01qef| |surface| |fortranDouble| |gcdPolynomial| |draw| |algint| |tanh| |topFortranOutputStack| |log| |ranges| |quasiMonic?| |normalizeAtInfinity| |algebraic?| |integralMatrix| |bezoutMatrix| |pseudoDivide| |pmintegrate| |coth| |tablePow| |tanIfCan| |diagonalMatrix| |taylorRep| |height| |startTable!| |pade| |increase| |ScanFloatIgnoreSpacesIfCan| |twoFactor| |sech| |nor| |rootPoly| |differentialVariables| |idealSimplify| |showClipRegion| |map| |nodeOf?| |goodPoint| |OMputAttr| |clearDenominator| |csch| |integerIfCan| |extractIndex| |factorSFBRlcUnit| |factor1| |messagePrint| |rombergo| |totalDifferential| |copyInto!| |makeObject| |real?| |inverseIntegralMatrixAtInfinity| |perfectNthRoot| |numberOfFractionalTerms| |monicRightFactorIfCan| |pol| |insertMatch| |solveLinearlyOverQ| |exprToXXP| |addmod| |setvalue!| |zag| |integralDerivationMatrix| |gbasis| |genericRightDiscriminant| |mainPrimitivePart| |integralBasisAtInfinity| |mathieu11| |tableForDiscreteLogarithm| |fractionPart| |polCase| |viewport3D| UP2UTS |coef| |dn| |inf| |infieldIntegrate| |univariatePolynomialsGcds| |selectSumOfSquaresRoutines| |nlde| |sequences| |row| |tanAn| |entries| |basicSet| |approximants| |approxSqrt| |sylvesterSequence| |assign| |OMputEndObject| |nullity| |ceiling| |solveLinearPolynomialEquationByFractions| |normalDenom| |mathieu12| |fmecg| |idealiserMatrix| |comp| |antiCommutator| |overset?| |subNodeOf?| |headReduced?| |OMgetBind| |setCondition!| |badNum| |setTex!| |univariatePolynomials| |OMParseError?| |divisor| |represents| |leadingSupport| |selectOrPolynomials| |declare| |leftExactQuotient| Y |integer?| |truncate| |infinityNorm| |mvar| |flexibleArray| |orbits| |clipParametric| |cup| |leadingCoefficientRicDE| |fixedDivisor| |ratDsolve| |asimpson| |pointLists| |outputSpacing| |rCoord| |leftDiscriminant| |aQuartic| |iiexp| |lfunc| |xn| |OMreadFile| |tanNa| |rowEchelonLocal| |largest| |invmod| |denomLODE| |returnTypeOf| |getExplanations| |intermediateResultsIF| |relativeApprox| |graphs| |inverseColeman| |continuedFraction| |B1solve| |equality| |padicFraction| |move| |leftTraceMatrix| |cscIfCan| |bright| |domainOf| |selectPDERoutines| |degreeSubResultantEuclidean| |numberOfVariables| |yCoord| |tube| |iiacot| |createNormalPrimitivePoly| |OMcloseConn| |any| |iroot| |ldf2lst| |branchPointAtInfinity?| |lazyVariations| |powers| |back| |complexExpand| |OMconnOutDevice| |prepareSubResAlgo| |solveInField| |transpose| |sort!| |linear?| |clearTable!| |Ci| |OMsupportsCD?| |yCoordinates| |minPol| |inverseIntegralMatrix| |getGraph| |nonSingularModel| |sorted?| |external?| |mightHaveRoots| |realSolve| |every?| |aQuadratic| |cyclicParents| |eval| |remove| |binomThmExpt| |epilogue| |df2fi| |float?| |getBadValues| |backOldPos| |plotPolar| |exprHasWeightCosWXorSinWX| |adjoint| |cache| |shanksDiscLogAlgorithm| |logIfCan| |harmonic| |fglmIfCan| |closedCurve?| |last| |extendedEuclidean| |mainMonomial| |fTable| |Lazard2| |accuracyIF| |assoc| |option| |genericLeftTraceForm| |exponent| |cLog| |ode2| |unrankImproperPartitions0| |lflimitedint| |integral| |infieldint| |ScanRoman| |rightCharacteristicPolynomial| |groebnerFactorize| |biRank| |output| |graphImage| |tab1| |simpsono| |nonQsign| |subscriptedVariables| |parametric?| |width| |socf2socdf| |virtualDegree| |vspace| |rk4qc| |selectAndPolynomials| |error| |setAttributeButtonStep| |lex| |inverse| |OMmakeConn| |showScalarValues| |assert| |dimensionsOf| |changeVar| |univariateSolve| |fixedPoints| |rationalFunction| |numFunEvals| |autoReduced?| |weakBiRank| |gcdPrimitive| |invertibleSet| |numericalIntegration| |algebraicCoefficients?| |bitLength| |partialFraction| |e| |mkcomm| |newLine| |mapExpon| |equation| |cAcosh| |cfirst| |df2st| |infLex?| |eq| |decompose| |leader| |signAround| |definingPolynomial| |chiSquare| |iiacoth| |increasePrecision| |nary?| |dark| |iter| |roughBasicSet| |iiasin| |traverse| |closed?| |components| |t| |exprHasLogarithmicWeights| |fullPartialFraction| |digamma| |eulerE| |screenResolution3D| |cRationalPower| |delete!| |realEigenvectors| |constantCoefficientRicDE| |OMgetObject| |rightRecip| |radicalEigenvector| |fractRadix| |multisect| |graphStates| |unary?| |insertTop!| |completeSmith| |OMgetFloat| |optional| |iiasech| |infinite?| |rootNormalize| |indicialEquationAtInfinity| |splitLinear| |directory| |representationType| |elements| |nextIrreduciblePoly| |palgextint0| |point?| |basisOfMiddleNucleus| |zeroSquareMatrix| |printingInfo?| |quadraticForm| |startTableGcd!| |divideIfCan!| |pattern| |fillPascalTriangle| |reduceLODE| |mapUp!| |lintgcd| |leftCharacteristicPolynomial| |An| |repeating?| |toseLastSubResultant| |arg1| |length| |nthFlag| |removeSuperfluousCases| |cSech| |polyRicDE| |setProperty| |cardinality| |lazy?| |mergeFactors| |setright!| |arg2| |scripts| ^ |lquo| |factorPolynomial| |prefixRagits| |palgLODE0| |totolex| |scripted?| |partialDenominators| |adaptive3D?| |integralBasis| |iExquo| |leftLcm| |flatten| |printStatement| |bracket| |message| |terms| |element?| |conditions| |OMread| |firstNumer| |imaginary| |anfactor| |OMconnectTCP| |fortran| |rootPower| |test| |selectfirst| |mainCoefficients| |movedPoints| |match| |PDESolve| |shade| |leastPower| |shiftRight| |compBound| |closedCurve| |bumptab| |iFTable| |addMatchRestricted| |lyndon?| |parent| |ipow| |OMlistCDs| |doubleComplex?| |diff| |showAll?| |subPolSet?| |trailingCoefficient| |coerce| |rightUnits| |clearTheIFTable| |critMTonD1| |enumerate| |rank| |realRoots| |selectFiniteRoutines| |extractProperty| |csubst| |lllp| |figureUnits| |viewZoomDefault| |resetBadValues| |middle| |component| |usingTable?| |changeWeightLevel| |keys| |ode| |construct| |dequeue| |conditionsForIdempotents| |frst| |pastel| |PollardSmallFactor| |OMgetError| |jacobi| |probablyZeroDim?| |mpsode| |predicate| |ocf2ocdf| |optpair| |palglimint0| |stoseInvertibleSet| |unrankImproperPartitions1| |gcdcofactprim| |moduleSum| |defineProperty| |numberOfHues| |#| |alphanumeric| |normalDeriv| |rightTrace| |leftRankPolynomial| |hclf| |subst| |collectQuasiMonic| |stiffnessAndStabilityOfODEIF| |option?| |variationOfParameters| |extendedIntegrate| |pdf2ef| |prinb| |subresultantVector| |genericRightMinimalPolynomial| |semiResultantEuclidean1| |laguerre| |simpson| |qroot| |separate| |bivariateSLPEBR| |iicsc| |complexNumeric| |showTheFTable| |LyndonCoordinates| |bombieriNorm| |overbar| |status| |algebraicOf| |measure2Result| |polyred| |quoByVar| |schema| |seriesToOutputForm| |rowEch| |ListOfTerms| |tanSum| |enterPointData| |stack| |lists| |select!| |save| |taylorQuoByVar| |cyclicGroup| |call| |palginfieldint| |kernels| |commutativeEquality| |makeFloatFunction| |presuper| |string?| |explicitlyFinite?| |minimumDegree| |Beta| |clipSurface| |univariate| |birth| |laurentIfCan| |rewriteSetByReducingWithParticularGenerators| |setref| |palgint0| |groebgen| |iiabs| |univcase| |viewport2D| |rightAlternative?| |symmetricTensors| |objects| |log2| |fortranDoubleComplex| |factorAndSplit| |idealiser| |divisors| |iiasinh| |removeRoughlyRedundantFactorsInContents| |base| |declare!| |edf2df| |selectMultiDimensionalRoutines| |deepExpand| |multiEuclidean| |primeFrobenius| |removeConstantTerm| |pdct| |recoverAfterFail| |/\\| |numberOfFactors| |subresultantSequence| |updatF| |fortranInteger| |cAcos| |legendreP| |alphabetic| |critB| |\\/| |cAsech| |addPoint| |OMencodingUnknown| |stoseInternalLastSubResultant| |Zero| |properties| |decimal| |tanintegrate| |primes| |mdeg| |mirror| |expenseOfEvaluationIF| |setFormula!| |csch2sinh| |semiResultantEuclidean2| |resultantReduit| |coerceListOfPairs| |One| |regularRepresentation| |setelt| |btwFact| |makeSeries| |finiteBasis| |OMputFloat| |aLinear| |rightMinimalPolynomial| |characteristicSerie| |setClipValue| |positiveSolve| |supRittWu?| |ratpart| |curryRight| LODO2FUN |cTan| |meshPar2Var| |double?| |cap| |OMputEndBVar| |numberOfOperations| |monomRDE| |logGamma| |copy| |normal?| |recur| |rightRankPolynomial| |stronglyReduce| |sumOfSquares| |BasicMethod| |factorset| |monicRightDivide| |collectUpper| |scaleRoots| |translate| |reciprocalPolynomial| |euclideanNormalForm| |cAcsc| |direction| |mapUnivariateIfCan| |prevPrime| |deepestTail| |concat| |normalElement| |unit?| |expenseOfEvaluation| |cn| ^= |qinterval| |distance| |asinhIfCan| |squareMatrix| |ravel| |close!| |unvectorise| |nextSublist| |normal01| |subspace| |rowEchelon| |bat| |denomRicDE| |setAdaptive| |leadingExponent| |reshape| |internalAugment| |negative?| |exquo| |taylorIfCan| |computePowers| |LyndonWordsList| |besselK| |euclideanGroebner| |OMwrite| |cylindrical| |shrinkable| |normalize| |div| |stoseInvertible?sqfreg| |viewThetaDefault| |pquo| |vectorise| |integralAtInfinity?| |nthRootIfCan| |previous| |distFact| |extractIfCan| |integerBound| |quo| |twist| |selectPolynomials| |externalList| |radicalSolve| |createThreeSpace| |systemCommand| |irreducible?| |showRegion| |palgRDE| |optimize| |prime| |errorInfo| |completeEchelonBasis| |iisin| |roughSubIdeal?| |showAttributes| |LyndonWordsList1| |segment| |iicos| |zCoord| |rem| |dihedralGroup| |horizConcat| |primextendedint| |coth2tanh| |drawComplex| |antiAssociative?| |zeroVector| |modularFactor| |normal| |pointColorDefault| |update| |constantLeft| |round| |unmakeSUP| |lagrange| |maxrank| |squareFreePart| |complexEigenvectors| |common| |nextNormalPrimitivePoly| |fibonacci| |numberOfPrimitivePoly| |sum| |intChoose| |createPrimitiveNormalPoly| |fracPart| |generalSqFr| |mergeDifference| |axes| |youngGroup| |inRadical?| |more?| |alphanumeric?| |cycleTail| |numerators| |quoted?| |midpoint| |compdegd| |primPartElseUnitCanonical!| |pointColorPalette| |radicalEigenvalues| |members| |factorSquareFreePolynomial| |normalizeIfCan| |modTree| |inrootof| |fill!| |repeating| |internalDecompose| |concat!| |digit?| |besselY| |child| |leftPower| |quartic| |rk4| |expint| |setLabelValue| |unaryFunction| |front| |rk4f| |inR?| |OMputBind| |leftExtendedGcd| |expPot| |companionBlocks| |charClass| |getCurve| |critpOrder| |returnType!| |mr| |simplifyExp| |zeroDim?| |ptFunc| |fortranCarriageReturn| |adaptive| |readIfCan!| |tanQ| |floor| |chebyshevU| |makeprod| |revert| |clearTheFTable| |listBranches| |bipolar| |initial| |duplicates?| |radicalRoots| |position| |hasPredicate?| |htrigs| |halfExtendedResultant1| |hcrf| |int| |contains?| |algebraicVariables| |groebSolve| |rubiksGroup| |basisOfLeftNucloid| |cond| |rightTraceMatrix| |insert| |normInvertible?| |iiacsch| |cSinh| |exp| |multiset| |rightLcm| |varselect| |regime| |wholeRadix| |not| |rule| |sayLength| |radicalEigenvectors| |alternating| |symmetricRemainder| |null?| |complexElementary| |yellow| |cycleElt| |delay| |lazyPseudoRemainder| |OMputApp| |deriv| |interpretString| |pi| |decreasePrecision| |expandTrigProducts| |ef2edf| |var1StepsDefault| |null| |ref| |block| |countRealRoots| |OMgetSymbol| |cyclic?| |makeVariable| |unexpand| |polarCoordinates| |interpret| |iflist2Result| |cCoth| |plus| |OMUnknownSymbol?| |setPredicates| |routines| |ramified?| |generalInfiniteProduct| |wholePart| |lazyPseudoDivide| |subNode?| |diagonalProduct| |insertRoot!| |paraboloidal| |subResultantsChain| |setScreenResolution| |infinity| |void| |outputFixed| |particularSolution| |writable?| |curve?| |extractClosed| |nextsousResultant2| |leadingIndex| |ridHack1| |iidprod| |antiCommutative?| |trapezoidal| |curve| |headRemainder| |cycleLength| |functionIsOscillatory| |sqfrFactor| |car| |rangeIsFinite| |elColumn2!| |exponential| |OMputEndError| |plusInfinity| |OMputEndAttr| |complexIntegrate| |ReduceOrder| |roughBase?| |pseudoRemainder| |cdr| |createMultiplicationTable| |times| |leftFactorIfCan| |powerSum| |symbol?| |monicDivide| |argscript| |useEisensteinCriterion?| |lyndon| |colorDef| |trigs2explogs| |dimensionOfIrreducibleRepresentation| |maxRowIndex| |unitNormalize| |coefficient| |pdf2df| |minusInfinity| |outerProduct| |algintegrate| |makeCos| |invertIfCan| |OMgetEndAttr| |UP2ifCan| |linearAssociatedLog| |innerSolve1| D |child?| |OMsetEncoding| |create3Space| |generalizedEigenvector| |setLegalFortranSourceExtensions| |lazyIrreducibleFactors| |bottom!| |bsolve| |trapezoidalo| |addPoint2| |changeName| |singularitiesOf| |goodnessOfFit| |groebner?| |bit?| |graphCurves| |wreath| |perspective| ~= |prinshINFO| |singularAtInfinity?| |pToHdmp| |noncommutativeJordanAlgebra?| |OMputEndBind| |hspace| |minordet| |userOrdered?| |squareFree| |sumSquares| |minPoints| |fortranLiteral| |OMReadError?| |getMatch| |cyclotomic| |outputAsTex| |diagonals| |dihedral| |complexNormalize| |initTable!| |OMgetAtp| |nextLatticePermutation| |heapSort| |initials| |xor| |balancedBinaryTree| |mapCoef| |swapColumns!| |tail| |rangePascalTriangle| |baseRDEsys| |rootKerSimp| |removeRoughlyRedundantFactorsInPols| |univariatePolynomial| |reset| |normFactors| |member?| |subResultantChain| |dec| |mat| |RittWuCompare| |quadratic?| |key?| |iilog| |write| |testDim| |merge!| |adaptive?| |dfRange| |isOp| |setErrorBound| |quatern| |diagonal| |createPrimitivePoly| |cCot| |dim| |coercePreimagesImages| |print| |degreeSubResultant| |viewPosDefault| |rowEchLocal| |hitherPlane| |minRowIndex| |zero?| |fortranTypeOf| |shufflein| |red| |symmetric?| |kovacic| |bandedHessian| |c02aff| |gramschmidt| |useSingleFactorBound?| |makeUnit| |evenInfiniteProduct| |polynomialZeros| |clipBoolean| |acoshIfCan| |combineFeatureCompatibility| |llprop| |c02agf| |typeList| |lyndonIfCan| |invertibleElseSplit?| |totalLex| |init| |po| |changeBase| |prolateSpheroidal| |indiceSubResultantEuclidean| |c05adf| |wordsForStrongGenerators| |satisfy?| |maxdeg| |iomode| |singRicDE| |unitVector| |systemSizeIF| |realElementary| |parabolicCylindrical| |c05nbf| |coerceP| |iiatan| |leadingTerm| |OMgetEndAtp| |monicLeftDivide| |specialTrigs| |complexForm| |morphism| |c05pbf| |chvar| |cross| |readLineIfCan!| |primextintfrac| |preprocess| |ramifiedAtInfinity?| |controlPanel| |c06eaf| |removeZeroes| |balancedFactorisation| |prepareDecompose| |showTheRoutinesTable| UTS2UP |getButtonValue| |getStream| |quotedOperators| |putGraph| |c06ebf| |factors| |splitConstant| SEGMENT |shiftLeft| |showIntensityFunctions| |OMgetEndBind| |pushdown| |push!| |find| |zerosOf| |point| |c06ecf| |insertionSort!| |expextendedint| |listYoungTableaus| GF2FG |asinIfCan| |curveColorPalette| |primeFactor| |possiblyNewVariety?| |bivariatePolynomials| |c06ekf| |quasiComponent| |nthCoef| |Lazard| |LowTriBddDenomInv| |objectOf| |pushup| |cAsec| |LiePolyIfCan| |transcendent?| |tab| |c06fpf| |gderiv| |ptree| |sylvesterMatrix| |lazyPremWithDefault| |randomR| |associatedSystem| |complexZeros| |range| |contract| |argument| |mkPrim| |definingInequation| |c06fqf| |series| |level| |lp| |lazyPquo| |newSubProgram| |digits| |cartesian| |weight| |meshPar1Var| |mapSolve| |badValues| |nthr| |c06frf| |SturmHabicht| |rspace| |argumentList!| |elem?| |unitNormal| |elliptic?| |sechIfCan| |failed?| |getVariableOrder| |c06fuf| |UpTriBddDenomInv| |arity| |root?| |raisePolynomial| |outputMeasure| |size?| |internalSubQuasiComponent?| |irreducibleFactor| |pmComplexintegrate| |c06gbf| |hasTopPredicate?| |fractRagits| |drawStyle| |characteristic| |leftDivide| |resultantReduitEuclidean| |eigenvalues| |antisymmetricTensors| |isQuotient| |min| |c06gcf| |bernoulliB| |derivationCoordinates| |denominator| |OMsupportsSymbol?| |inHallBasis?| |viewDeltaXDefault| |rightExactQuotient| |imagK| |c06gqf| |linearDependenceOverZ| |df2mf| |seed| |degreePartition| |isobaric?| |iisech| |LyndonBasis| |leftQuotient| |center| |sizeMultiplication| |c06gsf| |iitan| |moebius| |f01rcf| |branchPoint?| |second| |property| |drawComplexVectorField| |tubePlot| |palgextint| |OMputEndAtp| |imagJ| |d01ajf| |solid| |constantToUnaryFunction| |f01rdf| |minimumExponent| |third| |lowerCase!| |edf2efi| |meshFun2Var| |subset?| |discriminant| |d01akf| |f01ref| |OMopenFile| |pointData| |bfKeys| |repeatUntilLoop| |cyclotomicFactorization| |generalTwoFactor| |OMclose| |limitPlus| |d01alf| |cAcoth| |f02aaf| |getGoodPrime| |OMputObject| |top!| |torsion?| |rischDEsys| |units| |stirling1| |numberOfImproperPartitions| |d01amf| |cyclic| |f02abf| |listOfLists| |summation| |lazyPseudoQuotient| |points| |palgLODE| |Vectorise| |uniform01| |setfirst!| |d01anf| |basisOfRightNucloid| |f02adf| |torsionIfCan| |upDateBranches| |triangSolve| |nextSubsetGray| |internalIntegrate| |LazardQuotient| |critBonD| |lifting| |d01apf| |traceMatrix| |f02aef| |determinant| |schwerpunkt| |head| |remainder| |modifyPoint| |kroneckerDelta| |nodes| |d01aqf| |critMonD1| |f02aff| |parametersOf| |exactQuotient| |ignore?| |ode1| |code| |operator| |useSingleFactorBound| |mainSquareFreePart| |d01asf| |f02agf| |symmetricGroup| |outputForm| |generators| |sPol| |subResultantGcd| |var1Steps| |sub| |d01bbf| |corrPoly| |f02ajf| |halfExtendedResultant2| |reducedContinuedFraction| |dictionary| |nextPrime| |symmetricPower| |sample| |reverse| |f02akf| |multiple?| |setrest!| |eulerPhi| |next| |max| |low| |makeYoungTableau| |OMgetAttr| |multiplyCoefficients| |comment| |leadingBasisTerm| ** |f02awf| |clearTheSymbolTable| |lexico| |irreducibleRepresentation| |outputAsScript| |processTemplate| |sinIfCan| |f02axf| |mainCharacterization| |sh| |makeSin| |vector| |OMgetEndError| |zeroSetSplitIntoTriangularSystems| |digit| |qPot| |rightRank| |f02bbf| |chiSquare1| |deref| |differentiate| EQ |dequeue!| |tensorProduct| |semiSubResultantGcdEuclidean2| |upperCase| |rischNormalize| |f02bjf| |toseInvertibleSet| |omError| |swap| |mapBivariate| |li| |definingEquations| |dimension| |f02fjf| |squareFreePolynomial| |crushedSet| |completeHermite| |euclideanSize| |cCosh| |algSplitSimple| |wrregime| |deleteProperty!| |exteriorDifferential| |f02wef| |retractable?| |generic| |reverseLex| |hdmpToP| |prologue| |distdfact| |f02xef| |internalZeroSetSplit| |lexGroebner| |nonLinearPart| |moebiusMu| |zeroDimPrimary?| |removeCoshSq| |sort| |brace| |f04adf| |semiSubResultantGcdEuclidean1| |difference| |convergents| |selectNonFiniteRoutines| |sinh2csch| |isExpt| |pointSizeDefault| |factorList| |f04arf| |OMsend| |solveLinearPolynomialEquation| |f2st| |imagi| |divergence| |headReduce| |f04asf| |orbit| |rotate!| |topPredicate| |vedf2vef| |retract| |unitsColorDefault| |gethi| |cAcot| |f04atf| |iipow| |anticoord| |quasiAlgebraicSet| |radicalOfLeftTraceForm| |firstUncouplingMatrix| |value| |f04axf| |pole?| |inGroundField?| |aromberg| |makeFR| |times!| |hash| |SturmHabichtMultiple| |mindegTerm| |random| |factorials| |f04faf| |remove!| |square?| |sqfree| |lprop| |lift| |count| |predicates| |changeMeasure| |generator| |f04jgf| |viewpoint| |setMinPoints| |halfExtendedSubResultantGcd1| |reduce| |solid?| |graphState| |style| |prod| |f04maf| |OMputString| |ODESolve| |besselJ| |sumOfKthPowerDivisors| |nextPartition| |limit| |merge| |f04mbf| |nextsubResultant2| |dmp2rfi| |hdmpToDmp| |exponents| |minIndex| |calcRanges| |symmetricDifference| |f04mcf| |ord| |laplacian| |decomposeFunc| |transcendenceDegree| |inc| |basisOfNucleus| |semiDegreeSubResultantEuclidean| |search| |f04qaf| |dmpToP| |lfextendedint| |lazyEvaluate| |elliptic| |matrixDimensions| |OMbindTCP| |fortranLiteralLine| |OMgetType| |f07adf| |superHeight| |content| |rootOf| |computeInt| |evaluate| |OMputEndApp| |reduction| |cyclicCopy| |f07aef| |iifact| |mathieu24| |iicot| |mathieu23| |cyclePartition| |countRealRootsMultiple| |iiacsc| |genericRightTraceForm| |algebraicDecompose| |reduced?| |f07fdf| |genericPosition| |debug3D| |extractPoint| |binarySearchTree| |trace2PowMod| |uniform| |integral?| |chainSubResultants| |f07fef| |splitNodeOf!| |unit| |choosemon| |iidsum| |divideIfCan| |highCommonTerms| |localReal?| |super| |s01eaf| |OMputSymbol| |startStats!| |stosePrepareSubResAlgo| |tan2cot| |fullDisplay| |cAtan| |inspect| |lo| |rightRemainder| |airyBi| |repSq| |s13aaf| |gcdcofact| |seriesSolve| |axesColorDefault| |nextNormalPoly| |curryLeft| |incr| |ScanFloatIgnoreSpaces| |OMencodingBinary| |s13acf| |selectsecond| |mapmult| |mainForm| |extensionDegree| |mapExponents| |associates?| |hi| |binaryTree| |iiacos| |s13adf| |quadratic| |generateIrredPoly| |poisson| |blue| |e01sff| |getlo| |moduloP| |getOperator| |dioSolve| |rightRegularRepresentation| |makeEq| |s14aaf| |rightTrim| |modifyPointData| |isAbsolutelyIrreducible?| |minimize| |duplicates| |pascalTriangle| |fintegrate| |nil| |getOperands| |reducedSystem| |OMgetInteger| |legendre| |s14abf| |leftTrim| |slex| |returns| |Si| |acscIfCan| |rational| |buildSyntax| |appendPoint| |makingStats?| |s14baf| |createGenericMatrix| |associatedEquations| |mantissa| |compiledFunction| |graeffe| |paren| |leftZero| |newReduc| |s15adf| |OMgetBVar| |partialNumerators| |rightPower| |doublyTransitive?| |relationsIdeal| |approximate| |rationalPoint?| |setEpilogue!| |createNormalPoly| |s15aef| |resultant| |RemainderList| |rootRadius| |primitive?| |complex| |iicoth| |commutator| |shallowExpand| |s17acf| |numberOfIrreduciblePoly| |matrixConcat3D| |mathieu22| |palgint| |isPlus| |id| |safeFloor| |tanh2trigh| |s17adf| |cycleSplit!| |rationalPoints| |initializeGroupForWordProblem| |makeViewport2D| |printTypes| |infRittWu?| |constantOpIfCan| |secIfCan| |lieAdmissible?| |s17aef| |universe| |perfectNthPower?| |padecf| |monom| |mapGen| |areEquivalent?| |table| |sincos| |outputGeneral| |quotient| |s17aff| |pointPlot| |leastAffineMultiple| |innerSolve| |multiplyExponents| |nextColeman| |factorSquareFree| |tree| |intPatternMatch| |key| |abelianGroup| |refine| |useEisensteinCriterion| |s17agf| |oblateSpheroidal| |makeResult| |primitiveElement| |deepestInitial| |branchIfCan| |conjug| |readLine!| |opeval| |index| |setleft!| |UnVectorise| |certainlySubVariety?| |Ei| |s17ahf| |integralRepresents| |rules| |someBasis| |indicialEquation| |smith| |lazyIntegrate| |sinhcosh| |rdregime| |new| |varList| |generate| |completeEval| |nthFactor| |s17ajf| |deleteRoutine!| |weights| |bitCoef| |supDimElseRittWu?| |blankSeparate| |viewDefaults| |pushuconst| |resultantEuclidean| |condition| |solveid| |ParCond| |sizePascalTriangle| |s17akf| |elementary| |maxIndex| |removeDuplicates!| |commonDenominator| |product| |zeroMatrix| |scalarMatrix| |incrementBy| |inconsistent?| |imagE| |cyclicEqual?| |minus!| |s17dcf| |qfactor| |boundOfCauchy| |maxPoints3D| |linear| |semiDiscriminantEuclidean| |subQuasiComponent?| |shallowCopy| |dot| |expand| |removeIrreducibleRedundantFactors| |divideExponents| |s17def| |internalSubPolSet?| |makeSketch| |OMgetVariable| |number?| |resetVariableOrder| |central?| |hue| |filterWhile| |leftRank| |evenlambert| |s17dgf| |commaSeparate| |cosIfCan| |generic?| |polynomial| |high| |initiallyReduce| |iisinh| |cos2sec| |filterUntil| |zero| |rightQuotient| |removeRedundantFactorsInPols| |att2Result| |s17dhf| |quotientByP| |algDsolve| |structuralConstants| |primitivePart| |removeCosSq| |select| |packageCall| |squareFreePrim| |listOfMonoms| |s17dlf| |symmetricProduct| |symbolTableOf| |upperCase?| |tracePowMod| |And| |palgintegrate| |composites| |submod| |s18acf| |leftUnits| |rightDivide| |basisOfLeftAnnihilator| |screenResolution| |precision| |Or| |positive?| |deepCopy| |argumentListOf| |decrease| |tubePoints| |extractBottom!| |extendedint| |Not| |linearMatrix| |setsubMatrix!| |rightFactorCandidate| |list?| |bezoutResultant| |result| |checkPrecision| |OMgetApp| |critT| |splitSquarefree| |setImagSteps| |stoseInvertibleSetreg| |moreAlgebraic?| |expt| |printCode| |drawToScale| |integralMatrixAtInfinity| |totalfract| |oneDimensionalArray| |nullary?| |createLowComplexityTable| |updateStatus!| |triangular?| |partitions| |tubeRadius| |multMonom| |colorFunction| |logpart| |ratDenom| |homogeneous?| |makeRecord| |redPol| |augment| |iiGamma| |rationalPower| |infiniteProduct| |linearAssociatedExp| |weighted| |getOrder| |lhs| |expandPower| |applyRules| |leftAlternative?| |critM| |cschIfCan| |realEigenvalues| |replace| |transform| |recolor| |bringDown| |scalarTypeOf| |stopTableGcd!| |rhs| |toroidal| |const| |empty?| |getRef| |recip| |mainContent| |rk4a| |subResultantGcdEuclidean| |leviCivitaSymbol| |constantRight| |polar| |compile| |inverseLaplace| |roughEqualIdeals?| |pow| |midpoints| |tValues| |lazyResidueClass| |aCubic| |radPoly| |fortranLogical| |iitanh| |left| |removeSquaresIfCan| |clikeUniv| |alternative?| |numberOfCycles| |nullary| |convert| |stop| |permutation| |simpleBounds?| |prinpolINFO| |Hausdorff| |lSpaceBasis| |right| |localAbs| |phiCoord| |constDsolve| |OMgetEndBVar| |clearFortranOutputStack| |OMputAtp| |removeZero| |explicitEntries?| |connect| |irreducibleFactors| |factorial| |stiffnessAndStabilityFactor| RF2UTS |swapRows!| |lineColorDefault| |genericLeftNorm| |characteristicPolynomial| |simplify| |subMatrix| |trim| |iiperm| |complexRoots| |any?| |cycleRagits| |removeSinhSq| |rightExtendedGcd| |bfEntry| |qqq| |complexSolve| |hermite| |asinh| |identitySquareMatrix| |HenselLift| |orthonormalBasis| |OMgetEndObject| |degree| |factorByRecursion| |numeric| |parabolic| |lazyPrem| |quadraticNorm| |removeSuperfluousQuasiComponents| |acosh| |complementaryBasis| |fortranComplex| |consnewpol| |selectIntegrationRoutines| |removeRoughlyRedundantFactorsInPol| |conical| |radical| |isTimes| |halfExtendedSubResultantGcd2| |thetaCoord| |nullSpace| |atanh| |rootOfIrreduciblePoly| |sign| |abs| |radix| |sec2cos| |failed| |tubeRadiusDefault| |goto| |exactQuotient!| |gcdprim| |superscript| |acoth| |log10| |laurentRep| |rightFactorIfCan| |musserTrials| |setelt!| |light| |tower| |sparsityIF| |column| |putColorInfo| |plenaryPower| |asech| |viewPhiDefault| |write!| |squareFreeFactors| |atoms| |script| |logical?| |open?| |setColumn!| |minset| |append| |clipPointsDefault| |separateDegrees| |var2StepsDefault| |janko2| |factorSquareFreeByRecursion| |euler| |setnext!| |cCos| |delete| |multiple| |spherical| |indiceSubResultant| |mkIntegral| |factor| |iisqrt2| |noKaratsuba| |redpps| |collectUnder| |applyQuote| |SFunction| |exprHasAlgebraicWeight| |coleman| |create| |tex| |sqrt| |lfintegrate| |quasiRegular| |leadingIdeal| |toseInvertible?| |doubleRank| |iiatanh| |postfix| |quote| |real| |genericRightNorm| |minimalPolynomial| |OMgetEndApp| |resize| |bandedJacobian| |setlast!| |integralLastSubResultant| |explimitedint| |rightGcd| |imag| |getMultiplicationMatrix| |hasoln| |ruleset| |outputFloating| |partition| |rquo| |eq?| |composite| |directProduct| |finiteBound| |kmax| NOT |hMonic| |sumOfDivisors| |KrullNumber| |region| |invertible?| |brillhartTrials| |invmultisect| |symbolIfCan| |numericIfCan| OR |eisensteinIrreducible?| |physicalLength!| |binaryFunction| |possiblyInfinite?| |doubleDisc| |realZeros| |destruct| |partialQuotients| |showArrayValues| AND |getDatabase| |constant?| |suchThat| |oddlambert| |diag| |check| |nthRoot| |medialSet| |numericalOptimization| |froot| |iisqrt3| |asechIfCan| |printInfo| |vconcat| |freeOf?| |totalGroebner| |genericRightTrace| |FormatRoman| |hasSolution?| |op| |enqueue!| |leastMonomial| |makeMulti| |exQuo| |internal?| |reduceBasisAtInfinity| |dAndcExp| |modularGcd| |subHeight| |less?| |one?| |prime?| |semiResultantEuclideannaif| |OMencodingSGML| |initiallyReduced?| |setleaves!| |hyperelliptic| |module| |dflist| |identityMatrix| |hexDigit?| |restorePrecision| |permutationRepresentation| |rst| |leftOne| |mapMatrixIfCan| |lowerPolynomial| |trueEqual| |rightNorm| |singleFactorBound| |createIrreduciblePoly| |zeroOf| |conditionP| |computeBasis| |LazardQuotient2| |bumptab1| |elRow1!| |myDegree| |elRow2!| |rdHack1| |changeNameToObjf| |brillhartIrreducible?| |upperCase!| |symbol| |nthExpon| |trunc| |atanIfCan| |tanhIfCan| |implies| |cycles| |resetAttributeButtons| |internalIntegrate0| |string| |datalist| |setPosition| |whatInfinity| |nthFractionalTerm| |getPickedPoints| |monomRDEsys| |listRepresentation| |beauzamyBound| |GospersMethod| |endOfFile?| * |character?| |modularGcdPrimitive| |viewWriteDefault| |scan| |patternMatchTimes| |exponential1| |obj| |createMultiplicationMatrix| |df2ef| |factorOfDegree| |integer| |leftNorm| |leftRegularRepresentation| |normalise| |lighting| |associator| |stoseIntegralLastSubResultant| |linearPart| |factorsOfDegree| |mainVariables| |tan2trig| |factorGroebnerBasis| |reorder| |normalizedAssociate| |generalLambert| |linearDependence| |mainValue| |expintfldpoly| |expIfCan| |computeCycleLength| |toseSquareFreePart| |cyclotomicDecomposition| |rationalApproximation| |exists?| |cExp| |constantIfCan| |redmat| |stronglyReduced?| |hconcat| |laplace| |maximumExponent| |hessian| |listexp| |OMputInteger| |atrapezoidal| |getMeasure| |setValue!| |bitTruth| |ffactor| |validExponential| |ldf2vmf| |rightMult| |factorFraction| |lastSubResultantElseSplit| |OMputBVar| |setVariableOrder| |zeroDimensional?| |root| |separant| |fortranReal| |powerAssociative?| |exp1| |bat1| |completeHensel| |compactFraction| |printStats!| |insertBottom!| |tanh2coth| |unparse| |BumInSepFFE| |order| |numFunEvals3D| |minPoints3D| |subscript| |karatsubaOnce| |makeViewport3D| |getZechTable| |limitedint| |explicitlyEmpty?| |stFunc1| |plot| |lieAlgebra?| |primaryDecomp| |latex| |getCode| |createLowComplexityNormalBasis| |separateFactors| |semicolonSeparate| |stoseSquareFreePart| |rischDE| |leaves| |binaryTournament| |solveLinearPolynomialEquationByRecursion| |allRootsOf| |viewSizeDefault| |octon| |even?| |OMencodingXML| |typeLists| |operators| |sturmSequence| |double| |createZechTable| |float| |extract!| |reducedForm| |squareTop| |normDeriv2| |standardBasisOfCyclicSubmodule| |roman| |showFortranOutputStack| |indicialEquations| |ideal| |interval| |maxrow| |alphabetic?| |extractTop!| |physicalLength| |reverse!| |characteristicSet| |printHeader| |pile| |pToDmp| |or| |resultantEuclideannaif| |limitedIntegrate| |resultantnaif| |zeroSetSplit| |incrementKthElement| |monomial?| |outputArgs| |arrayStack| |stopTable!| |and| |wordInStrongGenerators| |bezoutDiscriminant| |subtractIfCan| |sts2stst| |setchildren!| |npcoef| |entry?| |approxNthRoot| |setPoly| |jordanAlgebra?| |genericLeftDiscriminant| |simplifyLog| |linkToFortran| |reduceByQuasiMonic| |setAdaptive3D| |genericLeftTrace| |setFieldInfo| |sdf2lst| |rectangularMatrix| |karatsubaDivide| |maxPoints| |patternMatch| |interpolate| |unravel| |groebnerIdeal| |polygon?| |sortConstraints| |purelyTranscendental?| |rur| |absolutelyIrreducible?| |primlimintfrac| |stFunc2| |nextPrimitiveNormalPoly| |rightDiscriminant| |dom| |cTanh| |explogs2trigs| |csc2sin| |belong?| |strongGenerators| |oddInfiniteProduct| |basisOfRightNucleus| |sinhIfCan| GE |pseudoQuotient| |simplifyPower| |LagrangeInterpolation| |primitivePart!| |charpol| |leftScalarTimes!| |printInfo!| |setRow!| |index?| GT |trigs| |setClosed| |quasiRegular?| |ParCondList| |monomials| |iicsch| |functionIsFracPolynomial?| |numberOfComputedEntries| |s18adf| |radicalSimplify| LE |node| |leftRemainder| |Frobenius| |dmpToHdmp| |mapdiv| |coerceImages| |symbolTable| |edf2ef| |s18aef| |OMgetString| LT |splitDenominator| |powmod| |coordinates| |maxint| |complexNumericIfCan| |setStatus| |inv| |copy!| |s18aff| |leftMinimalPolynomial| |OMlistSymbols| |basisOfRightAnnihilator| |pushFortranOutputStack| |rarrow| |setOfMinN| |ground?| |fortranLinkerArgs| |changeThreshhold| |findCycle| |s18dcf| |zoom| |isMult| |constantKernel| |skewSFunction| |setRealSteps| |popFortranOutputStack| |loopPoints| |top| |localIntegralBasis| |ground| |imagk| |s18def| |rename| |saturate| |binary| |continue| |box| |monomialIntegrate| |title| |integrate| |leadingMonomial| |complexEigenvalues| |pureLex| |outputAsFortran| |monic?| |OMopenString| |s19aaf| |lepol| |numberOfChildren| |nil| |infinite| |arbitraryExponent| |approximate| |complex| |shallowMutable| |canonical| |noetherian| |central| |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index d71bec21..5bef96d4 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4835 +1,4851 @@
-(3116140 . 3269429190)
-((-2045 (((-107) (-1 (-107) |#2| |#2|) $) 62) (((-107) $) NIL)) (-3441 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-3754 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-1116 (-501)) |#2|) 34)) (-1375 (($ $) 58)) (-3547 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1934 (((-501) (-1 (-107) |#2|) $) 22) (((-501) |#2| $) NIL) (((-501) |#2| $ (-501)) 70)) (-2732 (((-578 |#2|) $) 13)) (-3216 (($ (-1 (-107) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-2519 (($ (-1 |#2| |#2|) $) 29)) (-1212 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-1473 (($ |#2| $ (-501)) NIL) (($ $ $ (-501)) 49)) (-2520 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-2369 (((-107) (-1 (-107) |#2|) $) 21)) (-2007 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-501)) NIL) (($ $ (-1116 (-501))) 48)) (-1468 (($ $ (-501)) 55) (($ $ (-1116 (-501))) 54)) (-3713 (((-701) (-1 (-107) |#2|) $) 26) (((-701) |#2| $) NIL)) (-2355 (($ $ $ (-501)) 51)) (-3764 (($ $) 50)) (-3699 (($ (-578 |#2|)) 52)) (-3934 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-578 $)) 61)) (-3691 (((-786) $) 69)) (-1200 (((-107) (-1 (-107) |#2|) $) 20)) (-3751 (((-107) $ $) 64)) (-3762 (((-107) $ $) 72)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -2355 (|#1| |#1| |#1| (-501))) (-15 -2045 ((-107) |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3754 (|#2| |#1| (-1116 (-501)) |#2|)) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -3754 (|#2| |#1| (-501) |#2|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -2732 ((-578 |#2|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1|))) (-19 |#2|) (-1104)) (T -18))
-NIL
-(-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -1375 (|#1| |#1|)) (-15 -2355 (|#1| |#1| |#1| (-501))) (-15 -2045 ((-107) |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3754 (|#2| |#1| (-1116 (-501)) |#2|)) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -3754 (|#2| |#1| (-501) |#2|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -2732 ((-578 |#2|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-1934 (((-501) (-1 (-107) |#1|) $) 97) (((-501) |#1| $) 96 (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) 95 (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 83 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 85 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 82 (|has| |#1| (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-19 |#1|) (-1180) (-1104)) (T -19))
-NIL
-(-13 (-340 |t#1|) (-10 -7 (-6 -4168)))
-(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-340 |#1|) . T) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-777) |has| |#1| (-777)) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1104) . T))
-((-3177 (((-3 $ "failed") $ $) 12)) (-3797 (($ $) NIL) (($ $ $) 9)) (* (($ (-839) $) NIL) (($ (-701) $) 16) (($ (-501) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3177 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-21)) (T -20))
-NIL
-(-10 -8 (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3177 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20)))
-(((-21) (-1180)) (T -21))
-((-3797 (*1 *1 *1) (-4 *1 (-21))) (-3797 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-501)))))
-(-13 (-123) (-10 -8 (-15 -3797 ($ $)) (-15 -3797 ($ $ $)) (-15 * ($ (-501) $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3292 (((-107) $) 10)) (-2540 (($) 15)) (* (($ (-839) $) 14) (($ (-701) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 -2540 (|#1|)) (-15 * (|#1| (-839) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 -2540 (|#1|)) (-15 * (|#1| (-839) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15)))
-(((-23) (-1180)) (T -23))
-((-1850 (*1 *1) (-4 *1 (-23))) (-2540 (*1 *1) (-4 *1 (-23))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-701)))))
-(-13 (-25) (-10 -8 (-15 (-1850) ($) -3897) (-15 -2540 ($) -3897) (-15 -3292 ((-107) $)) (-15 * ($ (-701) $))))
-(((-25) . T) ((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((* (($ (-839) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-839) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-839) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13)))
-(((-25) (-1180)) (T -25))
-((-3790 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-839)))))
-(-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)) (-15 * ($ (-839) $))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3588 (((-578 $) (-866 $)) 29) (((-578 $) (-1064 $)) 16) (((-578 $) (-1064 $) (-1070)) 20)) (-3448 (($ (-866 $)) 27) (($ (-1064 $)) 11) (($ (-1064 $) (-1070)) 54)) (-1271 (((-578 $) (-866 $)) 30) (((-578 $) (-1064 $)) 18) (((-578 $) (-1064 $) (-1070)) 19)) (-2899 (($ (-866 $)) 28) (($ (-1064 $)) 13) (($ (-1064 $) (-1070)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3588 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -3588 ((-578 |#1|) (-1064 |#1|))) (-15 -3588 ((-578 |#1|) (-866 |#1|))) (-15 -3448 (|#1| (-1064 |#1|) (-1070))) (-15 -3448 (|#1| (-1064 |#1|))) (-15 -3448 (|#1| (-866 |#1|))) (-15 -1271 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -1271 ((-578 |#1|) (-1064 |#1|))) (-15 -1271 ((-578 |#1|) (-866 |#1|))) (-15 -2899 (|#1| (-1064 |#1|) (-1070))) (-15 -2899 (|#1| (-1064 |#1|))) (-15 -2899 (|#1| (-866 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -3588 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -3588 ((-578 |#1|) (-1064 |#1|))) (-15 -3588 ((-578 |#1|) (-866 |#1|))) (-15 -3448 (|#1| (-1064 |#1|) (-1070))) (-15 -3448 (|#1| (-1064 |#1|))) (-15 -3448 (|#1| (-866 |#1|))) (-15 -1271 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -1271 ((-578 |#1|) (-1064 |#1|))) (-15 -1271 ((-578 |#1|) (-866 |#1|))) (-15 -2899 (|#1| (-1064 |#1|) (-1070))) (-15 -2899 (|#1| (-1064 |#1|))) (-15 -2899 (|#1| (-866 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3588 (((-578 $) (-866 $)) 80) (((-578 $) (-1064 $)) 79) (((-578 $) (-1064 $) (-1070)) 78)) (-3448 (($ (-866 $)) 83) (($ (-1064 $)) 82) (($ (-1064 $) (-1070)) 81)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-3743 (($ $) 92)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-1271 (((-578 $) (-866 $)) 86) (((-578 $) (-1064 $)) 85) (((-578 $) (-1064 $) (-1070)) 84)) (-2899 (($ (-866 $)) 89) (($ (-1064 $)) 88) (($ (-1064 $) (-1070)) 87)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 91)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68) (($ $ (-375 (-501))) 90)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66)))
-(((-27) (-1180)) (T -27))
-((-2899 (*1 *1 *2) (-12 (-5 *2 (-866 *1)) (-4 *1 (-27)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-27)))) (-2899 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-5 *3 (-1070)) (-4 *1 (-27)))) (-1271 (*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1271 (*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-1271 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *1)) (-5 *4 (-1070)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-866 *1)) (-4 *1 (-27)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-27)))) (-3448 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-5 *3 (-1070)) (-4 *1 (-27)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *1)) (-5 *4 (-1070)) (-4 *1 (-27)) (-5 *2 (-578 *1)))))
-(-13 (-331) (-916) (-10 -8 (-15 -2899 ($ (-866 $))) (-15 -2899 ($ (-1064 $))) (-15 -2899 ($ (-1064 $) (-1070))) (-15 -1271 ((-578 $) (-866 $))) (-15 -1271 ((-578 $) (-1064 $))) (-15 -1271 ((-578 $) (-1064 $) (-1070))) (-15 -3448 ($ (-866 $))) (-15 -3448 ($ (-1064 $))) (-15 -3448 ($ (-1064 $) (-1070))) (-15 -3588 ((-578 $) (-866 $))) (-15 -3588 ((-578 $) (-1064 $))) (-15 -3588 ((-578 $) (-1064 $) (-1070)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-916) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T))
-((-3588 (((-578 $) (-866 $)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-1064 $) (-1070)) 50) (((-578 $) $) 19) (((-578 $) $ (-1070)) 41)) (-3448 (($ (-866 $)) NIL) (($ (-1064 $)) NIL) (($ (-1064 $) (-1070)) 52) (($ $) 17) (($ $ (-1070)) 37)) (-1271 (((-578 $) (-866 $)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-1064 $) (-1070)) 48) (((-578 $) $) 15) (((-578 $) $ (-1070)) 43)) (-2899 (($ (-866 $)) NIL) (($ (-1064 $)) NIL) (($ (-1064 $) (-1070)) NIL) (($ $) 12) (($ $ (-1070)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3588 ((-578 |#1|) |#1| (-1070))) (-15 -3448 (|#1| |#1| (-1070))) (-15 -3588 ((-578 |#1|) |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -1271 ((-578 |#1|) |#1| (-1070))) (-15 -2899 (|#1| |#1| (-1070))) (-15 -1271 ((-578 |#1|) |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -3588 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -3588 ((-578 |#1|) (-1064 |#1|))) (-15 -3588 ((-578 |#1|) (-866 |#1|))) (-15 -3448 (|#1| (-1064 |#1|) (-1070))) (-15 -3448 (|#1| (-1064 |#1|))) (-15 -3448 (|#1| (-866 |#1|))) (-15 -1271 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -1271 ((-578 |#1|) (-1064 |#1|))) (-15 -1271 ((-578 |#1|) (-866 |#1|))) (-15 -2899 (|#1| (-1064 |#1|) (-1070))) (-15 -2899 (|#1| (-1064 |#1|))) (-15 -2899 (|#1| (-866 |#1|)))) (-29 |#2|) (-13 (-777) (-508))) (T -28))
-NIL
-(-10 -8 (-15 -3588 ((-578 |#1|) |#1| (-1070))) (-15 -3448 (|#1| |#1| (-1070))) (-15 -3588 ((-578 |#1|) |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -1271 ((-578 |#1|) |#1| (-1070))) (-15 -2899 (|#1| |#1| (-1070))) (-15 -1271 ((-578 |#1|) |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -3588 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -3588 ((-578 |#1|) (-1064 |#1|))) (-15 -3588 ((-578 |#1|) (-866 |#1|))) (-15 -3448 (|#1| (-1064 |#1|) (-1070))) (-15 -3448 (|#1| (-1064 |#1|))) (-15 -3448 (|#1| (-866 |#1|))) (-15 -1271 ((-578 |#1|) (-1064 |#1|) (-1070))) (-15 -1271 ((-578 |#1|) (-1064 |#1|))) (-15 -1271 ((-578 |#1|) (-866 |#1|))) (-15 -2899 (|#1| (-1064 |#1|) (-1070))) (-15 -2899 (|#1| (-1064 |#1|))) (-15 -2899 (|#1| (-866 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3588 (((-578 $) (-866 $)) 80) (((-578 $) (-1064 $)) 79) (((-578 $) (-1064 $) (-1070)) 78) (((-578 $) $) 126) (((-578 $) $ (-1070)) 124)) (-3448 (($ (-866 $)) 83) (($ (-1064 $)) 82) (($ (-1064 $) (-1070)) 81) (($ $) 127) (($ $ (-1070)) 125)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-1070)) $) 201)) (-3728 (((-375 (-1064 $)) $ (-553 $)) 233 (|has| |#1| (-508)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3709 (((-578 (-553 $)) $) 164)) (-3177 (((-3 $ "failed") $ $) 19)) (-3631 (($ $ (-578 (-553 $)) (-578 $)) 154) (($ $ (-578 (-262 $))) 153) (($ $ (-262 $)) 152)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-3743 (($ $) 92)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-1271 (((-578 $) (-866 $)) 86) (((-578 $) (-1064 $)) 85) (((-578 $) (-1064 $) (-1070)) 84) (((-578 $) $) 130) (((-578 $) $ (-1070)) 128)) (-2899 (($ (-866 $)) 89) (($ (-1064 $)) 88) (($ (-1064 $) (-1070)) 87) (($ $) 131) (($ $ (-1070)) 129)) (-3765 (((-3 (-866 |#1|) "failed") $) 251 (|has| |#1| (-959))) (((-3 (-375 (-866 |#1|)) "failed") $) 235 (|has| |#1| (-508))) (((-3 |#1| "failed") $) 197) (((-3 (-501) "failed") $) 195 (|has| |#1| (-950 (-501)))) (((-3 (-1070) "failed") $) 188) (((-3 (-553 $) "failed") $) 139) (((-3 (-375 (-501)) "failed") $) 123 (-1405 (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501))))))) (-3490 (((-866 |#1|) $) 252 (|has| |#1| (-959))) (((-375 (-866 |#1|)) $) 236 (|has| |#1| (-508))) ((|#1| $) 198) (((-501) $) 194 (|has| |#1| (-950 (-501)))) (((-1070) $) 189) (((-553 $) $) 140) (((-375 (-501)) $) 122 (-1405 (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501))))))) (-3023 (($ $ $) 55)) (-3868 (((-621 |#1|) (-621 $)) 241 (|has| |#1| (-959))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 240 (|has| |#1| (-959))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 121 (-1405 (-1280 (|has| |#1| (-959)) (|has| |#1| (-577 (-501)))) (-1280 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (((-621 (-501)) (-621 $)) 120 (-1405 (-1280 (|has| |#1| (-959)) (|has| |#1| (-577 (-501)))) (-1280 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 193 (|has| |#1| (-806 (-346)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 192 (|has| |#1| (-806 (-501))))) (-2446 (($ (-578 $)) 158) (($ $) 157)) (-2389 (((-578 (-108)) $) 165)) (-1853 (((-108) (-108)) 166)) (-1355 (((-107) $) 31)) (-3729 (((-107) $) 186 (|has| $ (-950 (-501))))) (-2117 (($ $) 218 (|has| |#1| (-959)))) (-2946 (((-1023 |#1| (-553 $)) $) 217 (|has| |#1| (-959)))) (-1342 (($ $ (-501)) 91)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1983 (((-1064 $) (-553 $)) 183 (|has| $ (-959)))) (-4111 (($ $ $) 137)) (-1323 (($ $ $) 136)) (-1212 (($ (-1 $ $) (-553 $)) 172)) (-2789 (((-3 (-553 $) "failed") $) 162)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3724 (((-578 (-553 $)) $) 163)) (-3136 (($ (-108) (-578 $)) 171) (($ (-108) $) 170)) (-2948 (((-3 (-578 $) "failed") $) 212 (|has| |#1| (-1012)))) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $) 221 (|has| |#1| (-959)))) (-1285 (((-3 (-578 $) "failed") $) 214 (|has| |#1| (-25)))) (-3475 (((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $) 215 (|has| |#1| (-25)))) (-2551 (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070)) 220 (|has| |#1| (-959))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108)) 219 (|has| |#1| (-959))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $) 213 (|has| |#1| (-1012)))) (-3109 (((-107) $ (-1070)) 169) (((-107) $ (-108)) 168)) (-3833 (($ $) 70)) (-2696 (((-701) $) 161)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 199)) (-3841 ((|#1| $) 200)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2816 (((-107) $ (-1070)) 174) (((-107) $ $) 173)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-3172 (((-107) $) 185 (|has| $ (-950 (-501))))) (-3195 (($ $ (-1070) (-701) (-1 $ $)) 225 (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ (-578 $))) 224 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $)))) 223 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $))) 222 (|has| |#1| (-959))) (($ $ (-578 (-108)) (-578 $) (-1070)) 211 (|has| |#1| (-556 (-490)))) (($ $ (-108) $ (-1070)) 210 (|has| |#1| (-556 (-490)))) (($ $) 209 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070))) 208 (|has| |#1| (-556 (-490)))) (($ $ (-1070)) 207 (|has| |#1| (-556 (-490)))) (($ $ (-108) (-1 $ $)) 182) (($ $ (-108) (-1 $ (-578 $))) 181) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) 180) (($ $ (-578 (-108)) (-578 (-1 $ $))) 179) (($ $ (-1070) (-1 $ $)) 178) (($ $ (-1070) (-1 $ (-578 $))) 177) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) 176) (($ $ (-578 (-1070)) (-578 (-1 $ $))) 175) (($ $ (-578 $) (-578 $)) 146) (($ $ $ $) 145) (($ $ (-262 $)) 144) (($ $ (-578 (-262 $))) 143) (($ $ (-578 (-553 $)) (-578 $)) 142) (($ $ (-553 $) $) 141)) (-1864 (((-701) $) 58)) (-2007 (($ (-108) (-578 $)) 151) (($ (-108) $ $ $ $) 150) (($ (-108) $ $ $) 149) (($ (-108) $ $) 148) (($ (-108) $) 147)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-4106 (($ $ $) 160) (($ $) 159)) (-2596 (($ $ (-1070)) 249 (|has| |#1| (-959))) (($ $ (-578 (-1070))) 248 (|has| |#1| (-959))) (($ $ (-1070) (-701)) 247 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) 246 (|has| |#1| (-959)))) (-3307 (($ $) 228 (|has| |#1| (-508)))) (-2949 (((-1023 |#1| (-553 $)) $) 227 (|has| |#1| (-508)))) (-2264 (($ $) 184 (|has| $ (-959)))) (-1248 (((-490) $) 255 (|has| |#1| (-556 (-490)))) (($ (-373 $)) 226 (|has| |#1| (-508))) (((-810 (-346)) $) 191 (|has| |#1| (-556 (-810 (-346))))) (((-810 (-501)) $) 190 (|has| |#1| (-556 (-810 (-501)))))) (-3097 (($ $ $) 254 (|has| |#1| (-440)))) (-2144 (($ $ $) 253 (|has| |#1| (-440)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ (-866 |#1|)) 250 (|has| |#1| (-959))) (($ (-375 (-866 |#1|))) 234 (|has| |#1| (-508))) (($ (-375 (-866 (-375 |#1|)))) 232 (|has| |#1| (-508))) (($ (-866 (-375 |#1|))) 231 (|has| |#1| (-508))) (($ (-375 |#1|)) 230 (|has| |#1| (-508))) (($ (-1023 |#1| (-553 $))) 216 (|has| |#1| (-959))) (($ |#1|) 196) (($ (-1070)) 187) (($ (-553 $)) 138)) (-1274 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-1831 (($ (-578 $)) 156) (($ $) 155)) (-3811 (((-107) (-108)) 167)) (-2442 (((-107) $ $) 39)) (-4043 (($ (-1070) (-578 $)) 206) (($ (-1070) $ $ $ $) 205) (($ (-1070) $ $ $) 204) (($ (-1070) $ $) 203) (($ (-1070) $) 202)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1070)) 245 (|has| |#1| (-959))) (($ $ (-578 (-1070))) 244 (|has| |#1| (-959))) (($ $ (-1070) (-701)) 243 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) 242 (|has| |#1| (-959)))) (-3778 (((-107) $ $) 134)) (-3768 (((-107) $ $) 133)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 135)) (-3762 (((-107) $ $) 132)) (-3803 (($ $ $) 64) (($ (-1023 |#1| (-553 $)) (-1023 |#1| (-553 $))) 229 (|has| |#1| (-508)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68) (($ $ (-375 (-501))) 90)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156)))))
-(((-29 |#1|) (-1180) (-13 (-777) (-508))) (T -29))
-((-2899 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-777) (-508))))) (-1271 (*1 *2 *1) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) (-2899 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-777) (-508))))) (-1271 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) (-3448 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-777) (-508))))) (-3588 (*1 *2 *1) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-777) (-508))))) (-3588 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-389 |t#1|) (-10 -8 (-15 -2899 ($ $)) (-15 -1271 ((-578 $) $)) (-15 -2899 ($ $ (-1070))) (-15 -1271 ((-578 $) $ (-1070))) (-15 -3448 ($ $)) (-15 -3588 ((-578 $) $)) (-15 -3448 ($ $ (-1070))) (-15 -3588 ((-578 $) $ (-1070)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501)))) ((-216) . T) ((-260) . T) ((-276) . T) ((-278 $) . T) ((-267) . T) ((-331) . T) ((-345 |#1|) |has| |#1| (-959)) ((-368 |#1|) . T) ((-380 |#1|) . T) ((-389 |#1|) . T) ((-419) . T) ((-440) |has| |#1| (-440)) ((-476 (-553 $) $) . T) ((-476 $ $) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 |#1|) |has| |#1| (-156)) ((-583 $) . T) ((-577 (-501)) -12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) ((-577 |#1|) |has| |#1| (-959)) ((-648 (-375 (-501))) . T) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) . T) ((-657) . T) ((-777) . T) ((-820 (-1070)) |has| |#1| (-959)) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-804 |#1|) . T) ((-841) . T) ((-916) . T) ((-950 (-375 (-501))) -1405 (|has| |#1| (-950 (-375 (-501)))) (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) ((-950 (-375 (-866 |#1|))) |has| |#1| (-508)) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 (-553 $)) . T) ((-950 (-866 |#1|)) |has| |#1| (-959)) ((-950 (-1070)) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) . T) ((-964 |#1|) |has| |#1| (-156)) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1104) . T) ((-1108) . T))
-((-1236 (((-991 (-199)) $) NIL)) (-3096 (((-991 (-199)) $) NIL)) (-3237 (($ $ (-199)) 122)) (-1646 (($ (-866 (-501)) (-1070) (-1070) (-991 (-375 (-501))) (-991 (-375 (-501)))) 84)) (-2616 (((-578 (-578 (-863 (-199)))) $) 134)) (-3691 (((-786) $) 146)))
-(((-30) (-13 (-874) (-10 -8 (-15 -1646 ($ (-866 (-501)) (-1070) (-1070) (-991 (-375 (-501))) (-991 (-375 (-501))))) (-15 -3237 ($ $ (-199)))))) (T -30))
-((-1646 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-866 (-501))) (-5 *3 (-1070)) (-5 *4 (-991 (-375 (-501)))) (-5 *1 (-30)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))))
-(-13 (-874) (-10 -8 (-15 -1646 ($ (-866 (-501)) (-1070) (-1070) (-991 (-375 (-501))) (-991 (-375 (-501))))) (-15 -3237 ($ $ (-199)))))
-((-2899 ((|#2| (-1064 |#2|) (-1070)) 42)) (-1853 (((-108) (-108)) 55)) (-1983 (((-1064 |#2|) (-553 |#2|)) 132 (|has| |#1| (-950 (-501))))) (-2041 ((|#2| |#1| (-501)) 109 (|has| |#1| (-950 (-501))))) (-2612 ((|#2| (-1064 |#2|) |#2|) 30)) (-2643 (((-786) (-578 |#2|)) 85)) (-2264 ((|#2| |#2|) 128 (|has| |#1| (-950 (-501))))) (-3811 (((-107) (-108)) 18)) (** ((|#2| |#2| (-375 (-501))) 90 (|has| |#1| (-950 (-501))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -2899 (|#2| (-1064 |#2|) (-1070))) (-15 -1853 ((-108) (-108))) (-15 -3811 ((-107) (-108))) (-15 -2612 (|#2| (-1064 |#2|) |#2|)) (-15 -2643 ((-786) (-578 |#2|))) (IF (|has| |#1| (-950 (-501))) (PROGN (-15 ** (|#2| |#2| (-375 (-501)))) (-15 -1983 ((-1064 |#2|) (-553 |#2|))) (-15 -2264 (|#2| |#2|)) (-15 -2041 (|#2| |#1| (-501)))) |noBranch|)) (-13 (-777) (-508)) (-389 |#1|)) (T -31))
-((-2041 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *2 (-389 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-13 (-777) (-508))))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-950 (-501))) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-31 *3 *2)) (-4 *2 (-389 *3)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-553 *5)) (-4 *5 (-389 *4)) (-4 *4 (-950 (-501))) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-1064 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-950 (-501))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-31 *4 *2)) (-4 *2 (-389 *4)))) (-2643 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-786)) (-5 *1 (-31 *4 *5)))) (-2612 (*1 *2 *3 *2) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-31 *4 *2)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-389 *4)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-31 *3 *4)) (-4 *4 (-389 *3)))) (-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *2)) (-5 *4 (-1070)) (-4 *2 (-389 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-777) (-508))))))
-(-10 -7 (-15 -2899 (|#2| (-1064 |#2|) (-1070))) (-15 -1853 ((-108) (-108))) (-15 -3811 ((-107) (-108))) (-15 -2612 (|#2| (-1064 |#2|) |#2|)) (-15 -2643 ((-786) (-578 |#2|))) (IF (|has| |#1| (-950 (-501))) (PROGN (-15 ** (|#2| |#2| (-375 (-501)))) (-15 -1983 ((-1064 |#2|) (-553 |#2|))) (-15 -2264 (|#2| |#2|)) (-15 -2041 (|#2| |#1| (-501)))) |noBranch|))
-((-2997 (((-107) $ (-701)) 16)) (-2540 (($) 10)) (-3379 (((-107) $ (-701)) 15)) (-3155 (((-107) $ (-701)) 14)) (-1262 (((-107) $ $) 8)) (-1407 (((-107) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -2540 (|#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))) (-15 -1407 ((-107) |#1|)) (-15 -1262 ((-107) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -2540 (|#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))) (-15 -1407 ((-107) |#1|)) (-15 -1262 ((-107) |#1| |#1|)))
-((-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-3379 (((-107) $ (-701)) 9)) (-3155 (((-107) $ (-701)) 10)) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3764 (($ $) 13)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-33) (-1180)) (T -33))
-((-1262 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-3764 (*1 *1 *1) (-4 *1 (-33))) (-3122 (*1 *1) (-4 *1 (-33))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-3155 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) (-3379 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) (-2997 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) (-2540 (*1 *1) (-4 *1 (-33))) (-3581 (*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-33)) (-5 *2 (-701)))))
-(-13 (-1104) (-10 -8 (-15 -1262 ((-107) $ $)) (-15 -3764 ($ $)) (-15 -3122 ($)) (-15 -1407 ((-107) $)) (-15 -3155 ((-107) $ (-701))) (-15 -3379 ((-107) $ (-701))) (-15 -2997 ((-107) $ (-701))) (-15 -2540 ($) -3897) (IF (|has| $ (-6 -4167)) (-15 -3581 ((-701) $)) |noBranch|)))
-(((-1104) . T))
-((-4003 (($ $) 11)) (-3995 (($ $) 10)) (-4013 (($ $) 9)) (-3550 (($ $) 8)) (-4008 (($ $) 7)) (-3999 (($ $) 6)))
-(((-34) (-1180)) (T -34))
-((-4003 (*1 *1 *1) (-4 *1 (-34))) (-3995 (*1 *1 *1) (-4 *1 (-34))) (-4013 (*1 *1 *1) (-4 *1 (-34))) (-3550 (*1 *1 *1) (-4 *1 (-34))) (-4008 (*1 *1 *1) (-4 *1 (-34))) (-3999 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -3999 ($ $)) (-15 -4008 ($ $)) (-15 -3550 ($ $)) (-15 -4013 ($ $)) (-15 -3995 ($ $)) (-15 -4003 ($ $))))
-((-3736 (((-107) $ $) 18 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2150 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 125)) (-2786 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 148)) (-1511 (($ $) 146)) (-3621 (($) 72) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 71)) (-1991 (((-1154) $ |#1| |#1|) 99 (|has| $ (-6 -4168))) (((-1154) $ (-501) (-501)) 178 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 159 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3441 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 200 (|has| $ (-6 -4168))) (($ $) 199 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2997 (((-107) $ (-701)) 8)) (-1594 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 134 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 155 (|has| $ (-6 -4168)))) (-2193 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 157 (|has| $ (-6 -4168)))) (-2535 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 153 (|has| $ (-6 -4168)))) (-3754 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 189 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-1116 (-501)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 160 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "last" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 158 (|has| $ (-6 -4168))) (($ $ "rest" $) 156 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "first" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 154 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "value" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 133 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 132 (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 45 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 216)) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 55 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 175 (|has| $ (-6 -4167)))) (-1564 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 147)) (-4019 (((-3 |#2| "failed") |#1| $) 61)) (-2540 (($) 7 T CONST)) (-1375 (($ $) 201 (|has| $ (-6 -4168)))) (-3785 (($ $) 211)) (-1199 (($ $ (-701)) 142) (($ $) 140)) (-2921 (($ $) 214 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2673 (($ $) 58 (-1405 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))) (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 46 (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 220) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 215 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 54 (|has| $ (-6 -4167))) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 174 (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 56 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 53 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 52 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 176 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 173 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 172 (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 190 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) 88) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 188)) (-3275 (((-107) $) 192)) (-1934 (((-501) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 208) (((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 207 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) (((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 206 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 30 (|has| $ (-6 -4167))) (((-578 |#2|) $) 79 (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 114 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 123)) (-3201 (((-107) $ $) 131 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-3634 (($ (-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 169)) (-3379 (((-107) $ (-701)) 9)) (-3627 ((|#1| $) 96 (|has| |#1| (-777))) (((-501) $) 180 (|has| (-501) (-777)))) (-4111 (($ $ $) 198 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2213 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3216 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 29 (|has| $ (-6 -4167))) (((-578 |#2|) $) 80 (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 115 (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167)))) (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-1522 ((|#1| $) 95 (|has| |#1| (-777))) (((-501) $) 181 (|has| (-501) (-777)))) (-1323 (($ $ $) 197 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 34 (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4168))) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 110 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 109)) (-3143 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 225)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 128)) (-2341 (((-107) $) 124)) (-3460 (((-1053) $) 22 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1383 (($ $ (-701)) 145) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 143)) (-1500 (((-578 |#1|) $) 63)) (-3576 (((-107) |#1| $) 64)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 39)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 40) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 219) (($ $ $ (-501)) 218)) (-1473 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 162) (($ $ $ (-501)) 161)) (-2658 (((-578 |#1|) $) 93) (((-578 (-501)) $) 183)) (-2852 (((-107) |#1| $) 92) (((-107) (-501) $) 184)) (-3708 (((-1018) $) 21 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1190 ((|#2| $) 97 (|has| |#1| (-777))) (($ $ (-701)) 139) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 137)) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 51) (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 171)) (-3084 (($ $ |#2|) 98 (|has| $ (-6 -4168))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 179 (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 41)) (-3654 (((-107) $) 191)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 32 (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 112 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) 26 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 25 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 24 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 23 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 86 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 84 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) 83 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 121 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 120 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 119 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) 118 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 182 (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-4137 (((-578 |#2|) $) 91) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 185)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 187) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) 186) (($ $ (-1116 (-501))) 165) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "first") 138) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "value") 126)) (-1932 (((-501) $ $) 129)) (-3013 (($) 49) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 48)) (-1386 (($ $ (-501)) 222) (($ $ (-1116 (-501))) 221)) (-1468 (($ $ (-501)) 164) (($ $ (-1116 (-501))) 163)) (-2622 (((-107) $) 127)) (-1455 (($ $) 151)) (-3873 (($ $) 152 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 150)) (-2787 (($ $) 149)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 31 (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-701) |#2| $) 81 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 113 (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) 202 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490)))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 50) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 170)) (-1186 (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 224) (($ $ $) 223)) (-3934 (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 168) (($ (-578 $)) 167) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 136) (($ $ $) 135)) (-3691 (((-786) $) 20 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1961 (((-578 $) $) 122)) (-2970 (((-107) $ $) 130 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 42)) (-1481 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") |#1| $) 108)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 33 (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 111 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 195 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3768 (((-107) $ $) 194 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3751 (((-107) $ $) 19 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-3773 (((-107) $ $) 196 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3762 (((-107) $ $) 193 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-35 |#1| |#2|) (-1180) (-1001) (-1001)) (T -35))
-((-1481 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-2 (|:| -3626 *3) (|:| -2922 *4))))))
-(-13 (-1081 |t#1| |t#2|) (-601 (-2 (|:| -3626 |t#1|) (|:| -2922 |t#2|))) (-10 -8 (-15 -1481 ((-3 (-2 (|:| -3626 |t#1|) (|:| -2922 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-102 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-97) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777))) ((-555 (-786)) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777))) ((-138 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-556 (-490)) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))) ((-202 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-208 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-256 (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-256 |#1| |#2|) . T) ((-258 (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-252 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-340 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-454 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-454 |#2|) . T) ((-548 (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-548 |#1| |#2|) . T) ((-476 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-552 |#1| |#2|) . T) ((-586 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-601 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-777) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)) ((-924 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-1001) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777))) ((-1044 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-1081 |#1| |#2|) . T) ((-1104) . T) ((-1138 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T))
-((-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-37 |#2|) (-156)) (T -36))
-NIL
-(-10 -8 (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-37 |#1|) (-1180) (-156)) (T -37))
-((-3691 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))))
-(-13 (-959) (-648 |t#1|) (-10 -8 (-15 -3691 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) . T) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3205 (((-373 |#1|) |#1|) 38)) (-3739 (((-373 |#1|) |#1|) 27) (((-373 |#1|) |#1| (-578 (-47))) 30)) (-2447 (((-107) |#1|) 54)))
-(((-38 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1| (-578 (-47)))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3205 ((-373 |#1|) |#1|)) (-15 -2447 ((-107) |#1|))) (-1125 (-47))) (T -38))
-((-2447 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) (-3205 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))))
-(-10 -7 (-15 -3739 ((-373 |#1|) |#1| (-578 (-47)))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3205 ((-373 |#1|) |#1|)) (-15 -2447 ((-107) |#1|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3767 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| (-375 |#2|) (-331)))) (-2865 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1639 (((-107) $) NIL (|has| (-375 |#2|) (-331)))) (-2239 (((-621 (-375 |#2|)) (-1148 $)) NIL) (((-621 (-375 |#2|))) NIL)) (-2225 (((-375 |#2|) $) NIL)) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-375 |#2|) (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1559 (((-373 $) $) NIL (|has| (-375 |#2|) (-331)))) (-2781 (((-107) $ $) NIL (|has| (-375 |#2|) (-331)))) (-3796 (((-701)) NIL (|has| (-375 |#2|) (-336)))) (-3285 (((-107)) NIL)) (-2330 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| (-375 |#2|) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-3 (-375 |#2|) "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| (-375 |#2|) (-950 (-501)))) (((-375 (-501)) $) NIL (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-375 |#2|) $) NIL)) (-3142 (($ (-1148 (-375 |#2|)) (-1148 $)) NIL) (($ (-1148 (-375 |#2|))) 57) (($ (-1148 |#2|) |#2|) 124)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-375 |#2|) (-318)))) (-3023 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3070 (((-621 (-375 |#2|)) $ (-1148 $)) NIL) (((-621 (-375 |#2|)) $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-375 |#2|))) (|:| |vec| (-1148 (-375 |#2|)))) (-621 $) (-1148 $)) NIL) (((-621 (-375 |#2|)) (-621 $)) NIL)) (-3566 (((-1148 $) (-1148 $)) NIL)) (-3547 (($ |#3|) NIL) (((-3 $ "failed") (-375 |#3|)) NIL (|has| (-375 |#2|) (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-1286 (((-578 (-578 |#1|))) NIL (|has| |#1| (-336)))) (-2142 (((-107) |#1| |#1|) NIL)) (-3689 (((-839)) NIL)) (-2890 (($) NIL (|has| (-375 |#2|) (-336)))) (-2516 (((-107)) NIL)) (-1436 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-3034 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| (-375 |#2|) (-331)))) (-3533 (($ $) NIL)) (-1317 (($) NIL (|has| (-375 |#2|) (-318)))) (-3521 (((-107) $) NIL (|has| (-375 |#2|) (-318)))) (-3067 (($ $ (-701)) NIL (|has| (-375 |#2|) (-318))) (($ $) NIL (|has| (-375 |#2|) (-318)))) (-1628 (((-107) $) NIL (|has| (-375 |#2|) (-331)))) (-3169 (((-839) $) NIL (|has| (-375 |#2|) (-318))) (((-762 (-839)) $) NIL (|has| (-375 |#2|) (-318)))) (-1355 (((-107) $) NIL)) (-1206 (((-701)) NIL)) (-3740 (((-1148 $) (-1148 $)) 100)) (-2626 (((-375 |#2|) $) NIL)) (-1607 (((-578 (-866 |#1|)) (-1070)) NIL (|has| |#1| (-331)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-375 |#2|) (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-375 |#2|) (-331)))) (-1792 ((|#3| $) NIL (|has| (-375 |#2|) (-331)))) (-3104 (((-839) $) NIL (|has| (-375 |#2|) (-336)))) (-1316 ((|#3| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| (-375 |#2|) (-331))) (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3460 (((-1053) $) NIL)) (-3112 (((-1154) (-701)) 78)) (-1275 (((-621 (-375 |#2|))) 51)) (-2368 (((-621 (-375 |#2|))) 44)) (-3833 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1318 (($ (-1148 |#2|) |#2|) 125)) (-2466 (((-621 (-375 |#2|))) 45)) (-2796 (((-621 (-375 |#2|))) 43)) (-1276 (((-2 (|:| |num| (-621 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-3418 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) 63)) (-2664 (((-1148 $)) 42)) (-1897 (((-1148 $)) 41)) (-3672 (((-107) $) NIL)) (-2131 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-3746 (($) NIL (|has| (-375 |#2|) (-318)) CONST)) (-3506 (($ (-839)) NIL (|has| (-375 |#2|) (-336)))) (-2050 (((-3 |#2| "failed")) NIL)) (-3708 (((-1018) $) NIL)) (-4122 (((-701)) NIL)) (-3987 (($) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| (-375 |#2|) (-331)))) (-3664 (($ (-578 $)) NIL (|has| (-375 |#2|) (-331))) (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-375 |#2|) (-318)))) (-3739 (((-373 $) $) NIL (|has| (-375 |#2|) (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-375 |#2|) (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| (-375 |#2|) (-331)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| (-375 |#2|) (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-375 |#2|) (-331)))) (-1864 (((-701) $) NIL (|has| (-375 |#2|) (-331)))) (-2007 ((|#1| $ |#1| |#1|) NIL)) (-2435 (((-3 |#2| "failed")) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| (-375 |#2|) (-331)))) (-2532 (((-375 |#2|) (-1148 $)) NIL) (((-375 |#2|)) 39)) (-1984 (((-701) $) NIL (|has| (-375 |#2|) (-318))) (((-3 (-701) "failed") $ $) NIL (|has| (-375 |#2|) (-318)))) (-2596 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-2231 (((-621 (-375 |#2|)) (-1148 $) (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331)))) (-2264 ((|#3|) 50)) (-1349 (($) NIL (|has| (-375 |#2|) (-318)))) (-2085 (((-1148 (-375 |#2|)) $ (-1148 $)) NIL) (((-621 (-375 |#2|)) (-1148 $) (-1148 $)) NIL) (((-1148 (-375 |#2|)) $) 58) (((-621 (-375 |#2|)) (-1148 $)) 101)) (-1248 (((-1148 (-375 |#2|)) $) NIL) (($ (-1148 (-375 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-375 |#2|) (-318)))) (-1416 (((-1148 $) (-1148 $)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 |#2|)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-950 (-375 (-501)))))) (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1274 (($ $) NIL (|has| (-375 |#2|) (-318))) (((-3 $ "failed") $) NIL (|has| (-375 |#2|) (-132)))) (-2942 ((|#3| $) NIL)) (-3965 (((-701)) NIL)) (-2675 (((-107)) 37)) (-3969 (((-107) |#1|) 49) (((-107) |#2|) 130)) (-4119 (((-1148 $)) 91)) (-2442 (((-107) $ $) NIL (|has| (-375 |#2|) (-331)))) (-2548 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2710 (((-107)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-375 |#2|) (-331)))) (-1850 (($) 16 T CONST)) (-1925 (($) 26 T CONST)) (-3584 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-375 |#2|) (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 |#2|)) NIL) (($ (-375 |#2|) $) NIL) (($ (-375 (-501)) $) NIL (|has| (-375 |#2|) (-331))) (($ $ (-375 (-501))) NIL (|has| (-375 |#2|) (-331)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-310 |#1| |#2| |#3|) (-10 -7 (-15 -3112 ((-1154) (-701))))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) |#3|) (T -39))
-((-3112 (*1 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-331)) (-4 *5 (-1125 *4)) (-5 *2 (-1154)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1125 (-375 *5))) (-14 *7 *6))))
-(-13 (-310 |#1| |#2| |#3|) (-10 -7 (-15 -3112 ((-1154) (-701)))))
-((-2349 ((|#2| |#2|) 47)) (-2324 ((|#2| |#2|) 116 (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-419)) (|has| |#1| (-777)) (|has| |#1| (-950 (-501)))))) (-3207 ((|#2| |#2|) 85 (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-419)) (|has| |#1| (-777)) (|has| |#1| (-950 (-501)))))) (-1398 ((|#2| |#2|) 86 (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-419)) (|has| |#1| (-777)) (|has| |#1| (-950 (-501)))))) (-3575 ((|#2| (-108) |#2| (-701)) 73 (-12 (|has| |#2| (-389 |#1|)) (|has| |#1| (-419)) (|has| |#1| (-777)) (|has| |#1| (-950 (-501)))))) (-2649 (((-1064 |#2|) |#2|) 44)) (-1191 ((|#2| |#2| (-578 (-553 |#2|))) 17) ((|#2| |#2| (-578 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -2349 (|#2| |#2|)) (-15 -1191 (|#2| |#2|)) (-15 -1191 (|#2| |#2| |#2|)) (-15 -1191 (|#2| |#2| (-578 |#2|))) (-15 -1191 (|#2| |#2| (-578 (-553 |#2|)))) (-15 -2649 ((-1064 |#2|) |#2|)) (IF (|has| |#1| (-777)) (IF (|has| |#1| (-419)) (IF (|has| |#1| (-950 (-501))) (IF (|has| |#2| (-389 |#1|)) (PROGN (-15 -1398 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -3575 (|#2| (-108) |#2| (-701)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-508) (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 |#1| (-553 $)) $)) (-15 -2949 ((-1023 |#1| (-553 $)) $)) (-15 -3691 ($ (-1023 |#1| (-553 $))))))) (T -40))
-((-3575 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-108)) (-5 *4 (-701)) (-4 *5 (-419)) (-4 *5 (-777)) (-4 *5 (-950 (-501))) (-4 *5 (-508)) (-5 *1 (-40 *5 *2)) (-4 *2 (-389 *5)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *5 (-553 $)) $)) (-15 -2949 ((-1023 *5 (-553 $)) $)) (-15 -3691 ($ (-1023 *5 (-553 $))))))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-3207 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-1398 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-2649 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-1064 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))))) (-1191 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-553 *2))) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))) (-4 *4 (-508)) (-5 *1 (-40 *4 *2)))) (-1191 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))) (-4 *4 (-508)) (-5 *1 (-40 *4 *2)))) (-1191 (*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-1191 (*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))))
-(-10 -7 (-15 -2349 (|#2| |#2|)) (-15 -1191 (|#2| |#2|)) (-15 -1191 (|#2| |#2| |#2|)) (-15 -1191 (|#2| |#2| (-578 |#2|))) (-15 -1191 (|#2| |#2| (-578 (-553 |#2|)))) (-15 -2649 ((-1064 |#2|) |#2|)) (IF (|has| |#1| (-777)) (IF (|has| |#1| (-419)) (IF (|has| |#1| (-950 (-501))) (IF (|has| |#2| (-389 |#1|)) (PROGN (-15 -1398 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -3575 (|#2| (-108) |#2| (-701)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|))
-((-3739 (((-373 (-1064 |#3|)) (-1064 |#3|) (-578 (-47))) 22) (((-373 |#3|) |#3| (-578 (-47))) 18)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-373 |#3|) |#3| (-578 (-47)))) (-15 -3739 ((-373 (-1064 |#3|)) (-1064 |#3|) (-578 (-47))))) (-777) (-723) (-870 (-47) |#2| |#1|)) (T -41))
-((-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *7 (-870 (-47) *6 *5)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *2 (-373 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-870 (-47) *6 *5)))))
-(-10 -7 (-15 -3739 ((-373 |#3|) |#3| (-578 (-47)))) (-15 -3739 ((-373 (-1064 |#3|)) (-1064 |#3|) (-578 (-47)))))
-((-3337 (((-701) |#2|) 65)) (-2246 (((-701) |#2|) 68)) (-3620 (((-578 |#2|)) 33)) (-3244 (((-701) |#2|) 67)) (-1351 (((-701) |#2|) 64)) (-1614 (((-701) |#2|) 66)) (-2238 (((-578 (-621 |#1|))) 60)) (-2399 (((-578 |#2|)) 55)) (-3817 (((-578 |#2|) |#2|) 43)) (-2126 (((-578 |#2|)) 57)) (-2569 (((-578 |#2|)) 56)) (-3385 (((-578 (-621 |#1|))) 48)) (-3825 (((-578 |#2|)) 54)) (-2463 (((-578 |#2|) |#2|) 42)) (-1705 (((-578 |#2|)) 50)) (-2429 (((-578 (-621 |#1|))) 61)) (-3489 (((-578 |#2|)) 59)) (-4119 (((-1148 |#2|) (-1148 |#2|)) 83 (|has| |#1| (-276)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -3244 ((-701) |#2|)) (-15 -2246 ((-701) |#2|)) (-15 -1351 ((-701) |#2|)) (-15 -3337 ((-701) |#2|)) (-15 -1614 ((-701) |#2|)) (-15 -1705 ((-578 |#2|))) (-15 -2463 ((-578 |#2|) |#2|)) (-15 -3817 ((-578 |#2|) |#2|)) (-15 -3825 ((-578 |#2|))) (-15 -2399 ((-578 |#2|))) (-15 -2569 ((-578 |#2|))) (-15 -2126 ((-578 |#2|))) (-15 -3489 ((-578 |#2|))) (-15 -3385 ((-578 (-621 |#1|)))) (-15 -2238 ((-578 (-621 |#1|)))) (-15 -2429 ((-578 (-621 |#1|)))) (-15 -3620 ((-578 |#2|))) (IF (|has| |#1| (-276)) (-15 -4119 ((-1148 |#2|) (-1148 |#2|))) |noBranch|)) (-508) (-386 |#1|)) (T -42))
-((-4119 (*1 *2 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-386 *3)) (-4 *3 (-276)) (-4 *3 (-508)) (-5 *1 (-42 *3 *4)))) (-3620 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2429 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2238 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-3385 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-3489 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2126 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2569 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-2399 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-3825 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-3817 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-2463 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-1705 (*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))) (-1614 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-1351 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-2246 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))) (-3244 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))))
-(-10 -7 (-15 -3244 ((-701) |#2|)) (-15 -2246 ((-701) |#2|)) (-15 -1351 ((-701) |#2|)) (-15 -3337 ((-701) |#2|)) (-15 -1614 ((-701) |#2|)) (-15 -1705 ((-578 |#2|))) (-15 -2463 ((-578 |#2|) |#2|)) (-15 -3817 ((-578 |#2|) |#2|)) (-15 -3825 ((-578 |#2|))) (-15 -2399 ((-578 |#2|))) (-15 -2569 ((-578 |#2|))) (-15 -2126 ((-578 |#2|))) (-15 -3489 ((-578 |#2|))) (-15 -3385 ((-578 (-621 |#1|)))) (-15 -2238 ((-578 (-621 |#1|)))) (-15 -2429 ((-578 (-621 |#1|)))) (-15 -3620 ((-578 |#2|))) (IF (|has| |#1| (-276)) (-15 -4119 ((-1148 |#2|) (-1148 |#2|))) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 |#1|)) (-1148 $)) NIL) (((-1148 (-621 |#1|))) 24)) (-1674 (((-1148 $)) 50)) (-2540 (($) NIL T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (|has| |#1| (-508)))) (-1956 (((-3 $ "failed")) NIL (|has| |#1| (-508)))) (-2311 (((-621 |#1|) (-1148 $)) NIL) (((-621 |#1|)) NIL)) (-1909 ((|#1| $) NIL)) (-3867 (((-621 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) $) NIL)) (-1887 (((-3 $ "failed") $) NIL (|has| |#1| (-508)))) (-3665 (((-1064 (-866 |#1|))) NIL (|has| |#1| (-331)))) (-2911 (($ $ (-839)) NIL)) (-3925 ((|#1| $) NIL)) (-2292 (((-1064 |#1|) $) NIL (|has| |#1| (-508)))) (-2398 ((|#1| (-1148 $)) NIL) ((|#1|) NIL)) (-3333 (((-1064 |#1|) $) NIL)) (-3656 (((-107)) 86)) (-3142 (($ (-1148 |#1|) (-1148 $)) NIL) (($ (-1148 |#1|)) NIL)) (-2174 (((-3 $ "failed") $) 14 (|has| |#1| (-508)))) (-3689 (((-839)) 51)) (-3168 (((-107)) NIL)) (-3554 (($ $ (-839)) NIL)) (-3930 (((-107)) NIL)) (-2838 (((-107)) NIL)) (-3874 (((-107)) 88)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (|has| |#1| (-508)))) (-2653 (((-3 $ "failed")) NIL (|has| |#1| (-508)))) (-4146 (((-621 |#1|) (-1148 $)) NIL) (((-621 |#1|)) NIL)) (-3821 ((|#1| $) NIL)) (-1472 (((-621 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) $) NIL)) (-1992 (((-3 $ "failed") $) NIL (|has| |#1| (-508)))) (-2582 (((-1064 (-866 |#1|))) NIL (|has| |#1| (-331)))) (-3381 (($ $ (-839)) NIL)) (-3784 ((|#1| $) NIL)) (-3474 (((-1064 |#1|) $) NIL (|has| |#1| (-508)))) (-1600 ((|#1| (-1148 $)) NIL) ((|#1|) NIL)) (-2270 (((-1064 |#1|) $) NIL)) (-2172 (((-107)) 85)) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) 92)) (-2417 (((-107)) 91)) (-2794 (((-107)) 93)) (-3708 (((-1018) $) NIL)) (-2780 (((-107)) 87)) (-2007 ((|#1| $ (-501)) 53)) (-2085 (((-1148 |#1|) $ (-1148 $)) 47) (((-621 |#1|) (-1148 $) (-1148 $)) NIL) (((-1148 |#1|) $) 28) (((-621 |#1|) (-1148 $)) NIL)) (-1248 (((-1148 |#1|) $) NIL) (($ (-1148 |#1|)) NIL)) (-3056 (((-578 (-866 |#1|)) (-1148 $)) NIL) (((-578 (-866 |#1|))) NIL)) (-2144 (($ $ $) NIL)) (-1977 (((-107)) 83)) (-3691 (((-786) $) 68) (($ (-1148 |#1|)) 22)) (-4119 (((-1148 $)) 44)) (-4102 (((-578 (-1148 |#1|))) NIL (|has| |#1| (-508)))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) 81)) (-1183 (($ (-621 |#1|) $) 18)) (-2033 (($ $ $) NIL)) (-2625 (((-107)) 84)) (-3675 (((-107)) 82)) (-3258 (((-107)) 80)) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1037 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-386 |#1|) (-583 (-1037 |#2| |#1|)) (-10 -8 (-15 -3691 ($ (-1148 |#1|))))) (-331) (-839) (-578 (-1070)) (-1148 (-621 |#1|))) (T -43))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-331)) (-14 *6 (-1148 (-621 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))))))
-(-13 (-386 |#1|) (-583 (-1037 |#2| |#1|)) (-10 -8 (-15 -3691 ($ (-1148 |#1|)))))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2150 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2786 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-1511 (($ $) NIL)) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168))) (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3441 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777))))) (-2861 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-1594 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) 27 (|has| $ (-6 -4168)))) (-2193 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-2535 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 29 (|has| $ (-6 -4168)))) (-3754 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-1116 (-501)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "last" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168))) (($ $ "rest" $) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "first" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "value" (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1564 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4019 (((-3 |#2| "failed") |#1| $) 37)) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-1199 (($ $ (-701)) NIL) (($ $) 24)) (-2921 (($ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 46) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-1934 (((-501) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) (((-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 18 (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 18 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-3634 (($ (-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777))) (((-501) $) 32 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2213 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3216 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777))) (((-501) $) 34 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3143 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) 41 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1383 (($ $ (-701)) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-1500 (((-578 |#1|) $) 20)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-1473 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 |#1|) $) NIL) (((-578 (-501)) $) NIL)) (-2852 (((-107) |#1| $) NIL) (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777))) (($ $ (-701)) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 23)) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-3654 (((-107) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-4137 (((-578 |#2|) $) NIL) (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 17)) (-1407 (((-107) $) 16)) (-3122 (($) 13)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ (-501)) NIL) (($ $ (-1116 (-501))) NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "first") NIL) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $ "value") NIL)) (-1932 (((-501) $ $) NIL)) (-3013 (($) 12) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1386 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-2622 (((-107) $) NIL)) (-1455 (($ $) NIL)) (-3873 (($ $) NIL (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1186 (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL) (($ $ $) NIL)) (-3934 (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL) (($ (-578 $)) NIL) (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 25) (($ $ $) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1481 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") |#1| $) 43)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3773 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-777)))) (-3581 (((-701) $) 22 (|has| $ (-6 -4167)))))
-(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1001) (-1001)) (T -44))
+(3124874 . 3403927952)
+((-2044 (((-107) (-1 (-107) |#2| |#2|) $) 62) (((-107) $) NIL)) (-2034 (($ (-1 (-107) |#2| |#2|) $) 17) (($ $) NIL)) (-2411 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-1121 (-517)) |#2|) 34)) (-4020 (($ $) 58)) (-3225 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2607 (((-517) (-1 (-107) |#2|) $) 22) (((-517) |#2| $) NIL) (((-517) |#2| $ (-517)) 70)) (-1536 (((-583 |#2|) $) 13)) (-3237 (($ (-1 (-107) |#2| |#2|) $ $) 47) (($ $ $) NIL)) (-1433 (($ (-1 |#2| |#2|) $) 29)) (-1893 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2620 (($ |#2| $ (-517)) NIL) (($ $ $ (-517)) 49)) (-2887 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 24)) (-2048 (((-107) (-1 (-107) |#2|) $) 21)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL) (($ $ (-1121 (-517))) 48)) (-3750 (($ $ (-517)) 55) (($ $ (-1121 (-517))) 54)) (-3217 (((-703) (-1 (-107) |#2|) $) 26) (((-703) |#2| $) NIL)) (-1906 (($ $ $ (-517)) 51)) (-2433 (($ $) 50)) (-2276 (($ (-583 |#2|)) 52)) (-2452 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 63) (($ (-583 $)) 61)) (-2256 (((-787) $) 68)) (-3675 (((-107) (-1 (-107) |#2|) $) 20)) (-1547 (((-107) $ $) 69)) (-1572 (((-107) $ $) 72)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -2044 ((-107) |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|))) (-19 |#2|) (-1108)) (T -18))
+NIL
+(-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -2044 ((-107) |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-19 |#1|) (-1184) (-1108)) (T -19))
+NIL
+(-13 (-343 |t#1|) (-10 -7 (-6 -4181)))
+(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T))
+((-4038 (((-3 $ "failed") $ $) 12)) (-1654 (($ $) NIL) (($ $ $) 9)) (* (($ (-843) $) NIL) (($ (-703) $) 16) (($ (-517) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -4038 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-21)) (T -20))
+NIL
+(-10 -8 (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -4038 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
+(((-21) (-1184)) (T -21))
+((-1654 (*1 *1 *1) (-4 *1 (-21))) (-1654 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))))
+(-13 (-123) (-10 -8 (-15 -1654 ($ $)) (-15 -1654 ($ $ $)) (-15 * ($ (-517) $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2814 (((-107) $) 10)) (-3092 (($) 15)) (* (($ (-843) $) 14) (($ (-703) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 * (|#1| (-843) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15)))
+(((-23) (-1184)) (T -23))
+((-2396 (*1 *1) (-4 *1 (-23))) (-3092 (*1 *1) (-4 *1 (-23))) (-2814 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))))
+(-13 (-25) (-10 -8 (-15 (-2396) ($) -1619) (-15 -3092 ($) -1619) (-15 -2814 ((-107) $)) (-15 * ($ (-703) $))))
+(((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((* (($ (-843) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-843) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-843) |#1|)))
+((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13)))
+(((-25) (-1184)) (T -25))
+((-1642 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843)))))
+(-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ (-843) $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2888 (((-583 $) (-874 $)) 29) (((-583 $) (-1069 $)) 16) (((-583 $) (-1069 $) (-1073)) 20)) (-3869 (($ (-874 $)) 27) (($ (-1069 $)) 11) (($ (-1069 $) (-1073)) 54)) (-1649 (((-583 $) (-874 $)) 30) (((-583 $) (-1069 $)) 18) (((-583 $) (-1069 $) (-1073)) 19)) (-3267 (($ (-874 $)) 28) (($ (-1069 $)) 13) (($ (-1069 $) (-1073)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2888 (((-583 $) (-874 $)) 80) (((-583 $) (-1069 $)) 79) (((-583 $) (-1069 $) (-1073)) 78)) (-3869 (($ (-874 $)) 83) (($ (-1069 $)) 82) (($ (-1069 $) (-1073)) 81)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 92)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-1649 (((-583 $) (-874 $)) 86) (((-583 $) (-1069 $)) 85) (((-583 $) (-1069 $) (-1073)) 84)) (-3267 (($ (-874 $)) 89) (($ (-1069 $)) 88) (($ (-1069 $) (-1073)) 87)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 91)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-27) (-1184)) (T -27))
+((-3267 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-3267 (*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) (-3267 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) (-3869 (*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) (-3869 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))))
+(-13 (-333) (-918) (-10 -8 (-15 -3267 ($ (-874 $))) (-15 -3267 ($ (-1069 $))) (-15 -3267 ($ (-1069 $) (-1073))) (-15 -1649 ((-583 $) (-874 $))) (-15 -1649 ((-583 $) (-1069 $))) (-15 -1649 ((-583 $) (-1069 $) (-1073))) (-15 -3869 ($ (-874 $))) (-15 -3869 ($ (-1069 $))) (-15 -3869 ($ (-1069 $) (-1073))) (-15 -2888 ((-583 $) (-874 $))) (-15 -2888 ((-583 $) (-1069 $))) (-15 -2888 ((-583 $) (-1069 $) (-1073)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-918) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
+((-2888 (((-583 $) (-874 $)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-1069 $) (-1073)) 50) (((-583 $) $) 19) (((-583 $) $ (-1073)) 41)) (-3869 (($ (-874 $)) NIL) (($ (-1069 $)) NIL) (($ (-1069 $) (-1073)) 52) (($ $) 17) (($ $ (-1073)) 37)) (-1649 (((-583 $) (-874 $)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-1069 $) (-1073)) 48) (((-583 $) $) 15) (((-583 $) $ (-1073)) 43)) (-3267 (($ (-874 $)) NIL) (($ (-1069 $)) NIL) (($ (-1069 $) (-1073)) NIL) (($ $) 12) (($ $ (-1073)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -2888 ((-583 |#1|) |#1| (-1073))) (-15 -3869 (|#1| |#1| (-1073))) (-15 -2888 ((-583 |#1|) |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -1649 ((-583 |#1|) |#1| (-1073))) (-15 -3267 (|#1| |#1| (-1073))) (-15 -1649 ((-583 |#1|) |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|)))) (-29 |#2|) (-13 (-779) (-509))) (T -28))
+NIL
+(-10 -8 (-15 -2888 ((-583 |#1|) |#1| (-1073))) (-15 -3869 (|#1| |#1| (-1073))) (-15 -2888 ((-583 |#1|) |#1|)) (-15 -3869 (|#1| |#1|)) (-15 -1649 ((-583 |#1|) |#1| (-1073))) (-15 -3267 (|#1| |#1| (-1073))) (-15 -1649 ((-583 |#1|) |#1|)) (-15 -3267 (|#1| |#1|)) (-15 -2888 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -2888 ((-583 |#1|) (-1069 |#1|))) (-15 -2888 ((-583 |#1|) (-874 |#1|))) (-15 -3869 (|#1| (-1069 |#1|) (-1073))) (-15 -3869 (|#1| (-1069 |#1|))) (-15 -3869 (|#1| (-874 |#1|))) (-15 -1649 ((-583 |#1|) (-1069 |#1|) (-1073))) (-15 -1649 ((-583 |#1|) (-1069 |#1|))) (-15 -1649 ((-583 |#1|) (-874 |#1|))) (-15 -3267 (|#1| (-1069 |#1|) (-1073))) (-15 -3267 (|#1| (-1069 |#1|))) (-15 -3267 (|#1| (-874 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2888 (((-583 $) (-874 $)) 80) (((-583 $) (-1069 $)) 79) (((-583 $) (-1069 $) (-1073)) 78) (((-583 $) $) 126) (((-583 $) $ (-1073)) 124)) (-3869 (($ (-874 $)) 83) (($ (-1069 $)) 82) (($ (-1069 $) (-1073)) 81) (($ $) 127) (($ $ (-1073)) 125)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-1073)) $) 201)) (-2352 (((-377 (-1069 $)) $ (-556 $)) 233 (|has| |#1| (-509)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-3726 (((-583 (-556 $)) $) 164)) (-4038 (((-3 $ "failed") $ $) 19)) (-2302 (($ $ (-583 (-556 $)) (-583 $)) 154) (($ $ (-583 (-265 $))) 153) (($ $ (-265 $)) 152)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 92)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-1649 (((-583 $) (-874 $)) 86) (((-583 $) (-1069 $)) 85) (((-583 $) (-1069 $) (-1073)) 84) (((-583 $) $) 130) (((-583 $) $ (-1073)) 128)) (-3267 (($ (-874 $)) 89) (($ (-1069 $)) 88) (($ (-1069 $) (-1073)) 87) (($ $) 131) (($ $ (-1073)) 129)) (-1772 (((-3 (-874 |#1|) "failed") $) 251 (|has| |#1| (-961))) (((-3 (-377 (-874 |#1|)) "failed") $) 235 (|has| |#1| (-509))) (((-3 |#1| "failed") $) 197) (((-3 (-517) "failed") $) 195 (|has| |#1| (-952 (-517)))) (((-3 (-1073) "failed") $) 188) (((-3 (-556 $) "failed") $) 139) (((-3 (-377 (-517)) "failed") $) 123 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 (((-874 |#1|) $) 252 (|has| |#1| (-961))) (((-377 (-874 |#1|)) $) 236 (|has| |#1| (-509))) ((|#1| $) 198) (((-517) $) 194 (|has| |#1| (-952 (-517)))) (((-1073) $) 189) (((-556 $) $) 140) (((-377 (-517)) $) 122 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2518 (($ $ $) 55)) (-3355 (((-623 |#1|) (-623 $)) 241 (|has| |#1| (-961))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 240 (|has| |#1| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 121 (-3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (((-623 (-517)) (-623 $)) 120 (-3807 (-4035 (|has| |#1| (-961)) (|has| |#1| (-579 (-517)))) (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 193 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 192 (|has| |#1| (-808 (-517))))) (-3374 (($ (-583 $)) 158) (($ $) 157)) (-4001 (((-583 (-109)) $) 165)) (-3072 (((-109) (-109)) 166)) (-3848 (((-107) $) 31)) (-1769 (((-107) $) 186 (|has| $ (-952 (-517))))) (-1405 (($ $) 218 (|has| |#1| (-961)))) (-1787 (((-1026 |#1| (-556 $)) $) 217 (|has| |#1| (-961)))) (-3824 (($ $ (-517)) 91)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1607 (((-1069 $) (-556 $)) 183 (|has| $ (-961)))) (-2967 (($ $ $) 137)) (-3099 (($ $ $) 136)) (-1893 (($ (-1 $ $) (-556 $)) 172)) (-1783 (((-3 (-556 $) "failed") $) 162)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-2343 (((-583 (-556 $)) $) 163)) (-1851 (($ (-109) (-583 $)) 171) (($ (-109) $) 170)) (-3703 (((-3 (-583 $) "failed") $) 212 (|has| |#1| (-1015)))) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) 221 (|has| |#1| (-961)))) (-3401 (((-3 (-583 $) "failed") $) 214 (|has| |#1| (-25)))) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) 220 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) 219 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) 213 (|has| |#1| (-1015)))) (-1609 (((-107) $ (-1073)) 169) (((-107) $ (-109)) 168)) (-4118 (($ $) 70)) (-1881 (((-703) $) 161)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 199)) (-4141 ((|#1| $) 200)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3832 (((-107) $ (-1073)) 174) (((-107) $ $) 173)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3998 (((-107) $) 185 (|has| $ (-952 (-517))))) (-2051 (($ $ (-1073) (-703) (-1 $ $)) 225 (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ (-583 $))) 224 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 223 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) 222 (|has| |#1| (-961))) (($ $ (-583 (-109)) (-583 $) (-1073)) 211 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1073)) 210 (|has| |#1| (-558 (-493)))) (($ $) 209 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073))) 208 (|has| |#1| (-558 (-493)))) (($ $ (-1073)) 207 (|has| |#1| (-558 (-493)))) (($ $ (-109) (-1 $ $)) 182) (($ $ (-109) (-1 $ (-583 $))) 181) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 180) (($ $ (-583 (-109)) (-583 (-1 $ $))) 179) (($ $ (-1073) (-1 $ $)) 178) (($ $ (-1073) (-1 $ (-583 $))) 177) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 176) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 175) (($ $ (-583 $) (-583 $)) 146) (($ $ $ $) 145) (($ $ (-265 $)) 144) (($ $ (-583 (-265 $))) 143) (($ $ (-583 (-556 $)) (-583 $)) 142) (($ $ (-556 $) $) 141)) (-3146 (((-703) $) 58)) (-1449 (($ (-109) (-583 $)) 151) (($ (-109) $ $ $ $) 150) (($ (-109) $ $ $) 149) (($ (-109) $ $) 148) (($ (-109) $) 147)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1630 (($ $ $) 160) (($ $) 159)) (-3127 (($ $ (-1073)) 249 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 248 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 247 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) 246 (|has| |#1| (-961)))) (-2971 (($ $) 228 (|has| |#1| (-509)))) (-1800 (((-1026 |#1| (-556 $)) $) 227 (|has| |#1| (-509)))) (-2135 (($ $) 184 (|has| $ (-961)))) (-3645 (((-493) $) 255 (|has| |#1| (-558 (-493)))) (($ (-388 $)) 226 (|has| |#1| (-509))) (((-814 (-349)) $) 191 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 190 (|has| |#1| (-558 (-814 (-517)))))) (-1487 (($ $ $) 254 (|has| |#1| (-442)))) (-3394 (($ $ $) 253 (|has| |#1| (-442)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-874 |#1|)) 250 (|has| |#1| (-961))) (($ (-377 (-874 |#1|))) 234 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 232 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 231 (|has| |#1| (-509))) (($ (-377 |#1|)) 230 (|has| |#1| (-509))) (($ (-1026 |#1| (-556 $))) 216 (|has| |#1| (-961))) (($ |#1|) 196) (($ (-1073)) 187) (($ (-556 $)) 138)) (-1328 (((-3 $ "failed") $) 239 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-4148 (($ (-583 $)) 156) (($ $) 155)) (-4074 (((-107) (-109)) 167)) (-3329 (((-107) $ $) 39)) (-3760 (($ (-1073) (-583 $)) 206) (($ (-1073) $ $ $ $) 205) (($ (-1073) $ $ $) 204) (($ (-1073) $ $) 203) (($ (-1073) $) 202)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1073)) 245 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 244 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 243 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) 242 (|has| |#1| (-961)))) (-1606 (((-107) $ $) 134)) (-1583 (((-107) $ $) 133)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 135)) (-1572 (((-107) $ $) 132)) (-1667 (($ $ $) 64) (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 229 (|has| |#1| (-509)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-156))) (($ |#1| $) 237 (|has| |#1| (-156)))))
+(((-29 |#1|) (-1184) (-13 (-779) (-509))) (T -29))
+((-3267 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-1649 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3267 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) (-3869 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) (-2888 (*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) (-3869 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) (-2888 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-400 |t#1|) (-10 -8 (-15 -3267 ($ $)) (-15 -1649 ((-583 $) $)) (-15 -3267 ($ $ (-1073))) (-15 -1649 ((-583 $) $ (-1073))) (-15 -3869 ($ $)) (-15 -2888 ((-583 $) $)) (-15 -3869 ($ $ (-1073))) (-15 -2888 ((-583 $) $ (-1073)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) . T) ((-262) . T) ((-278) . T) ((-280 $) . T) ((-273) . T) ((-333) . T) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-400 |#1|) . T) ((-421) . T) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) . T) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-822 (-1073)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) -3807 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1073)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1108) . T) ((-1112) . T))
+((-1408 (((-998 (-199)) $) NIL)) (-1397 (((-998 (-199)) $) NIL)) (-3437 (($ $ (-199)) 122)) (-3507 (($ (-874 (-517)) (-1073) (-1073) (-998 (-377 (-517))) (-998 (-377 (-517)))) 84)) (-2602 (((-583 (-583 (-865 (-199)))) $) 134)) (-2256 (((-787) $) 146)))
+(((-30) (-13 (-876) (-10 -8 (-15 -3507 ($ (-874 (-517)) (-1073) (-1073) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -3437 ($ $ (-199)))))) (T -30))
+((-3507 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1073)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))))
+(-13 (-876) (-10 -8 (-15 -3507 ($ (-874 (-517)) (-1073) (-1073) (-998 (-377 (-517))) (-998 (-377 (-517))))) (-15 -3437 ($ $ (-199)))))
+((-3267 ((|#2| (-1069 |#2|) (-1073)) 42)) (-3072 (((-109) (-109)) 55)) (-1607 (((-1069 |#2|) (-556 |#2|)) 132 (|has| |#1| (-952 (-517))))) (-2023 ((|#2| |#1| (-517)) 121 (|has| |#1| (-952 (-517))))) (-2564 ((|#2| (-1069 |#2|) |#2|) 30)) (-1690 (((-787) (-583 |#2|)) 85)) (-2135 ((|#2| |#2|) 128 (|has| |#1| (-952 (-517))))) (-4074 (((-107) (-109)) 18)) (** ((|#2| |#2| (-377 (-517))) 96 (|has| |#1| (-952 (-517))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -3267 (|#2| (-1069 |#2|) (-1073))) (-15 -3072 ((-109) (-109))) (-15 -4074 ((-107) (-109))) (-15 -2564 (|#2| (-1069 |#2|) |#2|)) (-15 -1690 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -1607 ((-1069 |#2|) (-556 |#2|))) (-15 -2135 (|#2| |#2|)) (-15 -2023 (|#2| |#1| (-517)))) |noBranch|)) (-13 (-779) (-509)) (-400 |#1|)) (T -31))
+((-2023 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509))))) (-2135 (*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1069 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))) (-2564 (*1 *2 *3 *2) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) (-3267 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-5 *4 (-1073)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))))
+(-10 -7 (-15 -3267 (|#2| (-1069 |#2|) (-1073))) (-15 -3072 ((-109) (-109))) (-15 -4074 ((-107) (-109))) (-15 -2564 (|#2| (-1069 |#2|) |#2|)) (-15 -1690 ((-787) (-583 |#2|))) (IF (|has| |#1| (-952 (-517))) (PROGN (-15 ** (|#2| |#2| (-377 (-517)))) (-15 -1607 ((-1069 |#2|) (-556 |#2|))) (-15 -2135 (|#2| |#2|)) (-15 -2023 (|#2| |#1| (-517)))) |noBranch|))
+((-2953 (((-107) $ (-703)) 16)) (-3092 (($) 10)) (-2550 (((-107) $ (-703)) 15)) (-3847 (((-107) $ (-703)) 14)) (-3792 (((-107) $ $) 8)) (-3619 (((-107) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -3092 (|#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -3619 ((-107) |#1|)) (-15 -3792 ((-107) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -3092 (|#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -3619 ((-107) |#1|)) (-15 -3792 ((-107) |#1| |#1|)))
+((-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-2550 (((-107) $ (-703)) 9)) (-3847 (((-107) $ (-703)) 10)) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-2433 (($ $) 13)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-33) (-1184)) (T -33))
+((-3792 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-2433 (*1 *1 *1) (-4 *1 (-33))) (-1746 (*1 *1) (-4 *1 (-33))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) (-3847 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2550 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) (-3092 (*1 *1) (-4 *1 (-33))) (-2296 (*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-33)) (-5 *2 (-703)))))
+(-13 (-1108) (-10 -8 (-15 -3792 ((-107) $ $)) (-15 -2433 ($ $)) (-15 -1746 ($)) (-15 -3619 ((-107) $)) (-15 -3847 ((-107) $ (-703))) (-15 -2550 ((-107) $ (-703))) (-15 -2953 ((-107) $ (-703))) (-15 -3092 ($) -1619) (IF (|has| $ (-6 -4180)) (-15 -2296 ((-703) $)) |noBranch|)))
+(((-1108) . T))
+((-3707 (($ $) 11)) (-3683 (($ $) 10)) (-3731 (($ $) 9)) (-1492 (($ $) 8)) (-3719 (($ $) 7)) (-3695 (($ $) 6)))
+(((-34) (-1184)) (T -34))
+((-3707 (*1 *1 *1) (-4 *1 (-34))) (-3683 (*1 *1 *1) (-4 *1 (-34))) (-3731 (*1 *1 *1) (-4 *1 (-34))) (-1492 (*1 *1 *1) (-4 *1 (-34))) (-3719 (*1 *1 *1) (-4 *1 (-34))) (-3695 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -3695 ($ $)) (-15 -3719 ($ $)) (-15 -1492 ($ $)) (-15 -3731 ($ $)) (-15 -3683 ($ $)) (-15 -3707 ($ $))))
+((-2750 (((-107) $ $) 18 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3199 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 125)) (-3005 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 148)) (-2779 (($ $) 146)) (-3422 (($) 72) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 71)) (-1668 (((-1158) $ |#1| |#1|) 99 (|has| $ (-6 -4181))) (((-1158) $ (-517) (-517)) 178 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 159 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 209) (((-107) $) 203 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2034 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 200 (|has| $ (-6 -4181))) (($ $) 199 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2953 (((-107) $ (-703)) 8)) (-1918 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 134 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 155 (|has| $ (-6 -4181)))) (-3781 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 157 (|has| $ (-6 -4181)))) (-3042 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 153 (|has| $ (-6 -4181)))) (-2411 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 189 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-1121 (-517)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 160 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 158 (|has| $ (-6 -4181))) (($ $ "rest" $) 156 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 154 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 133 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 132 (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 45 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 216)) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 55 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 175 (|has| $ (-6 -4180)))) (-2993 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 147)) (-3254 (((-3 |#2| "failed") |#1| $) 61)) (-3092 (($) 7 T CONST)) (-4020 (($ $) 201 (|has| $ (-6 -4181)))) (-3093 (($ $) 211)) (-1660 (($ $ (-703)) 142) (($ $) 140)) (-3483 (($ $) 214 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1679 (($ $) 58 (-3807 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))) (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 46 (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 220) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 215 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 54 (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 174 (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 56 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 53 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 52 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 176 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 173 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 172 (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 190 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 88) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 188)) (-3811 (((-107) $) 192)) (-2607 (((-517) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 208) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 207 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 206 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 30 (|has| $ (-6 -4180))) (((-583 |#2|) $) 79 (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 114 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 123)) (-1272 (((-107) $ $) 131 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-3462 (($ (-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 169)) (-2550 (((-107) $ (-703)) 9)) (-3243 ((|#1| $) 96 (|has| |#1| (-779))) (((-517) $) 180 (|has| (-517) (-779)))) (-2967 (($ $ $) 198 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2797 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-3237 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 29 (|has| $ (-6 -4180))) (((-583 |#2|) $) 80 (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 115 (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-3482 ((|#1| $) 95 (|has| |#1| (-779))) (((-517) $) 181 (|has| (-517) (-779)))) (-3099 (($ $ $) 197 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 34 (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4181))) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 110 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 109)) (-1529 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 225)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 128)) (-1763 (((-107) $) 124)) (-3985 (((-1056) $) 22 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-2068 (($ $ (-703)) 145) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 143)) (-2274 (((-583 |#1|) $) 63)) (-2793 (((-107) |#1| $) 64)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 39)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 40) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 219) (($ $ $ (-517)) 218)) (-2620 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 162) (($ $ $ (-517)) 161)) (-1857 (((-583 |#1|) $) 93) (((-583 (-517)) $) 183)) (-4088 (((-107) |#1| $) 92) (((-107) (-517) $) 184)) (-3206 (((-1021) $) 21 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1647 ((|#2| $) 97 (|has| |#1| (-779))) (($ $ (-703)) 139) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 137)) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 51) (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 171)) (-2565 (($ $ |#2|) 98 (|has| $ (-6 -4181))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 179 (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 41)) (-2348 (((-107) $) 191)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 32 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 112 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 26 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 25 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 24 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 23 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 121 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 120 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 119 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 118 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 182 (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1941 (((-583 |#2|) $) 91) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 185)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 187) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) 186) (($ $ (-1121 (-517))) 165) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first") 138) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value") 126)) (-2459 (((-517) $ $) 129)) (-3089 (($) 49) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 48)) (-2154 (($ $ (-517)) 222) (($ $ (-1121 (-517))) 221)) (-3750 (($ $ (-517)) 164) (($ $ (-1121 (-517))) 163)) (-2655 (((-107) $) 127)) (-2552 (($ $) 151)) (-3406 (($ $) 152 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 150)) (-1761 (($ $) 149)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 31 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 113 (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) 202 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493)))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 50) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 170)) (-2568 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 224) (($ $ $) 223)) (-2452 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 168) (($ (-583 $)) 167) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 136) (($ $ $) 135)) (-2256 (((-787) $) 20 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1479 (((-583 $) $) 122)) (-2732 (((-107) $ $) 130 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 42)) (-2074 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") |#1| $) 108)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 33 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 111 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 195 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1583 (((-107) $ $) 194 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1547 (((-107) $ $) 19 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1595 (((-107) $ $) 196 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1572 (((-107) $ $) 193 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-35 |#1| |#2|) (-1184) (-1003) (-1003)) (T -35))
+((-2074 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3435 *3) (|:| -1257 *4))))))
+(-13 (-1085 |t#1| |t#2|) (-603 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|))) (-10 -8 (-15 -2074 ((-3 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-102 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-97) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779))) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-209 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-258 (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-254 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-343 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-456 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-456 |#2|) . T) ((-550 (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-588 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-603 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-779) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)) ((-926 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-1003) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779))) ((-1047 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-1085 |#1| |#2|) . T) ((-1108) . T) ((-1142 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T))
+((-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-37 |#2|) (-156)) (T -36))
+NIL
+(-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-37 |#1|) (-1184) (-156)) (T -37))
+((-2256 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))))
+(-13 (-961) (-650 |t#1|) (-10 -8 (-15 -2256 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1313 (((-388 |#1|) |#1|) 38)) (-3755 (((-388 |#1|) |#1|) 27) (((-388 |#1|) |#1| (-583 (-47))) 30)) (-3381 (((-107) |#1|) 54)))
+(((-38 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1313 ((-388 |#1|) |#1|)) (-15 -3381 ((-107) |#1|))) (-1130 (-47))) (T -38))
+((-3381 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) (-1313 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))))
+(-10 -7 (-15 -3755 ((-388 |#1|) |#1| (-583 (-47)))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1313 ((-388 |#1|) |#1|)) (-15 -3381 ((-107) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2039 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-1213 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2454 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3055 (((-623 (-377 |#2|)) (-1153 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1472 (((-377 |#2|) $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2759 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1707 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1611 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2752 (((-107)) NIL)) (-1639 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-1967 (($ (-1153 (-377 |#2|)) (-1153 $)) NIL) (($ (-1153 (-377 |#2|))) 57) (($ (-1153 |#2|) |#2|) 124)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2518 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2410 (((-623 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-377 |#2|))) (|:| |vec| (-1153 (-377 |#2|)))) (-623 $) (-1153 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-3843 (((-1153 $) (-1153 $)) NIL)) (-3225 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-3407 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3384 (((-107) |#1| |#1|) NIL)) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| (-377 |#2|) (-338)))) (-2866 (((-107)) NIL)) (-2666 (((-107) |#1|) NIL) (((-107) |#2|) NIL)) (-2497 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-3534 (($ $) NIL)) (-3442 (($) NIL (|has| (-377 |#2|) (-319)))) (-3391 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2378 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-3849 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3972 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-3848 (((-107) $) NIL)) (-1790 (((-703)) NIL)) (-1870 (((-1153 $) (-1153 $)) 100)) (-1506 (((-377 |#2|) $) NIL)) (-2043 (((-583 (-874 |#1|)) (-1073)) NIL (|has| |#1| (-333)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3777 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-1549 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-3216 ((|#3| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3985 (((-1056) $) NIL)) (-1643 (((-1158) (-703)) 78)) (-1909 (((-623 (-377 |#2|))) 51)) (-2041 (((-623 (-377 |#2|))) 44)) (-4118 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3454 (($ (-1153 |#2|) |#2|) 125)) (-3580 (((-623 (-377 |#2|))) 45)) (-1872 (((-623 (-377 |#2|))) 43)) (-1920 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 122)) (-1784 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 63)) (-1924 (((-1153 $)) 42)) (-2216 (((-1153 $)) 41)) (-2491 (((-107) $) NIL)) (-3291 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2836 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3854 (((-3 |#2| "failed")) NIL)) (-3206 (((-1021) $) NIL)) (-1786 (((-703)) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| (-377 |#2|) (-333)))) (-1401 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3755 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3146 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1449 ((|#1| $ |#1| |#1|) NIL)) (-3259 (((-3 |#2| "failed")) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3010 (((-377 |#2|) (-1153 $)) NIL) (((-377 |#2|)) 39)) (-1620 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-3127 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 118) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2970 (((-623 (-377 |#2|)) (-1153 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2135 ((|#3|) 50)) (-1766 (($) NIL (|has| (-377 |#2|) (-319)))) (-4114 (((-1153 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) (-1153 $) (-1153 $)) NIL) (((-1153 (-377 |#2|)) $) 58) (((-623 (-377 |#2|)) (-1153 $)) 101)) (-3645 (((-1153 (-377 |#2|)) $) NIL) (($ (-1153 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3696 (((-1153 $) (-1153 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1328 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3669 ((|#3| $) NIL)) (-2961 (((-703)) NIL)) (-2025 (((-107)) 37)) (-2992 (((-107) |#1|) 49) (((-107) |#2|) 130)) (-1753 (((-1153 $)) 91)) (-3329 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3148 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4065 (((-107)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2396 (($) 16 T CONST)) (-2409 (($) 26 T CONST)) (-2731 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1643 ((-1158) (-703))))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) |#3|) (T -39))
+((-1643 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *2 (-1158)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1130 (-377 *5))) (-14 *7 *6))))
+(-13 (-312 |#1| |#2| |#3|) (-10 -7 (-15 -1643 ((-1158) (-703)))))
+((-1849 ((|#2| |#2|) 47)) (-1567 ((|#2| |#2|) 117 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-1333 ((|#2| |#2|) 85 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-2232 ((|#2| |#2|) 86 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-2782 ((|#2| (-109) |#2| (-703)) 113 (-12 (|has| |#2| (-400 |#1|)) (|has| |#1| (-421)) (|has| |#1| (-779)) (|has| |#1| (-952 (-517)))))) (-1747 (((-1069 |#2|) |#2|) 44)) (-3592 ((|#2| |#2| (-583 (-556 |#2|))) 17) ((|#2| |#2| (-583 |#2|)) 19) ((|#2| |#2| |#2|) 20) ((|#2| |#2|) 15)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -1849 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| (-583 |#2|))) (-15 -3592 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -1747 ((-1069 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -2232 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2782 (|#2| (-109) |#2| (-703)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-509) (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 |#1| (-556 $)) $)) (-15 -1800 ((-1026 |#1| (-556 $)) $)) (-15 -2256 ($ (-1026 |#1| (-556 $))))))) (T -40))
+((-2782 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *5 (-556 $)) $)) (-15 -1800 ((-1026 *5 (-556 $)) $)) (-15 -2256 ($ (-1026 *5 (-556 $))))))))) (-1567 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-2232 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-1747 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1069 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))))) (-3592 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3592 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) (-3592 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-3592 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
+(-10 -7 (-15 -1849 (|#2| |#2|)) (-15 -3592 (|#2| |#2|)) (-15 -3592 (|#2| |#2| |#2|)) (-15 -3592 (|#2| |#2| (-583 |#2|))) (-15 -3592 (|#2| |#2| (-583 (-556 |#2|)))) (-15 -1747 ((-1069 |#2|) |#2|)) (IF (|has| |#1| (-779)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-952 (-517))) (IF (|has| |#2| (-400 |#1|)) (PROGN (-15 -2232 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -1567 (|#2| |#2|)) (-15 -2782 (|#2| (-109) |#2| (-703)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|))
+((-3755 (((-388 (-1069 |#3|)) (-1069 |#3|) (-583 (-47))) 22) (((-388 |#3|) |#3| (-583 (-47))) 18)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3755 ((-388 (-1069 |#3|)) (-1069 |#3|) (-583 (-47))))) (-779) (-725) (-871 (-47) |#2| |#1|)) (T -41))
+((-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5)))))
+(-10 -7 (-15 -3755 ((-388 |#3|) |#3| (-583 (-47)))) (-15 -3755 ((-388 (-1069 |#3|)) (-1069 |#3|) (-583 (-47)))))
+((-2115 (((-703) |#2|) 65)) (-3123 (((-703) |#2|) 68)) (-3197 (((-583 |#2|)) 33)) (-3514 (((-703) |#2|) 67)) (-3771 (((-703) |#2|) 64)) (-2087 (((-703) |#2|) 66)) (-3044 (((-583 (-623 |#1|))) 60)) (-4077 (((-583 |#2|)) 55)) (-4123 (((-583 |#2|) |#2|) 43)) (-3252 (((-583 |#2|)) 57)) (-2179 (((-583 |#2|)) 56)) (-2617 (((-583 (-623 |#1|))) 48)) (-1220 (((-583 |#2|)) 54)) (-3552 (((-583 |#2|) |#2|) 42)) (-1560 (((-583 |#2|)) 50)) (-1410 (((-583 (-623 |#1|))) 61)) (-1296 (((-583 |#2|)) 59)) (-1753 (((-1153 |#2|) (-1153 |#2|)) 83 (|has| |#1| (-278)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -3514 ((-703) |#2|)) (-15 -3123 ((-703) |#2|)) (-15 -3771 ((-703) |#2|)) (-15 -2115 ((-703) |#2|)) (-15 -2087 ((-703) |#2|)) (-15 -1560 ((-583 |#2|))) (-15 -3552 ((-583 |#2|) |#2|)) (-15 -4123 ((-583 |#2|) |#2|)) (-15 -1220 ((-583 |#2|))) (-15 -4077 ((-583 |#2|))) (-15 -2179 ((-583 |#2|))) (-15 -3252 ((-583 |#2|))) (-15 -1296 ((-583 |#2|))) (-15 -2617 ((-583 (-623 |#1|)))) (-15 -3044 ((-583 (-623 |#1|)))) (-15 -1410 ((-583 (-623 |#1|)))) (-15 -3197 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -1753 ((-1153 |#2|) (-1153 |#2|))) |noBranch|)) (-509) (-387 |#1|)) (T -42))
+((-1753 (*1 *2 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) (-3197 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1410 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3044 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2617 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1296 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-3252 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2179 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-4077 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-1220 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-4123 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-1560 (*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))) (-2087 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-2115 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3771 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3123 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))) (-3514 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(-10 -7 (-15 -3514 ((-703) |#2|)) (-15 -3123 ((-703) |#2|)) (-15 -3771 ((-703) |#2|)) (-15 -2115 ((-703) |#2|)) (-15 -2087 ((-703) |#2|)) (-15 -1560 ((-583 |#2|))) (-15 -3552 ((-583 |#2|) |#2|)) (-15 -4123 ((-583 |#2|) |#2|)) (-15 -1220 ((-583 |#2|))) (-15 -4077 ((-583 |#2|))) (-15 -2179 ((-583 |#2|))) (-15 -3252 ((-583 |#2|))) (-15 -1296 ((-583 |#2|))) (-15 -2617 ((-583 (-623 |#1|)))) (-15 -3044 ((-583 (-623 |#1|)))) (-15 -1410 ((-583 (-623 |#1|)))) (-15 -3197 ((-583 |#2|))) (IF (|has| |#1| (-278)) (-15 -1753 ((-1153 |#2|) (-1153 |#2|))) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#1|)) (-1153 $)) NIL) (((-1153 (-623 |#1|))) 24)) (-3456 (((-1153 $)) 50)) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1450 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2619 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) NIL)) (-2299 ((|#1| $) NIL)) (-3343 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-2158 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-2436 (((-1069 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#1| $) NIL)) (-2417 (((-1069 |#1|) $) NIL (|has| |#1| (-509)))) (-4069 ((|#1| (-1153 $)) NIL) ((|#1|) NIL)) (-2085 (((-1069 |#1|) $) NIL)) (-2362 (((-107)) 86)) (-1967 (($ (-1153 |#1|) (-1153 $)) NIL) (($ (-1153 |#1|)) NIL)) (-3621 (((-3 $ "failed") $) 14 (|has| |#1| (-509)))) (-2261 (((-843)) 51)) (-3962 (((-107)) NIL)) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL)) (-3983 (((-107)) NIL)) (-3414 (((-107)) 88)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#1| (-509)))) (-1793 (((-3 $ "failed")) NIL (|has| |#1| (-509)))) (-2010 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) NIL)) (-1188 ((|#1| $) NIL)) (-3914 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-1680 (((-3 $ "failed") $) NIL (|has| |#1| (-509)))) (-2300 (((-1069 (-874 |#1|))) NIL (|has| |#1| (-333)))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#1| $) NIL)) (-4121 (((-1069 |#1|) $) NIL (|has| |#1| (-509)))) (-1988 ((|#1| (-1153 $)) NIL) ((|#1|) NIL)) (-2190 (((-1069 |#1|) $) NIL)) (-3606 (((-107)) 85)) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) 92)) (-1286 (((-107)) 91)) (-1848 (((-107)) 93)) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) 87)) (-1449 ((|#1| $ (-517)) 53)) (-4114 (((-1153 |#1|) $ (-1153 $)) 47) (((-623 |#1|) (-1153 $) (-1153 $)) NIL) (((-1153 |#1|) $) 28) (((-623 |#1|) (-1153 $)) NIL)) (-3645 (((-1153 |#1|) $) NIL) (($ (-1153 |#1|)) NIL)) (-2278 (((-583 (-874 |#1|)) (-1153 $)) NIL) (((-583 (-874 |#1|))) NIL)) (-3394 (($ $ $) NIL)) (-1561 (((-107)) 83)) (-2256 (((-787) $) 68) (($ (-1153 |#1|)) 22)) (-1753 (((-1153 $)) 44)) (-1582 (((-583 (-1153 |#1|))) NIL (|has| |#1| (-509)))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) 81)) (-1587 (($ (-623 |#1|) $) 18)) (-1956 (($ $ $) NIL)) (-2687 (((-107)) 84)) (-2524 (((-107)) 82)) (-3642 (((-107)) 80)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1040 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-387 |#1|) (-585 (-1040 |#2| |#1|)) (-10 -8 (-15 -2256 ($ (-1153 |#1|))))) (-333) (-843) (-583 (-1073)) (-1153 (-623 |#1|))) (T -43))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))))
+(-13 (-387 |#1|) (-585 (-1040 |#2| |#1|)) (-10 -8 (-15 -2256 ($ (-1153 |#1|)))))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3199 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-3005 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2779 (($ $) NIL)) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181))) (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (((-107) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2034 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779))))) (-3166 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-1918 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) 27 (|has| $ (-6 -4181)))) (-3781 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-3042 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 29 (|has| $ (-6 -4181)))) (-2411 ((|#2| $ |#1| |#2|) 45) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-1121 (-517)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (($ $ "rest" $) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value" (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2993 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-3254 (((-3 |#2| "failed") |#1| $) 37)) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1660 (($ $ (-703)) NIL) (($ $) 24)) (-3483 (($ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 46) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) (((-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 18 (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 18 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-3462 (($ (-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 32 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2797 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-3237 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779))) (((-517) $) 34 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-1529 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) 41 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2068 (($ $ (-703)) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2274 (((-583 |#1|) $) 20)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-2620 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 |#1|) $) NIL) (((-583 (-517)) $) NIL)) (-4088 (((-107) |#1| $) NIL) (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779))) (($ $ (-703)) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 23)) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1941 (((-583 |#2|) $) NIL) (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 17)) (-3619 (((-107) $) 16)) (-1746 (($) 13)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ (-517)) NIL) (($ $ (-1121 (-517))) NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "first") NIL) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $ "value") NIL)) (-2459 (((-517) $ $) NIL)) (-3089 (($) 12) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2154 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2655 (((-107) $) NIL)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2568 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL) (($ $ $) NIL)) (-2452 (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL) (($ (-583 $)) NIL) (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 25) (($ $ $) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2074 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") |#1| $) 43)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1595 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-779)))) (-2296 (((-703) $) 22 (|has| $ (-6 -4180)))))
+(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1003) (-1003)) (T -44))
NIL
(-35 |#1| |#2|)
-((-2706 (((-107) $) 12)) (-1212 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-375 (-501)) $) 24) (($ $ (-375 (-501))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -2706 ((-107) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-46 |#2| |#3|) (-959) (-722)) (T -45))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -2706 ((-107) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| |#2|) 63)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-1201 ((|#2| $) 66)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49 (|has| |#1| (-156)))) (-2495 ((|#1| $ |#2|) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501)))))))
-(((-46 |#1| |#2|) (-1180) (-959) (-722)) (T -46))
-((-3850 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-3845 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-107)))) (-3787 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) (-2495 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-331)))))
-(-13 (-959) (-106 |t#1| |t#1|) (-10 -8 (-15 -3850 (|t#1| $)) (-15 -3845 ($ $)) (-15 -1201 (|t#2| $)) (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (-15 -2706 ((-107) $)) (-15 -3787 ($ |t#1| |t#2|)) (-15 -3858 ($ $)) (-15 -2495 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-331)) (-15 -3803 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-508)) (-6 (-508)) |noBranch|) (IF (|has| |t#1| (-37 (-375 (-501)))) (-6 (-37 (-375 (-501)))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-260) |has| |#1| (-508)) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3588 (((-578 $) (-1064 $) (-1070)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-866 $)) NIL)) (-3448 (($ (-1064 $) (-1070)) NIL) (($ (-1064 $)) NIL) (($ (-866 $)) NIL)) (-3292 (((-107) $) 11)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3709 (((-578 (-553 $)) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-1271 (((-578 $) (-1064 $) (-1070)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-866 $)) NIL)) (-2899 (($ (-1064 $) (-1070)) NIL) (($ (-1064 $)) NIL) (($ (-866 $)) NIL)) (-3765 (((-3 (-553 $) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL)) (-3490 (((-553 $) $) NIL) (((-501) $) NIL) (((-375 (-501)) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-375 (-501)))) (|:| |vec| (-1148 (-375 (-501))))) (-621 $) (-1148 $)) NIL) (((-621 (-375 (-501))) (-621 $)) NIL)) (-3547 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2446 (($ $) NIL) (($ (-578 $)) NIL)) (-2389 (((-578 (-108)) $) NIL)) (-1853 (((-108) (-108)) NIL)) (-1355 (((-107) $) 14)) (-3729 (((-107) $) NIL (|has| $ (-950 (-501))))) (-2946 (((-1023 (-501) (-553 $)) $) NIL)) (-1342 (($ $ (-501)) NIL)) (-2626 (((-1064 $) (-1064 $) (-553 $)) NIL) (((-1064 $) (-1064 $) (-578 (-553 $))) NIL) (($ $ (-553 $)) NIL) (($ $ (-578 (-553 $))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1983 (((-1064 $) (-553 $)) NIL (|has| $ (-959)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 $ $) (-553 $)) NIL)) (-2789 (((-3 (-553 $) "failed") $) NIL)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3724 (((-578 (-553 $)) $) NIL)) (-3136 (($ (-108) $) NIL) (($ (-108) (-578 $)) NIL)) (-3109 (((-107) $ (-108)) NIL) (((-107) $ (-1070)) NIL)) (-3833 (($ $) NIL)) (-2696 (((-701) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-2816 (((-107) $ $) NIL) (((-107) $ (-1070)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL)) (-1864 (((-701) $) NIL)) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-4106 (($ $) NIL) (($ $ $) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-2949 (((-1023 (-501) (-553 $)) $) NIL)) (-2264 (($ $) NIL (|has| $ (-959)))) (-1248 (((-346) $) NIL) (((-199) $) NIL) (((-152 (-346)) $) NIL)) (-3691 (((-786) $) NIL) (($ (-553 $)) NIL) (($ (-375 (-501))) NIL) (($ $) NIL) (($ (-501)) NIL) (($ (-1023 (-501) (-553 $))) NIL)) (-3965 (((-701)) NIL)) (-1831 (($ $) NIL) (($ (-578 $)) NIL)) (-3811 (((-107) (-108)) NIL)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-501)) NIL) (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 7 T CONST)) (-1925 (($) 12 T CONST)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 16)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $ $) 15) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-375 (-501))) NIL) (($ $ (-501)) NIL) (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ $ $) NIL) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL)))
-(((-47) (-13 (-267) (-27) (-950 (-501)) (-950 (-375 (-501))) (-577 (-501)) (-933) (-577 (-375 (-501))) (-134) (-556 (-152 (-346))) (-206) (-10 -8 (-15 -3691 ($ (-1023 (-501) (-553 $)))) (-15 -2946 ((-1023 (-501) (-553 $)) $)) (-15 -2949 ((-1023 (-501) (-553 $)) $)) (-15 -3547 ($ $)) (-15 -2626 ((-1064 $) (-1064 $) (-553 $))) (-15 -2626 ((-1064 $) (-1064 $) (-578 (-553 $)))) (-15 -2626 ($ $ (-553 $))) (-15 -2626 ($ $ (-578 (-553 $))))))) (T -47))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) (-3547 (*1 *1 *1) (-5 *1 (-47))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-47))) (-5 *3 (-553 (-47))) (-5 *1 (-47)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-47))) (-5 *3 (-578 (-553 (-47)))) (-5 *1 (-47)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-553 (-47))) (-5 *1 (-47)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-553 (-47)))) (-5 *1 (-47)))))
-(-13 (-267) (-27) (-950 (-501)) (-950 (-375 (-501))) (-577 (-501)) (-933) (-577 (-375 (-501))) (-134) (-556 (-152 (-346))) (-206) (-10 -8 (-15 -3691 ($ (-1023 (-501) (-553 $)))) (-15 -2946 ((-1023 (-501) (-553 $)) $)) (-15 -2949 ((-1023 (-501) (-553 $)) $)) (-15 -3547 ($ $)) (-15 -2626 ((-1064 $) (-1064 $) (-553 $))) (-15 -2626 ((-1064 $) (-1064 $) (-578 (-553 $)))) (-15 -2626 ($ $ (-553 $))) (-15 -2626 ($ $ (-578 (-553 $))))))
-((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 7)) (-3751 (((-107) $ $) NIL)))
-(((-48) (-1001)) (T -48))
-NIL
-(-1001)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 60)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3998 (((-107) $) 20)) (-3765 (((-3 |#1| "failed") $) 23)) (-3490 ((|#1| $) 24)) (-3858 (($ $) 27)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3850 ((|#1| $) 21)) (-3320 (($ $) 49)) (-3460 (((-1053) $) NIL)) (-1464 (((-107) $) 28)) (-3708 (((-1018) $) NIL)) (-3987 (($ (-701)) 47)) (-1989 (($ (-578 (-501))) 48)) (-1201 (((-701) $) 29)) (-3691 (((-786) $) 63) (($ (-501)) 44) (($ |#1|) 42)) (-2495 ((|#1| $ $) 19)) (-3965 (((-701)) 46)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 30 T CONST)) (-1925 (($) 14 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 40)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3850 (|#1| $)) (-15 -3320 ($ $)) (-15 -3858 ($ $)) (-15 -2495 (|#1| $ $)) (-15 -3987 ($ (-701))) (-15 -1989 ($ (-578 (-501)))) (-15 -1464 ((-107) $)) (-15 -3998 ((-107) $)) (-15 -1201 ((-701) $)) (-15 -1212 ($ (-1 |#1| |#1|) $)))) (-959) (-578 (-1070))) (T -49))
-((-3850 (*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-49 *2 *3)) (-14 *3 (-578 (-1070))))) (-3320 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))))) (-3858 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))))) (-2495 (*1 *2 *1 *1) (-12 (-4 *2 (-959)) (-5 *1 (-49 *2 *3)) (-14 *3 (-578 (-1070))))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-1989 (*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-49 *3 *4)) (-14 *4 (-578 (-1070))))))
-(-13 (-560 |#1|) (-950 |#1|) (-10 -8 (-15 -3850 (|#1| $)) (-15 -3320 ($ $)) (-15 -3858 ($ $)) (-15 -2495 (|#1| $ $)) (-15 -3987 ($ (-701))) (-15 -1989 ($ (-578 (-501)))) (-15 -1464 ((-107) $)) (-15 -3998 ((-107) $)) (-15 -1201 ((-701) $)) (-15 -1212 ($ (-1 |#1| |#1|) $))))
-((-3736 (((-107) $ $) NIL)) (-1296 (((-1053) (-107)) 25)) (-2523 (((-786) $) 24)) (-3700 (((-703) $) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3147 (((-786) $) 16)) (-3926 (((-1003) $) 14)) (-3691 (((-786) $) 32)) (-4078 (($ (-1003) (-703)) 33)) (-3751 (((-107) $ $) 18)))
-(((-50) (-13 (-1001) (-10 -8 (-15 -4078 ($ (-1003) (-703))) (-15 -3147 ((-786) $)) (-15 -2523 ((-786) $)) (-15 -3926 ((-1003) $)) (-15 -3700 ((-703) $)) (-15 -1296 ((-1053) (-107)))))) (T -50))
-((-4078 (*1 *1 *2 *3) (-12 (-5 *2 (-1003)) (-5 *3 (-703)) (-5 *1 (-50)))) (-3147 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-50)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-50)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-50)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-50)))) (-1296 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1053)) (-5 *1 (-50)))))
-(-13 (-1001) (-10 -8 (-15 -4078 ($ (-1003) (-703))) (-15 -3147 ((-786) $)) (-15 -2523 ((-786) $)) (-15 -3926 ((-1003) $)) (-15 -3700 ((-703) $)) (-15 -1296 ((-1053) (-107)))))
-((-3998 (((-107) (-50)) 13)) (-3765 (((-3 |#1| "failed") (-50)) 21)) (-3490 ((|#1| (-50)) 22)) (-3691 (((-50) |#1|) 18)))
-(((-51 |#1|) (-10 -7 (-15 -3691 ((-50) |#1|)) (-15 -3765 ((-3 |#1| "failed") (-50))) (-15 -3998 ((-107) (-50))) (-15 -3490 (|#1| (-50)))) (-1104)) (T -51))
-((-3490 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1104)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *2 (-107)) (-5 *1 (-51 *4)) (-4 *4 (-1104)))) (-3765 (*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1104)))) (-3691 (*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1104)))))
-(-10 -7 (-15 -3691 ((-50) |#1|)) (-15 -3765 ((-3 |#1| "failed") (-50))) (-15 -3998 ((-107) (-50))) (-15 -3490 (|#1| (-50))))
-((-1183 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1183 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-959) (-583 |#1|) (-779 |#1|)) (T -52))
-((-1183 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-583 *5)) (-4 *5 (-959)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-779 *5)))))
-(-10 -7 (-15 -1183 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2745 ((|#3| |#3| (-578 (-1070))) 35)) (-1406 ((|#3| (-578 (-979 |#1| |#2| |#3|)) |#3| (-839)) 22) ((|#3| (-578 (-979 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1406 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3|)) (-15 -1406 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3| (-839))) (-15 -2745 (|#3| |#3| (-578 (-1070))))) (-1001) (-13 (-959) (-806 |#1|) (-777) (-556 (-810 |#1|))) (-13 (-389 |#2|) (-806 |#1|) (-556 (-810 |#1|)))) (T -53))
-((-2745 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) (-1406 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 (-979 *5 *6 *2))) (-5 *4 (-839)) (-4 *5 (-1001)) (-4 *6 (-13 (-959) (-806 *5) (-777) (-556 (-810 *5)))) (-4 *2 (-13 (-389 *6) (-806 *5) (-556 (-810 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-1406 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-979 *4 *5 *2))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -1406 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3|)) (-15 -1406 (|#3| (-578 (-979 |#1| |#2| |#3|)) |#3| (-839))) (-15 -2745 (|#3| |#3| (-578 (-1070)))))
-((-2997 (((-107) $ (-701)) 23)) (-2400 (($ $ (-501) |#3|) 45)) (-2480 (($ $ (-501) |#4|) 49)) (-2358 ((|#3| $ (-501)) 58)) (-2732 (((-578 |#2|) $) 30)) (-3379 (((-107) $ (-701)) 25)) (-2211 (((-107) |#2| $) 53)) (-2519 (($ (-1 |#2| |#2|) $) 37)) (-1212 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-3155 (((-107) $ (-701)) 24)) (-3084 (($ $ |#2|) 34)) (-2369 (((-107) (-1 (-107) |#2|) $) 19)) (-2007 ((|#2| $ (-501) (-501)) NIL) ((|#2| $ (-501) (-501) |#2|) 27)) (-3713 (((-701) (-1 (-107) |#2|) $) 28) (((-701) |#2| $) 55)) (-3764 (($ $) 33)) (-2952 ((|#4| $ (-501)) 61)) (-3691 (((-786) $) 66)) (-1200 (((-107) (-1 (-107) |#2|) $) 18)) (-3751 (((-107) $ $) 52)) (-3581 (((-701) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1| (-501) |#4|)) (-15 -2400 (|#1| |#1| (-501) |#3|)) (-15 -2732 ((-578 |#2|) |#1|)) (-15 -2952 (|#4| |#1| (-501))) (-15 -2358 (|#3| |#1| (-501))) (-15 -2007 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501))) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))) (-15 -3764 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1104) (-340 |#2|) (-340 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1| (-501) |#4|)) (-15 -2400 (|#1| |#1| (-501) |#3|)) (-15 -2732 ((-578 |#2|) |#1|)) (-15 -2952 (|#4| |#1| (-501))) (-15 -2358 (|#3| |#1| (-501))) (-15 -2007 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501))) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))) (-15 -3764 (|#1| |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) (-501) |#1|) 44)) (-2400 (($ $ (-501) |#2|) 42)) (-2480 (($ $ (-501) |#3|) 41)) (-2540 (($) 7 T CONST)) (-2358 ((|#2| $ (-501)) 46)) (-2156 ((|#1| $ (-501) (-501) |#1|) 43)) (-1905 ((|#1| $ (-501) (-501)) 48)) (-2732 (((-578 |#1|) $) 30)) (-1648 (((-701) $) 51)) (-3634 (($ (-701) (-701) |#1|) 57)) (-3248 (((-701) $) 50)) (-3379 (((-107) $ (-701)) 9)) (-1567 (((-501) $) 55)) (-2734 (((-501) $) 53)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2969 (((-501) $) 54)) (-3491 (((-501) $) 52)) (-2519 (($ (-1 |#1| |#1|) $) 34)) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) 56)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) (-501)) 49) ((|#1| $ (-501) (-501) |#1|) 47)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-2952 ((|#3| $ (-501)) 45)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-55 |#1| |#2| |#3|) (-1180) (-1104) (-340 |t#1|) (-340 |t#1|)) (T -55))
-((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3634 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-701)) (-4 *3 (-1104)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3084 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-1567 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-701)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-701)))) (-2007 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-1104)))) (-1905 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) (-2358 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *2 (-340 *4)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *2 (-340 *4)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-578 *3)))) (-3754 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) (-2156 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) (-2400 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1104)) (-4 *3 (-340 *4)) (-4 *5 (-340 *4)))) (-2480 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *3 (-340 *4)))) (-2519 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-1212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-1212 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))))
-(-13 (-454 |t#1|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -3634 ($ (-701) (-701) |t#1|)) (-15 -3084 ($ $ |t#1|)) (-15 -1567 ((-501) $)) (-15 -2969 ((-501) $)) (-15 -2734 ((-501) $)) (-15 -3491 ((-501) $)) (-15 -1648 ((-701) $)) (-15 -3248 ((-701) $)) (-15 -2007 (|t#1| $ (-501) (-501))) (-15 -1905 (|t#1| $ (-501) (-501))) (-15 -2007 (|t#1| $ (-501) (-501) |t#1|)) (-15 -2358 (|t#2| $ (-501))) (-15 -2952 (|t#3| $ (-501))) (-15 -2732 ((-578 |t#1|) $)) (-15 -3754 (|t#1| $ (-501) (-501) |t#1|)) (-15 -2156 (|t#1| $ (-501) (-501) |t#1|)) (-15 -2400 ($ $ (-501) |t#2|)) (-15 -2480 ($ $ (-501) |t#3|)) (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (-15 -2519 ($ (-1 |t#1| |t#1|) $)) (-15 -1212 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1212 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) 11 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2168 (($ (-578 |#1|)) 13) (($ (-701) |#1|) 14)) (-3634 (($ (-701) |#1|) 9)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 7)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-56 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2168 ($ (-578 |#1|))) (-15 -2168 ($ (-701) |#1|)))) (-1104)) (T -56))
-((-2168 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-56 *3)))) (-2168 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *1 (-56 *3)) (-4 *3 (-1104)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2168 ($ (-578 |#1|))) (-15 -2168 ($ (-701) |#1|))))
-((-3162 (((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 16)) (-3547 ((|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|) 18)) (-1212 (((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)) 13)))
-(((-57 |#1| |#2|) (-10 -7 (-15 -3162 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -1212 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|)))) (-1104) (-1104)) (T -57))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-57 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5)))))
-(-10 -7 (-15 -3162 ((-56 |#2|) (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-56 |#1|) |#2|)) (-15 -1212 ((-56 |#2|) (-1 |#2| |#1|) (-56 |#1|))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) NIL)) (-2400 (($ $ (-501) (-56 |#1|)) NIL)) (-2480 (($ $ (-501) (-56 |#1|)) NIL)) (-2540 (($) NIL T CONST)) (-2358 (((-56 |#1|) $ (-501)) NIL)) (-2156 ((|#1| $ (-501) (-501) |#1|) NIL)) (-1905 ((|#1| $ (-501) (-501)) NIL)) (-2732 (((-578 |#1|) $) NIL)) (-1648 (((-701) $) NIL)) (-3634 (($ (-701) (-701) |#1|) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) (-501)) NIL) ((|#1| $ (-501) (-501) |#1|) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-2952 (((-56 |#1|) $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-58 |#1|) (-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4168))) (-1104)) (T -58))
-NIL
-(-13 (-55 |#1| (-56 |#1|) (-56 |#1|)) (-10 -7 (-6 -4168)))
-((-3765 (((-3 $ "failed") (-282 (-346))) 36) (((-3 $ "failed") (-282 (-501))) 41) (((-3 $ "failed") (-866 (-346))) 46) (((-3 $ "failed") (-866 (-501))) 51) (((-3 $ "failed") (-375 (-866 (-346)))) 31) (((-3 $ "failed") (-375 (-866 (-501)))) 26)) (-3490 (($ (-282 (-346))) 34) (($ (-282 (-501))) 39) (($ (-866 (-346))) 44) (($ (-866 (-501))) 49) (($ (-375 (-866 (-346)))) 29) (($ (-375 (-866 (-501)))) 23)) (-2522 (((-1154) $) 73)) (-3691 (((-786) $) 66) (($ (-578 (-298))) 57) (($ (-298)) 63) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 60) (($ (-307 (-3699 (QUOTE X)) (-3699) (-630))) 22)))
-(((-59 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699 (QUOTE X)) (-3699) (-630)))))) (-1070)) (T -59))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699 (QUOTE X)) (-3699) (-630))) (-5 *1 (-59 *3)) (-14 *3 (-1070)))))
-(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699 (QUOTE X)) (-3699) (-630))))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 69) (((-3 $ "failed") (-1148 (-282 (-501)))) 58) (((-3 $ "failed") (-1148 (-866 (-346)))) 91) (((-3 $ "failed") (-1148 (-866 (-501)))) 80) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 47) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 36)) (-3490 (($ (-1148 (-282 (-346)))) 65) (($ (-1148 (-282 (-501)))) 54) (($ (-1148 (-866 (-346)))) 87) (($ (-1148 (-866 (-501)))) 76) (($ (-1148 (-375 (-866 (-346))))) 43) (($ (-1148 (-375 (-866 (-501))))) 29)) (-2522 (((-1154) $) 118)) (-3691 (((-786) $) 111) (($ (-578 (-298))) 100) (($ (-298)) 94) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 97) (($ (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630)))) 28)))
-(((-60 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630))))))) (-1070)) (T -60))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630)))) (-5 *1 (-60 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630)))))))
-((-2522 (((-1154) $) 48) (((-1154)) 49)) (-3691 (((-786) $) 45)))
-(((-61 |#1|) (-13 (-364) (-10 -7 (-15 -2522 ((-1154))))) (-1070)) (T -61))
-((-2522 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-61 *3)) (-14 *3 (-1070)))))
-(-13 (-364) (-10 -7 (-15 -2522 ((-1154)))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 142) (((-3 $ "failed") (-1148 (-282 (-501)))) 132) (((-3 $ "failed") (-1148 (-866 (-346)))) 163) (((-3 $ "failed") (-1148 (-866 (-501)))) 152) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 121) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 110)) (-3490 (($ (-1148 (-282 (-346)))) 138) (($ (-1148 (-282 (-501)))) 128) (($ (-1148 (-866 (-346)))) 159) (($ (-1148 (-866 (-501)))) 148) (($ (-1148 (-375 (-866 (-346))))) 117) (($ (-1148 (-375 (-866 (-501))))) 103)) (-2522 (((-1154) $) 96)) (-3691 (((-786) $) 90) (($ (-578 (-298))) 28) (($ (-298)) 34) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 31) (($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) 88)))
-(((-62 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630))))))) (-1070)) (T -62))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) (-5 *1 (-62 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))))))
-((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 100) (((-3 $ "failed") (-621 (-282 (-501)))) 89) (((-3 $ "failed") (-621 (-866 (-346)))) 122) (((-3 $ "failed") (-621 (-866 (-501)))) 111) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 78) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 67)) (-3490 (($ (-621 (-282 (-346)))) 96) (($ (-621 (-282 (-501)))) 85) (($ (-621 (-866 (-346)))) 118) (($ (-621 (-866 (-501)))) 107) (($ (-621 (-375 (-866 (-346))))) 74) (($ (-621 (-375 (-866 (-501))))) 60)) (-2522 (((-1154) $) 130)) (-3691 (((-786) $) 124) (($ (-578 (-298))) 27) (($ (-298)) 33) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 30) (($ (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630)))) 53)))
-(((-63 |#1|) (-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630))))))) (-1070)) (T -63))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630)))) (-5 *1 (-63 *3)) (-14 *3 (-1070)))))
-(-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630)))))))
-((-3765 (((-3 $ "failed") (-282 (-346))) 54) (((-3 $ "failed") (-282 (-501))) 59) (((-3 $ "failed") (-866 (-346))) 64) (((-3 $ "failed") (-866 (-501))) 69) (((-3 $ "failed") (-375 (-866 (-346)))) 49) (((-3 $ "failed") (-375 (-866 (-501)))) 44)) (-3490 (($ (-282 (-346))) 52) (($ (-282 (-501))) 57) (($ (-866 (-346))) 62) (($ (-866 (-501))) 67) (($ (-375 (-866 (-346)))) 47) (($ (-375 (-866 (-501)))) 41)) (-2522 (((-1154) $) 78)) (-3691 (((-786) $) 72) (($ (-578 (-298))) 27) (($ (-298)) 33) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 30) (($ (-307 (-3699) (-3699 (QUOTE XC)) (-630))) 38)))
-(((-64 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE XC)) (-630)))))) (-1070)) (T -64))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE XC)) (-630))) (-5 *1 (-64 *3)) (-14 *3 (-1070)))))
-(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE XC)) (-630))))))
-((-2522 (((-1154) $) 63)) (-3691 (((-786) $) 57) (($ (-621 (-630))) 49) (($ (-578 (-298))) 48) (($ (-298)) 55) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 53)))
-(((-65 |#1|) (-351) (-1070)) (T -65))
-NIL
-(-351)
-((-2522 (((-1154) $) 64)) (-3691 (((-786) $) 58) (($ (-621 (-630))) 50) (($ (-578 (-298))) 49) (($ (-298)) 52) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 55)))
-(((-66 |#1|) (-351) (-1070)) (T -66))
-NIL
-(-351)
-((-2522 (((-1154) $) NIL) (((-1154)) 32)) (-3691 (((-786) $) NIL)))
-(((-67 |#1|) (-13 (-364) (-10 -7 (-15 -2522 ((-1154))))) (-1070)) (T -67))
-((-2522 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-67 *3)) (-14 *3 (-1070)))))
-(-13 (-364) (-10 -7 (-15 -2522 ((-1154)))))
-((-2522 (((-1154) $) 68)) (-3691 (((-786) $) 62) (($ (-621 (-630))) 53) (($ (-578 (-298))) 56) (($ (-298)) 59) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 52)))
-(((-68 |#1|) (-351) (-1070)) (T -68))
-NIL
-(-351)
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 98) (((-3 $ "failed") (-1148 (-282 (-501)))) 87) (((-3 $ "failed") (-1148 (-866 (-346)))) 119) (((-3 $ "failed") (-1148 (-866 (-501)))) 108) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 76) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 65)) (-3490 (($ (-1148 (-282 (-346)))) 94) (($ (-1148 (-282 (-501)))) 83) (($ (-1148 (-866 (-346)))) 115) (($ (-1148 (-866 (-501)))) 104) (($ (-1148 (-375 (-866 (-346))))) 72) (($ (-1148 (-375 (-866 (-501))))) 58)) (-2522 (((-1154) $) 133)) (-3691 (((-786) $) 127) (($ (-578 (-298))) 122) (($ (-298)) 125) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 50) (($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) 51)))
-(((-69 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))))))) (-1070)) (T -69))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-69 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))))))
-((-2522 (((-1154) $) 32) (((-1154)) 31)) (-3691 (((-786) $) 35)))
-(((-70 |#1|) (-13 (-364) (-10 -7 (-15 -2522 ((-1154))))) (-1070)) (T -70))
-((-2522 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-70 *3)) (-14 *3 (-1070)))))
-(-13 (-364) (-10 -7 (-15 -2522 ((-1154)))))
-((-2522 (((-1154) $) 62)) (-3691 (((-786) $) 56) (($ (-621 (-630))) 47) (($ (-578 (-298))) 50) (($ (-298)) 53) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 46)))
-(((-71 |#1|) (-351) (-1070)) (T -71))
-NIL
-(-351)
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 119) (((-3 $ "failed") (-1148 (-282 (-501)))) 108) (((-3 $ "failed") (-1148 (-866 (-346)))) 141) (((-3 $ "failed") (-1148 (-866 (-501)))) 130) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 98) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 87)) (-3490 (($ (-1148 (-282 (-346)))) 115) (($ (-1148 (-282 (-501)))) 104) (($ (-1148 (-866 (-346)))) 137) (($ (-1148 (-866 (-501)))) 126) (($ (-1148 (-375 (-866 (-346))))) 94) (($ (-1148 (-375 (-866 (-501))))) 80)) (-2522 (((-1154) $) 73)) (-3691 (((-786) $) 27) (($ (-578 (-298))) 63) (($ (-298)) 59) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 66) (($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) 60)))
-(((-72 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630))))))) (-1070)) (T -72))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-72 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))))))
-((-3765 (((-3 $ "failed") (-282 (-346))) 41) (((-3 $ "failed") (-282 (-501))) 46) (((-3 $ "failed") (-866 (-346))) 51) (((-3 $ "failed") (-866 (-501))) 56) (((-3 $ "failed") (-375 (-866 (-346)))) 36) (((-3 $ "failed") (-375 (-866 (-501)))) 31)) (-3490 (($ (-282 (-346))) 39) (($ (-282 (-501))) 44) (($ (-866 (-346))) 49) (($ (-866 (-501))) 54) (($ (-375 (-866 (-346)))) 34) (($ (-375 (-866 (-501)))) 28)) (-2522 (((-1154) $) 77)) (-3691 (((-786) $) 71) (($ (-578 (-298))) 62) (($ (-298)) 68) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 65) (($ (-307 (-3699) (-3699 (QUOTE X)) (-630))) 27)))
-(((-73 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE X)) (-630)))))) (-1070)) (T -73))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE X)) (-630))) (-5 *1 (-73 *3)) (-14 *3 (-1070)))))
-(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE X)) (-630))))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 125) (((-3 $ "failed") (-1148 (-282 (-501)))) 114) (((-3 $ "failed") (-1148 (-866 (-346)))) 147) (((-3 $ "failed") (-1148 (-866 (-501)))) 136) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 103) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 92)) (-3490 (($ (-1148 (-282 (-346)))) 121) (($ (-1148 (-282 (-501)))) 110) (($ (-1148 (-866 (-346)))) 143) (($ (-1148 (-866 (-501)))) 132) (($ (-1148 (-375 (-866 (-346))))) 99) (($ (-1148 (-375 (-866 (-501))))) 85)) (-2522 (((-1154) $) 78)) (-3691 (((-786) $) 70) (($ (-578 (-298))) NIL) (($ (-298)) NIL) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) NIL) (($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630)))) 65)))
-(((-74 |#1| |#2| |#3|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630))))))) (-1070) (-1070) (-1070)) (T -74))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1070)) (-14 *4 (-1070)) (-14 *5 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630)))))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 129) (((-3 $ "failed") (-1148 (-282 (-501)))) 118) (((-3 $ "failed") (-1148 (-866 (-346)))) 151) (((-3 $ "failed") (-1148 (-866 (-501)))) 140) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 107) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 96)) (-3490 (($ (-1148 (-282 (-346)))) 125) (($ (-1148 (-282 (-501)))) 114) (($ (-1148 (-866 (-346)))) 147) (($ (-1148 (-866 (-501)))) 136) (($ (-1148 (-375 (-866 (-346))))) 103) (($ (-1148 (-375 (-866 (-501))))) 89)) (-2522 (((-1154) $) 82)) (-3691 (((-786) $) 74) (($ (-578 (-298))) NIL) (($ (-298)) NIL) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) NIL) (($ (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630)))) 69)))
-(((-75 |#1| |#2| |#3|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630))))))) (-1070) (-1070) (-1070)) (T -75))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1070)) (-14 *4 (-1070)) (-14 *5 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630)))))))
-((-3765 (((-3 $ "failed") (-282 (-346))) 77) (((-3 $ "failed") (-282 (-501))) 82) (((-3 $ "failed") (-866 (-346))) 87) (((-3 $ "failed") (-866 (-501))) 92) (((-3 $ "failed") (-375 (-866 (-346)))) 72) (((-3 $ "failed") (-375 (-866 (-501)))) 67)) (-3490 (($ (-282 (-346))) 75) (($ (-282 (-501))) 80) (($ (-866 (-346))) 85) (($ (-866 (-501))) 90) (($ (-375 (-866 (-346)))) 70) (($ (-375 (-866 (-501)))) 64)) (-2522 (((-1154) $) 61)) (-3691 (((-786) $) 49) (($ (-578 (-298))) 45) (($ (-298)) 55) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 53) (($ (-307 (-3699) (-3699 (QUOTE X)) (-630))) 46)))
-(((-76 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE X)) (-630)))))) (-1070)) (T -76))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE X)) (-630))) (-5 *1 (-76 *3)) (-14 *3 (-1070)))))
-(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699) (-3699 (QUOTE X)) (-630))))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 84) (((-3 $ "failed") (-1148 (-282 (-501)))) 73) (((-3 $ "failed") (-1148 (-866 (-346)))) 106) (((-3 $ "failed") (-1148 (-866 (-501)))) 95) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 62) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 51)) (-3490 (($ (-1148 (-282 (-346)))) 80) (($ (-1148 (-282 (-501)))) 69) (($ (-1148 (-866 (-346)))) 102) (($ (-1148 (-866 (-501)))) 91) (($ (-1148 (-375 (-866 (-346))))) 58) (($ (-1148 (-375 (-866 (-501))))) 44)) (-2522 (((-1154) $) 122)) (-3691 (((-786) $) 116) (($ (-578 (-298))) 109) (($ (-298)) 36) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 112) (($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) 37)))
-(((-77 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630))))))) (-1070)) (T -77))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) (-5 *1 (-77 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 137) (((-3 $ "failed") (-1148 (-282 (-501)))) 126) (((-3 $ "failed") (-1148 (-866 (-346)))) 158) (((-3 $ "failed") (-1148 (-866 (-501)))) 147) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 116) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 105)) (-3490 (($ (-1148 (-282 (-346)))) 133) (($ (-1148 (-282 (-501)))) 122) (($ (-1148 (-866 (-346)))) 154) (($ (-1148 (-866 (-501)))) 143) (($ (-1148 (-375 (-866 (-346))))) 112) (($ (-1148 (-375 (-866 (-501))))) 98)) (-2522 (((-1154) $) 91)) (-3691 (((-786) $) 85) (($ (-578 (-298))) 76) (($ (-298)) 83) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 81) (($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) 77)))
-(((-78 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630))))))) (-1070)) (T -78))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-78 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 73) (((-3 $ "failed") (-1148 (-282 (-501)))) 62) (((-3 $ "failed") (-1148 (-866 (-346)))) 95) (((-3 $ "failed") (-1148 (-866 (-501)))) 84) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 51) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 40)) (-3490 (($ (-1148 (-282 (-346)))) 69) (($ (-1148 (-282 (-501)))) 58) (($ (-1148 (-866 (-346)))) 91) (($ (-1148 (-866 (-501)))) 80) (($ (-1148 (-375 (-866 (-346))))) 47) (($ (-1148 (-375 (-866 (-501))))) 33)) (-2522 (((-1154) $) 121)) (-3691 (((-786) $) 115) (($ (-578 (-298))) 106) (($ (-298)) 112) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 110) (($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) 32)))
-(((-79 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630))))))) (-1070)) (T -79))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-79 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 74) (((-3 $ "failed") (-1148 (-282 (-501)))) 63) (((-3 $ "failed") (-1148 (-866 (-346)))) 96) (((-3 $ "failed") (-1148 (-866 (-501)))) 85) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 52) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 41)) (-3490 (($ (-1148 (-282 (-346)))) 70) (($ (-1148 (-282 (-501)))) 59) (($ (-1148 (-866 (-346)))) 92) (($ (-1148 (-866 (-501)))) 81) (($ (-1148 (-375 (-866 (-346))))) 48) (($ (-1148 (-375 (-866 (-501))))) 34)) (-2522 (((-1154) $) 122)) (-3691 (((-786) $) 116) (($ (-578 (-298))) 107) (($ (-298)) 113) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 111) (($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) 33)))
-(((-80 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))))))) (-1070)) (T -80))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-80 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 90) (((-3 $ "failed") (-1148 (-282 (-501)))) 79) (((-3 $ "failed") (-1148 (-866 (-346)))) 112) (((-3 $ "failed") (-1148 (-866 (-501)))) 101) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 68) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 57)) (-3490 (($ (-1148 (-282 (-346)))) 86) (($ (-1148 (-282 (-501)))) 75) (($ (-1148 (-866 (-346)))) 108) (($ (-1148 (-866 (-501)))) 97) (($ (-1148 (-375 (-866 (-346))))) 64) (($ (-1148 (-375 (-866 (-501))))) 50)) (-2522 (((-1154) $) 43)) (-3691 (((-786) $) 36) (($ (-578 (-298))) 26) (($ (-298)) 29) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 32) (($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) 27)))
-(((-81 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630))))))) (-1070)) (T -81))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) (-5 *1 (-81 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))))))
-((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 103) (((-3 $ "failed") (-621 (-282 (-501)))) 92) (((-3 $ "failed") (-621 (-866 (-346)))) 125) (((-3 $ "failed") (-621 (-866 (-501)))) 114) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 82) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 71)) (-3490 (($ (-621 (-282 (-346)))) 99) (($ (-621 (-282 (-501)))) 88) (($ (-621 (-866 (-346)))) 121) (($ (-621 (-866 (-501)))) 110) (($ (-621 (-375 (-866 (-346))))) 78) (($ (-621 (-375 (-866 (-501))))) 64)) (-2522 (((-1154) $) 57)) (-3691 (((-786) $) 43) (($ (-578 (-298))) 50) (($ (-298)) 39) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 47) (($ (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) 40)))
-(((-82 |#1|) (-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630))))))) (-1070)) (T -82))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) (-5 *1 (-82 *3)) (-14 *3 (-1070)))))
-(-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))))))
-((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 103) (((-3 $ "failed") (-621 (-282 (-501)))) 92) (((-3 $ "failed") (-621 (-866 (-346)))) 124) (((-3 $ "failed") (-621 (-866 (-501)))) 113) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 81) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 70)) (-3490 (($ (-621 (-282 (-346)))) 99) (($ (-621 (-282 (-501)))) 88) (($ (-621 (-866 (-346)))) 120) (($ (-621 (-866 (-501)))) 109) (($ (-621 (-375 (-866 (-346))))) 77) (($ (-621 (-375 (-866 (-501))))) 63)) (-2522 (((-1154) $) 56)) (-3691 (((-786) $) 50) (($ (-578 (-298))) 44) (($ (-298)) 47) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 40) (($ (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) 41)))
-(((-83 |#1|) (-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630))))))) (-1070)) (T -83))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) (-5 *1 (-83 *3)) (-14 *3 (-1070)))))
-(-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630)))))))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 99) (((-3 $ "failed") (-1148 (-282 (-501)))) 88) (((-3 $ "failed") (-1148 (-866 (-346)))) 121) (((-3 $ "failed") (-1148 (-866 (-501)))) 110) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 77) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 66)) (-3490 (($ (-1148 (-282 (-346)))) 95) (($ (-1148 (-282 (-501)))) 84) (($ (-1148 (-866 (-346)))) 117) (($ (-1148 (-866 (-501)))) 106) (($ (-1148 (-375 (-866 (-346))))) 73) (($ (-1148 (-375 (-866 (-501))))) 59)) (-2522 (((-1154) $) 45)) (-3691 (((-786) $) 39) (($ (-578 (-298))) 48) (($ (-298)) 35) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 51) (($ (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) 36)))
-(((-84 |#1|) (-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630))))))) (-1070)) (T -84))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) (-5 *1 (-84 *3)) (-14 *3 (-1070)))))
-(-13 (-408) (-10 -8 (-15 -3691 ($ (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630)))))))
-((-2522 (((-1154) $) 44)) (-3691 (((-786) $) 38) (($ (-1148 (-630))) 88) (($ (-578 (-298))) 29) (($ (-298)) 35) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 32)))
-(((-85 |#1|) (-407) (-1070)) (T -85))
-NIL
-(-407)
-((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 105) (((-3 $ "failed") (-621 (-282 (-501)))) 94) (((-3 $ "failed") (-621 (-866 (-346)))) 127) (((-3 $ "failed") (-621 (-866 (-501)))) 116) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 83) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 72)) (-3490 (($ (-621 (-282 (-346)))) 101) (($ (-621 (-282 (-501)))) 90) (($ (-621 (-866 (-346)))) 123) (($ (-621 (-866 (-501)))) 112) (($ (-621 (-375 (-866 (-346))))) 79) (($ (-621 (-375 (-866 (-501))))) 65)) (-2522 (((-1154) $) 58)) (-3691 (((-786) $) 52) (($ (-578 (-298))) 42) (($ (-298)) 49) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 47) (($ (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630)))) 43)))
-(((-86 |#1|) (-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630))))))) (-1070)) (T -86))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630)))) (-5 *1 (-86 *3)) (-14 *3 (-1070)))))
-(-13 (-353) (-10 -8 (-15 -3691 ($ (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630)))))))
-((-3765 (((-3 $ "failed") (-282 (-346))) 42) (((-3 $ "failed") (-282 (-501))) 47) (((-3 $ "failed") (-866 (-346))) 52) (((-3 $ "failed") (-866 (-501))) 57) (((-3 $ "failed") (-375 (-866 (-346)))) 37) (((-3 $ "failed") (-375 (-866 (-501)))) 32)) (-3490 (($ (-282 (-346))) 40) (($ (-282 (-501))) 45) (($ (-866 (-346))) 50) (($ (-866 (-501))) 55) (($ (-375 (-866 (-346)))) 35) (($ (-375 (-866 (-501)))) 29)) (-2522 (((-1154) $) 88)) (-3691 (((-786) $) 82) (($ (-578 (-298))) 76) (($ (-298)) 79) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 73) (($ (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))) 28)))
-(((-87 |#1|) (-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))))) (-1070)) (T -87))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))) (-5 *1 (-87 *3)) (-14 *3 (-1070)))))
-(-13 (-365) (-10 -8 (-15 -3691 ($ (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))))))
-((-4108 (((-1148 (-621 |#1|)) (-621 |#1|)) 54)) (-1513 (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 (-578 (-839))))) |#2| (-839)) 44)) (-2910 (((-2 (|:| |minor| (-578 (-839))) (|:| -2499 |#2|) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 |#2|))) |#2| (-839)) 62 (|has| |#1| (-331)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -1513 ((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 (-578 (-839))))) |#2| (-839))) (-15 -4108 ((-1148 (-621 |#1|)) (-621 |#1|))) (IF (|has| |#1| (-331)) (-15 -2910 ((-2 (|:| |minor| (-578 (-839))) (|:| -2499 |#2|) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 |#2|))) |#2| (-839))) |noBranch|)) (-508) (-593 |#1|)) (T -88))
-((-2910 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |minor| (-578 (-839))) (|:| -2499 *3) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-839)) (-4 *3 (-593 *5)))) (-4108 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-621 *4)) (-4 *5 (-593 *4)))) (-1513 (*1 *2 *3 *4) (-12 (-4 *5 (-508)) (-5 *2 (-2 (|:| -2978 (-621 *5)) (|:| |vec| (-1148 (-578 (-839)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-839)) (-4 *3 (-593 *5)))))
-(-10 -7 (-15 -1513 ((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 (-578 (-839))))) |#2| (-839))) (-15 -4108 ((-1148 (-621 |#1|)) (-621 |#1|))) (IF (|has| |#1| (-331)) (-15 -2910 ((-2 (|:| |minor| (-578 (-839))) (|:| -2499 |#2|) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 |#2|))) |#2| (-839))) |noBranch|))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2425 ((|#1| $) 35)) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2988 ((|#1| |#1| $) 30)) (-1260 ((|#1| $) 28)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) NIL)) (-4114 (($ |#1| $) 31)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1251 ((|#1| $) 29)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 16)) (-3122 (($) 39)) (-3661 (((-701) $) 26)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 15)) (-3691 (((-786) $) 25 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) NIL)) (-3465 (($ (-578 |#1|)) 37)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 13 (|has| |#1| (-1001)))) (-3581 (((-701) $) 10 (|has| $ (-6 -4167)))))
-(((-89 |#1|) (-13 (-1019 |#1|) (-10 -8 (-15 -3465 ($ (-578 |#1|))))) (-1001)) (T -89))
-((-3465 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-89 *3)))))
-(-13 (-1019 |#1|) (-10 -8 (-15 -3465 ($ (-578 |#1|)))))
-((-3964 (($ $) 10)) (-3967 (($ $) 12)))
-(((-90 |#1|) (-10 -8 (-15 -3967 (|#1| |#1|)) (-15 -3964 (|#1| |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -3967 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)))
-((-3958 (($ $) 11)) (-3952 (($ $) 10)) (-3964 (($ $) 9)) (-3967 (($ $) 8)) (-3961 (($ $) 7)) (-3955 (($ $) 6)))
-(((-91) (-1180)) (T -91))
-((-3958 (*1 *1 *1) (-4 *1 (-91))) (-3952 (*1 *1 *1) (-4 *1 (-91))) (-3964 (*1 *1 *1) (-4 *1 (-91))) (-3967 (*1 *1 *1) (-4 *1 (-91))) (-3961 (*1 *1 *1) (-4 *1 (-91))) (-3955 (*1 *1 *1) (-4 *1 (-91))))
-(-13 (-10 -8 (-15 -3955 ($ $)) (-15 -3961 ($ $)) (-15 -3967 ($ $)) (-15 -3964 ($ $)) (-15 -3952 ($ $)) (-15 -3958 ($ $))))
-((-3736 (((-107) $ $) NIL)) (-3830 (((-346) (-1053) (-346)) 42) (((-346) (-1053) (-1053) (-346)) 41)) (-3335 (((-346) (-346)) 33)) (-3450 (((-1154)) 36)) (-3460 (((-1053) $) NIL)) (-3426 (((-346) (-1053) (-1053)) 46) (((-346) (-1053)) 48)) (-3708 (((-1018) $) NIL)) (-2987 (((-346) (-1053) (-1053)) 47)) (-1766 (((-346) (-1053) (-1053)) 49) (((-346) (-1053)) 50)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-92) (-13 (-1001) (-10 -7 (-15 -3426 ((-346) (-1053) (-1053))) (-15 -3426 ((-346) (-1053))) (-15 -1766 ((-346) (-1053) (-1053))) (-15 -1766 ((-346) (-1053))) (-15 -2987 ((-346) (-1053) (-1053))) (-15 -3450 ((-1154))) (-15 -3335 ((-346) (-346))) (-15 -3830 ((-346) (-1053) (-346))) (-15 -3830 ((-346) (-1053) (-1053) (-346))) (-6 -4167)))) (T -92))
-((-3426 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-1766 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-2987 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) (-3450 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-92)))) (-3335 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-92)))) (-3830 (*1 *2 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-1053)) (-5 *1 (-92)))) (-3830 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-1053)) (-5 *1 (-92)))))
-(-13 (-1001) (-10 -7 (-15 -3426 ((-346) (-1053) (-1053))) (-15 -3426 ((-346) (-1053))) (-15 -1766 ((-346) (-1053) (-1053))) (-15 -1766 ((-346) (-1053))) (-15 -2987 ((-346) (-1053) (-1053))) (-15 -3450 ((-1154))) (-15 -3335 ((-346) (-346))) (-15 -3830 ((-346) (-1053) (-346))) (-15 -3830 ((-346) (-1053) (-1053) (-346))) (-6 -4167)))
-NIL
-(((-93) (-1180)) (T -93))
-NIL
-(-13 (-10 -7 (-6 -4167) (-6 (-4169 "*")) (-6 -4168) (-6 -4164) (-6 -4162) (-6 -4161) (-6 -4160) (-6 -4165) (-6 -4159) (-6 -4158) (-6 -4157) (-6 -4156) (-6 -4155) (-6 -4163) (-6 -4166) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4154)))
-((-3736 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-1572 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-501))) 22)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 14)) (-3708 (((-1018) $) NIL)) (-2007 ((|#1| $ |#1|) 11)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 20)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 8 T CONST)) (-3751 (((-107) $ $) 10)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) 28) (($ $ (-701)) NIL) (($ $ (-501)) 16)) (* (($ $ $) 29)))
-(((-94 |#1|) (-13 (-440) (-256 |#1| |#1|) (-10 -8 (-15 -1572 ($ (-1 |#1| |#1|))) (-15 -1572 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1572 ($ (-1 |#1| |#1| (-501)))))) (-959)) (T -94))
-((-1572 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-94 *3)))) (-1572 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-94 *3)))) (-1572 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-501))) (-4 *3 (-959)) (-5 *1 (-94 *3)))))
-(-13 (-440) (-256 |#1| |#1|) (-10 -8 (-15 -1572 ($ (-1 |#1| |#1|))) (-15 -1572 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1572 ($ (-1 |#1| |#1| (-501))))))
-((-3298 (((-373 |#2|) |#2| (-578 |#2|)) 10) (((-373 |#2|) |#2| |#2|) 11)))
-(((-95 |#1| |#2|) (-10 -7 (-15 -3298 ((-373 |#2|) |#2| |#2|)) (-15 -3298 ((-373 |#2|) |#2| (-578 |#2|)))) (-13 (-419) (-134)) (-1125 |#1|)) (T -95))
-((-3298 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-13 (-419) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-95 *5 *3)))) (-3298 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-419) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -3298 ((-373 |#2|) |#2| |#2|)) (-15 -3298 ((-373 |#2|) |#2| (-578 |#2|))))
-((-3736 (((-107) $ $) 9)))
-(((-96 |#1|) (-10 -8 (-15 -3736 ((-107) |#1| |#1|))) (-97)) (T -96))
-NIL
-(-10 -8 (-15 -3736 ((-107) |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3751 (((-107) $ $) 6)))
-(((-97) (-1180)) (T -97))
-((-3736 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-3751 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
-(-13 (-10 -8 (-15 -3751 ((-107) $ $)) (-15 -3736 ((-107) $ $))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) 13 (|has| $ (-6 -4168)))) (-1896 (($ $ $) NIL (|has| $ (-6 -4168)))) (-2919 (($ $ $) NIL (|has| $ (-6 -4168)))) (-3156 (($ $ (-578 |#1|)) 15)) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 11)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) 17)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2570 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3214 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|)) 35)) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) 10)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) 12)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 9)) (-3122 (($) 16)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3288 (($ (-701) |#1|) 19)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3288 ($ (-701) |#1|)) (-15 -3156 ($ $ (-578 |#1|))) (-15 -2570 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2570 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3214 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3214 ($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|))))) (-1001)) (T -98))
-((-3288 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *1 (-98 *3)) (-4 *3 (-1001)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-98 *3)))) (-2570 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1001)))) (-2570 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-98 *3)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1001)) (-5 *1 (-98 *2)))) (-3214 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-578 *2) *2 *2 *2)) (-4 *2 (-1001)) (-5 *1 (-98 *2)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3288 ($ (-701) |#1|)) (-15 -3156 ($ $ (-578 |#1|))) (-15 -2570 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2570 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3214 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3214 ($ $ |#1| (-1 (-578 |#1|) |#1| |#1| |#1|)))))
-((-3302 ((|#3| |#2| |#2|) 28)) (-1767 ((|#1| |#2| |#2|) 36 (|has| |#1| (-6 (-4169 "*"))))) (-3425 ((|#3| |#2| |#2|) 29)) (-3807 ((|#1| |#2|) 40 (|has| |#1| (-6 (-4169 "*"))))))
-(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3302 (|#3| |#2| |#2|)) (-15 -3425 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4169 "*"))) (PROGN (-15 -1767 (|#1| |#2| |#2|)) (-15 -3807 (|#1| |#2|))) |noBranch|)) (-959) (-1125 |#1|) (-618 |#1| |#4| |#5|) (-340 |#1|) (-340 |#1|)) (T -99))
-((-3807 (*1 *2 *3) (-12 (|has| *2 (-6 (-4169 "*"))) (-4 *5 (-340 *2)) (-4 *6 (-340 *2)) (-4 *2 (-959)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1125 *2)) (-4 *4 (-618 *2 *5 *6)))) (-1767 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4169 "*"))) (-4 *5 (-340 *2)) (-4 *6 (-340 *2)) (-4 *2 (-959)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1125 *2)) (-4 *4 (-618 *2 *5 *6)))) (-3425 (*1 *2 *3 *3) (-12 (-4 *4 (-959)) (-4 *2 (-618 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1125 *4)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)))) (-3302 (*1 *2 *3 *3) (-12 (-4 *4 (-959)) (-4 *2 (-618 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1125 *4)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)))))
-(-10 -7 (-15 -3302 (|#3| |#2| |#2|)) (-15 -3425 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4169 "*"))) (PROGN (-15 -1767 (|#1| |#2| |#2|)) (-15 -3807 (|#1| |#2|))) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3974 (((-578 (-1070))) 32)) (-2943 (((-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199)))) (-1070)) 35)) (-3751 (((-107) $ $) NIL)))
-(((-100) (-13 (-1001) (-10 -7 (-15 -3974 ((-578 (-1070)))) (-15 -2943 ((-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199)))) (-1070))) (-6 -4167)))) (T -100))
-((-3974 (*1 *2) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-100)))) (-2943 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199))))) (-5 *1 (-100)))))
-(-13 (-1001) (-10 -7 (-15 -3974 ((-578 (-1070)))) (-15 -2943 ((-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199)))) (-1070))) (-6 -4167)))
-((-2866 (($ (-578 |#2|)) 11)))
-(((-101 |#1| |#2|) (-10 -8 (-15 -2866 (|#1| (-578 |#2|)))) (-102 |#2|) (-1104)) (T -101))
-NIL
-(-10 -8 (-15 -2866 (|#1| (-578 |#2|))))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-102 |#1|) (-1180) (-1104)) (T -102))
-((-2866 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-102 *3)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104)))) (-4114 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104)))) (-1328 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104)))))
-(-13 (-454 |t#1|) (-10 -8 (-6 -4168) (-15 -2866 ($ (-578 |t#1|))) (-15 -1251 (|t#1| $)) (-15 -4114 ($ |t#1| $)) (-15 -1328 (|t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-501) $) NIL (|has| (-501) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-501) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-501) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-501) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-501) (-950 (-501))))) (-3490 (((-501) $) NIL) (((-1070) $) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-501) (-950 (-501)))) (((-501) $) NIL (|has| (-501) (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-501) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-501) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-501) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-501) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-501) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-501) (-1046)))) (-4067 (((-107) $) NIL (|has| (-501) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-501) (-777)))) (-1212 (($ (-1 (-501) (-501)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-501) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-501) (-276))) (((-375 (-501)) $) NIL)) (-3383 (((-501) $) NIL (|has| (-501) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-501)) (-578 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-501) (-501)) NIL (|has| (-501) (-278 (-501)))) (($ $ (-262 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-262 (-501)))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-1070)) (-578 (-501))) NIL (|has| (-501) (-476 (-1070) (-501)))) (($ $ (-1070) (-501)) NIL (|has| (-501) (-476 (-1070) (-501))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-501)) NIL (|has| (-501) (-256 (-501) (-501))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-501) $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| (-501) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-501) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-501) (-556 (-490)))) (((-346) $) NIL (|has| (-501) (-933))) (((-199) $) NIL (|has| (-501) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-501) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 7) (($ (-501)) NIL) (($ (-1070)) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL) (((-918 2) $) 9)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-501) (-830))) (|has| (-501) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-501) $) NIL (|has| (-501) (-500)))) (-2406 (($ (-375 (-501))) 8)) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-501) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3803 (($ $ $) NIL) (($ (-501) (-501)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-501) $) NIL) (($ $ (-501)) NIL)))
-(((-103) (-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 2) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -2406 ($ (-375 (-501))))))) (T -103))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-918 2)) (-5 *1 (-103)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) (-2406 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))))
-(-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 2) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -2406 ($ (-375 (-501))))))
-((-3736 (((-107) $ $) NIL)) (-2186 (((-1018) $ (-1018)) 23)) (-1998 (($ $ (-1053)) 17)) (-1225 (((-3 (-1018) "failed") $) 22)) (-3505 (((-1018) $) 20)) (-3197 (((-1018) $ (-1018)) 25)) (-1934 (((-1018) $) 24)) (-2342 (($ (-356)) NIL) (($ (-356) (-1053)) 16)) (-3986 (((-356) $) NIL)) (-3460 (((-1053) $) NIL)) (-3947 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3371 (($ $) 18)) (-3751 (((-107) $ $) NIL)))
-(((-104) (-13 (-333 (-356) (-1018)) (-10 -8 (-15 -1225 ((-3 (-1018) "failed") $)) (-15 -1934 ((-1018) $)) (-15 -3197 ((-1018) $ (-1018)))))) (T -104))
-((-1225 (*1 *2 *1) (|partial| -12 (-5 *2 (-1018)) (-5 *1 (-104)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-104)))) (-3197 (*1 *2 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-104)))))
-(-13 (-333 (-356) (-1018)) (-10 -8 (-15 -1225 ((-3 (-1018) "failed") $)) (-15 -1934 ((-1018) $)) (-15 -3197 ((-1018) $ (-1018)))))
-((-3736 (((-107) $ $) NIL)) (-2308 (($ $) NIL)) (-1950 (($ $ $) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| (-107) (-777))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-107) (-777)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4168)))) (-2861 (($ $) NIL (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-107) $ (-1116 (-501)) (-107)) NIL (|has| $ (-6 -4168))) (((-107) $ (-501) (-107)) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-1526 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-3547 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-2156 (((-107) $ (-501) (-107)) NIL (|has| $ (-6 -4168)))) (-1905 (((-107) $ (-501)) NIL)) (-1934 (((-501) (-107) $ (-501)) NIL (|has| (-107) (-1001))) (((-501) (-107) $) NIL (|has| (-107) (-1001))) (((-501) (-1 (-107) (-107)) $) NIL)) (-2732 (((-578 (-107)) $) NIL (|has| $ (-6 -4167)))) (-4057 (($ $ $) NIL)) (-3031 (($ $) NIL)) (-3134 (($ $ $) NIL)) (-3634 (($ (-701) (-107)) 8)) (-1969 (($ $ $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL)) (-3216 (($ $ $) NIL (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-3380 (((-578 (-107)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL)) (-2519 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ (-107) $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-107) $) NIL (|has| (-501) (-777)))) (-2520 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-3084 (($ $ (-107)) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-107)) (-578 (-107))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-262 (-107))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-578 (-262 (-107)))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-4137 (((-578 (-107)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (($ $ (-1116 (-501))) NIL) (((-107) $ (-501)) NIL) (((-107) $ (-501) (-107)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-3713 (((-701) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001)))) (((-701) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-107) (-556 (-490))))) (-3699 (($ (-578 (-107))) NIL)) (-3934 (($ (-578 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-3691 (((-786) $) NIL)) (-2751 (($ (-701) (-107)) 9)) (-1200 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-1280 (($ $ $) NIL)) (-3948 (($ $) NIL)) (-3099 (($ $ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3092 (($ $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-105) (-13 (-118) (-10 -8 (-15 -2751 ($ (-701) (-107)))))) (T -105))
-((-2751 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-107)) (-5 *1 (-105)))))
-(-13 (-118) (-10 -8 (-15 -2751 ($ (-701) (-107)))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 24) (($ $ |#2|) 27)))
-(((-106 |#1| |#2|) (-1180) (-959) (-959)) (T -106))
-NIL
-(-13 (-583 |t#1|) (-964 |t#2|) (-10 -7 (-6 -4162) (-6 -4161)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-964 |#2|) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-2308 (($ $) 12)) (-1950 (($ $ $) 17)) (-2212 (($) 8 T CONST)) (-3748 (((-107) $) 7)) (-3796 (((-701)) 24)) (-2890 (($) 30)) (-4057 (($ $ $) 15)) (-3031 (($ $) 10)) (-3134 (($ $ $) 18)) (-1969 (($ $ $) 19)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3104 (((-839) $) 29)) (-3460 (((-1053) $) NIL)) (-3506 (($ (-839)) 28)) (-3229 (($ $ $) 21)) (-3708 (((-1018) $) NIL)) (-3667 (($) 9 T CONST)) (-1248 (((-490) $) 36)) (-3691 (((-786) $) 39)) (-1280 (($ $ $) 13)) (-3948 (($ $) 11)) (-3099 (($ $ $) 16)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 20)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 22)) (-3092 (($ $ $) 14)))
-(((-107) (-13 (-777) (-336) (-597) (-556 (-490)) (-10 -8 (-15 -2212 ($) -3897) (-15 -3667 ($) -3897) (-15 -3948 ($ $)) (-15 -3031 ($ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -1969 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -3229 ($ $ $)) (-15 -3748 ((-107) $))))) (T -107))
-((-2212 (*1 *1) (-5 *1 (-107))) (-3667 (*1 *1) (-5 *1 (-107))) (-3948 (*1 *1 *1) (-5 *1 (-107))) (-3031 (*1 *1 *1) (-5 *1 (-107))) (-1280 (*1 *1 *1 *1) (-5 *1 (-107))) (-4057 (*1 *1 *1 *1) (-5 *1 (-107))) (-1950 (*1 *1 *1 *1) (-5 *1 (-107))) (-1969 (*1 *1 *1 *1) (-5 *1 (-107))) (-3134 (*1 *1 *1 *1) (-5 *1 (-107))) (-3229 (*1 *1 *1 *1) (-5 *1 (-107))) (-3748 (*1 *1 *1) (-5 *1 (-107))))
-(-13 (-777) (-336) (-597) (-556 (-490)) (-10 -8 (-15 -2212 ($) -3897) (-15 -3667 ($) -3897) (-15 -3948 ($ $)) (-15 -3031 ($ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -1969 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -3229 ($ $ $)) (-15 -3748 ((-107) $))))
-((-3736 (((-107) $ $) NIL)) (-1506 (((-701) $) 68) (($ $ (-701)) 30)) (-3342 (((-107) $) 32)) (-2271 (($ $ (-1053) (-703)) 26)) (-2882 (($ $ (-44 (-1053) (-703))) 13)) (-3866 (((-3 (-703) "failed") $ (-1053)) 24)) (-2944 (((-44 (-1053) (-703)) $) 12)) (-1853 (($ (-1070)) 15) (($ (-1070) (-701)) 20)) (-1402 (((-107) $) 31)) (-2564 (((-107) $) 33)) (-3986 (((-1070) $) 8)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3109 (((-107) $ (-1070)) 10)) (-2258 (($ $ (-1 (-490) (-578 (-490)))) 50) (((-3 (-1 (-490) (-578 (-490))) "failed") $) 54)) (-3708 (((-1018) $) NIL)) (-4099 (((-107) $ (-1053)) 29)) (-2809 (($ $ (-1 (-107) $ $)) 35)) (-2125 (((-3 (-1 (-786) (-578 (-786))) "failed") $) 52) (($ $ (-1 (-786) (-578 (-786)))) 41) (($ $ (-1 (-786) (-786))) 43)) (-3325 (($ $ (-1053)) 45)) (-3764 (($ $) 61)) (-1344 (($ $ (-1 (-107) $ $)) 36)) (-3691 (((-786) $) 48)) (-2402 (($ $ (-1053)) 27)) (-2229 (((-3 (-701) "failed") $) 56)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 67)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 72)))
-(((-108) (-13 (-777) (-10 -8 (-15 -3986 ((-1070) $)) (-15 -2944 ((-44 (-1053) (-703)) $)) (-15 -3764 ($ $)) (-15 -1853 ($ (-1070))) (-15 -1853 ($ (-1070) (-701))) (-15 -2229 ((-3 (-701) "failed") $)) (-15 -1402 ((-107) $)) (-15 -3342 ((-107) $)) (-15 -2564 ((-107) $)) (-15 -1506 ((-701) $)) (-15 -1506 ($ $ (-701))) (-15 -2809 ($ $ (-1 (-107) $ $))) (-15 -1344 ($ $ (-1 (-107) $ $))) (-15 -2125 ((-3 (-1 (-786) (-578 (-786))) "failed") $)) (-15 -2125 ($ $ (-1 (-786) (-578 (-786))))) (-15 -2125 ($ $ (-1 (-786) (-786)))) (-15 -2258 ($ $ (-1 (-490) (-578 (-490))))) (-15 -2258 ((-3 (-1 (-490) (-578 (-490))) "failed") $)) (-15 -3109 ((-107) $ (-1070))) (-15 -4099 ((-107) $ (-1053))) (-15 -2402 ($ $ (-1053))) (-15 -3325 ($ $ (-1053))) (-15 -3866 ((-3 (-703) "failed") $ (-1053))) (-15 -2271 ($ $ (-1053) (-703))) (-15 -2882 ($ $ (-44 (-1053) (-703))))))) (T -108))
-((-3986 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) (-2944 (*1 *2 *1) (-12 (-5 *2 (-44 (-1053) (-703))) (-5 *1 (-108)))) (-3764 (*1 *1 *1) (-5 *1 (-108))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) (-1853 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *1 (-108)))) (-2229 (*1 *2 *1) (|partial| -12 (-5 *2 (-701)) (-5 *1 (-108)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108)))) (-1506 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-108)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-108)))) (-2809 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-108) (-108))) (-5 *1 (-108)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-108) (-108))) (-5 *1 (-108)))) (-2125 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-786) (-578 (-786)))) (-5 *1 (-108)))) (-2125 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-786) (-578 (-786)))) (-5 *1 (-108)))) (-2125 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-786) (-786))) (-5 *1 (-108)))) (-2258 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-490) (-578 (-490)))) (-5 *1 (-108)))) (-2258 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-490) (-578 (-490)))) (-5 *1 (-108)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-107)) (-5 *1 (-108)))) (-4099 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-108)))) (-2402 (*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-108)))) (-3325 (*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-108)))) (-3866 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1053)) (-5 *2 (-703)) (-5 *1 (-108)))) (-2271 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-703)) (-5 *1 (-108)))) (-2882 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1053) (-703))) (-5 *1 (-108)))))
-(-13 (-777) (-10 -8 (-15 -3986 ((-1070) $)) (-15 -2944 ((-44 (-1053) (-703)) $)) (-15 -3764 ($ $)) (-15 -1853 ($ (-1070))) (-15 -1853 ($ (-1070) (-701))) (-15 -2229 ((-3 (-701) "failed") $)) (-15 -1402 ((-107) $)) (-15 -3342 ((-107) $)) (-15 -2564 ((-107) $)) (-15 -1506 ((-701) $)) (-15 -1506 ($ $ (-701))) (-15 -2809 ($ $ (-1 (-107) $ $))) (-15 -1344 ($ $ (-1 (-107) $ $))) (-15 -2125 ((-3 (-1 (-786) (-578 (-786))) "failed") $)) (-15 -2125 ($ $ (-1 (-786) (-578 (-786))))) (-15 -2125 ($ $ (-1 (-786) (-786)))) (-15 -2258 ($ $ (-1 (-490) (-578 (-490))))) (-15 -2258 ((-3 (-1 (-490) (-578 (-490))) "failed") $)) (-15 -3109 ((-107) $ (-1070))) (-15 -4099 ((-107) $ (-1053))) (-15 -2402 ($ $ (-1053))) (-15 -3325 ($ $ (-1053))) (-15 -3866 ((-3 (-703) "failed") $ (-1053))) (-15 -2271 ($ $ (-1053) (-703))) (-15 -2882 ($ $ (-44 (-1053) (-703))))))
-((-3508 (((-3 (-1 |#1| (-578 |#1|)) "failed") (-108)) 18) (((-108) (-108) (-1 |#1| |#1|)) 13) (((-108) (-108) (-1 |#1| (-578 |#1|))) 11) (((-3 |#1| "failed") (-108) (-578 |#1|)) 20)) (-2773 (((-3 (-578 (-1 |#1| (-578 |#1|))) "failed") (-108)) 24) (((-108) (-108) (-1 |#1| |#1|)) 30) (((-108) (-108) (-578 (-1 |#1| (-578 |#1|)))) 26)) (-3098 (((-108) |#1|) 53 (|has| |#1| (-777)))) (-2146 (((-3 |#1| "failed") (-108)) 48 (|has| |#1| (-777)))))
-(((-109 |#1|) (-10 -7 (-15 -3508 ((-3 |#1| "failed") (-108) (-578 |#1|))) (-15 -3508 ((-108) (-108) (-1 |#1| (-578 |#1|)))) (-15 -3508 ((-108) (-108) (-1 |#1| |#1|))) (-15 -3508 ((-3 (-1 |#1| (-578 |#1|)) "failed") (-108))) (-15 -2773 ((-108) (-108) (-578 (-1 |#1| (-578 |#1|))))) (-15 -2773 ((-108) (-108) (-1 |#1| |#1|))) (-15 -2773 ((-3 (-578 (-1 |#1| (-578 |#1|))) "failed") (-108))) (IF (|has| |#1| (-777)) (PROGN (-15 -3098 ((-108) |#1|)) (-15 -2146 ((-3 |#1| "failed") (-108)))) |noBranch|)) (-1001)) (T -109))
-((-2146 (*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-4 *2 (-1001)) (-4 *2 (-777)) (-5 *1 (-109 *2)))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-109 *3)) (-4 *3 (-777)) (-4 *3 (-1001)))) (-2773 (*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-578 (-1 *4 (-578 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1001)))) (-2773 (*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) (-2773 (*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 (-1 *4 (-578 *4)))) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) (-3508 (*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-1 *4 (-578 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1001)))) (-3508 (*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) (-3508 (*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 (-578 *4))) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) (-3508 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-578 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1001)))))
-(-10 -7 (-15 -3508 ((-3 |#1| "failed") (-108) (-578 |#1|))) (-15 -3508 ((-108) (-108) (-1 |#1| (-578 |#1|)))) (-15 -3508 ((-108) (-108) (-1 |#1| |#1|))) (-15 -3508 ((-3 (-1 |#1| (-578 |#1|)) "failed") (-108))) (-15 -2773 ((-108) (-108) (-578 (-1 |#1| (-578 |#1|))))) (-15 -2773 ((-108) (-108) (-1 |#1| |#1|))) (-15 -2773 ((-3 (-578 (-1 |#1| (-578 |#1|))) "failed") (-108))) (IF (|has| |#1| (-777)) (PROGN (-15 -3098 ((-108) |#1|)) (-15 -2146 ((-3 |#1| "failed") (-108)))) |noBranch|))
-((-4069 (((-501) |#2|) 36)))
-(((-110 |#1| |#2|) (-10 -7 (-15 -4069 ((-501) |#2|))) (-13 (-331) (-950 (-375 (-501)))) (-1125 |#1|)) (T -110))
-((-4069 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-950 (-375 *2)))) (-5 *2 (-501)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -4069 ((-501) |#2|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ (-501)) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2833 (($ (-1064 (-501)) (-501)) NIL)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1529 (($ $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-3169 (((-701) $) NIL)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 (((-501)) NIL)) (-2443 (((-501) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3718 (($ $ (-501)) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3960 (((-1048 (-501)) $) NIL)) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-2391 (((-501) $ (-501)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL)))
-(((-111 |#1|) (-792 |#1|) (-501)) (T -111))
-NIL
-(-792 |#1|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-111 |#1|) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-111 |#1|) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-111 |#1|) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-111 |#1|) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-111 |#1|) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-111 |#1|) (-950 (-501))))) (-3490 (((-111 |#1|) $) NIL) (((-1070) $) NIL (|has| (-111 |#1|) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-111 |#1|) (-950 (-501)))) (((-501) $) NIL (|has| (-111 |#1|) (-950 (-501))))) (-1574 (($ $) NIL) (($ (-501) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-111 |#1|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-111 |#1|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-111 |#1|))) (|:| |vec| (-1148 (-111 |#1|)))) (-621 $) (-1148 $)) NIL) (((-621 (-111 |#1|)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-111 |#1|) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-111 |#1|) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-111 |#1|) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-111 |#1|) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-111 |#1|) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1046)))) (-4067 (((-107) $) NIL (|has| (-111 |#1|) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-111 |#1|) (-777)))) (-1323 (($ $ $) NIL (|has| (-111 |#1|) (-777)))) (-1212 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-111 |#1|) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-111 |#1|) (-276)))) (-3383 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-111 |#1|) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-111 |#1|) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-111 |#1|)) (-578 (-111 |#1|))) NIL (|has| (-111 |#1|) (-278 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-278 (-111 |#1|)))) (($ $ (-262 (-111 |#1|))) NIL (|has| (-111 |#1|) (-278 (-111 |#1|)))) (($ $ (-578 (-262 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-278 (-111 |#1|)))) (($ $ (-578 (-1070)) (-578 (-111 |#1|))) NIL (|has| (-111 |#1|) (-476 (-1070) (-111 |#1|)))) (($ $ (-1070) (-111 |#1|)) NIL (|has| (-111 |#1|) (-476 (-1070) (-111 |#1|))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-256 (-111 |#1|) (-111 |#1|))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-111 |#1|) (-206))) (($ $ (-701)) NIL (|has| (-111 |#1|) (-206))) (($ $ (-1070)) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-701)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-111 |#1|) $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| (-111 |#1|) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-111 |#1|) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-111 |#1|) (-556 (-490)))) (((-346) $) NIL (|has| (-111 |#1|) (-933))) (((-199) $) NIL (|has| (-111 |#1|) (-933)))) (-2672 (((-157 (-375 (-501))) $) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-111 |#1|)) NIL) (($ (-1070)) NIL (|has| (-111 |#1|) (-950 (-1070))))) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-830))) (|has| (-111 |#1|) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-500)))) (-2442 (((-107) $ $) NIL)) (-2391 (((-375 (-501)) $ (-501)) NIL)) (-1720 (($ $) NIL (|has| (-111 |#1|) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-111 |#1|) (-206))) (($ $ (-701)) NIL (|has| (-111 |#1|) (-206))) (($ $ (-1070)) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-111 |#1|) (-820 (-1070)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-701)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-111 |#1|) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-111 |#1|) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-111 |#1|) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-111 |#1|) (-777)))) (-3803 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL)))
-(((-112 |#1|) (-13 (-906 (-111 |#1|)) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)))) (-501)) (T -112))
-((-2391 (*1 *2 *1 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-501)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-112 *3)) (-14 *3 (-501)))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-501)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-112 *3)) (-14 *3 *2))))
-(-13 (-906 (-111 |#1|)) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $))))
-((-3754 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3604 (((-578 $) $) 27)) (-3201 (((-107) $ $) 32)) (-2211 (((-107) |#2| $) 36)) (-3386 (((-578 |#2|) $) 22)) (-2341 (((-107) $) 16)) (-2007 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2622 (((-107) $) 45)) (-3691 (((-786) $) 41)) (-1961 (((-578 $) $) 28)) (-3751 (((-107) $ $) 34)) (-3581 (((-701) $) 43)))
-(((-113 |#1| |#2|) (-10 -8 (-15 -3754 (|#1| |#1| "right" |#1|)) (-15 -3754 (|#1| |#1| "left" |#1|)) (-15 -2007 (|#1| |#1| "right")) (-15 -2007 (|#1| |#1| "left")) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -3201 ((-107) |#1| |#1|)) (-15 -3386 ((-578 |#2|) |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3581 ((-701) |#1|))) (-114 |#2|) (-1104)) (T -113))
-NIL
-(-10 -8 (-15 -3754 (|#1| |#1| "right" |#1|)) (-15 -3754 (|#1| |#1| "left" |#1|)) (-15 -2007 (|#1| |#1| "right")) (-15 -2007 (|#1| |#1| "left")) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -3201 ((-107) |#1| |#1|)) (-15 -3386 ((-578 |#2|) |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3581 ((-701) |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-1896 (($ $ $) 52 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 54 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) (($ $ "left" $) 55 (|has| $ (-6 -4168))) (($ $ "right" $) 53 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-1320 (($ $) 57)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-1313 (($ $) 59)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-114 |#1|) (-1180) (-1104)) (T -114))
-((-1313 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1104)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1104)))) (-1320 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1104)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1104)))) (-3754 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4168)) (-4 *1 (-114 *3)) (-4 *3 (-1104)))) (-2919 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-114 *2)) (-4 *2 (-1104)))) (-3754 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4168)) (-4 *1 (-114 *3)) (-4 *3 (-1104)))) (-1896 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-114 *2)) (-4 *2 (-1104)))))
-(-13 (-924 |t#1|) (-10 -8 (-15 -1313 ($ $)) (-15 -2007 ($ $ "left")) (-15 -1320 ($ $)) (-15 -2007 ($ $ "right")) (IF (|has| $ (-6 -4168)) (PROGN (-15 -3754 ($ $ "left" $)) (-15 -2919 ($ $ $)) (-15 -3754 ($ $ "right" $)) (-15 -1896 ($ $ $))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-2421 (((-107) |#1|) 24)) (-1263 (((-701) (-701)) 23) (((-701)) 22)) (-2376 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26)))
-(((-115 |#1|) (-10 -7 (-15 -2376 ((-107) |#1|)) (-15 -2376 ((-107) |#1| (-107))) (-15 -1263 ((-701))) (-15 -1263 ((-701) (-701))) (-15 -2421 ((-107) |#1|))) (-1125 (-501))) (T -115))
-((-2421 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) (-1263 (*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) (-1263 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) (-2376 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) (-2376 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))))
-(-10 -7 (-15 -2376 ((-107) |#1|)) (-15 -2376 ((-107) |#1| (-107))) (-15 -1263 ((-701))) (-15 -1263 ((-701) (-701))) (-15 -2421 ((-107) |#1|)))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 15)) (-3205 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-1896 (($ $ $) 18 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 20 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 17)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) 23)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) 19)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-2964 (($ |#1| $) 24)) (-4114 (($ |#1| $) 10)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 14)) (-3122 (($) 8)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3510 (($ (-578 |#1|)) 12)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -3510 ($ (-578 |#1|))) (-15 -4114 ($ |#1| $)) (-15 -2964 ($ |#1| $)) (-15 -3205 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-777)) (T -116))
-((-3510 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-116 *3)))) (-4114 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-777)))) (-2964 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-777)))) (-3205 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-777)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -3510 ($ (-578 |#1|))) (-15 -4114 ($ |#1| $)) (-15 -2964 ($ |#1| $)) (-15 -3205 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2308 (($ $) 14)) (-3031 (($ $) 11)) (-3134 (($ $ $) 24)) (-1969 (($ $ $) 22)) (-3948 (($ $) 12)) (-3099 (($ $ $) 20)) (-3092 (($ $ $) 18)))
-(((-117 |#1|) (-10 -8 (-15 -3134 (|#1| |#1| |#1|)) (-15 -1969 (|#1| |#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|))) (-118)) (T -117))
-NIL
-(-10 -8 (-15 -3134 (|#1| |#1| |#1|)) (-15 -1969 (|#1| |#1| |#1|)) (-15 -3948 (|#1| |#1|)) (-15 -3031 (|#1| |#1|)) (-15 -2308 (|#1| |#1|)) (-15 -3092 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-2308 (($ $) 104)) (-1950 (($ $ $) 25)) (-1991 (((-1154) $ (-501) (-501)) 67 (|has| $ (-6 -4168)))) (-2045 (((-107) $) 99 (|has| (-107) (-777))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-3441 (($ $) 103 (-12 (|has| (-107) (-777)) (|has| $ (-6 -4168)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4168)))) (-2861 (($ $) 98 (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-2997 (((-107) $ (-701)) 38)) (-3754 (((-107) $ (-1116 (-501)) (-107)) 89 (|has| $ (-6 -4168))) (((-107) $ (-501) (-107)) 55 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4167)))) (-2540 (($) 39 T CONST)) (-1375 (($ $) 101 (|has| $ (-6 -4168)))) (-3785 (($ $) 91)) (-2673 (($ $) 69 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4167))) (($ (-107) $) 70 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167))))) (-3547 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167))))) (-2156 (((-107) $ (-501) (-107)) 54 (|has| $ (-6 -4168)))) (-1905 (((-107) $ (-501)) 56)) (-1934 (((-501) (-107) $ (-501)) 96 (|has| (-107) (-1001))) (((-501) (-107) $) 95 (|has| (-107) (-1001))) (((-501) (-1 (-107) (-107)) $) 94)) (-2732 (((-578 (-107)) $) 46 (|has| $ (-6 -4167)))) (-4057 (($ $ $) 26)) (-3031 (($ $) 31)) (-3134 (($ $ $) 28)) (-3634 (($ (-701) (-107)) 78)) (-1969 (($ $ $) 29)) (-3379 (((-107) $ (-701)) 37)) (-3627 (((-501) $) 64 (|has| (-501) (-777)))) (-4111 (($ $ $) 13)) (-3216 (($ $ $) 97 (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-3380 (((-578 (-107)) $) 47 (|has| $ (-6 -4167)))) (-2211 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 63 (|has| (-501) (-777)))) (-1323 (($ $ $) 14)) (-2519 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-3155 (((-107) $ (-701)) 36)) (-3460 (((-1053) $) 9)) (-1473 (($ $ $ (-501)) 88) (($ (-107) $ (-501)) 87)) (-2658 (((-578 (-501)) $) 61)) (-2852 (((-107) (-501) $) 60)) (-3708 (((-1018) $) 10)) (-1190 (((-107) $) 65 (|has| (-501) (-777)))) (-2520 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-3084 (($ $ (-107)) 66 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-107)) (-578 (-107))) 53 (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-262 (-107))) 51 (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-578 (-262 (-107)))) 50 (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))))) (-1262 (((-107) $ $) 32)) (-2845 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-4137 (((-578 (-107)) $) 59)) (-1407 (((-107) $) 35)) (-3122 (($) 34)) (-2007 (($ $ (-1116 (-501))) 84) (((-107) $ (-501)) 58) (((-107) $ (-501) (-107)) 57)) (-1468 (($ $ (-1116 (-501))) 86) (($ $ (-501)) 85)) (-3713 (((-701) (-107) $) 48 (-12 (|has| (-107) (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) 100 (|has| $ (-6 -4168)))) (-3764 (($ $) 33)) (-1248 (((-490) $) 68 (|has| (-107) (-556 (-490))))) (-3699 (($ (-578 (-107))) 77)) (-3934 (($ (-578 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-3691 (((-786) $) 11)) (-1200 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4167)))) (-1280 (($ $ $) 27)) (-3948 (($ $) 30)) (-3099 (($ $ $) 106)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3092 (($ $ $) 105)) (-3581 (((-701) $) 40 (|has| $ (-6 -4167)))))
-(((-118) (-1180)) (T -118))
-((-3031 (*1 *1 *1) (-4 *1 (-118))) (-3948 (*1 *1 *1) (-4 *1 (-118))) (-1969 (*1 *1 *1 *1) (-4 *1 (-118))) (-3134 (*1 *1 *1 *1) (-4 *1 (-118))) (-1280 (*1 *1 *1 *1) (-4 *1 (-118))) (-4057 (*1 *1 *1 *1) (-4 *1 (-118))) (-1950 (*1 *1 *1 *1) (-4 *1 (-118))))
-(-13 (-777) (-597) (-19 (-107)) (-10 -8 (-15 -3031 ($ $)) (-15 -3948 ($ $)) (-15 -1969 ($ $ $)) (-15 -3134 ($ $ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -1950 ($ $ $))))
-(((-33) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 (-107)) . T) ((-556 (-490)) |has| (-107) (-556 (-490))) ((-256 (-501) (-107)) . T) ((-258 (-501) (-107)) . T) ((-278 (-107)) -12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))) ((-340 (-107)) . T) ((-454 (-107)) . T) ((-548 (-501) (-107)) . T) ((-476 (-107) (-107)) -12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))) ((-586 (-107)) . T) ((-597) . T) ((-19 (-107)) . T) ((-777) . T) ((-1001) . T) ((-1104) . T))
-((-2519 (($ (-1 |#2| |#2|) $) 22)) (-3764 (($ $) 16)) (-3581 (((-701) $) 24)))
-(((-119 |#1| |#2|) (-10 -8 (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -3764 (|#1| |#1|))) (-120 |#2|) (-1001)) (T -119))
-NIL
-(-10 -8 (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -3764 (|#1| |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-1896 (($ $ $) 52 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 54 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) (($ $ "left" $) 55 (|has| $ (-6 -4168))) (($ $ "right" $) 53 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-1320 (($ $) 57)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) 60)) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-1313 (($ $) 59)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-120 |#1|) (-1180) (-1001)) (T -120))
-((-4072 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1001)))))
-(-13 (-114 |t#1|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -4072 ($ $ |t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-114 |#1|) . T) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 15)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) 19 (|has| $ (-6 -4168)))) (-1896 (($ $ $) 20 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 18 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 21)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4114 (($ |#1| $) 10)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 14)) (-3122 (($) 8)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 17)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2388 (($ (-578 |#1|)) 12)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4168) (-15 -2388 ($ (-578 |#1|))) (-15 -4114 ($ |#1| $)))) (-777)) (T -121))
-((-2388 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-121 *3)))) (-4114 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-777)))))
-(-13 (-120 |#1|) (-10 -8 (-6 -4168) (-15 -2388 ($ (-578 |#1|))) (-15 -4114 ($ |#1| $))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 24)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) 26 (|has| $ (-6 -4168)))) (-1896 (($ $ $) 30 (|has| $ (-6 -4168)))) (-2919 (($ $ $) 28 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 20)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4072 (($ $ |#1| $) 15)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) 19)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) 21)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 18)) (-3122 (($) 11)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2136 (($ |#1|) 17) (($ $ |#1| $) 16)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 10 (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -2136 ($ |#1|)) (-15 -2136 ($ $ |#1| $)))) (-1001)) (T -122))
-((-2136 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1001)))) (-2136 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1001)))))
-(-13 (-120 |#1|) (-10 -8 (-15 -2136 ($ |#1|)) (-15 -2136 ($ $ |#1| $))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15)))
-(((-123) (-1180)) (T -123))
-((-3177 (*1 *1 *1 *1) (|partial| -4 *1 (-123))))
-(-13 (-23) (-10 -8 (-15 -3177 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3736 (((-107) $ $) 7)) (-3782 (((-1154) $ (-701)) 19)) (-1934 (((-701) $) 20)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)))
-(((-124) (-1180)) (T -124))
-((-1934 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-701)))) (-3782 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-701)) (-5 *2 (-1154)))))
-(-13 (-777) (-10 -8 (-15 -1934 ((-701) $)) (-15 -3782 ((-1154) $ (-701)))))
-(((-97) . T) ((-555 (-786)) . T) ((-777) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-701) "failed") $) 38)) (-3490 (((-701) $) 36)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) 26)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3107 (((-107)) 39)) (-1970 (((-107) (-107)) 41)) (-3101 (((-107) $) 23)) (-3714 (((-107) $) 35)) (-3691 (((-786) $) 22) (($ (-701)) 14)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 12 T CONST)) (-1925 (($) 11 T CONST)) (-2430 (($ (-701)) 15)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 24)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 25)) (-3797 (((-3 $ "failed") $ $) 29)) (-3790 (($ $ $) 27)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL) (($ $ $) 34)) (* (($ (-701) $) 32) (($ (-839) $) NIL) (($ $ $) 30)))
-(((-125) (-13 (-777) (-23) (-657) (-950 (-701)) (-10 -8 (-6 (-4169 "*")) (-15 -3797 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2430 ($ (-701))) (-15 -3101 ((-107) $)) (-15 -3714 ((-107) $)) (-15 -3107 ((-107))) (-15 -1970 ((-107) (-107)))))) (T -125))
-((-3797 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-125)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-3107 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1970 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(-13 (-777) (-23) (-657) (-950 (-701)) (-10 -8 (-6 (-4169 "*")) (-15 -3797 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2430 ($ (-701))) (-15 -3101 ((-107) $)) (-15 -3714 ((-107) $)) (-15 -3107 ((-107))) (-15 -1970 ((-107) (-107)))))
-((-3736 (((-107) $ $) NIL)) (-2848 (($ (-578 |#3|)) 38)) (-2676 (($ $) 97) (($ $ (-501) (-501)) 96)) (-2540 (($) 17)) (-3765 (((-3 |#3| "failed") $) 58)) (-3490 ((|#3| $) NIL)) (-3209 (($ $ (-578 (-501))) 98)) (-1195 (((-578 |#3|) $) 34)) (-3689 (((-701) $) 42)) (-1758 (($ $ $) 91)) (-3543 (($) 41)) (-3460 (((-1053) $) NIL)) (-2537 (($) 16)) (-3708 (((-1018) $) NIL)) (-2007 ((|#3| $) 44) ((|#3| $ (-501)) 45) ((|#3| $ (-501) (-501)) 46) ((|#3| $ (-501) (-501) (-501)) 47) ((|#3| $ (-501) (-501) (-501) (-501)) 48) ((|#3| $ (-578 (-501))) 50)) (-1201 (((-701) $) 43)) (-3591 (($ $ (-501) $ (-501)) 92) (($ $ (-501) (-501)) 94)) (-3691 (((-786) $) 65) (($ |#3|) 66) (($ (-212 |#2| |#3|)) 73) (($ (-1037 |#2| |#3|)) 76) (($ (-578 |#3|)) 51) (($ (-578 $)) 56)) (-1850 (($) 67 T CONST)) (-1925 (($) 68 T CONST)) (-3751 (((-107) $ $) 78)) (-3797 (($ $) 84) (($ $ $) 82)) (-3790 (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (-501)) 87) (($ (-501) $) 86) (($ $ $) 93)))
-(((-126 |#1| |#2| |#3|) (-13 (-432 |#3| (-701)) (-437 (-501) (-701)) (-10 -8 (-15 -3691 ($ (-212 |#2| |#3|))) (-15 -3691 ($ (-1037 |#2| |#3|))) (-15 -3691 ($ (-578 |#3|))) (-15 -3691 ($ (-578 $))) (-15 -3689 ((-701) $)) (-15 -2007 (|#3| $)) (-15 -2007 (|#3| $ (-501))) (-15 -2007 (|#3| $ (-501) (-501))) (-15 -2007 (|#3| $ (-501) (-501) (-501))) (-15 -2007 (|#3| $ (-501) (-501) (-501) (-501))) (-15 -2007 (|#3| $ (-578 (-501)))) (-15 -1758 ($ $ $)) (-15 * ($ $ $)) (-15 -3591 ($ $ (-501) $ (-501))) (-15 -3591 ($ $ (-501) (-501))) (-15 -2676 ($ $)) (-15 -2676 ($ $ (-501) (-501))) (-15 -3209 ($ $ (-578 (-501)))) (-15 -2537 ($)) (-15 -3543 ($)) (-15 -1195 ((-578 |#3|) $)) (-15 -2848 ($ (-578 |#3|))) (-15 -2540 ($)))) (-501) (-701) (-156)) (T -126))
-((-1758 (*1 *1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-212 *4 *5)) (-14 *4 (-701)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1037 *4 *5)) (-14 *4 (-701)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-126 *3 *4 *5))) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 *2) (-4 *5 (-156)))) (-2007 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-126 *3 *4 *2)) (-14 *3 (-501)) (-14 *4 (-701)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) (-2007 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) (-2007 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) (-2007 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-501))) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 (-501)) (-14 *5 (-701)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-3591 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) (-3591 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) (-2676 (*1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-2676 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) (-3209 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))) (-2537 (*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-3543 (*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) (-1195 (*1 *2 *1) (-12 (-5 *2 (-578 *5)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))) (-2848 (*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)))) (-2540 (*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))))
-(-13 (-432 |#3| (-701)) (-437 (-501) (-701)) (-10 -8 (-15 -3691 ($ (-212 |#2| |#3|))) (-15 -3691 ($ (-1037 |#2| |#3|))) (-15 -3691 ($ (-578 |#3|))) (-15 -3691 ($ (-578 $))) (-15 -3689 ((-701) $)) (-15 -2007 (|#3| $)) (-15 -2007 (|#3| $ (-501))) (-15 -2007 (|#3| $ (-501) (-501))) (-15 -2007 (|#3| $ (-501) (-501) (-501))) (-15 -2007 (|#3| $ (-501) (-501) (-501) (-501))) (-15 -2007 (|#3| $ (-578 (-501)))) (-15 -1758 ($ $ $)) (-15 * ($ $ $)) (-15 -3591 ($ $ (-501) $ (-501))) (-15 -3591 ($ $ (-501) (-501))) (-15 -2676 ($ $)) (-15 -2676 ($ $ (-501) (-501))) (-15 -3209 ($ $ (-578 (-501)))) (-15 -2537 ($)) (-15 -3543 ($)) (-15 -1195 ((-578 |#3|) $)) (-15 -2848 ($ (-578 |#3|))) (-15 -2540 ($))))
-((-1205 (((-126 |#1| |#2| |#4|) (-578 |#4|) (-126 |#1| |#2| |#3|)) 14)) (-1212 (((-126 |#1| |#2| |#4|) (-1 |#4| |#3|) (-126 |#1| |#2| |#3|)) 18)))
-(((-127 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1205 ((-126 |#1| |#2| |#4|) (-578 |#4|) (-126 |#1| |#2| |#3|))) (-15 -1212 ((-126 |#1| |#2| |#4|) (-1 |#4| |#3|) (-126 |#1| |#2| |#3|)))) (-501) (-701) (-156) (-156)) (T -127))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-126 *5 *6 *7)) (-14 *5 (-501)) (-14 *6 (-701)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-126 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) (-1205 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-126 *5 *6 *7)) (-14 *5 (-501)) (-14 *6 (-701)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-126 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1205 ((-126 |#1| |#2| |#4|) (-578 |#4|) (-126 |#1| |#2| |#3|))) (-15 -1212 ((-126 |#1| |#2| |#4|) (-1 |#4| |#3|) (-126 |#1| |#2| |#3|))))
-((-3736 (((-107) $ $) NIL)) (-3612 (($) 15 T CONST)) (-3524 (($) NIL (|has| (-131) (-336)))) (-1442 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-3217 (($ $ $) NIL)) (-3599 (((-107) $ $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| (-131) (-336)))) (-2198 (($) NIL) (($ (-578 (-131))) NIL)) (-1221 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-2256 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167))) (($ (-131) $) 51 (|has| $ (-6 -4167)))) (-1526 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-2890 (($) NIL (|has| (-131) (-336)))) (-2732 (((-578 (-131)) $) 60 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-4111 (((-131) $) NIL (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1323 (((-131) $) NIL (|has| (-131) (-777)))) (-2519 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) 55)) (-2874 (($) 16 T CONST)) (-3104 (((-839) $) NIL (|has| (-131) (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-3420 (($ $ $) 29)) (-1328 (((-131) $) 52)) (-4114 (($ (-131) $) 50)) (-3506 (($ (-839)) NIL (|has| (-131) (-336)))) (-2010 (($) 14 T CONST)) (-3708 (((-1018) $) NIL)) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-1251 (((-131) $) 53)) (-2369 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-131)) (-578 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-262 (-131)))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 48)) (-2544 (($) 13 T CONST)) (-3327 (($ $ $) 31) (($ $ (-131)) NIL)) (-3013 (($ (-578 (-131))) NIL) (($) NIL)) (-3713 (((-701) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (((-701) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-1053) $) 36) (((-490) $) NIL (|has| (-131) (-556 (-490)))) (((-578 (-131)) $) 34)) (-3699 (($ (-578 (-131))) NIL)) (-2655 (($ $) 32 (|has| (-131) (-336)))) (-3691 (((-786) $) 46)) (-4079 (($ (-1053)) 12) (($ (-578 (-131))) 43)) (-1393 (((-701) $) NIL)) (-3910 (($) 49) (($ (-578 (-131))) NIL)) (-2866 (($ (-578 (-131))) NIL)) (-1200 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3058 (($) 19 T CONST)) (-3659 (($) 18 T CONST)) (-3751 (((-107) $ $) 22)) (-3762 (((-107) $ $) NIL)) (-3581 (((-701) $) 47 (|has| $ (-6 -4167)))))
-(((-128) (-13 (-1001) (-556 (-1053)) (-394 (-131)) (-556 (-578 (-131))) (-10 -8 (-15 -4079 ($ (-1053))) (-15 -4079 ($ (-578 (-131)))) (-15 -2544 ($) -3897) (-15 -2010 ($) -3897) (-15 -3612 ($) -3897) (-15 -2874 ($) -3897) (-15 -3659 ($) -3897) (-15 -3058 ($) -3897)))) (T -128))
-((-4079 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-128)))) (-4079 (*1 *1 *2) (-12 (-5 *2 (-578 (-131))) (-5 *1 (-128)))) (-2544 (*1 *1) (-5 *1 (-128))) (-2010 (*1 *1) (-5 *1 (-128))) (-3612 (*1 *1) (-5 *1 (-128))) (-2874 (*1 *1) (-5 *1 (-128))) (-3659 (*1 *1) (-5 *1 (-128))) (-3058 (*1 *1) (-5 *1 (-128))))
-(-13 (-1001) (-556 (-1053)) (-394 (-131)) (-556 (-578 (-131))) (-10 -8 (-15 -4079 ($ (-1053))) (-15 -4079 ($ (-578 (-131)))) (-15 -2544 ($) -3897) (-15 -2010 ($) -3897) (-15 -3612 ($) -3897) (-15 -2874 ($) -3897) (-15 -3659 ($) -3897) (-15 -3058 ($) -3897)))
-((-3473 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1644 ((|#1| |#3|) 9)) (-4132 ((|#3| |#3|) 15)))
-(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -1644 (|#1| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-508) (-906 |#1|) (-340 |#2|)) (T -129))
-((-3473 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-340 *5)))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *4 (-906 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-340 *4)))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-340 *4)))))
-(-10 -7 (-15 -1644 (|#1| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2940 (($ $ $) 8)) (-3260 (($ $) 7)) (-1299 (($ $ $) 6)))
-(((-130) (-1180)) (T -130))
-((-2940 (*1 *1 *1 *1) (-4 *1 (-130))) (-3260 (*1 *1 *1) (-4 *1 (-130))) (-1299 (*1 *1 *1 *1) (-4 *1 (-130))))
-(-13 (-10 -8 (-15 -1299 ($ $ $)) (-15 -3260 ($ $)) (-15 -2940 ($ $ $))))
-((-3736 (((-107) $ $) NIL)) (-2462 (((-107) $) 38)) (-3612 (($ $) 51)) (-3498 (($) 25)) (-3796 (((-701)) 16)) (-2890 (($) 24)) (-3911 (($) 26)) (-4015 (((-501) $) 21)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3117 (((-107) $) 40)) (-2874 (($ $) 52)) (-3104 (((-839) $) 22)) (-3460 (((-1053) $) 47)) (-3506 (($ (-839)) 20)) (-2819 (((-107) $) 36)) (-3708 (((-1018) $) NIL)) (-2093 (($) 27)) (-3792 (((-107) $) 34)) (-3691 (((-786) $) 29)) (-3942 (($ (-501)) 18) (($ (-1053)) 50)) (-4075 (((-107) $) 44)) (-3174 (((-107) $) 42)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 13)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 14)))
-(((-131) (-13 (-771) (-10 -8 (-15 -4015 ((-501) $)) (-15 -3942 ($ (-501))) (-15 -3942 ($ (-1053))) (-15 -3498 ($)) (-15 -3911 ($)) (-15 -2093 ($)) (-15 -3612 ($ $)) (-15 -2874 ($ $)) (-15 -3792 ((-107) $)) (-15 -2819 ((-107) $)) (-15 -3174 ((-107) $)) (-15 -2462 ((-107) $)) (-15 -3117 ((-107) $)) (-15 -4075 ((-107) $))))) (T -131))
-((-4015 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-131)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-131)))) (-3942 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-131)))) (-3498 (*1 *1) (-5 *1 (-131))) (-3911 (*1 *1) (-5 *1 (-131))) (-2093 (*1 *1) (-5 *1 (-131))) (-3612 (*1 *1 *1) (-5 *1 (-131))) (-2874 (*1 *1 *1) (-5 *1 (-131))) (-3792 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3174 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(-13 (-771) (-10 -8 (-15 -4015 ((-501) $)) (-15 -3942 ($ (-501))) (-15 -3942 ($ (-1053))) (-15 -3498 ($)) (-15 -3911 ($)) (-15 -2093 ($)) (-15 -3612 ($ $)) (-15 -2874 ($ $)) (-15 -3792 ((-107) $)) (-15 -2819 ((-107) $)) (-15 -3174 ((-107) $)) (-15 -2462 ((-107) $)) (-15 -3117 ((-107) $)) (-15 -4075 ((-107) $))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-1274 (((-3 $ "failed") $) 35)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-132) (-1180)) (T -132))
-((-1274 (*1 *1 *1) (|partial| -4 *1 (-132))))
-(-13 (-959) (-10 -8 (-15 -1274 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-2942 ((|#1| (-621 |#1|) |#1|) 17)))
-(((-133 |#1|) (-10 -7 (-15 -2942 (|#1| (-621 |#1|) |#1|))) (-156)) (T -133))
-((-2942 (*1 *2 *3 *2) (-12 (-5 *3 (-621 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))))
-(-10 -7 (-15 -2942 (|#1| (-621 |#1|) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-134) (-1180)) (T -134))
-NIL
-(-13 (-959))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-2023 (((-2 (|:| -3027 (-701)) (|:| -3189 (-375 |#2|)) (|:| |radicand| |#2|)) (-375 |#2|) (-701)) 69)) (-2471 (((-3 (-2 (|:| |radicand| (-375 |#2|)) (|:| |deg| (-701))) "failed") |#3|) 51)) (-3907 (((-2 (|:| -3189 (-375 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-3427 ((|#1| |#3| |#3|) 39)) (-3195 ((|#3| |#3| (-375 |#2|) (-375 |#2|)) 19)) (-3297 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| |deg| (-701))) |#3| |#3|) 48)))
-(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -3907 ((-2 (|:| -3189 (-375 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2471 ((-3 (-2 (|:| |radicand| (-375 |#2|)) (|:| |deg| (-701))) "failed") |#3|)) (-15 -2023 ((-2 (|:| -3027 (-701)) (|:| -3189 (-375 |#2|)) (|:| |radicand| |#2|)) (-375 |#2|) (-701))) (-15 -3427 (|#1| |#3| |#3|)) (-15 -3195 (|#3| |#3| (-375 |#2|) (-375 |#2|))) (-15 -3297 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| |deg| (-701))) |#3| |#3|))) (-1108) (-1125 |#1|) (-1125 (-375 |#2|))) (T -135))
-((-3297 (*1 *2 *3 *3) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-375 *5)) (|:| |c2| (-375 *5)) (|:| |deg| (-701)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5))))) (-3195 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-375 *5)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1125 *3)))) (-3427 (*1 *2 *3 *3) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-1108)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1125 (-375 *4))))) (-2023 (*1 *2 *3 *4) (-12 (-5 *3 (-375 *6)) (-4 *5 (-1108)) (-4 *6 (-1125 *5)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-701)) (-4 *7 (-1125 *3)))) (-2471 (*1 *2 *3) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |radicand| (-375 *5)) (|:| |deg| (-701)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5))))) (-3907 (*1 *2 *3) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3189 (-375 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5))))))
-(-10 -7 (-15 -3907 ((-2 (|:| -3189 (-375 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2471 ((-3 (-2 (|:| |radicand| (-375 |#2|)) (|:| |deg| (-701))) "failed") |#3|)) (-15 -2023 ((-2 (|:| -3027 (-701)) (|:| -3189 (-375 |#2|)) (|:| |radicand| |#2|)) (-375 |#2|) (-701))) (-15 -3427 (|#1| |#3| |#3|)) (-15 -3195 (|#3| |#3| (-375 |#2|) (-375 |#2|))) (-15 -3297 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| |deg| (-701))) |#3| |#3|)))
-((-4002 (((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|)) 31)))
-(((-136 |#1| |#2|) (-10 -7 (-15 -4002 ((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|)))) (-500) (-150 |#1|)) (T -136))
-((-4002 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *5))) (-5 *3 (-1064 *5)) (-4 *5 (-150 *4)) (-4 *4 (-500)) (-5 *1 (-136 *4 *5)))))
-(-10 -7 (-15 -4002 ((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|))))
-((-1987 (($ (-1 (-107) |#2|) $) 29)) (-2673 (($ $) 36)) (-1526 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-3547 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2520 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-2369 (((-107) (-1 (-107) |#2|) $) 16)) (-3713 (((-701) (-1 (-107) |#2|) $) 13) (((-701) |#2| $) NIL)) (-1200 (((-107) (-1 (-107) |#2|) $) 15)) (-3581 (((-701) $) 11)))
-(((-137 |#1| |#2|) (-10 -8 (-15 -2673 (|#1| |#1|)) (-15 -1526 (|#1| |#2| |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1987 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1526 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|))) (-138 |#2|) (-1104)) (T -137))
-NIL
-(-10 -8 (-15 -2673 (|#1| |#1|)) (-15 -1526 (|#1| |#2| |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1987 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1526 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1987 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 41 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167))) (($ |#1| $) 42 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 40 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 49)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-138 |#1|) (-1180) (-1104)) (T -138))
-((-3699 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-138 *3)))) (-2520 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) (-3547 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) (-3547 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) (-1526 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *3)) (-4 *3 (-1104)))) (-1987 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *3)) (-4 *3 (-1104)))) (-3547 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1001)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) (-1526 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) (-2673 (*1 *1 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))))
-(-13 (-454 |t#1|) (-10 -8 (-15 -3699 ($ (-578 |t#1|))) (-15 -2520 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4167)) (PROGN (-15 -3547 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3547 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1526 ($ (-1 (-107) |t#1|) $)) (-15 -1987 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -3547 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1526 ($ |t#1| $)) (-15 -2673 ($ $))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) 85)) (-1355 (((-107) $) NIL)) (-3787 (($ |#2| (-578 (-839))) 56)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3118 (($ (-839)) 48)) (-3613 (((-125)) 23)) (-3691 (((-786) $) 68) (($ (-501)) 46) (($ |#2|) 47)) (-2495 ((|#2| $ (-578 (-839))) 58)) (-3965 (((-701)) 20)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 40 T CONST)) (-1925 (($) 44 T CONST)) (-3751 (((-107) $ $) 26)) (-3803 (($ $ |#2|) NIL)) (-3797 (($ $) 34) (($ $ $) 32)) (-3790 (($ $ $) 30)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-139 |#1| |#2| |#3|) (-13 (-959) (-37 |#2|) (-1156 |#2|) (-10 -8 (-15 -3118 ($ (-839))) (-15 -3787 ($ |#2| (-578 (-839)))) (-15 -2495 (|#2| $ (-578 (-839)))) (-15 -2174 ((-3 $ "failed") $)))) (-839) (-331) (-908 |#1| |#2|)) (T -139))
-((-2174 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-839)) (-4 *3 (-331)) (-14 *4 (-908 *2 *3)))) (-3118 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-331)) (-14 *5 (-908 *3 *4)))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-839))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-839)) (-4 *2 (-331)) (-14 *5 (-908 *4 *2)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-839))) (-4 *2 (-331)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-839)) (-14 *5 (-908 *4 *2)))))
-(-13 (-959) (-37 |#2|) (-1156 |#2|) (-10 -8 (-15 -3118 ($ (-839))) (-15 -3787 ($ |#2| (-578 (-839)))) (-15 -2495 (|#2| $ (-578 (-839)))) (-15 -2174 ((-3 $ "failed") $))))
-((-1272 (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199)))) (-199) (-199) (-199) (-199)) 39)) (-2035 (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501))) 63) (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845)) 64)) (-2791 (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199))))) 67) (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-863 (-199)))) 66) (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501))) 58) (((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845)) 59)))
-(((-140) (-10 -7 (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501)))) (-15 -2035 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845))) (-15 -2035 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501)))) (-15 -1272 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199)))) (-199) (-199) (-199) (-199))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-863 (-199))))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199)))))))) (T -140))
-((-2791 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)) (-5 *3 (-578 (-578 (-863 (-199))))))) (-2791 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)) (-5 *3 (-578 (-863 (-199)))))) (-1272 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 *4)))) (|:| |xValues| (-991 *4)) (|:| |yValues| (-991 *4)))) (-5 *1 (-140)) (-5 *3 (-578 (-578 (-863 *4)))))) (-2035 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-375 (-501))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) (-2791 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-375 (-501))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) (-2791 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))))
-(-10 -7 (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501)))) (-15 -2035 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845))) (-15 -2035 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-845) (-375 (-501)) (-375 (-501)))) (-15 -1272 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199)))) (-199) (-199) (-199) (-199))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-863 (-199))))) (-15 -2791 ((-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199)))) (-578 (-578 (-863 (-199)))))))
-((-1833 (((-578 (-152 |#2|)) |#1| |#2|) 45)))
-(((-141 |#1| |#2|) (-10 -7 (-15 -1833 ((-578 (-152 |#2|)) |#1| |#2|))) (-1125 (-152 (-501))) (-13 (-331) (-775))) (T -141))
-((-1833 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-152 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1125 (-152 (-501)))) (-4 *4 (-13 (-331) (-775))))))
-(-10 -7 (-15 -1833 ((-578 (-152 |#2|)) |#1| |#2|)))
-((-3736 (((-107) $ $) NIL)) (-2313 (($) 15)) (-1818 (($) 14)) (-4039 (((-839)) 22)) (-3460 (((-1053) $) NIL)) (-3531 (((-501) $) 19)) (-3708 (((-1018) $) NIL)) (-3835 (($) 16)) (-3479 (($ (-501)) 23)) (-3691 (((-786) $) 29)) (-2907 (($) 17)) (-3751 (((-107) $ $) 13)) (-3790 (($ $ $) 11)) (* (($ (-839) $) 21) (($ (-199) $) 8)))
-(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-839) $)) (-15 * ($ (-199) $)) (-15 -3790 ($ $ $)) (-15 -1818 ($)) (-15 -2313 ($)) (-15 -3835 ($)) (-15 -2907 ($)) (-15 -3531 ((-501) $)) (-15 -4039 ((-839))) (-15 -3479 ($ (-501)))))) (T -142))
-((-3790 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-1818 (*1 *1) (-5 *1 (-142))) (-2313 (*1 *1) (-5 *1 (-142))) (-3835 (*1 *1) (-5 *1 (-142))) (-2907 (*1 *1) (-5 *1 (-142))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-142)))) (-4039 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-142)))) (-3479 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-142)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-839) $)) (-15 * ($ (-199) $)) (-15 -3790 ($ $ $)) (-15 -1818 ($)) (-15 -2313 ($)) (-15 -3835 ($)) (-15 -2907 ($)) (-15 -3531 ((-501) $)) (-15 -4039 ((-839))) (-15 -3479 ($ (-501)))))
-((-3977 ((|#2| |#2| (-993 |#2|)) 85) ((|#2| |#2| (-1070)) 68)) (-1758 ((|#2| |#2| (-993 |#2|)) 84) ((|#2| |#2| (-1070)) 67)) (-2940 ((|#2| |#2| |#2|) 30)) (-1853 (((-108) (-108)) 96)) (-3644 ((|#2| (-578 |#2|)) 115)) (-4005 ((|#2| (-578 |#2|)) 133)) (-1414 ((|#2| (-578 |#2|)) 123)) (-4018 ((|#2| |#2|) 121)) (-2439 ((|#2| (-578 |#2|)) 108)) (-3695 ((|#2| (-578 |#2|)) 109)) (-2739 ((|#2| (-578 |#2|)) 131)) (-3332 ((|#2| |#2| (-1070)) 57) ((|#2| |#2|) 56)) (-3260 ((|#2| |#2|) 26)) (-1299 ((|#2| |#2| |#2|) 29)) (-3811 (((-107) (-108)) 50)) (** ((|#2| |#2| |#2|) 41)))
-(((-143 |#1| |#2|) (-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 ** (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -2940 (|#2| |#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -3332 (|#2| |#2| (-1070))) (-15 -3977 (|#2| |#2| (-1070))) (-15 -3977 (|#2| |#2| (-993 |#2|))) (-15 -1758 (|#2| |#2| (-1070))) (-15 -1758 (|#2| |#2| (-993 |#2|))) (-15 -4018 (|#2| |#2|)) (-15 -2739 (|#2| (-578 |#2|))) (-15 -1414 (|#2| (-578 |#2|))) (-15 -4005 (|#2| (-578 |#2|))) (-15 -2439 (|#2| (-578 |#2|))) (-15 -3695 (|#2| (-578 |#2|))) (-15 -3644 (|#2| (-578 |#2|)))) (-13 (-777) (-508)) (-389 |#1|)) (T -143))
-((-3644 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-3695 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-2739 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))) (-4018 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-1758 (*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)))) (-1758 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) (-3977 (*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)))) (-3977 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) (-3332 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-3260 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-2940 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-1299 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *4)) (-4 *4 (-389 *3)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-389 *4)))))
-(-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 ** (|#2| |#2| |#2|)) (-15 -1299 (|#2| |#2| |#2|)) (-15 -2940 (|#2| |#2| |#2|)) (-15 -3260 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -3332 (|#2| |#2| (-1070))) (-15 -3977 (|#2| |#2| (-1070))) (-15 -3977 (|#2| |#2| (-993 |#2|))) (-15 -1758 (|#2| |#2| (-1070))) (-15 -1758 (|#2| |#2| (-993 |#2|))) (-15 -4018 (|#2| |#2|)) (-15 -2739 (|#2| (-578 |#2|))) (-15 -1414 (|#2| (-578 |#2|))) (-15 -4005 (|#2| (-578 |#2|))) (-15 -2439 (|#2| (-578 |#2|))) (-15 -3695 (|#2| (-578 |#2|))) (-15 -3644 (|#2| (-578 |#2|))))
-((-2876 ((|#1| |#1| |#1|) 52)) (-2534 ((|#1| |#1| |#1|) 49)) (-2940 ((|#1| |#1| |#1|) 43)) (-3273 ((|#1| |#1|) 34)) (-3732 ((|#1| |#1| (-578 |#1|)) 42)) (-3260 ((|#1| |#1|) 36)) (-1299 ((|#1| |#1| |#1|) 39)))
-(((-144 |#1|) (-10 -7 (-15 -1299 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3732 (|#1| |#1| (-578 |#1|))) (-15 -3273 (|#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1| |#1|))) (-500)) (T -144))
-((-2876 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-2534 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-2940 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-3273 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-3732 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-500)) (-5 *1 (-144 *2)))) (-3260 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) (-1299 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))))
-(-10 -7 (-15 -1299 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -3732 (|#1| |#1| (-578 |#1|))) (-15 -3273 (|#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -2876 (|#1| |#1| |#1|)))
-((-3977 (($ $ (-1070)) 12) (($ $ (-993 $)) 11)) (-1758 (($ $ (-1070)) 10) (($ $ (-993 $)) 9)) (-2940 (($ $ $) 8)) (-3332 (($ $) 14) (($ $ (-1070)) 13)) (-3260 (($ $) 7)) (-1299 (($ $ $) 6)))
-(((-145) (-1180)) (T -145))
-((-3332 (*1 *1 *1) (-4 *1 (-145))) (-3332 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) (-3977 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-145)))) (-1758 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) (-1758 (*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-145)))))
-(-13 (-130) (-10 -8 (-15 -3332 ($ $)) (-15 -3332 ($ $ (-1070))) (-15 -3977 ($ $ (-1070))) (-15 -3977 ($ $ (-993 $))) (-15 -1758 ($ $ (-1070))) (-15 -1758 ($ $ (-993 $)))))
+((-4031 (((-107) $) 12)) (-1893 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-377 (-517)) $) 24) (($ $ (-377 (-517))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -4031 ((-107) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-46 |#2| |#3|) (-961) (-724)) (T -45))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -4031 ((-107) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3688 ((|#2| $) 64)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-46 |#1| |#2|) (-1184) (-961) (-724)) (T -46))
+((-1191 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-4152 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-1339 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333)))))
+(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -1191 (|t#1| $)) (-15 -4152 ($ $)) (-15 -3688 (|t#2| $)) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -4031 ((-107) $)) (-15 -1339 ($ |t#1| |t#2|)) (-15 -1212 ($ $)) (-15 -2720 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-333)) (-15 -1667 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-6 (-156)) (-6 (-37 |t#1|))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-509)) (-6 (-509)) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-6 (-37 (-377 (-517)))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2888 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3869 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-2814 (((-107) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-3726 (((-583 (-556 $)) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-1649 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3267 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-377 (-517)))) (|:| |vec| (-1153 (-377 (-517))))) (-623 $) (-1153 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-3225 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) NIL)) (-3848 (((-107) $) 14)) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1787 (((-1026 (-517) (-556 $)) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-1506 (((-1069 $) (-1069 $) (-556 $)) NIL) (((-1069 $) (-1069 $) (-583 (-556 $))) NIL) (($ $ (-556 $)) NIL) (($ $ (-583 (-556 $))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1607 (((-1069 $) (-556 $)) NIL (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) NIL)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) NIL)) (-1851 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) NIL)) (-4118 (($ $) NIL)) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3146 (((-703) $) NIL)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1630 (($ $) NIL) (($ $ $) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-1800 (((-1026 (-517) (-556 $)) $) NIL)) (-2135 (($ $) NIL (|has| $ (-961)))) (-3645 (((-349) $) NIL) (((-199) $) NIL) (((-153 (-349)) $) NIL)) (-2256 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) NIL)) (-2961 (((-703)) NIL)) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-4074 (((-107) (-109)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 7 T CONST)) (-2409 (($) 12 T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 16)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $ $) 15) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-47) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))) (T -47))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) (-3225 (*1 *1 *1) (-5 *1 (-47))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))))
+(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))
+((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 7)) (-1547 (((-107) $ $) NIL)))
+(((-48) (-1003)) (T -48))
+NIL
+(-1003)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 60)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3153 (((-107) $) 20)) (-1772 (((-3 |#1| "failed") $) 23)) (-3189 ((|#1| $) 24)) (-1212 (($ $) 27)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1191 ((|#1| $) 21)) (-3105 (($ $) 49)) (-3985 (((-1056) $) NIL)) (-3593 (((-107) $) 28)) (-3206 (((-1021) $) NIL)) (-3220 (($ (-703)) 47)) (-2624 (($ (-583 (-517))) 48)) (-3688 (((-703) $) 29)) (-2256 (((-787) $) 63) (($ (-517)) 44) (($ |#1|) 42)) (-2720 ((|#1| $ $) 19)) (-2961 (((-703)) 46)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 30 T CONST)) (-2409 (($) 14 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1191 (|#1| $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 (|#1| $ $)) (-15 -3220 ($ (-703))) (-15 -2624 ($ (-583 (-517)))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-703) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)))) (-961) (-583 (-1073))) (T -49))
+((-1191 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) (-3105 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) (-2720 (*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-2624 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1073))))))
+(-13 (-561 |#1|) (-952 |#1|) (-10 -8 (-15 -1191 (|#1| $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 (|#1| $ $)) (-15 -3220 ($ (-703))) (-15 -2624 ($ (-583 (-517)))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-703) $)) (-15 -1893 ($ (-1 |#1| |#1|) $))))
+((-3153 (((-107) (-51)) 13)) (-1772 (((-3 |#1| "failed") (-51)) 21)) (-3189 ((|#1| (-51)) 22)) (-2256 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -2256 ((-51) |#1|)) (-15 -1772 ((-3 |#1| "failed") (-51))) (-15 -3153 ((-107) (-51))) (-15 -3189 (|#1| (-51)))) (-1108)) (T -50))
+((-3189 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1108)))) (-1772 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1108)))))
+(-10 -7 (-15 -2256 ((-51) |#1|)) (-15 -1772 ((-3 |#1| "failed") (-51))) (-15 -3153 ((-107) (-51))) (-15 -3189 (|#1| (-51))))
+((-2750 (((-107) $ $) NIL)) (-1236 (((-1056) (-107)) 25)) (-2905 (((-787) $) 24)) (-3908 (((-706) $) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2013 (((-787) $) 16)) (-4070 (((-1007) $) 14)) (-2256 (((-787) $) 32)) (-2022 (($ (-1007) (-706)) 33)) (-1547 (((-107) $ $) 18)))
+(((-51) (-13 (-1003) (-10 -8 (-15 -2022 ($ (-1007) (-706))) (-15 -2013 ((-787) $)) (-15 -2905 ((-787) $)) (-15 -4070 ((-1007) $)) (-15 -3908 ((-706) $)) (-15 -1236 ((-1056) (-107)))))) (T -51))
+((-2022 (*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))) (-1236 (*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1056)) (-5 *1 (-51)))))
+(-13 (-1003) (-10 -8 (-15 -2022 ($ (-1007) (-706))) (-15 -2013 ((-787) $)) (-15 -2905 ((-787) $)) (-15 -4070 ((-1007) $)) (-15 -3908 ((-706) $)) (-15 -1236 ((-1056) (-107)))))
+((-1587 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -1587 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-961) (-585 |#1|) (-781 |#1|)) (T -52))
+((-1587 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-961)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))))
+(-10 -7 (-15 -1587 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1442 ((|#3| |#3| (-583 (-1073))) 35)) (-3605 ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843)) 22) ((|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -1442 (|#3| |#3| (-583 (-1073))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -53))
+((-1442 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-3605 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3605 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3|)) (-15 -3605 (|#3| (-583 (-983 |#1| |#2| |#3|)) |#3| (-843))) (-15 -1442 (|#3| |#3| (-583 (-1073)))))
+((-2953 (((-107) $ (-703)) 23)) (-4087 (($ $ (-517) |#3|) 45)) (-3739 (($ $ (-517) |#4|) 49)) (-1939 ((|#3| $ (-517)) 58)) (-1536 (((-583 |#2|) $) 30)) (-2550 (((-107) $ (-703)) 25)) (-2787 (((-107) |#2| $) 53)) (-1433 (($ (-1 |#2| |#2|) $) 37)) (-1893 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 39) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 41)) (-3847 (((-107) $ (-703)) 24)) (-2565 (($ $ |#2|) 34)) (-2048 (((-107) (-1 (-107) |#2|) $) 19)) (-1449 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) 27)) (-3217 (((-703) (-1 (-107) |#2|) $) 28) (((-703) |#2| $) 55)) (-2433 (($ $) 33)) (-3728 ((|#4| $ (-517)) 61)) (-2256 (((-787) $) 66)) (-3675 (((-107) (-1 (-107) |#2|) $) 18)) (-1547 (((-107) $ $) 52)) (-2296 (((-703) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3739 (|#1| |#1| (-517) |#4|)) (-15 -4087 (|#1| |#1| (-517) |#3|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3728 (|#4| |#1| (-517))) (-15 -1939 (|#3| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -2433 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1108) (-343 |#2|) (-343 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3739 (|#1| |#1| (-517) |#4|)) (-15 -4087 (|#1| |#1| (-517) |#3|)) (-15 -1536 ((-583 |#2|) |#1|)) (-15 -3728 (|#4| |#1| (-517))) (-15 -1939 (|#3| |#1| (-517))) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))) (-15 -2433 (|#1| |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) (-517) |#1|) 44)) (-4087 (($ $ (-517) |#2|) 42)) (-3739 (($ $ (-517) |#3|) 41)) (-3092 (($) 7 T CONST)) (-1939 ((|#2| $ (-517)) 46)) (-1445 ((|#1| $ (-517) (-517) |#1|) 43)) (-1377 ((|#1| $ (-517) (-517)) 48)) (-1536 (((-583 |#1|) $) 30)) (-1477 (((-703) $) 51)) (-3462 (($ (-703) (-703) |#1|) 57)) (-1486 (((-703) $) 50)) (-2550 (((-107) $ (-703)) 9)) (-2813 (((-517) $) 55)) (-1338 (((-517) $) 53)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 54)) (-1307 (((-517) $) 52)) (-1433 (($ (-1 |#1| |#1|) $) 34)) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) 56)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3728 ((|#3| $ (-517)) 45)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-55 |#1| |#2| |#3|) (-1184) (-1108) (-343 |t#1|) (-343 |t#1|)) (T -55))
+((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3462 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1108)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2565 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) (-1449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) (-1377 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) (-2411 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-1445 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) (-4087 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))) (-3739 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))) (-1433 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1893 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(-13 (-456 |t#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3462 ($ (-703) (-703) |t#1|)) (-15 -2565 ($ $ |t#1|)) (-15 -2813 ((-517) $)) (-15 -2718 ((-517) $)) (-15 -1338 ((-517) $)) (-15 -1307 ((-517) $)) (-15 -1477 ((-703) $)) (-15 -1486 ((-703) $)) (-15 -1449 (|t#1| $ (-517) (-517))) (-15 -1377 (|t#1| $ (-517) (-517))) (-15 -1449 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1939 (|t#2| $ (-517))) (-15 -3728 (|t#3| $ (-517))) (-15 -1536 ((-583 |t#1|) $)) (-15 -2411 (|t#1| $ (-517) (-517) |t#1|)) (-15 -1445 (|t#1| $ (-517) (-517) |t#1|)) (-15 -4087 ($ $ (-517) |t#2|)) (-15 -3739 ($ $ (-517) |t#3|)) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -1433 ($ (-1 |t#1| |t#1|) $)) (-15 -1893 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1893 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-3905 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1893 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -3905 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1893 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1108) (-1108)) (T -56))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-56 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -3905 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1893 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3582 (($ (-583 |#1|)) 13) (($ (-703) |#1|) 14)) (-3462 (($ (-703) |#1|) 9)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 7)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3582 ($ (-583 |#1|))) (-15 -3582 ($ (-703) |#1|)))) (-1108)) (T -57))
+((-3582 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-57 *3)))) (-3582 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1108)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -3582 ($ (-583 |#1|))) (-15 -3582 ($ (-703) |#1|))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4087 (($ $ (-517) (-57 |#1|)) NIL)) (-3739 (($ $ (-517) (-57 |#1|)) NIL)) (-3092 (($) NIL T CONST)) (-1939 (((-57 |#1|) $ (-517)) NIL)) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-57 |#1|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4181))) (-1108)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4181)))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 69) (((-3 $ "failed") (-1153 (-286 (-517)))) 58) (((-3 $ "failed") (-1153 (-874 (-349)))) 91) (((-3 $ "failed") (-1153 (-874 (-517)))) 80) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 47) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 36)) (-3189 (($ (-1153 (-286 (-349)))) 65) (($ (-1153 (-286 (-517)))) 54) (($ (-1153 (-874 (-349)))) 87) (($ (-1153 (-874 (-517)))) 76) (($ (-1153 (-377 (-874 (-349))))) 43) (($ (-1153 (-377 (-874 (-517))))) 29)) (-4155 (((-1158) $) 118)) (-2256 (((-787) $) 111) (($ (-583 (-300))) 100) (($ (-300)) 94) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 97) (($ (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))) 28)))
+(((-59 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632))))))) (-1073)) (T -59))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))))))
+((-4155 (((-1158) $) 48) (((-1158)) 49)) (-2256 (((-787) $) 45)))
+(((-60 |#1|) (-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) (-1073)) (T -60))
+((-4155 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-60 *3)) (-14 *3 (-1073)))))
+(-13 (-365) (-10 -7 (-15 -4155 ((-1158)))))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 142) (((-3 $ "failed") (-1153 (-286 (-517)))) 132) (((-3 $ "failed") (-1153 (-874 (-349)))) 163) (((-3 $ "failed") (-1153 (-874 (-517)))) 152) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 121) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 110)) (-3189 (($ (-1153 (-286 (-349)))) 138) (($ (-1153 (-286 (-517)))) 128) (($ (-1153 (-874 (-349)))) 159) (($ (-1153 (-874 (-517)))) 148) (($ (-1153 (-377 (-874 (-349))))) 117) (($ (-1153 (-377 (-874 (-517))))) 103)) (-4155 (((-1158) $) 96)) (-2256 (((-787) $) 90) (($ (-583 (-300))) 28) (($ (-300)) 34) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 31) (($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) 88)))
+(((-61 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))) (-1073)) (T -61))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))))))
+((-1772 (((-3 $ "failed") (-286 (-349))) 36) (((-3 $ "failed") (-286 (-517))) 41) (((-3 $ "failed") (-874 (-349))) 46) (((-3 $ "failed") (-874 (-517))) 51) (((-3 $ "failed") (-377 (-874 (-349)))) 31) (((-3 $ "failed") (-377 (-874 (-517)))) 26)) (-3189 (($ (-286 (-349))) 34) (($ (-286 (-517))) 39) (($ (-874 (-349))) 44) (($ (-874 (-517))) 49) (($ (-377 (-874 (-349)))) 29) (($ (-377 (-874 (-517)))) 23)) (-4155 (((-1158) $) 73)) (-2256 (((-787) $) 66) (($ (-583 (-300))) 57) (($ (-300)) 63) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 60) (($ (-309 (-2276 (QUOTE X)) (-2276) (-632))) 22)))
+(((-62 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276) (-632)))))) (-1073)) (T -62))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1073)))))
+(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276) (-632))))))
+((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 100) (((-3 $ "failed") (-623 (-286 (-517)))) 89) (((-3 $ "failed") (-623 (-874 (-349)))) 122) (((-3 $ "failed") (-623 (-874 (-517)))) 111) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 78) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 67)) (-3189 (($ (-623 (-286 (-349)))) 96) (($ (-623 (-286 (-517)))) 85) (($ (-623 (-874 (-349)))) 118) (($ (-623 (-874 (-517)))) 107) (($ (-623 (-377 (-874 (-349))))) 74) (($ (-623 (-377 (-874 (-517))))) 60)) (-4155 (((-1158) $) 130)) (-2256 (((-787) $) 124) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 30) (($ (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))) 53)))
+(((-63 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632))))))) (-1073)) (T -63))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1073)))))
+(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))))))
+((-1772 (((-3 $ "failed") (-286 (-349))) 54) (((-3 $ "failed") (-286 (-517))) 59) (((-3 $ "failed") (-874 (-349))) 64) (((-3 $ "failed") (-874 (-517))) 69) (((-3 $ "failed") (-377 (-874 (-349)))) 49) (((-3 $ "failed") (-377 (-874 (-517)))) 44)) (-3189 (($ (-286 (-349))) 52) (($ (-286 (-517))) 57) (($ (-874 (-349))) 62) (($ (-874 (-517))) 67) (($ (-377 (-874 (-349)))) 47) (($ (-377 (-874 (-517)))) 41)) (-4155 (((-1158) $) 78)) (-2256 (((-787) $) 72) (($ (-583 (-300))) 27) (($ (-300)) 33) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 30) (($ (-309 (-2276) (-2276 (QUOTE XC)) (-632))) 38)))
+(((-64 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE XC)) (-632)))))) (-1073)) (T -64))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1073)))))
+(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))
+((-4155 (((-1158) $) 63)) (-2256 (((-787) $) 57) (($ (-623 (-632))) 49) (($ (-583 (-300))) 48) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 53)))
+(((-65 |#1|) (-353) (-1073)) (T -65))
+NIL
+(-353)
+((-4155 (((-1158) $) 64)) (-2256 (((-787) $) 58) (($ (-623 (-632))) 50) (($ (-583 (-300))) 49) (($ (-300)) 52) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 55)))
+(((-66 |#1|) (-353) (-1073)) (T -66))
+NIL
+(-353)
+((-4155 (((-1158) $) NIL) (((-1158)) 32)) (-2256 (((-787) $) NIL)))
+(((-67 |#1|) (-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) (-1073)) (T -67))
+((-4155 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-67 *3)) (-14 *3 (-1073)))))
+(-13 (-365) (-10 -7 (-15 -4155 ((-1158)))))
+((-4155 (((-1158) $) 68)) (-2256 (((-787) $) 62) (($ (-623 (-632))) 53) (($ (-583 (-300))) 56) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 52)))
+(((-68 |#1|) (-353) (-1073)) (T -68))
+NIL
+(-353)
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 98) (((-3 $ "failed") (-1153 (-286 (-517)))) 87) (((-3 $ "failed") (-1153 (-874 (-349)))) 119) (((-3 $ "failed") (-1153 (-874 (-517)))) 108) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 76) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 65)) (-3189 (($ (-1153 (-286 (-349)))) 94) (($ (-1153 (-286 (-517)))) 83) (($ (-1153 (-874 (-349)))) 115) (($ (-1153 (-874 (-517)))) 104) (($ (-1153 (-377 (-874 (-349))))) 72) (($ (-1153 (-377 (-874 (-517))))) 58)) (-4155 (((-1158) $) 133)) (-2256 (((-787) $) 127) (($ (-583 (-300))) 122) (($ (-300)) 125) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 50) (($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) 51)))
+(((-69 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))) (-1073)) (T -69))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))))))
+((-4155 (((-1158) $) 32) (((-1158)) 31)) (-2256 (((-787) $) 35)))
+(((-70 |#1|) (-13 (-365) (-10 -7 (-15 -4155 ((-1158))))) (-1073)) (T -70))
+((-4155 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-70 *3)) (-14 *3 (-1073)))))
+(-13 (-365) (-10 -7 (-15 -4155 ((-1158)))))
+((-4155 (((-1158) $) 62)) (-2256 (((-787) $) 56) (($ (-623 (-632))) 47) (($ (-583 (-300))) 50) (($ (-300)) 53) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 46)))
+(((-71 |#1|) (-353) (-1073)) (T -71))
+NIL
+(-353)
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 119) (((-3 $ "failed") (-1153 (-286 (-517)))) 108) (((-3 $ "failed") (-1153 (-874 (-349)))) 141) (((-3 $ "failed") (-1153 (-874 (-517)))) 130) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 98) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 87)) (-3189 (($ (-1153 (-286 (-349)))) 115) (($ (-1153 (-286 (-517)))) 104) (($ (-1153 (-874 (-349)))) 137) (($ (-1153 (-874 (-517)))) 126) (($ (-1153 (-377 (-874 (-349))))) 94) (($ (-1153 (-377 (-874 (-517))))) 80)) (-4155 (((-1158) $) 73)) (-2256 (((-787) $) 27) (($ (-583 (-300))) 63) (($ (-300)) 59) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 66) (($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) 60)))
+(((-72 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) (-1073)) (T -72))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))))))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 125) (((-3 $ "failed") (-1153 (-286 (-517)))) 114) (((-3 $ "failed") (-1153 (-874 (-349)))) 147) (((-3 $ "failed") (-1153 (-874 (-517)))) 136) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 103) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 92)) (-3189 (($ (-1153 (-286 (-349)))) 121) (($ (-1153 (-286 (-517)))) 110) (($ (-1153 (-874 (-349)))) 143) (($ (-1153 (-874 (-517)))) 132) (($ (-1153 (-377 (-874 (-349))))) 99) (($ (-1153 (-377 (-874 (-517))))) 85)) (-4155 (((-1158) $) 78)) (-2256 (((-787) $) 70) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) NIL) (($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))) 65)))
+(((-73 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632))))))) (-1073) (-1073) (-1073)) (T -73))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))))))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 129) (((-3 $ "failed") (-1153 (-286 (-517)))) 118) (((-3 $ "failed") (-1153 (-874 (-349)))) 151) (((-3 $ "failed") (-1153 (-874 (-517)))) 140) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 107) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 96)) (-3189 (($ (-1153 (-286 (-349)))) 125) (($ (-1153 (-286 (-517)))) 114) (($ (-1153 (-874 (-349)))) 147) (($ (-1153 (-874 (-517)))) 136) (($ (-1153 (-377 (-874 (-349))))) 103) (($ (-1153 (-377 (-874 (-517))))) 89)) (-4155 (((-1158) $) 82)) (-2256 (((-787) $) 74) (($ (-583 (-300))) NIL) (($ (-300)) NIL) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) NIL) (($ (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))) 69)))
+(((-74 |#1| |#2| |#3|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632))))))) (-1073) (-1073) (-1073)) (T -74))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))))))
+((-1772 (((-3 $ "failed") (-286 (-349))) 77) (((-3 $ "failed") (-286 (-517))) 82) (((-3 $ "failed") (-874 (-349))) 87) (((-3 $ "failed") (-874 (-517))) 92) (((-3 $ "failed") (-377 (-874 (-349)))) 72) (((-3 $ "failed") (-377 (-874 (-517)))) 67)) (-3189 (($ (-286 (-349))) 75) (($ (-286 (-517))) 80) (($ (-874 (-349))) 85) (($ (-874 (-517))) 90) (($ (-377 (-874 (-349)))) 70) (($ (-377 (-874 (-517)))) 64)) (-4155 (((-1158) $) 61)) (-2256 (((-787) $) 49) (($ (-583 (-300))) 45) (($ (-300)) 55) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 53) (($ (-309 (-2276) (-2276 (QUOTE X)) (-632))) 46)))
+(((-75 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632)))))) (-1073)) (T -75))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1073)))))
+(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632))))))
+((-1772 (((-3 $ "failed") (-286 (-349))) 41) (((-3 $ "failed") (-286 (-517))) 46) (((-3 $ "failed") (-874 (-349))) 51) (((-3 $ "failed") (-874 (-517))) 56) (((-3 $ "failed") (-377 (-874 (-349)))) 36) (((-3 $ "failed") (-377 (-874 (-517)))) 31)) (-3189 (($ (-286 (-349))) 39) (($ (-286 (-517))) 44) (($ (-874 (-349))) 49) (($ (-874 (-517))) 54) (($ (-377 (-874 (-349)))) 34) (($ (-377 (-874 (-517)))) 28)) (-4155 (((-1158) $) 77)) (-2256 (((-787) $) 71) (($ (-583 (-300))) 62) (($ (-300)) 68) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 65) (($ (-309 (-2276) (-2276 (QUOTE X)) (-632))) 27)))
+(((-76 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632)))))) (-1073)) (T -76))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1073)))))
+(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276) (-2276 (QUOTE X)) (-632))))))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 84) (((-3 $ "failed") (-1153 (-286 (-517)))) 73) (((-3 $ "failed") (-1153 (-874 (-349)))) 106) (((-3 $ "failed") (-1153 (-874 (-517)))) 95) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 62) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 51)) (-3189 (($ (-1153 (-286 (-349)))) 80) (($ (-1153 (-286 (-517)))) 69) (($ (-1153 (-874 (-349)))) 102) (($ (-1153 (-874 (-517)))) 91) (($ (-1153 (-377 (-874 (-349))))) 58) (($ (-1153 (-377 (-874 (-517))))) 44)) (-4155 (((-1158) $) 122)) (-2256 (((-787) $) 116) (($ (-583 (-300))) 109) (($ (-300)) 36) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 112) (($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) 37)))
+(((-77 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632))))))) (-1073)) (T -77))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))))))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 137) (((-3 $ "failed") (-1153 (-286 (-517)))) 126) (((-3 $ "failed") (-1153 (-874 (-349)))) 158) (((-3 $ "failed") (-1153 (-874 (-517)))) 147) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 116) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 105)) (-3189 (($ (-1153 (-286 (-349)))) 133) (($ (-1153 (-286 (-517)))) 122) (($ (-1153 (-874 (-349)))) 154) (($ (-1153 (-874 (-517)))) 143) (($ (-1153 (-377 (-874 (-349))))) 112) (($ (-1153 (-377 (-874 (-517))))) 98)) (-4155 (((-1158) $) 91)) (-2256 (((-787) $) 85) (($ (-583 (-300))) 76) (($ (-300)) 83) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 81) (($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) 77)))
+(((-78 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) (-1073)) (T -78))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))))))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 73) (((-3 $ "failed") (-1153 (-286 (-517)))) 62) (((-3 $ "failed") (-1153 (-874 (-349)))) 95) (((-3 $ "failed") (-1153 (-874 (-517)))) 84) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 51) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 40)) (-3189 (($ (-1153 (-286 (-349)))) 69) (($ (-1153 (-286 (-517)))) 58) (($ (-1153 (-874 (-349)))) 91) (($ (-1153 (-874 (-517)))) 80) (($ (-1153 (-377 (-874 (-349))))) 47) (($ (-1153 (-377 (-874 (-517))))) 33)) (-4155 (((-1158) $) 121)) (-2256 (((-787) $) 115) (($ (-583 (-300))) 106) (($ (-300)) 112) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 110) (($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) 32)))
+(((-79 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632))))))) (-1073)) (T -79))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))))))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 90) (((-3 $ "failed") (-1153 (-286 (-517)))) 79) (((-3 $ "failed") (-1153 (-874 (-349)))) 112) (((-3 $ "failed") (-1153 (-874 (-517)))) 101) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 68) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 57)) (-3189 (($ (-1153 (-286 (-349)))) 86) (($ (-1153 (-286 (-517)))) 75) (($ (-1153 (-874 (-349)))) 108) (($ (-1153 (-874 (-517)))) 97) (($ (-1153 (-377 (-874 (-349))))) 64) (($ (-1153 (-377 (-874 (-517))))) 50)) (-4155 (((-1158) $) 43)) (-2256 (((-787) $) 36) (($ (-583 (-300))) 26) (($ (-300)) 29) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 32) (($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) 27)))
+(((-80 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632))))))) (-1073)) (T -80))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))))))
+((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 125) (((-3 $ "failed") (-623 (-874 (-517)))) 114) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 82) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 71)) (-3189 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 121) (($ (-623 (-874 (-517)))) 110) (($ (-623 (-377 (-874 (-349))))) 78) (($ (-623 (-377 (-874 (-517))))) 64)) (-4155 (((-1158) $) 57)) (-2256 (((-787) $) 43) (($ (-583 (-300))) 50) (($ (-300)) 39) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 47) (($ (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) 40)))
+(((-81 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632))))))) (-1073)) (T -81))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1073)))))
+(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))))))
+((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 103) (((-3 $ "failed") (-623 (-286 (-517)))) 92) (((-3 $ "failed") (-623 (-874 (-349)))) 124) (((-3 $ "failed") (-623 (-874 (-517)))) 113) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 81) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 70)) (-3189 (($ (-623 (-286 (-349)))) 99) (($ (-623 (-286 (-517)))) 88) (($ (-623 (-874 (-349)))) 120) (($ (-623 (-874 (-517)))) 109) (($ (-623 (-377 (-874 (-349))))) 77) (($ (-623 (-377 (-874 (-517))))) 63)) (-4155 (((-1158) $) 56)) (-2256 (((-787) $) 50) (($ (-583 (-300))) 44) (($ (-300)) 47) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 40) (($ (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) 41)))
+(((-82 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632))))))) (-1073)) (T -82))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1073)))))
+(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))))))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 99) (((-3 $ "failed") (-1153 (-286 (-517)))) 88) (((-3 $ "failed") (-1153 (-874 (-349)))) 121) (((-3 $ "failed") (-1153 (-874 (-517)))) 110) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 77) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 66)) (-3189 (($ (-1153 (-286 (-349)))) 95) (($ (-1153 (-286 (-517)))) 84) (($ (-1153 (-874 (-349)))) 117) (($ (-1153 (-874 (-517)))) 106) (($ (-1153 (-377 (-874 (-349))))) 73) (($ (-1153 (-377 (-874 (-517))))) 59)) (-4155 (((-1158) $) 45)) (-2256 (((-787) $) 39) (($ (-583 (-300))) 48) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 51) (($ (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) 36)))
+(((-83 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632))))))) (-1073)) (T -83))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))))))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 74) (((-3 $ "failed") (-1153 (-286 (-517)))) 63) (((-3 $ "failed") (-1153 (-874 (-349)))) 96) (((-3 $ "failed") (-1153 (-874 (-517)))) 85) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 52) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 41)) (-3189 (($ (-1153 (-286 (-349)))) 70) (($ (-1153 (-286 (-517)))) 59) (($ (-1153 (-874 (-349)))) 92) (($ (-1153 (-874 (-517)))) 81) (($ (-1153 (-377 (-874 (-349))))) 48) (($ (-1153 (-377 (-874 (-517))))) 34)) (-4155 (((-1158) $) 122)) (-2256 (((-787) $) 116) (($ (-583 (-300))) 107) (($ (-300)) 113) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 111) (($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) 33)))
+(((-84 |#1|) (-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))) (-1073)) (T -84))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1073)))))
+(-13 (-410) (-10 -8 (-15 -2256 ($ (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))))))
+((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 105) (((-3 $ "failed") (-623 (-286 (-517)))) 94) (((-3 $ "failed") (-623 (-874 (-349)))) 127) (((-3 $ "failed") (-623 (-874 (-517)))) 116) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 83) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 72)) (-3189 (($ (-623 (-286 (-349)))) 101) (($ (-623 (-286 (-517)))) 90) (($ (-623 (-874 (-349)))) 123) (($ (-623 (-874 (-517)))) 112) (($ (-623 (-377 (-874 (-349))))) 79) (($ (-623 (-377 (-874 (-517))))) 65)) (-4155 (((-1158) $) 58)) (-2256 (((-787) $) 52) (($ (-583 (-300))) 42) (($ (-300)) 49) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 47) (($ (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))) 43)))
+(((-85 |#1|) (-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632))))))) (-1073)) (T -85))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1073)))))
+(-13 (-354) (-10 -8 (-15 -2256 ($ (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))))))
+((-4155 (((-1158) $) 44)) (-2256 (((-787) $) 38) (($ (-1153 (-632))) 88) (($ (-583 (-300))) 29) (($ (-300)) 35) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 32)))
+(((-86 |#1|) (-409) (-1073)) (T -86))
+NIL
+(-409)
+((-1772 (((-3 $ "failed") (-286 (-349))) 42) (((-3 $ "failed") (-286 (-517))) 47) (((-3 $ "failed") (-874 (-349))) 52) (((-3 $ "failed") (-874 (-517))) 57) (((-3 $ "failed") (-377 (-874 (-349)))) 37) (((-3 $ "failed") (-377 (-874 (-517)))) 32)) (-3189 (($ (-286 (-349))) 40) (($ (-286 (-517))) 45) (($ (-874 (-349))) 50) (($ (-874 (-517))) 55) (($ (-377 (-874 (-349)))) 35) (($ (-377 (-874 (-517)))) 29)) (-4155 (((-1158) $) 88)) (-2256 (((-787) $) 82) (($ (-583 (-300))) 76) (($ (-300)) 79) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 73) (($ (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))) 28)))
+(((-87 |#1|) (-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))))) (-1073)) (T -87))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1073)))))
+(-13 (-366) (-10 -8 (-15 -2256 ($ (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))))))
+((-1653 (((-1153 (-623 |#1|)) (-623 |#1|)) 54)) (-2917 (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 (-583 (-843))))) |#2| (-843)) 44)) (-3370 (((-2 (|:| |minor| (-583 (-843))) (|:| -2131 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843)) 62 (|has| |#1| (-333)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -2917 ((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 (-583 (-843))))) |#2| (-843))) (-15 -1653 ((-1153 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -3370 ((-2 (|:| |minor| (-583 (-843))) (|:| -2131 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |noBranch|)) (-509) (-593 |#1|)) (T -88))
+((-3370 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2131 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))) (-1653 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))) (-2917 (*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
+(-10 -7 (-15 -2917 ((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 (-583 (-843))))) |#2| (-843))) (-15 -1653 ((-1153 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-333)) (-15 -3370 ((-2 (|:| |minor| (-583 (-843))) (|:| -2131 |#2|) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 |#2|))) |#2| (-843))) |noBranch|))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4139 ((|#1| $) 35)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-2886 ((|#1| |#1| $) 30)) (-1200 ((|#1| $) 28)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) NIL)) (-1710 (($ |#1| $) 31)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4006 ((|#1| $) 29)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 16)) (-1746 (($) 39)) (-1694 (((-703) $) 26)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 15)) (-2256 (((-787) $) 25 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) NIL)) (-4033 (($ (-583 |#1|)) 37)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 13 (|has| |#1| (-1003)))) (-2296 (((-703) $) 10 (|has| $ (-6 -4180)))))
+(((-89 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -4033 ($ (-583 |#1|))))) (-1003)) (T -89))
+((-4033 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3)))))
+(-13 (-1022 |#1|) (-10 -8 (-15 -4033 ($ (-583 |#1|)))))
+((-1814 (($ $) 10)) (-1827 (($ $) 12)))
+(((-90 |#1|) (-10 -8 (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)))
+((-1788 (($ $) 11)) (-1765 (($ $) 10)) (-1814 (($ $) 9)) (-1827 (($ $) 8)) (-1802 (($ $) 7)) (-1777 (($ $) 6)))
+(((-91) (-1184)) (T -91))
+((-1788 (*1 *1 *1) (-4 *1 (-91))) (-1765 (*1 *1 *1) (-4 *1 (-91))) (-1814 (*1 *1 *1) (-4 *1 (-91))) (-1827 (*1 *1 *1) (-4 *1 (-91))) (-1802 (*1 *1 *1) (-4 *1 (-91))) (-1777 (*1 *1 *1) (-4 *1 (-91))))
+(-13 (-10 -8 (-15 -1777 ($ $)) (-15 -1802 ($ $)) (-15 -1827 ($ $)) (-15 -1814 ($ $)) (-15 -1765 ($ $)) (-15 -1788 ($ $))))
+((-2750 (((-107) $ $) NIL)) (-1259 (((-349) (-1056) (-349)) 42) (((-349) (-1056) (-1056) (-349)) 41)) (-2102 (((-349) (-349)) 33)) (-3888 (((-1158)) 36)) (-3985 (((-1056) $) NIL)) (-1884 (((-349) (-1056) (-1056)) 46) (((-349) (-1056)) 48)) (-3206 (((-1021) $) NIL)) (-2874 (((-349) (-1056) (-1056)) 47)) (-3559 (((-349) (-1056) (-1056)) 49) (((-349) (-1056)) 50)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-92) (-13 (-1003) (-10 -7 (-15 -1884 ((-349) (-1056) (-1056))) (-15 -1884 ((-349) (-1056))) (-15 -3559 ((-349) (-1056) (-1056))) (-15 -3559 ((-349) (-1056))) (-15 -2874 ((-349) (-1056) (-1056))) (-15 -3888 ((-1158))) (-15 -2102 ((-349) (-349))) (-15 -1259 ((-349) (-1056) (-349))) (-15 -1259 ((-349) (-1056) (-1056) (-349))) (-6 -4180)))) (T -92))
+((-1884 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3559 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3559 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-2874 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) (-3888 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-92)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))) (-1259 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))) (-1259 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))))
+(-13 (-1003) (-10 -7 (-15 -1884 ((-349) (-1056) (-1056))) (-15 -1884 ((-349) (-1056))) (-15 -3559 ((-349) (-1056) (-1056))) (-15 -3559 ((-349) (-1056))) (-15 -2874 ((-349) (-1056) (-1056))) (-15 -3888 ((-1158))) (-15 -2102 ((-349) (-349))) (-15 -1259 ((-349) (-1056) (-349))) (-15 -1259 ((-349) (-1056) (-1056) (-349))) (-6 -4180)))
+NIL
+(((-93) (-1184)) (T -93))
+NIL
+(-13 (-10 -7 (-6 -4180) (-6 (-4182 "*")) (-6 -4181) (-6 -4177) (-6 -4175) (-6 -4174) (-6 -4173) (-6 -4178) (-6 -4172) (-6 -4171) (-6 -4170) (-6 -4169) (-6 -4168) (-6 -4176) (-6 -4179) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4167)))
+((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2859 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-517))) 22)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 14)) (-3206 (((-1021) $) NIL)) (-1449 ((|#1| $ |#1|) 11)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 20)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 8 T CONST)) (-1547 (((-107) $ $) 10)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) 28) (($ $ (-703)) NIL) (($ $ (-517)) 16)) (* (($ $ $) 29)))
+(((-94 |#1|) (-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2859 ($ (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1| (-517)))))) (-961)) (T -94))
+((-2859 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2859 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) (-2859 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3)))))
+(-13 (-442) (-258 |#1| |#1|) (-10 -8 (-15 -2859 ($ (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2859 ($ (-1 |#1| |#1| (-517))))))
+((-2870 (((-388 |#2|) |#2| (-583 |#2|)) 10) (((-388 |#2|) |#2| |#2|) 11)))
+(((-95 |#1| |#2|) (-10 -7 (-15 -2870 ((-388 |#2|) |#2| |#2|)) (-15 -2870 ((-388 |#2|) |#2| (-583 |#2|)))) (-13 (-421) (-134)) (-1130 |#1|)) (T -95))
+((-2870 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))) (-2870 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -2870 ((-388 |#2|) |#2| |#2|)) (-15 -2870 ((-388 |#2|) |#2| (-583 |#2|))))
+((-2750 (((-107) $ $) 9)))
+(((-96 |#1|) (-10 -8 (-15 -2750 ((-107) |#1| |#1|))) (-97)) (T -96))
+NIL
+(-10 -8 (-15 -2750 ((-107) |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-1547 (((-107) $ $) 6)))
+(((-97) (-1184)) (T -97))
+((-2750 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) (-1547 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
+(-13 (-10 -8 (-15 -1547 ((-107) $ $)) (-15 -2750 ((-107) $ $))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) 13 (|has| $ (-6 -4181)))) (-2204 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3449 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3853 (($ $ (-583 |#1|)) 15)) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 11)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 17)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2188 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1416 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)) 35)) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 10)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) 12)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 9)) (-1746 (($) 16)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2776 (($ (-703) |#1|) 19)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-98 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2776 ($ (-703) |#1|)) (-15 -3853 ($ $ (-583 |#1|))) (-15 -2188 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2188 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|))))) (-1003)) (T -98))
+((-2776 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1003)))) (-3853 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-2188 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003)))) (-2188 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) (-1416 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) (-1416 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2776 ($ (-703) |#1|)) (-15 -3853 ($ $ (-583 |#1|))) (-15 -2188 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2188 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1416 ($ $ |#1| (-1 (-583 |#1|) |#1| |#1| |#1|)))))
+((-2914 ((|#3| |#2| |#2|) 28)) (-3568 ((|#1| |#2| |#2|) 38 (|has| |#1| (-6 (-4182 "*"))))) (-1873 ((|#3| |#2| |#2|) 29)) (-4037 ((|#1| |#2|) 41 (|has| |#1| (-6 (-4182 "*"))))))
+(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2914 (|#3| |#2| |#2|)) (-15 -1873 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4182 "*"))) (PROGN (-15 -3568 (|#1| |#2| |#2|)) (-15 -4037 (|#1| |#2|))) |noBranch|)) (-961) (-1130 |#1|) (-621 |#1| |#4| |#5|) (-343 |#1|) (-343 |#1|)) (T -99))
+((-4037 (*1 *2 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))) (-3568 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))) (-1873 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))) (-2914 (*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
+(-10 -7 (-15 -2914 (|#3| |#2| |#2|)) (-15 -1873 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4182 "*"))) (PROGN (-15 -3568 (|#1| |#2| |#2|)) (-15 -4037 (|#1| |#2|))) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3015 (((-583 (-1073))) 32)) (-3679 (((-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199)))) (-1073)) 35)) (-1547 (((-107) $ $) NIL)))
+(((-100) (-13 (-1003) (-10 -7 (-15 -3015 ((-583 (-1073)))) (-15 -3679 ((-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199)))) (-1073))) (-6 -4180)))) (T -100))
+((-3015 (*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-100)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199))))) (-5 *1 (-100)))))
+(-13 (-1003) (-10 -7 (-15 -3015 ((-583 (-1073)))) (-15 -3679 ((-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199)))) (-1073))) (-6 -4180)))
+((-1222 (($ (-583 |#2|)) 11)))
+(((-101 |#1| |#2|) (-10 -8 (-15 -1222 (|#1| (-583 |#2|)))) (-102 |#2|) (-1108)) (T -101))
+NIL
+(-10 -8 (-15 -1222 (|#1| (-583 |#2|))))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-102 |#1|) (-1184) (-1108)) (T -102))
+((-1222 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-102 *3)))) (-4006 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))) (-1710 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))))
+(-13 (-456 |t#1|) (-10 -8 (-6 -4181) (-15 -1222 ($ (-583 |t#1|))) (-15 -4006 (|t#1| $)) (-15 -1710 ($ |t#1| $)) (-15 -3309 (|t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-517) $) NIL (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2597 (((-517) $) NIL (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL) (((-920 2) $) 9)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-517) $) NIL (|has| (-517) (-502)))) (-4146 (($ (-377 (-517))) 8)) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1667 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-103) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 2) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -4146 ($ (-377 (-517))))))) (T -103))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) (-4146 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))))
+(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 2) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -4146 ($ (-377 (-517))))))
+((-2750 (((-107) $ $) NIL)) (-3733 (((-1021) $ (-1021)) 23)) (-1723 (($ $ (-1056)) 17)) (-2595 (((-3 (-1021) "failed") $) 22)) (-1457 (((-1021) $) 20)) (-1237 (((-1021) $ (-1021)) 25)) (-2607 (((-1021) $) 24)) (-1513 (($ (-358)) NIL) (($ (-358) (-1056)) 16)) (-1207 (((-358) $) NIL)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2463 (($ $) 18)) (-1547 (((-107) $ $) NIL)))
+(((-104) (-13 (-334 (-358) (-1021)) (-10 -8 (-15 -2595 ((-3 (-1021) "failed") $)) (-15 -2607 ((-1021) $)) (-15 -1237 ((-1021) $ (-1021)))))) (T -104))
+((-2595 (*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-2607 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) (-1237 (*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))))
+(-13 (-334 (-358) (-1021)) (-10 -8 (-15 -2595 ((-3 (-1021) "failed") $)) (-15 -2607 ((-1021) $)) (-15 -1237 ((-1021) $ (-1021)))))
+((-2750 (((-107) $ $) NIL)) (-1460 (($ $) NIL)) (-2775 (($ $ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-107) $ (-1121 (-517)) (-107)) NIL (|has| $ (-6 -4181))) (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-2052 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3225 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1445 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4181)))) (-1377 (((-107) $ (-517)) NIL)) (-2607 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1536 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-4025 (($ $ $) NIL)) (-2630 (($ $) NIL)) (-1888 (($ $ $) NIL)) (-3462 (($ (-703) (-107)) 8)) (-1514 (($ $ $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL)) (-3237 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2560 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL)) (-1433 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-107) (-107) (-107)) $ $) NIL) (($ (-1 (-107) (-107)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-107) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2565 (($ $ (-107)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1941 (((-583 (-107)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (($ $ (-1121 (-517))) NIL) (((-107) $ (-517)) NIL) (((-107) $ (-517) (-107)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3217 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2276 (($ (-583 (-107))) NIL)) (-2452 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2256 (((-787) $) NIL)) (-1398 (($ (-703) (-107)) 9)) (-3675 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-4035 (($ $ $) NIL)) (-2207 (($ $) NIL)) (-2391 (($ $ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-2382 (($ $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-105) (-13 (-118) (-10 -8 (-15 -1398 ($ (-703) (-107)))))) (T -105))
+((-1398 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))))
+(-13 (-118) (-10 -8 (-15 -1398 ($ (-703) (-107)))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-106 |#1| |#2|) (-1184) (-961) (-961)) (T -106))
+NIL
+(-13 (-585 |t#1|) (-967 |t#2|) (-10 -7 (-6 -4175) (-6 -4174)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-967 |#2|) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-1460 (($ $) 12)) (-2775 (($ $ $) 17)) (-1569 (($) 8 T CONST)) (-2233 (((-107) $) 7)) (-1611 (((-703)) 24)) (-3209 (($) 30)) (-4025 (($ $ $) 15)) (-2630 (($ $) 10)) (-1888 (($ $ $) 18)) (-1514 (($ $ $) 19)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1549 (((-843) $) 29)) (-3985 (((-1056) $) NIL)) (-3448 (($ (-843)) 28)) (-3886 (($ $ $) 21)) (-3206 (((-1021) $) NIL)) (-1425 (($) 9 T CONST)) (-3645 (((-493) $) 36)) (-2256 (((-787) $) 39)) (-4035 (($ $ $) 13)) (-2207 (($ $) 11)) (-2391 (($ $ $) 16)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 20)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 22)) (-2382 (($ $ $) 14)))
+(((-107) (-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1569 ($) -1619) (-15 -1425 ($) -1619) (-15 -2207 ($ $)) (-15 -2630 ($ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -1514 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -3886 ($ $ $)) (-15 -2233 ((-107) $))))) (T -107))
+((-1569 (*1 *1) (-5 *1 (-107))) (-1425 (*1 *1) (-5 *1 (-107))) (-2207 (*1 *1 *1) (-5 *1 (-107))) (-2630 (*1 *1 *1) (-5 *1 (-107))) (-4035 (*1 *1 *1 *1) (-5 *1 (-107))) (-4025 (*1 *1 *1 *1) (-5 *1 (-107))) (-2775 (*1 *1 *1 *1) (-5 *1 (-107))) (-1514 (*1 *1 *1 *1) (-5 *1 (-107))) (-1888 (*1 *1 *1 *1) (-5 *1 (-107))) (-3886 (*1 *1 *1 *1) (-5 *1 (-107))) (-2233 (*1 *1 *1) (-5 *1 (-107))))
+(-13 (-779) (-338) (-598) (-558 (-493)) (-10 -8 (-15 -1569 ($) -1619) (-15 -1425 ($) -1619) (-15 -2207 ($ $)) (-15 -2630 ($ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -1514 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -3886 ($ $ $)) (-15 -2233 ((-107) $))))
+((-3269 (((-3 (-1 |#1| (-583 |#1|)) "failed") (-109)) 18) (((-109) (-109) (-1 |#1| |#1|)) 13) (((-109) (-109) (-1 |#1| (-583 |#1|))) 11) (((-3 |#1| "failed") (-109) (-583 |#1|)) 20)) (-1626 (((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109)) 24) (((-109) (-109) (-1 |#1| |#1|)) 30) (((-109) (-109) (-583 (-1 |#1| (-583 |#1|)))) 26)) (-1496 (((-109) |#1|) 53 (|has| |#1| (-779)))) (-3412 (((-3 |#1| "failed") (-109)) 48 (|has| |#1| (-779)))))
+(((-108 |#1|) (-10 -7 (-15 -3269 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3269 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3269 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3269 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1626 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1626 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1626 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1496 ((-109) |#1|)) (-15 -3412 ((-3 |#1| "failed") (-109)))) |noBranch|)) (-1003)) (T -108))
+((-3412 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2)))) (-1496 (*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-1626 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-1626 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3269 (*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) (-3269 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3269 (*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) (-3269 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003)))))
+(-10 -7 (-15 -3269 ((-3 |#1| "failed") (-109) (-583 |#1|))) (-15 -3269 ((-109) (-109) (-1 |#1| (-583 |#1|)))) (-15 -3269 ((-109) (-109) (-1 |#1| |#1|))) (-15 -3269 ((-3 (-1 |#1| (-583 |#1|)) "failed") (-109))) (-15 -1626 ((-109) (-109) (-583 (-1 |#1| (-583 |#1|))))) (-15 -1626 ((-109) (-109) (-1 |#1| |#1|))) (-15 -1626 ((-3 (-583 (-1 |#1| (-583 |#1|))) "failed") (-109))) (IF (|has| |#1| (-779)) (PROGN (-15 -1496 ((-109) |#1|)) (-15 -3412 ((-3 |#1| "failed") (-109)))) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-2932 (((-703) $) 68) (($ $ (-703)) 30)) (-2163 (((-107) $) 32)) (-2200 (($ $ (-1056) (-706)) 26)) (-1351 (($ $ (-44 (-1056) (-706))) 13)) (-2994 (((-3 (-706) "failed") $ (-1056)) 24)) (-2397 (((-44 (-1056) (-706)) $) 12)) (-3072 (($ (-1073)) 15) (($ (-1073) (-703)) 20)) (-3583 (((-107) $) 31)) (-2139 (((-107) $) 33)) (-1207 (((-1073) $) 8)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-1609 (((-107) $ (-1073)) 10)) (-1288 (($ $ (-1 (-493) (-583 (-493)))) 50) (((-3 (-1 (-493) (-583 (-493))) "failed") $) 54)) (-3206 (((-1021) $) NIL)) (-1559 (((-107) $ (-1056)) 29)) (-2007 (($ $ (-1 (-107) $ $)) 35)) (-1242 (((-3 (-1 (-787) (-583 (-787))) "failed") $) 52) (($ $ (-1 (-787) (-583 (-787)))) 41) (($ $ (-1 (-787) (-787))) 43)) (-3150 (($ $ (-1056)) 45)) (-2433 (($ $) 61)) (-1722 (($ $ (-1 (-107) $ $)) 36)) (-2256 (((-787) $) 48)) (-2107 (($ $ (-1056)) 27)) (-2949 (((-3 (-703) "failed") $) 56)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 67)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 72)))
+(((-109) (-13 (-779) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -2397 ((-44 (-1056) (-706)) $)) (-15 -2433 ($ $)) (-15 -3072 ($ (-1073))) (-15 -3072 ($ (-1073) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -3583 ((-107) $)) (-15 -2163 ((-107) $)) (-15 -2139 ((-107) $)) (-15 -2932 ((-703) $)) (-15 -2932 ($ $ (-703))) (-15 -2007 ($ $ (-1 (-107) $ $))) (-15 -1722 ($ $ (-1 (-107) $ $))) (-15 -1242 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1242 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1242 ($ $ (-1 (-787) (-787)))) (-15 -1288 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1288 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -1609 ((-107) $ (-1073))) (-15 -1559 ((-107) $ (-1056))) (-15 -2107 ($ $ (-1056))) (-15 -3150 ($ $ (-1056))) (-15 -2994 ((-3 (-706) "failed") $ (-1056))) (-15 -2200 ($ $ (-1056) (-706))) (-15 -1351 ($ $ (-44 (-1056) (-706))))))) (T -109))
+((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) (-2397 (*1 *2 *1) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109)))) (-2433 (*1 *1 *1) (-5 *1 (-109))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) (-3072 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *1 (-109)))) (-2949 (*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))) (-3583 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))) (-2932 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2932 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1722 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))) (-1242 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) (-1242 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) (-1288 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1288 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-109)))) (-1559 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-109)))) (-2107 (*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))) (-3150 (*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))) (-2994 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-706)) (-5 *1 (-109)))) (-2200 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-706)) (-5 *1 (-109)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109)))))
+(-13 (-779) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -2397 ((-44 (-1056) (-706)) $)) (-15 -2433 ($ $)) (-15 -3072 ($ (-1073))) (-15 -3072 ($ (-1073) (-703))) (-15 -2949 ((-3 (-703) "failed") $)) (-15 -3583 ((-107) $)) (-15 -2163 ((-107) $)) (-15 -2139 ((-107) $)) (-15 -2932 ((-703) $)) (-15 -2932 ($ $ (-703))) (-15 -2007 ($ $ (-1 (-107) $ $))) (-15 -1722 ($ $ (-1 (-107) $ $))) (-15 -1242 ((-3 (-1 (-787) (-583 (-787))) "failed") $)) (-15 -1242 ($ $ (-1 (-787) (-583 (-787))))) (-15 -1242 ($ $ (-1 (-787) (-787)))) (-15 -1288 ($ $ (-1 (-493) (-583 (-493))))) (-15 -1288 ((-3 (-1 (-493) (-583 (-493))) "failed") $)) (-15 -1609 ((-107) $ (-1073))) (-15 -1559 ((-107) $ (-1056))) (-15 -2107 ($ $ (-1056))) (-15 -3150 ($ $ (-1056))) (-15 -2994 ((-3 (-706) "failed") $ (-1056))) (-15 -2200 ($ $ (-1056) (-706))) (-15 -1351 ($ $ (-44 (-1056) (-706))))))
+((-2496 (((-517) |#2|) 36)))
+(((-110 |#1| |#2|) (-10 -7 (-15 -2496 ((-517) |#2|))) (-13 (-333) (-952 (-377 (-517)))) (-1130 |#1|)) (T -110))
+((-2496 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -2496 ((-517) |#2|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $ (-517)) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3959 (($ (-1069 (-517)) (-517)) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3531 (($ $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3972 (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 (((-517)) NIL)) (-3340 (((-517) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1672 (($ $ (-517)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-1054 (-517)) $) NIL)) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-3383 (((-517) $ (-517)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-111 |#1|) (-793 |#1|) (-517)) (T -111))
+NIL
+(-793 |#1|)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-111 |#1|) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-111 |#1|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-111 |#1|) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-3189 (((-111 |#1|) $) NIL) (((-1073) $) NIL (|has| (-111 |#1|) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-111 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-111 |#1|) (-952 (-517))))) (-2869 (($ $) NIL) (($ (-517) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-111 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-111 |#1|))) (|:| |vec| (-1153 (-111 |#1|)))) (-623 $) (-1153 $)) NIL) (((-623 (-111 |#1|)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-111 |#1|) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-111 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-111 |#1|) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-111 |#1|) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-111 |#1|) (-1049)))) (-2475 (((-107) $) NIL (|has| (-111 |#1|) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-3099 (($ $ $) NIL (|has| (-111 |#1|) (-779)))) (-1893 (($ (-1 (-111 |#1|) (-111 |#1|)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-111 |#1|) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-111 |#1|) (-278)))) (-2597 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-111 |#1|) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-111 |#1|)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-111 |#1|) (-111 |#1|)) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-265 (-111 |#1|))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-265 (-111 |#1|)))) NIL (|has| (-111 |#1|) (-280 (-111 |#1|)))) (($ $ (-583 (-1073)) (-583 (-111 |#1|))) NIL (|has| (-111 |#1|) (-478 (-1073) (-111 |#1|)))) (($ $ (-1073) (-111 |#1|)) NIL (|has| (-111 |#1|) (-478 (-1073) (-111 |#1|))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-111 |#1|)) NIL (|has| (-111 |#1|) (-258 (-111 |#1|) (-111 |#1|))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-111 |#1|) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-111 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-111 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-111 |#1|) (-937))) (((-199) $) NIL (|has| (-111 |#1|) (-937)))) (-2005 (((-157 (-377 (-517))) $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-111 |#1|)) NIL) (($ (-1073)) NIL (|has| (-111 |#1|) (-952 (-1073))))) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-111 |#1|) (-831))) (|has| (-111 |#1|) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-111 |#1|) $) NIL (|has| (-111 |#1|) (-502)))) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ (-517)) NIL)) (-3710 (($ $) NIL (|has| (-111 |#1|) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-111 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-111 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-111 |#1|) (-822 (-1073)))) (($ $ (-1 (-111 |#1|) (-111 |#1|)) (-703)) NIL) (($ $ (-1 (-111 |#1|) (-111 |#1|))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-111 |#1|) (-779)))) (-1667 (($ $ $) NIL) (($ (-111 |#1|) (-111 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-111 |#1|) $) NIL) (($ $ (-111 |#1|)) NIL)))
+(((-112 |#1|) (-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) (-517)) (T -112))
+((-3383 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) (-2869 (*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))))
+(-13 (-909 (-111 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $))))
+((-2411 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 48) (($ $ "right" $) 50)) (-3063 (((-583 $) $) 27)) (-1272 (((-107) $ $) 32)) (-2787 (((-107) |#2| $) 36)) (-3992 (((-583 |#2|) $) 22)) (-1763 (((-107) $) 16)) (-1449 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2655 (((-107) $) 45)) (-2256 (((-787) $) 41)) (-1479 (((-583 $) $) 28)) (-1547 (((-107) $ $) 34)) (-2296 (((-703) $) 43)))
+(((-113 |#1| |#2|) (-10 -8 (-15 -2411 (|#1| |#1| "right" |#1|)) (-15 -2411 (|#1| |#1| "left" |#1|)) (-15 -1449 (|#1| |#1| "right")) (-15 -1449 (|#1| |#1| "left")) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -3992 ((-583 |#2|) |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -2296 ((-703) |#1|))) (-114 |#2|) (-1108)) (T -113))
+NIL
+(-10 -8 (-15 -2411 (|#1| |#1| "right" |#1|)) (-15 -2411 (|#1| |#1| "left" |#1|)) (-15 -1449 (|#1| |#1| "right")) (-15 -1449 (|#1| |#1| "left")) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -3992 ((-583 |#2|) |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -2787 ((-107) |#2| |#1|)) (-15 -2296 ((-703) |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 52 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 54 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) (($ $ "left" $) 55 (|has| $ (-6 -4181))) (($ $ "right" $) 53 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-3652 (($ $) 57)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3639 (($ $) 59)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-114 |#1|) (-1184) (-1108)) (T -114))
+((-3639 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-3652 (*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-2411 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-3449 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108)))) (-2411 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) (-2204 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108)))))
+(-13 (-926 |t#1|) (-10 -8 (-15 -3639 ($ $)) (-15 -1449 ($ $ "left")) (-15 -3652 ($ $)) (-15 -1449 ($ $ "right")) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2411 ($ $ "left" $)) (-15 -3449 ($ $ $)) (-15 -2411 ($ $ "right" $)) (-15 -2204 ($ $ $))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-1327 (((-107) |#1|) 24)) (-3803 (((-703) (-703)) 23) (((-703)) 22)) (-3879 (((-107) |#1| (-107)) 25) (((-107) |#1|) 26)))
+(((-115 |#1|) (-10 -7 (-15 -3879 ((-107) |#1|)) (-15 -3879 ((-107) |#1| (-107))) (-15 -3803 ((-703))) (-15 -3803 ((-703) (-703))) (-15 -1327 ((-107) |#1|))) (-1130 (-517))) (T -115))
+((-1327 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3803 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3803 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3879 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) (-3879 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))))
+(-10 -7 (-15 -3879 ((-107) |#1|)) (-15 -3879 ((-107) |#1| (-107))) (-15 -3803 ((-703))) (-15 -3803 ((-703) (-703))) (-15 -1327 ((-107) |#1|)))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 15)) (-1313 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2204 (($ $ $) 18 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 20 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 17)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 23)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 19)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2672 (($ |#1| $) 24)) (-1710 (($ |#1| $) 10)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 8)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3288 (($ (-583 |#1|)) 12)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-116 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3288 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)) (-15 -2672 ($ |#1| $)) (-15 -1313 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-779)) (T -116))
+((-3288 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-2672 (*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) (-1313 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3288 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)) (-15 -2672 ($ |#1| $)) (-15 -1313 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-1460 (($ $) 14)) (-2630 (($ $) 11)) (-1888 (($ $ $) 24)) (-1514 (($ $ $) 22)) (-2207 (($ $) 12)) (-2391 (($ $ $) 20)) (-2382 (($ $ $) 18)))
+(((-117 |#1|) (-10 -8 (-15 -1888 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|))) (-118)) (T -117))
+NIL
+(-10 -8 (-15 -1888 (|#1| |#1| |#1|)) (-15 -1514 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -1460 (|#1| |#1|)) (-15 -2382 (|#1| |#1| |#1|)) (-15 -2391 (|#1| |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-1460 (($ $) 104)) (-2775 (($ $ $) 25)) (-1668 (((-1158) $ (-517) (-517)) 67 (|has| $ (-6 -4181)))) (-2044 (((-107) $) 99 (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) 93)) (-2034 (($ $) 103 (-12 (|has| (-107) (-779)) (|has| $ (-6 -4181)))) (($ (-1 (-107) (-107) (-107)) $) 102 (|has| $ (-6 -4181)))) (-3166 (($ $) 98 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) 92)) (-2953 (((-107) $ (-703)) 38)) (-2411 (((-107) $ (-1121 (-517)) (-107)) 89 (|has| $ (-6 -4181))) (((-107) $ (-517) (-107)) 55 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-107)) $) 72 (|has| $ (-6 -4180)))) (-3092 (($) 39 T CONST)) (-4020 (($ $) 101 (|has| $ (-6 -4181)))) (-3093 (($ $) 91)) (-1679 (($ $) 69 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-1 (-107) (-107)) $) 73 (|has| $ (-6 -4180))) (($ (-107) $) 70 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-3225 (((-107) (-1 (-107) (-107) (-107)) $) 75 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) 74 (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) 71 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-1445 (((-107) $ (-517) (-107)) 54 (|has| $ (-6 -4181)))) (-1377 (((-107) $ (-517)) 56)) (-2607 (((-517) (-107) $ (-517)) 96 (|has| (-107) (-1003))) (((-517) (-107) $) 95 (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) 94)) (-1536 (((-583 (-107)) $) 46 (|has| $ (-6 -4180)))) (-4025 (($ $ $) 26)) (-2630 (($ $) 31)) (-1888 (($ $ $) 28)) (-3462 (($ (-703) (-107)) 78)) (-1514 (($ $ $) 29)) (-2550 (((-107) $ (-703)) 37)) (-3243 (((-517) $) 64 (|has| (-517) (-779)))) (-2967 (($ $ $) 13)) (-3237 (($ $ $) 97 (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) 90)) (-2560 (((-583 (-107)) $) 47 (|has| $ (-6 -4180)))) (-2787 (((-107) (-107) $) 49 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 63 (|has| (-517) (-779)))) (-3099 (($ $ $) 14)) (-1433 (($ (-1 (-107) (-107)) $) 42 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-107) (-107) (-107)) $ $) 83) (($ (-1 (-107) (-107)) $) 41)) (-3847 (((-107) $ (-703)) 36)) (-3985 (((-1056) $) 9)) (-2620 (($ $ $ (-517)) 88) (($ (-107) $ (-517)) 87)) (-1857 (((-583 (-517)) $) 61)) (-4088 (((-107) (-517) $) 60)) (-3206 (((-1021) $) 10)) (-1647 (((-107) $) 65 (|has| (-517) (-779)))) (-2887 (((-3 (-107) "failed") (-1 (-107) (-107)) $) 76)) (-2565 (($ $ (-107)) 66 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-107)) $) 44 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-107)) (-583 (-107))) 53 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) 52 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) 51 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) 50 (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3792 (((-107) $ $) 32)) (-4042 (((-107) (-107) $) 62 (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1941 (((-583 (-107)) $) 59)) (-3619 (((-107) $) 35)) (-1746 (($) 34)) (-1449 (($ $ (-1121 (-517))) 84) (((-107) $ (-517)) 58) (((-107) $ (-517) (-107)) 57)) (-3750 (($ $ (-1121 (-517))) 86) (($ $ (-517)) 85)) (-3217 (((-703) (-107) $) 48 (-12 (|has| (-107) (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) (-107)) $) 45 (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) 100 (|has| $ (-6 -4181)))) (-2433 (($ $) 33)) (-3645 (((-493) $) 68 (|has| (-107) (-558 (-493))))) (-2276 (($ (-583 (-107))) 77)) (-2452 (($ (-583 $)) 82) (($ $ $) 81) (($ (-107) $) 80) (($ $ (-107)) 79)) (-2256 (((-787) $) 11)) (-3675 (((-107) (-1 (-107) (-107)) $) 43 (|has| $ (-6 -4180)))) (-4035 (($ $ $) 27)) (-2207 (($ $) 30)) (-2391 (($ $ $) 106)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-2382 (($ $ $) 105)) (-2296 (((-703) $) 40 (|has| $ (-6 -4180)))))
+(((-118) (-1184)) (T -118))
+((-2630 (*1 *1 *1) (-4 *1 (-118))) (-2207 (*1 *1 *1) (-4 *1 (-118))) (-1514 (*1 *1 *1 *1) (-4 *1 (-118))) (-1888 (*1 *1 *1 *1) (-4 *1 (-118))) (-4035 (*1 *1 *1 *1) (-4 *1 (-118))) (-4025 (*1 *1 *1 *1) (-4 *1 (-118))) (-2775 (*1 *1 *1 *1) (-4 *1 (-118))))
+(-13 (-779) (-598) (-19 (-107)) (-10 -8 (-15 -2630 ($ $)) (-15 -2207 ($ $)) (-15 -1514 ($ $ $)) (-15 -1888 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2775 ($ $ $))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-107)) . T) ((-558 (-493)) |has| (-107) (-558 (-493))) ((-258 (-517) (-107)) . T) ((-260 (-517) (-107)) . T) ((-280 (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-343 (-107)) . T) ((-456 (-107)) . T) ((-550 (-517) (-107)) . T) ((-478 (-107) (-107)) -12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))) ((-588 (-107)) . T) ((-598) . T) ((-19 (-107)) . T) ((-779) . T) ((-1003) . T) ((-1108) . T))
+((-1433 (($ (-1 |#2| |#2|) $) 22)) (-2433 (($ $) 16)) (-2296 (((-703) $) 24)))
+(((-119 |#1| |#2|) (-10 -8 (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2433 (|#1| |#1|))) (-120 |#2|) (-1003)) (T -119))
+NIL
+(-10 -8 (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2433 (|#1| |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 52 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 54 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) (($ $ "left" $) 55 (|has| $ (-6 -4181))) (($ $ "right" $) 53 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-3652 (($ $) 57)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 60)) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3639 (($ $) 59)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-120 |#1|) (-1184) (-1003)) (T -120))
+((-4101 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003)))))
+(-13 (-114 |t#1|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -4101 ($ $ |t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-114 |#1|) . T) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 15)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) 19 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 20 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 18 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 21)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-1710 (($ |#1| $) 10)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 8)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 17)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3993 (($ (-583 |#1|)) 12)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-121 |#1|) (-13 (-120 |#1|) (-10 -8 (-6 -4181) (-15 -3993 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $)))) (-779)) (T -121))
+((-3993 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))) (-1710 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))))
+(-13 (-120 |#1|) (-10 -8 (-6 -4181) (-15 -3993 ($ (-583 |#1|))) (-15 -1710 ($ |#1| $))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 24)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) 26 (|has| $ (-6 -4181)))) (-2204 (($ $ $) 30 (|has| $ (-6 -4181)))) (-3449 (($ $ $) 28 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 20)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4101 (($ $ |#1| $) 15)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 19)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) 21)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 18)) (-1746 (($) 11)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3331 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 10 (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-122 |#1|) (-13 (-120 |#1|) (-10 -8 (-15 -3331 ($ |#1|)) (-15 -3331 ($ $ |#1| $)))) (-1003)) (T -122))
+((-3331 (*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) (-3331 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))))
+(-13 (-120 |#1|) (-10 -8 (-15 -3331 ($ |#1|)) (-15 -3331 ($ $ |#1| $))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15)))
+(((-123) (-1184)) (T -123))
+((-4038 (*1 *1 *1 *1) (|partial| -4 *1 (-123))))
+(-13 (-23) (-10 -8 (-15 -4038 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2750 (((-107) $ $) 7)) (-3892 (((-1158) $ (-703)) 19)) (-2607 (((-703) $) 20)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
+(((-124) (-1184)) (T -124))
+((-2607 (*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) (-3892 (*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1158)))))
+(-13 (-779) (-10 -8 (-15 -2607 ((-703) $)) (-15 -3892 ((-1158) $ (-703)))))
+(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-703) "failed") $) 38)) (-3189 (((-703) $) 36)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) 26)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1584 (((-107)) 39)) (-1524 (((-107) (-107)) 41)) (-1515 (((-107) $) 23)) (-1633 (((-107) $) 35)) (-2256 (((-787) $) 22) (($ (-703)) 14)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 12 T CONST)) (-2409 (($) 11 T CONST)) (-1426 (($ (-703)) 15)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 24)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 25)) (-1654 (((-3 $ "failed") $ $) 29)) (-1642 (($ $ $) 27)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ $) 34)) (* (($ (-703) $) 32) (($ (-843) $) NIL) (($ $ $) 30)))
+(((-125) (-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4182 "*")) (-15 -1654 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1426 ($ (-703))) (-15 -1515 ((-107) $)) (-15 -1633 ((-107) $)) (-15 -1584 ((-107))) (-15 -1524 ((-107) (-107)))))) (T -125))
+((-1654 (*1 *1 *1 *1) (|partial| -5 *1 (-125))) (** (*1 *1 *1 *1) (-5 *1 (-125))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1633 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1584 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(-13 (-779) (-23) (-659) (-952 (-703)) (-10 -8 (-6 (-4182 "*")) (-15 -1654 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1426 ($ (-703))) (-15 -1515 ((-107) $)) (-15 -1633 ((-107) $)) (-15 -1584 ((-107))) (-15 -1524 ((-107) (-107)))))
+((-2473 (((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|)) 14)) (-1893 (((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)) 18)))
+(((-126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2473 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1893 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|)))) (-517) (-703) (-156) (-156)) (T -126))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) (-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2473 ((-127 |#1| |#2| |#4|) (-583 |#4|) (-127 |#1| |#2| |#3|))) (-15 -1893 ((-127 |#1| |#2| |#4|) (-1 |#4| |#3|) (-127 |#1| |#2| |#3|))))
+((-2750 (((-107) $ $) NIL)) (-4059 (($ (-583 |#3|)) 38)) (-2033 (($ $) 97) (($ $ (-517) (-517)) 96)) (-3092 (($) 17)) (-1772 (((-3 |#3| "failed") $) 58)) (-3189 ((|#3| $) NIL)) (-1354 (($ $ (-583 (-517))) 98)) (-2462 (((-583 |#3|) $) 34)) (-2261 (((-703) $) 42)) (-3485 (($ $ $) 91)) (-3625 (($) 41)) (-3985 (((-1056) $) NIL)) (-3062 (($) 16)) (-3206 (((-1021) $) NIL)) (-1449 ((|#3| $) 44) ((|#3| $ (-517)) 45) ((|#3| $ (-517) (-517)) 46) ((|#3| $ (-517) (-517) (-517)) 47) ((|#3| $ (-517) (-517) (-517) (-517)) 48) ((|#3| $ (-583 (-517))) 50)) (-3688 (((-703) $) 43)) (-2920 (($ $ (-517) $ (-517)) 92) (($ $ (-517) (-517)) 94)) (-2256 (((-787) $) 65) (($ |#3|) 66) (($ (-214 |#2| |#3|)) 73) (($ (-1040 |#2| |#3|)) 76) (($ (-583 |#3|)) 51) (($ (-583 $)) 56)) (-2396 (($) 67 T CONST)) (-2409 (($) 68 T CONST)) (-1547 (((-107) $ $) 78)) (-1654 (($ $) 84) (($ $ $) 82)) (-1642 (($ $ $) 80)) (* (($ |#3| $) 89) (($ $ |#3|) 90) (($ $ (-517)) 87) (($ (-517) $) 86) (($ $ $) 93)))
+(((-127 |#1| |#2| |#3|) (-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2256 ($ (-214 |#2| |#3|))) (-15 -2256 ($ (-1040 |#2| |#3|))) (-15 -2256 ($ (-583 |#3|))) (-15 -2256 ($ (-583 $))) (-15 -2261 ((-703) $)) (-15 -1449 (|#3| $)) (-15 -1449 (|#3| $ (-517))) (-15 -1449 (|#3| $ (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-583 (-517)))) (-15 -3485 ($ $ $)) (-15 * ($ $ $)) (-15 -2920 ($ $ (-517) $ (-517))) (-15 -2920 ($ $ (-517) (-517))) (-15 -2033 ($ $)) (-15 -2033 ($ $ (-517) (-517))) (-15 -1354 ($ $ (-583 (-517)))) (-15 -3062 ($)) (-15 -3625 ($)) (-15 -2462 ((-583 |#3|) $)) (-15 -4059 ($ (-583 |#3|))) (-15 -3092 ($)))) (-517) (-703) (-156)) (T -127))
+((-3485 (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1040 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) (-1449 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2920 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-2920 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-2033 (*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2033 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) (-1354 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3062 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-3625 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) (-3092 (*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
+(-13 (-434 |#3| (-703)) (-439 (-517) (-703)) (-10 -8 (-15 -2256 ($ (-214 |#2| |#3|))) (-15 -2256 ($ (-1040 |#2| |#3|))) (-15 -2256 ($ (-583 |#3|))) (-15 -2256 ($ (-583 $))) (-15 -2261 ((-703) $)) (-15 -1449 (|#3| $)) (-15 -1449 (|#3| $ (-517))) (-15 -1449 (|#3| $ (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-517) (-517) (-517) (-517))) (-15 -1449 (|#3| $ (-583 (-517)))) (-15 -3485 ($ $ $)) (-15 * ($ $ $)) (-15 -2920 ($ $ (-517) $ (-517))) (-15 -2920 ($ $ (-517) (-517))) (-15 -2033 ($ $)) (-15 -2033 ($ $ (-517) (-517))) (-15 -1354 ($ $ (-583 (-517)))) (-15 -3062 ($)) (-15 -3625 ($)) (-15 -2462 ((-583 |#3|) $)) (-15 -4059 ($ (-583 |#3|))) (-15 -3092 ($))))
+((-2750 (((-107) $ $) NIL)) (-3132 (($) 15 T CONST)) (-3416 (($) NIL (|has| (-131) (-338)))) (-1413 (($ $ $) 17) (($ $ (-131)) NIL) (($ (-131) $) NIL)) (-3245 (($ $ $) NIL)) (-3009 (((-107) $ $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| (-131) (-338)))) (-1362 (($) NIL) (($ (-583 (-131))) NIL)) (-2337 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3212 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (($ (-131) $) 51 (|has| $ (-6 -4180)))) (-2052 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (($ (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3209 (($) NIL (|has| (-131) (-338)))) (-1536 (((-583 (-131)) $) 60 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2967 (((-131) $) NIL (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) 26 (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3099 (((-131) $) NIL (|has| (-131) (-779)))) (-1433 (($ (-1 (-131) (-131)) $) 59 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) 55)) (-1285 (($) 16 T CONST)) (-1549 (((-843) $) NIL (|has| (-131) (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 29)) (-3309 (((-131) $) 52)) (-1710 (($ (-131) $) 50)) (-3448 (($ (-843)) NIL (|has| (-131) (-338)))) (-1789 (($) 14 T CONST)) (-3206 (((-1021) $) NIL)) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-4006 (((-131) $) 53)) (-2048 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 48)) (-3121 (($) 13 T CONST)) (-3170 (($ $ $) 31) (($ $ (-131)) NIL)) (-3089 (($ (-583 (-131))) NIL) (($) NIL)) (-3217 (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-1056) $) 36) (((-493) $) NIL (|has| (-131) (-558 (-493)))) (((-583 (-131)) $) 34)) (-2276 (($ (-583 (-131))) NIL)) (-1819 (($ $) 32 (|has| (-131) (-338)))) (-2256 (((-787) $) 46)) (-2585 (($ (-1056)) 12) (($ (-583 (-131))) 43)) (-2201 (((-703) $) NIL)) (-3167 (($) 49) (($ (-583 (-131))) NIL)) (-1222 (($ (-583 (-131))) NIL)) (-3675 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2297 (($) 19 T CONST)) (-2389 (($) 18 T CONST)) (-1547 (((-107) $ $) 22)) (-1572 (((-107) $ $) NIL)) (-2296 (((-703) $) 47 (|has| $ (-6 -4180)))))
+(((-128) (-13 (-1003) (-558 (-1056)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -2585 ($ (-1056))) (-15 -2585 ($ (-583 (-131)))) (-15 -3121 ($) -1619) (-15 -1789 ($) -1619) (-15 -3132 ($) -1619) (-15 -1285 ($) -1619) (-15 -2389 ($) -1619) (-15 -2297 ($) -1619)))) (T -128))
+((-2585 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-128)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) (-3121 (*1 *1) (-5 *1 (-128))) (-1789 (*1 *1) (-5 *1 (-128))) (-3132 (*1 *1) (-5 *1 (-128))) (-1285 (*1 *1) (-5 *1 (-128))) (-2389 (*1 *1) (-5 *1 (-128))) (-2297 (*1 *1) (-5 *1 (-128))))
+(-13 (-1003) (-558 (-1056)) (-395 (-131)) (-558 (-583 (-131))) (-10 -8 (-15 -2585 ($ (-1056))) (-15 -2585 ($ (-583 (-131)))) (-15 -3121 ($) -1619) (-15 -1789 ($) -1619) (-15 -3132 ($) -1619) (-15 -1285 ($) -1619) (-15 -2389 ($) -1619) (-15 -2297 ($) -1619)))
+((-4112 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3484 ((|#1| |#3|) 9)) (-1897 ((|#3| |#3|) 15)))
+(((-129 |#1| |#2| |#3|) (-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-343 |#2|)) (T -129))
+((-4112 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) (-1897 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))))
+(-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3647 (($ $ $) 8)) (-3663 (($ $) 7)) (-1270 (($ $ $) 6)))
+(((-130) (-1184)) (T -130))
+((-3647 (*1 *1 *1 *1) (-4 *1 (-130))) (-3663 (*1 *1 *1) (-4 *1 (-130))) (-1270 (*1 *1 *1 *1) (-4 *1 (-130))))
+(-13 (-10 -8 (-15 -1270 ($ $ $)) (-15 -3663 ($ $)) (-15 -3647 ($ $ $))))
+((-2750 (((-107) $ $) NIL)) (-3543 (((-107) $) 38)) (-3132 (($ $) 50)) (-1379 (($) 25)) (-1611 (((-703)) 16)) (-3209 (($) 24)) (-3774 (($) 26)) (-3247 (((-517) $) 21)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1702 (((-107) $) 40)) (-1285 (($ $) 51)) (-1549 (((-843) $) 22)) (-3985 (((-1056) $) 46)) (-3448 (($ (-843)) 20)) (-3858 (((-107) $) 36)) (-3206 (((-1021) $) NIL)) (-1206 (($) 27)) (-2569 (((-107) $) 34)) (-2256 (((-787) $) 29)) (-1185 (($ (-517)) 18) (($ (-1056)) 49)) (-2551 (((-107) $) 44)) (-4017 (((-107) $) 42)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 13)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 14)))
+(((-131) (-13 (-773) (-10 -8 (-15 -3247 ((-517) $)) (-15 -1185 ($ (-517))) (-15 -1185 ($ (-1056))) (-15 -1379 ($)) (-15 -3774 ($)) (-15 -1206 ($)) (-15 -3132 ($ $)) (-15 -1285 ($ $)) (-15 -2569 ((-107) $)) (-15 -3858 ((-107) $)) (-15 -4017 ((-107) $)) (-15 -3543 ((-107) $)) (-15 -1702 ((-107) $)) (-15 -2551 ((-107) $))))) (T -131))
+((-3247 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-1185 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))) (-1185 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-131)))) (-1379 (*1 *1) (-5 *1 (-131))) (-3774 (*1 *1) (-5 *1 (-131))) (-1206 (*1 *1) (-5 *1 (-131))) (-3132 (*1 *1 *1) (-5 *1 (-131))) (-1285 (*1 *1 *1) (-5 *1 (-131))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(-13 (-773) (-10 -8 (-15 -3247 ((-517) $)) (-15 -1185 ($ (-517))) (-15 -1185 ($ (-1056))) (-15 -1379 ($)) (-15 -3774 ($)) (-15 -1206 ($)) (-15 -3132 ($ $)) (-15 -1285 ($ $)) (-15 -2569 ((-107) $)) (-15 -3858 ((-107) $)) (-15 -4017 ((-107) $)) (-15 -3543 ((-107) $)) (-15 -1702 ((-107) $)) (-15 -2551 ((-107) $))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-1328 (((-3 $ "failed") $) 35)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-132) (-1184)) (T -132))
+((-1328 (*1 *1 *1) (|partial| -4 *1 (-132))))
+(-13 (-961) (-10 -8 (-15 -1328 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-3669 ((|#1| (-623 |#1|) |#1|) 17)))
+(((-133 |#1|) (-10 -7 (-15 -3669 (|#1| (-623 |#1|) |#1|))) (-156)) (T -133))
+((-3669 (*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))))
+(-10 -7 (-15 -3669 (|#1| (-623 |#1|) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-134) (-1184)) (T -134))
+NIL
+(-13 (-961))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1889 (((-2 (|:| -2077 (-703)) (|:| -1931 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703)) 69)) (-3636 (((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|) 51)) (-3754 (((-2 (|:| -1931 (-377 |#2|)) (|:| |poly| |#3|)) |#3|) 36)) (-1895 ((|#1| |#3| |#3|) 39)) (-2051 ((|#3| |#3| (-377 |#2|) (-377 |#2|)) 19)) (-2861 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|) 48)))
+(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -3754 ((-2 (|:| -1931 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3636 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -1889 ((-2 (|:| -2077 (-703)) (|:| -1931 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1895 (|#1| |#3| |#3|)) (-15 -2051 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2861 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|))) (-1112) (-1130 |#1|) (-1130 (-377 |#2|))) (T -135))
+((-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))) (-2051 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1130 *3)))) (-1895 (*1 *2 *3 *3) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-1112)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1130 (-377 *4))))) (-1889 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1130 *3)))) (-3636 (*1 *2 *3) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1931 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))))
+(-10 -7 (-15 -3754 ((-2 (|:| -1931 (-377 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3636 ((-3 (-2 (|:| |radicand| (-377 |#2|)) (|:| |deg| (-703))) "failed") |#3|)) (-15 -1889 ((-2 (|:| -2077 (-703)) (|:| -1931 (-377 |#2|)) (|:| |radicand| |#2|)) (-377 |#2|) (-703))) (-15 -1895 (|#1| |#3| |#3|)) (-15 -2051 (|#3| |#3| (-377 |#2|) (-377 |#2|))) (-15 -2861 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| |deg| (-703))) |#3| |#3|)))
+((-3179 (((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)) 31)))
+(((-136 |#1| |#2|) (-10 -7 (-15 -3179 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)))) (-502) (-150 |#1|)) (T -136))
+((-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))))
+(-10 -7 (-15 -3179 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|))))
+((-3536 (($ (-1 (-107) |#2|) $) 29)) (-1679 (($ $) 36)) (-2052 (($ (-1 (-107) |#2|) $) 27) (($ |#2| $) 32)) (-3225 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-2887 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 19)) (-2048 (((-107) (-1 (-107) |#2|) $) 16)) (-3217 (((-703) (-1 (-107) |#2|) $) 13) (((-703) |#2| $) NIL)) (-3675 (((-107) (-1 (-107) |#2|) $) 15)) (-2296 (((-703) $) 11)))
+(((-137 |#1| |#2|) (-10 -8 (-15 -1679 (|#1| |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|))) (-138 |#2|) (-1108)) (T -137))
+NIL
+(-10 -8 (-15 -1679 (|#1| |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3536 (($ (-1 (-107) |#1|) $) 44 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 41 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180))) (($ |#1| $) 42 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 48)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 40 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 49)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-138 |#1|) (-1184) (-1108)) (T -138))
+((-2276 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-138 *3)))) (-2887 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-3225 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-3225 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-2052 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) (-3225 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) (-2052 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) (-1679 (*1 *1 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))))
+(-13 (-456 |t#1|) (-10 -8 (-15 -2276 ($ (-583 |t#1|))) (-15 -2887 ((-3 |t#1| "failed") (-1 (-107) |t#1|) $)) (IF (|has| $ (-6 -4180)) (PROGN (-15 -3225 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3225 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2052 ($ (-1 (-107) |t#1|) $)) (-15 -3536 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3225 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2052 ($ |t#1| $)) (-15 -1679 ($ $))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) 85)) (-3848 (((-107) $) NIL)) (-1339 (($ |#2| (-583 (-843))) 56)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2122 (($ (-843)) 48)) (-3141 (((-125)) 23)) (-2256 (((-787) $) 68) (($ (-517)) 46) (($ |#2|) 47)) (-2720 ((|#2| $ (-583 (-843))) 58)) (-2961 (((-703)) 20)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 40 T CONST)) (-2409 (($) 44 T CONST)) (-1547 (((-107) $ $) 26)) (-1667 (($ $ |#2|) NIL)) (-1654 (($ $) 34) (($ $ $) 32)) (-1642 (($ $ $) 30)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 37) (($ $ $) 52) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-139 |#1| |#2| |#3|) (-13 (-961) (-37 |#2|) (-1160 |#2|) (-10 -8 (-15 -2122 ($ (-843))) (-15 -1339 ($ |#2| (-583 (-843)))) (-15 -2720 (|#2| $ (-583 (-843)))) (-15 -3621 ((-3 $ "failed") $)))) (-843) (-333) (-910 |#1| |#2|)) (T -139))
+((-3621 (*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) (-2122 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-910 *3 *4)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2)))))
+(-13 (-961) (-37 |#2|) (-1160 |#2|) (-10 -8 (-15 -2122 ($ (-843))) (-15 -1339 ($ |#2| (-583 (-843)))) (-15 -2720 (|#2| $ (-583 (-843)))) (-15 -3621 ((-3 $ "failed") $))))
+((-1662 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199)) 39)) (-1979 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 63) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 64)) (-1810 (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199))))) 67) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199)))) 66) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517))) 58) (((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849)) 59)))
+(((-140) (-10 -7 (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1662 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))))))) (T -140))
+((-1810 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) (-1810 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) (-1662 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4)))))) (-1979 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1979 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1810 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))))
+(-10 -7 (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849))) (-15 -1979 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-849) (-377 (-517)) (-377 (-517)))) (-15 -1662 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))) (-199) (-199) (-199) (-199))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-865 (-199))))) (-15 -1810 ((-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199)))) (-583 (-583 (-865 (-199)))))))
+((-2918 (((-583 (-153 |#2|)) |#1| |#2|) 45)))
+(((-141 |#1| |#2|) (-10 -7 (-15 -2918 ((-583 (-153 |#2|)) |#1| |#2|))) (-1130 (-153 (-517))) (-13 (-333) (-777))) (T -141))
+((-2918 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1130 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -2918 ((-583 (-153 |#2|)) |#1| |#2|)))
+((-2750 (((-107) $ $) NIL)) (-2638 (($) 15)) (-2817 (($) 14)) (-2295 (((-843)) 22)) (-3985 (((-1056) $) NIL)) (-3512 (((-517) $) 19)) (-3206 (((-1021) $) NIL)) (-1289 (($) 16)) (-1205 (($ (-517)) 23)) (-2256 (((-787) $) 29)) (-3337 (($) 17)) (-1547 (((-107) $ $) 13)) (-1642 (($ $ $) 11)) (* (($ (-843) $) 21) (($ (-199) $) 8)))
+(((-142) (-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1642 ($ $ $)) (-15 -2817 ($)) (-15 -2638 ($)) (-15 -1289 ($)) (-15 -3337 ($)) (-15 -3512 ((-517) $)) (-15 -2295 ((-843))) (-15 -1205 ($ (-517)))))) (T -142))
+((-1642 (*1 *1 *1 *1) (-5 *1 (-142))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) (-2817 (*1 *1) (-5 *1 (-142))) (-2638 (*1 *1) (-5 *1 (-142))) (-1289 (*1 *1) (-5 *1 (-142))) (-3337 (*1 *1) (-5 *1 (-142))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) (-2295 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) (-1205 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-843) $)) (-15 * ($ (-199) $)) (-15 -1642 ($ $ $)) (-15 -2817 ($)) (-15 -2638 ($)) (-15 -1289 ($)) (-15 -3337 ($)) (-15 -3512 ((-517) $)) (-15 -2295 ((-843))) (-15 -1205 ($ (-517)))))
+((-3036 ((|#2| |#2| (-996 |#2|)) 87) ((|#2| |#2| (-1073)) 67)) (-3485 ((|#2| |#2| (-996 |#2|)) 86) ((|#2| |#2| (-1073)) 66)) (-3647 ((|#2| |#2| |#2|) 27)) (-3072 (((-109) (-109)) 97)) (-2249 ((|#2| (-583 |#2|)) 116)) (-3194 ((|#2| (-583 |#2|)) 134)) (-3673 ((|#2| (-583 |#2|)) 124)) (-3274 ((|#2| |#2|) 122)) (-3297 ((|#2| (-583 |#2|)) 109)) (-2686 ((|#2| (-583 |#2|)) 110)) (-1390 ((|#2| (-583 |#2|)) 132)) (-3210 ((|#2| |#2| (-1073)) 54) ((|#2| |#2|) 53)) (-3663 ((|#2| |#2|) 23)) (-1270 ((|#2| |#2| |#2|) 26)) (-4074 (((-107) (-109)) 47)) (** ((|#2| |#2| |#2|) 38)))
+(((-143 |#1| |#2|) (-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -3647 (|#2| |#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-996 |#2|))) (-15 -3485 (|#2| |#2| (-1073))) (-15 -3485 (|#2| |#2| (-996 |#2|))) (-15 -3274 (|#2| |#2|)) (-15 -1390 (|#2| (-583 |#2|))) (-15 -3673 (|#2| (-583 |#2|))) (-15 -3194 (|#2| (-583 |#2|))) (-15 -3297 (|#2| (-583 |#2|))) (-15 -2686 (|#2| (-583 |#2|))) (-15 -2249 (|#2| (-583 |#2|)))) (-13 (-779) (-509)) (-400 |#1|)) (T -143))
+((-2249 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-2686 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3297 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-1390 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3485 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-3485 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3036 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) (-3036 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3663 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3647 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-1270 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))))
+(-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 ** (|#2| |#2| |#2|)) (-15 -1270 (|#2| |#2| |#2|)) (-15 -3647 (|#2| |#2| |#2|)) (-15 -3663 (|#2| |#2|)) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-1073))) (-15 -3036 (|#2| |#2| (-996 |#2|))) (-15 -3485 (|#2| |#2| (-1073))) (-15 -3485 (|#2| |#2| (-996 |#2|))) (-15 -3274 (|#2| |#2|)) (-15 -1390 (|#2| (-583 |#2|))) (-15 -3673 (|#2| (-583 |#2|))) (-15 -3194 (|#2| (-583 |#2|))) (-15 -3297 (|#2| (-583 |#2|))) (-15 -2686 (|#2| (-583 |#2|))) (-15 -2249 (|#2| (-583 |#2|))))
+((-1295 ((|#1| |#1| |#1|) 52)) (-3030 ((|#1| |#1| |#1|) 49)) (-3647 ((|#1| |#1| |#1|) 43)) (-3790 ((|#1| |#1|) 34)) (-1807 ((|#1| |#1| (-583 |#1|)) 42)) (-3663 ((|#1| |#1|) 36)) (-1270 ((|#1| |#1| |#1|) 39)))
+(((-144 |#1|) (-10 -7 (-15 -1270 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1807 (|#1| |#1| (-583 |#1|))) (-15 -3790 (|#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|))) (-502)) (T -144))
+((-1295 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3030 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3647 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-3790 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1807 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))) (-3663 (*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) (-1270 (*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(-10 -7 (-15 -1270 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1807 (|#1| |#1| (-583 |#1|))) (-15 -3790 (|#1| |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3030 (|#1| |#1| |#1|)) (-15 -1295 (|#1| |#1| |#1|)))
+((-3036 (($ $ (-1073)) 12) (($ $ (-996 $)) 11)) (-3485 (($ $ (-1073)) 10) (($ $ (-996 $)) 9)) (-3647 (($ $ $) 8)) (-3210 (($ $) 14) (($ $ (-1073)) 13)) (-3663 (($ $) 7)) (-1270 (($ $ $) 6)))
+(((-145) (-1184)) (T -145))
+((-3210 (*1 *1 *1) (-4 *1 (-145))) (-3210 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) (-3036 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) (-3036 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) (-3485 (*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) (-3485 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))))
+(-13 (-130) (-10 -8 (-15 -3210 ($ $)) (-15 -3210 ($ $ (-1073))) (-15 -3036 ($ $ (-1073))) (-15 -3036 ($ $ (-996 $))) (-15 -3485 ($ $ (-1073))) (-15 -3485 ($ $ (-996 $)))))
(((-130) . T))
-((-3736 (((-107) $ $) NIL)) (-3338 (($ (-501)) 13) (($ $ $) 14)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 17)) (-3751 (((-107) $ $) 9)))
-(((-146) (-13 (-1001) (-10 -8 (-15 -3338 ($ (-501))) (-15 -3338 ($ $ $))))) (T -146))
-((-3338 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-146)))) (-3338 (*1 *1 *1 *1) (-5 *1 (-146))))
-(-13 (-1001) (-10 -8 (-15 -3338 ($ (-501))) (-15 -3338 ($ $ $))))
-((-1853 (((-108) (-1070)) 97)))
-(((-147) (-10 -7 (-15 -1853 ((-108) (-1070))))) (T -147))
-((-1853 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-147)))))
-(-10 -7 (-15 -1853 ((-108) (-1070))))
-((-3018 ((|#3| |#3|) 19)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3018 (|#3| |#3|))) (-959) (-1125 |#1|) (-1125 |#2|)) (T -148))
-((-3018 (*1 *2 *2) (-12 (-4 *3 (-959)) (-4 *4 (-1125 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1125 *4)))))
-(-10 -7 (-15 -3018 (|#3| |#3|)))
-((-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 215)) (-2225 ((|#2| $) 95)) (-3978 (($ $) 242)) (-3937 (($ $) 236)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 39)) (-3970 (($ $) 240)) (-3929 (($ $) 234)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#2| $) 137)) (-3023 (($ $ $) 220)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 153) (((-621 |#2|) (-621 $)) 147)) (-3547 (($ (-1064 |#2|)) 118) (((-3 $ "failed") (-375 (-1064 |#2|))) NIL)) (-2174 (((-3 $ "failed") $) 207)) (-2870 (((-3 (-375 (-501)) "failed") $) 197)) (-1696 (((-107) $) 192)) (-3518 (((-375 (-501)) $) 195)) (-3689 (((-839)) 88)) (-3034 (($ $ $) 222)) (-4090 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-2003 (($) 231)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 184) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 189)) (-2626 ((|#2| $) 93)) (-1792 (((-1064 |#2|) $) 120)) (-1212 (($ (-1 |#2| |#2|) $) 101)) (-1635 (($ $) 233)) (-1316 (((-1064 |#2|) $) 119)) (-3833 (($ $) 200)) (-2574 (($) 96)) (-2305 (((-373 (-1064 $)) (-1064 $)) 87)) (-2572 (((-373 (-1064 $)) (-1064 $)) 56)) (-3694 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-1989 (($ $) 232)) (-1864 (((-701) $) 217)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 226)) (-2532 ((|#2| (-1148 $)) NIL) ((|#2|) 90)) (-2596 (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-2264 (((-1064 |#2|)) 113)) (-3975 (($ $) 241)) (-3933 (($ $) 235)) (-2085 (((-1148 |#2|) $ (-1148 $)) 126) (((-621 |#2|) (-1148 $) (-1148 $)) NIL) (((-1148 |#2|) $) 109) (((-621 |#2|) (-1148 $)) NIL)) (-1248 (((-1148 |#2|) $) NIL) (($ (-1148 |#2|)) NIL) (((-1064 |#2|) $) NIL) (($ (-1064 |#2|)) NIL) (((-810 (-501)) $) 175) (((-810 (-346)) $) 179) (((-152 (-346)) $) 165) (((-152 (-199)) $) 160) (((-490) $) 171)) (-3097 (($ $) 97)) (-3691 (((-786) $) 136) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-375 (-501))) NIL) (($ $) NIL)) (-2942 (((-1064 |#2|) $) 23)) (-3965 (((-701)) 99)) (-4003 (($ $) 245)) (-3958 (($ $) 239)) (-3995 (($ $) 243)) (-3952 (($ $) 237)) (-2992 ((|#2| $) 230)) (-3999 (($ $) 244)) (-3955 (($ $) 238)) (-1720 (($ $) 155)) (-3751 (((-107) $ $) 103)) (-3762 (((-107) $ $) 191)) (-3797 (($ $) 105) (($ $ $) NIL)) (-3790 (($ $ $) 104)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-375 (-501))) 264) (($ $ $) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL)))
-(((-149 |#1| |#2|) (-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3691 (|#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -1864 ((-701) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3034 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 ** (|#1| |#1| (-501))) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-152 (-199)) |#1|)) (-15 -1248 ((-152 (-346)) |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2003 (|#1|)) (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -4090 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2992 (|#2| |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3097 (|#1| |#1|)) (-15 -2574 (|#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -3547 ((-3 |#1| "failed") (-375 (-1064 |#2|)))) (-15 -1316 ((-1064 |#2|) |#1|)) (-15 -1248 (|#1| (-1064 |#2|))) (-15 -3547 (|#1| (-1064 |#2|))) (-15 -2264 ((-1064 |#2|))) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 ((-1064 |#2|) |#1|)) (-15 -2532 (|#2|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1792 ((-1064 |#2|) |#1|)) (-15 -2942 ((-1064 |#2|) |#1|)) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -2626 (|#2| |#1|)) (-15 -2225 (|#2| |#1|)) (-15 -3689 ((-839))) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 ** (|#1| |#1| (-701))) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149))
-((-3965 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3689 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-839)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-2532 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-2264 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))))
-(-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3691 (|#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -1864 ((-701) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3034 (|#1| |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 ** (|#1| |#1| (-501))) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-152 (-199)) |#1|)) (-15 -1248 ((-152 (-346)) |#1|)) (-15 -3937 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2003 (|#1|)) (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -4090 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2992 (|#2| |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3097 (|#1| |#1|)) (-15 -2574 (|#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -3547 ((-3 |#1| "failed") (-375 (-1064 |#2|)))) (-15 -1316 ((-1064 |#2|) |#1|)) (-15 -1248 (|#1| (-1064 |#2|))) (-15 -3547 (|#1| (-1064 |#2|))) (-15 -2264 ((-1064 |#2|))) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 ((-1064 |#2|) |#1|)) (-15 -2532 (|#2|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1792 ((-1064 |#2|) |#1|)) (-15 -2942 ((-1064 |#2|) |#1|)) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -2626 (|#2| |#1|)) (-15 -2225 (|#2| |#1|)) (-15 -3689 ((-839))) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 ** (|#1| |#1| (-701))) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 93 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-2865 (($ $) 94 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-1639 (((-107) $) 96 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-2239 (((-621 |#1|) (-1148 $)) 46) (((-621 |#1|)) 61)) (-2225 ((|#1| $) 52)) (-3978 (($ $) 228 (|has| |#1| (-1090)))) (-3937 (($ $) 211 (|has| |#1| (-1090)))) (-3431 (((-1077 (-839) (-701)) (-501)) 147 (|has| |#1| (-318)))) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 242 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-3676 (($ $) 113 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-1559 (((-373 $) $) 114 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-3743 (($ $) 241 (-12 (|has| |#1| (-916)) (|has| |#1| (-1090))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 245 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-2781 (((-107) $ $) 104 (|has| |#1| (-276)))) (-3796 (((-701)) 87 (|has| |#1| (-336)))) (-3970 (($ $) 227 (|has| |#1| (-1090)))) (-3929 (($ $) 212 (|has| |#1| (-1090)))) (-3984 (($ $) 226 (|has| |#1| (-1090)))) (-3945 (($ $) 213 (|has| |#1| (-1090)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 169 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 167 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 166)) (-3490 (((-501) $) 170 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 168 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 165)) (-3142 (($ (-1148 |#1|) (-1148 $)) 48) (($ (-1148 |#1|)) 64)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-318)))) (-3023 (($ $ $) 108 (|has| |#1| (-276)))) (-3070 (((-621 |#1|) $ (-1148 $)) 53) (((-621 |#1|) $) 59)) (-3868 (((-621 (-501)) (-621 $)) 164 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 163 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 162) (((-621 |#1|) (-621 $)) 161)) (-3547 (($ (-1064 |#1|)) 158) (((-3 $ "failed") (-375 (-1064 |#1|))) 155 (|has| |#1| (-331)))) (-2174 (((-3 $ "failed") $) 34)) (-3749 ((|#1| $) 253)) (-2870 (((-3 (-375 (-501)) "failed") $) 246 (|has| |#1| (-500)))) (-1696 (((-107) $) 248 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 247 (|has| |#1| (-500)))) (-3689 (((-839)) 54)) (-2890 (($) 90 (|has| |#1| (-336)))) (-3034 (($ $ $) 107 (|has| |#1| (-276)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 102 (|has| |#1| (-276)))) (-1317 (($) 149 (|has| |#1| (-318)))) (-3521 (((-107) $) 150 (|has| |#1| (-318)))) (-3067 (($ $ (-701)) 141 (|has| |#1| (-318))) (($ $) 140 (|has| |#1| (-318)))) (-1628 (((-107) $) 115 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-4090 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-967)) (|has| |#1| (-1090))))) (-2003 (($) 238 (|has| |#1| (-1090)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 261 (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 260 (|has| |#1| (-806 (-346))))) (-3169 (((-839) $) 152 (|has| |#1| (-318))) (((-762 (-839)) $) 138 (|has| |#1| (-318)))) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 240 (-12 (|has| |#1| (-916)) (|has| |#1| (-1090))))) (-2626 ((|#1| $) 51)) (-3493 (((-3 $ "failed") $) 142 (|has| |#1| (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 111 (|has| |#1| (-276)))) (-1792 (((-1064 |#1|) $) 44 (|has| |#1| (-331)))) (-4111 (($ $ $) 207 (|has| |#1| (-777)))) (-1323 (($ $ $) 206 (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) 262)) (-3104 (((-839) $) 89 (|has| |#1| (-336)))) (-1635 (($ $) 235 (|has| |#1| (-1090)))) (-1316 (((-1064 |#1|) $) 156)) (-1697 (($ (-578 $)) 100 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (($ $ $) 99 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 116 (|has| |#1| (-331)))) (-3746 (($) 143 (|has| |#1| (-318)) CONST)) (-3506 (($ (-839)) 88 (|has| |#1| (-336)))) (-2574 (($) 257)) (-3755 ((|#1| $) 254)) (-3708 (((-1018) $) 10)) (-3987 (($) 160)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 101 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-3664 (($ (-578 $)) 98 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (($ $ $) 97 (-1405 (|has| |#1| (-276)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 146 (|has| |#1| (-318)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 244 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-2572 (((-373 (-1064 $)) (-1064 $)) 243 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-3739 (((-373 $) $) 112 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-276))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 109 (|has| |#1| (-276)))) (-3694 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 92 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 103 (|has| |#1| (-276)))) (-1989 (($ $) 236 (|has| |#1| (-1090)))) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 268 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 266 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 265 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 264 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) 263 (|has| |#1| (-476 (-1070) |#1|)))) (-1864 (((-701) $) 105 (|has| |#1| (-276)))) (-2007 (($ $ |#1|) 269 (|has| |#1| (-256 |#1| |#1|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 106 (|has| |#1| (-276)))) (-2532 ((|#1| (-1148 $)) 47) ((|#1|) 60)) (-1984 (((-701) $) 151 (|has| |#1| (-318))) (((-3 (-701) "failed") $ $) 139 (|has| |#1| (-318)))) (-2596 (($ $ (-1 |#1| |#1|) (-701)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-578 (-1070)) (-578 (-701))) 130 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 131 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 132 (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 133 (|has| |#1| (-820 (-1070)))) (($ $ (-701)) 135 (-1405 (-1280 (|has| |#1| (-331)) (|has| |#1| (-206))) (|has| |#1| (-206)) (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))))) (($ $) 137 (-1405 (-1280 (|has| |#1| (-331)) (|has| |#1| (-206))) (|has| |#1| (-206)) (-1280 (|has| |#1| (-206)) (|has| |#1| (-331)))))) (-2231 (((-621 |#1|) (-1148 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-331)))) (-2264 (((-1064 |#1|)) 159)) (-3991 (($ $) 225 (|has| |#1| (-1090)))) (-3949 (($ $) 214 (|has| |#1| (-1090)))) (-1349 (($) 148 (|has| |#1| (-318)))) (-3981 (($ $) 224 (|has| |#1| (-1090)))) (-3940 (($ $) 215 (|has| |#1| (-1090)))) (-3975 (($ $) 223 (|has| |#1| (-1090)))) (-3933 (($ $) 216 (|has| |#1| (-1090)))) (-2085 (((-1148 |#1|) $ (-1148 $)) 50) (((-621 |#1|) (-1148 $) (-1148 $)) 49) (((-1148 |#1|) $) 66) (((-621 |#1|) (-1148 $)) 65)) (-1248 (((-1148 |#1|) $) 63) (($ (-1148 |#1|)) 62) (((-1064 |#1|) $) 171) (($ (-1064 |#1|)) 157) (((-810 (-501)) $) 259 (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) 258 (|has| |#1| (-556 (-810 (-346))))) (((-152 (-346)) $) 210 (|has| |#1| (-933))) (((-152 (-199)) $) 209 (|has| |#1| (-933))) (((-490) $) 208 (|has| |#1| (-556 (-490))))) (-3097 (($ $) 256)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 145 (-1405 (-1280 (|has| $ (-132)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))) (|has| |#1| (-318))))) (-1976 (($ |#1| |#1|) 255)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37) (($ (-375 (-501))) 86 (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501)))))) (($ $) 91 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-1274 (($ $) 144 (|has| |#1| (-318))) (((-3 $ "failed") $) 43 (-1405 (-1280 (|has| $ (-132)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))) (|has| |#1| (-132))))) (-2942 (((-1064 |#1|) $) 45)) (-3965 (((-701)) 29)) (-4119 (((-1148 $)) 67)) (-4003 (($ $) 234 (|has| |#1| (-1090)))) (-3958 (($ $) 222 (|has| |#1| (-1090)))) (-2442 (((-107) $ $) 95 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))) (-3995 (($ $) 233 (|has| |#1| (-1090)))) (-3952 (($ $) 221 (|has| |#1| (-1090)))) (-4013 (($ $) 232 (|has| |#1| (-1090)))) (-3964 (($ $) 220 (|has| |#1| (-1090)))) (-2992 ((|#1| $) 250 (|has| |#1| (-1090)))) (-3550 (($ $) 231 (|has| |#1| (-1090)))) (-3967 (($ $) 219 (|has| |#1| (-1090)))) (-4008 (($ $) 230 (|has| |#1| (-1090)))) (-3961 (($ $) 218 (|has| |#1| (-1090)))) (-3999 (($ $) 229 (|has| |#1| (-1090)))) (-3955 (($ $) 217 (|has| |#1| (-1090)))) (-1720 (($ $) 251 (|has| |#1| (-967)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 117 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 |#1| |#1|) (-701)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-578 (-1070)) (-578 (-701))) 126 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 127 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 128 (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 129 (|has| |#1| (-820 (-1070)))) (($ $ (-701)) 134 (-1405 (-1280 (|has| |#1| (-331)) (|has| |#1| (-206))) (|has| |#1| (-206)) (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))))) (($ $) 136 (-1405 (-1280 (|has| |#1| (-331)) (|has| |#1| (-206))) (|has| |#1| (-206)) (-1280 (|has| |#1| (-206)) (|has| |#1| (-331)))))) (-3778 (((-107) $ $) 204 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 203 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 205 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 202 (|has| |#1| (-777)))) (-3803 (($ $ $) 121 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-375 (-501))) 239 (-12 (|has| |#1| (-916)) (|has| |#1| (-1090)))) (($ $ $) 237 (|has| |#1| (-1090))) (($ $ (-501)) 118 (|has| |#1| (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-375 (-501)) $) 120 (|has| |#1| (-331))) (($ $ (-375 (-501))) 119 (|has| |#1| (-331)))))
-(((-150 |#1|) (-1180) (-156)) (T -150))
-((-2626 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2574 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3097 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1976 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) (-1720 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1090)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-967)) (-4 *3 (-1090)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) (-2870 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))))
-(-13 (-655 |t#1| (-1064 |t#1|)) (-380 |t#1|) (-204 |t#1|) (-306 |t#1|) (-368 |t#1|) (-804 |t#1|) (-345 |t#1|) (-156) (-10 -8 (-6 -1976) (-15 -2574 ($)) (-15 -3097 ($ $)) (-15 -1976 ($ |t#1| |t#1|)) (-15 -3755 (|t#1| $)) (-15 -3749 (|t#1| $)) (-15 -2626 (|t#1| $)) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-6 (-508)) (-15 -3694 ((-3 $ "failed") $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-276)) (-6 (-276)) |noBranch|) (IF (|has| |t#1| (-6 -4166)) (-6 -4166) |noBranch|) (IF (|has| |t#1| (-6 -4163)) (-6 -4163) |noBranch|) (IF (|has| |t#1| (-331)) (-6 (-331)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-933)) (PROGN (-6 (-556 (-152 (-199)))) (-6 (-556 (-152 (-346))))) |noBranch|) (IF (|has| |t#1| (-967)) (-15 -1720 ($ $)) |noBranch|) (IF (|has| |t#1| (-1090)) (PROGN (-6 (-1090)) (-15 -2992 (|t#1| $)) (IF (|has| |t#1| (-916)) (-6 (-916)) |noBranch|) (IF (|has| |t#1| (-967)) (-15 -4090 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-830)) (IF (|has| |t#1| (-276)) (-6 (-830)) |noBranch|) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-37 |#1|) . T) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-34) |has| |#1| (-1090)) ((-91) |has| |#1| (-1090)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| |#1| (-318)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 (-152 (-199))) |has| |#1| (-933)) ((-556 (-152 (-346))) |has| |#1| (-933)) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501)))) ((-556 (-1064 |#1|)) . T) ((-204 |#1|) . T) ((-206) -1405 (|has| |#1| (-318)) (|has| |#1| (-206))) ((-216) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-254) |has| |#1| (-1090)) ((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-276) -1405 (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-331) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-370) |has| |#1| (-318)) ((-336) -1405 (|has| |#1| (-336)) (|has| |#1| (-318))) ((-318) |has| |#1| (-318)) ((-338 |#1| (-1064 |#1|)) . T) ((-378 |#1| (-1064 |#1|)) . T) ((-306 |#1|) . T) ((-345 |#1|) . T) ((-368 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-456) |has| |#1| (-1090)) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|)) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-648 |#1|) . T) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-655 |#1| (-1064 |#1|)) . T) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-804 |#1|) . T) ((-830) -12 (|has| |#1| (-276)) (|has| |#1| (-830))) ((-841) -1405 (|has| |#1| (-318)) (|has| |#1| (-331)) (|has| |#1| (-276))) ((-916) -12 (|has| |#1| (-916)) (|has| |#1| (-1090))) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-318)) ((-1090) |has| |#1| (-1090)) ((-1093) |has| |#1| (-1090)) ((-1104) . T) ((-1108) -1405 (|has| |#1| (-318)) (|has| |#1| (-331)) (-12 (|has| |#1| (-276)) (|has| |#1| (-830)))))
-((-3739 (((-373 |#2|) |#2|) 63)))
-(((-151 |#1| |#2|) (-10 -7 (-15 -3739 ((-373 |#2|) |#2|))) (-276) (-1125 (-152 |#1|))) (T -151))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1125 (-152 *4))))))
-(-10 -7 (-15 -3739 ((-373 |#2|) |#2|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 33)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-2865 (($ $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-1639 (((-107) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-2239 (((-621 |#1|) (-1148 $)) NIL) (((-621 |#1|)) NIL)) (-2225 ((|#1| $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-1090)))) (-3937 (($ $) NIL (|has| |#1| (-1090)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-3676 (($ $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-1559 (((-373 $) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-3743 (($ $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1090))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-276)))) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-3970 (($ $) NIL (|has| |#1| (-1090)))) (-3929 (($ $) NIL (|has| |#1| (-1090)))) (-3984 (($ $) NIL (|has| |#1| (-1090)))) (-3945 (($ $) NIL (|has| |#1| (-1090)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|) (-1148 $)) NIL) (($ (-1148 |#1|)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)))) (-3023 (($ $ $) NIL (|has| |#1| (-276)))) (-3070 (((-621 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-3547 (($ (-1064 |#1|)) NIL) (((-3 $ "failed") (-375 (-1064 |#1|))) NIL (|has| |#1| (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-3749 ((|#1| $) 13)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-500)))) (-1696 (((-107) $) NIL (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) NIL (|has| |#1| (-500)))) (-3689 (((-839)) NIL)) (-2890 (($) NIL (|has| |#1| (-336)))) (-3034 (($ $ $) NIL (|has| |#1| (-276)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-276)))) (-1317 (($) NIL (|has| |#1| (-318)))) (-3521 (((-107) $) NIL (|has| |#1| (-318)))) (-3067 (($ $ (-701)) NIL (|has| |#1| (-318))) (($ $) NIL (|has| |#1| (-318)))) (-1628 (((-107) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-4090 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-967)) (|has| |#1| (-1090))))) (-2003 (($) NIL (|has| |#1| (-1090)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| |#1| (-806 (-346))))) (-3169 (((-839) $) NIL (|has| |#1| (-318))) (((-762 (-839)) $) NIL (|has| |#1| (-318)))) (-1355 (((-107) $) 35)) (-1342 (($ $ (-501)) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1090))))) (-2626 ((|#1| $) 46)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-276)))) (-1792 (((-1064 |#1|) $) NIL (|has| |#1| (-331)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-1635 (($ $) NIL (|has| |#1| (-1090)))) (-1316 (((-1064 |#1|) $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-276))) (($ $ $) NIL (|has| |#1| (-276)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3746 (($) NIL (|has| |#1| (-318)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-2574 (($) NIL)) (-3755 ((|#1| $) 15)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-276)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-276))) (($ $ $) NIL (|has| |#1| (-276)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-318)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#1| (-276)) (|has| |#1| (-830))))) (-3739 (((-373 $) $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-331))))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-276))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-276)))) (-3694 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 47 (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-276)))) (-1989 (($ $) NIL (|has| |#1| (-1090)))) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|)))) (-1864 (((-701) $) NIL (|has| |#1| (-276)))) (-2007 (($ $ |#1|) NIL (|has| |#1| (-256 |#1| |#1|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-276)))) (-2532 ((|#1| (-1148 $)) NIL) ((|#1|) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-318))) (((-3 (-701) "failed") $ $) NIL (|has| |#1| (-318)))) (-2596 (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $) NIL (|has| |#1| (-206)))) (-2231 (((-621 |#1|) (-1148 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-331)))) (-2264 (((-1064 |#1|)) NIL)) (-3991 (($ $) NIL (|has| |#1| (-1090)))) (-3949 (($ $) NIL (|has| |#1| (-1090)))) (-1349 (($) NIL (|has| |#1| (-318)))) (-3981 (($ $) NIL (|has| |#1| (-1090)))) (-3940 (($ $) NIL (|has| |#1| (-1090)))) (-3975 (($ $) NIL (|has| |#1| (-1090)))) (-3933 (($ $) NIL (|has| |#1| (-1090)))) (-2085 (((-1148 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) (-1148 $) (-1148 $)) NIL) (((-1148 |#1|) $) NIL) (((-621 |#1|) (-1148 $)) NIL)) (-1248 (((-1148 |#1|) $) NIL) (($ (-1148 |#1|)) NIL) (((-1064 |#1|) $) NIL) (($ (-1064 |#1|)) NIL) (((-810 (-501)) $) NIL (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| |#1| (-556 (-810 (-346))))) (((-152 (-346)) $) NIL (|has| |#1| (-933))) (((-152 (-199)) $) NIL (|has| |#1| (-933))) (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3097 (($ $) 45)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-318))))) (-1976 (($ |#1| |#1|) 37)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) 36) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-1274 (($ $) NIL (|has| |#1| (-318))) (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-2942 (((-1064 |#1|) $) NIL)) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL)) (-4003 (($ $) NIL (|has| |#1| (-1090)))) (-3958 (($ $) NIL (|has| |#1| (-1090)))) (-2442 (((-107) $ $) NIL (-1405 (-12 (|has| |#1| (-276)) (|has| |#1| (-830))) (|has| |#1| (-508))))) (-3995 (($ $) NIL (|has| |#1| (-1090)))) (-3952 (($ $) NIL (|has| |#1| (-1090)))) (-4013 (($ $) NIL (|has| |#1| (-1090)))) (-3964 (($ $) NIL (|has| |#1| (-1090)))) (-2992 ((|#1| $) NIL (|has| |#1| (-1090)))) (-3550 (($ $) NIL (|has| |#1| (-1090)))) (-3967 (($ $) NIL (|has| |#1| (-1090)))) (-4008 (($ $) NIL (|has| |#1| (-1090)))) (-3961 (($ $) NIL (|has| |#1| (-1090)))) (-3999 (($ $) NIL (|has| |#1| (-1090)))) (-3955 (($ $) NIL (|has| |#1| (-1090)))) (-1720 (($ $) NIL (|has| |#1| (-967)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 28 T CONST)) (-1925 (($) 30 T CONST)) (-3671 (((-1053) $) 23 (|has| |#1| (-751))) (((-1053) $ (-107)) 25 (|has| |#1| (-751))) (((-1154) (-753) $) 26 (|has| |#1| (-751))) (((-1154) (-753) $ (-107)) 27 (|has| |#1| (-751)))) (-3584 (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $) NIL (|has| |#1| (-206)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 39)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-375 (-501))) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-1090)))) (($ $ $) NIL (|has| |#1| (-1090))) (($ $ (-501)) NIL (|has| |#1| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-331))) (($ $ (-375 (-501))) NIL (|has| |#1| (-331)))))
-(((-152 |#1|) (-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|))) (-156)) (T -152))
-NIL
-(-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|)))
-((-1212 (((-152 |#2|) (-1 |#2| |#1|) (-152 |#1|)) 14)))
-(((-153 |#1| |#2|) (-10 -7 (-15 -1212 ((-152 |#2|) (-1 |#2| |#1|) (-152 |#1|)))) (-156) (-156)) (T -153))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-152 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-152 *6)) (-5 *1 (-153 *5 *6)))))
-(-10 -7 (-15 -1212 ((-152 |#2|) (-1 |#2| |#1|) (-152 |#1|))))
-((-1248 (((-810 |#1|) |#3|) 22)))
-(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -1248 ((-810 |#1|) |#3|))) (-1001) (-13 (-556 (-810 |#1|)) (-156)) (-150 |#2|)) (T -154))
-((-1248 (*1 *2 *3) (-12 (-4 *5 (-13 (-556 *2) (-156))) (-5 *2 (-810 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1001)) (-4 *3 (-150 *5)))))
-(-10 -7 (-15 -1248 ((-810 |#1|) |#3|)))
-((-3736 (((-107) $ $) NIL)) (-2557 (((-107) $) 9)) (-3310 (((-107) $ (-107)) 11)) (-3634 (($) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3764 (($ $) 13)) (-3691 (((-786) $) 17)) (-3340 (((-107) $) 8)) (-2109 (((-107) $ (-107)) 10)) (-3751 (((-107) $ $) NIL)))
-(((-155) (-13 (-1001) (-10 -8 (-15 -3634 ($)) (-15 -3340 ((-107) $)) (-15 -2557 ((-107) $)) (-15 -2109 ((-107) $ (-107))) (-15 -3310 ((-107) $ (-107))) (-15 -3764 ($ $))))) (T -155))
-((-3634 (*1 *1) (-5 *1 (-155))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2109 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3310 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3764 (*1 *1 *1) (-5 *1 (-155))))
-(-13 (-1001) (-10 -8 (-15 -3634 ($)) (-15 -3340 ((-107) $)) (-15 -2557 ((-107) $)) (-15 -2109 ((-107) $ (-107))) (-15 -3310 ((-107) $ (-107))) (-15 -3764 ($ $))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-156) (-1180)) (T -156))
-NIL
-(-13 (-959) (-106 $ $) (-10 -7 (-6 (-4169 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 ((|#1| $) 74)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL)) (-1374 (($ $) 19)) (-3985 (($ |#1| (-1048 |#1|)) 47)) (-2174 (((-3 $ "failed") $) 116)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-1341 (((-1048 |#1|) $) 81)) (-1747 (((-1048 |#1|) $) 78)) (-4030 (((-1048 |#1|) $) 79)) (-1355 (((-107) $) NIL)) (-3678 (((-1048 |#1|) $) 87)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3718 (($ $ (-501)) 90)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2747 (((-1048 |#1|) $) 88)) (-4001 (((-1048 (-375 |#1|)) $) 13)) (-2672 (($ (-375 |#1|)) 17) (($ |#1| (-1048 |#1|) (-1048 |#1|)) 37)) (-1267 (($ $) 92)) (-3691 (((-786) $) 126) (($ (-501)) 50) (($ |#1|) 51) (($ (-375 |#1|)) 35) (($ (-375 (-501))) NIL) (($ $) NIL)) (-3965 (((-701)) 63)) (-2442 (((-107) $ $) NIL)) (-3140 (((-1048 (-375 |#1|)) $) 18)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 25 T CONST)) (-1925 (($) 28 T CONST)) (-3751 (((-107) $ $) 34)) (-3803 (($ $ $) 114)) (-3797 (($ $) 105) (($ $ $) 102)) (-3790 (($ $ $) 100)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-375 |#1|) $) 110) (($ $ (-375 |#1|)) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL)))
-(((-157 |#1|) (-13 (-37 |#1|) (-37 (-375 |#1|)) (-331) (-10 -8 (-15 -2672 ($ (-375 |#1|))) (-15 -2672 ($ |#1| (-1048 |#1|) (-1048 |#1|))) (-15 -3985 ($ |#1| (-1048 |#1|))) (-15 -1747 ((-1048 |#1|) $)) (-15 -4030 ((-1048 |#1|) $)) (-15 -1341 ((-1048 |#1|) $)) (-15 -2197 (|#1| $)) (-15 -1374 ($ $)) (-15 -3140 ((-1048 (-375 |#1|)) $)) (-15 -4001 ((-1048 (-375 |#1|)) $)) (-15 -3678 ((-1048 |#1|) $)) (-15 -2747 ((-1048 |#1|) $)) (-15 -3718 ($ $ (-501))) (-15 -1267 ($ $)))) (-276)) (T -157))
-((-2672 (*1 *1 *2) (-12 (-5 *2 (-375 *3)) (-4 *3 (-276)) (-5 *1 (-157 *3)))) (-2672 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1048 *2)) (-4 *2 (-276)) (-5 *1 (-157 *2)))) (-3985 (*1 *1 *2 *3) (-12 (-5 *3 (-1048 *2)) (-4 *2 (-276)) (-5 *1 (-157 *2)))) (-1747 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-2197 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))) (-1374 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-1048 (-375 *3))) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-4001 (*1 *2 *1) (-12 (-5 *2 (-1048 (-375 *3))) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-2747 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) (-1267 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))))
-(-13 (-37 |#1|) (-37 (-375 |#1|)) (-331) (-10 -8 (-15 -2672 ($ (-375 |#1|))) (-15 -2672 ($ |#1| (-1048 |#1|) (-1048 |#1|))) (-15 -3985 ($ |#1| (-1048 |#1|))) (-15 -1747 ((-1048 |#1|) $)) (-15 -4030 ((-1048 |#1|) $)) (-15 -1341 ((-1048 |#1|) $)) (-15 -2197 (|#1| $)) (-15 -1374 ($ $)) (-15 -3140 ((-1048 (-375 |#1|)) $)) (-15 -4001 ((-1048 (-375 |#1|)) $)) (-15 -3678 ((-1048 |#1|) $)) (-15 -2747 ((-1048 |#1|) $)) (-15 -3718 ($ $ (-501))) (-15 -1267 ($ $))))
-((-1193 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 40)) (-2189 (((-863 |#1|) (-863 |#1|)) 19)) (-2512 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 36)) (-1712 (((-863 |#1|) (-863 |#1|)) 17)) (-1798 (((-863 |#1|) (-863 |#1|)) 25)) (-1571 (((-863 |#1|) (-863 |#1|)) 24)) (-2945 (((-863 |#1|) (-863 |#1|)) 23)) (-1754 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 37)) (-2633 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 35)) (-2435 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 34)) (-4068 (((-863 |#1|) (-863 |#1|)) 18)) (-3902 (((-1 (-863 |#1|) (-863 |#1|)) |#1| |#1|) 43)) (-1514 (((-863 |#1|) (-863 |#1|)) 8)) (-3414 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 39)) (-1226 (((-1 (-863 |#1|) (-863 |#1|)) |#1|) 38)))
-(((-158 |#1|) (-10 -7 (-15 -1514 ((-863 |#1|) (-863 |#1|))) (-15 -1712 ((-863 |#1|) (-863 |#1|))) (-15 -4068 ((-863 |#1|) (-863 |#1|))) (-15 -2189 ((-863 |#1|) (-863 |#1|))) (-15 -2945 ((-863 |#1|) (-863 |#1|))) (-15 -1571 ((-863 |#1|) (-863 |#1|))) (-15 -1798 ((-863 |#1|) (-863 |#1|))) (-15 -2435 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -2633 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -2512 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1754 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1226 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -3414 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1193 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -3902 ((-1 (-863 |#1|) (-863 |#1|)) |#1| |#1|))) (-13 (-331) (-1090) (-916))) (T -158))
-((-3902 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-1193 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-3414 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-1226 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-1754 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-2512 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-2633 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-2435 (*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-1571 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-2945 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-1712 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))) (-1514 (*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))))
-(-10 -7 (-15 -1514 ((-863 |#1|) (-863 |#1|))) (-15 -1712 ((-863 |#1|) (-863 |#1|))) (-15 -4068 ((-863 |#1|) (-863 |#1|))) (-15 -2189 ((-863 |#1|) (-863 |#1|))) (-15 -2945 ((-863 |#1|) (-863 |#1|))) (-15 -1571 ((-863 |#1|) (-863 |#1|))) (-15 -1798 ((-863 |#1|) (-863 |#1|))) (-15 -2435 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -2633 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -2512 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1754 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1226 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -3414 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -1193 ((-1 (-863 |#1|) (-863 |#1|)) |#1|)) (-15 -3902 ((-1 (-863 |#1|) (-863 |#1|)) |#1| |#1|)))
-((-2942 ((|#2| |#3|) 27)))
-(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -2942 (|#2| |#3|))) (-156) (-1125 |#1|) (-655 |#1| |#2|)) (T -159))
-((-2942 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1125 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-655 *4 *2)))))
-(-10 -7 (-15 -2942 (|#2| |#3|)))
-((-3809 (((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)) 47 (|has| (-866 |#2|) (-806 |#1|)))))
-(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-866 |#2|) (-806 |#1|)) (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))) |noBranch|)) (-1001) (-13 (-806 |#1|) (-156)) (-150 |#2|)) (T -160))
-((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *3 (-150 *6)) (-4 (-866 *6) (-806 *5)) (-4 *6 (-13 (-806 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-866 |#2|) (-806 |#1|)) (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))) |noBranch|))
-((-1990 (((-578 |#1|) (-578 |#1|) |#1|) 36)) (-1457 (((-578 |#1|) |#1| (-578 |#1|)) 19)) (-3716 (((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|)) 31) ((|#1| (-578 |#1|) (-578 |#1|)) 29)))
-(((-161 |#1|) (-10 -7 (-15 -1457 ((-578 |#1|) |#1| (-578 |#1|))) (-15 -3716 (|#1| (-578 |#1|) (-578 |#1|))) (-15 -3716 ((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|))) (-15 -1990 ((-578 |#1|) (-578 |#1|) |#1|))) (-276)) (T -161))
-((-1990 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-276)) (-5 *1 (-161 *3)))) (-3716 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-578 *4))) (-5 *2 (-578 *4)) (-4 *4 (-276)) (-5 *1 (-161 *4)))) (-3716 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-161 *2)) (-4 *2 (-276)))) (-1457 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-276)) (-5 *1 (-161 *3)))))
-(-10 -7 (-15 -1457 ((-578 |#1|) |#1| (-578 |#1|))) (-15 -3716 (|#1| (-578 |#1|) (-578 |#1|))) (-15 -3716 ((-578 |#1|) (-578 (-578 |#1|)) (-578 |#1|))) (-15 -1990 ((-578 |#1|) (-578 |#1|) |#1|)))
-((-1314 (((-2 (|:| |start| |#2|) (|:| -1575 (-373 |#2|))) |#2|) 61)) (-3577 ((|#1| |#1|) 54)) (-3980 (((-152 |#1|) |#2|) 82)) (-2448 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (-3073 ((|#2| |#2|) 81)) (-4116 (((-373 |#2|) |#2| |#1|) 112) (((-373 |#2|) |#2| |#1| (-107)) 79)) (-2626 ((|#1| |#2|) 111)) (-3519 ((|#2| |#2|) 118)) (-3739 (((-373 |#2|) |#2|) 133) (((-373 |#2|) |#2| |#1|) 32) (((-373 |#2|) |#2| |#1| (-107)) 132)) (-4117 (((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2|) 131) (((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2| (-107)) 75)) (-1833 (((-578 (-152 |#1|)) |#2| |#1|) 40) (((-578 (-152 |#1|)) |#2|) 41)))
-(((-162 |#1| |#2|) (-10 -7 (-15 -1833 ((-578 (-152 |#1|)) |#2|)) (-15 -1833 ((-578 (-152 |#1|)) |#2| |#1|)) (-15 -4117 ((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2| (-107))) (-15 -4117 ((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2|)) (-15 -3739 ((-373 |#2|) |#2| |#1| (-107))) (-15 -3739 ((-373 |#2|) |#2| |#1|)) (-15 -3739 ((-373 |#2|) |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -2626 (|#1| |#2|)) (-15 -4116 ((-373 |#2|) |#2| |#1| (-107))) (-15 -4116 ((-373 |#2|) |#2| |#1|)) (-15 -3073 (|#2| |#2|)) (-15 -2448 (|#1| |#2| |#1|)) (-15 -2448 (|#1| |#2|)) (-15 -3980 ((-152 |#1|) |#2|)) (-15 -3577 (|#1| |#1|)) (-15 -1314 ((-2 (|:| |start| |#2|) (|:| -1575 (-373 |#2|))) |#2|))) (-13 (-331) (-775)) (-1125 (-152 |#1|))) (T -162))
-((-1314 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-2 (|:| |start| *3) (|:| -1575 (-373 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-3577 (*1 *2 *2) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) (-3980 (*1 *2 *3) (-12 (-5 *2 (-152 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-331) (-775))) (-4 *3 (-1125 *2)))) (-2448 (*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) (-2448 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) (-3073 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-775))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1125 (-152 *3))))) (-4116 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-4116 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-2626 (*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) (-3519 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-775))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1125 (-152 *3))))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-3739 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-3739 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-4117 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-2 (|:| -1575 (-578 *3)) (|:| -2390 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-4117 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-331) (-775))) (-5 *2 (-578 (-2 (|:| -1575 (-578 *3)) (|:| -2390 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1125 (-152 *5))))) (-1833 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) (-1833 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))))
-(-10 -7 (-15 -1833 ((-578 (-152 |#1|)) |#2|)) (-15 -1833 ((-578 (-152 |#1|)) |#2| |#1|)) (-15 -4117 ((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2| (-107))) (-15 -4117 ((-578 (-2 (|:| -1575 (-578 |#2|)) (|:| -2390 |#1|))) |#2| |#2|)) (-15 -3739 ((-373 |#2|) |#2| |#1| (-107))) (-15 -3739 ((-373 |#2|) |#2| |#1|)) (-15 -3739 ((-373 |#2|) |#2|)) (-15 -3519 (|#2| |#2|)) (-15 -2626 (|#1| |#2|)) (-15 -4116 ((-373 |#2|) |#2| |#1| (-107))) (-15 -4116 ((-373 |#2|) |#2| |#1|)) (-15 -3073 (|#2| |#2|)) (-15 -2448 (|#1| |#2| |#1|)) (-15 -2448 (|#1| |#2|)) (-15 -3980 ((-152 |#1|) |#2|)) (-15 -3577 (|#1| |#1|)) (-15 -1314 ((-2 (|:| |start| |#2|) (|:| -1575 (-373 |#2|))) |#2|)))
-((-3388 (((-3 |#2| "failed") |#2|) 14)) (-3454 (((-701) |#2|) 16)) (-3131 ((|#2| |#2| |#2|) 18)))
-(((-163 |#1| |#2|) (-10 -7 (-15 -3388 ((-3 |#2| "failed") |#2|)) (-15 -3454 ((-701) |#2|)) (-15 -3131 (|#2| |#2| |#2|))) (-1104) (-608 |#1|)) (T -163))
-((-3131 (*1 *2 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-163 *3 *2)) (-4 *2 (-608 *3)))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-1104)) (-5 *2 (-701)) (-5 *1 (-163 *4 *3)) (-4 *3 (-608 *4)))) (-3388 (*1 *2 *2) (|partial| -12 (-4 *3 (-1104)) (-5 *1 (-163 *3 *2)) (-4 *2 (-608 *3)))))
-(-10 -7 (-15 -3388 ((-3 |#2| "failed") |#2|)) (-15 -3454 ((-701) |#2|)) (-15 -3131 (|#2| |#2| |#2|)))
-((-3471 ((|#2| |#2|) 28)) (-4133 (((-107) |#2|) 19)) (-3749 (((-282 |#1|) |#2|) 12)) (-3755 (((-282 |#1|) |#2|) 14)) (-2209 ((|#2| |#2| (-1070)) 68) ((|#2| |#2|) 69)) (-3585 (((-152 (-282 |#1|)) |#2|) 9)) (-1433 ((|#2| |#2| (-1070)) 65) ((|#2| |#2|) 58)))
-(((-164 |#1| |#2|) (-10 -7 (-15 -2209 (|#2| |#2|)) (-15 -2209 (|#2| |#2| (-1070))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1070))) (-15 -3749 ((-282 |#1|) |#2|)) (-15 -3755 ((-282 |#1|) |#2|)) (-15 -4133 ((-107) |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3585 ((-152 (-282 |#1|)) |#2|))) (-13 (-508) (-777) (-950 (-501))) (-13 (-27) (-1090) (-389 (-152 |#1|)))) (T -164))
-((-3585 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-152 (-282 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-3749 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) (-2209 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *4)))))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))))
-(-10 -7 (-15 -2209 (|#2| |#2|)) (-15 -2209 (|#2| |#2| (-1070))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1070))) (-15 -3749 ((-282 |#1|) |#2|)) (-15 -3755 ((-282 |#1|) |#2|)) (-15 -4133 ((-107) |#2|)) (-15 -3471 (|#2| |#2|)) (-15 -3585 ((-152 (-282 |#1|)) |#2|)))
-((-3296 (((-1148 (-621 (-866 |#1|))) (-1148 (-621 |#1|))) 22)) (-3691 (((-1148 (-621 (-375 (-866 |#1|)))) (-1148 (-621 |#1|))) 30)))
-(((-165 |#1|) (-10 -7 (-15 -3296 ((-1148 (-621 (-866 |#1|))) (-1148 (-621 |#1|)))) (-15 -3691 ((-1148 (-621 (-375 (-866 |#1|)))) (-1148 (-621 |#1|))))) (-156)) (T -165))
-((-3691 (*1 *2 *3) (-12 (-5 *3 (-1148 (-621 *4))) (-4 *4 (-156)) (-5 *2 (-1148 (-621 (-375 (-866 *4))))) (-5 *1 (-165 *4)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-1148 (-621 *4))) (-4 *4 (-156)) (-5 *2 (-1148 (-621 (-866 *4)))) (-5 *1 (-165 *4)))))
-(-10 -7 (-15 -3296 ((-1148 (-621 (-866 |#1|))) (-1148 (-621 |#1|)))) (-15 -3691 ((-1148 (-621 (-375 (-866 |#1|)))) (-1148 (-621 |#1|)))))
-((-3571 (((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501)))) 66)) (-2717 (((-1072 (-375 (-501))) (-578 (-501)) (-578 (-501))) 74)) (-3567 (((-1072 (-375 (-501))) (-501)) 40)) (-3146 (((-1072 (-375 (-501))) (-501)) 52)) (-3195 (((-375 (-501)) (-1072 (-375 (-501)))) 62)) (-3529 (((-1072 (-375 (-501))) (-501)) 32)) (-3287 (((-1072 (-375 (-501))) (-501)) 48)) (-3313 (((-1072 (-375 (-501))) (-501)) 46)) (-3757 (((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501)))) 60)) (-1267 (((-1072 (-375 (-501))) (-501)) 25)) (-3368 (((-375 (-501)) (-1072 (-375 (-501))) (-1072 (-375 (-501)))) 64)) (-3687 (((-1072 (-375 (-501))) (-501)) 30)) (-1350 (((-1072 (-375 (-501))) (-578 (-501))) 71)))
-(((-166) (-10 -7 (-15 -1267 ((-1072 (-375 (-501))) (-501))) (-15 -3567 ((-1072 (-375 (-501))) (-501))) (-15 -3529 ((-1072 (-375 (-501))) (-501))) (-15 -3687 ((-1072 (-375 (-501))) (-501))) (-15 -3313 ((-1072 (-375 (-501))) (-501))) (-15 -3287 ((-1072 (-375 (-501))) (-501))) (-15 -3146 ((-1072 (-375 (-501))) (-501))) (-15 -3368 ((-375 (-501)) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -3757 ((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -3195 ((-375 (-501)) (-1072 (-375 (-501))))) (-15 -3571 ((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -1350 ((-1072 (-375 (-501))) (-578 (-501)))) (-15 -2717 ((-1072 (-375 (-501))) (-578 (-501)) (-578 (-501)))))) (T -166))
-((-2717 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))) (-1350 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))) (-3571 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-1072 (-375 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-166)))) (-3757 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))) (-3368 (*1 *2 *3 *3) (-12 (-5 *3 (-1072 (-375 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-166)))) (-3146 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3287 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3313 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3687 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3529 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-3567 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) (-1267 (*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))))
-(-10 -7 (-15 -1267 ((-1072 (-375 (-501))) (-501))) (-15 -3567 ((-1072 (-375 (-501))) (-501))) (-15 -3529 ((-1072 (-375 (-501))) (-501))) (-15 -3687 ((-1072 (-375 (-501))) (-501))) (-15 -3313 ((-1072 (-375 (-501))) (-501))) (-15 -3287 ((-1072 (-375 (-501))) (-501))) (-15 -3146 ((-1072 (-375 (-501))) (-501))) (-15 -3368 ((-375 (-501)) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -3757 ((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -3195 ((-375 (-501)) (-1072 (-375 (-501))))) (-15 -3571 ((-1072 (-375 (-501))) (-1072 (-375 (-501))) (-1072 (-375 (-501))))) (-15 -1350 ((-1072 (-375 (-501))) (-578 (-501)))) (-15 -2717 ((-1072 (-375 (-501))) (-578 (-501)) (-578 (-501)))))
-((-3004 (((-373 (-1064 (-501))) (-501)) 28)) (-2061 (((-578 (-1064 (-501))) (-501)) 23)) (-3573 (((-1064 (-501)) (-501)) 21)))
-(((-167) (-10 -7 (-15 -2061 ((-578 (-1064 (-501))) (-501))) (-15 -3573 ((-1064 (-501)) (-501))) (-15 -3004 ((-373 (-1064 (-501))) (-501))))) (T -167))
-((-3004 (*1 *2 *3) (-12 (-5 *2 (-373 (-1064 (-501)))) (-5 *1 (-167)) (-5 *3 (-501)))) (-3573 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-167)) (-5 *3 (-501)))) (-2061 (*1 *2 *3) (-12 (-5 *2 (-578 (-1064 (-501)))) (-5 *1 (-167)) (-5 *3 (-501)))))
-(-10 -7 (-15 -2061 ((-578 (-1064 (-501))) (-501))) (-15 -3573 ((-1064 (-501)) (-501))) (-15 -3004 ((-373 (-1064 (-501))) (-501))))
-((-2206 (((-1048 (-199)) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-2077 (((-578 (-1053)) (-1048 (-199))) NIL)) (-1653 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-2094 (((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199)))) NIL)) (-3148 (((-578 (-1053)) (-578 (-199))) NIL)) (-3516 (((-199) (-991 (-769 (-199)))) 22)) (-2254 (((-199) (-991 (-769 (-199)))) 23)) (-1660 (((-346) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-2639 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-3630 (((-1053) (-199)) NIL)) (-3883 (((-1053) (-578 (-1053))) 19)) (-1557 (((-948) (-1070) (-1070) (-948)) 12)))
-(((-168) (-10 -7 (-15 -1653 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2639 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -1660 ((-346) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2094 ((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))) (-15 -3883 ((-1053) (-578 (-1053)))) (-15 -1557 ((-948) (-1070) (-1070) (-948))))) (T -168))
-((-1557 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-1070)) (-5 *1 (-168)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-168)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-168)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-168)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-168)))) (-2206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-168)))) (-2094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-168)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-168)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-1653 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
-(-10 -7 (-15 -1653 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2639 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -1660 ((-346) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2094 ((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))) (-15 -3883 ((-1053) (-578 (-1053)))) (-15 -1557 ((-948) (-1070) (-1070) (-948))))
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 53) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-169) (-717)) (T -169))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 58) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-170) (-717)) (T -170))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 67) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-171) (-717)) (T -171))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 54) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-172) (-717)) (T -172))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 65) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-173) (-717)) (T -173))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 71) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-174) (-717)) (T -174))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 78) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-175) (-717)) (T -175))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 68) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-176) (-717)) (T -176))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 62)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-177) (-717)) (T -177))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 60)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-178) (-717)) (T -178))
-NIL
-(-717)
-((-3736 (((-107) $ $) NIL)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 89) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-179) (-717)) (T -179))
-NIL
-(-717)
-((-2681 (((-3 (-2 (|:| -3996 (-108)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 80)) (-1622 (((-501) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-3270 (((-3 (-578 (-199)) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69)))
-(((-180) (-10 -7 (-15 -2681 ((-3 (-2 (|:| -3996 (-108)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3270 ((-3 (-578 (-199)) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1622 ((-501) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180))
-((-1622 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-501)) (-5 *1 (-180)))) (-3270 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-180)))) (-2681 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3996 (-108)) (|:| |w| (-199)))) (-5 *1 (-180)))))
-(-10 -7 (-15 -2681 ((-3 (-2 (|:| -3996 (-108)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3270 ((-3 (-578 (-199)) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1622 ((-501) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-2513 (((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-2281 (((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 127)) (-1411 (((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-621 (-282 (-199)))) 87)) (-1786 (((-346) (-621 (-282 (-199)))) 110)) (-2424 (((-621 (-282 (-199))) (-1148 (-282 (-199))) (-578 (-1070))) 107)) (-3760 (((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1241 (((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3195 (((-621 (-282 (-199))) (-621 (-282 (-199))) (-578 (-1070)) (-1148 (-282 (-199)))) 99)) (-3580 (((-346) (-346) (-578 (-346))) 104) (((-346) (-346) (-346)) 102)) (-1612 (((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)))
-(((-181) (-10 -7 (-15 -3580 ((-346) (-346) (-346))) (-15 -3580 ((-346) (-346) (-578 (-346)))) (-15 -1786 ((-346) (-621 (-282 (-199))))) (-15 -2424 ((-621 (-282 (-199))) (-1148 (-282 (-199))) (-578 (-1070)))) (-15 -3195 ((-621 (-282 (-199))) (-621 (-282 (-199))) (-578 (-1070)) (-1148 (-282 (-199))))) (-15 -1411 ((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-621 (-282 (-199))))) (-15 -2281 ((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2513 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1241 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1612 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3760 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181))
-((-3760 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-1612 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-1241 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-2513 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346)))) (-5 *1 (-181)))) (-1411 (*1 *2 *3) (-12 (-5 *3 (-621 (-282 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346)))) (-5 *1 (-181)))) (-3195 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-621 (-282 (-199)))) (-5 *3 (-578 (-1070))) (-5 *4 (-1148 (-282 (-199)))) (-5 *1 (-181)))) (-2424 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *4 (-578 (-1070))) (-5 *2 (-621 (-282 (-199)))) (-5 *1 (-181)))) (-1786 (*1 *2 *3) (-12 (-5 *3 (-621 (-282 (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-346))) (-5 *2 (-346)) (-5 *1 (-181)))) (-3580 (*1 *2 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-181)))))
-(-10 -7 (-15 -3580 ((-346) (-346) (-346))) (-15 -3580 ((-346) (-346) (-578 (-346)))) (-15 -1786 ((-346) (-621 (-282 (-199))))) (-15 -2424 ((-621 (-282 (-199))) (-1148 (-282 (-199))) (-578 (-1070)))) (-15 -3195 ((-621 (-282 (-199))) (-621 (-282 (-199))) (-578 (-1070)) (-1148 (-282 (-199))))) (-15 -1411 ((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-621 (-282 (-199))))) (-15 -2281 ((-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2513 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1241 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1612 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3760 ((-346) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-3751 (((-107) $ $) NIL)))
-(((-182) (-730)) (T -182))
-NIL
-(-730)
-((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-3751 (((-107) $ $) NIL)))
-(((-183) (-730)) (T -183))
-NIL
-(-730)
-((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-3751 (((-107) $ $) NIL)))
-(((-184) (-730)) (T -184))
-NIL
-(-730)
-((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-3751 (((-107) $ $) NIL)))
-(((-185) (-730)) (T -185))
-NIL
-(-730)
-((-3514 (((-578 (-1070)) (-1070) (-701)) 22)) (-3334 (((-282 (-199)) (-282 (-199))) 29)) (-1835 (((-107) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 67)) (-2459 (((-107) (-199) (-199) (-578 (-282 (-199)))) 43)))
-(((-186) (-10 -7 (-15 -3514 ((-578 (-1070)) (-1070) (-701))) (-15 -3334 ((-282 (-199)) (-282 (-199)))) (-15 -2459 ((-107) (-199) (-199) (-578 (-282 (-199))))) (-15 -1835 ((-107) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))))) (T -186))
-((-1835 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-2459 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-578 (-282 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-282 (-199))) (-5 *1 (-186)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-578 (-1070))) (-5 *1 (-186)) (-5 *3 (-1070)))))
-(-10 -7 (-15 -3514 ((-578 (-1070)) (-1070) (-701))) (-15 -3334 ((-282 (-199)) (-282 (-199)))) (-15 -2459 ((-107) (-199) (-199) (-578 (-282 (-199))))) (-15 -1835 ((-107) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))))
-((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 17)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1900 (((-948) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 55)) (-3751 (((-107) $ $) NIL)))
-(((-187) (-815)) (T -187))
-NIL
-(-815)
-((-3736 (((-107) $ $) NIL)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1900 (((-948) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-188) (-815)) (T -188))
-NIL
-(-815)
-((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3512 (((-1154) $) 36) (((-1154) $ (-839) (-839)) 38)) (-2007 (($ $ (-904)) 19) (((-218 (-1053)) $ (-1070)) 15)) (-2125 (((-1154) $) 34)) (-3691 (((-786) $) 31) (($ (-578 |#1|)) 8)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $ $) 27)) (-3790 (($ $ $) 22)))
-(((-189 |#1|) (-13 (-1001) (-10 -8 (-15 -2007 ($ $ (-904))) (-15 -2007 ((-218 (-1053)) $ (-1070))) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3691 ($ (-578 |#1|))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $)) (-15 -3512 ((-1154) $ (-839) (-839))))) (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))) (T -189))
-((-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-904)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-218 (-1053))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ *3)) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) (-3790 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) (-3797 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))) (-5 *1 (-189 *3)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) (-3512 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))))
-(-13 (-1001) (-10 -8 (-15 -2007 ($ $ (-904))) (-15 -2007 ((-218 (-1053)) $ (-1070))) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3691 ($ (-578 |#1|))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $)) (-15 -3512 ((-1154) $ (-839) (-839)))))
-((-2771 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2771 (|#2| |#4| (-1 |#2| |#2|)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -190))
-((-2771 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-331)) (-4 *6 (-1125 (-375 *2))) (-4 *2 (-1125 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-310 *5 *2 *6)))))
-(-10 -7 (-15 -2771 (|#2| |#4| (-1 |#2| |#2|))))
-((-3534 ((|#2| |#2| (-701) |#2|) 41)) (-2438 ((|#2| |#2| (-701) |#2|) 37)) (-1371 (((-578 |#2|) (-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|)))) 55)) (-2188 (((-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))) |#2|) 51)) (-3375 (((-107) |#2|) 48)) (-2452 (((-373 |#2|) |#2|) 74)) (-3739 (((-373 |#2|) |#2|) 73)) (-2434 ((|#2| |#2| (-701) |#2|) 35)) (-2250 (((-2 (|:| |cont| |#1|) (|:| -1575 (-578 (-2 (|:| |irr| |#2|) (|:| -3257 (-501)))))) |#2| (-107)) 66)))
-(((-191 |#1| |#2|) (-10 -7 (-15 -3739 ((-373 |#2|) |#2|)) (-15 -2452 ((-373 |#2|) |#2|)) (-15 -2250 ((-2 (|:| |cont| |#1|) (|:| -1575 (-578 (-2 (|:| |irr| |#2|) (|:| -3257 (-501)))))) |#2| (-107))) (-15 -2188 ((-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))) |#2|)) (-15 -1371 ((-578 |#2|) (-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))))) (-15 -2434 (|#2| |#2| (-701) |#2|)) (-15 -2438 (|#2| |#2| (-701) |#2|)) (-15 -3534 (|#2| |#2| (-701) |#2|)) (-15 -3375 ((-107) |#2|))) (-318) (-1125 |#1|)) (T -191))
-((-3375 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) (-3534 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))) (-2438 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))) (-2434 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))) (-1371 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |deg| (-701)) (|:| -3215 *5)))) (-4 *5 (-1125 *4)) (-4 *4 (-318)) (-5 *2 (-578 *5)) (-5 *1 (-191 *4 *5)))) (-2188 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-578 (-2 (|:| |deg| (-701)) (|:| -3215 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) (-2250 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1125 *5)))) (-2452 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -3739 ((-373 |#2|) |#2|)) (-15 -2452 ((-373 |#2|) |#2|)) (-15 -2250 ((-2 (|:| |cont| |#1|) (|:| -1575 (-578 (-2 (|:| |irr| |#2|) (|:| -3257 (-501)))))) |#2| (-107))) (-15 -2188 ((-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))) |#2|)) (-15 -1371 ((-578 |#2|) (-578 (-2 (|:| |deg| (-701)) (|:| -3215 |#2|))))) (-15 -2434 (|#2| |#2| (-701) |#2|)) (-15 -2438 (|#2| |#2| (-701) |#2|)) (-15 -3534 (|#2| |#2| (-701) |#2|)) (-15 -3375 ((-107) |#2|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-501) $) NIL (|has| (-501) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-501) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-501) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-501) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-501) (-950 (-501))))) (-3490 (((-501) $) NIL) (((-1070) $) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-501) (-950 (-501)))) (((-501) $) NIL (|has| (-501) (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-501) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-501) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-501) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-501) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-501) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-501) (-1046)))) (-4067 (((-107) $) NIL (|has| (-501) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-501) (-777)))) (-1212 (($ (-1 (-501) (-501)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-501) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-501) (-276))) (((-375 (-501)) $) NIL)) (-3383 (((-501) $) NIL (|has| (-501) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-501)) (-578 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-501) (-501)) NIL (|has| (-501) (-278 (-501)))) (($ $ (-262 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-262 (-501)))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-1070)) (-578 (-501))) NIL (|has| (-501) (-476 (-1070) (-501)))) (($ $ (-1070) (-501)) NIL (|has| (-501) (-476 (-1070) (-501))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-501)) NIL (|has| (-501) (-256 (-501) (-501))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-501) $) NIL)) (-1237 (($ (-375 (-501))) 8)) (-1248 (((-810 (-501)) $) NIL (|has| (-501) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-501) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-501) (-556 (-490)))) (((-346) $) NIL (|has| (-501) (-933))) (((-199) $) NIL (|has| (-501) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-501) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 7) (($ (-501)) NIL) (($ (-1070)) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL) (((-918 10) $) 9)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-501) (-830))) (|has| (-501) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-501) $) NIL (|has| (-501) (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-501) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3803 (($ $ $) NIL) (($ (-501) (-501)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-501) $) NIL) (($ $ (-501)) NIL)))
-(((-192) (-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 10) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -1237 ($ (-375 (-501))))))) (T -192))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-918 10)) (-5 *1 (-192)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))) (-1237 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))))
-(-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 10) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -1237 ($ (-375 (-501))))))
-((-3188 (((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)) (-1053)) 27) (((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|))) 23)) (-3213 (((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070) (-769 |#2|) (-769 |#2|) (-107)) 16)))
-(((-193 |#1| |#2|) (-10 -7 (-15 -3188 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)))) (-15 -3188 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)) (-1053))) (-15 -3213 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070) (-769 |#2|) (-769 |#2|) (-107)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-879) (-29 |#1|))) (T -193))
-((-3213 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1070)) (-5 *6 (-107)) (-4 *7 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-1090) (-879) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-769 *3)))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-769 *3))) (-5 *5 (-1053)) (-4 *3 (-13 (-1090) (-879) (-29 *6))) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-769 *3))) (-4 *3 (-13 (-1090) (-879) (-29 *5))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))))
-(-10 -7 (-15 -3188 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)))) (-15 -3188 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-993 (-769 |#2|)) (-1053))) (-15 -3213 ((-3 (|:| |f1| (-769 |#2|)) (|:| |f2| (-578 (-769 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1070) (-769 |#2|) (-769 |#2|) (-107))))
-((-3188 (((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))) (-1053)) 44) (((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|))))) 41) (((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))) (-1053)) 45) (((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|)))) 17)))
-(((-194 |#1|) (-10 -7 (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))) (-1053))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))) (-1053)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (T -194))
-((-3188 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-769 (-375 (-866 *6))))) (-5 *5 (-1053)) (-5 *3 (-375 (-866 *6))) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *6))) (|:| |f2| (-578 (-769 (-282 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-769 (-375 (-866 *5))))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *5))) (|:| |f2| (-578 (-769 (-282 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-375 (-866 *6))) (-5 *4 (-993 (-769 (-282 *6)))) (-5 *5 (-1053)) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *6))) (|:| |f2| (-578 (-769 (-282 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-993 (-769 (-282 *5)))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *5))) (|:| |f2| (-578 (-769 (-282 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))))
-(-10 -7 (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-282 |#1|))) (-1053))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))))) (-15 -3188 ((-3 (|:| |f1| (-769 (-282 |#1|))) (|:| |f2| (-578 (-769 (-282 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-375 (-866 |#1|)) (-993 (-769 (-375 (-866 |#1|)))) (-1053))))
-((-3547 (((-2 (|:| -2663 (-1064 |#1|)) (|:| |deg| (-839))) (-1064 |#1|)) 20)) (-1967 (((-578 (-282 |#2|)) (-282 |#2|) (-839)) 42)))
-(((-195 |#1| |#2|) (-10 -7 (-15 -3547 ((-2 (|:| -2663 (-1064 |#1|)) (|:| |deg| (-839))) (-1064 |#1|))) (-15 -1967 ((-578 (-282 |#2|)) (-282 |#2|) (-839)))) (-959) (-13 (-508) (-777))) (T -195))
-((-1967 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *6 (-13 (-508) (-777))) (-5 *2 (-578 (-282 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-282 *6)) (-4 *5 (-959)))) (-3547 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-2 (|:| -2663 (-1064 *4)) (|:| |deg| (-839)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1064 *4)) (-4 *5 (-13 (-508) (-777))))))
-(-10 -7 (-15 -3547 ((-2 (|:| -2663 (-1064 |#1|)) (|:| |deg| (-839))) (-1064 |#1|))) (-15 -1967 ((-578 (-282 |#2|)) (-282 |#2|) (-839))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1623 ((|#1| $) NIL)) (-2425 ((|#1| $) 25)) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2253 (($ $) NIL)) (-1375 (($ $) 31)) (-2988 ((|#1| |#1| $) NIL)) (-1260 ((|#1| $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-4139 (((-701) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) NIL)) (-2267 ((|#1| |#1| $) 28)) (-3458 ((|#1| |#1| $) 30)) (-4114 (($ |#1| $) NIL)) (-2696 (((-701) $) 27)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3085 ((|#1| $) NIL)) (-2072 ((|#1| $) 26)) (-2464 ((|#1| $) 24)) (-1251 ((|#1| $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2047 ((|#1| |#1| $) NIL)) (-1407 (((-107) $) 9)) (-3122 (($) NIL)) (-1862 ((|#1| $) NIL)) (-1906 (($) NIL) (($ (-578 |#1|)) 16)) (-3661 (((-701) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1807 ((|#1| $) 13)) (-2866 (($ (-578 |#1|)) NIL)) (-2366 ((|#1| $) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-196 |#1|) (-13 (-225 |#1|) (-10 -8 (-15 -1906 ($ (-578 |#1|))))) (-1001)) (T -196))
-((-1906 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-196 *3)))))
-(-13 (-225 |#1|) (-10 -8 (-15 -1906 ($ (-578 |#1|)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3428 (($ (-282 |#1|)) 23)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3998 (((-107) $) NIL)) (-3765 (((-3 (-282 |#1|) "failed") $) NIL)) (-3490 (((-282 |#1|) $) NIL)) (-3858 (($ $) 31)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-1212 (($ (-1 (-282 |#1|) (-282 |#1|)) $) NIL)) (-3850 (((-282 |#1|) $) NIL)) (-3320 (($ $) 30)) (-3460 (((-1053) $) NIL)) (-1464 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($ (-701)) NIL)) (-2249 (($ $) 32)) (-1201 (((-501) $) NIL)) (-3691 (((-786) $) 57) (($ (-501)) NIL) (($ (-282 |#1|)) NIL)) (-2495 (((-282 |#1|) $ $) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 25 T CONST)) (-1925 (($) 50 T CONST)) (-3751 (((-107) $ $) 28)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 19)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 24) (($ (-282 |#1|) $) 18)))
-(((-197 |#1| |#2|) (-13 (-560 (-282 |#1|)) (-950 (-282 |#1|)) (-10 -8 (-15 -3850 ((-282 |#1|) $)) (-15 -3320 ($ $)) (-15 -3858 ($ $)) (-15 -2495 ((-282 |#1|) $ $)) (-15 -3987 ($ (-701))) (-15 -1464 ((-107) $)) (-15 -3998 ((-107) $)) (-15 -1201 ((-501) $)) (-15 -1212 ($ (-1 (-282 |#1|) (-282 |#1|)) $)) (-15 -3428 ($ (-282 |#1|))) (-15 -2249 ($ $)))) (-13 (-959) (-777)) (-578 (-1070))) (T -197))
-((-3850 (*1 *2 *1) (-12 (-5 *2 (-282 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-3320 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070))))) (-3858 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070))))) (-2495 (*1 *2 *1 *1) (-12 (-5 *2 (-282 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-282 *3) (-282 *3))) (-4 *3 (-13 (-959) (-777))) (-5 *1 (-197 *3 *4)) (-14 *4 (-578 (-1070))))) (-3428 (*1 *1 *2) (-12 (-5 *2 (-282 *3)) (-4 *3 (-13 (-959) (-777))) (-5 *1 (-197 *3 *4)) (-14 *4 (-578 (-1070))))) (-2249 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070))))))
-(-13 (-560 (-282 |#1|)) (-950 (-282 |#1|)) (-10 -8 (-15 -3850 ((-282 |#1|) $)) (-15 -3320 ($ $)) (-15 -3858 ($ $)) (-15 -2495 ((-282 |#1|) $ $)) (-15 -3987 ($ (-701))) (-15 -1464 ((-107) $)) (-15 -3998 ((-107) $)) (-15 -1201 ((-501) $)) (-15 -1212 ($ (-1 (-282 |#1|) (-282 |#1|)) $)) (-15 -3428 ($ (-282 |#1|))) (-15 -2249 ($ $))))
-((-3011 (((-107) (-1053)) 22)) (-2436 (((-3 (-769 |#2|) "failed") (-553 |#2|) |#2| (-769 |#2|) (-769 |#2|) (-107)) 32)) (-3735 (((-3 (-107) "failed") (-1064 |#2|) (-769 |#2|) (-769 |#2|) (-107)) 73) (((-3 (-107) "failed") (-866 |#1|) (-1070) (-769 |#2|) (-769 |#2|) (-107)) 74)))
-(((-198 |#1| |#2|) (-10 -7 (-15 -3011 ((-107) (-1053))) (-15 -2436 ((-3 (-769 |#2|) "failed") (-553 |#2|) |#2| (-769 |#2|) (-769 |#2|) (-107))) (-15 -3735 ((-3 (-107) "failed") (-866 |#1|) (-1070) (-769 |#2|) (-769 |#2|) (-107))) (-15 -3735 ((-3 (-107) "failed") (-1064 |#2|) (-769 |#2|) (-769 |#2|) (-107)))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-29 |#1|))) (T -198))
-((-3735 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1064 *6)) (-5 *4 (-769 *6)) (-4 *6 (-13 (-1090) (-29 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-198 *5 *6)))) (-3735 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-866 *6)) (-5 *4 (-1070)) (-5 *5 (-769 *7)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *7 (-13 (-1090) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-2436 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-769 *4)) (-5 *3 (-553 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1090) (-29 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-198 *6 *4)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1090) (-29 *4))))))
-(-10 -7 (-15 -3011 ((-107) (-1053))) (-15 -2436 ((-3 (-769 |#2|) "failed") (-553 |#2|) |#2| (-769 |#2|) (-769 |#2|) (-107))) (-15 -3735 ((-3 (-107) "failed") (-866 |#1|) (-1070) (-769 |#2|) (-769 |#2|) (-107))) (-15 -3735 ((-3 (-107) "failed") (-1064 |#2|) (-769 |#2|) (-769 |#2|) (-107))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 87)) (-2197 (((-501) $) 97)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2805 (($ $) NIL)) (-3978 (($ $) 75)) (-3937 (($ $) 63)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) 54)) (-2781 (((-107) $ $) NIL)) (-3970 (($ $) 73)) (-3929 (($ $) 61)) (-1417 (((-501) $) 114)) (-3984 (($ $) 78)) (-3945 (($ $) 65)) (-2540 (($) NIL T CONST)) (-1453 (($ $) NIL)) (-3765 (((-3 (-501) "failed") $) 113) (((-3 (-375 (-501)) "failed") $) 110)) (-3490 (((-501) $) 111) (((-375 (-501)) $) 108)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) 90)) (-2693 (((-375 (-501)) $ (-701)) 106) (((-375 (-501)) $ (-701) (-701)) 105)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3943 (((-839)) 27) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-2164 (((-107) $) NIL)) (-2003 (($) 37)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL)) (-3169 (((-501) $) 33)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL)) (-2626 (($ $) NIL)) (-4067 (((-107) $) 86)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) 51) (($) 32 (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1323 (($ $ $) 50) (($) 31 (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1828 (((-501) $) 25)) (-2287 (($ $) 28)) (-3266 (($ $) 55)) (-1635 (($ $) 60)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3039 (((-839) (-501)) NIL (|has| $ (-6 -4158)))) (-3708 (((-1018) $) NIL) (((-501) $) 88)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL)) (-3383 (($ $) NIL)) (-2017 (($ (-501) (-501)) NIL) (($ (-501) (-501) (-839)) 98)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3027 (((-501) $) 26)) (-3793 (($) 36)) (-1989 (($ $) 59)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3960 (((-839)) NIL) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-2596 (($ $ (-701)) NIL) (($ $) 91)) (-1537 (((-839) (-501)) NIL (|has| $ (-6 -4158)))) (-3991 (($ $) 76)) (-3949 (($ $) 66)) (-3981 (($ $) 77)) (-3940 (($ $) 64)) (-3975 (($ $) 74)) (-3933 (($ $) 62)) (-1248 (((-346) $) 102) (((-199) $) 99) (((-810 (-346)) $) NIL) (((-490) $) 43)) (-3691 (((-786) $) 40) (($ (-501)) 58) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-501)) 58) (($ (-375 (-501))) NIL)) (-3965 (((-701)) NIL)) (-2803 (($ $) NIL)) (-2751 (((-839)) 30) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-1965 (((-839)) 23)) (-4003 (($ $) 81)) (-3958 (($ $) 69) (($ $ $) 107)) (-2442 (((-107) $ $) NIL)) (-3995 (($ $) 79)) (-3952 (($ $) 67)) (-4013 (($ $) 84)) (-3964 (($ $) 72)) (-3550 (($ $) 82)) (-3967 (($ $) 70)) (-4008 (($ $) 83)) (-3961 (($ $) 71)) (-3999 (($ $) 80)) (-3955 (($ $) 68)) (-1720 (($ $) 115)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 34 T CONST)) (-1925 (($) 35 T CONST)) (-3671 (((-1053) $) 17) (((-1053) $ (-107)) 19) (((-1154) (-753) $) 20) (((-1154) (-753) $ (-107)) 21)) (-3705 (($ $) 94)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3360 (($ $ $) 96)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 52)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 44)) (-3803 (($ $ $) 85) (($ $ (-501)) 53)) (-3797 (($ $) 45) (($ $ $) 47)) (-3790 (($ $ $) 46)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 56) (($ $ (-375 (-501))) 126) (($ $ $) 57)) (* (($ (-839) $) 29) (($ (-701) $) NIL) (($ (-501) $) 49) (($ $ $) 48) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL)))
-(((-199) (-13 (-372) (-206) (-751) (-1090) (-556 (-490)) (-10 -8 (-15 -3803 ($ $ (-501))) (-15 ** ($ $ $)) (-15 -3793 ($)) (-15 -3708 ((-501) $)) (-15 -2287 ($ $)) (-15 -3266 ($ $)) (-15 -3958 ($ $ $)) (-15 -3705 ($ $)) (-15 -3360 ($ $ $)) (-15 -2693 ((-375 (-501)) $ (-701))) (-15 -2693 ((-375 (-501)) $ (-701) (-701)))))) (T -199))
-((** (*1 *1 *1 *1) (-5 *1 (-199))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-199)))) (-3793 (*1 *1) (-5 *1 (-199))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-199)))) (-2287 (*1 *1 *1) (-5 *1 (-199))) (-3266 (*1 *1 *1) (-5 *1 (-199))) (-3958 (*1 *1 *1 *1) (-5 *1 (-199))) (-3705 (*1 *1 *1) (-5 *1 (-199))) (-3360 (*1 *1 *1 *1) (-5 *1 (-199))) (-2693 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-199)))) (-2693 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-199)))))
-(-13 (-372) (-206) (-751) (-1090) (-556 (-490)) (-10 -8 (-15 -3803 ($ $ (-501))) (-15 ** ($ $ $)) (-15 -3793 ($)) (-15 -3708 ((-501) $)) (-15 -2287 ($ $)) (-15 -3266 ($ $)) (-15 -3958 ($ $ $)) (-15 -3705 ($ $)) (-15 -3360 ($ $ $)) (-15 -2693 ((-375 (-501)) $ (-701))) (-15 -2693 ((-375 (-501)) $ (-701) (-701)))))
-((-2726 (((-152 (-199)) (-701) (-152 (-199))) 11) (((-199) (-701) (-199)) 12)) (-1443 (((-152 (-199)) (-152 (-199))) 13) (((-199) (-199)) 14)) (-2722 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 19) (((-199) (-199) (-199)) 22)) (-3041 (((-152 (-199)) (-152 (-199))) 25) (((-199) (-199)) 24)) (-1223 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 43) (((-199) (-199) (-199)) 35)) (-3076 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 48) (((-199) (-199) (-199)) 45)) (-1730 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 15) (((-199) (-199) (-199)) 16)) (-2108 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 17) (((-199) (-199) (-199)) 18)) (-2134 (((-152 (-199)) (-152 (-199))) 60) (((-199) (-199)) 59)) (-2338 (((-199) (-199)) 54) (((-152 (-199)) (-152 (-199))) 58)) (-3705 (((-152 (-199)) (-152 (-199))) 7) (((-199) (-199)) 9)) (-3360 (((-152 (-199)) (-152 (-199)) (-152 (-199))) 30) (((-199) (-199) (-199)) 26)))
-(((-200) (-10 -7 (-15 -3705 ((-199) (-199))) (-15 -3705 ((-152 (-199)) (-152 (-199)))) (-15 -3360 ((-199) (-199) (-199))) (-15 -3360 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -1443 ((-199) (-199))) (-15 -1443 ((-152 (-199)) (-152 (-199)))) (-15 -3041 ((-199) (-199))) (-15 -3041 ((-152 (-199)) (-152 (-199)))) (-15 -2726 ((-199) (-701) (-199))) (-15 -2726 ((-152 (-199)) (-701) (-152 (-199)))) (-15 -1730 ((-199) (-199) (-199))) (-15 -1730 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -1223 ((-199) (-199) (-199))) (-15 -1223 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -2108 ((-199) (-199) (-199))) (-15 -2108 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -3076 ((-199) (-199) (-199))) (-15 -3076 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -2338 ((-152 (-199)) (-152 (-199)))) (-15 -2338 ((-199) (-199))) (-15 -2134 ((-199) (-199))) (-15 -2134 ((-152 (-199)) (-152 (-199)))) (-15 -2722 ((-199) (-199) (-199))) (-15 -2722 ((-152 (-199)) (-152 (-199)) (-152 (-199)))))) (T -200))
-((-2722 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-2722 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3076 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3076 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-2108 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1223 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-1223 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1730 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-1730 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2726 (*1 *2 *3 *2) (-12 (-5 *2 (-152 (-199))) (-5 *3 (-701)) (-5 *1 (-200)))) (-2726 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-701)) (-5 *1 (-200)))) (-3041 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3041 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3360 (*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3360 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))))
-(-10 -7 (-15 -3705 ((-199) (-199))) (-15 -3705 ((-152 (-199)) (-152 (-199)))) (-15 -3360 ((-199) (-199) (-199))) (-15 -3360 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -1443 ((-199) (-199))) (-15 -1443 ((-152 (-199)) (-152 (-199)))) (-15 -3041 ((-199) (-199))) (-15 -3041 ((-152 (-199)) (-152 (-199)))) (-15 -2726 ((-199) (-701) (-199))) (-15 -2726 ((-152 (-199)) (-701) (-152 (-199)))) (-15 -1730 ((-199) (-199) (-199))) (-15 -1730 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -1223 ((-199) (-199) (-199))) (-15 -1223 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -2108 ((-199) (-199) (-199))) (-15 -2108 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -3076 ((-199) (-199) (-199))) (-15 -3076 ((-152 (-199)) (-152 (-199)) (-152 (-199)))) (-15 -2338 ((-152 (-199)) (-152 (-199)))) (-15 -2338 ((-199) (-199))) (-15 -2134 ((-199) (-199))) (-15 -2134 ((-152 (-199)) (-152 (-199)))) (-15 -2722 ((-199) (-199) (-199))) (-15 -2722 ((-152 (-199)) (-152 (-199)) (-152 (-199)))))
-((-1221 (($ (-1 (-107) |#2|) $) 17)) (-2256 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 25)) (-3013 (($) NIL) (($ (-578 |#2|)) 11)) (-3751 (((-107) $ $) 23)))
-(((-201 |#1| |#2|) (-10 -8 (-15 -1221 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -3013 (|#1| (-578 |#2|))) (-15 -3013 (|#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-202 |#2|) (-1001)) (T -201))
-NIL
-(-10 -8 (-15 -1221 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -3013 (|#1| (-578 |#2|))) (-15 -3013 (|#1|)) (-15 -3751 ((-107) |#1| |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-202 |#1|) (-1180) (-1001)) (T -202))
-NIL
-(-13 (-208 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-2596 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) 11) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) 19) (($ $ (-701)) NIL) (($ $) 16)) (-3584 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-701)) 14) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)))
-(((-203 |#1| |#2|) (-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3584 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3584 (|#1| |#1| (-1070))) (-15 -3584 (|#1| |#1| (-578 (-1070)))) (-15 -3584 (|#1| |#1| (-1070) (-701))) (-15 -3584 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|)))) (-204 |#2|) (-959)) (T -203))
-NIL
-(-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -3584 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3584 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3584 (|#1| |#1| (-1070))) (-15 -3584 (|#1| |#1| (-578 (-1070)))) (-15 -3584 (|#1| |#1| (-1070) (-701))) (-15 -3584 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -3584 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2596 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-701)) 51) (($ $ (-578 (-1070)) (-578 (-701))) 44 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 43 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 42 (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 41 (|has| |#1| (-820 (-1070)))) (($ $ (-701)) 39 (|has| |#1| (-206))) (($ $) 37 (|has| |#1| (-206)))) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-701)) 49) (($ $ (-578 (-1070)) (-578 (-701))) 48 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 47 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 46 (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 45 (|has| |#1| (-820 (-1070)))) (($ $ (-701)) 40 (|has| |#1| (-206))) (($ $) 38 (|has| |#1| (-206)))) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-204 |#1|) (-1180) (-959)) (T -204))
-((-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-204 *3)) (-4 *3 (-959)))) (-2596 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *1 (-204 *4)) (-4 *4 (-959)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-204 *3)) (-4 *3 (-959)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *1 (-204 *4)) (-4 *4 (-959)))))
-(-13 (-959) (-10 -8 (-15 -2596 ($ $ (-1 |t#1| |t#1|))) (-15 -2596 ($ $ (-1 |t#1| |t#1|) (-701))) (-15 -3584 ($ $ (-1 |t#1| |t#1|))) (-15 -3584 ($ $ (-1 |t#1| |t#1|) (-701))) (IF (|has| |t#1| (-206)) (-6 (-206)) |noBranch|) (IF (|has| |t#1| (-820 (-1070))) (-6 (-820 (-1070))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-206) |has| |#1| (-206)) ((-583 $) . T) ((-657) . T) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-2596 (($ $) NIL) (($ $ (-701)) 10)) (-3584 (($ $) 8) (($ $ (-701)) 12)))
-(((-205 |#1|) (-10 -8 (-15 -3584 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-701))) (-15 -3584 (|#1| |#1|)) (-15 -2596 (|#1| |#1|))) (-206)) (T -205))
-NIL
-(-10 -8 (-15 -3584 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-701))) (-15 -3584 (|#1| |#1|)) (-15 -2596 (|#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2596 (($ $) 38) (($ $ (-701)) 36)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $) 37) (($ $ (-701)) 35)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-206) (-1180)) (T -206))
-((-2596 (*1 *1 *1) (-4 *1 (-206))) (-3584 (*1 *1 *1) (-4 *1 (-206))) (-2596 (*1 *1 *1 *2) (-12 (-4 *1 (-206)) (-5 *2 (-701)))) (-3584 (*1 *1 *1 *2) (-12 (-4 *1 (-206)) (-5 *2 (-701)))))
-(-13 (-959) (-10 -8 (-15 -2596 ($ $)) (-15 -3584 ($ $)) (-15 -2596 ($ $ (-701))) (-15 -3584 ($ $ (-701)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3013 (($) 12) (($ (-578 |#2|)) NIL)) (-3764 (($ $) 14)) (-3699 (($ (-578 |#2|)) 10)) (-3691 (((-786) $) 21)))
-(((-207 |#1| |#2|) (-10 -8 (-15 -3013 (|#1| (-578 |#2|))) (-15 -3013 (|#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -3691 ((-786) |#1|)) (-15 -3764 (|#1| |#1|))) (-208 |#2|) (-1001)) (T -207))
-NIL
-(-10 -8 (-15 -3013 (|#1| (-578 |#2|))) (-15 -3013 (|#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -3691 ((-786) |#1|)) (-15 -3764 (|#1| |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-208 |#1|) (-1180) (-1001)) (T -208))
-((-3013 (*1 *1) (-12 (-4 *1 (-208 *2)) (-4 *2 (-1001)))) (-3013 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-208 *3)))) (-2256 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-208 *2)) (-4 *2 (-1001)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-208 *3)) (-4 *3 (-1001)))) (-1221 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-208 *3)) (-4 *3 (-1001)))))
-(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -3013 ($)) (-15 -3013 ($ (-578 |t#1|))) (IF (|has| $ (-6 -4167)) (PROGN (-15 -2256 ($ |t#1| $)) (-15 -2256 ($ (-1 (-107) |t#1|) $)) (-15 -1221 ($ (-1 (-107) |t#1|) $))) |noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-2137 (((-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701))))) (-262 (-866 (-501)))) 25)))
-(((-209) (-10 -7 (-15 -2137 ((-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701))))) (-262 (-866 (-501))))))) (T -209))
-((-2137 (*1 *2 *3) (-12 (-5 *3 (-262 (-866 (-501)))) (-5 *2 (-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701)))))) (-5 *1 (-209)))))
-(-10 -7 (-15 -2137 ((-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701))))) (-262 (-866 (-501))))))
-((-3796 (((-701)) 51)) (-3868 (((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 $) (-1148 $)) 49) (((-621 |#3|) (-621 $)) 41) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-3613 (((-125)) 57)) (-2596 (($ $ (-1 |#3| |#3|) (-701)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-3691 (((-1148 |#3|) $) NIL) (($ |#3|) NIL) (((-786) $) NIL) (($ (-501)) 12) (($ (-375 (-501))) NIL)) (-3965 (((-701)) 15)) (-3803 (($ $ |#3|) 54)))
-(((-210 |#1| |#2| |#3|) (-10 -8 (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)) (-15 -3965 ((-701))) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3691 (|#1| |#3|)) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|) (-701))) (-15 -3868 ((-621 |#3|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 |#1|) (-1148 |#1|))) (-15 -3796 ((-701))) (-15 -3803 (|#1| |#1| |#3|)) (-15 -3613 ((-125))) (-15 -3691 ((-1148 |#3|) |#1|))) (-211 |#2| |#3|) (-701) (-1104)) (T -210))
-((-3613 (*1 *2) (-12 (-14 *4 (-701)) (-4 *5 (-1104)) (-5 *2 (-125)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) (-3796 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1104)) (-5 *2 (-701)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) (-3965 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1104)) (-5 *2 (-701)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))))
-(-10 -8 (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)) (-15 -3965 ((-701))) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3691 (|#1| |#3|)) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|) (-701))) (-15 -3868 ((-621 |#3|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 |#1|) (-1148 |#1|))) (-15 -3796 ((-701))) (-15 -3803 (|#1| |#1| |#3|)) (-15 -3613 ((-125))) (-15 -3691 ((-1148 |#3|) |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#2| (-1001)))) (-3292 (((-107) $) 72 (|has| |#2| (-123)))) (-1822 (($ (-839)) 127 (|has| |#2| (-959)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-3405 (($ $ $) 123 (|has| |#2| (-723)))) (-3177 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-2997 (((-107) $ (-701)) 8)) (-3796 (((-701)) 109 (|has| |#2| (-336)))) (-1417 (((-501) $) 121 (|has| |#2| (-775)))) (-3754 ((|#2| $ (-501) |#2|) 52 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-3765 (((-3 (-501) "failed") $) 67 (-1280 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-3 (-375 (-501)) "failed") $) 64 (-1280 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1001)))) (-3490 (((-501) $) 68 (-1280 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-375 (-501)) $) 65 (-1280 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) ((|#2| $) 60 (|has| |#2| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) 108 (-1280 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 107 (-1280 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 106 (|has| |#2| (-959))) (((-621 |#2|) (-621 $)) 105 (|has| |#2| (-959)))) (-2174 (((-3 $ "failed") $) 99 (|has| |#2| (-959)))) (-2890 (($) 112 (|has| |#2| (-336)))) (-2156 ((|#2| $ (-501) |#2|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ (-501)) 51)) (-2164 (((-107) $) 119 (|has| |#2| (-775)))) (-2732 (((-578 |#2|) $) 30 (|has| $ (-6 -4167)))) (-1355 (((-107) $) 102 (|has| |#2| (-959)))) (-4067 (((-107) $) 120 (|has| |#2| (-775)))) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 118 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3380 (((-578 |#2|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 117 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-2519 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) 35)) (-3104 (((-839) $) 111 (|has| |#2| (-336)))) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#2| (-1001)))) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3506 (($ (-839)) 110 (|has| |#2| (-336)))) (-3708 (((-1018) $) 21 (|has| |#2| (-1001)))) (-1190 ((|#2| $) 42 (|has| (-501) (-777)))) (-3084 (($ $ |#2|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) 26 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 25 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 23 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#2| $ (-501) |#2|) 50) ((|#2| $ (-501)) 49)) (-1293 ((|#2| $ $) 126 (|has| |#2| (-959)))) (-3759 (($ (-1148 |#2|)) 128)) (-3613 (((-125)) 125 (|has| |#2| (-331)))) (-2596 (($ $) 92 (-1280 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) 90 (-1280 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) 88 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) 87 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) 86 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) 85 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) 78 (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-959)))) (-3713 (((-701) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4167))) (((-701) |#2| $) 28 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-1148 |#2|) $) 129) (((-786) $) 20 (|has| |#2| (-1001))) (($ (-501)) 66 (-1405 (-1280 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (|has| |#2| (-959)))) (($ (-375 (-501))) 63 (-1280 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (($ |#2|) 62 (|has| |#2| (-1001)))) (-3965 (((-701)) 104 (|has| |#2| (-959)))) (-1200 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4167)))) (-1720 (($ $) 122 (|has| |#2| (-775)))) (-3948 (($ $ (-701)) 100 (|has| |#2| (-959))) (($ $ (-839)) 96 (|has| |#2| (-959)))) (-1850 (($) 71 (|has| |#2| (-123)) CONST)) (-1925 (($) 103 (|has| |#2| (-959)) CONST)) (-3584 (($ $) 91 (-1280 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) 89 (-1280 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) 84 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) 83 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) 82 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) 81 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) 80 (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-959)))) (-3778 (((-107) $ $) 115 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3768 (((-107) $ $) 114 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3751 (((-107) $ $) 19 (|has| |#2| (-1001)))) (-3773 (((-107) $ $) 116 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3762 (((-107) $ $) 113 (-1405 (|has| |#2| (-775)) (|has| |#2| (-723))))) (-3803 (($ $ |#2|) 124 (|has| |#2| (-331)))) (-3797 (($ $ $) 94 (|has| |#2| (-959))) (($ $) 93 (|has| |#2| (-959)))) (-3790 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-701)) 101 (|has| |#2| (-959))) (($ $ (-839)) 97 (|has| |#2| (-959)))) (* (($ $ $) 98 (|has| |#2| (-959))) (($ (-501) $) 95 (|has| |#2| (-959))) (($ $ |#2|) 76 (|has| |#2| (-657))) (($ |#2| $) 75 (|has| |#2| (-657))) (($ (-701) $) 73 (|has| |#2| (-123))) (($ (-839) $) 70 (|has| |#2| (-25)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-211 |#1| |#2|) (-1180) (-701) (-1104)) (T -211))
-((-3759 (*1 *1 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1104)) (-4 *1 (-211 *3 *4)))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-211 *3 *4)) (-4 *4 (-959)) (-4 *4 (-1104)))) (-1293 (*1 *2 *1 *1) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))))
-(-13 (-548 (-501) |t#2|) (-555 (-1148 |t#2|)) (-10 -8 (-6 -4167) (-15 -3759 ($ (-1148 |t#2|))) (IF (|has| |t#2| (-1001)) (-6 (-380 |t#2|)) |noBranch|) (IF (|has| |t#2| (-959)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-204 |t#2|)) (-6 (-345 |t#2|)) (-15 -1822 ($ (-839))) (-15 -1293 (|t#2| $ $))) |noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |noBranch|) (IF (|has| |t#2| (-657)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |noBranch|) (IF (|has| |t#2| (-336)) (-6 (-336)) |noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |noBranch|) (IF (|has| |t#2| (-6 -4164)) (-6 -4164) |noBranch|) (IF (|has| |t#2| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |t#2| (-723)) (-6 (-723)) |noBranch|) (IF (|has| |t#2| (-331)) (-6 (-1156 |t#2|)) |noBranch|)))
-(((-21) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-331)) (|has| |#2| (-156))) ((-23) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -1405 (|has| |#2| (-1001)) (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-336)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -1405 (|has| |#2| (-959)) (|has| |#2| (-331)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-555 (-786)) -1405 (|has| |#2| (-1001)) (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-336)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-555 (-1148 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-204 |#2|) |has| |#2| (-959)) ((-206) -12 (|has| |#2| (-206)) (|has| |#2| (-959))) ((-256 (-501) |#2|) . T) ((-258 (-501) |#2|) . T) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-336) |has| |#2| (-336)) ((-345 |#2|) |has| |#2| (-959)) ((-380 |#2|) |has| |#2| (-1001)) ((-454 |#2|) . T) ((-548 (-501) |#2|) . T) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-583 |#2|) -1405 (|has| |#2| (-959)) (|has| |#2| (-331)) (|has| |#2| (-156))) ((-583 $) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-577 (-501)) -12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959))) ((-577 |#2|) |has| |#2| (-959)) ((-648 |#2|) -1405 (|has| |#2| (-331)) (|has| |#2| (-156))) ((-657) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-721) |has| |#2| (-775)) ((-722) -1405 (|has| |#2| (-775)) (|has| |#2| (-723))) ((-723) |has| |#2| (-723)) ((-724) -1405 (|has| |#2| (-775)) (|has| |#2| (-723))) ((-727) -1405 (|has| |#2| (-775)) (|has| |#2| (-723))) ((-775) |has| |#2| (-775)) ((-777) -1405 (|has| |#2| (-775)) (|has| |#2| (-723))) ((-820 (-1070)) -12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959))) ((-950 (-375 (-501))) -12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001))) ((-950 (-501)) -12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) ((-950 |#2|) |has| |#2| (-1001)) ((-964 |#2|) -1405 (|has| |#2| (-959)) (|has| |#2| (-331)) (|has| |#2| (-156))) ((-964 $) |has| |#2| (-156)) ((-959) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-965) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-1012) -1405 (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-156))) ((-1001) -1405 (|has| |#2| (-1001)) (|has| |#2| (-959)) (|has| |#2| (-775)) (|has| |#2| (-723)) (|has| |#2| (-336)) (|has| |#2| (-331)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1104) . T) ((-1156 |#2|) |has| |#2| (-331)))
-((-3736 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3292 (((-107) $) NIL (|has| |#2| (-123)))) (-1822 (($ (-839)) 56 (|has| |#2| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) 60 (|has| |#2| (-723)))) (-3177 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-2997 (((-107) $ (-701)) 17)) (-3796 (((-701)) NIL (|has| |#2| (-336)))) (-1417 (((-501) $) NIL (|has| |#2| (-775)))) (-3754 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1001)))) (-3490 (((-501) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) ((|#2| $) 27 (|has| |#2| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL (|has| |#2| (-959))) (((-621 |#2|) (-621 $)) NIL (|has| |#2| (-959)))) (-2174 (((-3 $ "failed") $) 53 (|has| |#2| (-959)))) (-2890 (($) NIL (|has| |#2| (-336)))) (-2156 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ (-501)) 51)) (-2164 (((-107) $) NIL (|has| |#2| (-775)))) (-2732 (((-578 |#2|) $) 15 (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#2| (-959)))) (-4067 (((-107) $) NIL (|has| |#2| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 20 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 (((-501) $) 50 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) 41)) (-3104 (((-839) $) NIL (|has| |#2| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#2| (-1001)))) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#2| (-336)))) (-3708 (((-1018) $) NIL (|has| |#2| (-1001)))) (-1190 ((|#2| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-501)) 21)) (-1293 ((|#2| $ $) NIL (|has| |#2| (-959)))) (-3759 (($ (-1148 |#2|)) 18)) (-3613 (((-125)) NIL (|has| |#2| (-331)))) (-2596 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#2|) $) 10) (((-786) $) NIL (|has| |#2| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (|has| |#2| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (($ |#2|) 13 (|has| |#2| (-1001)))) (-3965 (((-701)) NIL (|has| |#2| (-959)))) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#2| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (-1850 (($) 35 (|has| |#2| (-123)) CONST)) (-1925 (($) 38 (|has| |#2| (-959)) CONST)) (-3584 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3751 (((-107) $ $) 26 (|has| |#2| (-1001)))) (-3773 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3762 (((-107) $ $) 58 (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $ $) NIL (|has| |#2| (-959))) (($ $) NIL (|has| |#2| (-959)))) (-3790 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (* (($ $ $) 49 (|has| |#2| (-959))) (($ (-501) $) NIL (|has| |#2| (-959))) (($ $ |#2|) 42 (|has| |#2| (-657))) (($ |#2| $) 43 (|has| |#2| (-657))) (($ (-701) $) NIL (|has| |#2| (-123))) (($ (-839) $) NIL (|has| |#2| (-25)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-212 |#1| |#2|) (-211 |#1| |#2|) (-701) (-1104)) (T -212))
-NIL
-(-211 |#1| |#2|)
-((-3162 (((-212 |#1| |#3|) (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|) 21)) (-3547 ((|#3| (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|) 23)) (-1212 (((-212 |#1| |#3|) (-1 |#3| |#2|) (-212 |#1| |#2|)) 18)))
-(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -3162 ((-212 |#1| |#3|) (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|)) (-15 -3547 (|#3| (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|)) (-15 -1212 ((-212 |#1| |#3|) (-1 |#3| |#2|) (-212 |#1| |#2|)))) (-701) (-1104) (-1104)) (T -213))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-212 *5 *6)) (-14 *5 (-701)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-212 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-212 *5 *6)) (-14 *5 (-701)) (-4 *6 (-1104)) (-4 *2 (-1104)) (-5 *1 (-213 *5 *6 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-212 *6 *7)) (-14 *6 (-701)) (-4 *7 (-1104)) (-4 *5 (-1104)) (-5 *2 (-212 *6 *5)) (-5 *1 (-213 *6 *7 *5)))))
-(-10 -7 (-15 -3162 ((-212 |#1| |#3|) (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|)) (-15 -3547 (|#3| (-1 |#3| |#2| |#3|) (-212 |#1| |#2|) |#3|)) (-15 -1212 ((-212 |#1| |#3|) (-1 |#3| |#2|) (-212 |#1| |#2|))))
-((-2960 (((-501) (-578 (-1053))) 24) (((-501) (-1053)) 19)) (-2496 (((-1154) (-578 (-1053))) 29) (((-1154) (-1053)) 28)) (-2263 (((-1053)) 14)) (-3846 (((-1053) (-501) (-1053)) 16)) (-2896 (((-578 (-1053)) (-578 (-1053)) (-501) (-1053)) 25) (((-1053) (-1053) (-501) (-1053)) 23)) (-3161 (((-578 (-1053)) (-578 (-1053))) 13) (((-578 (-1053)) (-1053)) 11)))
-(((-214) (-10 -7 (-15 -3161 ((-578 (-1053)) (-1053))) (-15 -3161 ((-578 (-1053)) (-578 (-1053)))) (-15 -2263 ((-1053))) (-15 -3846 ((-1053) (-501) (-1053))) (-15 -2896 ((-1053) (-1053) (-501) (-1053))) (-15 -2896 ((-578 (-1053)) (-578 (-1053)) (-501) (-1053))) (-15 -2496 ((-1154) (-1053))) (-15 -2496 ((-1154) (-578 (-1053)))) (-15 -2960 ((-501) (-1053))) (-15 -2960 ((-501) (-578 (-1053)))))) (T -214))
-((-2960 (*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-501)) (-5 *1 (-214)))) (-2960 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-501)) (-5 *1 (-214)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1154)) (-5 *1 (-214)))) (-2496 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-214)))) (-2896 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 (-1053))) (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *1 (-214)))) (-2896 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-214)))) (-3846 (*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-214)))) (-2263 (*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-214)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-214)))) (-3161 (*1 *2 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-214)) (-5 *3 (-1053)))))
-(-10 -7 (-15 -3161 ((-578 (-1053)) (-1053))) (-15 -3161 ((-578 (-1053)) (-578 (-1053)))) (-15 -2263 ((-1053))) (-15 -3846 ((-1053) (-501) (-1053))) (-15 -2896 ((-1053) (-1053) (-501) (-1053))) (-15 -2896 ((-578 (-1053)) (-578 (-1053)) (-501) (-1053))) (-15 -2496 ((-1154) (-1053))) (-15 -2496 ((-1154) (-578 (-1053)))) (-15 -2960 ((-501) (-1053))) (-15 -2960 ((-501) (-578 (-1053)))))
-((-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 9)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 18)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ (-375 (-501)) $) 25) (($ $ (-375 (-501))) NIL)))
-(((-215 |#1|) (-10 -8 (-15 -3948 (|#1| |#1| (-501))) (-15 ** (|#1| |#1| (-501))) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 ** (|#1| |#1| (-701))) (-15 -3948 (|#1| |#1| (-701))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 -3948 (|#1| |#1| (-839))) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-216)) (T -215))
-NIL
-(-10 -8 (-15 -3948 (|#1| |#1| (-501))) (-15 ** (|#1| |#1| (-501))) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 ** (|#1| |#1| (-701))) (-15 -3948 (|#1| |#1| (-701))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 -3948 (|#1| |#1| (-839))) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 44)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 49)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 45)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 46)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ (-375 (-501)) $) 48) (($ $ (-375 (-501))) 47)))
-(((-216) (-1180)) (T -216))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-501)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-501)))) (-3833 (*1 *1 *1) (-4 *1 (-216))))
-(-13 (-260) (-37 (-375 (-501))) (-10 -8 (-15 ** ($ $ (-501))) (-15 -3948 ($ $ (-501))) (-15 -3833 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-260) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-657) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-1511 (($ $) 57)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-2414 (($ $ $) 53 (|has| $ (-6 -4168)))) (-2481 (($ $ $) 52 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-2506 (($ $) 56)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-2547 (($ $) 55)) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 59)) (-1657 (($ $) 58)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1186 (($ $ $) 54 (|has| $ (-6 -4168)))) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-217 |#1|) (-1180) (-1104)) (T -217))
-((-1383 (*1 *2 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-1657 (*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-1511 (*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-2506 (*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-2547 (*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-1186 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-2414 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104)))) (-2481 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104)))))
-(-13 (-924 |t#1|) (-10 -8 (-15 -1383 (|t#1| $)) (-15 -1657 ($ $)) (-15 -1511 ($ $)) (-15 -2506 ($ $)) (-15 -2547 ($ $)) (IF (|has| $ (-6 -4168)) (PROGN (-15 -1186 ($ $ $)) (-15 -2414 ($ $ $)) (-15 -2481 ($ $ $))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2786 ((|#1| $) NIL)) (-1511 (($ $) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| |#1| (-777))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-2861 (($ $) 10 (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) NIL (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "rest" $) NIL (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) NIL)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1564 ((|#1| $) NIL)) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-1199 (($ $) NIL) (($ $ (-701)) NIL)) (-2921 (($ $) NIL (|has| |#1| (-1001)))) (-2673 (($ $) 7 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) NIL)) (-1526 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-1934 (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001))) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) (-1 (-107) |#1|) $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3216 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3143 (($ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1383 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-4114 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-3654 (((-107) $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1116 (-501))) NIL) ((|#1| $ (-501)) NIL) ((|#1| $ (-501) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-701) $ "count") 16)) (-1932 (((-501) $ $) NIL)) (-1386 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-4115 (($ (-578 |#1|)) 22)) (-2622 (((-107) $) NIL)) (-1455 (($ $) NIL)) (-3873 (($ $) NIL (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-1186 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3934 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-578 $)) NIL) (($ $ |#1|) NIL)) (-3691 (($ (-578 |#1|)) 17) (((-578 |#1|) $) 18) (((-786) $) 21 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 14 (|has| $ (-6 -4167)))))
-(((-218 |#1|) (-13 (-601 |#1|) (-10 -8 (-15 -3691 ($ (-578 |#1|))) (-15 -3691 ((-578 |#1|) $)) (-15 -4115 ($ (-578 |#1|))) (-15 -2007 ($ $ "unique")) (-15 -2007 ($ $ "sort")) (-15 -2007 ((-701) $ "count")))) (-777)) (T -218))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-218 *3)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-218 *3)) (-4 *3 (-777)))) (-4115 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-218 *3)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-218 *3)) (-4 *3 (-777)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-218 *3)) (-4 *3 (-777)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-701)) (-5 *1 (-218 *4)) (-4 *4 (-777)))))
-(-13 (-601 |#1|) (-10 -8 (-15 -3691 ($ (-578 |#1|))) (-15 -3691 ((-578 |#1|) $)) (-15 -4115 ($ (-578 |#1|))) (-15 -2007 ($ $ "unique")) (-15 -2007 ($ $ "sort")) (-15 -2007 ((-701) $ "count"))))
-((-3445 (((-3 (-701) "failed") |#1| |#1| (-701)) 26)))
-(((-219 |#1|) (-10 -7 (-15 -3445 ((-3 (-701) "failed") |#1| |#1| (-701)))) (-13 (-657) (-336) (-10 -7 (-15 ** (|#1| |#1| (-501)))))) (T -219))
-((-3445 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-701)) (-4 *3 (-13 (-657) (-336) (-10 -7 (-15 ** (*3 *3 (-501)))))) (-5 *1 (-219 *3)))))
-(-10 -7 (-15 -3445 ((-3 (-701) "failed") |#1| |#1| (-701))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-787 |#1|)) $) NIL)) (-3728 (((-1064 $) $ (-787 |#1|)) NIL) (((-1064 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-787 |#1|))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-787 |#1|) "failed") $) NIL)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-787 |#1|) $) NIL)) (-1749 (($ $ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-1474 (($ $ (-578 (-501))) NIL)) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| (-212 (-3581 |#1|) (-701)) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#2|) (-787 |#1|)) NIL) (($ (-1064 $) (-787 |#1|)) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#2| (-212 (-3581 |#1|) (-701))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-787 |#1|)) NIL)) (-2285 (((-212 (-3581 |#1|) (-701)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 (-212 (-3581 |#1|) (-701)) (-212 (-3581 |#1|) (-701))) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-2752 (((-3 (-787 |#1|) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-787 |#1|)) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#2| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-787 |#1|) |#2|) NIL) (($ $ (-578 (-787 |#1|)) (-578 |#2|)) NIL) (($ $ (-787 |#1|) $) NIL) (($ $ (-578 (-787 |#1|)) (-578 $)) NIL)) (-2532 (($ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1201 (((-212 (-3581 |#1|) (-701)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-787 |#1|) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-787 |#1|)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#2| (-508)))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-212 (-3581 |#1|) (-701))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-220 |#1| |#2|) (-13 (-870 |#2| (-212 (-3581 |#1|) (-701)) (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501)))))) (-578 (-1070)) (-959)) (T -220))
-((-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-220 *3 *4)) (-14 *3 (-578 (-1070))) (-4 *4 (-959)))))
-(-13 (-870 |#2| (-212 (-3581 |#1|) (-701)) (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501))))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1822 (($ (-839)) NIL (|has| |#4| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#4| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#4| (-336)))) (-1417 (((-501) $) NIL (|has| |#4| (-775)))) (-3754 ((|#4| $ (-501) |#4|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1001))) (((-3 (-501) "failed") $) NIL (-12 (|has| |#4| (-950 (-501))) (|has| |#4| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#4| (-950 (-375 (-501)))) (|has| |#4| (-1001))))) (-3490 ((|#4| $) NIL (|has| |#4| (-1001))) (((-501) $) NIL (-12 (|has| |#4| (-950 (-501))) (|has| |#4| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#4| (-950 (-375 (-501)))) (|has| |#4| (-1001))))) (-3868 (((-2 (|:| -2978 (-621 |#4|)) (|:| |vec| (-1148 |#4|))) (-621 $) (-1148 $)) NIL (|has| |#4| (-959))) (((-621 |#4|) (-621 $)) NIL (|has| |#4| (-959))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#4| (-577 (-501))) (|has| |#4| (-959)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#4| (-577 (-501))) (|has| |#4| (-959))))) (-2174 (((-3 $ "failed") $) NIL (|has| |#4| (-959)))) (-2890 (($) NIL (|has| |#4| (-336)))) (-2156 ((|#4| $ (-501) |#4|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#4| $ (-501)) NIL)) (-2164 (((-107) $) NIL (|has| |#4| (-775)))) (-2732 (((-578 |#4|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#4| (-959)))) (-4067 (((-107) $) NIL (|has| |#4| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3380 (((-578 |#4|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-2519 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#4| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#4| (-336)))) (-3708 (((-1018) $) NIL)) (-1190 ((|#4| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#4|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-4137 (((-578 |#4|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#4| $ (-501) |#4|) NIL) ((|#4| $ (-501)) 12)) (-1293 ((|#4| $ $) NIL (|has| |#4| (-959)))) (-3759 (($ (-1148 |#4|)) NIL)) (-3613 (((-125)) NIL (|has| |#4| (-331)))) (-2596 (($ $ (-1 |#4| |#4|) (-701)) NIL (|has| |#4| (-959))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#4| (-206)) (|has| |#4| (-959)))) (($ $) NIL (-12 (|has| |#4| (-206)) (|has| |#4| (-959))))) (-3713 (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#4|) $) NIL) (((-786) $) NIL) (($ |#4|) NIL (|has| |#4| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#4| (-950 (-501))) (|has| |#4| (-1001))) (|has| |#4| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#4| (-950 (-375 (-501)))) (|has| |#4| (-1001))))) (-3965 (((-701)) NIL (|has| |#4| (-959)))) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#4| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#4| (-959))) (($ $ (-839)) NIL (|has| |#4| (-959)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL (|has| |#4| (-959)) CONST)) (-3584 (($ $ (-1 |#4| |#4|) (-701)) NIL (|has| |#4| (-959))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#4| (-820 (-1070))) (|has| |#4| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#4| (-206)) (|has| |#4| (-959)))) (($ $) NIL (-12 (|has| |#4| (-206)) (|has| |#4| (-959))))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3762 (((-107) $ $) NIL (-1405 (|has| |#4| (-723)) (|has| |#4| (-775))))) (-3803 (($ $ |#4|) NIL (|has| |#4| (-331)))) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL (|has| |#4| (-959))) (($ $ (-839)) NIL (|has| |#4| (-959)))) (* (($ |#2| $) 14) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-657))) (($ |#4| $) NIL (|has| |#4| (-657))) (($ $ $) NIL (|has| |#4| (-959)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-221 |#1| |#2| |#3| |#4|) (-13 (-211 |#1| |#4|) (-583 |#2|) (-583 |#3|)) (-839) (-959) (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-583 |#2|)) (T -221))
-NIL
-(-13 (-211 |#1| |#4|) (-583 |#2|) (-583 |#3|))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1822 (($ (-839)) NIL (|has| |#3| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#3| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#3| (-336)))) (-1417 (((-501) $) NIL (|has| |#3| (-775)))) (-3754 ((|#3| $ (-501) |#3|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1001))) (((-3 (-501) "failed") $) NIL (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001))))) (-3490 ((|#3| $) NIL (|has| |#3| (-1001))) (((-501) $) NIL (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001))))) (-3868 (((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 $) (-1148 $)) NIL (|has| |#3| (-959))) (((-621 |#3|) (-621 $)) NIL (|has| |#3| (-959))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959))))) (-2174 (((-3 $ "failed") $) NIL (|has| |#3| (-959)))) (-2890 (($) NIL (|has| |#3| (-336)))) (-2156 ((|#3| $ (-501) |#3|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#3| $ (-501)) NIL)) (-2164 (((-107) $) NIL (|has| |#3| (-775)))) (-2732 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#3| (-959)))) (-4067 (((-107) $) NIL (|has| |#3| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3380 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-2519 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#3| |#3|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#3| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#3| (-336)))) (-3708 (((-1018) $) NIL)) (-1190 ((|#3| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#3|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#3|))) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-262 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-4137 (((-578 |#3|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#3| $ (-501) |#3|) NIL) ((|#3| $ (-501)) 11)) (-1293 ((|#3| $ $) NIL (|has| |#3| (-959)))) (-3759 (($ (-1148 |#3|)) NIL)) (-3613 (((-125)) NIL (|has| |#3| (-331)))) (-2596 (($ $ (-1 |#3| |#3|) (-701)) NIL (|has| |#3| (-959))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959))))) (-3713 (((-701) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167))) (((-701) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#3|) $) NIL) (((-786) $) NIL) (($ |#3|) NIL (|has| |#3| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001))) (|has| |#3| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001))))) (-3965 (((-701)) NIL (|has| |#3| (-959)))) (-1200 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#3| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#3| (-959))) (($ $ (-839)) NIL (|has| |#3| (-959)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL (|has| |#3| (-959)) CONST)) (-3584 (($ $ (-1 |#3| |#3|) (-701)) NIL (|has| |#3| (-959))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-959))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959))))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3762 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3803 (($ $ |#3|) NIL (|has| |#3| (-331)))) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL (|has| |#3| (-959))) (($ $ (-839)) NIL (|has| |#3| (-959)))) (* (($ |#2| $) 13) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-657))) (($ |#3| $) NIL (|has| |#3| (-657))) (($ $ $) NIL (|has| |#3| (-959)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-222 |#1| |#2| |#3|) (-13 (-211 |#1| |#3|) (-583 |#2|)) (-701) (-959) (-583 |#2|)) (T -222))
-NIL
-(-13 (-211 |#1| |#3|) (-583 |#2|))
-((-2456 (((-578 (-701)) $) 47) (((-578 (-701)) $ |#3|) 50)) (-1506 (((-701) $) 49) (((-701) $ |#3|) 52)) (-3457 (($ $) 65)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3169 (((-701) $ |#3|) 39) (((-701) $) 36)) (-1435 (((-1 $ (-701)) |#3|) 15) (((-1 $ (-701)) $) 77)) (-2486 ((|#4| $) 58)) (-3597 (((-107) $) 56)) (-2577 (($ $) 64)) (-3195 (($ $ (-578 (-262 $))) 96) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-578 |#4|) (-578 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-578 |#4|) (-578 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-578 |#3|) (-578 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-578 |#3|) (-578 |#2|)) 84)) (-2596 (($ $ |#4|) NIL) (($ $ (-578 |#4|)) NIL) (($ $ |#4| (-701)) NIL) (($ $ (-578 |#4|) (-578 (-701))) NIL) (($ $) NIL) (($ $ (-701)) NIL) (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1490 (((-578 |#3|) $) 75)) (-1201 ((|#5| $) NIL) (((-701) $ |#4|) NIL) (((-578 (-701)) $ (-578 |#4|)) NIL) (((-701) $ |#3|) 44)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-375 (-501))) NIL) (($ $) NIL)))
-(((-223 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3195 (|#1| |#1| (-578 |#3|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#3| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#3|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#3| |#1|)) (-15 -1435 ((-1 |#1| (-701)) |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2486 (|#4| |#1|)) (-15 -3597 ((-107) |#1|)) (-15 -1506 ((-701) |#1| |#3|)) (-15 -2456 ((-578 (-701)) |#1| |#3|)) (-15 -1506 ((-701) |#1|)) (-15 -2456 ((-578 (-701)) |#1|)) (-15 -1201 ((-701) |#1| |#3|)) (-15 -3169 ((-701) |#1|)) (-15 -3169 ((-701) |#1| |#3|)) (-15 -1490 ((-578 |#3|) |#1|)) (-15 -1435 ((-1 |#1| (-701)) |#3|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3691 (|#1| |#3|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1201 ((-578 (-701)) |#1| (-578 |#4|))) (-15 -1201 ((-701) |#1| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3691 (|#1| |#4|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#4| |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#4| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -1201 (|#5| |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2596 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -2596 (|#1| |#1| |#4| (-701))) (-15 -2596 (|#1| |#1| (-578 |#4|))) (-15 -2596 (|#1| |#1| |#4|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-224 |#2| |#3| |#4| |#5|) (-959) (-777) (-237 |#3|) (-723)) (T -223))
-NIL
-(-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3195 (|#1| |#1| (-578 |#3|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#3| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#3|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#3| |#1|)) (-15 -1435 ((-1 |#1| (-701)) |#1|)) (-15 -3457 (|#1| |#1|)) (-15 -2577 (|#1| |#1|)) (-15 -2486 (|#4| |#1|)) (-15 -3597 ((-107) |#1|)) (-15 -1506 ((-701) |#1| |#3|)) (-15 -2456 ((-578 (-701)) |#1| |#3|)) (-15 -1506 ((-701) |#1|)) (-15 -2456 ((-578 (-701)) |#1|)) (-15 -1201 ((-701) |#1| |#3|)) (-15 -3169 ((-701) |#1|)) (-15 -3169 ((-701) |#1| |#3|)) (-15 -1490 ((-578 |#3|) |#1|)) (-15 -1435 ((-1 |#1| (-701)) |#3|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3691 (|#1| |#3|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1201 ((-578 (-701)) |#1| (-578 |#4|))) (-15 -1201 ((-701) |#1| |#4|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3691 (|#1| |#4|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#4| |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#4| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -1201 (|#5| |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -2596 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -2596 (|#1| |#1| |#4| (-701))) (-15 -2596 (|#1| |#1| (-578 |#4|))) (-15 -2596 (|#1| |#1| |#4|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2456 (((-578 (-701)) $) 214) (((-578 (-701)) $ |#2|) 212)) (-1506 (((-701) $) 213) (((-701) $ |#2|) 211)) (-3800 (((-578 |#3|) $) 110)) (-3728 (((-1064 $) $ |#3|) 125) (((-1064 |#1|) $) 124)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 87 (|has| |#1| (-508)))) (-2865 (($ $) 88 (|has| |#1| (-508)))) (-1639 (((-107) $) 90 (|has| |#1| (-508)))) (-1699 (((-701) $) 112) (((-701) $ (-578 |#3|)) 111)) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 100 (|has| |#1| (-830)))) (-3676 (($ $) 98 (|has| |#1| (-419)))) (-1559 (((-373 $) $) 97 (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 103 (|has| |#1| (-830)))) (-3457 (($ $) 207)) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 164) (((-3 (-375 (-501)) "failed") $) 162 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 160 (|has| |#1| (-950 (-501)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3490 ((|#1| $) 165) (((-375 (-501)) $) 161 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 159 (|has| |#1| (-950 (-501)))) ((|#3| $) 135) ((|#2| $) 220)) (-1749 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-3858 (($ $) 154)) (-3868 (((-621 (-501)) (-621 $)) 134 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 133 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 132) (((-621 |#1|) (-621 $)) 131)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 176 (|has| |#1| (-419))) (($ $ |#3|) 105 (|has| |#1| (-419)))) (-3854 (((-578 $) $) 109)) (-1628 (((-107) $) 96 (|has| |#1| (-830)))) (-3503 (($ $ |#1| |#4| $) 172)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 84 (-12 (|has| |#3| (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 83 (-12 (|has| |#3| (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ |#2|) 217) (((-701) $) 216)) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 169)) (-3794 (($ (-1064 |#1|) |#3|) 117) (($ (-1064 $) |#3|) 116)) (-2713 (((-578 $) $) 126)) (-2706 (((-107) $) 152)) (-3787 (($ |#1| |#4|) 153) (($ $ |#3| (-701)) 119) (($ $ (-578 |#3|) (-578 (-701))) 118)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) 120)) (-2285 ((|#4| $) 170) (((-701) $ |#3|) 122) (((-578 (-701)) $ (-578 |#3|)) 121)) (-4111 (($ $ $) 79 (|has| |#1| (-777)))) (-1323 (($ $ $) 78 (|has| |#1| (-777)))) (-3515 (($ (-1 |#4| |#4|) $) 171)) (-1212 (($ (-1 |#1| |#1|) $) 151)) (-1435 (((-1 $ (-701)) |#2|) 219) (((-1 $ (-701)) $) 206 (|has| |#1| (-206)))) (-2752 (((-3 |#3| "failed") $) 123)) (-3845 (($ $) 149)) (-3850 ((|#1| $) 148)) (-2486 ((|#3| $) 209)) (-1697 (($ (-578 $)) 94 (|has| |#1| (-419))) (($ $ $) 93 (|has| |#1| (-419)))) (-3460 (((-1053) $) 9)) (-3597 (((-107) $) 210)) (-2948 (((-3 (-578 $) "failed") $) 114)) (-1285 (((-3 (-578 $) "failed") $) 115)) (-2551 (((-3 (-2 (|:| |var| |#3|) (|:| -3027 (-701))) "failed") $) 113)) (-2577 (($ $) 208)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 166)) (-3841 ((|#1| $) 167)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 95 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) 92 (|has| |#1| (-419))) (($ $ $) 91 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 102 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 101 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 99 (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) 145) (($ $ (-262 $)) 144) (($ $ $ $) 143) (($ $ (-578 $) (-578 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-578 |#3|) (-578 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-578 |#3|) (-578 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-206))) (($ $ (-578 |#2|) (-578 $)) 204 (|has| |#1| (-206))) (($ $ |#2| |#1|) 203 (|has| |#1| (-206))) (($ $ (-578 |#2|) (-578 |#1|)) 202 (|has| |#1| (-206)))) (-2532 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2596 (($ $ |#3|) 42) (($ $ (-578 |#3|)) 41) (($ $ |#3| (-701)) 40) (($ $ (-578 |#3|) (-578 (-701))) 39) (($ $) 238 (|has| |#1| (-206))) (($ $ (-701)) 236 (|has| |#1| (-206))) (($ $ (-1070)) 234 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 233 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 232 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 231 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1490 (((-578 |#2|) $) 218)) (-1201 ((|#4| $) 150) (((-701) $ |#3|) 130) (((-578 (-701)) $ (-578 |#3|)) 129) (((-701) $ |#2|) 215)) (-1248 (((-810 (-346)) $) 82 (-12 (|has| |#3| (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) 81 (-12 (|has| |#3| (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) 80 (-12 (|has| |#3| (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) 175 (|has| |#1| (-419))) (($ $ |#3|) 106 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 104 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-375 (-501))) 72 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501)))))) (($ $) 85 (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) 168)) (-2495 ((|#1| $ |#4|) 155) (($ $ |#3| (-701)) 128) (($ $ (-578 |#3|) (-578 (-701))) 127)) (-1274 (((-3 $ "failed") $) 73 (-1405 (-1280 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 173 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 89 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ |#3|) 38) (($ $ (-578 |#3|)) 37) (($ $ |#3| (-701)) 36) (($ $ (-578 |#3|) (-578 (-701))) 35) (($ $) 237 (|has| |#1| (-206))) (($ $ (-701)) 235 (|has| |#1| (-206))) (($ $ (-1070)) 230 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 229 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 228 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 227 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-3778 (((-107) $ $) 76 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 75 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 77 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 74 (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 156 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 158 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 157 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-224 |#1| |#2| |#3| |#4|) (-1180) (-959) (-777) (-237 |t#2|) (-723)) (T -224))
-((-1435 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-1 *1 (-701))) (-4 *1 (-224 *4 *3 *5 *6)))) (-1490 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-578 *4)))) (-3169 (*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-701)))) (-1201 (*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-578 (-701))))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-701)))) (-2456 (*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-578 (-701))))) (-1506 (*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-107)))) (-2486 (*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-4 *2 (-237 *4)))) (-2577 (*1 *1 *1) (-12 (-4 *1 (-224 *2 *3 *4 *5)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-237 *3)) (-4 *5 (-723)))) (-3457 (*1 *1 *1) (-12 (-4 *1 (-224 *2 *3 *4 *5)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-237 *3)) (-4 *5 (-723)))) (-1435 (*1 *2 *1) (-12 (-4 *3 (-206)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-1 *1 (-701))) (-4 *1 (-224 *3 *4 *5 *6)))))
-(-13 (-870 |t#1| |t#4| |t#3|) (-204 |t#1|) (-950 |t#2|) (-10 -8 (-15 -1435 ((-1 $ (-701)) |t#2|)) (-15 -1490 ((-578 |t#2|) $)) (-15 -3169 ((-701) $ |t#2|)) (-15 -3169 ((-701) $)) (-15 -1201 ((-701) $ |t#2|)) (-15 -2456 ((-578 (-701)) $)) (-15 -1506 ((-701) $)) (-15 -2456 ((-578 (-701)) $ |t#2|)) (-15 -1506 ((-701) $ |t#2|)) (-15 -3597 ((-107) $)) (-15 -2486 (|t#3| $)) (-15 -2577 ($ $)) (-15 -3457 ($ $)) (IF (|has| |t#1| (-206)) (PROGN (-6 (-476 |t#2| |t#1|)) (-6 (-476 |t#2| $)) (-6 (-278 $)) (-15 -1435 ((-1 $ (-701)) $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-556 (-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501))))) ((-204 |#1|) . T) ((-206) |has| |#1| (-206)) ((-260) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-278 $) . T) ((-294 |#1| |#4|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-830)) (|has| |#1| (-419))) ((-476 |#2| |#1|) |has| |#1| (-206)) ((-476 |#2| $) |has| |#1| (-206)) ((-476 |#3| |#1|) . T) ((-476 |#3| $) . T) ((-476 $ $) . T) ((-508) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-820 |#3|) . T) ((-806 (-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346)))) ((-806 (-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))) ((-870 |#1| |#4| |#3|) . T) ((-830) |has| |#1| (-830)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-950 |#2|) . T) ((-950 |#3|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) |has| |#1| (-830)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1623 ((|#1| $) 54)) (-2425 ((|#1| $) 44)) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2253 (($ $) 60)) (-1375 (($ $) 48)) (-2988 ((|#1| |#1| $) 46)) (-1260 ((|#1| $) 45)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-4139 (((-701) $) 61)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-2267 ((|#1| |#1| $) 52)) (-3458 ((|#1| |#1| $) 51)) (-4114 (($ |#1| $) 40)) (-2696 (((-701) $) 55)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3085 ((|#1| $) 62)) (-2072 ((|#1| $) 50)) (-2464 ((|#1| $) 49)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2047 ((|#1| |#1| $) 58)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-1862 ((|#1| $) 59)) (-1906 (($) 57) (($ (-578 |#1|)) 56)) (-3661 (((-701) $) 43)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1807 ((|#1| $) 53)) (-2866 (($ (-578 |#1|)) 42)) (-2366 ((|#1| $) 63)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-225 |#1|) (-1180) (-1104)) (T -225))
-((-1906 (*1 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-225 *3)))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-2267 (*1 *2 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-3458 (*1 *2 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-2072 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) (-1375 (*1 *1 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))))
-(-13 (-1019 |t#1|) (-909 |t#1|) (-10 -8 (-15 -1906 ($)) (-15 -1906 ($ (-578 |t#1|))) (-15 -2696 ((-701) $)) (-15 -1623 (|t#1| $)) (-15 -1807 (|t#1| $)) (-15 -2267 (|t#1| |t#1| $)) (-15 -3458 (|t#1| |t#1| $)) (-15 -2072 (|t#1| $)) (-15 -2464 (|t#1| $)) (-15 -1375 ($ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-909 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1019 |#1|) . T) ((-1104) . T))
-((-3176 (((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346))) 69) (((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232))) 68) (((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346))) 59) (((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232))) 58) (((-1031 (-199)) (-800 |#1|) (-993 (-346))) 50) (((-1031 (-199)) (-800 |#1|) (-993 (-346)) (-578 (-232))) 49)) (-3150 (((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346))) 72) (((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232))) 71) (((-1152) |#1| (-993 (-346)) (-993 (-346))) 62) (((-1152) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232))) 61) (((-1152) (-800 |#1|) (-993 (-346))) 54) (((-1152) (-800 |#1|) (-993 (-346)) (-578 (-232))) 53) (((-1151) (-798 |#1|) (-993 (-346))) 41) (((-1151) (-798 |#1|) (-993 (-346)) (-578 (-232))) 40) (((-1151) |#1| (-993 (-346))) 33) (((-1151) |#1| (-993 (-346)) (-578 (-232))) 32)))
-(((-226 |#1|) (-10 -7 (-15 -3150 ((-1151) |#1| (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) |#1| (-993 (-346)))) (-15 -3150 ((-1151) (-798 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-798 |#1|) (-993 (-346)))) (-15 -3150 ((-1152) (-800 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-800 |#1|) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) (-800 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-800 |#1|) (-993 (-346)))) (-15 -3150 ((-1152) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) |#1| (-993 (-346)) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)))) (-15 -3150 ((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346))))) (-13 (-556 (-490)) (-1001))) (T -226))
-((-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *5)))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *6)))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *5)))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *6)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1152)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *5)))) (-3176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *6)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *5)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *6)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-798 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1151)) (-5 *1 (-226 *5)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-798 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1151)) (-5 *1 (-226 *6)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1151)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))))
-(-10 -7 (-15 -3150 ((-1151) |#1| (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) |#1| (-993 (-346)))) (-15 -3150 ((-1151) (-798 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-798 |#1|) (-993 (-346)))) (-15 -3150 ((-1152) (-800 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-800 |#1|) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) (-800 |#1|) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-800 |#1|) (-993 (-346)))) (-15 -3150 ((-1152) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) |#1| (-993 (-346)) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) |#1| (-993 (-346)) (-993 (-346)))) (-15 -3150 ((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-802 |#1|) (-993 (-346)) (-993 (-346)))) (-15 -3176 ((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-802 |#1|) (-993 (-346)) (-993 (-346)))))
-((-1773 (((-1 (-863 (-199)) (-199) (-199)) (-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-3176 (((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346))) 160) (((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232))) 158) (((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346))) 163) (((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232))) 159) (((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346))) 150) (((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232))) 149) (((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346))) 129) (((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232))) 127) (((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346))) 128) (((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232))) 125)) (-3150 (((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346))) 162) (((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232))) 161) (((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346))) 165) (((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232))) 164) (((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346))) 152) (((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232))) 151) (((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346))) 135) (((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232))) 134) (((-1152) (-800 (-1 (-199) (-199))) (-991 (-346))) 133) (((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232))) 132) (((-1151) (-798 (-1 (-199) (-199))) (-991 (-346))) 99) (((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232))) 98) (((-1151) (-1 (-199) (-199)) (-991 (-346))) 95) (((-1151) (-1 (-199) (-199)) (-991 (-346)) (-578 (-232))) 94)))
-(((-227) (-10 -7 (-15 -3150 ((-1151) (-1 (-199) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-1 (-199) (-199)) (-991 (-346)))) (-15 -3150 ((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3150 ((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3150 ((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)))) (-15 -1773 ((-1 (-863 (-199)) (-199) (-199)) (-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -227))
-((-1773 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3176 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-798 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1151)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-798 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1151)) (-5 *1 (-227)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-227)))))
-(-10 -7 (-15 -3150 ((-1151) (-1 (-199) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-1 (-199) (-199)) (-991 (-346)))) (-15 -3150 ((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1151) (-798 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3150 ((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-800 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-800 (-1 (-199) (-199))) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199)) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-346)) (-991 (-346)))) (-15 -3150 ((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3150 ((-1152) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)))) (-15 -3176 ((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)) (-578 (-232)))) (-15 -3176 ((-1031 (-199)) (-802 (-1 (-199) (-199) (-199))) (-991 (-346)) (-991 (-346)))) (-15 -1773 ((-1 (-863 (-199)) (-199) (-199)) (-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
-((-3150 (((-1151) (-262 |#2|) (-1070) (-1070) (-578 (-232))) 93)))
-(((-228 |#1| |#2|) (-10 -7 (-15 -3150 ((-1151) (-262 |#2|) (-1070) (-1070) (-578 (-232))))) (-13 (-508) (-777) (-950 (-501))) (-389 |#1|)) (T -228))
-((-3150 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-1070)) (-5 *5 (-578 (-232))) (-4 *7 (-389 *6)) (-4 *6 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-1151)) (-5 *1 (-228 *6 *7)))))
-(-10 -7 (-15 -3150 ((-1151) (-262 |#2|) (-1070) (-1070) (-578 (-232)))))
-((-2087 (((-501) (-501)) 50)) (-3252 (((-501) (-501)) 51)) (-4059 (((-199) (-199)) 52)) (-1665 (((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199))) 49)) (-2608 (((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)) (-107)) 47)))
-(((-229) (-10 -7 (-15 -2608 ((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)) (-107))) (-15 -1665 ((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)))) (-15 -2087 ((-501) (-501))) (-15 -3252 ((-501) (-501))) (-15 -4059 ((-199) (-199))))) (T -229))
-((-4059 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-229)))) (-3252 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-229)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-229)))) (-1665 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-152 (-199)) (-152 (-199)))) (-5 *4 (-991 (-199))) (-5 *2 (-1152)) (-5 *1 (-229)))) (-2608 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-152 (-199)) (-152 (-199)))) (-5 *4 (-991 (-199))) (-5 *5 (-107)) (-5 *2 (-1152)) (-5 *1 (-229)))))
-(-10 -7 (-15 -2608 ((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)) (-107))) (-15 -1665 ((-1152) (-1 (-152 (-199)) (-152 (-199))) (-991 (-199)) (-991 (-199)))) (-15 -2087 ((-501) (-501))) (-15 -3252 ((-501) (-501))) (-15 -4059 ((-199) (-199))))
-((-3691 (((-993 (-346)) (-993 (-282 |#1|))) 16)))
-(((-230 |#1|) (-10 -7 (-15 -3691 ((-993 (-346)) (-993 (-282 |#1|))))) (-13 (-777) (-508) (-556 (-346)))) (T -230))
-((-3691 (*1 *2 *3) (-12 (-5 *3 (-993 (-282 *4))) (-4 *4 (-13 (-777) (-508) (-556 (-346)))) (-5 *2 (-993 (-346))) (-5 *1 (-230 *4)))))
-(-10 -7 (-15 -3691 ((-993 (-346)) (-993 (-282 |#1|)))))
-((-3150 (((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)) (-578 (-232))) 21) (((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199))) 22) (((-1151) (-578 (-863 (-199))) (-578 (-232))) 13) (((-1151) (-578 (-863 (-199)))) 14) (((-1151) (-578 (-199)) (-578 (-199)) (-578 (-232))) 18) (((-1151) (-578 (-199)) (-578 (-199))) 19)))
-(((-231) (-10 -7 (-15 -3150 ((-1151) (-578 (-199)) (-578 (-199)))) (-15 -3150 ((-1151) (-578 (-199)) (-578 (-199)) (-578 (-232)))) (-15 -3150 ((-1151) (-578 (-863 (-199))))) (-15 -3150 ((-1151) (-578 (-863 (-199))) (-578 (-232)))) (-15 -3150 ((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)))) (-15 -3150 ((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)) (-578 (-232)))))) (T -231))
-((-3150 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-231)))) (-3150 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1152)) (-5 *1 (-231)))) (-3150 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-231)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *2 (-1151)) (-5 *1 (-231)))) (-3150 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-231)))) (-3150 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1151)) (-5 *1 (-231)))))
-(-10 -7 (-15 -3150 ((-1151) (-578 (-199)) (-578 (-199)))) (-15 -3150 ((-1151) (-578 (-199)) (-578 (-199)) (-578 (-232)))) (-15 -3150 ((-1151) (-578 (-863 (-199))))) (-15 -3150 ((-1151) (-578 (-863 (-199))) (-578 (-232)))) (-15 -3150 ((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)))) (-15 -3150 ((-1152) (-578 (-199)) (-578 (-199)) (-578 (-199)) (-578 (-232)))))
-((-3736 (((-107) $ $) NIL)) (-4009 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-1996 (($ (-839)) 70)) (-2539 (($ (-839)) 69)) (-1738 (($ (-578 (-346))) 76)) (-2933 (($ (-346)) 55)) (-2930 (($ (-839)) 71)) (-2770 (($ (-107)) 22)) (-3971 (($ (-1053)) 17)) (-2120 (($ (-1053)) 18)) (-3498 (($ (-1031 (-199))) 65)) (-1487 (($ (-578 (-991 (-346)))) 61)) (-1505 (($ (-578 (-991 (-346)))) 56) (($ (-578 (-991 (-375 (-501))))) 60)) (-2749 (($ (-346)) 28) (($ (-795)) 32)) (-1336 (((-107) (-578 $) (-1070)) 85)) (-2837 (((-3 (-50) "failed") (-578 $) (-1070)) 87)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2783 (($ (-346)) 33) (($ (-795)) 34)) (-2085 (($ (-1 (-863 (-199)) (-863 (-199)))) 54)) (-2761 (($ (-1 (-863 (-199)) (-863 (-199)))) 72)) (-2467 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-3691 (((-786) $) 81)) (-2791 (($ (-107)) 23) (($ (-578 (-991 (-346)))) 50)) (-1428 (($ (-107)) 24)) (-3751 (((-107) $ $) 83)))
-(((-232) (-13 (-1001) (-10 -8 (-15 -1428 ($ (-107))) (-15 -2791 ($ (-107))) (-15 -4009 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3971 ($ (-1053))) (-15 -2120 ($ (-1053))) (-15 -2770 ($ (-107))) (-15 -2791 ($ (-578 (-991 (-346))))) (-15 -2085 ($ (-1 (-863 (-199)) (-863 (-199))))) (-15 -2749 ($ (-346))) (-15 -2749 ($ (-795))) (-15 -2783 ($ (-346))) (-15 -2783 ($ (-795))) (-15 -2467 ($ (-1 (-199) (-199)))) (-15 -2467 ($ (-1 (-199) (-199) (-199)))) (-15 -2467 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -2933 ($ (-346))) (-15 -1505 ($ (-578 (-991 (-346))))) (-15 -1505 ($ (-578 (-991 (-375 (-501)))))) (-15 -1487 ($ (-578 (-991 (-346))))) (-15 -3498 ($ (-1031 (-199)))) (-15 -2539 ($ (-839))) (-15 -1996 ($ (-839))) (-15 -2930 ($ (-839))) (-15 -2761 ($ (-1 (-863 (-199)) (-863 (-199))))) (-15 -1738 ($ (-578 (-346)))) (-15 -2837 ((-3 (-50) "failed") (-578 $) (-1070))) (-15 -1336 ((-107) (-578 $) (-1070)))))) (T -232))
-((-1428 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) (-2791 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) (-4009 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-232)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-232)))) (-2120 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-232)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) (-2791 (*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *1 (-232)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-232)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-232)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-232)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-232)))) (-2467 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-232)))) (-2933 (*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-375 (-501))))) (-5 *1 (-232)))) (-1487 (*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) (-3498 (*1 *1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-232)))) (-2539 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) (-2930 (*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) (-2761 (*1 *1 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *1 (-232)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-232)))) (-2837 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *2 (-50)) (-5 *1 (-232)))) (-1336 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *2 (-107)) (-5 *1 (-232)))))
-(-13 (-1001) (-10 -8 (-15 -1428 ($ (-107))) (-15 -2791 ($ (-107))) (-15 -4009 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3971 ($ (-1053))) (-15 -2120 ($ (-1053))) (-15 -2770 ($ (-107))) (-15 -2791 ($ (-578 (-991 (-346))))) (-15 -2085 ($ (-1 (-863 (-199)) (-863 (-199))))) (-15 -2749 ($ (-346))) (-15 -2749 ($ (-795))) (-15 -2783 ($ (-346))) (-15 -2783 ($ (-795))) (-15 -2467 ($ (-1 (-199) (-199)))) (-15 -2467 ($ (-1 (-199) (-199) (-199)))) (-15 -2467 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -2933 ($ (-346))) (-15 -1505 ($ (-578 (-991 (-346))))) (-15 -1505 ($ (-578 (-991 (-375 (-501)))))) (-15 -1487 ($ (-578 (-991 (-346))))) (-15 -3498 ($ (-1031 (-199)))) (-15 -2539 ($ (-839))) (-15 -1996 ($ (-839))) (-15 -2930 ($ (-839))) (-15 -2761 ($ (-1 (-863 (-199)) (-863 (-199))))) (-15 -1738 ($ (-578 (-346)))) (-15 -2837 ((-3 (-50) "failed") (-578 $) (-1070))) (-15 -1336 ((-107) (-578 $) (-1070)))))
-((-4009 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-578 (-232)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-1996 (((-839) (-578 (-232)) (-839)) 49)) (-2539 (((-839) (-578 (-232)) (-839)) 48)) (-3876 (((-578 (-346)) (-578 (-232)) (-578 (-346))) 65)) (-2933 (((-346) (-578 (-232)) (-346)) 55)) (-2930 (((-839) (-578 (-232)) (-839)) 50)) (-2770 (((-107) (-578 (-232)) (-107)) 26)) (-3971 (((-1053) (-578 (-232)) (-1053)) 19)) (-2120 (((-1053) (-578 (-232)) (-1053)) 25)) (-3498 (((-1031 (-199)) (-578 (-232))) 43)) (-1487 (((-578 (-991 (-346))) (-578 (-232)) (-578 (-991 (-346)))) 37)) (-1222 (((-795) (-578 (-232)) (-795)) 31)) (-2990 (((-795) (-578 (-232)) (-795)) 32)) (-2761 (((-1 (-863 (-199)) (-863 (-199))) (-578 (-232)) (-1 (-863 (-199)) (-863 (-199)))) 60)) (-2982 (((-107) (-578 (-232)) (-107)) 15)) (-1428 (((-107) (-578 (-232)) (-107)) 14)))
-(((-233) (-10 -7 (-15 -1428 ((-107) (-578 (-232)) (-107))) (-15 -2982 ((-107) (-578 (-232)) (-107))) (-15 -4009 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-578 (-232)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3971 ((-1053) (-578 (-232)) (-1053))) (-15 -2120 ((-1053) (-578 (-232)) (-1053))) (-15 -2770 ((-107) (-578 (-232)) (-107))) (-15 -1222 ((-795) (-578 (-232)) (-795))) (-15 -2990 ((-795) (-578 (-232)) (-795))) (-15 -1487 ((-578 (-991 (-346))) (-578 (-232)) (-578 (-991 (-346))))) (-15 -2539 ((-839) (-578 (-232)) (-839))) (-15 -1996 ((-839) (-578 (-232)) (-839))) (-15 -3498 ((-1031 (-199)) (-578 (-232)))) (-15 -2930 ((-839) (-578 (-232)) (-839))) (-15 -2933 ((-346) (-578 (-232)) (-346))) (-15 -2761 ((-1 (-863 (-199)) (-863 (-199))) (-578 (-232)) (-1 (-863 (-199)) (-863 (-199))))) (-15 -3876 ((-578 (-346)) (-578 (-232)) (-578 (-346)))))) (T -233))
-((-3876 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-346))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2761 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2933 (*1 *2 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2930 (*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-3498 (*1 *2 *3) (-12 (-5 *3 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-233)))) (-1996 (*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2539 (*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-1487 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2990 (*1 *2 *3 *2) (-12 (-5 *2 (-795)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-1222 (*1 *2 *3 *2) (-12 (-5 *2 (-795)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2770 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2120 (*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-3971 (*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-4009 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-2982 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) (-1428 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(-10 -7 (-15 -1428 ((-107) (-578 (-232)) (-107))) (-15 -2982 ((-107) (-578 (-232)) (-107))) (-15 -4009 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-578 (-232)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3971 ((-1053) (-578 (-232)) (-1053))) (-15 -2120 ((-1053) (-578 (-232)) (-1053))) (-15 -2770 ((-107) (-578 (-232)) (-107))) (-15 -1222 ((-795) (-578 (-232)) (-795))) (-15 -2990 ((-795) (-578 (-232)) (-795))) (-15 -1487 ((-578 (-991 (-346))) (-578 (-232)) (-578 (-991 (-346))))) (-15 -2539 ((-839) (-578 (-232)) (-839))) (-15 -1996 ((-839) (-578 (-232)) (-839))) (-15 -3498 ((-1031 (-199)) (-578 (-232)))) (-15 -2930 ((-839) (-578 (-232)) (-839))) (-15 -2933 ((-346) (-578 (-232)) (-346))) (-15 -2761 ((-1 (-863 (-199)) (-863 (-199))) (-578 (-232)) (-1 (-863 (-199)) (-863 (-199))))) (-15 -3876 ((-578 (-346)) (-578 (-232)) (-578 (-346)))))
-((-2837 (((-3 |#1| "failed") (-578 (-232)) (-1070)) 17)))
-(((-234 |#1|) (-10 -7 (-15 -2837 ((-3 |#1| "failed") (-578 (-232)) (-1070)))) (-1104)) (T -234))
-((-2837 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *1 (-234 *2)) (-4 *2 (-1104)))))
-(-10 -7 (-15 -2837 ((-3 |#1| "failed") (-578 (-232)) (-1070))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2456 (((-578 (-701)) $) NIL) (((-578 (-701)) $ |#2|) NIL)) (-1506 (((-701) $) NIL) (((-701) $ |#2|) NIL)) (-3800 (((-578 |#3|) $) NIL)) (-3728 (((-1064 $) $ |#3|) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 |#3|)) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3457 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1023 |#1| |#2|) "failed") $) 20)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1023 |#1| |#2|) $) NIL)) (-1749 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ |#3|) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 |#3|) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))))) (-3169 (((-701) $ |#2|) NIL) (((-701) $) 10)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#1|) |#3|) NIL) (($ (-1064 $) |#3|) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 |#3|)) NIL) (($ $ |#3| (-701)) NIL) (($ $ (-578 |#3|) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) NIL)) (-2285 (((-487 |#3|) $) NIL) (((-701) $ |#3|) NIL) (((-578 (-701)) $ (-578 |#3|)) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 |#3|) (-487 |#3|)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (((-1 $ (-701)) |#2|) NIL) (((-1 $ (-701)) $) NIL (|has| |#1| (-206)))) (-2752 (((-3 |#3| "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-2486 ((|#3| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3597 (((-107) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| |#3|) (|:| -3027 (-701))) "failed") $) NIL)) (-2577 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-578 |#3|) (-578 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-578 |#3|) (-578 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-206))) (($ $ (-578 |#2|) (-578 $)) NIL (|has| |#1| (-206))) (($ $ |#2| |#1|) NIL (|has| |#1| (-206))) (($ $ (-578 |#2|) (-578 |#1|)) NIL (|has| |#1| (-206)))) (-2532 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-2596 (($ $ |#3|) NIL) (($ $ (-578 |#3|)) NIL) (($ $ |#3| (-701)) NIL) (($ $ (-578 |#3|) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1490 (((-578 |#2|) $) NIL)) (-1201 (((-487 |#3|) $) NIL) (((-701) $ |#3|) NIL) (((-578 (-701)) $ (-578 |#3|)) NIL) (((-701) $ |#2|) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ |#3|) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1023 |#1| |#2|)) 28) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 |#3|)) NIL) (($ $ |#3| (-701)) NIL) (($ $ (-578 |#3|) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ |#3|) NIL) (($ $ (-578 |#3|)) NIL) (($ $ |#3| (-701)) NIL) (($ $ (-578 |#3|) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-235 |#1| |#2| |#3|) (-13 (-224 |#1| |#2| |#3| (-487 |#3|)) (-950 (-1023 |#1| |#2|))) (-959) (-777) (-237 |#2|)) (T -235))
-NIL
-(-13 (-224 |#1| |#2| |#3| (-487 |#3|)) (-950 (-1023 |#1| |#2|)))
-((-1506 (((-701) $) 30)) (-3765 (((-3 |#2| "failed") $) 17)) (-3490 ((|#2| $) 27)) (-2596 (($ $) 12) (($ $ (-701)) 15)) (-3691 (((-786) $) 26) (($ |#2|) 10)) (-3751 (((-107) $ $) 20)) (-3762 (((-107) $ $) 29)))
-(((-236 |#1| |#2|) (-10 -8 (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1506 ((-701) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-237 |#2|) (-777)) (T -236))
-NIL
-(-10 -8 (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1506 ((-701) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-1506 (((-701) $) 22)) (-3484 ((|#1| $) 23)) (-3765 (((-3 |#1| "failed") $) 27)) (-3490 ((|#1| $) 26)) (-3169 (((-701) $) 24)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-1435 (($ |#1| (-701)) 25)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2596 (($ $) 21) (($ $ (-701)) 20)) (-3691 (((-786) $) 11) (($ |#1|) 28)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)))
-(((-237 |#1|) (-1180) (-777)) (T -237))
-((-3691 (*1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) (-1435 (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-237 *2)) (-4 *2 (-777)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-237 *3)) (-4 *3 (-777)) (-5 *2 (-701)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-237 *3)) (-4 *3 (-777)) (-5 *2 (-701)))) (-2596 (*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-237 *3)) (-4 *3 (-777)))))
-(-13 (-777) (-950 |t#1|) (-10 -8 (-15 -1435 ($ |t#1| (-701))) (-15 -3169 ((-701) $)) (-15 -3484 (|t#1| $)) (-15 -1506 ((-701) $)) (-15 -2596 ($ $)) (-15 -2596 ($ $ (-701))) (-15 -3691 ($ |t#1|))))
-(((-97) . T) ((-555 (-786)) . T) ((-777) . T) ((-950 |#1|) . T) ((-1001) . T))
-((-3800 (((-578 (-1070)) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 40)) (-3514 (((-578 (-1070)) (-282 (-199)) (-701)) 79)) (-1245 (((-3 (-282 (-199)) "failed") (-282 (-199))) 50)) (-2268 (((-282 (-199)) (-282 (-199))) 65)) (-1381 (((-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 26)) (-1777 (((-107) (-578 (-282 (-199)))) 83)) (-2507 (((-107) (-282 (-199))) 24)) (-3128 (((-578 (-1053)) (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) 104)) (-3021 (((-578 (-282 (-199))) (-578 (-282 (-199)))) 86)) (-1547 (((-578 (-282 (-199))) (-578 (-282 (-199)))) 85)) (-1460 (((-621 (-199)) (-578 (-282 (-199))) (-701)) 93)) (-2367 (((-107) (-282 (-199))) 20) (((-107) (-578 (-282 (-199)))) 84)) (-2811 (((-578 (-199)) (-578 (-769 (-199))) (-199)) 14)) (-1445 (((-346) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 99)) (-2822 (((-948) (-1070) (-948)) 33)))
-(((-238) (-10 -7 (-15 -2811 ((-578 (-199)) (-578 (-769 (-199))) (-199))) (-15 -1381 ((-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -1245 ((-3 (-282 (-199)) "failed") (-282 (-199)))) (-15 -2268 ((-282 (-199)) (-282 (-199)))) (-15 -1777 ((-107) (-578 (-282 (-199))))) (-15 -2367 ((-107) (-578 (-282 (-199))))) (-15 -2367 ((-107) (-282 (-199)))) (-15 -1460 ((-621 (-199)) (-578 (-282 (-199))) (-701))) (-15 -1547 ((-578 (-282 (-199))) (-578 (-282 (-199))))) (-15 -3021 ((-578 (-282 (-199))) (-578 (-282 (-199))))) (-15 -2507 ((-107) (-282 (-199)))) (-15 -3800 ((-578 (-1070)) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3514 ((-578 (-1070)) (-282 (-199)) (-701))) (-15 -2822 ((-948) (-1070) (-948))) (-15 -1445 ((-346) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3128 ((-578 (-1053)) (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))))))) (T -238))
-((-3128 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *2 (-578 (-1053))) (-5 *1 (-238)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-346)) (-5 *1 (-238)))) (-2822 (*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-1070)) (-5 *1 (-238)))) (-3514 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-701)) (-5 *2 (-578 (-1070))) (-5 *1 (-238)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-578 (-1070))) (-5 *1 (-238)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-107)) (-5 *1 (-238)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-578 (-282 (-199)))) (-5 *1 (-238)))) (-1547 (*1 *2 *2) (-12 (-5 *2 (-578 (-282 (-199)))) (-5 *1 (-238)))) (-1460 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *4 (-701)) (-5 *2 (-621 (-199))) (-5 *1 (-238)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-107)) (-5 *1 (-238)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *2 (-107)) (-5 *1 (-238)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *2 (-107)) (-5 *1 (-238)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-282 (-199))) (-5 *1 (-238)))) (-1245 (*1 *2 *2) (|partial| -12 (-5 *2 (-282 (-199))) (-5 *1 (-238)))) (-1381 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *1 (-238)))) (-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-769 (-199)))) (-5 *4 (-199)) (-5 *2 (-578 *4)) (-5 *1 (-238)))))
-(-10 -7 (-15 -2811 ((-578 (-199)) (-578 (-769 (-199))) (-199))) (-15 -1381 ((-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -1245 ((-3 (-282 (-199)) "failed") (-282 (-199)))) (-15 -2268 ((-282 (-199)) (-282 (-199)))) (-15 -1777 ((-107) (-578 (-282 (-199))))) (-15 -2367 ((-107) (-578 (-282 (-199))))) (-15 -2367 ((-107) (-282 (-199)))) (-15 -1460 ((-621 (-199)) (-578 (-282 (-199))) (-701))) (-15 -1547 ((-578 (-282 (-199))) (-578 (-282 (-199))))) (-15 -3021 ((-578 (-282 (-199))) (-578 (-282 (-199))))) (-15 -2507 ((-107) (-282 (-199)))) (-15 -3800 ((-578 (-1070)) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3514 ((-578 (-1070)) (-282 (-199)) (-701))) (-15 -2822 ((-948) (-1070) (-948))) (-15 -1445 ((-346) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3128 ((-578 (-1053)) (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))))))
-((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 39)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 20) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-239) (-766)) (T -239))
-NIL
-(-766)
-((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 54) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 49)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 29) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 31)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-240) (-766)) (T -240))
-NIL
-(-766)
-((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 73) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 69)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 40) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 51)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-241) (-766)) (T -241))
-NIL
-(-766)
-((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 48)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 27) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-242) (-766)) (T -242))
-NIL
-(-766)
-((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 48)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 23) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-243) (-766)) (T -243))
-NIL
-(-766)
-((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 69)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 23) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-244) (-766)) (T -244))
-NIL
-(-766)
-((-3736 (((-107) $ $) NIL)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 73)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 19) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-245) (-766)) (T -245))
-NIL
-(-766)
-((-3736 (((-107) $ $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2559 (((-578 (-501)) $) 16)) (-1201 (((-701) $) 14)) (-3691 (((-786) $) 20) (($ (-578 (-501))) 12)) (-2115 (($ (-701)) 17)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 9)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 10)))
-(((-246) (-13 (-777) (-10 -8 (-15 -3691 ($ (-578 (-501)))) (-15 -1201 ((-701) $)) (-15 -2559 ((-578 (-501)) $)) (-15 -2115 ($ (-701)))))) (T -246))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-246)))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-246)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-246)))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-246)))))
-(-13 (-777) (-10 -8 (-15 -3691 ($ (-578 (-501)))) (-15 -1201 ((-701) $)) (-15 -2559 ((-578 (-501)) $)) (-15 -2115 ($ (-701)))))
-((-3978 ((|#2| |#2|) 77)) (-3937 ((|#2| |#2|) 65)) (-2515 (((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-3970 ((|#2| |#2|) 75)) (-3929 ((|#2| |#2|) 63)) (-3984 ((|#2| |#2|) 79)) (-3945 ((|#2| |#2|) 67)) (-2003 ((|#2|) 46)) (-1853 (((-108) (-108)) 95)) (-1635 ((|#2| |#2|) 61)) (-3223 (((-107) |#2|) 134)) (-1196 ((|#2| |#2|) 180)) (-2233 ((|#2| |#2|) 156)) (-2046 ((|#2|) 59)) (-1790 ((|#2|) 58)) (-3532 ((|#2| |#2|) 176)) (-3674 ((|#2| |#2|) 152)) (-1842 ((|#2| |#2|) 184)) (-2642 ((|#2| |#2|) 160)) (-1563 ((|#2| |#2|) 148)) (-3145 ((|#2| |#2|) 150)) (-1228 ((|#2| |#2|) 186)) (-2585 ((|#2| |#2|) 162)) (-3233 ((|#2| |#2|) 182)) (-2900 ((|#2| |#2|) 158)) (-2001 ((|#2| |#2|) 178)) (-3376 ((|#2| |#2|) 154)) (-3271 ((|#2| |#2|) 192)) (-2219 ((|#2| |#2|) 168)) (-3657 ((|#2| |#2|) 188)) (-1385 ((|#2| |#2|) 164)) (-3043 ((|#2| |#2|) 196)) (-3394 ((|#2| |#2|) 172)) (-2618 ((|#2| |#2|) 198)) (-1659 ((|#2| |#2|) 174)) (-1884 ((|#2| |#2|) 194)) (-3439 ((|#2| |#2|) 170)) (-2743 ((|#2| |#2|) 190)) (-3226 ((|#2| |#2|) 166)) (-1989 ((|#2| |#2|) 62)) (-3991 ((|#2| |#2|) 80)) (-3949 ((|#2| |#2|) 68)) (-3981 ((|#2| |#2|) 78)) (-3940 ((|#2| |#2|) 66)) (-3975 ((|#2| |#2|) 76)) (-3933 ((|#2| |#2|) 64)) (-3811 (((-107) (-108)) 93)) (-4003 ((|#2| |#2|) 83)) (-3958 ((|#2| |#2|) 71)) (-3995 ((|#2| |#2|) 81)) (-3952 ((|#2| |#2|) 69)) (-4013 ((|#2| |#2|) 85)) (-3964 ((|#2| |#2|) 73)) (-3550 ((|#2| |#2|) 86)) (-3967 ((|#2| |#2|) 74)) (-4008 ((|#2| |#2|) 84)) (-3961 ((|#2| |#2|) 72)) (-3999 ((|#2| |#2|) 82)) (-3955 ((|#2| |#2|) 70)))
-(((-247 |#1| |#2|) (-10 -7 (-15 -1989 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3940 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -3967 (|#2| |#2|)) (-15 -3970 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -2003 (|#2|)) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -1790 (|#2|)) (-15 -2046 (|#2|)) (-15 -3145 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -2233 (|#2| |#2|)) (-15 -2900 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -1196 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -1884 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -2618 (|#2| |#2|)) (-15 -2515 ((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3223 ((-107) |#2|))) (-13 (-777) (-508)) (-13 (-389 |#1|) (-916))) (T -247))
-((-3223 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-247 *4 *3)) (-4 *3 (-13 (-389 *4) (-916))))) (-2515 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-578 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-389 *4) (-916))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-247 *4 *2)))) (-2618 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3043 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1884 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3271 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2743 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3657 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1228 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1842 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3233 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1196 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2001 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1659 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1385 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2585 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2642 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2900 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2233 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3376 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3674 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1563 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3145 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-2046 (*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))) (-1790 (*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *4)) (-4 *4 (-13 (-389 *3) (-916))))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-247 *4 *5)) (-4 *5 (-13 (-389 *4) (-916))))) (-2003 (*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3970 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3967 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(-10 -7 (-15 -1989 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -3929 (|#2| |#2|)) (-15 -3933 (|#2| |#2|)) (-15 -3937 (|#2| |#2|)) (-15 -3940 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -3949 (|#2| |#2|)) (-15 -3952 (|#2| |#2|)) (-15 -3955 (|#2| |#2|)) (-15 -3958 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3964 (|#2| |#2|)) (-15 -3967 (|#2| |#2|)) (-15 -3970 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3978 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3984 (|#2| |#2|)) (-15 -3991 (|#2| |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4008 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -3550 (|#2| |#2|)) (-15 -2003 (|#2|)) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -1790 (|#2|)) (-15 -2046 (|#2|)) (-15 -3145 (|#2| |#2|)) (-15 -1563 (|#2| |#2|)) (-15 -3674 (|#2| |#2|)) (-15 -3376 (|#2| |#2|)) (-15 -2233 (|#2| |#2|)) (-15 -2900 (|#2| |#2|)) (-15 -2642 (|#2| |#2|)) (-15 -2585 (|#2| |#2|)) (-15 -1385 (|#2| |#2|)) (-15 -3226 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3394 (|#2| |#2|)) (-15 -1659 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -2001 (|#2| |#2|)) (-15 -1196 (|#2| |#2|)) (-15 -3233 (|#2| |#2|)) (-15 -1842 (|#2| |#2|)) (-15 -1228 (|#2| |#2|)) (-15 -3657 (|#2| |#2|)) (-15 -2743 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -1884 (|#2| |#2|)) (-15 -3043 (|#2| |#2|)) (-15 -2618 (|#2| |#2|)) (-15 -2515 ((-3 |#2| "failed") |#2| (-578 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3223 ((-107) |#2|)))
-((-2383 (((-3 |#2| "failed") (-578 (-553 |#2|)) |#2| (-1070)) 133)) (-2309 ((|#2| (-375 (-501)) |#2|) 50)) (-3636 ((|#2| |#2| (-553 |#2|)) 126)) (-2247 (((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-553 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1070)) 125)) (-3583 ((|#2| |#2| (-1070)) 19) ((|#2| |#2|) 22)) (-3373 ((|#2| |#2| (-1070)) 139) ((|#2| |#2|) 137)))
-(((-248 |#1| |#2|) (-10 -7 (-15 -3373 (|#2| |#2|)) (-15 -3373 (|#2| |#2| (-1070))) (-15 -2247 ((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-553 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1070))) (-15 -3583 (|#2| |#2|)) (-15 -3583 (|#2| |#2| (-1070))) (-15 -2383 ((-3 |#2| "failed") (-578 (-553 |#2|)) |#2| (-1070))) (-15 -3636 (|#2| |#2| (-553 |#2|))) (-15 -2309 (|#2| (-375 (-501)) |#2|))) (-13 (-508) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -248))
-((-2309 (*1 *2 *3 *2) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-3636 (*1 *2 *2 *3) (-12 (-5 *3 (-553 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)))) (-2383 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-578 (-553 *2))) (-5 *4 (-1070)) (-4 *2 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *5 *2)))) (-3583 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-3583 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-2247 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-578 (-553 *3))) (|:| |vals| (-578 *3)))) (-5 *1 (-248 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3373 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-3373 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))))
-(-10 -7 (-15 -3373 (|#2| |#2|)) (-15 -3373 (|#2| |#2| (-1070))) (-15 -2247 ((-2 (|:| |func| |#2|) (|:| |kers| (-578 (-553 |#2|))) (|:| |vals| (-578 |#2|))) |#2| (-1070))) (-15 -3583 (|#2| |#2|)) (-15 -3583 (|#2| |#2| (-1070))) (-15 -2383 ((-3 |#2| "failed") (-578 (-553 |#2|)) |#2| (-1070))) (-15 -3636 (|#2| |#2| (-553 |#2|))) (-15 -2309 (|#2| (-375 (-501)) |#2|)))
-((-1467 (((-3 |#3| "failed") |#3|) 110)) (-3978 ((|#3| |#3|) 131)) (-2022 (((-3 |#3| "failed") |#3|) 82)) (-3937 ((|#3| |#3|) 121)) (-2851 (((-3 |#3| "failed") |#3|) 58)) (-3970 ((|#3| |#3|) 129)) (-3609 (((-3 |#3| "failed") |#3|) 46)) (-3929 ((|#3| |#3|) 119)) (-2994 (((-3 |#3| "failed") |#3|) 112)) (-3984 ((|#3| |#3|) 133)) (-3235 (((-3 |#3| "failed") |#3|) 84)) (-3945 ((|#3| |#3|) 123)) (-2604 (((-3 |#3| "failed") |#3| (-701)) 36)) (-2371 (((-3 |#3| "failed") |#3|) 74)) (-1635 ((|#3| |#3|) 118)) (-2829 (((-3 |#3| "failed") |#3|) 44)) (-1989 ((|#3| |#3|) 117)) (-3255 (((-3 |#3| "failed") |#3|) 113)) (-3991 ((|#3| |#3|) 134)) (-1602 (((-3 |#3| "failed") |#3|) 85)) (-3949 ((|#3| |#3|) 124)) (-3125 (((-3 |#3| "failed") |#3|) 111)) (-3981 ((|#3| |#3|) 132)) (-2107 (((-3 |#3| "failed") |#3|) 83)) (-3940 ((|#3| |#3|) 122)) (-3202 (((-3 |#3| "failed") |#3|) 60)) (-3975 ((|#3| |#3|) 130)) (-2926 (((-3 |#3| "failed") |#3|) 48)) (-3933 ((|#3| |#3|) 120)) (-2872 (((-3 |#3| "failed") |#3|) 66)) (-4003 ((|#3| |#3|) 137)) (-1360 (((-3 |#3| "failed") |#3|) 104)) (-3958 ((|#3| |#3|) 142)) (-2601 (((-3 |#3| "failed") |#3|) 62)) (-3995 ((|#3| |#3|) 135)) (-1510 (((-3 |#3| "failed") |#3|) 50)) (-3952 ((|#3| |#3|) 125)) (-3153 (((-3 |#3| "failed") |#3|) 70)) (-4013 ((|#3| |#3|) 139)) (-2009 (((-3 |#3| "failed") |#3|) 54)) (-3964 ((|#3| |#3|) 127)) (-2098 (((-3 |#3| "failed") |#3|) 72)) (-3550 ((|#3| |#3|) 140)) (-2445 (((-3 |#3| "failed") |#3|) 56)) (-3967 ((|#3| |#3|) 128)) (-1311 (((-3 |#3| "failed") |#3|) 68)) (-4008 ((|#3| |#3|) 138)) (-2418 (((-3 |#3| "failed") |#3|) 107)) (-3961 ((|#3| |#3|) 143)) (-1820 (((-3 |#3| "failed") |#3|) 64)) (-3999 ((|#3| |#3|) 136)) (-2413 (((-3 |#3| "failed") |#3|) 52)) (-3955 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-375 (-501))) 40 (|has| |#1| (-331)))))
-(((-249 |#1| |#2| |#3|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-331)) (-15 ** (|#3| |#3| (-375 (-501)))) |noBranch|) (-15 -1989 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3955 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)) (-15 -3967 (|#3| |#3|)) (-15 -3970 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3978 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)))) (-37 (-375 (-501))) (-1142 |#1|) (-1113 |#1| |#2|)) (T -249))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-331)) (-4 *4 (-37 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-249 *4 *5 *2)) (-4 *2 (-1113 *4 *5)))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3967 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3970 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))))
-(-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-331)) (-15 ** (|#3| |#3| (-375 (-501)))) |noBranch|) (-15 -1989 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3955 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)) (-15 -3967 (|#3| |#3|)) (-15 -3970 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3978 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -3550 (|#3| |#3|))))
-((-1467 (((-3 |#3| "failed") |#3|) 66)) (-3978 ((|#3| |#3|) 133)) (-2022 (((-3 |#3| "failed") |#3|) 50)) (-3937 ((|#3| |#3|) 121)) (-2851 (((-3 |#3| "failed") |#3|) 62)) (-3970 ((|#3| |#3|) 131)) (-3609 (((-3 |#3| "failed") |#3|) 46)) (-3929 ((|#3| |#3|) 119)) (-2994 (((-3 |#3| "failed") |#3|) 70)) (-3984 ((|#3| |#3|) 135)) (-3235 (((-3 |#3| "failed") |#3|) 54)) (-3945 ((|#3| |#3|) 123)) (-2604 (((-3 |#3| "failed") |#3| (-701)) 35)) (-2371 (((-3 |#3| "failed") |#3|) 44)) (-1635 ((|#3| |#3|) 112)) (-2829 (((-3 |#3| "failed") |#3|) 42)) (-1989 ((|#3| |#3|) 118)) (-3255 (((-3 |#3| "failed") |#3|) 72)) (-3991 ((|#3| |#3|) 136)) (-1602 (((-3 |#3| "failed") |#3|) 56)) (-3949 ((|#3| |#3|) 124)) (-3125 (((-3 |#3| "failed") |#3|) 68)) (-3981 ((|#3| |#3|) 134)) (-2107 (((-3 |#3| "failed") |#3|) 52)) (-3940 ((|#3| |#3|) 122)) (-3202 (((-3 |#3| "failed") |#3|) 64)) (-3975 ((|#3| |#3|) 132)) (-2926 (((-3 |#3| "failed") |#3|) 48)) (-3933 ((|#3| |#3|) 120)) (-2872 (((-3 |#3| "failed") |#3|) 78)) (-4003 ((|#3| |#3|) 139)) (-1360 (((-3 |#3| "failed") |#3|) 58)) (-3958 ((|#3| |#3|) 127)) (-2601 (((-3 |#3| "failed") |#3|) 74)) (-3995 ((|#3| |#3|) 137)) (-1510 (((-3 |#3| "failed") |#3|) 102)) (-3952 ((|#3| |#3|) 125)) (-3153 (((-3 |#3| "failed") |#3|) 82)) (-4013 ((|#3| |#3|) 141)) (-2009 (((-3 |#3| "failed") |#3|) 109)) (-3964 ((|#3| |#3|) 129)) (-2098 (((-3 |#3| "failed") |#3|) 84)) (-3550 ((|#3| |#3|) 142)) (-2445 (((-3 |#3| "failed") |#3|) 111)) (-3967 ((|#3| |#3|) 130)) (-1311 (((-3 |#3| "failed") |#3|) 80)) (-4008 ((|#3| |#3|) 140)) (-2418 (((-3 |#3| "failed") |#3|) 60)) (-3961 ((|#3| |#3|) 128)) (-1820 (((-3 |#3| "failed") |#3|) 76)) (-3999 ((|#3| |#3|) 138)) (-2413 (((-3 |#3| "failed") |#3|) 105)) (-3955 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-375 (-501))) 40 (|has| |#1| (-331)))))
-(((-250 |#1| |#2| |#3| |#4|) (-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-331)) (-15 ** (|#3| |#3| (-375 (-501)))) |noBranch|) (-15 -1989 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3955 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)) (-15 -3967 (|#3| |#3|)) (-15 -3970 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3978 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -3550 (|#3| |#3|)))) (-37 (-375 (-501))) (-1111 |#1|) (-1134 |#1| |#2|) (-898 |#2|)) (T -250))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-331)) (-4 *4 (-37 *3)) (-4 *5 (-1111 *4)) (-5 *1 (-250 *4 *5 *2 *6)) (-4 *2 (-1134 *4 *5)) (-4 *6 (-898 *5)))) (-1989 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3929 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3940 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3949 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3952 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3955 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3958 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3964 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3967 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3970 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3984 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3991 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-4008 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) (-3550 (*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))))
-(-13 (-898 |#3|) (-10 -7 (IF (|has| |#1| (-331)) (-15 ** (|#3| |#3| (-375 (-501)))) |noBranch|) (-15 -1989 (|#3| |#3|)) (-15 -1635 (|#3| |#3|)) (-15 -3929 (|#3| |#3|)) (-15 -3933 (|#3| |#3|)) (-15 -3937 (|#3| |#3|)) (-15 -3940 (|#3| |#3|)) (-15 -3945 (|#3| |#3|)) (-15 -3949 (|#3| |#3|)) (-15 -3952 (|#3| |#3|)) (-15 -3955 (|#3| |#3|)) (-15 -3958 (|#3| |#3|)) (-15 -3961 (|#3| |#3|)) (-15 -3964 (|#3| |#3|)) (-15 -3967 (|#3| |#3|)) (-15 -3970 (|#3| |#3|)) (-15 -3975 (|#3| |#3|)) (-15 -3978 (|#3| |#3|)) (-15 -3981 (|#3| |#3|)) (-15 -3984 (|#3| |#3|)) (-15 -3991 (|#3| |#3|)) (-15 -3995 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4003 (|#3| |#3|)) (-15 -4008 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -3550 (|#3| |#3|))))
-((-1987 (($ (-1 (-107) |#2|) $) 23)) (-2673 (($ $) 36)) (-2256 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-1526 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-2213 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-1473 (($ |#2| $ (-501)) 19) (($ $ $ (-501)) 21)) (-1468 (($ $ (-501)) 11) (($ $ (-1116 (-501))) 14)) (-1186 (($ $ |#2|) 29) (($ $ $) NIL)) (-3934 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-578 $)) NIL)))
-(((-251 |#1| |#2|) (-10 -8 (-15 -2213 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -2213 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1186 (|#1| |#1| |#1|)) (-15 -1186 (|#1| |#1| |#2|)) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -1526 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1987 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1526 (|#1| |#2| |#1|)) (-15 -2673 (|#1| |#1|))) (-252 |#2|) (-1104)) (T -251))
-NIL
-(-10 -8 (-15 -2213 (|#1| |#1| |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -2213 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1186 (|#1| |#1| |#1|)) (-15 -1186 (|#1| |#1| |#2|)) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -1526 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1987 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1526 (|#1| |#2| |#1|)) (-15 -2673 (|#1| |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) 85)) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2921 (($ $) 83 (|has| |#1| (-1001)))) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1001)))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-2213 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-4114 (($ |#1| $ (-501)) 88) (($ $ $ (-501)) 87)) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1386 (($ $ (-501)) 91) (($ $ (-1116 (-501))) 90)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-1186 (($ $ |#1|) 93) (($ $ $) 92)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-252 |#1|) (-1180) (-1104)) (T -252))
-((-1186 (*1 *1 *1 *2) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)))) (-1186 (*1 *1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-1386 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-4114 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-252 *2)) (-4 *2 (-1104)))) (-4114 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-2213 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-1221 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) (-2256 (*1 *1 *2 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) (-2921 (*1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) (-2213 (*1 *1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))))
-(-13 (-586 |t#1|) (-10 -8 (-6 -4168) (-15 -1186 ($ $ |t#1|)) (-15 -1186 ($ $ $)) (-15 -1386 ($ $ (-501))) (-15 -1386 ($ $ (-1116 (-501)))) (-15 -2256 ($ (-1 (-107) |t#1|) $)) (-15 -4114 ($ |t#1| $ (-501))) (-15 -4114 ($ $ $ (-501))) (-15 -2213 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -1221 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -2256 ($ |t#1| $)) (-15 -2921 ($ $))) |noBranch|) (IF (|has| |t#1| (-777)) (-15 -2213 ($ $ $)) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
+((-2750 (((-107) $ $) NIL)) (-2123 (($ (-517)) 13) (($ $ $) 14)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 17)) (-1547 (((-107) $ $) 9)))
+(((-146) (-13 (-1003) (-10 -8 (-15 -2123 ($ (-517))) (-15 -2123 ($ $ $))))) (T -146))
+((-2123 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))) (-2123 (*1 *1 *1 *1) (-5 *1 (-146))))
+(-13 (-1003) (-10 -8 (-15 -2123 ($ (-517))) (-15 -2123 ($ $ $))))
+((-3072 (((-109) (-1073)) 97)))
+(((-147) (-10 -7 (-15 -3072 ((-109) (-1073))))) (T -147))
+((-3072 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-109)) (-5 *1 (-147)))))
+(-10 -7 (-15 -3072 ((-109) (-1073))))
+((-3137 ((|#3| |#3|) 19)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3137 (|#3| |#3|))) (-961) (-1130 |#1|) (-1130 |#2|)) (T -148))
+((-3137 (*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1130 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1130 *4)))))
+(-10 -7 (-15 -3137 (|#3| |#3|)))
+((-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 215)) (-1472 ((|#2| $) 95)) (-1865 (($ $) 242)) (-1721 (($ $) 236)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 39)) (-1839 (($ $) 240)) (-1701 (($ $) 234)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 139)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 137)) (-2518 (($ $ $) 220)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 153) (((-623 |#2|) (-623 $)) 147)) (-3225 (($ (-1069 |#2|)) 118) (((-3 $ "failed") (-377 (-1069 |#2|))) NIL)) (-3621 (((-3 $ "failed") $) 207)) (-1256 (((-3 (-377 (-517)) "failed") $) 197)) (-1355 (((-107) $) 192)) (-3364 (((-377 (-517)) $) 195)) (-2261 (((-843)) 88)) (-2497 (($ $ $) 222)) (-2658 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 258)) (-2645 (($) 231)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 184) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 189)) (-1506 ((|#2| $) 93)) (-3777 (((-1069 |#2|) $) 120)) (-1893 (($ (-1 |#2| |#2|) $) 101)) (-1867 (($ $) 233)) (-3216 (((-1069 |#2|) $) 119)) (-4118 (($ $) 200)) (-2228 (($) 96)) (-2561 (((-388 (-1069 $)) (-1069 $)) 87)) (-2209 (((-388 (-1069 $)) (-1069 $)) 56)) (-2476 (((-3 $ "failed") $ |#2|) 202) (((-3 $ "failed") $ $) 205)) (-2624 (($ $) 232)) (-3146 (((-703) $) 217)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 226)) (-3010 ((|#2| (-1153 $)) NIL) ((|#2|) 90)) (-3127 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 112) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2135 (((-1069 |#2|)) 113)) (-1853 (($ $) 241)) (-1711 (($ $) 235)) (-4114 (((-1153 |#2|) $ (-1153 $)) 126) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $) 109) (((-623 |#2|) (-1153 $)) NIL)) (-3645 (((-1153 |#2|) $) NIL) (($ (-1153 |#2|)) NIL) (((-1069 |#2|) $) NIL) (($ (-1069 |#2|)) NIL) (((-814 (-517)) $) 175) (((-814 (-349)) $) 179) (((-153 (-349)) $) 165) (((-153 (-199)) $) 160) (((-493) $) 171)) (-1487 (($ $) 97)) (-2256 (((-787) $) 136) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-377 (-517))) NIL) (($ $) NIL)) (-3669 (((-1069 |#2|) $) 23)) (-2961 (((-703)) 99)) (-3707 (($ $) 245)) (-1788 (($ $) 239)) (-3683 (($ $) 243)) (-1765 (($ $) 237)) (-2921 ((|#2| $) 230)) (-3695 (($ $) 244)) (-1777 (($ $) 238)) (-3710 (($ $) 155)) (-1547 (((-107) $ $) 103)) (-1572 (((-107) $ $) 191)) (-1654 (($ $) 105) (($ $ $) NIL)) (-1642 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) 264) (($ $ $) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 111) (($ $ $) 140) (($ $ |#2|) NIL) (($ |#2| $) 107) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
+(((-149 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2256 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-153 (-199)) |#1|)) (-15 -3645 ((-153 (-349)) |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2645 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2658 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1487 (|#1| |#1|)) (-15 -2228 (|#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3225 ((-3 |#1| "failed") (-377 (-1069 |#2|)))) (-15 -3216 ((-1069 |#2|) |#1|)) (-15 -3645 (|#1| (-1069 |#2|))) (-15 -3225 (|#1| (-1069 |#2|))) (-15 -2135 ((-1069 |#2|))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -3669 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -1506 (|#2| |#1|)) (-15 -1472 (|#2| |#1|)) (-15 -2261 ((-843))) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-150 |#2|) (-156)) (T -149))
+((-2961 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-2261 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) (-3010 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) (-2135 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))))
+(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2256 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-153 (-199)) |#1|)) (-15 -3645 ((-153 (-349)) |#1|)) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2645 (|#1|)) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2658 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2921 (|#2| |#1|)) (-15 -3710 (|#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1487 (|#1| |#1|)) (-15 -2228 (|#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3225 ((-3 |#1| "failed") (-377 (-1069 |#2|)))) (-15 -3216 ((-1069 |#2|) |#1|)) (-15 -3645 (|#1| (-1069 |#2|))) (-15 -3225 (|#1| (-1069 |#2|))) (-15 -2135 ((-1069 |#2|))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -3669 ((-1069 |#2|) |#1|)) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -1506 (|#2| |#1|)) (-15 -1472 (|#2| |#1|)) (-15 -2261 ((-843))) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 93 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1213 (($ $) 94 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-2454 (((-107) $) 96 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3055 (((-623 |#1|) (-1153 $)) 46) (((-623 |#1|)) 61)) (-1472 ((|#1| $) 52)) (-1865 (($ $) 228 (|has| |#1| (-1094)))) (-1721 (($ $) 211 (|has| |#1| (-1094)))) (-1926 (((-1082 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 242 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2535 (($ $) 113 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2759 (((-388 $) $) 114 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3766 (($ $) 241 (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 245 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1707 (((-107) $ $) 104 (|has| |#1| (-278)))) (-1611 (((-703)) 87 (|has| |#1| (-338)))) (-1839 (($ $) 227 (|has| |#1| (-1094)))) (-1701 (($ $) 212 (|has| |#1| (-1094)))) (-1887 (($ $) 226 (|has| |#1| (-1094)))) (-1743 (($ $) 213 (|has| |#1| (-1094)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3189 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48) (($ (-1153 |#1|)) 64)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2518 (($ $ $) 108 (|has| |#1| (-278)))) (-2410 (((-623 |#1|) $ (-1153 $)) 53) (((-623 |#1|) $) 59)) (-3355 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-3225 (($ (-1069 |#1|)) 158) (((-3 $ "failed") (-377 (-1069 |#1|))) 155 (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) 34)) (-3775 ((|#1| $) 253)) (-1256 (((-3 (-377 (-517)) "failed") $) 246 (|has| |#1| (-502)))) (-1355 (((-107) $) 248 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 247 (|has| |#1| (-502)))) (-2261 (((-843)) 54)) (-3209 (($) 90 (|has| |#1| (-338)))) (-2497 (($ $ $) 107 (|has| |#1| (-278)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 102 (|has| |#1| (-278)))) (-3442 (($) 149 (|has| |#1| (-319)))) (-3391 (((-107) $) 150 (|has| |#1| (-319)))) (-2378 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-3849 (((-107) $) 115 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2658 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-970)) (|has| |#1| (-1094))))) (-2645 (($) 238 (|has| |#1| (-1094)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 261 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 260 (|has| |#1| (-808 (-349))))) (-3972 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 240 (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-1506 ((|#1| $) 51)) (-1319 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-278)))) (-3777 (((-1069 |#1|) $) 44 (|has| |#1| (-333)))) (-2967 (($ $ $) 207 (|has| |#1| (-779)))) (-3099 (($ $ $) 206 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 262)) (-1549 (((-843) $) 89 (|has| |#1| (-338)))) (-1867 (($ $) 235 (|has| |#1| (-1094)))) (-3216 (((-1069 |#1|) $) 156)) (-1365 (($ (-583 $)) 100 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 99 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 116 (|has| |#1| (-333)))) (-2836 (($) 143 (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) 88 (|has| |#1| (-338)))) (-2228 (($) 257)) (-3785 ((|#1| $) 254)) (-3206 (((-1021) $) 10)) (-3220 (($) 160)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 101 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1401 (($ (-583 $)) 98 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (($ $ $) 97 (-3807 (|has| |#1| (-278)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 146 (|has| |#1| (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 244 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2209 (((-388 (-1069 $)) (-1069 $)) 243 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3755 (((-388 $) $) 112 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 109 (|has| |#1| (-278)))) (-2476 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 92 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-278)))) (-2624 (($ $) 236 (|has| |#1| (-1094)))) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 268 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 266 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 265 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 264 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 263 (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) 105 (|has| |#1| (-278)))) (-1449 (($ $ |#1|) 269 (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106 (|has| |#1| (-278)))) (-3010 ((|#1| (-1153 $)) 47) ((|#1|) 60)) (-1620 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-3127 (($ $ (-1 |#1| |#1|) (-703)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-583 (-1073)) (-583 (-703))) 130 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 131 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 132 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 133 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 135 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 137 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2135 (((-1069 |#1|)) 159)) (-1898 (($ $) 225 (|has| |#1| (-1094)))) (-1754 (($ $) 214 (|has| |#1| (-1094)))) (-1766 (($) 148 (|has| |#1| (-319)))) (-1876 (($ $) 224 (|has| |#1| (-1094)))) (-1732 (($ $) 215 (|has| |#1| (-1094)))) (-1853 (($ $) 223 (|has| |#1| (-1094)))) (-1711 (($ $) 216 (|has| |#1| (-1094)))) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49) (((-1153 |#1|) $) 66) (((-623 |#1|) (-1153 $)) 65)) (-3645 (((-1153 |#1|) $) 63) (($ (-1153 |#1|)) 62) (((-1069 |#1|) $) 171) (($ (-1069 |#1|)) 157) (((-814 (-517)) $) 259 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 258 (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) 210 (|has| |#1| (-937))) (((-153 (-199)) $) 209 (|has| |#1| (-937))) (((-493) $) 208 (|has| |#1| (-558 (-493))))) (-1487 (($ $) 256)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 145 (-3807 (-4035 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-319))))) (-3392 (($ |#1| |#1|) 255)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 86 (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) 91 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-1328 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (-3807 (-4035 (|has| $ (-132)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))) (|has| |#1| (-132))))) (-3669 (((-1069 |#1|) $) 45)) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 67)) (-3707 (($ $) 234 (|has| |#1| (-1094)))) (-1788 (($ $) 222 (|has| |#1| (-1094)))) (-3329 (((-107) $ $) 95 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))) (-3683 (($ $) 233 (|has| |#1| (-1094)))) (-1765 (($ $) 221 (|has| |#1| (-1094)))) (-3731 (($ $) 232 (|has| |#1| (-1094)))) (-1814 (($ $) 220 (|has| |#1| (-1094)))) (-2921 ((|#1| $) 250 (|has| |#1| (-1094)))) (-1492 (($ $) 231 (|has| |#1| (-1094)))) (-1827 (($ $) 219 (|has| |#1| (-1094)))) (-3719 (($ $) 230 (|has| |#1| (-1094)))) (-1802 (($ $) 218 (|has| |#1| (-1094)))) (-3695 (($ $) 229 (|has| |#1| (-1094)))) (-1777 (($ $) 217 (|has| |#1| (-1094)))) (-3710 (($ $) 251 (|has| |#1| (-970)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#1| |#1|) (-703)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-583 (-1073)) (-583 (-703))) 126 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 127 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 128 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 129 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 134 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))))) (($ $) 136 (-3807 (-4035 (|has| |#1| (-333)) (|has| |#1| (-207))) (|has| |#1| (-207)) (-4035 (|has| |#1| (-207)) (|has| |#1| (-333)))))) (-1606 (((-107) $ $) 204 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 203 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 205 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 202 (|has| |#1| (-779)))) (-1667 (($ $ $) 121 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-377 (-517))) 239 (-12 (|has| |#1| (-918)) (|has| |#1| (-1094)))) (($ $ $) 237 (|has| |#1| (-1094))) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
+(((-150 |#1|) (-1184) (-156)) (T -150))
+((-1506 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2228 (*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-1487 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3392 (*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-3710 (*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1094)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1094)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
+(-13 (-657 |t#1| (-1069 |t#1|)) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-370 |t#1|) (-806 |t#1|) (-347 |t#1|) (-156) (-10 -8 (-6 -3392) (-15 -2228 ($)) (-15 -1487 ($ $)) (-15 -3392 ($ |t#1| |t#1|)) (-15 -3785 (|t#1| $)) (-15 -3775 (|t#1| $)) (-15 -1506 (|t#1| $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-509)) (-15 -2476 ((-3 $ "failed") $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-278)) (-6 (-278)) |noBranch|) (IF (|has| |t#1| (-6 -4179)) (-6 -4179) |noBranch|) (IF (|has| |t#1| (-6 -4176)) (-6 -4176) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-937)) (PROGN (-6 (-558 (-153 (-199)))) (-6 (-558 (-153 (-349))))) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -3710 ($ $)) |noBranch|) (IF (|has| |t#1| (-1094)) (PROGN (-6 (-1094)) (-15 -2921 (|t#1| $)) (IF (|has| |t#1| (-918)) (-6 (-918)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -2658 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-831)) (IF (|has| |t#1| (-278)) (-6 (-831)) |noBranch|) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-34) |has| |#1| (-1094)) ((-91) |has| |#1| (-1094)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-153 (-199))) |has| |#1| (-937)) ((-558 (-153 (-349))) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-558 (-1069 |#1|)) . T) ((-205 |#1|) . T) ((-207) -3807 (|has| |#1| (-319)) (|has| |#1| (-207))) ((-217) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-256) |has| |#1| (-1094)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-278) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3807 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| (-1069 |#1|)) . T) ((-379 |#1| (-1069 |#1|)) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-458) |has| |#1| (-1094)) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-657 |#1| (-1069 |#1|)) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) -12 (|has| |#1| (-278)) (|has| |#1| (-831))) ((-842) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (|has| |#1| (-278))) ((-918) -12 (|has| |#1| (-918)) (|has| |#1| (-1094))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-319)) ((-1094) |has| |#1| (-1094)) ((-1097) |has| |#1| (-1094)) ((-1108) . T) ((-1112) -3807 (|has| |#1| (-319)) (|has| |#1| (-333)) (-12 (|has| |#1| (-278)) (|has| |#1| (-831)))))
+((-3755 (((-388 |#2|) |#2|) 63)))
+(((-151 |#1| |#2|) (-10 -7 (-15 -3755 ((-388 |#2|) |#2|))) (-278) (-1130 (-153 |#1|))) (T -151))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
+(-10 -7 (-15 -3755 ((-388 |#2|) |#2|)))
+((-1893 (((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)) 14)))
+(((-152 |#1| |#2|) (-10 -7 (-15 -1893 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|)))) (-156) (-156)) (T -152))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))))
+(-10 -7 (-15 -1893 ((-153 |#2|) (-1 |#2| |#1|) (-153 |#1|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 33)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1213 (($ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-2454 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3055 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) NIL)) (-1472 ((|#1| $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-1094)))) (-1721 (($ $) NIL (|has| |#1| (-1094)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2535 (($ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2759 (((-388 $) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-3766 (($ $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-278)))) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-1839 (($ $) NIL (|has| |#1| (-1094)))) (-1701 (($ $) NIL (|has| |#1| (-1094)))) (-1887 (($ $) NIL (|has| |#1| (-1094)))) (-1743 (($ $) NIL (|has| |#1| (-1094)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|) (-1153 $)) NIL) (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2518 (($ $ $) NIL (|has| |#1| (-278)))) (-2410 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3225 (($ (-1069 |#1|)) NIL) (((-3 $ "failed") (-377 (-1069 |#1|))) NIL (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 13)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1355 (((-107) $) NIL (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL (|has| |#1| (-278)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-278)))) (-3442 (($) NIL (|has| |#1| (-319)))) (-3391 (((-107) $) NIL (|has| |#1| (-319)))) (-2378 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-3849 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2658 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-970)) (|has| |#1| (-1094))))) (-2645 (($) NIL (|has| |#1| (-1094)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-3972 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-3848 (((-107) $) 35)) (-3824 (($ $ (-517)) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1094))))) (-1506 ((|#1| $) 46)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-3777 (((-1069 |#1|) $) NIL (|has| |#1| (-333)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1867 (($ $) NIL (|has| |#1| (-1094)))) (-3216 (((-1069 |#1|) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-2836 (($) NIL (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-2228 (($) NIL)) (-3785 ((|#1| $) 15)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-278)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-278))) (($ $ $) NIL (|has| |#1| (-278)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#1| (-278)) (|has| |#1| (-831))))) (-3755 (((-388 $) $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-333))))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-278)))) (-2476 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 47 (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-278)))) (-2624 (($ $) NIL (|has| |#1| (-1094)))) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) NIL (|has| |#1| (-278)))) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-278)))) (-3010 ((|#1| (-1153 $)) NIL) ((|#1|) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-3127 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2135 (((-1069 |#1|)) NIL)) (-1898 (($ $) NIL (|has| |#1| (-1094)))) (-1754 (($ $) NIL (|has| |#1| (-1094)))) (-1766 (($) NIL (|has| |#1| (-319)))) (-1876 (($ $) NIL (|has| |#1| (-1094)))) (-1732 (($ $) NIL (|has| |#1| (-1094)))) (-1853 (($ $) NIL (|has| |#1| (-1094)))) (-1711 (($ $) NIL (|has| |#1| (-1094)))) (-4114 (((-1153 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) (-1153 $) (-1153 $)) NIL) (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3645 (((-1153 |#1|) $) NIL) (($ (-1153 |#1|)) NIL) (((-1069 |#1|) $) NIL) (($ (-1069 |#1|)) NIL) (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-153 (-349)) $) NIL (|has| |#1| (-937))) (((-153 (-199)) $) NIL (|has| |#1| (-937))) (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1487 (($ $) 45)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-319))))) (-3392 (($ |#1| |#1|) 37)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 36) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-1328 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-3669 (((-1069 |#1|) $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL)) (-3707 (($ $) NIL (|has| |#1| (-1094)))) (-1788 (($ $) NIL (|has| |#1| (-1094)))) (-3329 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-278)) (|has| |#1| (-831))) (|has| |#1| (-509))))) (-3683 (($ $) NIL (|has| |#1| (-1094)))) (-1765 (($ $) NIL (|has| |#1| (-1094)))) (-3731 (($ $) NIL (|has| |#1| (-1094)))) (-1814 (($ $) NIL (|has| |#1| (-1094)))) (-2921 ((|#1| $) NIL (|has| |#1| (-1094)))) (-1492 (($ $) NIL (|has| |#1| (-1094)))) (-1827 (($ $) NIL (|has| |#1| (-1094)))) (-3719 (($ $) NIL (|has| |#1| (-1094)))) (-1802 (($ $) NIL (|has| |#1| (-1094)))) (-3695 (($ $) NIL (|has| |#1| (-1094)))) (-1777 (($ $) NIL (|has| |#1| (-1094)))) (-3710 (($ $) NIL (|has| |#1| (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 28 T CONST)) (-2409 (($) 30 T CONST)) (-2482 (((-1056) $) 23 (|has| |#1| (-760))) (((-1056) $ (-107)) 25 (|has| |#1| (-760))) (((-1158) (-754) $) 26 (|has| |#1| (-760))) (((-1158) (-754) $ (-107)) 27 (|has| |#1| (-760)))) (-2731 (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 39)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-377 (-517))) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-1094)))) (($ $ $) NIL (|has| |#1| (-1094))) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
+(((-153 |#1|) (-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|))) (-156)) (T -153))
+NIL
+(-13 (-150 |#1|) (-10 -7 (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|)))
+((-3645 (((-814 |#1|) |#3|) 22)))
+(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -3645 ((-814 |#1|) |#3|))) (-1003) (-13 (-558 (-814 |#1|)) (-156)) (-150 |#2|)) (T -154))
+((-3645 (*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5)))))
+(-10 -7 (-15 -3645 ((-814 |#1|) |#3|)))
+((-2750 (((-107) $ $) NIL)) (-3226 (((-107) $) 9)) (-3001 (((-107) $ (-107)) 11)) (-3462 (($) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2433 (($ $) 13)) (-2256 (((-787) $) 17)) (-2145 (((-107) $) 8)) (-1210 (((-107) $ (-107)) 10)) (-1547 (((-107) $ $) NIL)))
+(((-155) (-13 (-1003) (-10 -8 (-15 -3462 ($)) (-15 -2145 ((-107) $)) (-15 -3226 ((-107) $)) (-15 -1210 ((-107) $ (-107))) (-15 -3001 ((-107) $ (-107))) (-15 -2433 ($ $))))) (T -155))
+((-3462 (*1 *1) (-5 *1 (-155))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-1210 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-3001 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) (-2433 (*1 *1 *1) (-5 *1 (-155))))
+(-13 (-1003) (-10 -8 (-15 -3462 ($)) (-15 -2145 ((-107) $)) (-15 -3226 ((-107) $)) (-15 -1210 ((-107) $ (-107))) (-15 -3001 ((-107) $ (-107))) (-15 -2433 ($ $))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-156) (-1184)) (T -156))
+NIL
+(-13 (-961) (-106 $ $) (-10 -7 (-6 (-4182 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 ((|#1| $) 74)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-4007 (($ $) 19)) (-3088 (($ |#1| (-1054 |#1|)) 47)) (-3621 (((-3 $ "failed") $) 116)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3815 (((-1054 |#1|) $) 81)) (-3379 (((-1054 |#1|) $) 78)) (-2214 (((-1054 |#1|) $) 79)) (-3848 (((-107) $) NIL)) (-2553 (((-1054 |#1|) $) 87)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-1672 (($ $ (-517)) 90)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1464 (((-1054 |#1|) $) 88)) (-3171 (((-1054 (-377 |#1|)) $) 13)) (-2005 (($ (-377 |#1|)) 17) (($ |#1| (-1054 |#1|) (-1054 |#1|)) 37)) (-1545 (($ $) 92)) (-2256 (((-787) $) 126) (($ (-517)) 50) (($ |#1|) 51) (($ (-377 |#1|)) 35) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2961 (((-703)) 63)) (-3329 (((-107) $ $) NIL)) (-1943 (((-1054 (-377 |#1|)) $) 18)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 25 T CONST)) (-2409 (($) 28 T CONST)) (-1547 (((-107) $ $) 34)) (-1667 (($ $ $) 114)) (-1654 (($ $) 105) (($ $ $) 102)) (-1642 (($ $ $) 100)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 112) (($ $ $) 107) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-377 |#1|) $) 110) (($ $ (-377 |#1|)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL)))
+(((-157 |#1|) (-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2005 ($ (-377 |#1|))) (-15 -2005 ($ |#1| (-1054 |#1|) (-1054 |#1|))) (-15 -3088 ($ |#1| (-1054 |#1|))) (-15 -3379 ((-1054 |#1|) $)) (-15 -2214 ((-1054 |#1|) $)) (-15 -3815 ((-1054 |#1|) $)) (-15 -2668 (|#1| $)) (-15 -4007 ($ $)) (-15 -1943 ((-1054 (-377 |#1|)) $)) (-15 -3171 ((-1054 (-377 |#1|)) $)) (-15 -2553 ((-1054 |#1|) $)) (-15 -1464 ((-1054 |#1|) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $)))) (-278)) (T -157))
+((-2005 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) (-2005 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3088 (*1 *1 *2 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2668 (*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-4007 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) (-1943 (*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1464 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) (-1545 (*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
+(-13 (-37 |#1|) (-37 (-377 |#1|)) (-333) (-10 -8 (-15 -2005 ($ (-377 |#1|))) (-15 -2005 ($ |#1| (-1054 |#1|) (-1054 |#1|))) (-15 -3088 ($ |#1| (-1054 |#1|))) (-15 -3379 ((-1054 |#1|) $)) (-15 -2214 ((-1054 |#1|) $)) (-15 -3815 ((-1054 |#1|) $)) (-15 -2668 (|#1| $)) (-15 -4007 ($ $)) (-15 -1943 ((-1054 (-377 |#1|)) $)) (-15 -3171 ((-1054 (-377 |#1|)) $)) (-15 -2553 ((-1054 |#1|) $)) (-15 -1464 ((-1054 |#1|) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $))))
+((-3617 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 40)) (-3752 (((-865 |#1|) (-865 |#1|)) 19)) (-2839 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 36)) (-3627 (((-865 |#1|) (-865 |#1|)) 17)) (-2673 (((-865 |#1|) (-865 |#1|)) 25)) (-2850 (((-865 |#1|) (-865 |#1|)) 24)) (-3691 (((-865 |#1|) (-865 |#1|)) 23)) (-3440 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 37)) (-1573 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 35)) (-3259 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 34)) (-2483 (((-865 |#1|) (-865 |#1|)) 18)) (-3701 (((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|) 43)) (-2931 (((-865 |#1|) (-865 |#1|)) 8)) (-1740 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 39)) (-2603 (((-1 (-865 |#1|) (-865 |#1|)) |#1|) 38)))
+(((-158 |#1|) (-10 -7 (-15 -2931 ((-865 |#1|) (-865 |#1|))) (-15 -3627 ((-865 |#1|) (-865 |#1|))) (-15 -2483 ((-865 |#1|) (-865 |#1|))) (-15 -3752 ((-865 |#1|) (-865 |#1|))) (-15 -3691 ((-865 |#1|) (-865 |#1|))) (-15 -2850 ((-865 |#1|) (-865 |#1|))) (-15 -2673 ((-865 |#1|) (-865 |#1|))) (-15 -3259 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1573 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2839 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3440 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2603 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1740 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3617 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3701 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|))) (-13 (-333) (-1094) (-918))) (T -158))
+((-3701 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-3617 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-1740 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-2603 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-2839 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-1573 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-3259 (*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-2850 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-3691 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-3627 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
+(-10 -7 (-15 -2931 ((-865 |#1|) (-865 |#1|))) (-15 -3627 ((-865 |#1|) (-865 |#1|))) (-15 -2483 ((-865 |#1|) (-865 |#1|))) (-15 -3752 ((-865 |#1|) (-865 |#1|))) (-15 -3691 ((-865 |#1|) (-865 |#1|))) (-15 -2850 ((-865 |#1|) (-865 |#1|))) (-15 -2673 ((-865 |#1|) (-865 |#1|))) (-15 -3259 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1573 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2839 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3440 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -2603 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -1740 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3617 ((-1 (-865 |#1|) (-865 |#1|)) |#1|)) (-15 -3701 ((-1 (-865 |#1|) (-865 |#1|)) |#1| |#1|)))
+((-3669 ((|#2| |#3|) 27)))
+(((-159 |#1| |#2| |#3|) (-10 -7 (-15 -3669 (|#2| |#3|))) (-156) (-1130 |#1|) (-657 |#1| |#2|)) (T -159))
+((-3669 (*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1130 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))))
+(-10 -7 (-15 -3669 (|#2| |#3|)))
+((-4057 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 47 (|has| (-874 |#2|) (-808 |#1|)))))
+(((-160 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |noBranch|)) (-1003) (-13 (-808 |#1|) (-156)) (-150 |#2|)) (T -160))
+((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-874 |#2|) (-808 |#1|)) (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) |noBranch|))
+((-1656 (((-583 |#1|) (-583 |#1|) |#1|) 36)) (-2563 (((-583 |#1|) |#1| (-583 |#1|)) 19)) (-1659 (((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|)) 31) ((|#1| (-583 |#1|) (-583 |#1|)) 29)))
+(((-161 |#1|) (-10 -7 (-15 -2563 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -1659 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -1659 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1656 ((-583 |#1|) (-583 |#1|) |#1|))) (-278)) (T -161))
+((-1656 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))) (-1659 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) (-1659 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) (-2563 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(-10 -7 (-15 -2563 ((-583 |#1|) |#1| (-583 |#1|))) (-15 -1659 (|#1| (-583 |#1|) (-583 |#1|))) (-15 -1659 ((-583 |#1|) (-583 (-583 |#1|)) (-583 |#1|))) (-15 -1656 ((-583 |#1|) (-583 |#1|) |#1|)))
+((-1429 (((-2 (|:| |start| |#2|) (|:| -2879 (-388 |#2|))) |#2|) 61)) (-2801 ((|#1| |#1|) 54)) (-3058 (((-153 |#1|) |#2|) 82)) (-3390 ((|#1| |#2|) 122) ((|#1| |#2| |#1|) 80)) (-2445 ((|#2| |#2|) 81)) (-1720 (((-388 |#2|) |#2| |#1|) 112) (((-388 |#2|) |#2| |#1| (-107)) 79)) (-1506 ((|#1| |#2|) 111)) (-3373 ((|#2| |#2|) 118)) (-3755 (((-388 |#2|) |#2|) 133) (((-388 |#2|) |#2| |#1|) 32) (((-388 |#2|) |#2| |#1| (-107)) 132)) (-1731 (((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2|) 131) (((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2| (-107)) 75)) (-2918 (((-583 (-153 |#1|)) |#2| |#1|) 40) (((-583 (-153 |#1|)) |#2|) 41)))
+(((-162 |#1| |#2|) (-10 -7 (-15 -2918 ((-583 (-153 |#1|)) |#2|)) (-15 -2918 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2| (-107))) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2|)) (-15 -3755 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3755 ((-388 |#2|) |#2| |#1|)) (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3373 (|#2| |#2|)) (-15 -1506 (|#1| |#2|)) (-15 -1720 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1720 ((-388 |#2|) |#2| |#1|)) (-15 -2445 (|#2| |#2|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -3390 (|#1| |#2|)) (-15 -3058 ((-153 |#1|) |#2|)) (-15 -2801 (|#1| |#1|)) (-15 -1429 ((-2 (|:| |start| |#2|) (|:| -2879 (-388 |#2|))) |#2|))) (-13 (-333) (-777)) (-1130 (-153 |#1|))) (T -162))
+((-1429 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2879 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-2801 (*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-3058 (*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1130 *2)))) (-3390 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-3390 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-2445 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))) (-1720 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1720 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1506 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) (-3373 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-3755 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-3755 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1731 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-1731 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1130 (-153 *5))))) (-2918 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) (-2918 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
+(-10 -7 (-15 -2918 ((-583 (-153 |#1|)) |#2|)) (-15 -2918 ((-583 (-153 |#1|)) |#2| |#1|)) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2| (-107))) (-15 -1731 ((-583 (-2 (|:| -2879 (-583 |#2|)) (|:| -2101 |#1|))) |#2| |#2|)) (-15 -3755 ((-388 |#2|) |#2| |#1| (-107))) (-15 -3755 ((-388 |#2|) |#2| |#1|)) (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3373 (|#2| |#2|)) (-15 -1506 (|#1| |#2|)) (-15 -1720 ((-388 |#2|) |#2| |#1| (-107))) (-15 -1720 ((-388 |#2|) |#2| |#1|)) (-15 -2445 (|#2| |#2|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -3390 (|#1| |#2|)) (-15 -3058 ((-153 |#1|) |#2|)) (-15 -2801 (|#1| |#1|)) (-15 -1429 ((-2 (|:| |start| |#2|) (|:| -2879 (-388 |#2|))) |#2|)))
+((-2639 (((-3 |#2| "failed") |#2|) 14)) (-3931 (((-703) |#2|) 16)) (-1854 ((|#2| |#2| |#2|) 18)))
+(((-163 |#1| |#2|) (-10 -7 (-15 -2639 ((-3 |#2| "failed") |#2|)) (-15 -3931 ((-703) |#2|)) (-15 -1854 (|#2| |#2| |#2|))) (-1108) (-610 |#1|)) (T -163))
+((-1854 (*1 *2 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))) (-3931 (*1 *2 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))) (-2639 (*1 *2 *2) (|partial| -12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
+(-10 -7 (-15 -2639 ((-3 |#2| "failed") |#2|)) (-15 -3931 ((-703) |#2|)) (-15 -1854 (|#2| |#2| |#2|)))
+((-4090 ((|#2| |#2|) 28)) (-1908 (((-107) |#2|) 19)) (-3775 (((-286 |#1|) |#2|) 12)) (-3785 (((-286 |#1|) |#2|) 14)) (-2769 ((|#2| |#2| (-1073)) 68) ((|#2| |#2|) 69)) (-2858 (((-153 (-286 |#1|)) |#2|) 9)) (-2637 ((|#2| |#2| (-1073)) 65) ((|#2| |#2|) 58)))
+(((-164 |#1| |#2|) (-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -3775 ((-286 |#1|) |#2|)) (-15 -3785 ((-286 |#1|) |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -2858 ((-153 (-286 |#1|)) |#2|))) (-13 (-509) (-779) (-952 (-517))) (-13 (-27) (-1094) (-400 (-153 |#1|)))) (T -164))
+((-2858 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-3775 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-2637 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) (-2769 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))))
+(-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -3775 ((-286 |#1|) |#2|)) (-15 -3785 ((-286 |#1|) |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -2858 ((-153 (-286 |#1|)) |#2|)))
+((-2852 (((-1153 (-623 (-874 |#1|))) (-1153 (-623 |#1|))) 22)) (-2256 (((-1153 (-623 (-377 (-874 |#1|)))) (-1153 (-623 |#1|))) 30)))
+(((-165 |#1|) (-10 -7 (-15 -2852 ((-1153 (-623 (-874 |#1|))) (-1153 (-623 |#1|)))) (-15 -2256 ((-1153 (-623 (-377 (-874 |#1|)))) (-1153 (-623 |#1|))))) (-156)) (T -165))
+((-2256 (*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-874 *4)))) (-5 *1 (-165 *4)))))
+(-10 -7 (-15 -2852 ((-1153 (-623 (-874 |#1|))) (-1153 (-623 |#1|)))) (-15 -2256 ((-1153 (-623 (-377 (-874 |#1|)))) (-1153 (-623 |#1|)))))
+((-2748 (((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517)))) 66)) (-4135 (((-1075 (-377 (-517))) (-583 (-517)) (-583 (-517))) 74)) (-2709 (((-1075 (-377 (-517))) (-517)) 40)) (-2003 (((-1075 (-377 (-517))) (-517)) 52)) (-2051 (((-377 (-517)) (-1075 (-377 (-517)))) 62)) (-3481 (((-1075 (-377 (-517))) (-517)) 32)) (-2768 (((-1075 (-377 (-517))) (-517)) 48)) (-3033 (((-1075 (-377 (-517))) (-517)) 46)) (-1980 (((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517)))) 60)) (-1545 (((-1075 (-377 (-517))) (-517)) 25)) (-2428 (((-377 (-517)) (-1075 (-377 (-517))) (-1075 (-377 (-517)))) 64)) (-2634 (((-1075 (-377 (-517))) (-517)) 30)) (-3761 (((-1075 (-377 (-517))) (-583 (-517))) 71)))
+(((-166) (-10 -7 (-15 -1545 ((-1075 (-377 (-517))) (-517))) (-15 -2709 ((-1075 (-377 (-517))) (-517))) (-15 -3481 ((-1075 (-377 (-517))) (-517))) (-15 -2634 ((-1075 (-377 (-517))) (-517))) (-15 -3033 ((-1075 (-377 (-517))) (-517))) (-15 -2768 ((-1075 (-377 (-517))) (-517))) (-15 -2003 ((-1075 (-377 (-517))) (-517))) (-15 -2428 ((-377 (-517)) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -1980 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -2051 ((-377 (-517)) (-1075 (-377 (-517))))) (-15 -2748 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -3761 ((-1075 (-377 (-517))) (-583 (-517)))) (-15 -4135 ((-1075 (-377 (-517))) (-583 (-517)) (-583 (-517)))))) (T -166))
+((-4135 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-3761 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-2748 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-1980 (*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))) (-2428 (*1 *2 *3 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) (-2003 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2768 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3033 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2634 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-2709 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) (-1545 (*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(-10 -7 (-15 -1545 ((-1075 (-377 (-517))) (-517))) (-15 -2709 ((-1075 (-377 (-517))) (-517))) (-15 -3481 ((-1075 (-377 (-517))) (-517))) (-15 -2634 ((-1075 (-377 (-517))) (-517))) (-15 -3033 ((-1075 (-377 (-517))) (-517))) (-15 -2768 ((-1075 (-377 (-517))) (-517))) (-15 -2003 ((-1075 (-377 (-517))) (-517))) (-15 -2428 ((-377 (-517)) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -1980 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -2051 ((-377 (-517)) (-1075 (-377 (-517))))) (-15 -2748 ((-1075 (-377 (-517))) (-1075 (-377 (-517))) (-1075 (-377 (-517))))) (-15 -3761 ((-1075 (-377 (-517))) (-583 (-517)))) (-15 -4135 ((-1075 (-377 (-517))) (-583 (-517)) (-583 (-517)))))
+((-3017 (((-388 (-1069 (-517))) (-517)) 28)) (-3933 (((-583 (-1069 (-517))) (-517)) 23)) (-2765 (((-1069 (-517)) (-517)) 21)))
+(((-167) (-10 -7 (-15 -3933 ((-583 (-1069 (-517))) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3017 ((-388 (-1069 (-517))) (-517))))) (T -167))
+((-3017 (*1 *2 *3) (-12 (-5 *2 (-388 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))) (-2765 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) (-3933 (*1 *2 *3) (-12 (-5 *2 (-583 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(-10 -7 (-15 -3933 ((-583 (-1069 (-517))) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3017 ((-388 (-1069 (-517))) (-517))))
+((-2743 (((-1054 (-199)) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 101)) (-4053 (((-583 (-1056)) (-1054 (-199))) NIL)) (-2695 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77)) (-1218 (((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199)))) NIL)) (-2024 (((-583 (-1056)) (-583 (-199))) NIL)) (-3339 (((-199) (-998 (-772 (-199)))) 22)) (-3191 (((-199) (-998 (-772 (-199)))) 23)) (-2692 (((-349) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 93)) (-1644 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 40)) (-2129 (((-1056) (-199)) NIL)) (-3517 (((-1056) (-583 (-1056))) 19)) (-2742 (((-950) (-1073) (-1073) (-950)) 12)))
+(((-168) (-10 -7 (-15 -2695 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1644 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2692 ((-349) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3517 ((-1056) (-583 (-1056)))) (-15 -2742 ((-950) (-1073) (-1073) (-950))))) (T -168))
+((-2742 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-168)))) (-3517 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-168)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-168)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-168)))) (-1218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
+(-10 -7 (-15 -2695 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1644 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2692 ((-349) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3517 ((-1056) (-583 (-1056)))) (-15 -2742 ((-950) (-1073) (-1073) (-950))))
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 53) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 28) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-169) (-719)) (T -169))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 58) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-170) (-719)) (T -170))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 67) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-171) (-719)) (T -171))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 30) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-172) (-719)) (T -172))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 65) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 35) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-173) (-719)) (T -173))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 71) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-174) (-719)) (T -174))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 78) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 43) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-175) (-719)) (T -175))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 68) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-176) (-719)) (T -176))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 62)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-177) (-719)) (T -177))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 60)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 32)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-178) (-719)) (T -178))
+NIL
+(-719)
+((-2750 (((-107) $ $) NIL)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 89) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 77) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-179) (-719)) (T -179))
+NIL
+(-719)
+((-2060 (((-3 (-2 (|:| -3837 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 80)) (-2148 (((-517) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 39)) (-3762 (((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 69)))
+(((-180) (-10 -7 (-15 -2060 ((-3 (-2 (|:| -3837 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3762 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2148 ((-517) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -180))
+((-2148 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))) (-3762 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))) (-2060 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3837 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
+(-10 -7 (-15 -2060 ((-3 (-2 (|:| -3837 (-109)) (|:| |w| (-199))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3762 ((-3 (-583 (-199)) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2148 ((-517) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-2848 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-2304 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 127)) (-3664 (((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199)))) 87)) (-3727 (((-349) (-623 (-286 (-199)))) 110)) (-1367 (((-623 (-286 (-199))) (-1153 (-286 (-199))) (-583 (-1073))) 107)) (-2001 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-2403 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-2051 (((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1073)) (-1153 (-286 (-199)))) 99)) (-2829 (((-349) (-349) (-583 (-349))) 104) (((-349) (-349) (-349)) 102)) (-2073 (((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)))
+(((-181) (-10 -7 (-15 -2829 ((-349) (-349) (-349))) (-15 -2829 ((-349) (-349) (-583 (-349)))) (-15 -3727 ((-349) (-623 (-286 (-199))))) (-15 -1367 ((-623 (-286 (-199))) (-1153 (-286 (-199))) (-583 (-1073)))) (-15 -2051 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1073)) (-1153 (-286 (-199))))) (-15 -3664 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -2304 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2848 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2403 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2073 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2001 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -181))
+((-2001 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))) (-2051 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1073))) (-5 *4 (-1153 (-286 (-199)))) (-5 *1 (-181)))) (-1367 (*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2829 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))) (-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))))
+(-10 -7 (-15 -2829 ((-349) (-349) (-349))) (-15 -2829 ((-349) (-349) (-583 (-349)))) (-15 -3727 ((-349) (-623 (-286 (-199))))) (-15 -1367 ((-623 (-286 (-199))) (-1153 (-286 (-199))) (-583 (-1073)))) (-15 -2051 ((-623 (-286 (-199))) (-623 (-286 (-199))) (-583 (-1073)) (-1153 (-286 (-199))))) (-15 -3664 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-623 (-286 (-199))))) (-15 -2304 ((-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349))) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2848 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2403 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2073 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2001 ((-349) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1547 (((-107) $ $) NIL)))
+(((-182) (-732)) (T -182))
+NIL
+(-732)
+((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 37)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 60)) (-1547 (((-107) $ $) NIL)))
+(((-183) (-732)) (T -183))
+NIL
+(-732)
+((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 36)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 64)) (-1547 (((-107) $ $) NIL)))
+(((-184) (-732)) (T -184))
+NIL
+(-732)
+((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 42)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 73)) (-1547 (((-107) $ $) NIL)))
+(((-185) (-732)) (T -185))
+NIL
+(-732)
+((-3463 (((-583 (-1073)) (-1073) (-703)) 22)) (-2093 (((-286 (-199)) (-286 (-199))) 29)) (-2943 (((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 67)) (-3511 (((-107) (-199) (-199) (-583 (-286 (-199)))) 43)))
+(((-186) (-10 -7 (-15 -3463 ((-583 (-1073)) (-1073) (-703))) (-15 -2093 ((-286 (-199)) (-286 (-199)))) (-15 -3511 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -2943 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))))) (T -186))
+((-2943 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))) (-3511 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))) (-2093 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-186)) (-5 *3 (-1073)))))
+(-10 -7 (-15 -3463 ((-583 (-1073)) (-1073) (-703))) (-15 -2093 ((-286 (-199)) (-286 (-199)))) (-15 -3511 ((-107) (-199) (-199) (-583 (-286 (-199))))) (-15 -2943 ((-107) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))))
+((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 17)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2238 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 55)) (-1547 (((-107) $ $) NIL)))
+(((-187) (-817)) (T -187))
+NIL
+(-817)
+((-2750 (((-107) $ $) NIL)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2238 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-188) (-817)) (T -188))
+NIL
+(-817)
+((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3307 (((-1158) $) 36) (((-1158) $ (-843) (-843)) 38)) (-1449 (($ $ (-906)) 19) (((-219 (-1056)) $ (-1073)) 15)) (-1242 (((-1158) $) 34)) (-2256 (((-787) $) 31) (($ (-583 |#1|)) 8)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $ $) 27)) (-1642 (($ $ $) 22)))
+(((-189 |#1|) (-13 (-1003) (-10 -8 (-15 -1449 ($ $ (-906))) (-15 -1449 ((-219 (-1056)) $ (-1073))) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -2256 ($ (-583 |#1|))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -3307 ((-1158) $ (-843) (-843))))) (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))) (T -189))
+((-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-219 (-1056))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ *3)) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-1642 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-1654 (*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))) (-5 *1 (-189 *3)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) (-3307 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))))
+(-13 (-1003) (-10 -8 (-15 -1449 ($ $ (-906))) (-15 -1449 ((-219 (-1056)) $ (-1073))) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -2256 ($ (-583 |#1|))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -3307 ((-1158) $ (-843) (-843)))))
+((-1602 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1602 (|#2| |#4| (-1 |#2| |#2|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -190))
+((-1602 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1130 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
+(-10 -7 (-15 -1602 (|#2| |#4| (-1 |#2| |#2|))))
+((-3544 ((|#2| |#2| (-703) |#2|) 41)) (-3289 ((|#2| |#2| (-703) |#2|) 37)) (-3988 (((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|)))) 55)) (-3743 (((-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))) |#2|) 51)) (-2504 (((-107) |#2|) 48)) (-3432 (((-388 |#2|) |#2|) 74)) (-3755 (((-388 |#2|) |#2|) 73)) (-1458 ((|#2| |#2| (-703) |#2|) 35)) (-3158 (((-2 (|:| |cont| |#1|) (|:| -2879 (-583 (-2 (|:| |irr| |#2|) (|:| -3631 (-517)))))) |#2| (-107)) 66)))
+(((-191 |#1| |#2|) (-10 -7 (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3432 ((-388 |#2|) |#2|)) (-15 -3158 ((-2 (|:| |cont| |#1|) (|:| -2879 (-583 (-2 (|:| |irr| |#2|) (|:| -3631 (-517)))))) |#2| (-107))) (-15 -3743 ((-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))) |#2|)) (-15 -3988 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))))) (-15 -1458 (|#2| |#2| (-703) |#2|)) (-15 -3289 (|#2| |#2| (-703) |#2|)) (-15 -3544 (|#2| |#2| (-703) |#2|)) (-15 -2504 ((-107) |#2|))) (-319) (-1130 |#1|)) (T -191))
+((-2504 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) (-3544 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) (-3289 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) (-1458 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *5)))) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) (-3743 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) (-3158 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1130 *5)))) (-3432 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -3755 ((-388 |#2|) |#2|)) (-15 -3432 ((-388 |#2|) |#2|)) (-15 -3158 ((-2 (|:| |cont| |#1|) (|:| -2879 (-583 (-2 (|:| |irr| |#2|) (|:| -3631 (-517)))))) |#2| (-107))) (-15 -3743 ((-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))) |#2|)) (-15 -3988 ((-583 |#2|) (-583 (-2 (|:| |deg| (-703)) (|:| -3229 |#2|))))) (-15 -1458 (|#2| |#2| (-703) |#2|)) (-15 -3289 (|#2| |#2| (-703) |#2|)) (-15 -3544 (|#2| |#2| (-703) |#2|)) (-15 -2504 ((-107) |#2|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-517) $) NIL (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2597 (((-517) $) NIL (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) NIL)) (-2398 (($ (-377 (-517))) 8)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL) (((-920 10) $) 9)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-517) $) NIL (|has| (-517) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1667 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-192) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 10) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -2398 ($ (-377 (-517))))))) (T -192))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) (-2398 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
+(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 10) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -2398 ($ (-377 (-517))))))
+((-4151 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1056)) 27) (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|))) 23)) (-1402 (((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1073) (-772 |#2|) (-772 |#2|) (-107)) 16)))
+(((-193 |#1| |#2|) (-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1056))) (-15 -1402 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1073) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-29 |#1|))) (T -193))
+((-1402 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1073)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1094) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1056)) (-4 *3 (-13 (-1094) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1094) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))))
+(-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)))) (-15 -4151 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-996 (-772 |#2|)) (-1056))) (-15 -1402 ((-3 (|:| |f1| (-772 |#2|)) (|:| |f2| (-583 (-772 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1073) (-772 |#2|) (-772 |#2|) (-107))))
+((-4151 (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1056)) 44) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|))))) 41) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1056)) 45) (((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|)))) 17)))
+(((-194 |#1|) (-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1056))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1056)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (T -194))
+((-4151 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1056)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))))
+(-10 -7 (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-286 |#1|))) (-1056))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))))) (-15 -4151 ((-3 (|:| |f1| (-772 (-286 |#1|))) (|:| |f2| (-583 (-772 (-286 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-377 (-874 |#1|)) (-996 (-772 (-377 (-874 |#1|)))) (-1056))))
+((-3225 (((-2 (|:| -1913 (-1069 |#1|)) (|:| |deg| (-843))) (-1069 |#1|)) 20)) (-3502 (((-583 (-286 |#2|)) (-286 |#2|) (-843)) 42)))
+(((-195 |#1| |#2|) (-10 -7 (-15 -3225 ((-2 (|:| -1913 (-1069 |#1|)) (|:| |deg| (-843))) (-1069 |#1|))) (-15 -3502 ((-583 (-286 |#2|)) (-286 |#2|) (-843)))) (-961) (-13 (-509) (-779))) (T -195))
+((-3502 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) (-3225 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -1913 (-1069 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1069 *4)) (-4 *5 (-13 (-509) (-779))))))
+(-10 -7 (-15 -3225 ((-2 (|:| -1913 (-1069 |#1|)) (|:| |deg| (-843))) (-1069 |#1|))) (-15 -3502 ((-583 (-286 |#2|)) (-286 |#2|) (-843))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3026 ((|#1| $) NIL)) (-4139 ((|#1| $) 25)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-3186 (($ $) NIL)) (-4020 (($ $) 31)) (-2886 ((|#1| |#1| $) NIL)) (-1200 ((|#1| $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-2195 (((-703) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) NIL)) (-2164 ((|#1| |#1| $) 28)) (-3968 ((|#1| |#1| $) 30)) (-1710 (($ |#1| $) NIL)) (-1881 (((-703) $) 27)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2578 ((|#1| $) NIL)) (-4018 ((|#1| $) 26)) (-3561 ((|#1| $) 24)) (-4006 ((|#1| $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3838 ((|#1| |#1| $) NIL)) (-3619 (((-107) $) 9)) (-1746 (($) NIL)) (-3129 ((|#1| $) NIL)) (-2277 (($) NIL) (($ (-583 |#1|)) 16)) (-1694 (((-703) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-2738 ((|#1| $) 13)) (-1222 (($ (-583 |#1|)) NIL)) (-2028 ((|#1| $) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-196 |#1|) (-13 (-227 |#1|) (-10 -8 (-15 -2277 ($ (-583 |#1|))))) (-1003)) (T -196))
+((-2277 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3)))))
+(-13 (-227 |#1|) (-10 -8 (-15 -2277 ($ (-583 |#1|)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1905 (($ (-286 |#1|)) 23)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3153 (((-107) $) NIL)) (-1772 (((-3 (-286 |#1|) "failed") $) NIL)) (-3189 (((-286 |#1|) $) NIL)) (-1212 (($ $) 31)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-1893 (($ (-1 (-286 |#1|) (-286 |#1|)) $) NIL)) (-1191 (((-286 |#1|) $) NIL)) (-3105 (($ $) 30)) (-3985 (((-1056) $) NIL)) (-3593 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($ (-703)) NIL)) (-3151 (($ $) 32)) (-3688 (((-517) $) NIL)) (-2256 (((-787) $) 57) (($ (-517)) NIL) (($ (-286 |#1|)) NIL)) (-2720 (((-286 |#1|) $ $) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 25 T CONST)) (-2409 (($) 50 T CONST)) (-1547 (((-107) $ $) 28)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 24) (($ (-286 |#1|) $) 18)))
+(((-197 |#1| |#2|) (-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1191 ((-286 |#1|) $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 ((-286 |#1|) $ $)) (-15 -3220 ($ (-703))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -1893 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1905 ($ (-286 |#1|))) (-15 -3151 ($ $)))) (-13 (-961) (-779)) (-583 (-1073))) (T -197))
+((-1191 (*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3105 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))) (-2720 (*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))) (-1905 (*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))) (-3151 (*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))))
+(-13 (-561 (-286 |#1|)) (-952 (-286 |#1|)) (-10 -8 (-15 -1191 ((-286 |#1|) $)) (-15 -3105 ($ $)) (-15 -1212 ($ $)) (-15 -2720 ((-286 |#1|) $ $)) (-15 -3220 ($ (-703))) (-15 -3593 ((-107) $)) (-15 -3153 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -1893 ($ (-1 (-286 |#1|) (-286 |#1|)) $)) (-15 -1905 ($ (-286 |#1|))) (-15 -3151 ($ $))))
+((-3069 (((-107) (-1056)) 22)) (-3268 (((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107)) 32)) (-1832 (((-3 (-107) "failed") (-1069 |#2|) (-772 |#2|) (-772 |#2|) (-107)) 73) (((-3 (-107) "failed") (-874 |#1|) (-1073) (-772 |#2|) (-772 |#2|) (-107)) 74)))
+(((-198 |#1| |#2|) (-10 -7 (-15 -3069 ((-107) (-1056))) (-15 -3268 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-874 |#1|) (-1073) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-1069 |#2|) (-772 |#2|) (-772 |#2|) (-107)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-29 |#1|))) (T -198))
+((-1832 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1069 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1094) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))) (-1832 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1073)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1094) (-29 *6))) (-5 *1 (-198 *6 *7)))) (-3268 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1094) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1094) (-29 *4))))))
+(-10 -7 (-15 -3069 ((-107) (-1056))) (-15 -3268 ((-3 (-772 |#2|) "failed") (-556 |#2|) |#2| (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-874 |#1|) (-1073) (-772 |#2|) (-772 |#2|) (-107))) (-15 -1832 ((-3 (-107) "failed") (-1069 |#2|) (-772 |#2|) (-772 |#2|) (-107))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 89)) (-2668 (((-517) $) 99)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-1974 (($ $) NIL)) (-1865 (($ $) 77)) (-1721 (($ $) 65)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) 56)) (-1707 (((-107) $ $) NIL)) (-1839 (($ $) 75)) (-1701 (($ $) 63)) (-3709 (((-517) $) 116)) (-1887 (($ $) 80)) (-1743 (($ $) 67)) (-3092 (($) NIL T CONST)) (-2531 (($ $) NIL)) (-1772 (((-3 (-517) "failed") $) 115) (((-3 (-377 (-517)) "failed") $) 112)) (-3189 (((-517) $) 113) (((-377 (-517)) $) 110)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 92)) (-3934 (((-377 (-517)) $ (-703)) 108) (((-377 (-517)) $ (-703) (-703)) 107)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3554 (((-843)) 29) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-3556 (((-107) $) NIL)) (-2645 (($) 39)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-3972 (((-517) $) 35)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-1506 (($ $) NIL)) (-2475 (((-107) $) 88)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) 53) (($) 34 (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3099 (($ $ $) 52) (($) 33 (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3371 (((-517) $) 27)) (-2365 (($ $) 30)) (-3720 (($ $) 57)) (-1867 (($ $) 62)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2138 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-3206 (((-1021) $) NIL) (((-517) $) 90)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL)) (-2597 (($ $) NIL)) (-4005 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) 100)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2077 (((-517) $) 28)) (-3963 (($) 38)) (-2624 (($ $) 61)) (-3146 (((-703) $) NIL)) (-1826 (((-1056) (-1056)) 8)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-3127 (($ $ (-703)) NIL) (($ $) 93)) (-2646 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-1898 (($ $) 78)) (-1754 (($ $) 68)) (-1876 (($ $) 79)) (-1732 (($ $) 66)) (-1853 (($ $) 76)) (-1711 (($ $) 64)) (-3645 (((-349) $) 104) (((-199) $) 101) (((-814 (-349)) $) NIL) (((-493) $) 45)) (-2256 (((-787) $) 42) (($ (-517)) 60) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 60) (($ (-377 (-517))) NIL)) (-2961 (((-703)) NIL)) (-1949 (($ $) NIL)) (-1398 (((-843)) 32) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-2372 (((-843)) 25)) (-3707 (($ $) 83)) (-1788 (($ $) 71) (($ $ $) 109)) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) 81)) (-1765 (($ $) 69)) (-3731 (($ $) 86)) (-1814 (($ $) 74)) (-1492 (($ $) 84)) (-1827 (($ $) 72)) (-3719 (($ $) 85)) (-1802 (($ $) 73)) (-3695 (($ $) 82)) (-1777 (($ $) 70)) (-3710 (($ $) 117)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 36 T CONST)) (-2409 (($) 37 T CONST)) (-2482 (((-1056) $) 19) (((-1056) $ (-107)) 21) (((-1158) (-754) $) 22) (((-1158) (-754) $ (-107)) 23)) (-1564 (($ $) 96)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-2350 (($ $ $) 98)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 54)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 46)) (-1667 (($ $ $) 87) (($ $ (-517)) 55)) (-1654 (($ $) 47) (($ $ $) 49)) (-1642 (($ $ $) 48)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 58) (($ $ (-377 (-517))) 128) (($ $ $) 59)) (* (($ (-843) $) 31) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 50) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-199) (-13 (-374) (-207) (-760) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -3963 ($)) (-15 -3206 ((-517) $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -1788 ($ $ $)) (-15 -1564 ($ $)) (-15 -2350 ($ $ $)) (-15 -1826 ((-1056) (-1056))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703)))))) (T -199))
+((** (*1 *1 *1 *1) (-5 *1 (-199))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-3963 (*1 *1) (-5 *1 (-199))) (-3206 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) (-2365 (*1 *1 *1) (-5 *1 (-199))) (-3720 (*1 *1 *1) (-5 *1 (-199))) (-1788 (*1 *1 *1 *1) (-5 *1 (-199))) (-1564 (*1 *1 *1) (-5 *1 (-199))) (-2350 (*1 *1 *1 *1) (-5 *1 (-199))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-199)))) (-3934 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) (-3934 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))))
+(-13 (-374) (-207) (-760) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -3963 ($)) (-15 -3206 ((-517) $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -1788 ($ $ $)) (-15 -1564 ($ $)) (-15 -2350 ($ $ $)) (-15 -1826 ((-1056) (-1056))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703)))))
+((-1264 (((-153 (-199)) (-703) (-153 (-199))) 11) (((-199) (-703) (-199)) 12)) (-2432 (((-153 (-199)) (-153 (-199))) 13) (((-199) (-199)) 14)) (-1221 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 19) (((-199) (-199) (-199)) 22)) (-2150 (((-153 (-199)) (-153 (-199))) 25) (((-199) (-199)) 24)) (-2570 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 43) (((-199) (-199) (-199)) 35)) (-2480 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 48) (((-199) (-199) (-199)) 45)) (-3233 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 15) (((-199) (-199) (-199)) 16)) (-1324 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 17) (((-199) (-199) (-199)) 18)) (-3312 (((-153 (-199)) (-153 (-199))) 60) (((-199) (-199)) 59)) (-1730 (((-199) (-199)) 54) (((-153 (-199)) (-153 (-199))) 58)) (-1564 (((-153 (-199)) (-153 (-199))) 7) (((-199) (-199)) 9)) (-2350 (((-153 (-199)) (-153 (-199)) (-153 (-199))) 30) (((-199) (-199) (-199)) 26)))
+(((-200) (-10 -7 (-15 -1564 ((-199) (-199))) (-15 -1564 ((-153 (-199)) (-153 (-199)))) (-15 -2350 ((-199) (-199) (-199))) (-15 -2350 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2432 ((-199) (-199))) (-15 -2432 ((-153 (-199)) (-153 (-199)))) (-15 -2150 ((-199) (-199))) (-15 -2150 ((-153 (-199)) (-153 (-199)))) (-15 -1264 ((-199) (-703) (-199))) (-15 -1264 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -3233 ((-199) (-199) (-199))) (-15 -3233 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2570 ((-199) (-199) (-199))) (-15 -2570 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1324 ((-199) (-199) (-199))) (-15 -1324 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2480 ((-199) (-199) (-199))) (-15 -2480 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1730 ((-153 (-199)) (-153 (-199)))) (-15 -1730 ((-199) (-199))) (-15 -3312 ((-199) (-199))) (-15 -3312 ((-153 (-199)) (-153 (-199)))) (-15 -1221 ((-199) (-199) (-199))) (-15 -1221 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))) (T -200))
+((-1221 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1221 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3312 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1730 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2480 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2480 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1324 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1324 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2570 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2570 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-3233 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-3233 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1264 (*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) (-1264 (*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2150 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2432 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-2350 (*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-2350 (*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))))
+(-10 -7 (-15 -1564 ((-199) (-199))) (-15 -1564 ((-153 (-199)) (-153 (-199)))) (-15 -2350 ((-199) (-199) (-199))) (-15 -2350 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2432 ((-199) (-199))) (-15 -2432 ((-153 (-199)) (-153 (-199)))) (-15 -2150 ((-199) (-199))) (-15 -2150 ((-153 (-199)) (-153 (-199)))) (-15 -1264 ((-199) (-703) (-199))) (-15 -1264 ((-153 (-199)) (-703) (-153 (-199)))) (-15 -3233 ((-199) (-199) (-199))) (-15 -3233 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2570 ((-199) (-199) (-199))) (-15 -2570 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1324 ((-199) (-199) (-199))) (-15 -1324 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -2480 ((-199) (-199) (-199))) (-15 -2480 ((-153 (-199)) (-153 (-199)) (-153 (-199)))) (-15 -1730 ((-153 (-199)) (-153 (-199)))) (-15 -1730 ((-199) (-199))) (-15 -3312 ((-199) (-199))) (-15 -3312 ((-153 (-199)) (-153 (-199)))) (-15 -1221 ((-199) (-199) (-199))) (-15 -1221 ((-153 (-199)) (-153 (-199)) (-153 (-199)))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) NIL)) (-1231 (($ $ $) NIL)) (-2033 (($ (-1153 |#1|)) NIL) (($ $) NIL)) (-2444 (($ |#1| |#1| |#1|) 32)) (-2818 (((-107) $) NIL)) (-3666 (($ $ (-517) (-517)) NIL)) (-2778 (($ $ (-517) (-517)) NIL)) (-3671 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4008 (($ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3565 (($ $ (-517) (-517) $) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-4087 (($ $ (-517) (-1153 |#1|)) NIL)) (-3739 (($ $ (-517) (-1153 |#1|)) NIL)) (-1278 (($ |#1| |#1| |#1|) 31)) (-3487 (($ (-703) |#1|) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) NIL (|has| |#1| (-278)))) (-1939 (((-1153 |#1|) $ (-517)) NIL)) (-1356 (($ |#1|) 30)) (-1370 (($ |#1|) 29)) (-1428 (($ |#1|) 28)) (-2261 (((-703) $) NIL (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1948 (((-703) $) NIL (|has| |#1| (-509)))) (-3706 (((-583 (-1153 |#1|)) $) NIL (|has| |#1| (-509)))) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#1| $) NIL (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#1|))) 10)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3035 (((-583 (-583 |#1|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) NIL (|has| |#1| (-333)))) (-1438 (($) 11)) (-2520 (($ $ $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-1879 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1516 (((-107) $) NIL)) (-3057 ((|#1| $) NIL (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-1153 |#1|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1153 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1153 |#1|) $ (-1153 |#1|)) 14) (((-1153 |#1|) (-1153 |#1|) $) NIL) (((-865 |#1|) $ (-865 |#1|)) 20)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-201 |#1|) (-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -1438 ($)) (-15 -1428 ($ |#1|)) (-15 -1370 ($ |#1|)) (-15 -1356 ($ |#1|)) (-15 -1278 ($ |#1| |#1| |#1|)) (-15 -2444 ($ |#1| |#1| |#1|)))) (-13 (-333) (-1094))) (T -201))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094))) (-5 *1 (-201 *3)))) (-1438 (*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1428 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1370 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1356 (*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-1278 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) (-2444 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
+(-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 * ((-865 |#1|) $ (-865 |#1|))) (-15 -1438 ($)) (-15 -1428 ($ |#1|)) (-15 -1370 ($ |#1|)) (-15 -1356 ($ |#1|)) (-15 -1278 ($ |#1| |#1| |#1|)) (-15 -2444 ($ |#1| |#1| |#1|))))
+((-2337 (($ (-1 (-107) |#2|) $) 17)) (-3212 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 25)) (-3089 (($) NIL) (($ (-583 |#2|)) 11)) (-1547 (((-107) $ $) 23)))
+(((-202 |#1| |#2|) (-10 -8 (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-203 |#2|) (-1003)) (T -202))
+NIL
+(-10 -8 (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -1547 ((-107) |#1| |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-203 |#1|) (-1184) (-1003)) (T -203))
+NIL
+(-13 (-209 |t#1|))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-3127 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) 11) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) 19) (($ $ (-703)) NIL) (($ $) 16)) (-2731 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-703)) 14) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)))
+(((-204 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1073))) (-15 -2731 (|#1| |#1| (-583 (-1073)))) (-15 -2731 (|#1| |#1| (-1073) (-703))) (-15 -2731 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|)))) (-205 |#2|) (-961)) (T -204))
+NIL
+(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1073))) (-15 -2731 (|#1| |#1| (-583 (-1073)))) (-15 -2731 (|#1| |#1| (-1073) (-703))) (-15 -2731 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2731 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-703)) 51) (($ $ (-583 (-1073)) (-583 (-703))) 44 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 43 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 42 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 41 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 39 (|has| |#1| (-207))) (($ $) 37 (|has| |#1| (-207)))) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-703)) 49) (($ $ (-583 (-1073)) (-583 (-703))) 48 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 47 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 46 (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 45 (|has| |#1| (-822 (-1073)))) (($ $ (-703)) 40 (|has| |#1| (-207))) (($ $) 38 (|has| |#1| (-207)))) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-205 |#1|) (-1184) (-961)) (T -205))
+((-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))))
+(-13 (-961) (-10 -8 (-15 -3127 ($ $ (-1 |t#1| |t#1|))) (-15 -3127 ($ $ (-1 |t#1| |t#1|) (-703))) (-15 -2731 ($ $ (-1 |t#1| |t#1|))) (-15 -2731 ($ $ (-1 |t#1| |t#1|) (-703))) (IF (|has| |t#1| (-207)) (-6 (-207)) |noBranch|) (IF (|has| |t#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-207) |has| |#1| (-207)) ((-585 $) . T) ((-659) . T) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-3127 (($ $) NIL) (($ $ (-703)) 10)) (-2731 (($ $) 8) (($ $ (-703)) 12)))
+(((-206 |#1|) (-10 -8 (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1|))) (-207)) (T -206))
+NIL
+(-10 -8 (-15 -2731 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-703))) (-15 -2731 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $) 38) (($ $ (-703)) 36)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 37) (($ $ (-703)) 35)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-207) (-1184)) (T -207))
+((-3127 (*1 *1 *1) (-4 *1 (-207))) (-2731 (*1 *1 *1) (-4 *1 (-207))) (-3127 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) (-2731 (*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))))
+(-13 (-961) (-10 -8 (-15 -3127 ($ $)) (-15 -2731 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2731 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-3089 (($) 12) (($ (-583 |#2|)) NIL)) (-2433 (($ $) 14)) (-2276 (($ (-583 |#2|)) 10)) (-2256 (((-787) $) 21)))
+(((-208 |#1| |#2|) (-10 -8 (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2256 ((-787) |#1|)) (-15 -2433 (|#1| |#1|))) (-209 |#2|) (-1003)) (T -208))
+NIL
+(-10 -8 (-15 -3089 (|#1| (-583 |#2|))) (-15 -3089 (|#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -2256 ((-787) |#1|)) (-15 -2433 (|#1| |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-209 |#1|) (-1184) (-1003)) (T -209))
+((-3089 (*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) (-3212 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) (-3212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) (-2337 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))))
+(-13 (-102 |t#1|) (-138 |t#1|) (-10 -8 (-15 -3089 ($)) (-15 -3089 ($ (-583 |t#1|))) (IF (|has| $ (-6 -4180)) (PROGN (-15 -3212 ($ |t#1| $)) (-15 -3212 ($ (-1 (-107) |t#1|) $)) (-15 -2337 ($ (-1 (-107) |t#1|) $))) |noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-3342 (((-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703))))) (-265 (-874 (-517)))) 25)))
+(((-210) (-10 -7 (-15 -3342 ((-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703))))) (-265 (-874 (-517))))))) (T -210))
+((-3342 (*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703)))))) (-5 *1 (-210)))))
+(-10 -7 (-15 -3342 ((-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703))))) (-265 (-874 (-517))))))
+((-1611 (((-703)) 51)) (-3355 (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) 49) (((-623 |#3|) (-623 $)) 41) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3141 (((-125)) 57)) (-3127 (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2256 (((-1153 |#3|) $) NIL) (($ |#3|) NIL) (((-787) $) NIL) (($ (-517)) 12) (($ (-377 (-517))) NIL)) (-2961 (((-703)) 15)) (-1667 (($ $ |#3|) 54)))
+(((-211 |#1| |#2| |#3|) (-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)) (-15 -2961 ((-703))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -1611 ((-703))) (-15 -1667 (|#1| |#1| |#3|)) (-15 -3141 ((-125))) (-15 -2256 ((-1153 |#3|) |#1|))) (-212 |#2| |#3|) (-703) (-1108)) (T -211))
+((-3141 (*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1108)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-1611 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) (-2961 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))))
+(-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)) (-15 -2961 ((-703))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -1611 ((-703))) (-15 -1667 (|#1| |#1| |#3|)) (-15 -3141 ((-125))) (-15 -2256 ((-1153 |#3|) |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-2814 (((-107) $) 72 (|has| |#2| (-123)))) (-2847 (($ (-843)) 127 (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-1640 (($ $ $) 123 (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) 74 (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) 8)) (-1611 (((-703)) 109 (|has| |#2| (-338)))) (-3709 (((-517) $) 121 (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) 52 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-1772 (((-3 (-517) "failed") $) 67 (-4035 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) 64 (-4035 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1003)))) (-3189 (((-517) $) 68 (-4035 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) 65 (-4035 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 60 (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) 108 (-4035 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 107 (-4035 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 106 (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) 105 (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) 99 (|has| |#2| (-961)))) (-3209 (($) 112 (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) 51)) (-3556 (((-107) $) 119 (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) 30 (|has| $ (-6 -4180)))) (-3848 (((-107) $) 102 (|has| |#2| (-961)))) (-2475 (((-107) $) 120 (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 118 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-2560 (((-583 |#2|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 117 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1433 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) 35)) (-1549 (((-843) $) 111 (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3448 (($ (-843)) 110 (|has| |#2| (-338)))) (-3206 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1647 ((|#2| $) 42 (|has| (-517) (-779)))) (-2565 (($ $ |#2|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ (-517) |#2|) 50) ((|#2| $ (-517)) 49)) (-3501 ((|#2| $ $) 126 (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) 128)) (-3141 (((-125)) 125 (|has| |#2| (-333)))) (-3127 (($ $) 92 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 90 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) 88 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) 87 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) 86 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) 85 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 78 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4180))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-1153 |#2|) $) 129) (((-787) $) 20 (|has| |#2| (-1003))) (($ (-517)) 66 (-3807 (-4035 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) 63 (-4035 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 62 (|has| |#2| (-1003)))) (-2961 (((-703)) 104 (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4180)))) (-3710 (($ $) 122 (|has| |#2| (-777)))) (-2207 (($ $ (-703)) 100 (|has| |#2| (-961))) (($ $ (-843)) 96 (|has| |#2| (-961)))) (-2396 (($) 71 (|has| |#2| (-123)) CONST)) (-2409 (($) 103 (|has| |#2| (-961)) CONST)) (-2731 (($ $) 91 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) 89 (-4035 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) 84 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) 83 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) 82 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) 81 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) 80 (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-961)))) (-1606 (((-107) $ $) 115 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1583 (((-107) $ $) 114 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1547 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-1595 (((-107) $ $) 116 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1572 (((-107) $ $) 113 (-3807 (|has| |#2| (-777)) (|has| |#2| (-725))))) (-1667 (($ $ |#2|) 124 (|has| |#2| (-333)))) (-1654 (($ $ $) 94 (|has| |#2| (-961))) (($ $) 93 (|has| |#2| (-961)))) (-1642 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-703)) 101 (|has| |#2| (-961))) (($ $ (-843)) 97 (|has| |#2| (-961)))) (* (($ $ $) 98 (|has| |#2| (-961))) (($ (-517) $) 95 (|has| |#2| (-961))) (($ $ |#2|) 76 (|has| |#2| (-659))) (($ |#2| $) 75 (|has| |#2| (-659))) (($ (-703) $) 73 (|has| |#2| (-123))) (($ (-843) $) 70 (|has| |#2| (-25)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-212 |#1| |#2|) (-1184) (-703) (-1108)) (T -212))
+((-3794 (*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1108)) (-4 *1 (-212 *3 *4)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1108)))) (-3501 (*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))))
+(-13 (-550 (-517) |t#2|) (-557 (-1153 |t#2|)) (-10 -8 (-6 -4180) (-15 -3794 ($ (-1153 |t#2|))) (IF (|has| |t#2| (-1003)) (-6 (-381 |t#2|)) |noBranch|) (IF (|has| |t#2| (-961)) (PROGN (-6 (-106 |t#2| |t#2|)) (-6 (-205 |t#2|)) (-6 (-347 |t#2|)) (-15 -2847 ($ (-843))) (-15 -3501 (|t#2| $ $))) |noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |noBranch|) (IF (|has| |t#2| (-123)) (-6 (-123)) |noBranch|) (IF (|has| |t#2| (-659)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |noBranch|) (IF (|has| |t#2| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#2| (-156)) (PROGN (-6 (-37 |t#2|)) (-6 (-156))) |noBranch|) (IF (|has| |t#2| (-6 -4177)) (-6 -4177) |noBranch|) (IF (|has| |t#2| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#2| (-725)) (-6 (-725)) |noBranch|) (IF (|has| |t#2| (-333)) (-6 (-1160 |t#2|)) |noBranch|)))
+(((-21) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-23) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-25) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) -3807 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-106 |#2| |#2|) -3807 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-106 $ $) |has| |#2| (-156)) ((-123) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123))) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-557 (-787))) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-557 (-1153 |#2|)) . T) ((-156) |has| |#2| (-156)) ((-205 |#2|) |has| |#2| (-961)) ((-207) -12 (|has| |#2| (-207)) (|has| |#2| (-961))) ((-258 (-517) |#2|) . T) ((-260 (-517) |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-338) |has| |#2| (-338)) ((-347 |#2|) |has| |#2| (-961)) ((-381 |#2|) |has| |#2| (-1003)) ((-456 |#2|) . T) ((-550 (-517) |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) -3807 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-585 $) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-579 (-517)) -12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961))) ((-579 |#2|) |has| |#2| (-961)) ((-650 |#2|) -3807 (|has| |#2| (-333)) (|has| |#2| (-156))) ((-659) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-723) |has| |#2| (-777)) ((-724) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-725) |has| |#2| (-725)) ((-726) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-727) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-777) |has| |#2| (-777)) ((-779) -3807 (|has| |#2| (-777)) (|has| |#2| (-725))) ((-822 (-1073)) -12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961))) ((-952 (-377 (-517))) -12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003))) ((-952 (-517)) -12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) ((-952 |#2|) |has| |#2| (-1003)) ((-967 |#2|) -3807 (|has| |#2| (-961)) (|has| |#2| (-333)) (|has| |#2| (-156))) ((-967 $) |has| |#2| (-156)) ((-961) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-968) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1015) -3807 (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-156))) ((-1003) -3807 (|has| |#2| (-1003)) (|has| |#2| (-961)) (|has| |#2| (-777)) (|has| |#2| (-725)) (|has| |#2| (-338)) (|has| |#2| (-333)) (|has| |#2| (-156)) (|has| |#2| (-123)) (|has| |#2| (-25))) ((-1108) . T) ((-1160 |#2|) |has| |#2| (-333)))
+((-3905 (((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 21)) (-3225 ((|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|) 23)) (-1893 (((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)) 18)))
+(((-213 |#1| |#2| |#3|) (-10 -7 (-15 -3905 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3225 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1893 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|)))) (-703) (-1108) (-1108)) (T -213))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-213 *5 *6 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1108)) (-4 *5 (-1108)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))))
+(-10 -7 (-15 -3905 ((-214 |#1| |#3|) (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -3225 (|#3| (-1 |#3| |#2| |#3|) (-214 |#1| |#2|) |#3|)) (-15 -1893 ((-214 |#1| |#3|) (-1 |#3| |#2|) (-214 |#1| |#2|))))
+((-2750 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2814 (((-107) $) NIL (|has| |#2| (-123)))) (-2847 (($ (-843)) 56 (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) 60 (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) 48 (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) 17)) (-1611 (((-703)) NIL (|has| |#2| (-338)))) (-3709 (((-517) $) NIL (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) 27 (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) 53 (|has| |#2| (-961)))) (-3209 (($) NIL (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) 51)) (-3556 (((-107) $) NIL (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) 15 (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#2| (-961)))) (-2475 (((-107) $) NIL (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 20 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 (((-517) $) 50 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) 41)) (-1549 (((-843) $) NIL (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#2| (-338)))) (-3206 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1647 ((|#2| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) 24 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) 21)) (-3501 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) 18)) (-3141 (((-125)) NIL (|has| |#2| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#2|) $) 10) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) 13 (|has| |#2| (-1003)))) (-2961 (((-703)) NIL (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#2| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2396 (($) 35 (|has| |#2| (-123)) CONST)) (-2409 (($) 38 (|has| |#2| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1547 (((-107) $ $) 26 (|has| |#2| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 58 (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1642 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) 49 (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) 42 (|has| |#2| (-659))) (($ |#2| $) 43 (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-214 |#1| |#2|) (-212 |#1| |#2|) (-703) (-1108)) (T -214))
+NIL
+(-212 |#1| |#2|)
+((-2632 (((-517) (-583 (-1056))) 24) (((-517) (-1056)) 19)) (-1678 (((-1158) (-583 (-1056))) 29) (((-1158) (-1056)) 28)) (-2124 (((-1056)) 14)) (-1382 (((-1056) (-517) (-1056)) 16)) (-2986 (((-583 (-1056)) (-583 (-1056)) (-517) (-1056)) 25) (((-1056) (-1056) (-517) (-1056)) 23)) (-2012 (((-583 (-1056)) (-583 (-1056))) 13) (((-583 (-1056)) (-1056)) 11)))
+(((-215) (-10 -7 (-15 -2012 ((-583 (-1056)) (-1056))) (-15 -2012 ((-583 (-1056)) (-583 (-1056)))) (-15 -2124 ((-1056))) (-15 -1382 ((-1056) (-517) (-1056))) (-15 -2986 ((-1056) (-1056) (-517) (-1056))) (-15 -2986 ((-583 (-1056)) (-583 (-1056)) (-517) (-1056))) (-15 -1678 ((-1158) (-1056))) (-15 -1678 ((-1158) (-583 (-1056)))) (-15 -2632 ((-517) (-1056))) (-15 -2632 ((-517) (-583 (-1056)))))) (T -215))
+((-2632 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-517)) (-5 *1 (-215)))) (-2632 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-215)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1158)) (-5 *1 (-215)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-215)))) (-2986 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1056))) (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *1 (-215)))) (-2986 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))) (-1382 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))) (-2124 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-215)))) (-2012 (*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)))) (-2012 (*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)) (-5 *3 (-1056)))))
+(-10 -7 (-15 -2012 ((-583 (-1056)) (-1056))) (-15 -2012 ((-583 (-1056)) (-583 (-1056)))) (-15 -2124 ((-1056))) (-15 -1382 ((-1056) (-517) (-1056))) (-15 -2986 ((-1056) (-1056) (-517) (-1056))) (-15 -2986 ((-583 (-1056)) (-583 (-1056)) (-517) (-1056))) (-15 -1678 ((-1158) (-1056))) (-15 -1678 ((-1158) (-583 (-1056)))) (-15 -2632 ((-517) (-1056))) (-15 -2632 ((-517) (-583 (-1056)))))
+((-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) 25) (($ $ (-377 (-517))) NIL)))
+(((-216 |#1|) (-10 -8 (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2207 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-217)) (T -216))
+NIL
+(-10 -8 (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-703))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2207 (|#1| |#1| (-843))) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 39)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 44)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 40)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 41)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 43) (($ $ (-377 (-517))) 42)))
+(((-217) (-1184)) (T -217))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) (-4118 (*1 *1 *1) (-4 *1 (-217))))
+(-13 (-262) (-37 (-377 (-517))) (-10 -8 (-15 ** ($ $ (-517))) (-15 -2207 ($ $ (-517))) (-15 -4118 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-262) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-659) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2779 (($ $) 57)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-1254 (($ $ $) 53 (|has| $ (-6 -4181)))) (-3748 (($ $ $) 52 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-2493 (($ $) 56)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3098 (($ $) 55)) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 59)) (-3059 (($ $) 58)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2568 (($ $ $) 54 (|has| $ (-6 -4181)))) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-218 |#1|) (-1184) (-1108)) (T -218))
+((-2068 (*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-3059 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-3098 (*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-1254 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))) (-3748 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
+(-13 (-926 |t#1|) (-10 -8 (-15 -2068 (|t#1| $)) (-15 -3059 ($ $)) (-15 -2779 ($ $)) (-15 -2493 ($ $)) (-15 -3098 ($ $)) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2568 ($ $ $)) (-15 -1254 ($ $ $)) (-15 -3748 ($ $ $))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) 10 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "rest" $) NIL (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1660 (($ $) NIL) (($ $ (-703)) NIL)) (-3483 (($ $) NIL (|has| |#1| (-1003)))) (-1679 (($ $) 7 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3237 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1529 (($ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-703) $ "count") 16)) (-2459 (((-517) $ $) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3891 (($ (-583 |#1|)) 22)) (-2655 (((-107) $) NIL)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2568 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2452 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2256 (($ (-583 |#1|)) 17) (((-583 |#1|) $) 18) (((-787) $) 21 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 14 (|has| $ (-6 -4180)))))
+(((-219 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -2256 ($ (-583 |#1|))) (-15 -2256 ((-583 |#1|) $)) (-15 -3891 ($ (-583 |#1|))) (-15 -1449 ($ $ "unique")) (-15 -1449 ($ $ "sort")) (-15 -1449 ((-703) $ "count")))) (-779)) (T -219))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))))
+(-13 (-603 |#1|) (-10 -8 (-15 -2256 ($ (-583 |#1|))) (-15 -2256 ((-583 |#1|) $)) (-15 -3891 ($ (-583 |#1|))) (-15 -1449 ($ $ "unique")) (-15 -1449 ($ $ "sort")) (-15 -1449 ((-703) $ "count"))))
+((-2063 (((-3 (-703) "failed") |#1| |#1| (-703)) 26)))
+(((-220 |#1|) (-10 -7 (-15 -2063 ((-3 (-703) "failed") |#1| |#1| (-703)))) (-13 (-659) (-338) (-10 -7 (-15 ** (|#1| |#1| (-517)))))) (T -220))
+((-2063 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
+(-10 -7 (-15 -2063 ((-3 (-703) "failed") |#1| |#1| (-703))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-789 |#1|)) $) NIL)) (-2352 (((-1069 $) $ (-789 |#1|)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3924 (($ $ (-583 (-517))) NIL)) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-214 (-2296 |#1|) (-703)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) NIL) (($ (-1069 $) (-789 |#1|)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-214 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 (((-214 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-214 (-2296 |#1|) (-703)) (-214 (-2296 |#1|) (-703))) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 (((-214 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-214 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-221 |#1| |#2|) (-13 (-871 |#2| (-214 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) (-583 (-1073)) (-961)) (T -221))
+((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961)))))
+(-13 (-871 |#2| (-214 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517))))))
+((-2256 (((-787) $) 7)))
+(((-222) (-557 (-787))) (T -222))
+NIL
+(-557 (-787))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2847 (($ (-843)) NIL (|has| |#4| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#4| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#4| (-338)))) (-3709 (((-517) $) NIL (|has| |#4| (-777)))) (-2411 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-3189 ((|#4| $) NIL (|has| |#4| (-1003))) (((-517) $) NIL (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-3355 (((-2 (|:| -2790 (-623 |#4|)) (|:| |vec| (-1153 |#4|))) (-623 $) (-1153 $)) NIL (|has| |#4| (-961))) (((-623 |#4|) (-623 $)) NIL (|has| |#4| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#4| (-579 (-517))) (|has| |#4| (-961))))) (-3621 (((-3 $ "failed") $) NIL (|has| |#4| (-961)))) (-3209 (($) NIL (|has| |#4| (-338)))) (-1445 ((|#4| $ (-517) |#4|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#4| $ (-517)) NIL)) (-3556 (((-107) $) NIL (|has| |#4| (-777)))) (-1536 (((-583 |#4|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#4| (-961)))) (-2475 (((-107) $) NIL (|has| |#4| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-2560 (((-583 |#4|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1433 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#4| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#4| (-338)))) (-3206 (((-1021) $) NIL)) (-1647 ((|#4| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#4|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1941 (((-583 |#4|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#4| $ (-517) |#4|) NIL) ((|#4| $ (-517)) 12)) (-3501 ((|#4| $ $) NIL (|has| |#4| (-961)))) (-3794 (($ (-1153 |#4|)) NIL)) (-3141 (((-125)) NIL (|has| |#4| (-333)))) (-3127 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-3217 (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#4|) $) NIL) (((-787) $) NIL) (($ |#4|) NIL (|has| |#4| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#4| (-952 (-517))) (|has| |#4| (-1003))) (|has| |#4| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#4| (-952 (-377 (-517)))) (|has| |#4| (-1003))))) (-2961 (((-703)) NIL (|has| |#4| (-961)))) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#4| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL (|has| |#4| (-961)) CONST)) (-2731 (($ $ (-1 |#4| |#4|) (-703)) NIL (|has| |#4| (-961))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#4| (-822 (-1073))) (|has| |#4| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961)))) (($ $) NIL (-12 (|has| |#4| (-207)) (|has| |#4| (-961))))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1572 (((-107) $ $) NIL (-3807 (|has| |#4| (-725)) (|has| |#4| (-777))))) (-1667 (($ $ |#4|) NIL (|has| |#4| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#4| (-961))) (($ $ (-843)) NIL (|has| |#4| (-961)))) (* (($ |#2| $) 14) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-659))) (($ |#4| $) NIL (|has| |#4| (-659))) (($ $ $) NIL (|has| |#4| (-961)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-223 |#1| |#2| |#3| |#4|) (-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|)) (-843) (-961) (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-585 |#2|)) (T -223))
+NIL
+(-13 (-212 |#1| |#4|) (-585 |#2|) (-585 |#3|))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2847 (($ (-843)) NIL (|has| |#3| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#3| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#3| (-338)))) (-3709 (((-517) $) NIL (|has| |#3| (-777)))) (-2411 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003))) (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-3189 ((|#3| $) NIL (|has| |#3| (-1003))) (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-3355 (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961))))) (-3621 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-3209 (($) NIL (|has| |#3| (-338)))) (-1445 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#3| $ (-517)) NIL)) (-3556 (((-107) $) NIL (|has| |#3| (-777)))) (-1536 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#3| (-961)))) (-2475 (((-107) $) NIL (|has| |#3| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2560 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1433 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#3| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#3| (-338)))) (-3206 (((-1021) $) NIL)) (-1647 ((|#3| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#3|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-1941 (((-583 |#3|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) 11)) (-3501 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-3794 (($ (-1153 |#3|)) NIL)) (-3141 (((-125)) NIL (|has| |#3| (-333)))) (-3127 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-3217 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#3|) $) NIL) (((-787) $) NIL) (($ |#3|) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003))))) (-2961 (((-703)) NIL (|has| |#3| (-961)))) (-3675 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#3| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL (|has| |#3| (-961)) CONST)) (-2731 (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961))))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1667 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ |#2| $) 13) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ $ $) NIL (|has| |#3| (-961)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-224 |#1| |#2| |#3|) (-13 (-212 |#1| |#3|) (-585 |#2|)) (-703) (-961) (-585 |#2|)) (T -224))
+NIL
+(-13 (-212 |#1| |#3|) (-585 |#2|))
+((-3469 (((-583 (-703)) $) 47) (((-583 (-703)) $ |#3|) 50)) (-2932 (((-703) $) 49) (((-703) $ |#3|) 52)) (-3960 (($ $) 65)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3972 (((-703) $ |#3|) 39) (((-703) $) 36)) (-2656 (((-1 $ (-703)) |#3|) 15) (((-1 $ (-703)) $) 77)) (-2133 ((|#4| $) 58)) (-2982 (((-107) $) 56)) (-2604 (($ $) 64)) (-2051 (($ $ (-583 (-265 $))) 96) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-583 |#3|) (-583 |#2|)) 84)) (-3127 (($ $ |#4|) NIL) (($ $ (-583 |#4|)) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) NIL) (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1890 (((-583 |#3|) $) 75)) (-3688 ((|#5| $) NIL) (((-703) $ |#4|) NIL) (((-583 (-703)) $ (-583 |#4|)) NIL) (((-703) $ |#3|) 44)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-377 (-517))) NIL) (($ $) NIL)))
+(((-225 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#3| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#3| |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2133 (|#4| |#1|)) (-15 -2982 ((-107) |#1|)) (-15 -2932 ((-703) |#1| |#3|)) (-15 -3469 ((-583 (-703)) |#1| |#3|)) (-15 -2932 ((-703) |#1|)) (-15 -3469 ((-583 (-703)) |#1|)) (-15 -3688 ((-703) |#1| |#3|)) (-15 -3972 ((-703) |#1|)) (-15 -3972 ((-703) |#1| |#3|)) (-15 -1890 ((-583 |#3|) |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#3|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3688 ((-703) |#1| |#4|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 (|#5| |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3127 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#4| (-703))) (-15 -3127 (|#1| |#1| (-583 |#4|))) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-226 |#2| |#3| |#4| |#5|) (-961) (-779) (-239 |#3|) (-725)) (T -225))
+NIL
+(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#3| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#3|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#3| |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#1|)) (-15 -3960 (|#1| |#1|)) (-15 -2604 (|#1| |#1|)) (-15 -2133 (|#4| |#1|)) (-15 -2982 ((-107) |#1|)) (-15 -2932 ((-703) |#1| |#3|)) (-15 -3469 ((-583 (-703)) |#1| |#3|)) (-15 -2932 ((-703) |#1|)) (-15 -3469 ((-583 (-703)) |#1|)) (-15 -3688 ((-703) |#1| |#3|)) (-15 -3972 ((-703) |#1|)) (-15 -3972 ((-703) |#1| |#3|)) (-15 -1890 ((-583 |#3|) |#1|)) (-15 -2656 ((-1 |#1| (-703)) |#3|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 |#4|))) (-15 -3688 ((-703) |#1| |#4|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 (|#5| |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3127 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#4| (-703))) (-15 -3127 (|#1| |#1| (-583 |#4|))) (-15 -3127 (|#1| |#1| |#4|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3469 (((-583 (-703)) $) 214) (((-583 (-703)) $ |#2|) 212)) (-2932 (((-703) $) 213) (((-703) $ |#2|) 211)) (-1364 (((-583 |#3|) $) 110)) (-2352 (((-1069 $) $ |#3|) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-3960 (($ $) 207)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) ((|#2| $) 220)) (-3388 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1212 (($ $) 154)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-1436 (($ $ |#1| |#4| $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ |#2|) 217) (((-703) $) 216)) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1350 (($ (-1069 |#1|) |#3|) 117) (($ (-1069 $) |#3|) 116)) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| |#4|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 120)) (-2349 ((|#4| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 |#4| |#4|) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-2656 (((-1 $ (-703)) |#2|) 219) (((-1 $ (-703)) $) 206 (|has| |#1| (-207)))) (-1409 (((-3 |#3| "failed") $) 123)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148)) (-2133 ((|#3| $) 209)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3985 (((-1056) $) 9)) (-2982 (((-107) $) 210)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) 113)) (-2604 (($ $) 208)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) 204 (|has| |#1| (-207))) (($ $ |#2| |#1|) 203 (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) 202 (|has| |#1| (-207)))) (-3010 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-3127 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39) (($ $) 238 (|has| |#1| (-207))) (($ $ (-703)) 236 (|has| |#1| (-207))) (($ $ (-1073)) 234 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 233 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 232 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 231 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-1890 (((-583 |#2|) $) 218)) (-3688 ((|#4| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129) (((-703) $ |#2|) 215)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ |#4|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35) (($ $) 237 (|has| |#1| (-207))) (($ $ (-703)) 235 (|has| |#1| (-207))) (($ $ (-1073)) 230 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 229 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 228 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 227 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-226 |#1| |#2| |#3| |#4|) (-1184) (-961) (-779) (-239 |t#2|) (-725)) (T -226))
+((-2656 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))) (-3972 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3688 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) (-3469 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) (-2932 (*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) (-2982 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))) (-2604 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-3960 (*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))) (-2656 (*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))))
+(-13 (-871 |t#1| |t#4| |t#3|) (-205 |t#1|) (-952 |t#2|) (-10 -8 (-15 -2656 ((-1 $ (-703)) |t#2|)) (-15 -1890 ((-583 |t#2|) $)) (-15 -3972 ((-703) $ |t#2|)) (-15 -3972 ((-703) $)) (-15 -3688 ((-703) $ |t#2|)) (-15 -3469 ((-583 (-703)) $)) (-15 -2932 ((-703) $)) (-15 -3469 ((-583 (-703)) $ |t#2|)) (-15 -2932 ((-703) $ |t#2|)) (-15 -2982 ((-107) $)) (-15 -2133 (|t#3| $)) (-15 -2604 ($ $)) (-15 -3960 ($ $)) (IF (|has| |t#1| (-207)) (PROGN (-6 (-478 |t#2| |t#1|)) (-6 (-478 |t#2| $)) (-6 (-280 $)) (-15 -2656 ((-1 $ (-703)) $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#4|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#2| |#1|) |has| |#1| (-207)) ((-478 |#2| $) |has| |#1| (-207)) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#4| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#2|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) |has| |#1| (-831)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3026 ((|#1| $) 54)) (-4139 ((|#1| $) 44)) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-3186 (($ $) 60)) (-4020 (($ $) 48)) (-2886 ((|#1| |#1| $) 46)) (-1200 ((|#1| $) 45)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-2195 (((-703) $) 61)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-2164 ((|#1| |#1| $) 52)) (-3968 ((|#1| |#1| $) 51)) (-1710 (($ |#1| $) 40)) (-1881 (((-703) $) 55)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2578 ((|#1| $) 62)) (-4018 ((|#1| $) 50)) (-3561 ((|#1| $) 49)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3838 ((|#1| |#1| $) 58)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3129 ((|#1| $) 59)) (-2277 (($) 57) (($ (-583 |#1|)) 56)) (-1694 (((-703) $) 43)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-2738 ((|#1| $) 53)) (-1222 (($ (-583 |#1|)) 42)) (-2028 ((|#1| $) 63)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-227 |#1|) (-1184) (-1108)) (T -227))
+((-2277 (*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-227 *3)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-2164 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-3968 (*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-4018 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-3561 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) (-4020 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
+(-13 (-1022 |t#1|) (-911 |t#1|) (-10 -8 (-15 -2277 ($)) (-15 -2277 ($ (-583 |t#1|))) (-15 -1881 ((-703) $)) (-15 -3026 (|t#1| $)) (-15 -2738 (|t#1| $)) (-15 -2164 (|t#1| |t#1| $)) (-15 -3968 (|t#1| |t#1| $)) (-15 -4018 (|t#1| $)) (-15 -3561 (|t#1| $)) (-15 -4020 ($ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-911 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1022 |#1|) . T) ((-1108) . T))
+((-3612 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 139)) (-1907 (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 160) (((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 158) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 163) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 159) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 150) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 149) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349))) 129) (((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 127) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349))) 128) (((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 125)) (-1863 (((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349))) 162) (((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236))) 161) (((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349))) 165) (((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 164) (((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349))) 152) (((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236))) 151) (((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349))) 135) (((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236))) 134) (((-1155) (-802 (-1 (-199) (-199))) (-998 (-349))) 133) (((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 132) (((-1154) (-800 (-1 (-199) (-199))) (-998 (-349))) 99) (((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236))) 98) (((-1154) (-1 (-199) (-199)) (-998 (-349))) 95) (((-1154) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236))) 94)))
+(((-228) (-10 -7 (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -3612 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -228))
+((-3612 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))))
+(-10 -7 (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-1 (-199) (-199)) (-998 (-349)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 (-1 (-199) (-199))) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-349)) (-998 (-349)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 (-1 (-199) (-199) (-199))) (-998 (-349)) (-998 (-349)))) (-15 -3612 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
+((-1863 (((-1154) (-265 |#2|) (-1073) (-1073) (-583 (-236))) 93)))
+(((-229 |#1| |#2|) (-10 -7 (-15 -1863 ((-1154) (-265 |#2|) (-1073) (-1073) (-583 (-236))))) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|)) (T -229))
+((-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1073)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1154)) (-5 *1 (-229 *6 *7)))))
+(-10 -7 (-15 -1863 ((-1154) (-265 |#2|) (-1073) (-1073) (-583 (-236)))))
+((-4136 (((-517) (-517)) 50)) (-3574 (((-517) (-517)) 51)) (-2419 (((-199) (-199)) 52)) (-2995 (((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199))) 49)) (-2523 (((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107)) 47)))
+(((-230) (-10 -7 (-15 -2523 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -2995 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -4136 ((-517) (-517))) (-15 -3574 ((-517) (-517))) (-15 -2419 ((-199) (-199))))) (T -230))
+((-2419 (*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))) (-3574 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))) (-2995 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1155)) (-5 *1 (-230)))) (-2523 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1155)) (-5 *1 (-230)))))
+(-10 -7 (-15 -2523 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)) (-107))) (-15 -2995 ((-1155) (-1 (-153 (-199)) (-153 (-199))) (-998 (-199)) (-998 (-199)))) (-15 -4136 ((-517) (-517))) (-15 -3574 ((-517) (-517))) (-15 -2419 ((-199) (-199))))
+((-2256 (((-996 (-349)) (-996 (-286 |#1|))) 16)))
+(((-231 |#1|) (-10 -7 (-15 -2256 ((-996 (-349)) (-996 (-286 |#1|))))) (-13 (-779) (-509) (-558 (-349)))) (T -231))
+((-2256 (*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4)))))
+(-10 -7 (-15 -2256 ((-996 (-349)) (-996 (-286 |#1|)))))
+((-1907 (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))) 69) (((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 68) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349))) 59) (((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 58) (((-1034 (-199)) (-802 |#1|) (-996 (-349))) 50) (((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236))) 49)) (-1863 (((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349))) 72) (((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236))) 71) (((-1155) |#1| (-996 (-349)) (-996 (-349))) 62) (((-1155) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236))) 61) (((-1155) (-802 |#1|) (-996 (-349))) 54) (((-1155) (-802 |#1|) (-996 (-349)) (-583 (-236))) 53) (((-1154) (-800 |#1|) (-996 (-349))) 41) (((-1154) (-800 |#1|) (-996 (-349)) (-583 (-236))) 40) (((-1154) |#1| (-996 (-349))) 33) (((-1154) |#1| (-996 (-349)) (-583 (-236))) 32)))
+(((-232 |#1|) (-10 -7 (-15 -1863 ((-1154) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) |#1| (-996 (-349)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349))))) (-13 (-558 (-493)) (-1003))) (T -232))
+((-1907 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) (-1907 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1907 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1863 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1863 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1907 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) (-1907 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *5)))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *6)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) (-1863 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))))
+(-10 -7 (-15 -1863 ((-1154) |#1| (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) |#1| (-996 (-349)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1154) (-800 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-802 |#1|) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-802 |#1|) (-996 (-349)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) |#1| (-996 (-349)) (-996 (-349)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1863 ((-1155) (-804 |#1|) (-996 (-349)) (-996 (-349)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)) (-583 (-236)))) (-15 -1907 ((-1034 (-199)) (-804 |#1|) (-996 (-349)) (-996 (-349)))))
+((-1863 (((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236))) 21) (((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199))) 22) (((-1154) (-583 (-865 (-199))) (-583 (-236))) 13) (((-1154) (-583 (-865 (-199)))) 14) (((-1154) (-583 (-199)) (-583 (-199)) (-583 (-236))) 18) (((-1154) (-583 (-199)) (-583 (-199))) 19)))
+(((-233) (-10 -7 (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1863 ((-1154) (-583 (-865 (-199))))) (-15 -1863 ((-1154) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))) (T -233))
+((-1863 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1154)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) (-1863 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154)) (-5 *1 (-233)))))
+(-10 -7 (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1154) (-583 (-199)) (-583 (-199)) (-583 (-236)))) (-15 -1863 ((-1154) (-583 (-865 (-199))))) (-15 -1863 ((-1154) (-583 (-865 (-199))) (-583 (-236)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)))) (-15 -1863 ((-1155) (-583 (-199)) (-583 (-199)) (-583 (-199)) (-583 (-236)))))
+((-3222 (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 24)) (-1703 (((-843) (-583 (-236)) (-843)) 49)) (-3082 (((-843) (-583 (-236)) (-843)) 48)) (-3029 (((-583 (-349)) (-583 (-236)) (-583 (-349))) 65)) (-3588 (((-349) (-583 (-236)) (-349)) 55)) (-3560 (((-843) (-583 (-236)) (-843)) 50)) (-1591 (((-107) (-583 (-236)) (-107)) 26)) (-4150 (((-1056) (-583 (-236)) (-1056)) 19)) (-3228 (((-1056) (-583 (-236)) (-1056)) 25)) (-1379 (((-1034 (-199)) (-583 (-236))) 43)) (-1868 (((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349)))) 37)) (-2558 (((-797) (-583 (-236)) (-797)) 31)) (-2896 (((-797) (-583 (-236)) (-797)) 32)) (-1499 (((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199)))) 60)) (-2827 (((-107) (-583 (-236)) (-107)) 15)) (-2594 (((-107) (-583 (-236)) (-107)) 14)))
+(((-234) (-10 -7 (-15 -2594 ((-107) (-583 (-236)) (-107))) (-15 -2827 ((-107) (-583 (-236)) (-107))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ((-1056) (-583 (-236)) (-1056))) (-15 -3228 ((-1056) (-583 (-236)) (-1056))) (-15 -1591 ((-107) (-583 (-236)) (-107))) (-15 -2558 ((-797) (-583 (-236)) (-797))) (-15 -2896 ((-797) (-583 (-236)) (-797))) (-15 -1868 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3082 ((-843) (-583 (-236)) (-843))) (-15 -1703 ((-843) (-583 (-236)) (-843))) (-15 -1379 ((-1034 (-199)) (-583 (-236)))) (-15 -3560 ((-843) (-583 (-236)) (-843))) (-15 -3588 ((-349) (-583 (-236)) (-349))) (-15 -1499 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -3029 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))) (T -234))
+((-3029 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1499 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3588 (*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3560 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) (-1703 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3082 (*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1868 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2896 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2558 (*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-1591 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3228 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-4150 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-3222 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2827 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) (-2594 (*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(-10 -7 (-15 -2594 ((-107) (-583 (-236)) (-107))) (-15 -2827 ((-107) (-583 (-236)) (-107))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) (-583 (-236)) (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ((-1056) (-583 (-236)) (-1056))) (-15 -3228 ((-1056) (-583 (-236)) (-1056))) (-15 -1591 ((-107) (-583 (-236)) (-107))) (-15 -2558 ((-797) (-583 (-236)) (-797))) (-15 -2896 ((-797) (-583 (-236)) (-797))) (-15 -1868 ((-583 (-998 (-349))) (-583 (-236)) (-583 (-998 (-349))))) (-15 -3082 ((-843) (-583 (-236)) (-843))) (-15 -1703 ((-843) (-583 (-236)) (-843))) (-15 -1379 ((-1034 (-199)) (-583 (-236)))) (-15 -3560 ((-843) (-583 (-236)) (-843))) (-15 -3588 ((-349) (-583 (-236)) (-349))) (-15 -1499 ((-1 (-865 (-199)) (-865 (-199))) (-583 (-236)) (-1 (-865 (-199)) (-865 (-199))))) (-15 -3029 ((-583 (-349)) (-583 (-236)) (-583 (-349)))))
+((-2075 (((-3 |#1| "failed") (-583 (-236)) (-1073)) 17)))
+(((-235 |#1|) (-10 -7 (-15 -2075 ((-3 |#1| "failed") (-583 (-236)) (-1073)))) (-1108)) (T -235))
+((-2075 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *1 (-235 *2)) (-4 *2 (-1108)))))
+(-10 -7 (-15 -2075 ((-3 |#1| "failed") (-583 (-236)) (-1073))))
+((-2750 (((-107) $ $) NIL)) (-3222 (($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 14)) (-1703 (($ (-843)) 70)) (-3082 (($ (-843)) 69)) (-3295 (($ (-583 (-349))) 76)) (-3588 (($ (-349)) 55)) (-3560 (($ (-843)) 71)) (-1591 (($ (-107)) 22)) (-4150 (($ (-1056)) 17)) (-3228 (($ (-1056)) 18)) (-1379 (($ (-1034 (-199))) 65)) (-1868 (($ (-583 (-998 (-349)))) 61)) (-2919 (($ (-583 (-998 (-349)))) 56) (($ (-583 (-998 (-377 (-517))))) 60)) (-1480 (($ (-349)) 28) (($ (-797)) 32)) (-2305 (((-107) (-583 $) (-1073)) 85)) (-2075 (((-3 (-51) "failed") (-583 $) (-1073)) 87)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1728 (($ (-349)) 33) (($ (-797)) 34)) (-4114 (($ (-1 (-865 (-199)) (-865 (-199)))) 54)) (-1499 (($ (-1 (-865 (-199)) (-865 (-199)))) 72)) (-3590 (($ (-1 (-199) (-199))) 38) (($ (-1 (-199) (-199) (-199))) 42) (($ (-1 (-199) (-199) (-199) (-199))) 46)) (-2256 (((-787) $) 81)) (-1810 (($ (-107)) 23) (($ (-583 (-998 (-349)))) 50)) (-2594 (($ (-107)) 24)) (-1547 (((-107) $ $) 83)))
+(((-236) (-13 (-1003) (-10 -8 (-15 -2594 ($ (-107))) (-15 -1810 ($ (-107))) (-15 -3222 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ($ (-1056))) (-15 -3228 ($ (-1056))) (-15 -1591 ($ (-107))) (-15 -1810 ($ (-583 (-998 (-349))))) (-15 -4114 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1480 ($ (-349))) (-15 -1480 ($ (-797))) (-15 -1728 ($ (-349))) (-15 -1728 ($ (-797))) (-15 -3590 ($ (-1 (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3588 ($ (-349))) (-15 -2919 ($ (-583 (-998 (-349))))) (-15 -2919 ($ (-583 (-998 (-377 (-517)))))) (-15 -1868 ($ (-583 (-998 (-349))))) (-15 -1379 ($ (-1034 (-199)))) (-15 -3082 ($ (-843))) (-15 -1703 ($ (-843))) (-15 -3560 ($ (-843))) (-15 -1499 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -3295 ($ (-583 (-349)))) (-15 -2075 ((-3 (-51) "failed") (-583 $) (-1073))) (-15 -2305 ((-107) (-583 $) (-1073)))))) (T -236))
+((-2594 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-1810 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-3222 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))) (-3228 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) (-1810 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-1480 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-1728 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) (-3588 (*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-2919 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) (-1379 (*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-1703 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-3560 (*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) (-3295 (*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) (-2075 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-51)) (-5 *1 (-236)))) (-2305 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-107)) (-5 *1 (-236)))))
+(-13 (-1003) (-10 -8 (-15 -2594 ($ (-107))) (-15 -1810 ($ (-107))) (-15 -3222 ($ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4150 ($ (-1056))) (-15 -3228 ($ (-1056))) (-15 -1591 ($ (-107))) (-15 -1810 ($ (-583 (-998 (-349))))) (-15 -4114 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -1480 ($ (-349))) (-15 -1480 ($ (-797))) (-15 -1728 ($ (-349))) (-15 -1728 ($ (-797))) (-15 -3590 ($ (-1 (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199)))) (-15 -3590 ($ (-1 (-199) (-199) (-199) (-199)))) (-15 -3588 ($ (-349))) (-15 -2919 ($ (-583 (-998 (-349))))) (-15 -2919 ($ (-583 (-998 (-377 (-517)))))) (-15 -1868 ($ (-583 (-998 (-349))))) (-15 -1379 ($ (-1034 (-199)))) (-15 -3082 ($ (-843))) (-15 -1703 ($ (-843))) (-15 -3560 ($ (-843))) (-15 -1499 ($ (-1 (-865 (-199)) (-865 (-199))))) (-15 -3295 ($ (-583 (-349)))) (-15 -2075 ((-3 (-51) "failed") (-583 $) (-1073))) (-15 -2305 ((-107) (-583 $) (-1073)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3469 (((-583 (-703)) $) NIL) (((-583 (-703)) $ |#2|) NIL)) (-2932 (((-703) $) NIL) (((-703) $ |#2|) NIL)) (-1364 (((-583 |#3|) $) NIL)) (-2352 (((-1069 $) $ |#3|) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 |#3|)) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3960 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1026 |#1| |#2|) "failed") $) 20)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1026 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#3|) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 |#3|) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))))) (-3972 (((-703) $ |#2|) NIL) (((-703) $) 10)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) |#3|) NIL) (($ (-1069 $) |#3|) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) NIL)) (-2349 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 |#3|) (-489 |#3|)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2656 (((-1 $ (-703)) |#2|) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1409 (((-3 |#3| "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-2133 ((|#3| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2982 (((-107) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) NIL)) (-2604 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-583 |#3|) (-583 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-583 |#3|) (-583 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 $)) NIL (|has| |#1| (-207))) (($ $ |#2| |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 |#2|) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3010 (($ $ |#3|) NIL (|has| |#1| (-156)))) (-3127 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1890 (((-583 |#2|) $) NIL)) (-3688 (((-489 |#3|) $) NIL) (((-703) $ |#3|) NIL) (((-583 (-703)) $ (-583 |#3|)) NIL) (((-703) $ |#2|) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ |#3|) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) 23) (($ |#3|) 22) (($ |#2|) NIL) (($ (-1026 |#1| |#2|)) 28) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ |#3|) NIL) (($ $ (-583 |#3|)) NIL) (($ $ |#3| (-703)) NIL) (($ $ (-583 |#3|) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-237 |#1| |#2| |#3|) (-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-952 (-1026 |#1| |#2|))) (-961) (-779) (-239 |#2|)) (T -237))
+NIL
+(-13 (-226 |#1| |#2| |#3| (-489 |#3|)) (-952 (-1026 |#1| |#2|)))
+((-2932 (((-703) $) 30)) (-1772 (((-3 |#2| "failed") $) 17)) (-3189 ((|#2| $) 27)) (-3127 (($ $) 12) (($ $ (-703)) 15)) (-2256 (((-787) $) 26) (($ |#2|) 10)) (-1547 (((-107) $ $) 20)) (-1572 (((-107) $ $) 29)))
+(((-238 |#1| |#2|) (-10 -8 (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -2932 ((-703) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-239 |#2|) (-779)) (T -238))
+NIL
+(-10 -8 (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -2932 ((-703) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2932 (((-703) $) 22)) (-1638 ((|#1| $) 23)) (-1772 (((-3 |#1| "failed") $) 27)) (-3189 ((|#1| $) 26)) (-3972 (((-703) $) 24)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-2656 (($ |#1| (-703)) 25)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $) 21) (($ $ (-703)) 20)) (-2256 (((-787) $) 11) (($ |#1|) 28)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
+(((-239 |#1|) (-1184) (-779)) (T -239))
+((-2256 (*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2656 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3127 (*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-952 |t#1|) (-10 -8 (-15 -2656 ($ |t#1| (-703))) (-15 -3972 ((-703) $)) (-15 -1638 (|t#1| $)) (-15 -2932 ((-703) $)) (-15 -3127 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2256 ($ |t#1|))))
+(((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-952 |#1|) . T) ((-1003) . T))
+((-1364 (((-583 (-1073)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 40)) (-3463 (((-583 (-1073)) (-286 (-199)) (-703)) 79)) (-2438 (((-3 (-286 (-199)) "failed") (-286 (-199))) 50)) (-2172 (((-286 (-199)) (-286 (-199))) 65)) (-4062 (((-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 26)) (-3648 (((-107) (-583 (-286 (-199)))) 83)) (-2792 (((-107) (-286 (-199))) 24)) (-1815 (((-583 (-1056)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) 104)) (-3162 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 86)) (-3919 (((-583 (-286 (-199))) (-583 (-286 (-199)))) 85)) (-3564 (((-623 (-199)) (-583 (-286 (-199))) (-703)) 93)) (-2035 (((-107) (-286 (-199))) 20) (((-107) (-583 (-286 (-199)))) 84)) (-3795 (((-583 (-199)) (-583 (-772 (-199))) (-199)) 14)) (-2455 (((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 99)) (-3878 (((-950) (-1073) (-950)) 33)))
+(((-240) (-10 -7 (-15 -3795 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -4062 ((-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2438 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2172 ((-286 (-199)) (-286 (-199)))) (-15 -3648 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-286 (-199)))) (-15 -3564 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -3919 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3162 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2792 ((-107) (-286 (-199)))) (-15 -1364 ((-583 (-1073)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3463 ((-583 (-1073)) (-286 (-199)) (-703))) (-15 -3878 ((-950) (-1073) (-950))) (-15 -2455 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -1815 ((-583 (-1056)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))))) (T -240))
+((-1815 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *2 (-583 (-1056))) (-5 *1 (-240)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) (-3878 (*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-240)))) (-3463 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) (-2792 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3162 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))) (-3564 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) (-2172 (*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-2438 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))) (-3795 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
+(-10 -7 (-15 -3795 ((-583 (-199)) (-583 (-772 (-199))) (-199))) (-15 -4062 ((-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2438 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2172 ((-286 (-199)) (-286 (-199)))) (-15 -3648 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-583 (-286 (-199))))) (-15 -2035 ((-107) (-286 (-199)))) (-15 -3564 ((-623 (-199)) (-583 (-286 (-199))) (-703))) (-15 -3919 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -3162 ((-583 (-286 (-199))) (-583 (-286 (-199))))) (-15 -2792 ((-107) (-286 (-199)))) (-15 -1364 ((-583 (-1073)) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3463 ((-583 (-1073)) (-286 (-199)) (-703))) (-15 -3878 ((-950) (-1073) (-950))) (-15 -2455 ((-349) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -1815 ((-583 (-1056)) (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))))
+((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 39)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 20) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-241) (-768)) (T -241))
+NIL
+(-768)
+((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 54) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 49)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 29) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 31)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-242) (-768)) (T -242))
+NIL
+(-768)
+((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 73) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 40) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 51)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-243) (-768)) (T -243))
+NIL
+(-768)
+((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 27) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-244) (-768)) (T -244))
+NIL
+(-768)
+((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 48)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-245) (-768)) (T -245))
+NIL
+(-768)
+((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 69)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 23) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-246) (-768)) (T -246))
+NIL
+(-768)
+((-2750 (((-107) $ $) NIL)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 73)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 19) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-247) (-768)) (T -247))
+NIL
+(-768)
+((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3242 (((-583 (-517)) $) 16)) (-3688 (((-703) $) 14)) (-2256 (((-787) $) 20) (($ (-583 (-517))) 12)) (-1384 (($ (-703)) 17)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 9)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 10)))
+(((-248) (-13 (-779) (-10 -8 (-15 -2256 ($ (-583 (-517)))) (-15 -3688 ((-703) $)) (-15 -3242 ((-583 (-517)) $)) (-15 -1384 ($ (-703)))))) (T -248))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) (-3242 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) (-1384 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
+(-13 (-779) (-10 -8 (-15 -2256 ($ (-583 (-517)))) (-15 -3688 ((-703) $)) (-15 -3242 ((-583 (-517)) $)) (-15 -1384 ($ (-703)))))
+((-1865 ((|#2| |#2|) 77)) (-1721 ((|#2| |#2|) 65)) (-2857 (((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107))))) 116)) (-1839 ((|#2| |#2|) 75)) (-1701 ((|#2| |#2|) 63)) (-1887 ((|#2| |#2|) 79)) (-1743 ((|#2| |#2|) 67)) (-2645 ((|#2|) 46)) (-3072 (((-109) (-109)) 95)) (-1867 ((|#2| |#2|) 61)) (-3300 (((-107) |#2|) 134)) (-3638 ((|#2| |#2|) 180)) (-2989 ((|#2| |#2|) 156)) (-3828 ((|#2|) 59)) (-3756 ((|#2|) 58)) (-3523 ((|#2| |#2|) 176)) (-2511 ((|#2| |#2|) 152)) (-2983 ((|#2| |#2|) 184)) (-1682 ((|#2| |#2|) 160)) (-2794 ((|#2| |#2|) 148)) (-1990 ((|#2| |#2|) 150)) (-4095 ((|#2| |#2|) 186)) (-2318 ((|#2| |#2|) 162)) (-3393 ((|#2| |#2|) 182)) (-3276 ((|#2| |#2|) 158)) (-1745 ((|#2| |#2|) 178)) (-2516 ((|#2| |#2|) 154)) (-3772 ((|#2| |#2|) 192)) (-2853 ((|#2| |#2|) 168)) (-2370 ((|#2| |#2|) 188)) (-2143 ((|#2| |#2|) 164)) (-2168 ((|#2| |#2|) 196)) (-1509 ((|#2| |#2|) 172)) (-2622 ((|#2| |#2|) 198)) (-3280 ((|#2| |#2|) 174)) (-2137 ((|#2| |#2|) 194)) (-2019 ((|#2| |#2|) 170)) (-1430 ((|#2| |#2|) 190)) (-3332 ((|#2| |#2|) 166)) (-2624 ((|#2| |#2|) 62)) (-1898 ((|#2| |#2|) 80)) (-1754 ((|#2| |#2|) 68)) (-1876 ((|#2| |#2|) 78)) (-1732 ((|#2| |#2|) 66)) (-1853 ((|#2| |#2|) 76)) (-1711 ((|#2| |#2|) 64)) (-4074 (((-107) (-109)) 93)) (-3707 ((|#2| |#2|) 83)) (-1788 ((|#2| |#2|) 71)) (-3683 ((|#2| |#2|) 81)) (-1765 ((|#2| |#2|) 69)) (-3731 ((|#2| |#2|) 85)) (-1814 ((|#2| |#2|) 73)) (-1492 ((|#2| |#2|) 86)) (-1827 ((|#2| |#2|) 74)) (-3719 ((|#2| |#2|) 84)) (-1802 ((|#2| |#2|) 72)) (-3695 ((|#2| |#2|) 82)) (-1777 ((|#2| |#2|) 70)))
+(((-249 |#1| |#2|) (-10 -7 (-15 -2624 (|#2| |#2|)) (-15 -1867 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1711 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -1814 (|#2| |#2|)) (-15 -1827 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -2645 (|#2|)) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3756 (|#2|)) (-15 -3828 (|#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3523 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -2857 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3300 ((-107) |#2|))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918))) (T -249))
+((-3300 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918))))) (-2857 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))) (-2622 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2137 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3772 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1430 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2983 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3638 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1745 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3280 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1509 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2019 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3332 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2143 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3276 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2989 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2516 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1990 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3828 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3756 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) (-2645 (*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(-10 -7 (-15 -2624 (|#2| |#2|)) (-15 -1867 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1711 (|#2| |#2|)) (-15 -1721 (|#2| |#2|)) (-15 -1732 (|#2| |#2|)) (-15 -1743 (|#2| |#2|)) (-15 -1754 (|#2| |#2|)) (-15 -1765 (|#2| |#2|)) (-15 -1777 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (-15 -1802 (|#2| |#2|)) (-15 -1814 (|#2| |#2|)) (-15 -1827 (|#2| |#2|)) (-15 -1839 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -1865 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -1887 (|#2| |#2|)) (-15 -1898 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -3695 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -3731 (|#2| |#2|)) (-15 -1492 (|#2| |#2|)) (-15 -2645 (|#2|)) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3756 (|#2|)) (-15 -3828 (|#2|)) (-15 -1990 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -2511 (|#2| |#2|)) (-15 -2516 (|#2| |#2|)) (-15 -2989 (|#2| |#2|)) (-15 -3276 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2143 (|#2| |#2|)) (-15 -3332 (|#2| |#2|)) (-15 -2853 (|#2| |#2|)) (-15 -2019 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -3280 (|#2| |#2|)) (-15 -3523 (|#2| |#2|)) (-15 -1745 (|#2| |#2|)) (-15 -3638 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -1430 (|#2| |#2|)) (-15 -3772 (|#2| |#2|)) (-15 -2137 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2622 (|#2| |#2|)) (-15 -2857 ((-3 |#2| "failed") |#2| (-583 (-2 (|:| |func| |#2|) (|:| |pole| (-107)))))) (-15 -3300 ((-107) |#2|)))
+((-3951 (((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1073)) 133)) (-2596 ((|#2| (-377 (-517)) |#2|) 50)) (-2170 ((|#2| |#2| (-556 |#2|)) 126)) (-3133 (((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1073)) 125)) (-2849 ((|#2| |#2| (-1073)) 19) ((|#2| |#2|) 22)) (-2485 ((|#2| |#2| (-1073)) 139) ((|#2| |#2|) 137)))
+(((-250 |#1| |#2|) (-10 -7 (-15 -2485 (|#2| |#2|)) (-15 -2485 (|#2| |#2| (-1073))) (-15 -3133 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1073))) (-15 -2849 (|#2| |#2|)) (-15 -2849 (|#2| |#2| (-1073))) (-15 -3951 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1073))) (-15 -2170 (|#2| |#2| (-556 |#2|))) (-15 -2596 (|#2| (-377 (-517)) |#2|))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -250))
+((-2596 (*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2170 (*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))) (-3951 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1073)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))) (-2849 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2849 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-3133 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2485 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
+(-10 -7 (-15 -2485 (|#2| |#2|)) (-15 -2485 (|#2| |#2| (-1073))) (-15 -3133 ((-2 (|:| |func| |#2|) (|:| |kers| (-583 (-556 |#2|))) (|:| |vals| (-583 |#2|))) |#2| (-1073))) (-15 -2849 (|#2| |#2|)) (-15 -2849 (|#2| |#2| (-1073))) (-15 -3951 ((-3 |#2| "failed") (-583 (-556 |#2|)) |#2| (-1073))) (-15 -2170 (|#2| |#2| (-556 |#2|))) (-15 -2596 (|#2| (-377 (-517)) |#2|)))
+((-3885 (((-3 |#3| "failed") |#3|) 110)) (-1865 ((|#3| |#3|) 131)) (-1878 (((-3 |#3| "failed") |#3|) 82)) (-1721 ((|#3| |#3|) 121)) (-4078 (((-3 |#3| "failed") |#3|) 58)) (-1839 ((|#3| |#3|) 129)) (-3113 (((-3 |#3| "failed") |#3|) 46)) (-1701 ((|#3| |#3|) 119)) (-2944 (((-3 |#3| "failed") |#3|) 112)) (-1887 ((|#3| |#3|) 133)) (-3413 (((-3 |#3| "failed") |#3|) 84)) (-1743 ((|#3| |#3|) 123)) (-2492 (((-3 |#3| "failed") |#3| (-703)) 36)) (-2064 (((-3 |#3| "failed") |#3|) 74)) (-1867 ((|#3| |#3|) 118)) (-3930 (((-3 |#3| "failed") |#3|) 44)) (-2624 ((|#3| |#3|) 117)) (-3608 (((-3 |#3| "failed") |#3|) 113)) (-1898 ((|#3| |#3|) 134)) (-2011 (((-3 |#3| "failed") |#3|) 85)) (-1754 ((|#3| |#3|) 124)) (-1779 (((-3 |#3| "failed") |#3|) 111)) (-1876 ((|#3| |#3|) 132)) (-1312 (((-3 |#3| "failed") |#3|) 83)) (-1732 ((|#3| |#3|) 122)) (-1282 (((-3 |#3| "failed") |#3|) 60)) (-1853 ((|#3| |#3|) 130)) (-3518 (((-3 |#3| "failed") |#3|) 48)) (-1711 ((|#3| |#3|) 120)) (-1266 (((-3 |#3| "failed") |#3|) 66)) (-3707 ((|#3| |#3|) 137)) (-3884 (((-3 |#3| "failed") |#3|) 104)) (-1788 ((|#3| |#3|) 142)) (-2460 (((-3 |#3| "failed") |#3|) 62)) (-3683 ((|#3| |#3|) 135)) (-2895 (((-3 |#3| "failed") |#3|) 50)) (-1765 ((|#3| |#3|) 125)) (-3829 (((-3 |#3| "failed") |#3|) 70)) (-3731 ((|#3| |#3|) 139)) (-1778 (((-3 |#3| "failed") |#3|) 54)) (-1814 ((|#3| |#3|) 127)) (-1240 (((-3 |#3| "failed") |#3|) 72)) (-1492 ((|#3| |#3|) 140)) (-3363 (((-3 |#3| "failed") |#3|) 56)) (-1827 ((|#3| |#3|) 128)) (-1403 (((-3 |#3| "failed") |#3|) 68)) (-3719 ((|#3| |#3|) 138)) (-1297 (((-3 |#3| "failed") |#3|) 107)) (-1802 ((|#3| |#3|) 143)) (-2828 (((-3 |#3| "failed") |#3|) 64)) (-3695 ((|#3| |#3|) 136)) (-1247 (((-3 |#3| "failed") |#3|) 52)) (-1777 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
+(((-251 |#1| |#2| |#3|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)))) (-37 (-377 (-517))) (-1145 |#1|) (-1116 |#1| |#2|)) (T -251))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1145 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1116 *4 *5)))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))))
+(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|))))
+((-3885 (((-3 |#3| "failed") |#3|) 66)) (-1865 ((|#3| |#3|) 133)) (-1878 (((-3 |#3| "failed") |#3|) 50)) (-1721 ((|#3| |#3|) 121)) (-4078 (((-3 |#3| "failed") |#3|) 62)) (-1839 ((|#3| |#3|) 131)) (-3113 (((-3 |#3| "failed") |#3|) 46)) (-1701 ((|#3| |#3|) 119)) (-2944 (((-3 |#3| "failed") |#3|) 70)) (-1887 ((|#3| |#3|) 135)) (-3413 (((-3 |#3| "failed") |#3|) 54)) (-1743 ((|#3| |#3|) 123)) (-2492 (((-3 |#3| "failed") |#3| (-703)) 35)) (-2064 (((-3 |#3| "failed") |#3|) 44)) (-1867 ((|#3| |#3|) 112)) (-3930 (((-3 |#3| "failed") |#3|) 42)) (-2624 ((|#3| |#3|) 118)) (-3608 (((-3 |#3| "failed") |#3|) 72)) (-1898 ((|#3| |#3|) 136)) (-2011 (((-3 |#3| "failed") |#3|) 56)) (-1754 ((|#3| |#3|) 124)) (-1779 (((-3 |#3| "failed") |#3|) 68)) (-1876 ((|#3| |#3|) 134)) (-1312 (((-3 |#3| "failed") |#3|) 52)) (-1732 ((|#3| |#3|) 122)) (-1282 (((-3 |#3| "failed") |#3|) 64)) (-1853 ((|#3| |#3|) 132)) (-3518 (((-3 |#3| "failed") |#3|) 48)) (-1711 ((|#3| |#3|) 120)) (-1266 (((-3 |#3| "failed") |#3|) 78)) (-3707 ((|#3| |#3|) 139)) (-3884 (((-3 |#3| "failed") |#3|) 58)) (-1788 ((|#3| |#3|) 127)) (-2460 (((-3 |#3| "failed") |#3|) 74)) (-3683 ((|#3| |#3|) 137)) (-2895 (((-3 |#3| "failed") |#3|) 102)) (-1765 ((|#3| |#3|) 125)) (-3829 (((-3 |#3| "failed") |#3|) 82)) (-3731 ((|#3| |#3|) 141)) (-1778 (((-3 |#3| "failed") |#3|) 109)) (-1814 ((|#3| |#3|) 129)) (-1240 (((-3 |#3| "failed") |#3|) 84)) (-1492 ((|#3| |#3|) 142)) (-3363 (((-3 |#3| "failed") |#3|) 111)) (-1827 ((|#3| |#3|) 130)) (-1403 (((-3 |#3| "failed") |#3|) 80)) (-3719 ((|#3| |#3|) 140)) (-1297 (((-3 |#3| "failed") |#3|) 60)) (-1802 ((|#3| |#3|) 128)) (-2828 (((-3 |#3| "failed") |#3|) 76)) (-3695 ((|#3| |#3|) 138)) (-1247 (((-3 |#3| "failed") |#3|) 105)) (-1777 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-377 (-517))) 40 (|has| |#1| (-333)))))
+(((-252 |#1| |#2| |#3| |#4|) (-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|)))) (-37 (-377 (-517))) (-1114 |#1|) (-1137 |#1| |#2|) (-900 |#2|)) (T -252))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1114 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1137 *4 *5)) (-4 *6 (-900 *5)))) (-2624 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1867 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1711 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1721 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1732 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1743 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1754 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1765 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1777 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1802 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1814 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1839 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1865 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1887 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1898 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3695 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-3731 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) (-1492 (*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))))
+(-13 (-900 |#3|) (-10 -7 (IF (|has| |#1| (-333)) (-15 ** (|#3| |#3| (-377 (-517)))) |noBranch|) (-15 -2624 (|#3| |#3|)) (-15 -1867 (|#3| |#3|)) (-15 -1701 (|#3| |#3|)) (-15 -1711 (|#3| |#3|)) (-15 -1721 (|#3| |#3|)) (-15 -1732 (|#3| |#3|)) (-15 -1743 (|#3| |#3|)) (-15 -1754 (|#3| |#3|)) (-15 -1765 (|#3| |#3|)) (-15 -1777 (|#3| |#3|)) (-15 -1788 (|#3| |#3|)) (-15 -1802 (|#3| |#3|)) (-15 -1814 (|#3| |#3|)) (-15 -1827 (|#3| |#3|)) (-15 -1839 (|#3| |#3|)) (-15 -1853 (|#3| |#3|)) (-15 -1865 (|#3| |#3|)) (-15 -1876 (|#3| |#3|)) (-15 -1887 (|#3| |#3|)) (-15 -1898 (|#3| |#3|)) (-15 -3683 (|#3| |#3|)) (-15 -3695 (|#3| |#3|)) (-15 -3707 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3731 (|#3| |#3|)) (-15 -1492 (|#3| |#3|))))
+((-3536 (($ (-1 (-107) |#2|) $) 23)) (-1679 (($ $) 36)) (-3212 (($ (-1 (-107) |#2|) $) NIL) (($ |#2| $) 34)) (-2052 (($ |#2| $) 31) (($ (-1 (-107) |#2|) $) 17)) (-2797 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2620 (($ |#2| $ (-517)) 19) (($ $ $ (-517)) 21)) (-3750 (($ $ (-517)) 11) (($ $ (-1121 (-517))) 14)) (-2568 (($ $ |#2|) 29) (($ $ $) NIL)) (-2452 (($ $ |#2|) 28) (($ |#2| $) NIL) (($ $ $) 25) (($ (-583 $)) NIL)))
+(((-253 |#1| |#2|) (-10 -8 (-15 -2797 (|#1| |#1| |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -1679 (|#1| |#1|))) (-254 |#2|) (-1108)) (T -253))
+NIL
+(-10 -8 (-15 -2797 (|#1| |#1| |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2052 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3536 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2052 (|#1| |#2| |#1|)) (-15 -1679 (|#1| |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) 85)) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 83 (|has| |#1| (-1003)))) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ (-1 (-107) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1003)))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2797 (($ (-1 (-107) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-1710 (($ |#1| $ (-517)) 88) (($ $ $ (-517)) 87)) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-2154 (($ $ (-517)) 91) (($ $ (-1121 (-517))) 90)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2568 (($ $ |#1|) 93) (($ $ $) 92)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-254 |#1|) (-1184) (-1108)) (T -254))
+((-2568 (*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-3212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-1710 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1108)))) (-1710 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-2797 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-2337 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) (-3212 (*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) (-2797 (*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))))
+(-13 (-588 |t#1|) (-10 -8 (-6 -4181) (-15 -2568 ($ $ |t#1|)) (-15 -2568 ($ $ $)) (-15 -2154 ($ $ (-517))) (-15 -2154 ($ $ (-1121 (-517)))) (-15 -3212 ($ (-1 (-107) |t#1|) $)) (-15 -1710 ($ |t#1| $ (-517))) (-15 -1710 ($ $ $ (-517))) (-15 -2797 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -2337 ($ (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3212 ($ |t#1| $)) (-15 -3483 ($ $))) |noBranch|) (IF (|has| |t#1| (-779)) (-15 -2797 ($ $ $)) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
((** (($ $ $) 10)))
-(((-253 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-254)) (T -253))
+(((-255 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-256)) (T -255))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-1635 (($ $) 6)) (-1989 (($ $) 7)) (** (($ $ $) 8)))
-(((-254) (-1180)) (T -254))
-((** (*1 *1 *1 *1) (-4 *1 (-254))) (-1989 (*1 *1 *1) (-4 *1 (-254))) (-1635 (*1 *1 *1) (-4 *1 (-254))))
-(-13 (-10 -8 (-15 -1635 ($ $)) (-15 -1989 ($ $)) (-15 ** ($ $ $))))
-((-2737 (((-578 (-1048 |#1|)) (-1048 |#1|) |#1|) 35)) (-3702 ((|#2| |#2| |#1|) 38)) (-3139 ((|#2| |#2| |#1|) 40)) (-1995 ((|#2| |#2| |#1|) 39)))
-(((-255 |#1| |#2|) (-10 -7 (-15 -3702 (|#2| |#2| |#1|)) (-15 -1995 (|#2| |#2| |#1|)) (-15 -3139 (|#2| |#2| |#1|)) (-15 -2737 ((-578 (-1048 |#1|)) (-1048 |#1|) |#1|))) (-331) (-1142 |#1|)) (T -255))
-((-2737 (*1 *2 *3 *4) (-12 (-4 *4 (-331)) (-5 *2 (-578 (-1048 *4))) (-5 *1 (-255 *4 *5)) (-5 *3 (-1048 *4)) (-4 *5 (-1142 *4)))) (-3139 (*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3)))) (-1995 (*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3)))) (-3702 (*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3)))))
-(-10 -7 (-15 -3702 (|#2| |#2| |#1|)) (-15 -1995 (|#2| |#2| |#1|)) (-15 -3139 (|#2| |#2| |#1|)) (-15 -2737 ((-578 (-1048 |#1|)) (-1048 |#1|) |#1|)))
-((-2007 ((|#2| $ |#1|) 6)))
-(((-256 |#1| |#2|) (-1180) (-1001) (-1104)) (T -256))
-((-2007 (*1 *2 *1 *3) (-12 (-4 *1 (-256 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))))
-(-13 (-10 -8 (-15 -2007 (|t#2| $ |t#1|))))
-((-2156 ((|#3| $ |#2| |#3|) 12)) (-1905 ((|#3| $ |#2|) 10)))
-(((-257 |#1| |#2| |#3|) (-10 -8 (-15 -2156 (|#3| |#1| |#2| |#3|)) (-15 -1905 (|#3| |#1| |#2|))) (-258 |#2| |#3|) (-1001) (-1104)) (T -257))
-NIL
-(-10 -8 (-15 -2156 (|#3| |#1| |#2| |#3|)) (-15 -1905 (|#3| |#1| |#2|)))
-((-3754 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4168)))) (-2156 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) 11)) (-2007 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-258 |#1| |#2|) (-1180) (-1001) (-1104)) (T -258))
-((-2007 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) (-1905 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) (-2156 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))))
-(-13 (-256 |t#1| |t#2|) (-10 -8 (-15 -2007 (|t#2| $ |t#1| |t#2|)) (-15 -1905 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4168)) (PROGN (-15 -3754 (|t#2| $ |t#1| |t#2|)) (-15 -2156 (|t#2| $ |t#1| |t#2|))) |noBranch|)))
-(((-256 |#1| |#2|) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 34)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 39)) (-2865 (($ $) 37)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) 32)) (-3547 (($ |#2| |#3|) 19)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 ((|#3| $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 20)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1626 (((-3 $ "failed") $ $) NIL)) (-1864 (((-701) $) 33)) (-2007 ((|#2| $ |#2|) 41)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 24)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 27 T CONST)) (-1925 (($) 35 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 36)))
-(((-259 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-276) (-10 -8 (-15 -3121 (|#3| $)) (-15 -3691 (|#2| $)) (-15 -3547 ($ |#2| |#3|)) (-15 -1626 ((-3 $ "failed") $ $)) (-15 -2174 ((-3 $ "failed") $)) (-15 -3833 ($ $)) (-15 -2007 (|#2| $ |#2|)))) (-156) (-1125 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -259))
-((-2174 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3121 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-259 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1125 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3691 (*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-259 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3547 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-259 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1125 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1626 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3833 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2007 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-259 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1125 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-276) (-10 -8 (-15 -3121 (|#3| $)) (-15 -3691 (|#2| $)) (-15 -3547 ($ |#2| |#3|)) (-15 -1626 ((-3 $ "failed") $ $)) (-15 -2174 ((-3 $ "failed") $)) (-15 -3833 ($ $)) (-15 -2007 (|#2| $ |#2|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-260) (-1180)) (T -260))
-NIL
-(-13 (-959) (-106 $ $) (-10 -7 (-6 -4160)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3843 (((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|)))) 83)) (-1556 (((-578 (-621 (-375 (-866 |#1|)))) (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|)))))) (-621 (-375 (-866 |#1|)))) 78) (((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))) (-701) (-701)) 36)) (-3423 (((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|)))) 80)) (-1483 (((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|)))) 60)) (-2528 (((-578 (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (-621 (-375 (-866 |#1|)))) 59)) (-2942 (((-866 |#1|) (-621 (-375 (-866 |#1|)))) 47) (((-866 |#1|) (-621 (-375 (-866 |#1|))) (-1070)) 48)))
-(((-261 |#1|) (-10 -7 (-15 -2942 ((-866 |#1|) (-621 (-375 (-866 |#1|))) (-1070))) (-15 -2942 ((-866 |#1|) (-621 (-375 (-866 |#1|))))) (-15 -2528 ((-578 (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (-621 (-375 (-866 |#1|))))) (-15 -1483 ((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))))) (-15 -1556 ((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))) (-701) (-701))) (-15 -1556 ((-578 (-621 (-375 (-866 |#1|)))) (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|)))))) (-621 (-375 (-866 |#1|))))) (-15 -3843 ((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|))))) (-15 -3423 ((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|)))))) (-419)) (T -261))
-((-3423 (*1 *2 *3) (-12 (-4 *4 (-419)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 *4)))))))) (-5 *1 (-261 *4)) (-5 *3 (-621 (-375 (-866 *4)))))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-419)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 *4)))))))) (-5 *1 (-261 *4)) (-5 *3 (-621 (-375 (-866 *4)))))) (-1556 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-375 (-866 *5)) (-1060 (-1070) (-866 *5)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 *4)))) (-4 *5 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *5))))) (-5 *1 (-261 *5)) (-5 *4 (-621 (-375 (-866 *5)))))) (-1556 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-375 (-866 *6)) (-1060 (-1070) (-866 *6)))) (-5 *5 (-701)) (-4 *6 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *6))))) (-5 *1 (-261 *6)) (-5 *4 (-621 (-375 (-866 *6)))))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-375 (-866 *5)) (-1060 (-1070) (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *5))))) (-5 *1 (-261 *5)) (-5 *4 (-621 (-375 (-866 *5)))))) (-2528 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 *4)))) (-4 *4 (-419)) (-5 *2 (-578 (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4))))) (-5 *1 (-261 *4)))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 *4)))) (-5 *2 (-866 *4)) (-5 *1 (-261 *4)) (-4 *4 (-419)))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-866 *5)))) (-5 *4 (-1070)) (-5 *2 (-866 *5)) (-5 *1 (-261 *5)) (-4 *5 (-419)))))
-(-10 -7 (-15 -2942 ((-866 |#1|) (-621 (-375 (-866 |#1|))) (-1070))) (-15 -2942 ((-866 |#1|) (-621 (-375 (-866 |#1|))))) (-15 -2528 ((-578 (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (-621 (-375 (-866 |#1|))))) (-15 -1483 ((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))))) (-15 -1556 ((-578 (-621 (-375 (-866 |#1|)))) (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|))) (-621 (-375 (-866 |#1|))) (-701) (-701))) (-15 -1556 ((-578 (-621 (-375 (-866 |#1|)))) (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|)))))) (-621 (-375 (-866 |#1|))))) (-15 -3843 ((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|))))) (-15 -3423 ((-578 (-2 (|:| |eigval| (-3 (-375 (-866 |#1|)) (-1060 (-1070) (-866 |#1|)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 |#1|))))))) (-621 (-375 (-866 |#1|))))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3292 (((-107) $) NIL (|has| |#1| (-21)))) (-3018 (($ $) 22)) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3631 (($ $ $) 93 (|has| |#1| (-267)))) (-2540 (($) NIL (-1405 (|has| |#1| (-21)) (|has| |#1| (-657))) CONST)) (-3108 (($ $) 8 (|has| |#1| (-21)))) (-2766 (((-3 $ "failed") $) 68 (|has| |#1| (-657)))) (-2015 ((|#1| $) 21)) (-2174 (((-3 $ "failed") $) 66 (|has| |#1| (-657)))) (-1355 (((-107) $) NIL (|has| |#1| (-657)))) (-1212 (($ (-1 |#1| |#1|) $) 24)) (-2006 ((|#1| $) 9)) (-2141 (($ $) 57 (|has| |#1| (-21)))) (-3157 (((-3 $ "failed") $) 67 (|has| |#1| (-657)))) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3833 (($ $) 70 (-1405 (|has| |#1| (-331)) (|has| |#1| (-440))))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-4049 (((-578 $) $) 19 (|has| |#1| (-508)))) (-3195 (($ $ $) 34 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 $)) 37 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-1070) |#1|) 27 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 31 (|has| |#1| (-476 (-1070) |#1|)))) (-4022 (($ |#1| |#1|) 17)) (-3613 (((-125)) 88 (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) 85 (|has| |#1| (-820 (-1070))))) (-3097 (($ $ $) NIL (|has| |#1| (-440)))) (-2144 (($ $ $) NIL (|has| |#1| (-440)))) (-3691 (($ (-501)) NIL (|has| |#1| (-959))) (((-107) $) 45 (|has| |#1| (-1001))) (((-786) $) 44 (|has| |#1| (-1001)))) (-3965 (((-701)) 73 (|has| |#1| (-959)))) (-3948 (($ $ (-501)) NIL (|has| |#1| (-440))) (($ $ (-701)) NIL (|has| |#1| (-657))) (($ $ (-839)) NIL (|has| |#1| (-1012)))) (-1850 (($) 55 (|has| |#1| (-21)) CONST)) (-1925 (($) 63 (|has| |#1| (-657)) CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070))))) (-3751 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1001)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) 90 (-1405 (|has| |#1| (-331)) (|has| |#1| (-440))))) (-3797 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-3790 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-501)) NIL (|has| |#1| (-440))) (($ $ (-701)) NIL (|has| |#1| (-657))) (($ $ (-839)) NIL (|has| |#1| (-1012)))) (* (($ $ |#1|) 61 (|has| |#1| (-1012))) (($ |#1| $) 60 (|has| |#1| (-1012))) (($ $ $) 59 (|has| |#1| (-1012))) (($ (-501) $) 76 (|has| |#1| (-21))) (($ (-701) $) NIL (|has| |#1| (-21))) (($ (-839) $) NIL (|has| |#1| (-25)))))
-(((-262 |#1|) (-13 (-1104) (-10 -8 (-15 -3751 ($ |#1| |#1|)) (-15 -4022 ($ |#1| |#1|)) (-15 -3018 ($ $)) (-15 -2006 (|#1| $)) (-15 -2015 (|#1| $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-476 (-1070) |#1|)) (-6 (-476 (-1070) |#1|)) |noBranch|) (IF (|has| |#1| (-1001)) (PROGN (-6 (-1001)) (-6 (-555 (-107))) (IF (|has| |#1| (-278 |#1|)) (PROGN (-15 -3195 ($ $ $)) (-15 -3195 ($ $ (-578 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3790 ($ |#1| $)) (-15 -3790 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2141 ($ $)) (-15 -3108 ($ $)) (-15 -3797 ($ |#1| $)) (-15 -3797 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1012)) (PROGN (-6 (-1012)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-657)) (PROGN (-6 (-657)) (-15 -3157 ((-3 $ "failed") $)) (-15 -2766 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-440)) (PROGN (-6 (-440)) (-15 -3157 ((-3 $ "failed") $)) (-15 -2766 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-6 (-959)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-648 |#1|)) |noBranch|) (IF (|has| |#1| (-508)) (-15 -4049 ((-578 $) $)) |noBranch|) (IF (|has| |#1| (-820 (-1070))) (-6 (-820 (-1070))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-6 (-1156 |#1|)) (-15 -3803 ($ $ $)) (-15 -3833 ($ $))) |noBranch|) (IF (|has| |#1| (-267)) (-15 -3631 ($ $ $)) |noBranch|))) (-1104)) (T -262))
-((-3751 (*1 *1 *2 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-4022 (*1 *1 *2 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-3018 (*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-2006 (*1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-2015 (*1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-262 *3)))) (-3195 (*1 *1 *1 *1) (-12 (-4 *2 (-278 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)) (-5 *1 (-262 *2)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *3))) (-4 *3 (-278 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)) (-5 *1 (-262 *3)))) (-3790 (*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-25)) (-4 *2 (-1104)))) (-3790 (*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-25)) (-4 *2 (-1104)))) (-2141 (*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) (-3108 (*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) (-3797 (*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) (-3797 (*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) (-3157 (*1 *1 *1) (|partial| -12 (-5 *1 (-262 *2)) (-4 *2 (-657)) (-4 *2 (-1104)))) (-2766 (*1 *1 *1) (|partial| -12 (-5 *1 (-262 *2)) (-4 *2 (-657)) (-4 *2 (-1104)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-578 (-262 *3))) (-5 *1 (-262 *3)) (-4 *3 (-508)) (-4 *3 (-1104)))) (-3631 (*1 *1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-267)) (-4 *2 (-1104)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1012)) (-4 *2 (-1104)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1012)) (-4 *2 (-1104)))) (-3803 (*1 *1 *1 *1) (-1405 (-12 (-5 *1 (-262 *2)) (-4 *2 (-331)) (-4 *2 (-1104))) (-12 (-5 *1 (-262 *2)) (-4 *2 (-440)) (-4 *2 (-1104))))) (-3833 (*1 *1 *1) (-1405 (-12 (-5 *1 (-262 *2)) (-4 *2 (-331)) (-4 *2 (-1104))) (-12 (-5 *1 (-262 *2)) (-4 *2 (-440)) (-4 *2 (-1104))))))
-(-13 (-1104) (-10 -8 (-15 -3751 ($ |#1| |#1|)) (-15 -4022 ($ |#1| |#1|)) (-15 -3018 ($ $)) (-15 -2006 (|#1| $)) (-15 -2015 (|#1| $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-476 (-1070) |#1|)) (-6 (-476 (-1070) |#1|)) |noBranch|) (IF (|has| |#1| (-1001)) (PROGN (-6 (-1001)) (-6 (-555 (-107))) (IF (|has| |#1| (-278 |#1|)) (PROGN (-15 -3195 ($ $ $)) (-15 -3195 ($ $ (-578 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3790 ($ |#1| $)) (-15 -3790 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2141 ($ $)) (-15 -3108 ($ $)) (-15 -3797 ($ |#1| $)) (-15 -3797 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1012)) (PROGN (-6 (-1012)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-657)) (PROGN (-6 (-657)) (-15 -3157 ((-3 $ "failed") $)) (-15 -2766 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-440)) (PROGN (-6 (-440)) (-15 -3157 ((-3 $ "failed") $)) (-15 -2766 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-6 (-959)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-648 |#1|)) |noBranch|) (IF (|has| |#1| (-508)) (-15 -4049 ((-578 $) $)) |noBranch|) (IF (|has| |#1| (-820 (-1070))) (-6 (-820 (-1070))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-6 (-1156 |#1|)) (-15 -3803 ($ $ $)) (-15 -3833 ($ $))) |noBranch|) (IF (|has| |#1| (-267)) (-15 -3631 ($ $ $)) |noBranch|)))
-((-1212 (((-262 |#2|) (-1 |#2| |#1|) (-262 |#1|)) 14)))
-(((-263 |#1| |#2|) (-10 -7 (-15 -1212 ((-262 |#2|) (-1 |#2| |#1|) (-262 |#1|)))) (-1104) (-1104)) (T -263))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-262 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-262 *6)) (-5 *1 (-263 *5 *6)))))
-(-10 -7 (-15 -1212 ((-262 |#2|) (-1 |#2| |#1|) (-262 |#1|))))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) NIL)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-264 |#1| |#2|) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) (-1001) (-1001)) (T -264))
-NIL
-(-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167)))
-((-2390 (((-280) (-1053) (-578 (-1053))) 16) (((-280) (-1053) (-1053)) 15) (((-280) (-578 (-1053))) 14) (((-280) (-1053)) 12)))
-(((-265) (-10 -7 (-15 -2390 ((-280) (-1053))) (-15 -2390 ((-280) (-578 (-1053)))) (-15 -2390 ((-280) (-1053) (-1053))) (-15 -2390 ((-280) (-1053) (-578 (-1053)))))) (T -265))
-((-2390 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1053))) (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))) (-2390 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-280)) (-5 *1 (-265)))) (-2390 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))))
-(-10 -7 (-15 -2390 ((-280) (-1053))) (-15 -2390 ((-280) (-578 (-1053)))) (-15 -2390 ((-280) (-1053) (-1053))) (-15 -2390 ((-280) (-1053) (-578 (-1053)))))
-((-3709 (((-578 (-553 $)) $) 28)) (-3631 (($ $ (-262 $)) 80) (($ $ (-578 (-262 $))) 120) (($ $ (-578 (-553 $)) (-578 $)) NIL)) (-3765 (((-3 (-553 $) "failed") $) 110)) (-3490 (((-553 $) $) 109)) (-2446 (($ $) 19) (($ (-578 $)) 54)) (-2389 (((-578 (-108)) $) 37)) (-1853 (((-108) (-108)) 90)) (-3729 (((-107) $) 128)) (-1212 (($ (-1 $ $) (-553 $)) 88)) (-2789 (((-3 (-553 $) "failed") $) 92)) (-3136 (($ (-108) $) 60) (($ (-108) (-578 $)) 98)) (-3109 (((-107) $ (-108)) 114) (((-107) $ (-1070)) 113)) (-2696 (((-701) $) 45)) (-2816 (((-107) $ $) 58) (((-107) $ (-1070)) 49)) (-3172 (((-107) $) 126)) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL) (($ $ (-578 (-262 $))) 118) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) 83) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) 68) (($ $ (-1070) (-1 $ $)) 74) (($ $ (-578 (-108)) (-578 (-1 $ $))) 82) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) 84) (($ $ (-108) (-1 $ (-578 $))) 70) (($ $ (-108) (-1 $ $)) 76)) (-2007 (($ (-108) $) 61) (($ (-108) $ $) 62) (($ (-108) $ $ $) 63) (($ (-108) $ $ $ $) 64) (($ (-108) (-578 $)) 106)) (-4106 (($ $) 51) (($ $ $) 116)) (-1831 (($ $) 17) (($ (-578 $)) 53)) (-3811 (((-107) (-108)) 22)))
-(((-266 |#1|) (-10 -8 (-15 -3729 ((-107) |#1|)) (-15 -3172 ((-107) |#1|)) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| |#1|)))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| |#1|)))) (-15 -2816 ((-107) |#1| (-1070))) (-15 -2816 ((-107) |#1| |#1|)) (-15 -1212 (|#1| (-1 |#1| |#1|) (-553 |#1|))) (-15 -3136 (|#1| (-108) (-578 |#1|))) (-15 -3136 (|#1| (-108) |#1|)) (-15 -3109 ((-107) |#1| (-1070))) (-15 -3109 ((-107) |#1| (-108))) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -2389 ((-578 (-108)) |#1|)) (-15 -3709 ((-578 (-553 |#1|)) |#1|)) (-15 -2789 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -2696 ((-701) |#1|)) (-15 -4106 (|#1| |#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2446 (|#1| (-578 |#1|))) (-15 -2446 (|#1| |#1|)) (-15 -1831 (|#1| (-578 |#1|))) (-15 -1831 (|#1| |#1|)) (-15 -3631 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3631 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3631 (|#1| |#1| (-262 |#1|))) (-15 -2007 (|#1| (-108) (-578 |#1|))) (-15 -2007 (|#1| (-108) |#1| |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-553 |#1|) |#1|)) (-15 -3490 ((-553 |#1|) |#1|)) (-15 -3765 ((-3 (-553 |#1|) "failed") |#1|))) (-267)) (T -266))
-((-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-266 *3)) (-4 *3 (-267)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-107)) (-5 *1 (-266 *4)) (-4 *4 (-267)))))
-(-10 -8 (-15 -3729 ((-107) |#1|)) (-15 -3172 ((-107) |#1|)) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| |#1|)))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| |#1|)))) (-15 -2816 ((-107) |#1| (-1070))) (-15 -2816 ((-107) |#1| |#1|)) (-15 -1212 (|#1| (-1 |#1| |#1|) (-553 |#1|))) (-15 -3136 (|#1| (-108) (-578 |#1|))) (-15 -3136 (|#1| (-108) |#1|)) (-15 -3109 ((-107) |#1| (-1070))) (-15 -3109 ((-107) |#1| (-108))) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -2389 ((-578 (-108)) |#1|)) (-15 -3709 ((-578 (-553 |#1|)) |#1|)) (-15 -2789 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -2696 ((-701) |#1|)) (-15 -4106 (|#1| |#1| |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2446 (|#1| (-578 |#1|))) (-15 -2446 (|#1| |#1|)) (-15 -1831 (|#1| (-578 |#1|))) (-15 -1831 (|#1| |#1|)) (-15 -3631 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3631 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3631 (|#1| |#1| (-262 |#1|))) (-15 -2007 (|#1| (-108) (-578 |#1|))) (-15 -2007 (|#1| (-108) |#1| |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-553 |#1|) |#1|)) (-15 -3490 ((-553 |#1|) |#1|)) (-15 -3765 ((-3 (-553 |#1|) "failed") |#1|)))
-((-3736 (((-107) $ $) 7)) (-3709 (((-578 (-553 $)) $) 47)) (-3631 (($ $ (-262 $)) 59) (($ $ (-578 (-262 $))) 58) (($ $ (-578 (-553 $)) (-578 $)) 57)) (-3765 (((-3 (-553 $) "failed") $) 72)) (-3490 (((-553 $) $) 71)) (-2446 (($ $) 54) (($ (-578 $)) 53)) (-2389 (((-578 (-108)) $) 46)) (-1853 (((-108) (-108)) 45)) (-3729 (((-107) $) 25 (|has| $ (-950 (-501))))) (-1983 (((-1064 $) (-553 $)) 28 (|has| $ (-959)))) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-1212 (($ (-1 $ $) (-553 $)) 39)) (-2789 (((-3 (-553 $) "failed") $) 49)) (-3460 (((-1053) $) 9)) (-3724 (((-578 (-553 $)) $) 48)) (-3136 (($ (-108) $) 41) (($ (-108) (-578 $)) 40)) (-3109 (((-107) $ (-108)) 43) (((-107) $ (-1070)) 42)) (-2696 (((-701) $) 50)) (-3708 (((-1018) $) 10)) (-2816 (((-107) $ $) 38) (((-107) $ (-1070)) 37)) (-3172 (((-107) $) 26 (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) 70) (($ $ (-578 (-553 $)) (-578 $)) 69) (($ $ (-578 (-262 $))) 68) (($ $ (-262 $)) 67) (($ $ $ $) 66) (($ $ (-578 $) (-578 $)) 65) (($ $ (-578 (-1070)) (-578 (-1 $ $))) 36) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) 35) (($ $ (-1070) (-1 $ (-578 $))) 34) (($ $ (-1070) (-1 $ $)) 33) (($ $ (-578 (-108)) (-578 (-1 $ $))) 32) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) 31) (($ $ (-108) (-1 $ (-578 $))) 30) (($ $ (-108) (-1 $ $)) 29)) (-2007 (($ (-108) $) 64) (($ (-108) $ $) 63) (($ (-108) $ $ $) 62) (($ (-108) $ $ $ $) 61) (($ (-108) (-578 $)) 60)) (-4106 (($ $) 52) (($ $ $) 51)) (-2264 (($ $) 27 (|has| $ (-959)))) (-3691 (((-786) $) 11) (($ (-553 $)) 73)) (-1831 (($ $) 56) (($ (-578 $)) 55)) (-3811 (((-107) (-108)) 44)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)))
-(((-267) (-1180)) (T -267))
-((-2007 (*1 *1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-2007 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-2007 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-2007 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 *1)) (-4 *1 (-267)))) (-3631 (*1 *1 *1 *2) (-12 (-5 *2 (-262 *1)) (-4 *1 (-267)))) (-3631 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *1))) (-4 *1 (-267)))) (-3631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-553 *1))) (-5 *3 (-578 *1)) (-4 *1 (-267)))) (-1831 (*1 *1 *1) (-4 *1 (-267))) (-1831 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-267)))) (-2446 (*1 *1 *1) (-4 *1 (-267))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-267)))) (-4106 (*1 *1 *1) (-4 *1 (-267))) (-4106 (*1 *1 *1 *1) (-4 *1 (-267))) (-2696 (*1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-701)))) (-2789 (*1 *2 *1) (|partial| -12 (-5 *2 (-553 *1)) (-4 *1 (-267)))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-578 (-553 *1))) (-4 *1 (-267)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-578 (-553 *1))) (-4 *1 (-267)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-578 (-108))))) (-1853 (*1 *2 *2) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-3811 (*1 *2 *3) (-12 (-4 *1 (-267)) (-5 *3 (-108)) (-5 *2 (-107)))) (-3109 (*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-108)) (-5 *2 (-107)))) (-3109 (*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-1070)) (-5 *2 (-107)))) (-3136 (*1 *1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) (-3136 (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 *1)) (-4 *1 (-267)))) (-1212 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-553 *1)) (-4 *1 (-267)))) (-2816 (*1 *2 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-107)))) (-2816 (*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-1070)) (-5 *2 (-107)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1 *1 *1)) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-267)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *1 *1)) (-4 *1 (-267)))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-553 *1)) (-4 *1 (-959)) (-4 *1 (-267)) (-5 *2 (-1064 *1)))) (-2264 (*1 *1 *1) (-12 (-4 *1 (-959)) (-4 *1 (-267)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-950 (-501))) (-4 *1 (-267)) (-5 *2 (-107)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-950 (-501))) (-4 *1 (-267)) (-5 *2 (-107)))))
-(-13 (-777) (-950 (-553 $)) (-476 (-553 $) $) (-278 $) (-10 -8 (-15 -2007 ($ (-108) $)) (-15 -2007 ($ (-108) $ $)) (-15 -2007 ($ (-108) $ $ $)) (-15 -2007 ($ (-108) $ $ $ $)) (-15 -2007 ($ (-108) (-578 $))) (-15 -3631 ($ $ (-262 $))) (-15 -3631 ($ $ (-578 (-262 $)))) (-15 -3631 ($ $ (-578 (-553 $)) (-578 $))) (-15 -1831 ($ $)) (-15 -1831 ($ (-578 $))) (-15 -2446 ($ $)) (-15 -2446 ($ (-578 $))) (-15 -4106 ($ $)) (-15 -4106 ($ $ $)) (-15 -2696 ((-701) $)) (-15 -2789 ((-3 (-553 $) "failed") $)) (-15 -3724 ((-578 (-553 $)) $)) (-15 -3709 ((-578 (-553 $)) $)) (-15 -2389 ((-578 (-108)) $)) (-15 -1853 ((-108) (-108))) (-15 -3811 ((-107) (-108))) (-15 -3109 ((-107) $ (-108))) (-15 -3109 ((-107) $ (-1070))) (-15 -3136 ($ (-108) $)) (-15 -3136 ($ (-108) (-578 $))) (-15 -1212 ($ (-1 $ $) (-553 $))) (-15 -2816 ((-107) $ $)) (-15 -2816 ((-107) $ (-1070))) (-15 -3195 ($ $ (-578 (-1070)) (-578 (-1 $ $)))) (-15 -3195 ($ $ (-578 (-1070)) (-578 (-1 $ (-578 $))))) (-15 -3195 ($ $ (-1070) (-1 $ (-578 $)))) (-15 -3195 ($ $ (-1070) (-1 $ $))) (-15 -3195 ($ $ (-578 (-108)) (-578 (-1 $ $)))) (-15 -3195 ($ $ (-578 (-108)) (-578 (-1 $ (-578 $))))) (-15 -3195 ($ $ (-108) (-1 $ (-578 $)))) (-15 -3195 ($ $ (-108) (-1 $ $))) (IF (|has| $ (-959)) (PROGN (-15 -1983 ((-1064 $) (-553 $))) (-15 -2264 ($ $))) |noBranch|) (IF (|has| $ (-950 (-501))) (PROGN (-15 -3172 ((-107) $)) (-15 -3729 ((-107) $))) |noBranch|)))
-(((-97) . T) ((-555 (-786)) . T) ((-278 $) . T) ((-476 (-553 $) $) . T) ((-476 $ $) . T) ((-777) . T) ((-950 (-553 $)) . T) ((-1001) . T))
-((-1212 ((|#2| (-1 |#2| |#1|) (-1053) (-553 |#1|)) 17)))
-(((-268 |#1| |#2|) (-10 -7 (-15 -1212 (|#2| (-1 |#2| |#1|) (-1053) (-553 |#1|)))) (-267) (-1104)) (T -268))
-((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1053)) (-5 *5 (-553 *6)) (-4 *6 (-267)) (-4 *2 (-1104)) (-5 *1 (-268 *6 *2)))))
-(-10 -7 (-15 -1212 (|#2| (-1 |#2| |#1|) (-1053) (-553 |#1|))))
-((-1212 ((|#2| (-1 |#2| |#1|) (-553 |#1|)) 17)))
-(((-269 |#1| |#2|) (-10 -7 (-15 -1212 (|#2| (-1 |#2| |#1|) (-553 |#1|)))) (-267) (-267)) (T -269))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-553 *5)) (-4 *5 (-267)) (-4 *2 (-267)) (-5 *1 (-269 *5 *2)))))
-(-10 -7 (-15 -1212 (|#2| (-1 |#2| |#1|) (-553 |#1|))))
-((-3588 (((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199)))) 88)) (-2206 (((-1048 (-199)) (-1148 (-282 (-199))) (-578 (-1070)) (-991 (-769 (-199)))) 103) (((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199)))) 58)) (-2077 (((-578 (-1053)) (-1048 (-199))) NIL)) (-2094 (((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199)))) 55)) (-3944 (((-578 (-199)) (-866 (-375 (-501))) (-1070) (-991 (-769 (-199)))) 47)) (-3148 (((-578 (-1053)) (-578 (-199))) NIL)) (-3516 (((-199) (-991 (-769 (-199)))) 23)) (-2254 (((-199) (-991 (-769 (-199)))) 24)) (-3472 (((-107) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-3630 (((-1053) (-199)) NIL)))
-(((-270) (-10 -7 (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -3472 ((-107) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2094 ((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199))))) (-15 -3588 ((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-1148 (-282 (-199))) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -3944 ((-578 (-199)) (-866 (-375 (-501))) (-1070) (-991 (-769 (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))))) (T -270))
-((-2077 (*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-270)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-270)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-270)))) (-3944 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-270)))) (-2206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))) (-2206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))) (-3588 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))) (-2094 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-270)))) (-3472 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-270)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-270)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-270)))))
-(-10 -7 (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -3472 ((-107) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2094 ((-578 (-199)) (-282 (-199)) (-1070) (-991 (-769 (-199))))) (-15 -3588 ((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-282 (-199)) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -2206 ((-1048 (-199)) (-1148 (-282 (-199))) (-578 (-1070)) (-991 (-769 (-199))))) (-15 -3944 ((-578 (-199)) (-866 (-375 (-501))) (-1070) (-991 (-769 (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))))
-((-2409 (((-107) (-199)) 10)))
-(((-271 |#1| |#2|) (-10 -7 (-15 -2409 ((-107) (-199)))) (-199) (-199)) (T -271))
-((-2409 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-271 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -2409 ((-107) (-199))))
-((-3619 (((-1148 (-282 (-346))) (-1148 (-282 (-199)))) 105)) (-1615 (((-991 (-769 (-199))) (-991 (-769 (-346)))) 39)) (-2077 (((-578 (-1053)) (-1048 (-199))) 87)) (-3059 (((-282 (-346)) (-866 (-199))) 49)) (-1555 (((-199) (-866 (-199))) 45)) (-1517 (((-1053) (-346)) 167)) (-3057 (((-769 (-199)) (-769 (-346))) 33)) (-1637 (((-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501))) (-1148 (-282 (-199)))) 142)) (-3358 (((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) 180) (((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) 178)) (-2978 (((-621 (-199)) (-578 (-199)) (-701)) 13)) (-3456 (((-1148 (-630)) (-578 (-199))) 94)) (-3148 (((-578 (-1053)) (-578 (-199))) 74)) (-2671 (((-3 (-282 (-199)) "failed") (-282 (-199))) 120)) (-2409 (((-107) (-199) (-991 (-769 (-199)))) 109)) (-1649 (((-948) (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) 198)) (-3516 (((-199) (-991 (-769 (-199)))) 107)) (-2254 (((-199) (-991 (-769 (-199)))) 108)) (-3406 (((-199) (-375 (-501))) 26)) (-3024 (((-1053) (-346)) 72)) (-2348 (((-199) (-346)) 17)) (-1445 (((-346) (-1148 (-282 (-199)))) 153)) (-2314 (((-282 (-199)) (-282 (-346))) 23)) (-1484 (((-375 (-501)) (-282 (-199))) 52)) (-3003 (((-282 (-375 (-501))) (-282 (-199))) 68)) (-2403 (((-282 (-346)) (-282 (-199))) 98)) (-2288 (((-199) (-282 (-199))) 53)) (-3923 (((-578 (-199)) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) 63)) (-2979 (((-991 (-769 (-199))) (-991 (-769 (-199)))) 60)) (-3630 (((-1053) (-199)) 71)) (-3308 (((-630) (-199)) 90)) (-3444 (((-375 (-501)) (-199)) 54)) (-2379 (((-282 (-346)) (-199)) 48)) (-1248 (((-578 (-991 (-769 (-199)))) (-578 (-991 (-769 (-346))))) 42)) (-3934 (((-948) (-578 (-948))) 163) (((-948) (-948) (-948)) 160)) (-3884 (((-948) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
-(((-272) (-10 -7 (-15 -2348 ((-199) (-346))) (-15 -2314 ((-282 (-199)) (-282 (-346)))) (-15 -3057 ((-769 (-199)) (-769 (-346)))) (-15 -1615 ((-991 (-769 (-199))) (-991 (-769 (-346))))) (-15 -1248 ((-578 (-991 (-769 (-199)))) (-578 (-991 (-769 (-346)))))) (-15 -3444 ((-375 (-501)) (-199))) (-15 -1484 ((-375 (-501)) (-282 (-199)))) (-15 -2288 ((-199) (-282 (-199)))) (-15 -2671 ((-3 (-282 (-199)) "failed") (-282 (-199)))) (-15 -1445 ((-346) (-1148 (-282 (-199))))) (-15 -1637 ((-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501))) (-1148 (-282 (-199))))) (-15 -3003 ((-282 (-375 (-501))) (-282 (-199)))) (-15 -2979 ((-991 (-769 (-199))) (-991 (-769 (-199))))) (-15 -3923 ((-578 (-199)) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-15 -3308 ((-630) (-199))) (-15 -3456 ((-1148 (-630)) (-578 (-199)))) (-15 -2403 ((-282 (-346)) (-282 (-199)))) (-15 -3619 ((-1148 (-282 (-346))) (-1148 (-282 (-199))))) (-15 -2409 ((-107) (-199) (-991 (-769 (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3024 ((-1053) (-346))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))) (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -3934 ((-948) (-948) (-948))) (-15 -3934 ((-948) (-578 (-948)))) (-15 -1517 ((-1053) (-346))) (-15 -3358 ((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))))) (-15 -3358 ((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))))) (-15 -3884 ((-948) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1649 ((-948) (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))) (-15 -3059 ((-282 (-346)) (-866 (-199)))) (-15 -1555 ((-199) (-866 (-199)))) (-15 -2379 ((-282 (-346)) (-199))) (-15 -3406 ((-199) (-375 (-501)))) (-15 -2978 ((-621 (-199)) (-578 (-199)) (-701))))) (T -272))
-((-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-701)) (-5 *2 (-621 (-199))) (-5 *1 (-272)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-375 (-501))) (-5 *2 (-199)) (-5 *1 (-272)))) (-2379 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-282 (-346))) (-5 *1 (-272)))) (-1555 (*1 *2 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-199)) (-5 *1 (-272)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-282 (-346))) (-5 *1 (-272)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) (-5 *2 (-948)) (-5 *1 (-272)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-948)) (-5 *1 (-272)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *2 (-948)) (-5 *1 (-272)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *2 (-948)) (-5 *1 (-272)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1053)) (-5 *1 (-272)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-578 (-948))) (-5 *2 (-948)) (-5 *1 (-272)))) (-3934 (*1 *2 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-272)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-272)))) (-3516 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-272)))) (-2077 (*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-272)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-272)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1053)) (-5 *1 (-272)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-272)))) (-2409 (*1 *2 *3 *4) (-12 (-5 *4 (-991 (-769 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-272)))) (-3619 (*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-1148 (-282 (-346)))) (-5 *1 (-272)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-282 (-346))) (-5 *1 (-272)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1148 (-630))) (-5 *1 (-272)))) (-3308 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-630)) (-5 *1 (-272)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *2 (-578 (-199))) (-5 *1 (-272)))) (-2979 (*1 *2 *2) (-12 (-5 *2 (-991 (-769 (-199)))) (-5 *1 (-272)))) (-3003 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-282 (-375 (-501)))) (-5 *1 (-272)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501)))) (-5 *1 (-272)))) (-1445 (*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-346)) (-5 *1 (-272)))) (-2671 (*1 *2 *2) (|partial| -12 (-5 *2 (-282 (-199))) (-5 *1 (-272)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-199)) (-5 *1 (-272)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-375 (-501))) (-5 *1 (-272)))) (-3444 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-375 (-501))) (-5 *1 (-272)))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-578 (-991 (-769 (-346))))) (-5 *2 (-578 (-991 (-769 (-199))))) (-5 *1 (-272)))) (-1615 (*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-346)))) (-5 *2 (-991 (-769 (-199)))) (-5 *1 (-272)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-769 (-346))) (-5 *2 (-769 (-199))) (-5 *1 (-272)))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-282 (-346))) (-5 *2 (-282 (-199))) (-5 *1 (-272)))) (-2348 (*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-199)) (-5 *1 (-272)))))
-(-10 -7 (-15 -2348 ((-199) (-346))) (-15 -2314 ((-282 (-199)) (-282 (-346)))) (-15 -3057 ((-769 (-199)) (-769 (-346)))) (-15 -1615 ((-991 (-769 (-199))) (-991 (-769 (-346))))) (-15 -1248 ((-578 (-991 (-769 (-199)))) (-578 (-991 (-769 (-346)))))) (-15 -3444 ((-375 (-501)) (-199))) (-15 -1484 ((-375 (-501)) (-282 (-199)))) (-15 -2288 ((-199) (-282 (-199)))) (-15 -2671 ((-3 (-282 (-199)) "failed") (-282 (-199)))) (-15 -1445 ((-346) (-1148 (-282 (-199))))) (-15 -1637 ((-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501))) (-1148 (-282 (-199))))) (-15 -3003 ((-282 (-375 (-501))) (-282 (-199)))) (-15 -2979 ((-991 (-769 (-199))) (-991 (-769 (-199))))) (-15 -3923 ((-578 (-199)) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-15 -3308 ((-630) (-199))) (-15 -3456 ((-1148 (-630)) (-578 (-199)))) (-15 -2403 ((-282 (-346)) (-282 (-199)))) (-15 -3619 ((-1148 (-282 (-346))) (-1148 (-282 (-199))))) (-15 -2409 ((-107) (-199) (-991 (-769 (-199))))) (-15 -3630 ((-1053) (-199))) (-15 -3024 ((-1053) (-346))) (-15 -3148 ((-578 (-1053)) (-578 (-199)))) (-15 -2077 ((-578 (-1053)) (-1048 (-199)))) (-15 -3516 ((-199) (-991 (-769 (-199))))) (-15 -2254 ((-199) (-991 (-769 (-199))))) (-15 -3934 ((-948) (-948) (-948))) (-15 -3934 ((-948) (-578 (-948)))) (-15 -1517 ((-1053) (-346))) (-15 -3358 ((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))))) (-15 -3358 ((-948) (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))))) (-15 -3884 ((-948) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1649 ((-948) (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))) (-15 -3059 ((-282 (-346)) (-866 (-199)))) (-15 -1555 ((-199) (-866 (-199)))) (-15 -2379 ((-282 (-346)) (-199))) (-15 -3406 ((-199) (-375 (-501)))) (-15 -2978 ((-621 (-199)) (-578 (-199)) (-701))))
-((-2018 (((-578 |#1|) (-578 |#1|)) 10)))
-(((-273 |#1|) (-10 -7 (-15 -2018 ((-578 |#1|) (-578 |#1|)))) (-775)) (T -273))
-((-2018 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-775)) (-5 *1 (-273 *3)))))
-(-10 -7 (-15 -2018 ((-578 |#1|) (-578 |#1|))))
-((-1212 (((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|)) 15)))
-(((-274 |#1| |#2|) (-10 -7 (-15 -1212 ((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|)))) (-959) (-959)) (T -274))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-621 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-621 *6)) (-5 *1 (-274 *5 *6)))))
-(-10 -7 (-15 -1212 ((-621 |#2|) (-1 |#2| |#1|) (-621 |#1|))))
-((-2781 (((-107) $ $) 11)) (-3023 (($ $ $) 15)) (-3034 (($ $ $) 14)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 43)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-3664 (($ $ $) 20) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-3694 (((-3 $ "failed") $ $) 17)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 45)))
-(((-275 |#1|) (-10 -8 (-15 -1234 ((-3 (-578 |#1|) "failed") (-578 |#1|) |#1|)) (-15 -3776 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3776 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| |#1|)) (-15 -2781 ((-107) |#1| |#1|)) (-15 -2648 ((-3 (-578 |#1|) "failed") (-578 |#1|) |#1|)) (-15 -3730 ((-2 (|:| -3189 (-578 |#1|)) (|:| -3987 |#1|)) (-578 |#1|))) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|))) (-276)) (T -275))
-NIL
-(-10 -8 (-15 -1234 ((-3 (-578 |#1|) "failed") (-578 |#1|) |#1|)) (-15 -3776 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3776 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -3023 (|#1| |#1| |#1|)) (-15 -3034 (|#1| |#1| |#1|)) (-15 -2781 ((-107) |#1| |#1|)) (-15 -2648 ((-3 (-578 |#1|) "failed") (-578 |#1|) |#1|)) (-15 -3730 ((-2 (|:| -3189 (-578 |#1|)) (|:| -3987 |#1|)) (-578 |#1|))) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-276) (-1180)) (T -276))
-((-2781 (*1 *2 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-107)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-701)))) (-2419 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-276)))) (-3034 (*1 *1 *1 *1) (-4 *1 (-276))) (-3023 (*1 *1 *1 *1) (-4 *1 (-276))) (-3776 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-276)))) (-3776 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-276)))) (-1234 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-276)))))
-(-13 (-841) (-10 -8 (-15 -2781 ((-107) $ $)) (-15 -1864 ((-701) $)) (-15 -2419 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3034 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3776 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $)) (-15 -3776 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1234 ((-3 (-578 $) "failed") (-578 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3195 (($ $ (-578 |#2|) (-578 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-262 |#2|)) 11) (($ $ (-578 (-262 |#2|))) NIL)))
-(((-277 |#1| |#2|) (-10 -8 (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|)))) (-278 |#2|) (-1001)) (T -277))
-NIL
-(-10 -8 (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|))))
-((-3195 (($ $ (-578 |#1|) (-578 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-262 |#1|)) 11) (($ $ (-578 (-262 |#1|))) 10)))
-(((-278 |#1|) (-1180) (-1001)) (T -278))
-((-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-262 *3)) (-4 *1 (-278 *3)) (-4 *3 (-1001)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *3))) (-4 *1 (-278 *3)) (-4 *3 (-1001)))))
-(-13 (-476 |t#1| |t#1|) (-10 -8 (-15 -3195 ($ $ (-262 |t#1|))) (-15 -3195 ($ $ (-578 (-262 |t#1|))))))
-(((-476 |#1| |#1|) . T))
-((-3195 ((|#1| (-1 |#1| (-501)) (-1072 (-375 (-501)))) 24)))
-(((-279 |#1|) (-10 -7 (-15 -3195 (|#1| (-1 |#1| (-501)) (-1072 (-375 (-501)))))) (-37 (-375 (-501)))) (T -279))
-((-3195 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-501))) (-5 *4 (-1072 (-375 (-501)))) (-5 *1 (-279 *2)) (-4 *2 (-37 (-375 (-501)))))))
-(-10 -7 (-15 -3195 (|#1| (-1 |#1| (-501)) (-1072 (-375 (-501))))))
-((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 7)) (-3751 (((-107) $ $) 9)))
-(((-280) (-1001)) (T -280))
-NIL
-(-1001)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 62)) (-2197 (((-1136 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1136 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-501)))) (((-3 (-1130 |#2| |#3| |#4|) "failed") $) 24)) (-3490 (((-1136 |#1| |#2| |#3| |#4|) $) NIL) (((-1070) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-501)))) (((-501) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-501)))) (((-1130 |#2| |#3| |#4|) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-1136 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1148 (-1136 |#1| |#2| |#3| |#4|)))) (-621 $) (-1148 $)) NIL) (((-621 (-1136 |#1| |#2| |#3| |#4|)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-1136 |#1| |#2| |#3| |#4|) $) 21)) (-3493 (((-3 $ "failed") $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-1046)))) (-4067 (((-107) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-1323 (($ $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-1212 (($ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) $) NIL)) (-2533 (((-3 (-769 |#2|) "failed") $) 76)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-276)))) (-3383 (((-1136 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-1136 |#1| |#2| |#3| |#4|)) (-578 (-1136 |#1| |#2| |#3| |#4|))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-262 (-1136 |#1| |#2| |#3| |#4|))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-578 (-262 (-1136 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-278 (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-578 (-1070)) (-578 (-1136 |#1| |#2| |#3| |#4|))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-476 (-1070) (-1136 |#1| |#2| |#3| |#4|)))) (($ $ (-1070) (-1136 |#1| |#2| |#3| |#4|)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-476 (-1070) (-1136 |#1| |#2| |#3| |#4|))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-1136 |#1| |#2| |#3| |#4|)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-256 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-206))) (($ $ (-701)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-206))) (($ $ (-1070)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) (-701)) NIL) (($ $ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-1136 |#1| |#2| |#3| |#4|) $) 17)) (-1248 (((-810 (-501)) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-556 (-490)))) (((-346) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-933))) (((-199) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-1136 |#1| |#2| |#3| |#4|) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-1136 |#1| |#2| |#3| |#4|)) 28) (($ (-1070)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-950 (-1070)))) (($ (-1130 |#2| |#3| |#4|)) 36)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-1136 |#1| |#2| |#3| |#4|) (-830))) (|has| (-1136 |#1| |#2| |#3| |#4|) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-1136 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 41 T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-206))) (($ $ (-701)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-206))) (($ $ (-1070)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-820 (-1070)))) (($ $ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) (-701)) NIL) (($ $ (-1 (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-1136 |#1| |#2| |#3| |#4|) (-777)))) (-3803 (($ $ $) 33) (($ (-1136 |#1| |#2| |#3| |#4|) (-1136 |#1| |#2| |#3| |#4|)) 30)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-1136 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1136 |#1| |#2| |#3| |#4|)) NIL)))
-(((-281 |#1| |#2| |#3| |#4|) (-13 (-906 (-1136 |#1| |#2| |#3| |#4|)) (-950 (-1130 |#2| |#3| |#4|)) (-10 -8 (-15 -2533 ((-3 (-769 |#2|) "failed") $)) (-15 -3691 ($ (-1130 |#2| |#3| |#4|))))) (-13 (-777) (-950 (-501)) (-577 (-501)) (-419)) (-13 (-27) (-1090) (-389 |#1|)) (-1070) |#2|) (T -281))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1130 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4) (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *1 (-281 *3 *4 *5 *6)))) (-2533 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-769 *4)) (-5 *1 (-281 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4))))
-(-13 (-906 (-1136 |#1| |#2| |#3| |#4|)) (-950 (-1130 |#2| |#3| |#4|)) (-10 -8 (-15 -2533 ((-3 (-769 |#2|) "failed") $)) (-15 -3691 ($ (-1130 |#2| |#3| |#4|)))))
-((-3736 (((-107) $ $) NIL)) (-3588 (((-578 $) $ (-1070)) NIL (|has| |#1| (-508))) (((-578 $) $) NIL (|has| |#1| (-508))) (((-578 $) (-1064 $) (-1070)) NIL (|has| |#1| (-508))) (((-578 $) (-1064 $)) NIL (|has| |#1| (-508))) (((-578 $) (-866 $)) NIL (|has| |#1| (-508)))) (-3448 (($ $ (-1070)) NIL (|has| |#1| (-508))) (($ $) NIL (|has| |#1| (-508))) (($ (-1064 $) (-1070)) NIL (|has| |#1| (-508))) (($ (-1064 $)) NIL (|has| |#1| (-508))) (($ (-866 $)) NIL (|has| |#1| (-508)))) (-3292 (((-107) $) 27 (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (-3800 (((-578 (-1070)) $) 344)) (-3728 (((-375 (-1064 $)) $ (-553 $)) NIL (|has| |#1| (-508)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3709 (((-578 (-553 $)) $) NIL)) (-3978 (($ $) 154 (|has| |#1| (-508)))) (-3937 (($ $) 130 (|has| |#1| (-508)))) (-3977 (($ $ (-993 $)) 215 (|has| |#1| (-508))) (($ $ (-1070)) 211 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL (-1405 (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) 360) (($ $ (-578 (-553 $)) (-578 $)) 403)) (-3324 (((-373 (-1064 $)) (-1064 $)) 288 (-12 (|has| |#1| (-419)) (|has| |#1| (-508))))) (-3676 (($ $) NIL (|has| |#1| (-508)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-508)))) (-3743 (($ $) NIL (|has| |#1| (-508)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3970 (($ $) 150 (|has| |#1| (-508)))) (-3929 (($ $) 126 (|has| |#1| (-508)))) (-1384 (($ $ (-501)) 64 (|has| |#1| (-508)))) (-3984 (($ $) 158 (|has| |#1| (-508)))) (-3945 (($ $) 134 (|has| |#1| (-508)))) (-2540 (($) NIL (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))) CONST)) (-1271 (((-578 $) $ (-1070)) NIL (|has| |#1| (-508))) (((-578 $) $) NIL (|has| |#1| (-508))) (((-578 $) (-1064 $) (-1070)) NIL (|has| |#1| (-508))) (((-578 $) (-1064 $)) NIL (|has| |#1| (-508))) (((-578 $) (-866 $)) NIL (|has| |#1| (-508)))) (-2899 (($ $ (-1070)) NIL (|has| |#1| (-508))) (($ $) NIL (|has| |#1| (-508))) (($ (-1064 $) (-1070)) 117 (|has| |#1| (-508))) (($ (-1064 $)) NIL (|has| |#1| (-508))) (($ (-866 $)) NIL (|has| |#1| (-508)))) (-3765 (((-3 (-553 $) "failed") $) 17) (((-3 (-1070) "failed") $) NIL) (((-3 |#1| "failed") $) 412) (((-3 (-47) "failed") $) 317 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-866 |#1|)) "failed") $) NIL (|has| |#1| (-508))) (((-3 (-866 |#1|) "failed") $) NIL (|has| |#1| (-959))) (((-3 (-375 (-501)) "failed") $) 45 (-1405 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-3490 (((-553 $) $) 11) (((-1070) $) NIL) ((|#1| $) 394) (((-47) $) NIL (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-866 |#1|)) $) NIL (|has| |#1| (-508))) (((-866 |#1|) $) NIL (|has| |#1| (-959))) (((-375 (-501)) $) 301 (-1405 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-3023 (($ $ $) NIL (|has| |#1| (-508)))) (-3868 (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 110 (|has| |#1| (-959))) (((-621 |#1|) (-621 $)) 102 (|has| |#1| (-959))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (-3547 (($ $) 84 (|has| |#1| (-508)))) (-2174 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))))) (-3034 (($ $ $) NIL (|has| |#1| (-508)))) (-1758 (($ $ (-993 $)) 219 (|has| |#1| (-508))) (($ $ (-1070)) 217 (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-508)))) (-1628 (((-107) $) NIL (|has| |#1| (-508)))) (-2726 (($ $ $) 185 (|has| |#1| (-508)))) (-2003 (($) 120 (|has| |#1| (-508)))) (-2940 (($ $ $) 205 (|has| |#1| (-508)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 366 (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 372 (|has| |#1| (-806 (-346))))) (-2446 (($ $) NIL) (($ (-578 $)) NIL)) (-2389 (((-578 (-108)) $) NIL)) (-1853 (((-108) (-108)) 260)) (-1355 (((-107) $) 25 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))))) (-3729 (((-107) $) NIL (|has| $ (-950 (-501))))) (-2117 (($ $) 66 (|has| |#1| (-959)))) (-2946 (((-1023 |#1| (-553 $)) $) 79 (|has| |#1| (-959)))) (-2925 (((-107) $) 46 (|has| |#1| (-508)))) (-1342 (($ $ (-501)) NIL (|has| |#1| (-508)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-508)))) (-1983 (((-1064 $) (-553 $)) 261 (|has| $ (-959)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 $ $) (-553 $)) 399)) (-2789 (((-3 (-553 $) "failed") $) NIL)) (-1635 (($ $) 124 (|has| |#1| (-508)))) (-2586 (($ $) 230 (|has| |#1| (-508)))) (-1697 (($ (-578 $)) NIL (|has| |#1| (-508))) (($ $ $) NIL (|has| |#1| (-508)))) (-3460 (((-1053) $) NIL)) (-3724 (((-578 (-553 $)) $) 48)) (-3136 (($ (-108) $) NIL) (($ (-108) (-578 $)) 404)) (-2948 (((-3 (-578 $) "failed") $) NIL (|has| |#1| (-1012)))) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $) NIL (|has| |#1| (-959)))) (-1285 (((-3 (-578 $) "failed") $) 407 (|has| |#1| (-25)))) (-3475 (((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $) 411 (|has| |#1| (-25)))) (-2551 (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $) NIL (|has| |#1| (-1012))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108)) NIL (|has| |#1| (-959))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070)) NIL (|has| |#1| (-959)))) (-3109 (((-107) $ (-108)) NIL) (((-107) $ (-1070)) 52)) (-3833 (($ $) NIL (-1405 (|has| |#1| (-440)) (|has| |#1| (-508))))) (-3028 (($ $ (-1070)) 234 (|has| |#1| (-508))) (($ $ (-993 $)) 236 (|has| |#1| (-508)))) (-2696 (((-701) $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 43)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 281 (|has| |#1| (-508)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-508))) (($ $ $) NIL (|has| |#1| (-508)))) (-2816 (((-107) $ $) NIL) (((-107) $ (-1070)) NIL)) (-3332 (($ $ (-1070)) 209 (|has| |#1| (-508))) (($ $) 207 (|has| |#1| (-508)))) (-3260 (($ $) 201 (|has| |#1| (-508)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 286 (-12 (|has| |#1| (-419)) (|has| |#1| (-508))))) (-3739 (((-373 $) $) NIL (|has| |#1| (-508)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-508))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-508)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-508)))) (-1989 (($ $) 122 (|has| |#1| (-508)))) (-3172 (((-107) $) NIL (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) 398) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) 354) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL) (($ $ (-1070)) NIL (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-556 (-490)))) (($ $) NIL (|has| |#1| (-556 (-490)))) (($ $ (-108) $ (-1070)) 342 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-108)) (-578 $) (-1070)) 341 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $))) NIL (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $)))) NIL (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ (-578 $))) NIL (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ $)) NIL (|has| |#1| (-959)))) (-1864 (((-701) $) NIL (|has| |#1| (-508)))) (-3908 (($ $) 222 (|has| |#1| (-508)))) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-4106 (($ $) NIL) (($ $ $) NIL)) (-3924 (($ $) 232 (|has| |#1| (-508)))) (-3041 (($ $) 183 (|has| |#1| (-508)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-959))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-959))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-959))) (($ $ (-1070)) NIL (|has| |#1| (-959)))) (-3307 (($ $) 67 (|has| |#1| (-508)))) (-2949 (((-1023 |#1| (-553 $)) $) 81 (|has| |#1| (-508)))) (-2264 (($ $) 299 (|has| $ (-959)))) (-3991 (($ $) 160 (|has| |#1| (-508)))) (-3949 (($ $) 136 (|has| |#1| (-508)))) (-3981 (($ $) 156 (|has| |#1| (-508)))) (-3940 (($ $) 132 (|has| |#1| (-508)))) (-3975 (($ $) 152 (|has| |#1| (-508)))) (-3933 (($ $) 128 (|has| |#1| (-508)))) (-1248 (((-810 (-501)) $) NIL (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| |#1| (-556 (-810 (-346))))) (($ (-373 $)) NIL (|has| |#1| (-508))) (((-490) $) 339 (|has| |#1| (-556 (-490))))) (-3097 (($ $ $) NIL (|has| |#1| (-440)))) (-2144 (($ $ $) NIL (|has| |#1| (-440)))) (-3691 (((-786) $) 397) (($ (-553 $)) 388) (($ (-1070)) 356) (($ |#1|) 318) (($ $) NIL (|has| |#1| (-508))) (($ (-47)) 293 (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) (($ (-1023 |#1| (-553 $))) 83 (|has| |#1| (-959))) (($ (-375 |#1|)) NIL (|has| |#1| (-508))) (($ (-866 (-375 |#1|))) NIL (|has| |#1| (-508))) (($ (-375 (-866 (-375 |#1|)))) NIL (|has| |#1| (-508))) (($ (-375 (-866 |#1|))) NIL (|has| |#1| (-508))) (($ (-866 |#1|)) NIL (|has| |#1| (-959))) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-508)) (|has| |#1| (-950 (-375 (-501)))))) (($ (-501)) 34 (-1405 (|has| |#1| (-950 (-501))) (|has| |#1| (-959))))) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL (|has| |#1| (-959)))) (-1831 (($ $) NIL) (($ (-578 $)) NIL)) (-1299 (($ $ $) 203 (|has| |#1| (-508)))) (-1223 (($ $ $) 189 (|has| |#1| (-508)))) (-3076 (($ $ $) 193 (|has| |#1| (-508)))) (-1730 (($ $ $) 187 (|has| |#1| (-508)))) (-2108 (($ $ $) 191 (|has| |#1| (-508)))) (-3811 (((-107) (-108)) 9)) (-4003 (($ $) 166 (|has| |#1| (-508)))) (-3958 (($ $) 142 (|has| |#1| (-508)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 162 (|has| |#1| (-508)))) (-3952 (($ $) 138 (|has| |#1| (-508)))) (-4013 (($ $) 170 (|has| |#1| (-508)))) (-3964 (($ $) 146 (|has| |#1| (-508)))) (-4043 (($ (-1070) $) NIL) (($ (-1070) $ $) NIL) (($ (-1070) $ $ $) NIL) (($ (-1070) $ $ $ $) NIL) (($ (-1070) (-578 $)) NIL)) (-2134 (($ $) 197 (|has| |#1| (-508)))) (-2338 (($ $) 195 (|has| |#1| (-508)))) (-3550 (($ $) 172 (|has| |#1| (-508)))) (-3967 (($ $) 148 (|has| |#1| (-508)))) (-4008 (($ $) 168 (|has| |#1| (-508)))) (-3961 (($ $) 144 (|has| |#1| (-508)))) (-3999 (($ $) 164 (|has| |#1| (-508)))) (-3955 (($ $) 140 (|has| |#1| (-508)))) (-1720 (($ $) 175 (|has| |#1| (-508)))) (-3948 (($ $ (-501)) NIL (-1405 (|has| |#1| (-440)) (|has| |#1| (-508)))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012)))) (($ $ (-839)) NIL (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))))) (-1850 (($) 20 (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))) CONST)) (-2909 (($ $) 226 (|has| |#1| (-508)))) (-1925 (($) 22 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))) CONST)) (-3705 (($ $) 177 (|has| |#1| (-508))) (($ $ $) 179 (|has| |#1| (-508)))) (-3878 (($ $) 224 (|has| |#1| (-508)))) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-959))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-959))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-959))) (($ $ (-1070)) NIL (|has| |#1| (-959)))) (-2043 (($ $) 228 (|has| |#1| (-508)))) (-3360 (($ $ $) 181 (|has| |#1| (-508)))) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 76)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 75)) (-3803 (($ (-1023 |#1| (-553 $)) (-1023 |#1| (-553 $))) 93 (|has| |#1| (-508))) (($ $ $) 42 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508))))) (-3797 (($ $ $) 40 (-1405 (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (($ $) 29 (-1405 (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (-3790 (($ $ $) 38 (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))) (** (($ $ $) 61 (|has| |#1| (-508))) (($ $ (-375 (-501))) 296 (|has| |#1| (-508))) (($ $ (-501)) 71 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508)))) (($ $ (-701)) 68 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012)))) (($ $ (-839)) 73 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012))))) (* (($ (-375 (-501)) $) NIL (|has| |#1| (-508))) (($ $ (-375 (-501))) NIL (|has| |#1| (-508))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-1405 (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) (|has| |#1| (-1012)))) (($ (-501) $) 32 (-1405 (|has| |#1| (-21)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (($ (-701) $) NIL (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))))) (($ (-839) $) NIL (-1405 (|has| |#1| (-25)) (-12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))))))
-(((-282 |#1|) (-13 (-389 |#1|) (-10 -8 (IF (|has| |#1| (-508)) (PROGN (-6 (-29 |#1|)) (-6 (-1090)) (-6 (-145)) (-6 (-568)) (-6 (-1034)) (-15 -3547 ($ $)) (-15 -2925 ((-107) $)) (-15 -1384 ($ $ (-501))) (IF (|has| |#1| (-419)) (PROGN (-15 -2572 ((-373 (-1064 $)) (-1064 $))) (-15 -3324 ((-373 (-1064 $)) (-1064 $)))) |noBranch|) (IF (|has| |#1| (-950 (-501))) (-6 (-950 (-47))) |noBranch|)) |noBranch|))) (-777)) (T -282))
-((-3547 (*1 *1 *1) (-12 (-5 *1 (-282 *2)) (-4 *2 (-508)) (-4 *2 (-777)))) (-2925 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-282 *3)) (-4 *3 (-508)) (-4 *3 (-777)))) (-1384 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-282 *3)) (-4 *3 (-508)) (-4 *3 (-777)))) (-2572 (*1 *2 *3) (-12 (-5 *2 (-373 (-1064 *1))) (-5 *1 (-282 *4)) (-5 *3 (-1064 *1)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *4 (-777)))) (-3324 (*1 *2 *3) (-12 (-5 *2 (-373 (-1064 *1))) (-5 *1 (-282 *4)) (-5 *3 (-1064 *1)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *4 (-777)))))
-(-13 (-389 |#1|) (-10 -8 (IF (|has| |#1| (-508)) (PROGN (-6 (-29 |#1|)) (-6 (-1090)) (-6 (-145)) (-6 (-568)) (-6 (-1034)) (-15 -3547 ($ $)) (-15 -2925 ((-107) $)) (-15 -1384 ($ $ (-501))) (IF (|has| |#1| (-419)) (PROGN (-15 -2572 ((-373 (-1064 $)) (-1064 $))) (-15 -3324 ((-373 (-1064 $)) (-1064 $)))) |noBranch|) (IF (|has| |#1| (-950 (-501))) (-6 (-950 (-47))) |noBranch|)) |noBranch|)))
-((-1212 (((-282 |#2|) (-1 |#2| |#1|) (-282 |#1|)) 13)))
-(((-283 |#1| |#2|) (-10 -7 (-15 -1212 ((-282 |#2|) (-1 |#2| |#1|) (-282 |#1|)))) (-777) (-777)) (T -283))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-282 *5)) (-4 *5 (-777)) (-4 *6 (-777)) (-5 *2 (-282 *6)) (-5 *1 (-283 *5 *6)))))
-(-10 -7 (-15 -1212 ((-282 |#2|) (-1 |#2| |#1|) (-282 |#1|))))
-((-3818 (((-50) |#2| (-262 |#2|) (-701)) 33) (((-50) |#2| (-262 |#2|)) 24) (((-50) |#2| (-701)) 28) (((-50) |#2|) 25) (((-50) (-1070)) 21)) (-2973 (((-50) |#2| (-262 |#2|) (-375 (-501))) 51) (((-50) |#2| (-262 |#2|)) 48) (((-50) |#2| (-375 (-501))) 50) (((-50) |#2|) 49) (((-50) (-1070)) 47)) (-3826 (((-50) |#2| (-262 |#2|) (-375 (-501))) 46) (((-50) |#2| (-262 |#2|)) 43) (((-50) |#2| (-375 (-501))) 45) (((-50) |#2|) 44) (((-50) (-1070)) 42)) (-3822 (((-50) |#2| (-262 |#2|) (-501)) 39) (((-50) |#2| (-262 |#2|)) 35) (((-50) |#2| (-501)) 38) (((-50) |#2|) 36) (((-50) (-1070)) 34)))
-(((-284 |#1| |#2|) (-10 -7 (-15 -3818 ((-50) (-1070))) (-15 -3818 ((-50) |#2|)) (-15 -3818 ((-50) |#2| (-701))) (-15 -3818 ((-50) |#2| (-262 |#2|))) (-15 -3818 ((-50) |#2| (-262 |#2|) (-701))) (-15 -3822 ((-50) (-1070))) (-15 -3822 ((-50) |#2|)) (-15 -3822 ((-50) |#2| (-501))) (-15 -3822 ((-50) |#2| (-262 |#2|))) (-15 -3822 ((-50) |#2| (-262 |#2|) (-501))) (-15 -3826 ((-50) (-1070))) (-15 -3826 ((-50) |#2|)) (-15 -3826 ((-50) |#2| (-375 (-501)))) (-15 -3826 ((-50) |#2| (-262 |#2|))) (-15 -3826 ((-50) |#2| (-262 |#2|) (-375 (-501)))) (-15 -2973 ((-50) (-1070))) (-15 -2973 ((-50) |#2|)) (-15 -2973 ((-50) |#2| (-375 (-501)))) (-15 -2973 ((-50) |#2| (-262 |#2|))) (-15 -2973 ((-50) |#2| (-262 |#2|) (-375 (-501))))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -284))
-((-2973 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-2973 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-2973 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) (-3826 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) (-3826 (*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3826 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 *5) (-577 *5))) (-5 *5 (-501)) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *5 (-13 (-419) (-777) (-950 *4) (-577 *4))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3822 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-701)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))))
-(-10 -7 (-15 -3818 ((-50) (-1070))) (-15 -3818 ((-50) |#2|)) (-15 -3818 ((-50) |#2| (-701))) (-15 -3818 ((-50) |#2| (-262 |#2|))) (-15 -3818 ((-50) |#2| (-262 |#2|) (-701))) (-15 -3822 ((-50) (-1070))) (-15 -3822 ((-50) |#2|)) (-15 -3822 ((-50) |#2| (-501))) (-15 -3822 ((-50) |#2| (-262 |#2|))) (-15 -3822 ((-50) |#2| (-262 |#2|) (-501))) (-15 -3826 ((-50) (-1070))) (-15 -3826 ((-50) |#2|)) (-15 -3826 ((-50) |#2| (-375 (-501)))) (-15 -3826 ((-50) |#2| (-262 |#2|))) (-15 -3826 ((-50) |#2| (-262 |#2|) (-375 (-501)))) (-15 -2973 ((-50) (-1070))) (-15 -2973 ((-50) |#2|)) (-15 -2973 ((-50) |#2| (-375 (-501)))) (-15 -2973 ((-50) |#2| (-262 |#2|))) (-15 -2973 ((-50) |#2| (-262 |#2|) (-375 (-501)))))
-((-1740 (((-50) |#2| (-108) (-262 |#2|) (-578 |#2|)) 86) (((-50) |#2| (-108) (-262 |#2|) (-262 |#2|)) 82) (((-50) |#2| (-108) (-262 |#2|) |#2|) 84) (((-50) (-262 |#2|) (-108) (-262 |#2|) |#2|) 85) (((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|))) 78) (((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 |#2|)) 80) (((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 |#2|)) 81) (((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|))) 79) (((-50) (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|)) 87) (((-50) (-262 |#2|) (-108) (-262 |#2|) (-262 |#2|)) 83)))
-(((-285 |#1| |#2|) (-10 -7 (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) (-262 |#2|))) (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|)))) (-15 -1740 ((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|)))) (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) |#2|)) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) |#2|)) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) (-262 |#2|))) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) (-578 |#2|)))) (-13 (-777) (-508) (-556 (-490))) (-389 |#1|)) (T -285))
-((-1740 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-5 *6 (-578 *3)) (-4 *3 (-389 *7)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *3)))) (-1740 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-4 *3 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *3)))) (-1740 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-4 *3 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *3)))) (-1740 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-262 *5)) (-5 *4 (-108)) (-4 *5 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *5)))) (-1740 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-108))) (-5 *6 (-578 (-262 *8))) (-4 *8 (-389 *7)) (-5 *5 (-262 *8)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *8)))) (-1740 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-108))) (-5 *5 (-262 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) (-1740 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 (-262 *8))) (-5 *4 (-578 (-108))) (-5 *5 (-262 *8)) (-5 *6 (-578 *8)) (-4 *8 (-389 *7)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *8)))) (-1740 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 (-262 *7))) (-5 *4 (-578 (-108))) (-5 *5 (-262 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) (-1740 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-108)) (-5 *5 (-578 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) (-1740 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-262 *6)) (-5 *4 (-108)) (-4 *6 (-389 *5)) (-4 *5 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *5 *6)))))
-(-10 -7 (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) (-262 |#2|))) (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|)))) (-15 -1740 ((-50) (-578 (-262 |#2|)) (-578 (-108)) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 |#2|))) (-15 -1740 ((-50) (-578 |#2|) (-578 (-108)) (-262 |#2|) (-578 (-262 |#2|)))) (-15 -1740 ((-50) (-262 |#2|) (-108) (-262 |#2|) |#2|)) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) |#2|)) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) (-262 |#2|))) (-15 -1740 ((-50) |#2| (-108) (-262 |#2|) (-578 |#2|))))
-((-3002 (((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501) (-1053)) 45) (((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501)) 46) (((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501) (-1053)) 42) (((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501)) 43)) (-2234 (((-1 (-199) (-199)) (-199)) 44)))
-(((-286) (-10 -7 (-15 -2234 ((-1 (-199) (-199)) (-199))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501) (-1053))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501) (-1053))))) (T -286))
-((-3002 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-199)) (-5 *7 (-501)) (-5 *8 (-1053)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) (-3002 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-199)) (-5 *7 (-501)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) (-3002 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-501)) (-5 *7 (-1053)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) (-3002 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-501)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) (-2234 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-286)) (-5 *3 (-199)))))
-(-10 -7 (-15 -2234 ((-1 (-199) (-199)) (-199))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-1 (-199) (-199)) (-501) (-1053))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501))) (-15 -3002 ((-1100 (-847)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-199) (-501) (-1053))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 24)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) NIL) (($ $ (-375 (-501)) (-375 (-501))) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) 19)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) 30)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) NIL) (((-375 (-501)) $ (-375 (-501))) 15)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL) (($ $ (-375 (-501))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) NIL) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-3210 (((-375 (-501)) $) 16)) (-1802 (($ (-1130 |#1| |#2| |#3|)) 11)) (-3027 (((-1130 |#1| |#2| |#3|) $) 12)) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) NIL) (($ $ $) NIL (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-1201 (((-375 (-501)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 10)) (-3691 (((-786) $) 36) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) 28)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) NIL)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 26)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 31)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-287 |#1| |#2| |#3|) (-13 (-1132 |#1|) (-722) (-10 -8 (-15 -1802 ($ (-1130 |#1| |#2| |#3|))) (-15 -3027 ((-1130 |#1| |#2| |#3|) $)) (-15 -3210 ((-375 (-501)) $)))) (-13 (-331) (-777)) (-1070) |#1|) (T -287))
-((-1802 (*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-287 *3 *4 *5)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-1130 *3 *4 *5)) (-5 *1 (-287 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3))) (-3210 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-287 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3))))
-(-13 (-1132 |#1|) (-722) (-10 -8 (-15 -1802 ($ (-1130 |#1| |#2| |#3|))) (-15 -3027 ((-1130 |#1| |#2| |#3|) $)) (-15 -3210 ((-375 (-501)) $))))
-((-1342 (((-2 (|:| -3027 (-701)) (|:| -3189 |#1|) (|:| |radicand| (-578 |#1|))) (-373 |#1|) (-701)) 24)) (-1635 (((-578 (-2 (|:| -3189 (-701)) (|:| |logand| |#1|))) (-373 |#1|)) 28)))
-(((-288 |#1|) (-10 -7 (-15 -1342 ((-2 (|:| -3027 (-701)) (|:| -3189 |#1|) (|:| |radicand| (-578 |#1|))) (-373 |#1|) (-701))) (-15 -1635 ((-578 (-2 (|:| -3189 (-701)) (|:| |logand| |#1|))) (-373 |#1|)))) (-508)) (T -288))
-((-1635 (*1 *2 *3) (-12 (-5 *3 (-373 *4)) (-4 *4 (-508)) (-5 *2 (-578 (-2 (|:| -3189 (-701)) (|:| |logand| *4)))) (-5 *1 (-288 *4)))) (-1342 (*1 *2 *3 *4) (-12 (-5 *3 (-373 *5)) (-4 *5 (-508)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *5) (|:| |radicand| (-578 *5)))) (-5 *1 (-288 *5)) (-5 *4 (-701)))))
-(-10 -7 (-15 -1342 ((-2 (|:| -3027 (-701)) (|:| -3189 |#1|) (|:| |radicand| (-578 |#1|))) (-373 |#1|) (-701))) (-15 -1635 ((-578 (-2 (|:| -3189 (-701)) (|:| |logand| |#1|))) (-373 |#1|))))
-((-3800 (((-578 |#2|) (-1064 |#4|)) 43)) (-2431 ((|#3| (-501)) 46)) (-3963 (((-1064 |#4|) (-1064 |#3|)) 30)) (-1497 (((-1064 |#4|) (-1064 |#4|) (-501)) 55)) (-1465 (((-1064 |#3|) (-1064 |#4|)) 21)) (-1201 (((-578 (-701)) (-1064 |#4|) (-578 |#2|)) 40)) (-3239 (((-1064 |#3|) (-1064 |#4|) (-578 |#2|) (-578 |#3|)) 35)))
-(((-289 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3239 ((-1064 |#3|) (-1064 |#4|) (-578 |#2|) (-578 |#3|))) (-15 -1201 ((-578 (-701)) (-1064 |#4|) (-578 |#2|))) (-15 -3800 ((-578 |#2|) (-1064 |#4|))) (-15 -1465 ((-1064 |#3|) (-1064 |#4|))) (-15 -3963 ((-1064 |#4|) (-1064 |#3|))) (-15 -1497 ((-1064 |#4|) (-1064 |#4|) (-501))) (-15 -2431 (|#3| (-501)))) (-723) (-777) (-959) (-870 |#3| |#1| |#2|)) (T -289))
-((-2431 (*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-959)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *6 (-870 *2 *4 *5)))) (-1497 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 *7)) (-5 *3 (-501)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *1 (-289 *4 *5 *6 *7)))) (-3963 (*1 *2 *3) (-12 (-5 *3 (-1064 *6)) (-4 *6 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-1064 *7)) (-5 *1 (-289 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1064 *7)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *2 (-1064 *6)) (-5 *1 (-289 *4 *5 *6 *7)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-1064 *7)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *2 (-578 *5)) (-5 *1 (-289 *4 *5 *6 *7)))) (-1201 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *8)) (-5 *4 (-578 *6)) (-4 *6 (-777)) (-4 *8 (-870 *7 *5 *6)) (-4 *5 (-723)) (-4 *7 (-959)) (-5 *2 (-578 (-701))) (-5 *1 (-289 *5 *6 *7 *8)))) (-3239 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 *8)) (-4 *7 (-777)) (-4 *8 (-959)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-5 *2 (-1064 *8)) (-5 *1 (-289 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3239 ((-1064 |#3|) (-1064 |#4|) (-578 |#2|) (-578 |#3|))) (-15 -1201 ((-578 (-701)) (-1064 |#4|) (-578 |#2|))) (-15 -3800 ((-578 |#2|) (-1064 |#4|))) (-15 -1465 ((-1064 |#3|) (-1064 |#4|))) (-15 -3963 ((-1064 |#4|) (-1064 |#3|))) (-15 -1497 ((-1064 |#4|) (-1064 |#4|) (-501))) (-15 -2431 (|#3| (-501))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 14)) (-1395 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-501)))) $) 18)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2153 ((|#1| $ (-501)) NIL)) (-3301 (((-501) $ (-501)) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2451 (($ (-1 |#1| |#1|) $) NIL)) (-2210 (($ (-1 (-501) (-501)) $) 10)) (-3460 (((-1053) $) NIL)) (-1327 (($ $ $) NIL (|has| (-501) (-722)))) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-2495 (((-501) |#1| $) NIL)) (-1850 (($) 15 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) 21 (|has| |#1| (-777)))) (-3797 (($ $) 11) (($ $ $) 20)) (-3790 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ (-501)) NIL) (($ (-501) |#1|) 19)))
-(((-290 |#1|) (-13 (-21) (-648 (-501)) (-291 |#1| (-501)) (-10 -7 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|))) (-1001)) (T -290))
-NIL
-(-13 (-21) (-648 (-501)) (-291 |#1| (-501)) (-10 -7 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1395 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $) 27)) (-3177 (((-3 $ "failed") $ $) 19)) (-3796 (((-701) $) 28)) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 32)) (-3490 ((|#1| $) 31)) (-2153 ((|#1| $ (-501)) 25)) (-3301 ((|#2| $ (-501)) 26)) (-2451 (($ (-1 |#1| |#1|) $) 22)) (-2210 (($ (-1 |#2| |#2|) $) 23)) (-3460 (((-1053) $) 9)) (-1327 (($ $ $) 21 (|has| |#2| (-722)))) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ |#1|) 33)) (-2495 ((|#2| |#1| $) 24)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3790 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ |#2| |#1|) 29)))
-(((-291 |#1| |#2|) (-1180) (-1001) (-123)) (T -291))
-((-3790 (*1 *1 *2 *1) (-12 (-4 *1 (-291 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-123)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)) (-5 *2 (-701)))) (-1395 (*1 *2 *1) (-12 (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)) (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))))) (-3301 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-291 *4 *2)) (-4 *4 (-1001)) (-4 *2 (-123)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-291 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1001)))) (-2495 (*1 *2 *3 *1) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-123)))) (-2210 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)))) (-2451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)))) (-1327 (*1 *1 *1 *1) (-12 (-4 *1 (-291 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-123)) (-4 *3 (-722)))))
-(-13 (-123) (-950 |t#1|) (-10 -8 (-15 -3790 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3796 ((-701) $)) (-15 -1395 ((-578 (-2 (|:| |gen| |t#1|) (|:| -1989 |t#2|))) $)) (-15 -3301 (|t#2| $ (-501))) (-15 -2153 (|t#1| $ (-501))) (-15 -2495 (|t#2| |t#1| $)) (-15 -2210 ($ (-1 |t#2| |t#2|) $)) (-15 -2451 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-722)) (-15 -1327 ($ $ $)) |noBranch|)))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-950 |#1|) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1395 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2153 ((|#1| $ (-501)) NIL)) (-3301 (((-701) $ (-501)) NIL)) (-2451 (($ (-1 |#1| |#1|) $) NIL)) (-2210 (($ (-1 (-701) (-701)) $) NIL)) (-3460 (((-1053) $) NIL)) (-1327 (($ $ $) NIL (|has| (-701) (-722)))) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-2495 (((-701) |#1| $) NIL)) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-701) |#1|) NIL)))
-(((-292 |#1|) (-291 |#1| (-701)) (-1001)) (T -292))
-NIL
-(-291 |#1| (-701))
-((-3533 (($ $) 52)) (-3503 (($ $ |#2| |#3| $) 14)) (-3515 (($ (-1 |#3| |#3|) $) 35)) (-3837 (((-107) $) 27)) (-3841 ((|#2| $) 29)) (-3694 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 45)) (-1734 ((|#2| $) 48)) (-1303 (((-578 |#2|) $) 38)) (-3771 (($ $ $ (-701)) 23)) (-3803 (($ $ |#2|) 42)))
-(((-293 |#1| |#2| |#3|) (-10 -8 (-15 -3533 (|#1| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3771 (|#1| |#1| |#1| (-701))) (-15 -3503 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3515 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1303 ((-578 |#2|) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3837 ((-107) |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3803 (|#1| |#1| |#2|))) (-294 |#2| |#3|) (-959) (-722)) (T -293))
-NIL
-(-10 -8 (-15 -3533 (|#1| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3771 (|#1| |#1| |#1| (-701))) (-15 -3503 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3515 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1303 ((-578 |#2|) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3837 ((-107) |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3803 (|#1| |#1| |#2|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 92 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 90 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 89)) (-3490 (((-501) $) 93 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 91 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 88)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 77 (|has| |#1| (-419)))) (-3503 (($ $ |#1| |#2| $) 81)) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 84)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| |#2|) 63)) (-2285 ((|#2| $) 83)) (-3515 (($ (-1 |#2| |#2|) $) 82)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 87)) (-3841 ((|#1| $) 86)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508))) (((-3 $ "failed") $ |#1|) 79 (|has| |#1| (-508)))) (-1201 ((|#2| $) 66)) (-1734 ((|#1| $) 78 (|has| |#1| (-419)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49) (($ (-375 (-501))) 59 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501))))))) (-1303 (((-578 |#1|) $) 85)) (-2495 ((|#1| $ |#2|) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 80 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501)))))))
-(((-294 |#1| |#2|) (-1180) (-959) (-722)) (T -294))
-((-3837 (*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-107)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-578 *3)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-701)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-3515 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) (-3503 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) (-3771 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *3 (-156)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-508)))) (-1734 (*1 *2 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)) (-4 *2 (-419)))) (-3533 (*1 *1 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-419)))))
-(-13 (-46 |t#1| |t#2|) (-380 |t#1|) (-10 -8 (-15 -3837 ((-107) $)) (-15 -3841 (|t#1| $)) (-15 -1303 ((-578 |t#1|) $)) (-15 -3706 ((-701) $)) (-15 -2285 (|t#2| $)) (-15 -3515 ($ (-1 |t#2| |t#2|) $)) (-15 -3503 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -3771 ($ $ $ (-701))) |noBranch|) (IF (|has| |t#1| (-508)) (-15 -3694 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-419)) (PROGN (-15 -1734 (|t#1| $)) (-15 -3533 ($ $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-260) |has| |#1| (-508)) ((-380 |#1|) . T) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-2298 (((-107) (-107)) NIL)) (-3754 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) NIL)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2921 (($ $) NIL (|has| |#1| (-1001)))) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) NIL)) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2489 (($ $ (-501)) NIL)) (-2705 (((-701) $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4114 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1599 (($ (-578 |#1|)) NIL)) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1386 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-1186 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-295 |#1|) (-13 (-19 |#1|) (-252 |#1|) (-10 -8 (-15 -1599 ($ (-578 |#1|))) (-15 -2705 ((-701) $)) (-15 -2489 ($ $ (-501))) (-15 -2298 ((-107) (-107))))) (-1104)) (T -295))
-((-1599 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-295 *3)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))))
-(-13 (-19 |#1|) (-252 |#1|) (-10 -8 (-15 -1599 ($ (-578 |#1|))) (-15 -2705 ((-701) $)) (-15 -2489 ($ $ (-501))) (-15 -2298 ((-107) (-107)))))
-((-3590 (((-107) $) 42)) (-1732 (((-701)) 22)) (-2225 ((|#2| $) 46) (($ $ (-839)) 102)) (-3796 (((-701)) 96)) (-3142 (($ (-1148 |#2|)) 20)) (-1928 (((-107) $) 114)) (-2626 ((|#2| $) 48) (($ $ (-839)) 100)) (-1792 (((-1064 |#2|) $) NIL) (((-1064 $) $ (-839)) 93)) (-3721 (((-1064 |#2|) $) 83)) (-1806 (((-1064 |#2|) $) 80) (((-3 (-1064 |#2|) "failed") $ $) 77)) (-2468 (($ $ (-1064 |#2|)) 53)) (-2906 (((-762 (-839))) 28) (((-839)) 43)) (-3613 (((-125)) 25)) (-1201 (((-762 (-839)) $) 30) (((-839) $) 115)) (-3481 (($) 108)) (-2085 (((-1148 |#2|) $) NIL) (((-621 |#2|) (-1148 $)) 39)) (-1274 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2659 (((-107) $) 41)))
-(((-296 |#1| |#2|) (-10 -8 (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3796 ((-701))) (-15 -1274 (|#1| |#1|)) (-15 -1806 ((-3 (-1064 |#2|) "failed") |#1| |#1|)) (-15 -1806 ((-1064 |#2|) |#1|)) (-15 -3721 ((-1064 |#2|) |#1|)) (-15 -2468 (|#1| |#1| (-1064 |#2|))) (-15 -1928 ((-107) |#1|)) (-15 -3481 (|#1|)) (-15 -2225 (|#1| |#1| (-839))) (-15 -2626 (|#1| |#1| (-839))) (-15 -1792 ((-1064 |#1|) |#1| (-839))) (-15 -2225 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -1201 ((-839) |#1|)) (-15 -2906 ((-839))) (-15 -1792 ((-1064 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1732 ((-701))) (-15 -2906 ((-762 (-839)))) (-15 -1201 ((-762 (-839)) |#1|)) (-15 -3590 ((-107) |#1|)) (-15 -2659 ((-107) |#1|)) (-15 -3613 ((-125)))) (-297 |#2|) (-331)) (T -296))
-((-3613 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-125)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) (-2906 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-762 (-839))) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) (-1732 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) (-2906 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-839)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) (-3796 (*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))))
-(-10 -8 (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3796 ((-701))) (-15 -1274 (|#1| |#1|)) (-15 -1806 ((-3 (-1064 |#2|) "failed") |#1| |#1|)) (-15 -1806 ((-1064 |#2|) |#1|)) (-15 -3721 ((-1064 |#2|) |#1|)) (-15 -2468 (|#1| |#1| (-1064 |#2|))) (-15 -1928 ((-107) |#1|)) (-15 -3481 (|#1|)) (-15 -2225 (|#1| |#1| (-839))) (-15 -2626 (|#1| |#1| (-839))) (-15 -1792 ((-1064 |#1|) |#1| (-839))) (-15 -2225 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -1201 ((-839) |#1|)) (-15 -2906 ((-839))) (-15 -1792 ((-1064 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1732 ((-701))) (-15 -2906 ((-762 (-839)))) (-15 -1201 ((-762 (-839)) |#1|)) (-15 -3590 ((-107) |#1|)) (-15 -2659 ((-107) |#1|)) (-15 -3613 ((-125))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3590 (((-107) $) 95)) (-1732 (((-701)) 91)) (-2225 ((|#1| $) 141) (($ $ (-839)) 138 (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) 123 (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-3796 (((-701)) 113 (|has| |#1| (-336)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 102)) (-3490 ((|#1| $) 101)) (-3142 (($ (-1148 |#1|)) 147)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-336)))) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-2890 (($) 110 (|has| |#1| (-336)))) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1317 (($) 125 (|has| |#1| (-336)))) (-3521 (((-107) $) 126 (|has| |#1| (-336)))) (-3067 (($ $ (-701)) 88 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) 87 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) 71)) (-3169 (((-839) $) 128 (|has| |#1| (-336))) (((-762 (-839)) $) 85 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) 31)) (-4065 (($) 136 (|has| |#1| (-336)))) (-1928 (((-107) $) 135 (|has| |#1| (-336)))) (-2626 ((|#1| $) 142) (($ $ (-839)) 139 (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) 114 (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1792 (((-1064 |#1|) $) 146) (((-1064 $) $ (-839)) 140 (|has| |#1| (-336)))) (-3104 (((-839) $) 111 (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) 132 (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) 131 (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) 130 (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) 133 (|has| |#1| (-336)))) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3746 (($) 115 (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) 112 (|has| |#1| (-336)))) (-2255 (((-107) $) 94)) (-3708 (((-1018) $) 10)) (-3987 (($) 134 (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 122 (|has| |#1| (-336)))) (-3739 (((-373 $) $) 74)) (-2906 (((-762 (-839))) 92) (((-839)) 144)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1984 (((-701) $) 127 (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) 86 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) 100)) (-2596 (($ $) 119 (|has| |#1| (-336))) (($ $ (-701)) 117 (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) 93) (((-839) $) 143)) (-2264 (((-1064 |#1|)) 145)) (-1349 (($) 124 (|has| |#1| (-336)))) (-3481 (($) 137 (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) 149) (((-621 |#1|) (-1148 $)) 148)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 121 (|has| |#1| (-336)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ |#1|) 103)) (-1274 (($ $) 120 (|has| |#1| (-336))) (((-3 $ "failed") $) 84 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 29)) (-4119 (((-1148 $)) 151) (((-1148 $) (-839)) 150)) (-2442 (((-107) $ $) 39)) (-2659 (((-107) $) 96)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3184 (($ $) 90 (|has| |#1| (-336))) (($ $ (-701)) 89 (|has| |#1| (-336)))) (-3584 (($ $) 118 (|has| |#1| (-336))) (($ $ (-701)) 116 (|has| |#1| (-336)))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64) (($ $ |#1|) 99)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66) (($ $ |#1|) 98) (($ |#1| $) 97)))
-(((-297 |#1|) (-1180) (-331)) (T -297))
-((-4119 (*1 *2) (-12 (-4 *3 (-331)) (-5 *2 (-1148 *1)) (-4 *1 (-297 *3)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-331)) (-5 *2 (-1148 *1)) (-4 *1 (-297 *4)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1148 *3)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-297 *4)) (-4 *4 (-331)) (-5 *2 (-621 *4)))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-331)) (-4 *1 (-297 *3)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1064 *3)))) (-2264 (*1 *2) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1064 *3)))) (-2906 (*1 *2) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-839)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-839)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-331)))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-331)))) (-1792 (*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-4 *4 (-336)) (-4 *4 (-331)) (-5 *2 (-1064 *1)) (-4 *1 (-297 *4)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) (-2225 (*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) (-3481 (*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) (-4065 (*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-107)))) (-3987 (*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) (-2468 (*1 *1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-336)) (-4 *1 (-297 *3)) (-4 *3 (-331)))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3)))) (-1806 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3)))))
-(-13 (-1165 |t#1|) (-950 |t#1|) (-10 -8 (-15 -4119 ((-1148 $))) (-15 -4119 ((-1148 $) (-839))) (-15 -2085 ((-1148 |t#1|) $)) (-15 -2085 ((-621 |t#1|) (-1148 $))) (-15 -3142 ($ (-1148 |t#1|))) (-15 -1792 ((-1064 |t#1|) $)) (-15 -2264 ((-1064 |t#1|))) (-15 -2906 ((-839))) (-15 -1201 ((-839) $)) (-15 -2626 (|t#1| $)) (-15 -2225 (|t#1| $)) (IF (|has| |t#1| (-336)) (PROGN (-6 (-318)) (-15 -1792 ((-1064 $) $ (-839))) (-15 -2626 ($ $ (-839))) (-15 -2225 ($ $ (-839))) (-15 -3481 ($)) (-15 -4065 ($)) (-15 -1928 ((-107) $)) (-15 -3987 ($)) (-15 -2468 ($ $ (-1064 |t#1|))) (-15 -3721 ((-1064 |t#1|) $)) (-15 -1806 ((-1064 |t#1|) $)) (-15 -1806 ((-3 (-1064 |t#1|) "failed") $ $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| |#1| (-336)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-206) |has| |#1| (-336)) ((-216) . T) ((-260) . T) ((-276) . T) ((-1165 |#1|) . T) ((-331) . T) ((-370) -1405 (|has| |#1| (-336)) (|has| |#1| (-132))) ((-336) |has| |#1| (-336)) ((-318) |has| |#1| (-336)) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-336)) ((-1108) . T) ((-1156 |#1|) . T))
-((-3736 (((-107) $ $) NIL)) (-2347 (($ (-1069) $) 88)) (-1515 (($) 76)) (-1187 (((-1018) (-1018)) 11)) (-3245 (($) 77)) (-1745 (($) 90) (($ (-282 (-630))) 96) (($ (-282 (-632))) 93) (($ (-282 (-625))) 99) (($ (-282 (-346))) 105) (($ (-282 (-501))) 102) (($ (-282 (-152 (-346)))) 108)) (-1667 (($ (-1069) $) 89)) (-2273 (($ (-578 (-786))) 79)) (-1768 (((-1154) $) 73)) (-3703 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2950 (($ (-1018)) 45)) (-3171 (((-1003) $) 25)) (-3094 (($ (-993 (-866 (-501))) $) 85) (($ (-993 (-866 (-501))) (-866 (-501)) $) 86)) (-2432 (($ (-1018)) 87)) (-1265 (($ (-1069) $) 110) (($ (-1069) $ $) 111)) (-2620 (($ (-1070) (-578 (-1070))) 75)) (-3046 (($ (-1053)) 82) (($ (-578 (-1053))) 80)) (-3691 (((-786) $) 113)) (-3886 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 $)) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| $))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786)))) $) 37)) (-2096 (($ (-1053)) 182)) (-1796 (($ (-578 $)) 109)) (-1278 (($ (-1070) (-1053)) 115) (($ (-1070) (-282 (-632))) 155) (($ (-1070) (-282 (-630))) 156) (($ (-1070) (-282 (-625))) 157) (($ (-1070) (-621 (-632))) 118) (($ (-1070) (-621 (-630))) 121) (($ (-1070) (-621 (-625))) 124) (($ (-1070) (-1148 (-632))) 127) (($ (-1070) (-1148 (-630))) 130) (($ (-1070) (-1148 (-625))) 133) (($ (-1070) (-621 (-282 (-632)))) 136) (($ (-1070) (-621 (-282 (-630)))) 139) (($ (-1070) (-621 (-282 (-625)))) 142) (($ (-1070) (-1148 (-282 (-632)))) 145) (($ (-1070) (-1148 (-282 (-630)))) 148) (($ (-1070) (-1148 (-282 (-625)))) 151) (($ (-1070) (-578 (-866 (-501))) (-282 (-632))) 152) (($ (-1070) (-578 (-866 (-501))) (-282 (-630))) 153) (($ (-1070) (-578 (-866 (-501))) (-282 (-625))) 154) (($ (-1070) (-282 (-501))) 179) (($ (-1070) (-282 (-346))) 180) (($ (-1070) (-282 (-152 (-346)))) 181) (($ (-1070) (-621 (-282 (-501)))) 160) (($ (-1070) (-621 (-282 (-346)))) 163) (($ (-1070) (-621 (-282 (-152 (-346))))) 166) (($ (-1070) (-1148 (-282 (-501)))) 169) (($ (-1070) (-1148 (-282 (-346)))) 172) (($ (-1070) (-1148 (-282 (-152 (-346))))) 175) (($ (-1070) (-578 (-866 (-501))) (-282 (-501))) 176) (($ (-1070) (-578 (-866 (-501))) (-282 (-346))) 177) (($ (-1070) (-578 (-866 (-501))) (-282 (-152 (-346)))) 178)) (-3751 (((-107) $ $) NIL)))
-(((-298) (-13 (-1001) (-10 -8 (-15 -3691 ((-786) $)) (-15 -3094 ($ (-993 (-866 (-501))) $)) (-15 -3094 ($ (-993 (-866 (-501))) (-866 (-501)) $)) (-15 -2347 ($ (-1069) $)) (-15 -1667 ($ (-1069) $)) (-15 -2950 ($ (-1018))) (-15 -2432 ($ (-1018))) (-15 -3046 ($ (-1053))) (-15 -3046 ($ (-578 (-1053)))) (-15 -2096 ($ (-1053))) (-15 -1745 ($)) (-15 -1745 ($ (-282 (-630)))) (-15 -1745 ($ (-282 (-632)))) (-15 -1745 ($ (-282 (-625)))) (-15 -1745 ($ (-282 (-346)))) (-15 -1745 ($ (-282 (-501)))) (-15 -1745 ($ (-282 (-152 (-346))))) (-15 -1265 ($ (-1069) $)) (-15 -1265 ($ (-1069) $ $)) (-15 -1278 ($ (-1070) (-1053))) (-15 -1278 ($ (-1070) (-282 (-632)))) (-15 -1278 ($ (-1070) (-282 (-630)))) (-15 -1278 ($ (-1070) (-282 (-625)))) (-15 -1278 ($ (-1070) (-621 (-632)))) (-15 -1278 ($ (-1070) (-621 (-630)))) (-15 -1278 ($ (-1070) (-621 (-625)))) (-15 -1278 ($ (-1070) (-1148 (-632)))) (-15 -1278 ($ (-1070) (-1148 (-630)))) (-15 -1278 ($ (-1070) (-1148 (-625)))) (-15 -1278 ($ (-1070) (-621 (-282 (-632))))) (-15 -1278 ($ (-1070) (-621 (-282 (-630))))) (-15 -1278 ($ (-1070) (-621 (-282 (-625))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-632))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-630))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-625))))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-632)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-630)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-625)))) (-15 -1278 ($ (-1070) (-282 (-501)))) (-15 -1278 ($ (-1070) (-282 (-346)))) (-15 -1278 ($ (-1070) (-282 (-152 (-346))))) (-15 -1278 ($ (-1070) (-621 (-282 (-501))))) (-15 -1278 ($ (-1070) (-621 (-282 (-346))))) (-15 -1278 ($ (-1070) (-621 (-282 (-152 (-346)))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-501))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-346))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-152 (-346)))))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-501)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-346)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-152 (-346))))) (-15 -1796 ($ (-578 $))) (-15 -1515 ($)) (-15 -3245 ($)) (-15 -2273 ($ (-578 (-786)))) (-15 -2620 ($ (-1070) (-578 (-1070)))) (-15 -3703 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3886 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 $)) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| $))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786)))) $)) (-15 -1768 ((-1154) $)) (-15 -3171 ((-1003) $)) (-15 -1187 ((-1018) (-1018)))))) (T -298))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-298)))) (-3094 (*1 *1 *2 *1) (-12 (-5 *2 (-993 (-866 (-501)))) (-5 *1 (-298)))) (-3094 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-993 (-866 (-501)))) (-5 *3 (-866 (-501))) (-5 *1 (-298)))) (-2347 (*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) (-1667 (*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) (-2950 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298)))) (-2432 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298)))) (-3046 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-298)))) (-3046 (*1 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-298)))) (-2096 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-298)))) (-1745 (*1 *1) (-5 *1 (-298))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-630))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-632))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-625))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-298)))) (-1745 (*1 *1 *2) (-12 (-5 *2 (-282 (-152 (-346)))) (-5 *1 (-298)))) (-1265 (*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) (-1265 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1053)) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-632))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-630))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-625))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-632))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-630))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-625))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-632))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-630))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-625))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-632)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-630)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-625)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-632)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-630)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-625)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-632))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-630))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-625))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-501))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-346))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-152 (-346)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-501)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-346)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-152 (-346))))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-501)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-346)))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-152 (-346))))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-501))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-346))) (-5 *1 (-298)))) (-1278 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-152 (-346)))) (-5 *1 (-298)))) (-1796 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-5 *1 (-298)))) (-1515 (*1 *1) (-5 *1 (-298))) (-3245 (*1 *1) (-5 *1 (-298))) (-2273 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-298)))) (-2620 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1070)) (-5 *1 (-298)))) (-3703 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-298)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| (-298)) (|:| |elseClause| (-298)))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 (-298))) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| (-298)))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| (-298)))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786))))) (-5 *1 (-298)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-298)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-298)))) (-1187 (*1 *2 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ((-786) $)) (-15 -3094 ($ (-993 (-866 (-501))) $)) (-15 -3094 ($ (-993 (-866 (-501))) (-866 (-501)) $)) (-15 -2347 ($ (-1069) $)) (-15 -1667 ($ (-1069) $)) (-15 -2950 ($ (-1018))) (-15 -2432 ($ (-1018))) (-15 -3046 ($ (-1053))) (-15 -3046 ($ (-578 (-1053)))) (-15 -2096 ($ (-1053))) (-15 -1745 ($)) (-15 -1745 ($ (-282 (-630)))) (-15 -1745 ($ (-282 (-632)))) (-15 -1745 ($ (-282 (-625)))) (-15 -1745 ($ (-282 (-346)))) (-15 -1745 ($ (-282 (-501)))) (-15 -1745 ($ (-282 (-152 (-346))))) (-15 -1265 ($ (-1069) $)) (-15 -1265 ($ (-1069) $ $)) (-15 -1278 ($ (-1070) (-1053))) (-15 -1278 ($ (-1070) (-282 (-632)))) (-15 -1278 ($ (-1070) (-282 (-630)))) (-15 -1278 ($ (-1070) (-282 (-625)))) (-15 -1278 ($ (-1070) (-621 (-632)))) (-15 -1278 ($ (-1070) (-621 (-630)))) (-15 -1278 ($ (-1070) (-621 (-625)))) (-15 -1278 ($ (-1070) (-1148 (-632)))) (-15 -1278 ($ (-1070) (-1148 (-630)))) (-15 -1278 ($ (-1070) (-1148 (-625)))) (-15 -1278 ($ (-1070) (-621 (-282 (-632))))) (-15 -1278 ($ (-1070) (-621 (-282 (-630))))) (-15 -1278 ($ (-1070) (-621 (-282 (-625))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-632))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-630))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-625))))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-632)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-630)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-625)))) (-15 -1278 ($ (-1070) (-282 (-501)))) (-15 -1278 ($ (-1070) (-282 (-346)))) (-15 -1278 ($ (-1070) (-282 (-152 (-346))))) (-15 -1278 ($ (-1070) (-621 (-282 (-501))))) (-15 -1278 ($ (-1070) (-621 (-282 (-346))))) (-15 -1278 ($ (-1070) (-621 (-282 (-152 (-346)))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-501))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-346))))) (-15 -1278 ($ (-1070) (-1148 (-282 (-152 (-346)))))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-501)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-346)))) (-15 -1278 ($ (-1070) (-578 (-866 (-501))) (-282 (-152 (-346))))) (-15 -1796 ($ (-578 $))) (-15 -1515 ($)) (-15 -3245 ($)) (-15 -2273 ($ (-578 (-786)))) (-15 -2620 ($ (-1070) (-578 (-1070)))) (-15 -3703 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3886 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 $)) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| $))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786)))) $)) (-15 -1768 ((-1154) $)) (-15 -3171 ((-1003) $)) (-15 -1187 ((-1018) (-1018)))))
-((-3736 (((-107) $ $) NIL)) (-2758 (((-107) $) 11)) (-3929 (($ |#1|) 8)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3933 (($ |#1|) 9)) (-3691 (((-786) $) 17)) (-2992 ((|#1| $) 12)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 19)))
-(((-299 |#1|) (-13 (-777) (-10 -8 (-15 -3929 ($ |#1|)) (-15 -3933 ($ |#1|)) (-15 -2758 ((-107) $)) (-15 -2992 (|#1| $)))) (-777)) (T -299))
-((-3929 (*1 *1 *2) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) (-3933 (*1 *1 *2) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) (-2758 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-299 *3)) (-4 *3 (-777)))) (-2992 (*1 *2 *1) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))))
-(-13 (-777) (-10 -8 (-15 -3929 ($ |#1|)) (-15 -3933 ($ |#1|)) (-15 -2758 ((-107) $)) (-15 -2992 (|#1| $))))
-((-1421 (((-298) (-1070) (-866 (-501))) 22)) (-3637 (((-298) (-1070) (-866 (-501))) 26)) (-2457 (((-298) (-1070) (-993 (-866 (-501))) (-993 (-866 (-501)))) 25) (((-298) (-1070) (-866 (-501)) (-866 (-501))) 23)) (-3263 (((-298) (-1070) (-866 (-501))) 30)))
-(((-300) (-10 -7 (-15 -1421 ((-298) (-1070) (-866 (-501)))) (-15 -2457 ((-298) (-1070) (-866 (-501)) (-866 (-501)))) (-15 -2457 ((-298) (-1070) (-993 (-866 (-501))) (-993 (-866 (-501))))) (-15 -3637 ((-298) (-1070) (-866 (-501)))) (-15 -3263 ((-298) (-1070) (-866 (-501)))))) (T -300))
-((-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))) (-3637 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))) (-2457 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-993 (-866 (-501)))) (-5 *2 (-298)) (-5 *1 (-300)))) (-2457 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))))
-(-10 -7 (-15 -1421 ((-298) (-1070) (-866 (-501)))) (-15 -2457 ((-298) (-1070) (-866 (-501)) (-866 (-501)))) (-15 -2457 ((-298) (-1070) (-993 (-866 (-501))) (-993 (-866 (-501))))) (-15 -3637 ((-298) (-1070) (-866 (-501)))) (-15 -3263 ((-298) (-1070) (-866 (-501)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3547 (($ $) 32)) (-2748 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-1197 (((-1148 |#4|) $) 124)) (-3463 (((-381 |#2| (-375 |#2|) |#3| |#4|) $) 30)) (-3708 (((-1018) $) NIL)) (-3987 (((-3 |#4| "failed") $) 35)) (-3662 (((-1148 |#4|) $) 117)) (-1281 (($ (-381 |#2| (-375 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-501)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-1688 (((-2 (|:| -3611 (-381 |#2| (-375 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-3691 (((-786) $) 17)) (-1850 (($) 14 T CONST)) (-3751 (((-107) $ $) 20)) (-3797 (($ $) 27) (($ $ $) NIL)) (-3790 (($ $ $) 25)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 23)))
-(((-301 |#1| |#2| |#3| |#4|) (-13 (-304 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3662 ((-1148 |#4|) $)) (-15 -1197 ((-1148 |#4|) $)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -301))
-((-3662 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *6)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *6 (-310 *3 *4 *5)))) (-1197 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *6)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *6 (-310 *3 *4 *5)))))
-(-13 (-304 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3662 ((-1148 |#4|) $)) (-15 -1197 ((-1148 |#4|) $))))
-((-1212 (((-301 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-301 |#1| |#2| |#3| |#4|)) 31)))
-(((-302 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1212 ((-301 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-301 |#1| |#2| |#3| |#4|)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|) (-331) (-1125 |#5|) (-1125 (-375 |#6|)) (-310 |#5| |#6| |#7|)) (T -302))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-301 *5 *6 *7 *8)) (-4 *5 (-331)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *9 (-331)) (-4 *10 (-1125 *9)) (-4 *11 (-1125 (-375 *10))) (-5 *2 (-301 *9 *10 *11 *12)) (-5 *1 (-302 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-310 *9 *10 *11)))))
-(-10 -7 (-15 -1212 ((-301 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-301 |#1| |#2| |#3| |#4|))))
-((-2748 (((-107) $) 14)))
-(((-303 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2748 ((-107) |#1|))) (-304 |#2| |#3| |#4| |#5|) (-331) (-1125 |#2|) (-1125 (-375 |#3|)) (-310 |#2| |#3| |#4|)) (T -303))
-NIL
-(-10 -8 (-15 -2748 ((-107) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3547 (($ $) 26)) (-2748 (((-107) $) 25)) (-3460 (((-1053) $) 9)) (-3463 (((-381 |#2| (-375 |#2|) |#3| |#4|) $) 32)) (-3708 (((-1018) $) 10)) (-3987 (((-3 |#4| "failed") $) 24)) (-1281 (($ (-381 |#2| (-375 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-501)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1688 (((-2 (|:| -3611 (-381 |#2| (-375 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20)))
-(((-304 |#1| |#2| |#3| |#4|) (-1180) (-331) (-1125 |t#1|) (-1125 (-375 |t#2|)) (-310 |t#1| |t#2| |t#3|)) (T -304))
-((-3463 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-381 *4 (-375 *4) *5 *6)))) (-1281 (*1 *1 *2) (-12 (-5 *2 (-381 *4 (-375 *4) *5 *6)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-4 *3 (-331)) (-4 *1 (-304 *3 *4 *5 *6)))) (-1281 (*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *1 (-304 *3 *4 *5 *2)) (-4 *2 (-310 *3 *4 *5)))) (-1281 (*1 *1 *2 *2) (-12 (-4 *2 (-331)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))) (-4 *1 (-304 *2 *3 *4 *5)) (-4 *5 (-310 *2 *3 *4)))) (-1281 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-501)) (-4 *2 (-331)) (-4 *4 (-1125 *2)) (-4 *5 (-1125 (-375 *4))) (-4 *1 (-304 *2 *4 *5 *6)) (-4 *6 (-310 *2 *4 *5)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-2 (|:| -3611 (-381 *4 (-375 *4) *5 *6)) (|:| |principalPart| *6))))) (-3547 (*1 *1 *1) (-12 (-4 *1 (-304 *2 *3 *4 *5)) (-4 *2 (-331)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))) (-4 *5 (-310 *2 *3 *4)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-107)))) (-3987 (*1 *2 *1) (|partial| -12 (-4 *1 (-304 *3 *4 *5 *2)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *2 (-310 *3 *4 *5)))) (-1281 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-331)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-4 *1 (-304 *4 *3 *5 *2)) (-4 *2 (-310 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -3463 ((-381 |t#2| (-375 |t#2|) |t#3| |t#4|) $)) (-15 -1281 ($ (-381 |t#2| (-375 |t#2|) |t#3| |t#4|))) (-15 -1281 ($ |t#4|)) (-15 -1281 ($ |t#1| |t#1|)) (-15 -1281 ($ |t#1| |t#1| (-501))) (-15 -1688 ((-2 (|:| -3611 (-381 |t#2| (-375 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3547 ($ $)) (-15 -2748 ((-107) $)) (-15 -3987 ((-3 |t#4| "failed") $)) (-15 -1281 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3195 (($ $ (-1070) |#2|) NIL) (($ $ (-578 (-1070)) (-578 |#2|)) 18) (($ $ (-578 (-262 |#2|))) 14) (($ $ (-262 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-578 |#2|) (-578 |#2|)) NIL)) (-2007 (($ $ |#2|) 11)))
-(((-305 |#1| |#2|) (-10 -8 (-15 -2007 (|#1| |#1| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 |#2|))) (-15 -3195 (|#1| |#1| (-1070) |#2|))) (-306 |#2|) (-1001)) (T -305))
-NIL
-(-10 -8 (-15 -2007 (|#1| |#1| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 |#2|))) (-15 -3195 (|#1| |#1| (-1070) |#2|)))
-((-1212 (($ (-1 |#1| |#1|) $) 6)) (-3195 (($ $ (-1070) |#1|) 17 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 16 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-578 (-262 |#1|))) 15 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 14 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-278 |#1|))) (($ $ (-578 |#1|) (-578 |#1|)) 12 (|has| |#1| (-278 |#1|)))) (-2007 (($ $ |#1|) 11 (|has| |#1| (-256 |#1| |#1|)))))
-(((-306 |#1|) (-1180) (-1001)) (T -306))
-((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-306 *3)) (-4 *3 (-1001)))))
-(-13 (-10 -8 (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-256 |t#1| |t#1|)) (-6 (-256 |t#1| $)) |noBranch|) (IF (|has| |t#1| (-278 |t#1|)) (-6 (-278 |t#1|)) |noBranch|) (IF (|has| |t#1| (-476 (-1070) |t#1|)) (-6 (-476 (-1070) |t#1|)) |noBranch|)))
-(((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-1070)) $) NIL)) (-1270 (((-107)) 87) (((-107) (-107)) 88)) (-3709 (((-578 (-553 $)) $) NIL)) (-3978 (($ $) NIL)) (-3937 (($ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL)) (-3743 (($ $) NIL)) (-3970 (($ $) NIL)) (-3929 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-553 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-282 |#3|)) 69) (((-3 $ "failed") (-1070)) 93) (((-3 $ "failed") (-282 (-501))) 56 (|has| |#3| (-950 (-501)))) (((-3 $ "failed") (-375 (-866 (-501)))) 62 (|has| |#3| (-950 (-501)))) (((-3 $ "failed") (-866 (-501))) 57 (|has| |#3| (-950 (-501)))) (((-3 $ "failed") (-282 (-346))) 74 (|has| |#3| (-950 (-346)))) (((-3 $ "failed") (-375 (-866 (-346)))) 80 (|has| |#3| (-950 (-346)))) (((-3 $ "failed") (-866 (-346))) 75 (|has| |#3| (-950 (-346))))) (-3490 (((-553 $) $) NIL) ((|#3| $) NIL) (($ (-282 |#3|)) 70) (($ (-1070)) 94) (($ (-282 (-501))) 58 (|has| |#3| (-950 (-501)))) (($ (-375 (-866 (-501)))) 63 (|has| |#3| (-950 (-501)))) (($ (-866 (-501))) 59 (|has| |#3| (-950 (-501)))) (($ (-282 (-346))) 76 (|has| |#3| (-950 (-346)))) (($ (-375 (-866 (-346)))) 81 (|has| |#3| (-950 (-346)))) (($ (-866 (-346))) 77 (|has| |#3| (-950 (-346))))) (-2174 (((-3 $ "failed") $) NIL)) (-2003 (($) 10)) (-2446 (($ $) NIL) (($ (-578 $)) NIL)) (-2389 (((-578 (-108)) $) NIL)) (-1853 (((-108) (-108)) NIL)) (-1355 (((-107) $) NIL)) (-3729 (((-107) $) NIL (|has| $ (-950 (-501))))) (-1983 (((-1064 $) (-553 $)) NIL (|has| $ (-959)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 $ $) (-553 $)) NIL)) (-2789 (((-3 (-553 $) "failed") $) NIL)) (-3266 (($ $) 90)) (-1635 (($ $) NIL)) (-3460 (((-1053) $) NIL)) (-3724 (((-578 (-553 $)) $) NIL)) (-3136 (($ (-108) $) 89) (($ (-108) (-578 $)) NIL)) (-3109 (((-107) $ (-108)) NIL) (((-107) $ (-1070)) NIL)) (-2696 (((-701) $) NIL)) (-3708 (((-1018) $) NIL)) (-2816 (((-107) $ $) NIL) (((-107) $ (-1070)) NIL)) (-1989 (($ $) NIL)) (-3172 (((-107) $) NIL (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL)) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) NIL)) (-4106 (($ $) NIL) (($ $ $) NIL)) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL)) (-2264 (($ $) NIL (|has| $ (-959)))) (-3975 (($ $) NIL)) (-3933 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-553 $)) NIL) (($ |#3|) NIL) (($ (-501)) NIL) (((-282 |#3|) $) 92)) (-3965 (((-701)) NIL)) (-1831 (($ $) NIL) (($ (-578 $)) NIL)) (-3811 (((-107) (-108)) NIL)) (-3958 (($ $) NIL)) (-3952 (($ $) NIL)) (-3955 (($ $) NIL)) (-1720 (($ $) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 91 T CONST)) (-1925 (($) 22 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL)))
-(((-307 |#1| |#2| |#3|) (-13 (-267) (-37 |#3|) (-950 |#3|) (-820 (-1070)) (-10 -8 (-15 -3490 ($ (-282 |#3|))) (-15 -3765 ((-3 $ "failed") (-282 |#3|))) (-15 -3490 ($ (-1070))) (-15 -3765 ((-3 $ "failed") (-1070))) (-15 -3691 ((-282 |#3|) $)) (IF (|has| |#3| (-950 (-501))) (PROGN (-15 -3490 ($ (-282 (-501)))) (-15 -3765 ((-3 $ "failed") (-282 (-501)))) (-15 -3490 ($ (-375 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-501))))) (-15 -3490 ($ (-866 (-501)))) (-15 -3765 ((-3 $ "failed") (-866 (-501))))) |noBranch|) (IF (|has| |#3| (-950 (-346))) (PROGN (-15 -3490 ($ (-282 (-346)))) (-15 -3765 ((-3 $ "failed") (-282 (-346)))) (-15 -3490 ($ (-375 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-346))))) (-15 -3490 ($ (-866 (-346)))) (-15 -3765 ((-3 $ "failed") (-866 (-346))))) |noBranch|) (-15 -1720 ($ $)) (-15 -3743 ($ $)) (-15 -1989 ($ $)) (-15 -1635 ($ $)) (-15 -3266 ($ $)) (-15 -3929 ($ $)) (-15 -3933 ($ $)) (-15 -3937 ($ $)) (-15 -3952 ($ $)) (-15 -3955 ($ $)) (-15 -3958 ($ $)) (-15 -3970 ($ $)) (-15 -3975 ($ $)) (-15 -3978 ($ $)) (-15 -2003 ($)) (-15 -3800 ((-578 (-1070)) $)) (-15 -1270 ((-107))) (-15 -1270 ((-107) (-107))))) (-578 (-1070)) (-578 (-1070)) (-355)) (T -307))
-((-3490 (*1 *1 *2) (-12 (-5 *2 (-282 *5)) (-4 *5 (-355)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 *5)) (-4 *5 (-355)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 *2)) (-14 *4 (-578 *2)) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 *2)) (-14 *4 (-578 *2)) (-4 *5 (-355)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-282 *5)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-501)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-501)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-346)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-346)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-1720 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3743 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-1989 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-1635 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3929 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3933 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3937 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3952 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3955 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3958 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3970 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3975 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3978 (*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-2003 (*1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-307 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-355)))) (-1270 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) (-1270 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))))
-(-13 (-267) (-37 |#3|) (-950 |#3|) (-820 (-1070)) (-10 -8 (-15 -3490 ($ (-282 |#3|))) (-15 -3765 ((-3 $ "failed") (-282 |#3|))) (-15 -3490 ($ (-1070))) (-15 -3765 ((-3 $ "failed") (-1070))) (-15 -3691 ((-282 |#3|) $)) (IF (|has| |#3| (-950 (-501))) (PROGN (-15 -3490 ($ (-282 (-501)))) (-15 -3765 ((-3 $ "failed") (-282 (-501)))) (-15 -3490 ($ (-375 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-501))))) (-15 -3490 ($ (-866 (-501)))) (-15 -3765 ((-3 $ "failed") (-866 (-501))))) |noBranch|) (IF (|has| |#3| (-950 (-346))) (PROGN (-15 -3490 ($ (-282 (-346)))) (-15 -3765 ((-3 $ "failed") (-282 (-346)))) (-15 -3490 ($ (-375 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-346))))) (-15 -3490 ($ (-866 (-346)))) (-15 -3765 ((-3 $ "failed") (-866 (-346))))) |noBranch|) (-15 -1720 ($ $)) (-15 -3743 ($ $)) (-15 -1989 ($ $)) (-15 -1635 ($ $)) (-15 -3266 ($ $)) (-15 -3929 ($ $)) (-15 -3933 ($ $)) (-15 -3937 ($ $)) (-15 -3952 ($ $)) (-15 -3955 ($ $)) (-15 -3958 ($ $)) (-15 -3970 ($ $)) (-15 -3975 ($ $)) (-15 -3978 ($ $)) (-15 -2003 ($)) (-15 -3800 ((-578 (-1070)) $)) (-15 -1270 ((-107))) (-15 -1270 ((-107) (-107)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-826 |#1|) (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| (-826 |#1|) (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-826 |#1|) "failed") $) NIL)) (-3490 (((-826 |#1|) $) NIL)) (-3142 (($ (-1148 (-826 |#1|))) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-826 |#1|) (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-826 |#1|) (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| (-826 |#1|) (-336)))) (-3521 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336)))) (($ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| (-826 |#1|) (-336))) (((-762 (-839)) $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| (-826 |#1|) (-336)))) (-1928 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-2626 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-826 |#1|) (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 (-826 |#1|)) $) NIL) (((-1064 $) $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3104 (((-839) $) NIL (|has| (-826 |#1|) (-336)))) (-3721 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336)))) (-1806 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-1064 (-826 |#1|)) "failed") $ $) NIL (|has| (-826 |#1|) (-336)))) (-2468 (($ $ (-1064 (-826 |#1|))) NIL (|has| (-826 |#1|) (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-826 |#1|) (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL (|has| (-826 |#1|) (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-826 |#1|) (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 (-826 |#1|))) NIL)) (-1349 (($) NIL (|has| (-826 |#1|) (-336)))) (-3481 (($) NIL (|has| (-826 |#1|) (-336)))) (-2085 (((-1148 (-826 |#1|)) $) NIL) (((-621 (-826 |#1|)) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-826 |#1|) (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-826 |#1|)) NIL)) (-1274 (($ $) NIL (|has| (-826 |#1|) (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3584 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ (-826 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-826 |#1|)) NIL) (($ (-826 |#1|) $) NIL)))
-(((-308 |#1| |#2|) (-297 (-826 |#1|)) (-839) (-839)) (T -308))
-NIL
-(-297 (-826 |#1|))
-((-3767 (((-2 (|:| |num| (-1148 |#3|)) (|:| |den| |#3|)) $) 37)) (-3142 (($ (-1148 (-375 |#3|)) (-1148 $)) NIL) (($ (-1148 (-375 |#3|))) NIL) (($ (-1148 |#3|) |#3|) 158)) (-3566 (((-1148 $) (-1148 $)) 142)) (-1286 (((-578 (-578 |#2|))) 115)) (-2142 (((-107) |#2| |#2|) 71)) (-3533 (($ $) 136)) (-1206 (((-701)) 30)) (-3740 (((-1148 $) (-1148 $)) 195)) (-1607 (((-578 (-866 |#2|)) (-1070)) 108)) (-3672 (((-107) $) 155)) (-2131 (((-107) $) 24) (((-107) $ |#2|) 28) (((-107) $ |#3|) 199)) (-2050 (((-3 |#3| "failed")) 48)) (-4122 (((-701)) 167)) (-2007 ((|#2| $ |#2| |#2|) 129)) (-2435 (((-3 |#3| "failed")) 66)) (-2596 (($ $ (-1 (-375 |#3|) (-375 |#3|)) (-701)) NIL) (($ $ (-1 (-375 |#3|) (-375 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 203) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-1416 (((-1148 $) (-1148 $)) 148)) (-2548 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 64)) (-2710 (((-107)) 32)))
-(((-309 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -1286 ((-578 (-578 |#2|)))) (-15 -1607 ((-578 (-866 |#2|)) (-1070))) (-15 -2548 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2050 ((-3 |#3| "failed"))) (-15 -2435 ((-3 |#3| "failed"))) (-15 -2007 (|#2| |#1| |#2| |#2|)) (-15 -3533 (|#1| |#1|)) (-15 -3142 (|#1| (-1148 |#3|) |#3|)) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2131 ((-107) |#1| |#3|)) (-15 -2131 ((-107) |#1| |#2|)) (-15 -3767 ((-2 (|:| |num| (-1148 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3566 ((-1148 |#1|) (-1148 |#1|))) (-15 -3740 ((-1148 |#1|) (-1148 |#1|))) (-15 -1416 ((-1148 |#1|) (-1148 |#1|))) (-15 -2131 ((-107) |#1|)) (-15 -3672 ((-107) |#1|)) (-15 -2142 ((-107) |#2| |#2|)) (-15 -2710 ((-107))) (-15 -4122 ((-701))) (-15 -1206 ((-701))) (-15 -2596 (|#1| |#1| (-1 (-375 |#3|) (-375 |#3|)))) (-15 -2596 (|#1| |#1| (-1 (-375 |#3|) (-375 |#3|)) (-701))) (-15 -3142 (|#1| (-1148 (-375 |#3|)))) (-15 -3142 (|#1| (-1148 (-375 |#3|)) (-1148 |#1|)))) (-310 |#2| |#3| |#4|) (-1108) (-1125 |#2|) (-1125 (-375 |#3|))) (T -309))
-((-1206 (*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-701)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) (-4122 (*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-701)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) (-2710 (*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) (-2142 (*1 *2 *3 *3) (-12 (-4 *3 (-1108)) (-4 *5 (-1125 *3)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-107)) (-5 *1 (-309 *4 *3 *5 *6)) (-4 *4 (-310 *3 *5 *6)))) (-2435 (*1 *2) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-309 *3 *4 *2 *5)) (-4 *3 (-310 *4 *2 *5)))) (-2050 (*1 *2) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-309 *3 *4 *2 *5)) (-4 *3 (-310 *4 *2 *5)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *5 (-1108)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-578 (-866 *5))) (-5 *1 (-309 *4 *5 *6 *7)) (-4 *4 (-310 *5 *6 *7)))) (-1286 (*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))))
-(-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -1286 ((-578 (-578 |#2|)))) (-15 -1607 ((-578 (-866 |#2|)) (-1070))) (-15 -2548 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2050 ((-3 |#3| "failed"))) (-15 -2435 ((-3 |#3| "failed"))) (-15 -2007 (|#2| |#1| |#2| |#2|)) (-15 -3533 (|#1| |#1|)) (-15 -3142 (|#1| (-1148 |#3|) |#3|)) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2131 ((-107) |#1| |#3|)) (-15 -2131 ((-107) |#1| |#2|)) (-15 -3767 ((-2 (|:| |num| (-1148 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3566 ((-1148 |#1|) (-1148 |#1|))) (-15 -3740 ((-1148 |#1|) (-1148 |#1|))) (-15 -1416 ((-1148 |#1|) (-1148 |#1|))) (-15 -2131 ((-107) |#1|)) (-15 -3672 ((-107) |#1|)) (-15 -2142 ((-107) |#2| |#2|)) (-15 -2710 ((-107))) (-15 -4122 ((-701))) (-15 -1206 ((-701))) (-15 -2596 (|#1| |#1| (-1 (-375 |#3|) (-375 |#3|)))) (-15 -2596 (|#1| |#1| (-1 (-375 |#3|) (-375 |#3|)) (-701))) (-15 -3142 (|#1| (-1148 (-375 |#3|)))) (-15 -3142 (|#1| (-1148 (-375 |#3|)) (-1148 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3767 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) 196)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 93 (|has| (-375 |#2|) (-331)))) (-2865 (($ $) 94 (|has| (-375 |#2|) (-331)))) (-1639 (((-107) $) 96 (|has| (-375 |#2|) (-331)))) (-2239 (((-621 (-375 |#2|)) (-1148 $)) 46) (((-621 (-375 |#2|))) 61)) (-2225 (((-375 |#2|) $) 52)) (-3431 (((-1077 (-839) (-701)) (-501)) 147 (|has| (-375 |#2|) (-318)))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 113 (|has| (-375 |#2|) (-331)))) (-1559 (((-373 $) $) 114 (|has| (-375 |#2|) (-331)))) (-2781 (((-107) $ $) 104 (|has| (-375 |#2|) (-331)))) (-3796 (((-701)) 87 (|has| (-375 |#2|) (-336)))) (-3285 (((-107)) 213)) (-2330 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 169 (|has| (-375 |#2|) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 167 (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-3 (-375 |#2|) "failed") $) 166)) (-3490 (((-501) $) 170 (|has| (-375 |#2|) (-950 (-501)))) (((-375 (-501)) $) 168 (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-375 |#2|) $) 165)) (-3142 (($ (-1148 (-375 |#2|)) (-1148 $)) 48) (($ (-1148 (-375 |#2|))) 64) (($ (-1148 |#2|) |#2|) 189)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-375 |#2|) (-318)))) (-3023 (($ $ $) 108 (|has| (-375 |#2|) (-331)))) (-3070 (((-621 (-375 |#2|)) $ (-1148 $)) 53) (((-621 (-375 |#2|)) $) 59)) (-3868 (((-621 (-501)) (-621 $)) 164 (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 163 (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-375 |#2|))) (|:| |vec| (-1148 (-375 |#2|)))) (-621 $) (-1148 $)) 162) (((-621 (-375 |#2|)) (-621 $)) 161)) (-3566 (((-1148 $) (-1148 $)) 201)) (-3547 (($ |#3|) 158) (((-3 $ "failed") (-375 |#3|)) 155 (|has| (-375 |#2|) (-331)))) (-2174 (((-3 $ "failed") $) 34)) (-1286 (((-578 (-578 |#1|))) 182 (|has| |#1| (-336)))) (-2142 (((-107) |#1| |#1|) 217)) (-3689 (((-839)) 54)) (-2890 (($) 90 (|has| (-375 |#2|) (-336)))) (-2516 (((-107)) 210)) (-1436 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-3034 (($ $ $) 107 (|has| (-375 |#2|) (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 102 (|has| (-375 |#2|) (-331)))) (-3533 (($ $) 188)) (-1317 (($) 149 (|has| (-375 |#2|) (-318)))) (-3521 (((-107) $) 150 (|has| (-375 |#2|) (-318)))) (-3067 (($ $ (-701)) 141 (|has| (-375 |#2|) (-318))) (($ $) 140 (|has| (-375 |#2|) (-318)))) (-1628 (((-107) $) 115 (|has| (-375 |#2|) (-331)))) (-3169 (((-839) $) 152 (|has| (-375 |#2|) (-318))) (((-762 (-839)) $) 138 (|has| (-375 |#2|) (-318)))) (-1355 (((-107) $) 31)) (-1206 (((-701)) 220)) (-3740 (((-1148 $) (-1148 $)) 202)) (-2626 (((-375 |#2|) $) 51)) (-1607 (((-578 (-866 |#1|)) (-1070)) 183 (|has| |#1| (-331)))) (-3493 (((-3 $ "failed") $) 142 (|has| (-375 |#2|) (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 111 (|has| (-375 |#2|) (-331)))) (-1792 ((|#3| $) 44 (|has| (-375 |#2|) (-331)))) (-3104 (((-839) $) 89 (|has| (-375 |#2|) (-336)))) (-1316 ((|#3| $) 156)) (-1697 (($ (-578 $)) 100 (|has| (-375 |#2|) (-331))) (($ $ $) 99 (|has| (-375 |#2|) (-331)))) (-3460 (((-1053) $) 9)) (-1275 (((-621 (-375 |#2|))) 197)) (-2368 (((-621 (-375 |#2|))) 199)) (-3833 (($ $) 116 (|has| (-375 |#2|) (-331)))) (-1318 (($ (-1148 |#2|) |#2|) 194)) (-2466 (((-621 (-375 |#2|))) 198)) (-2796 (((-621 (-375 |#2|))) 200)) (-1276 (((-2 (|:| |num| (-621 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-3418 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) 195)) (-2664 (((-1148 $)) 206)) (-1897 (((-1148 $)) 207)) (-3672 (((-107) $) 205)) (-2131 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-3746 (($) 143 (|has| (-375 |#2|) (-318)) CONST)) (-3506 (($ (-839)) 88 (|has| (-375 |#2|) (-336)))) (-2050 (((-3 |#2| "failed")) 185)) (-3708 (((-1018) $) 10)) (-4122 (((-701)) 219)) (-3987 (($) 160)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 101 (|has| (-375 |#2|) (-331)))) (-3664 (($ (-578 $)) 98 (|has| (-375 |#2|) (-331))) (($ $ $) 97 (|has| (-375 |#2|) (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 146 (|has| (-375 |#2|) (-318)))) (-3739 (((-373 $) $) 112 (|has| (-375 |#2|) (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-375 |#2|) (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 109 (|has| (-375 |#2|) (-331)))) (-3694 (((-3 $ "failed") $ $) 92 (|has| (-375 |#2|) (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 103 (|has| (-375 |#2|) (-331)))) (-1864 (((-701) $) 105 (|has| (-375 |#2|) (-331)))) (-2007 ((|#1| $ |#1| |#1|) 187)) (-2435 (((-3 |#2| "failed")) 186)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 106 (|has| (-375 |#2|) (-331)))) (-2532 (((-375 |#2|) (-1148 $)) 47) (((-375 |#2|)) 60)) (-1984 (((-701) $) 151 (|has| (-375 |#2|) (-318))) (((-3 (-701) "failed") $ $) 139 (|has| (-375 |#2|) (-318)))) (-2596 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) 123 (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) 122 (|has| (-375 |#2|) (-331))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-578 (-1070)) (-578 (-701))) 130 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-1070) (-701)) 131 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-578 (-1070))) 132 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-1070)) 133 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-701)) 135 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-206))) (-1280 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) 137 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-206))) (-1280 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-2231 (((-621 (-375 |#2|)) (-1148 $) (-1 (-375 |#2|) (-375 |#2|))) 154 (|has| (-375 |#2|) (-331)))) (-2264 ((|#3|) 159)) (-1349 (($) 148 (|has| (-375 |#2|) (-318)))) (-2085 (((-1148 (-375 |#2|)) $ (-1148 $)) 50) (((-621 (-375 |#2|)) (-1148 $) (-1148 $)) 49) (((-1148 (-375 |#2|)) $) 66) (((-621 (-375 |#2|)) (-1148 $)) 65)) (-1248 (((-1148 (-375 |#2|)) $) 63) (($ (-1148 (-375 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 145 (|has| (-375 |#2|) (-318)))) (-1416 (((-1148 $) (-1148 $)) 203)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 |#2|)) 37) (($ (-375 (-501))) 86 (-1405 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-950 (-375 (-501)))))) (($ $) 91 (|has| (-375 |#2|) (-331)))) (-1274 (($ $) 144 (|has| (-375 |#2|) (-318))) (((-3 $ "failed") $) 43 (|has| (-375 |#2|) (-132)))) (-2942 ((|#3| $) 45)) (-3965 (((-701)) 29)) (-2675 (((-107)) 216)) (-3969 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-4119 (((-1148 $)) 67)) (-2442 (((-107) $ $) 95 (|has| (-375 |#2|) (-331)))) (-2548 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-2710 (((-107)) 218)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 117 (|has| (-375 |#2|) (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) 125 (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) 124 (|has| (-375 |#2|) (-331))) (($ $ (-578 (-1070)) (-578 (-701))) 126 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-1070) (-701)) 127 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-578 (-1070))) 128 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-1070)) 129 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) (-1280 (|has| (-375 |#2|) (-820 (-1070))) (|has| (-375 |#2|) (-331))))) (($ $ (-701)) 134 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-206))) (-1280 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) 136 (-1405 (-1280 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-206))) (-1280 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 121 (|has| (-375 |#2|) (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 118 (|has| (-375 |#2|) (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 |#2|)) 39) (($ (-375 |#2|) $) 38) (($ (-375 (-501)) $) 120 (|has| (-375 |#2|) (-331))) (($ $ (-375 (-501))) 119 (|has| (-375 |#2|) (-331)))))
-(((-310 |#1| |#2| |#3|) (-1180) (-1108) (-1125 |t#1|) (-1125 (-375 |t#2|))) (T -310))
-((-1206 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-701)))) (-4122 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-701)))) (-2710 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2142 (*1 *2 *3 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2675 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-3969 (*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-3969 (*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) (-3285 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2330 (*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2330 (*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) (-2516 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-1436 (*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-1436 (*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) (-1897 (*1 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)))) (-2664 (*1 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-1416 (*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) (-3740 (*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) (-3566 (*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) (-2796 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))) (-2368 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))) (-2466 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))) (-1275 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))) (-3767 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-2 (|:| |num| (-1148 *4)) (|:| |den| *4))))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-2 (|:| |num| (-1148 *4)) (|:| |den| *4))))) (-1318 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1125 *4)) (-4 *4 (-1108)) (-4 *1 (-310 *4 *3 *5)) (-4 *5 (-1125 (-375 *3))))) (-1276 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-310 *4 *5 *6)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-2 (|:| |num| (-621 *5)) (|:| |den| *5))))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) (-2131 (*1 *2 *1 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) (-3142 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1125 *4)) (-4 *4 (-1108)) (-4 *1 (-310 *4 *3 *5)) (-4 *5 (-1125 (-375 *3))))) (-3533 (*1 *1 *1) (-12 (-4 *1 (-310 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))))) (-2007 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-310 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))))) (-2435 (*1 *2) (|partial| -12 (-4 *1 (-310 *3 *2 *4)) (-4 *3 (-1108)) (-4 *4 (-1125 (-375 *2))) (-4 *2 (-1125 *3)))) (-2050 (*1 *2) (|partial| -12 (-4 *1 (-310 *3 *2 *4)) (-4 *3 (-1108)) (-4 *4 (-1125 (-375 *2))) (-4 *2 (-1125 *3)))) (-2548 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-1108)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-310 *4 *5 *6)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *1 (-310 *4 *5 *6)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-4 *4 (-331)) (-5 *2 (-578 (-866 *4))))) (-1286 (*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *3 (-336)) (-5 *2 (-578 (-578 *3))))))
-(-13 (-655 (-375 |t#2|) |t#3|) (-10 -8 (-15 -1206 ((-701))) (-15 -4122 ((-701))) (-15 -2710 ((-107))) (-15 -2142 ((-107) |t#1| |t#1|)) (-15 -2675 ((-107))) (-15 -3969 ((-107) |t#1|)) (-15 -3969 ((-107) |t#2|)) (-15 -3285 ((-107))) (-15 -2330 ((-107) |t#1|)) (-15 -2330 ((-107) |t#2|)) (-15 -2516 ((-107))) (-15 -1436 ((-107) |t#1|)) (-15 -1436 ((-107) |t#2|)) (-15 -1897 ((-1148 $))) (-15 -2664 ((-1148 $))) (-15 -3672 ((-107) $)) (-15 -2131 ((-107) $)) (-15 -1416 ((-1148 $) (-1148 $))) (-15 -3740 ((-1148 $) (-1148 $))) (-15 -3566 ((-1148 $) (-1148 $))) (-15 -2796 ((-621 (-375 |t#2|)))) (-15 -2368 ((-621 (-375 |t#2|)))) (-15 -2466 ((-621 (-375 |t#2|)))) (-15 -1275 ((-621 (-375 |t#2|)))) (-15 -3767 ((-2 (|:| |num| (-1148 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3142 ($ (-1148 |t#2|) |t#2|)) (-15 -3418 ((-2 (|:| |num| (-1148 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1318 ($ (-1148 |t#2|) |t#2|)) (-15 -1276 ((-2 (|:| |num| (-621 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2131 ((-107) $ |t#1|)) (-15 -2131 ((-107) $ |t#2|)) (-15 -2596 ($ $ (-1 |t#2| |t#2|))) (-15 -3142 ($ (-1148 |t#2|) |t#2|)) (-15 -3533 ($ $)) (-15 -2007 (|t#1| $ |t#1| |t#1|)) (-15 -2435 ((-3 |t#2| "failed"))) (-15 -2050 ((-3 |t#2| "failed"))) (-15 -2548 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-331)) (-15 -1607 ((-578 (-866 |t#1|)) (-1070))) |noBranch|) (IF (|has| |t#1| (-336)) (-15 -1286 ((-578 (-578 |t#1|)))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-37 (-375 |#2|)) . T) ((-37 $) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-106 (-375 |#2|) (-375 |#2|)) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-132))) ((-134) |has| (-375 |#2|) (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 |#3|) . T) ((-204 (-375 |#2|)) |has| (-375 |#2|) (-331)) ((-206) -1405 (|has| (-375 |#2|) (-318)) (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331)))) ((-216) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-260) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-276) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-331) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-370) |has| (-375 |#2|) (-318)) ((-336) -1405 (|has| (-375 |#2|) (-336)) (|has| (-375 |#2|) (-318))) ((-318) |has| (-375 |#2|) (-318)) ((-338 (-375 |#2|) |#3|) . T) ((-378 (-375 |#2|) |#3|) . T) ((-345 (-375 |#2|)) . T) ((-380 (-375 |#2|)) . T) ((-419) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-508) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-583 (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-583 (-375 |#2|)) . T) ((-583 $) . T) ((-577 (-375 |#2|)) . T) ((-577 (-501)) |has| (-375 |#2|) (-577 (-501))) ((-648 (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-648 (-375 |#2|)) . T) ((-648 $) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-655 (-375 |#2|) |#3|) . T) ((-657) . T) ((-820 (-1070)) -12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070)))) ((-841) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-950 (-375 (-501))) |has| (-375 |#2|) (-950 (-375 (-501)))) ((-950 (-375 |#2|)) . T) ((-950 (-501)) |has| (-375 |#2|) (-950 (-501))) ((-964 (-375 (-501))) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))) ((-964 (-375 |#2|)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| (-375 |#2|) (-318)) ((-1108) -1405 (|has| (-375 |#2|) (-318)) (|has| (-375 |#2|) (-331))))
-((-1212 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-311 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1212 (|#8| (-1 |#5| |#1|) |#4|))) (-1108) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|) (-1108) (-1125 |#5|) (-1125 (-375 |#6|)) (-310 |#5| |#6| |#7|)) (T -311))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1108)) (-4 *8 (-1108)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *9 (-1125 *8)) (-4 *2 (-310 *8 *9 *10)) (-5 *1 (-311 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-310 *5 *6 *7)) (-4 *10 (-1125 (-375 *9))))))
-(-10 -7 (-15 -1212 (|#8| (-1 |#5| |#1|) |#4|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-826 |#1|) (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| (-826 |#1|) (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-826 |#1|) "failed") $) NIL)) (-3490 (((-826 |#1|) $) NIL)) (-3142 (($ (-1148 (-826 |#1|))) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-826 |#1|) (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-826 |#1|) (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| (-826 |#1|) (-336)))) (-3521 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336)))) (($ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| (-826 |#1|) (-336))) (((-762 (-839)) $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| (-826 |#1|) (-336)))) (-1928 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-2626 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-826 |#1|) (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 (-826 |#1|)) $) NIL) (((-1064 $) $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3104 (((-839) $) NIL (|has| (-826 |#1|) (-336)))) (-3721 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336)))) (-1806 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-1064 (-826 |#1|)) "failed") $ $) NIL (|has| (-826 |#1|) (-336)))) (-2468 (($ $ (-1064 (-826 |#1|))) NIL (|has| (-826 |#1|) (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-826 |#1|) (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-2067 (((-877 (-1018))) NIL)) (-3987 (($) NIL (|has| (-826 |#1|) (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-826 |#1|) (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 (-826 |#1|))) NIL)) (-1349 (($) NIL (|has| (-826 |#1|) (-336)))) (-3481 (($) NIL (|has| (-826 |#1|) (-336)))) (-2085 (((-1148 (-826 |#1|)) $) NIL) (((-621 (-826 |#1|)) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-826 |#1|) (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-826 |#1|)) NIL)) (-1274 (($ $) NIL (|has| (-826 |#1|) (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3584 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ (-826 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-826 |#1|)) NIL) (($ (-826 |#1|) $) NIL)))
-(((-312 |#1| |#2|) (-13 (-297 (-826 |#1|)) (-10 -7 (-15 -2067 ((-877 (-1018)))))) (-839) (-839)) (T -312))
-((-2067 (*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-312 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))))
-(-13 (-297 (-826 |#1|)) (-10 -7 (-15 -2067 ((-877 (-1018))))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 46)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) 43 (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 113)) (-3490 ((|#1| $) 84)) (-3142 (($ (-1148 |#1|)) 102)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) 96 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) 128 (|has| |#1| (-336)))) (-3521 (((-107) $) 49 (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) 47 (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) 130 (|has| |#1| (-336)))) (-1928 (((-107) $) NIL (|has| |#1| (-336)))) (-2626 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) 88) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) 138 (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 145)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) 70 (|has| |#1| (-336)))) (-2255 (((-107) $) 116)) (-3708 (((-1018) $) NIL)) (-2067 (((-877 (-1018))) 44)) (-3987 (($) 126 (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 91 (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) 67) (((-839)) 68)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) 129 (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) 123 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 |#1|)) 94)) (-1349 (($) 127 (|has| |#1| (-336)))) (-3481 (($) 135 (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) 59) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) 141) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 74)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 137)) (-4119 (((-1148 $)) 115) (((-1148 $) (-839)) 72)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 32 T CONST)) (-1925 (($) 19 T CONST)) (-3184 (($ $) 80 (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) 48)) (-3803 (($ $ $) 143) (($ $ |#1|) 144)) (-3797 (($ $) 125) (($ $ $) NIL)) (-3790 (($ $ $) 61)) (** (($ $ (-839)) 147) (($ $ (-701)) 148) (($ $ (-501)) 146)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 76) (($ $ $) 75) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
-(((-313 |#1| |#2|) (-13 (-297 |#1|) (-10 -7 (-15 -2067 ((-877 (-1018)))))) (-318) (-1064 |#1|)) (T -313))
-((-2067 (*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-313 *3 *4)) (-4 *3 (-318)) (-14 *4 (-1064 *3)))))
-(-13 (-297 |#1|) (-10 -7 (-15 -2067 ((-877 (-1018))))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| |#1| (-336)))) (-1928 (((-107) $) NIL (|has| |#1| (-336)))) (-2626 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) NIL) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-2067 (((-877 (-1018))) NIL)) (-3987 (($) NIL (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 |#1|)) NIL)) (-1349 (($) NIL (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) NIL) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) NIL)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-314 |#1| |#2|) (-13 (-297 |#1|) (-10 -7 (-15 -2067 ((-877 (-1018)))))) (-318) (-839)) (T -314))
-((-2067 (*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-314 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))))
-(-13 (-297 |#1|) (-10 -7 (-15 -2067 ((-877 (-1018))))))
-((-1586 (((-701) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) 40)) (-3462 (((-877 (-1018)) (-1064 |#1|)) 84)) (-1803 (((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) (-1064 |#1|)) 77)) (-2827 (((-621 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) 85)) (-1462 (((-3 (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) "failed") (-839)) 10)) (-2068 (((-3 (-1064 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) (-839)) 15)))
-(((-315 |#1|) (-10 -7 (-15 -3462 ((-877 (-1018)) (-1064 |#1|))) (-15 -1803 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) (-1064 |#1|))) (-15 -2827 ((-621 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -1586 ((-701) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -1462 ((-3 (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) "failed") (-839))) (-15 -2068 ((-3 (-1064 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) (-839)))) (-318)) (T -315))
-((-2068 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-3 (-1064 *4) (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018))))))) (-5 *1 (-315 *4)) (-4 *4 (-318)))) (-1462 (*1 *2 *3) (|partial| -12 (-5 *3 (-839)) (-5 *2 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-5 *1 (-315 *4)) (-4 *4 (-318)))) (-1586 (*1 *2 *3) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-701)) (-5 *1 (-315 *4)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-621 *4)) (-5 *1 (-315 *4)))) (-1803 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-5 *1 (-315 *4)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-877 (-1018))) (-5 *1 (-315 *4)))))
-(-10 -7 (-15 -3462 ((-877 (-1018)) (-1064 |#1|))) (-15 -1803 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) (-1064 |#1|))) (-15 -2827 ((-621 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -1586 ((-701) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -1462 ((-3 (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) "failed") (-839))) (-15 -2068 ((-3 (-1064 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) (-839))))
-((-3691 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
-(((-316 |#1| |#2| |#3|) (-10 -7 (-15 -3691 (|#3| |#1|)) (-15 -3691 (|#1| |#3|))) (-297 |#2|) (-318) (-297 |#2|)) (T -316))
-((-3691 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *2 (-297 *4)) (-5 *1 (-316 *2 *4 *3)) (-4 *3 (-297 *4)))) (-3691 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *2 (-297 *4)) (-5 *1 (-316 *3 *4 *2)) (-4 *3 (-297 *4)))))
-(-10 -7 (-15 -3691 (|#3| |#1|)) (-15 -3691 (|#1| |#3|)))
-((-3521 (((-107) $) 50)) (-3169 (((-762 (-839)) $) 21) (((-839) $) 51)) (-3493 (((-3 $ "failed") $) 16)) (-3746 (($) 9)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 91)) (-1984 (((-3 (-701) "failed") $ $) 70) (((-701) $) 59)) (-2596 (($ $ (-701)) NIL) (($ $) 8)) (-1349 (($) 44)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 33)) (-1274 (((-3 $ "failed") $) 39) (($ $) 38)))
-(((-317 |#1|) (-10 -8 (-15 -3169 ((-839) |#1|)) (-15 -1984 ((-701) |#1|)) (-15 -3521 ((-107) |#1|)) (-15 -1349 (|#1|)) (-15 -2375 ((-3 (-1148 |#1|) "failed") (-621 |#1|))) (-15 -1274 (|#1| |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1984 ((-3 (-701) "failed") |#1| |#1|)) (-15 -3169 ((-762 (-839)) |#1|)) (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)))) (-318)) (T -317))
-NIL
-(-10 -8 (-15 -3169 ((-839) |#1|)) (-15 -1984 ((-701) |#1|)) (-15 -3521 ((-107) |#1|)) (-15 -1349 (|#1|)) (-15 -2375 ((-3 (-1148 |#1|) "failed") (-621 |#1|))) (-15 -1274 (|#1| |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1984 ((-3 (-701) "failed") |#1| |#1|)) (-15 -3169 ((-762 (-839)) |#1|)) (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3431 (((-1077 (-839) (-701)) (-501)) 93)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-3796 (((-701)) 103)) (-2540 (($) 17 T CONST)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-2890 (($) 106)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1317 (($) 91)) (-3521 (((-107) $) 90)) (-3067 (($ $) 79) (($ $ (-701)) 78)) (-1628 (((-107) $) 71)) (-3169 (((-762 (-839)) $) 81) (((-839) $) 88)) (-1355 (((-107) $) 31)) (-3493 (((-3 $ "failed") $) 102)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-3104 (((-839) $) 105)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3746 (($) 101 T CONST)) (-3506 (($ (-839)) 104)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 94)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1984 (((-3 (-701) "failed") $ $) 80) (((-701) $) 89)) (-2596 (($ $ (-701)) 99) (($ $) 97)) (-1349 (($) 92)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 95)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65)) (-1274 (((-3 $ "failed") $) 82) (($ $) 96)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-701)) 100) (($ $) 98)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66)))
-(((-318) (-1180)) (T -318))
-((-1274 (*1 *1 *1) (-4 *1 (-318))) (-2375 (*1 *2 *3) (|partial| -12 (-5 *3 (-621 *1)) (-4 *1 (-318)) (-5 *2 (-1148 *1)))) (-1295 (*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))))) (-3431 (*1 *2 *3) (-12 (-4 *1 (-318)) (-5 *3 (-501)) (-5 *2 (-1077 (-839) (-701))))) (-1349 (*1 *1) (-4 *1 (-318))) (-1317 (*1 *1) (-4 *1 (-318))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-107)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-701)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-839)))) (-1390 (*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-370) (-336) (-1046) (-206) (-10 -8 (-15 -1274 ($ $)) (-15 -2375 ((-3 (-1148 $) "failed") (-621 $))) (-15 -1295 ((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501)))))) (-15 -3431 ((-1077 (-839) (-701)) (-501))) (-15 -1349 ($)) (-15 -1317 ($)) (-15 -3521 ((-107) $)) (-15 -1984 ((-701) $)) (-15 -3169 ((-839) $)) (-15 -1390 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-555 (-786)) . T) ((-156) . T) ((-206) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-370) . T) ((-336) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) . T) ((-1108) . T))
-((-3819 (((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) |#1|) 51)) (-1897 (((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|)))) 49)))
-(((-319 |#1| |#2| |#3|) (-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) |#1|))) (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $)))) (-1125 |#1|) (-378 |#1| |#2|)) (T -319))
-((-3819 (*1 *2 *3) (-12 (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-1897 (*1 *2) (-12 (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-378 *3 *4)))))
-(-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) |#1|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-826 |#1|) (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-1586 (((-701)) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| (-826 |#1|) (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-826 |#1|) "failed") $) NIL)) (-3490 (((-826 |#1|) $) NIL)) (-3142 (($ (-1148 (-826 |#1|))) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-826 |#1|) (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-826 |#1|) (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| (-826 |#1|) (-336)))) (-3521 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336)))) (($ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| (-826 |#1|) (-336))) (((-762 (-839)) $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| (-826 |#1|) (-336)))) (-1928 (((-107) $) NIL (|has| (-826 |#1|) (-336)))) (-2626 (((-826 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-826 |#1|) (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 (-826 |#1|)) $) NIL) (((-1064 $) $ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-3104 (((-839) $) NIL (|has| (-826 |#1|) (-336)))) (-3721 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336)))) (-1806 (((-1064 (-826 |#1|)) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-1064 (-826 |#1|)) "failed") $ $) NIL (|has| (-826 |#1|) (-336)))) (-2468 (($ $ (-1064 (-826 |#1|))) NIL (|has| (-826 |#1|) (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-826 |#1|) (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| (-826 |#1|) (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-1302 (((-1148 (-578 (-2 (|:| -2150 (-826 |#1|)) (|:| -3506 (-1018)))))) NIL)) (-2485 (((-621 (-826 |#1|))) NIL)) (-3987 (($) NIL (|has| (-826 |#1|) (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-826 |#1|) (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| (-826 |#1|) (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 (-826 |#1|))) NIL)) (-1349 (($) NIL (|has| (-826 |#1|) (-336)))) (-3481 (($) NIL (|has| (-826 |#1|) (-336)))) (-2085 (((-1148 (-826 |#1|)) $) NIL) (((-621 (-826 |#1|)) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-826 |#1|) (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-826 |#1|)) NIL)) (-1274 (($ $) NIL (|has| (-826 |#1|) (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| (-826 |#1|) (-132)) (|has| (-826 |#1|) (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3584 (($ $) NIL (|has| (-826 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-826 |#1|) (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ (-826 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-826 |#1|)) NIL) (($ (-826 |#1|) $) NIL)))
-(((-320 |#1| |#2|) (-13 (-297 (-826 |#1|)) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 (-826 |#1|)) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 (-826 |#1|)))) (-15 -1586 ((-701))))) (-839) (-839)) (T -320))
-((-1302 (*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 (-826 *3)) (|:| -3506 (-1018)))))) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-2485 (*1 *2) (-12 (-5 *2 (-621 (-826 *3))) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-1586 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))))
-(-13 (-297 (-826 |#1|)) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 (-826 |#1|)) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 (-826 |#1|)))) (-15 -1586 ((-701)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 74)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) 92) (($ $ (-839)) 90 (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) 148 (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-1586 (((-701)) 89)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) 162 (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 111)) (-3490 ((|#1| $) 91)) (-3142 (($ (-1148 |#1|)) 57)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) 158 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) 149 (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) 97 (|has| |#1| (-336)))) (-1928 (((-107) $) 175 (|has| |#1| (-336)))) (-2626 ((|#1| $) 94) (($ $ (-839)) 93 (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) 188) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) 133 (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) 73 (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) 70 (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) 82 (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) 69 (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 191)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) 136 (|has| |#1| (-336)))) (-2255 (((-107) $) 107)) (-3708 (((-1018) $) NIL)) (-1302 (((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) 83)) (-2485 (((-621 |#1|)) 87)) (-3987 (($) 96 (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 150 (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) 151)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) 62)) (-2264 (((-1064 |#1|)) 152)) (-1349 (($) 132 (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) 105) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) 123) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 56)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 156)) (-4119 (((-1148 $)) 172) (((-1148 $) (-839)) 100)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 30 T CONST)) (-1925 (($) 22 T CONST)) (-3184 (($ $) 106 (|has| |#1| (-336))) (($ $ (-701)) 98 (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) 60)) (-3803 (($ $ $) 103) (($ $ |#1|) 104)) (-3797 (($ $) 177) (($ $ $) 181)) (-3790 (($ $ $) 179)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 137)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 185) (($ $ $) 142) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102)))
-(((-321 |#1| |#2|) (-13 (-297 |#1|) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 |#1|))) (-15 -1586 ((-701))))) (-318) (-3 (-1064 |#1|) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (T -321))
-((-1302 (*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018)))))) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) *2)))) (-2485 (*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018))))))))) (-1586 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018))))))))))
-(-13 (-297 |#1|) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 |#1|))) (-15 -1586 ((-701)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-1586 (((-701)) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| |#1| (-336)))) (-1928 (((-107) $) NIL (|has| |#1| (-336)))) (-2626 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) NIL) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-1302 (((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018)))))) NIL)) (-2485 (((-621 |#1|)) NIL)) (-3987 (($) NIL (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 |#1|)) NIL)) (-1349 (($) NIL (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) NIL) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) NIL)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-322 |#1| |#2|) (-13 (-297 |#1|) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 |#1|))) (-15 -1586 ((-701))))) (-318) (-839)) (T -322))
-((-1302 (*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))) (-2485 (*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))) (-1586 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))))
-(-13 (-297 |#1|) (-10 -7 (-15 -1302 ((-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))))) (-15 -2485 ((-621 |#1|))) (-15 -1586 ((-701)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) 119 (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) 138 (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 91)) (-3490 ((|#1| $) 88)) (-3142 (($ (-1148 |#1|)) 83)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) 80 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) 39 (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) 120 (|has| |#1| (-336)))) (-1928 (((-107) $) 72 (|has| |#1| (-336)))) (-2626 ((|#1| $) 38) (($ $ (-839)) 40 (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) 62) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) 95 (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) 93 (|has| |#1| (-336)))) (-2255 (((-107) $) 140)) (-3708 (((-1018) $) NIL)) (-3987 (($) 35 (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 113 (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) 137)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) 56)) (-2264 (((-1064 |#1|)) 86)) (-1349 (($) 125 (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) 50) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) 136) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 85)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 142)) (-4119 (((-1148 $)) 107) (((-1148 $) (-839)) 46)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 109 T CONST)) (-1925 (($) 31 T CONST)) (-3184 (($ $) 65 (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) 105)) (-3803 (($ $ $) 97) (($ $ |#1|) 98)) (-3797 (($ $) 78) (($ $ $) 103)) (-3790 (($ $ $) 101)) (** (($ $ (-839)) NIL) (($ $ (-701)) 41) (($ $ (-501)) 128)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 76) (($ $ $) 53) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
-(((-323 |#1| |#2|) (-297 |#1|) (-318) (-1064 |#1|)) (T -323))
-NIL
-(-297 |#1|)
-((-4125 (((-877 (-1064 |#1|)) (-1064 |#1|)) 36)) (-2890 (((-1064 |#1|) (-839) (-839)) 109) (((-1064 |#1|) (-839)) 108)) (-3521 (((-107) (-1064 |#1|)) 81)) (-4074 (((-839) (-839)) 71)) (-3190 (((-839) (-839)) 73)) (-2449 (((-839) (-839)) 69)) (-1928 (((-107) (-1064 |#1|)) 85)) (-3851 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 97)) (-3469 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 100)) (-2303 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 99)) (-3513 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 98)) (-4025 (((-3 (-1064 |#1|) "failed") (-1064 |#1|)) 94)) (-1288 (((-1064 |#1|) (-1064 |#1|)) 62)) (-3291 (((-1064 |#1|) (-839)) 103)) (-1943 (((-1064 |#1|) (-839)) 106)) (-2365 (((-1064 |#1|) (-839)) 105)) (-3871 (((-1064 |#1|) (-839)) 104)) (-2821 (((-1064 |#1|) (-839)) 101)))
-(((-324 |#1|) (-10 -7 (-15 -3521 ((-107) (-1064 |#1|))) (-15 -1928 ((-107) (-1064 |#1|))) (-15 -2449 ((-839) (-839))) (-15 -4074 ((-839) (-839))) (-15 -3190 ((-839) (-839))) (-15 -2821 ((-1064 |#1|) (-839))) (-15 -3291 ((-1064 |#1|) (-839))) (-15 -3871 ((-1064 |#1|) (-839))) (-15 -2365 ((-1064 |#1|) (-839))) (-15 -1943 ((-1064 |#1|) (-839))) (-15 -4025 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3851 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3513 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2303 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3469 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2890 ((-1064 |#1|) (-839))) (-15 -2890 ((-1064 |#1|) (-839) (-839))) (-15 -1288 ((-1064 |#1|) (-1064 |#1|))) (-15 -4125 ((-877 (-1064 |#1|)) (-1064 |#1|)))) (-318)) (T -324))
-((-4125 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-877 (-1064 *4))) (-5 *1 (-324 *4)) (-5 *3 (-1064 *4)))) (-1288 (*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-2890 (*1 *2 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-3469 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-2303 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-3513 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-3851 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-4025 (*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-3871 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318)))) (-4074 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318)))) (-2449 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-324 *4)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-324 *4)))))
-(-10 -7 (-15 -3521 ((-107) (-1064 |#1|))) (-15 -1928 ((-107) (-1064 |#1|))) (-15 -2449 ((-839) (-839))) (-15 -4074 ((-839) (-839))) (-15 -3190 ((-839) (-839))) (-15 -2821 ((-1064 |#1|) (-839))) (-15 -3291 ((-1064 |#1|) (-839))) (-15 -3871 ((-1064 |#1|) (-839))) (-15 -2365 ((-1064 |#1|) (-839))) (-15 -1943 ((-1064 |#1|) (-839))) (-15 -4025 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3851 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3513 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2303 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -3469 ((-3 (-1064 |#1|) "failed") (-1064 |#1|))) (-15 -2890 ((-1064 |#1|) (-839))) (-15 -2890 ((-1064 |#1|) (-839) (-839))) (-15 -1288 ((-1064 |#1|) (-1064 |#1|))) (-15 -4125 ((-877 (-1064 |#1|)) (-1064 |#1|))))
-((-2184 ((|#1| (-1064 |#2|)) 51)))
-(((-325 |#1| |#2|) (-10 -7 (-15 -2184 (|#1| (-1064 |#2|)))) (-13 (-370) (-10 -7 (-15 -3691 (|#1| |#2|)) (-15 -3104 ((-839) |#1|)) (-15 -4119 ((-1148 |#1|) (-839))) (-15 -3184 (|#1| |#1|)))) (-318)) (T -325))
-((-2184 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-4 *2 (-13 (-370) (-10 -7 (-15 -3691 (*2 *4)) (-15 -3104 ((-839) *2)) (-15 -4119 ((-1148 *2) (-839))) (-15 -3184 (*2 *2))))) (-5 *1 (-325 *2 *4)))))
-(-10 -7 (-15 -2184 (|#1| (-1064 |#2|))))
-((-4002 (((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|) 33)))
-(((-326 |#1| |#2| |#3|) (-10 -7 (-15 -4002 ((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|))) (-318) (-1125 |#1|) (-1125 |#2|)) (T -326))
-((-4002 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-318)) (-5 *1 (-326 *4 *5 *3)))))
-(-10 -7 (-15 -4002 ((-3 (-578 |#3|) "failed") (-578 |#3|) |#3|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| |#1| (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| |#1| (-336)))) (-3521 (((-107) $) NIL (|has| |#1| (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| |#1| (-336))) (((-762 (-839)) $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| |#1| (-336)))) (-1928 (((-107) $) NIL (|has| |#1| (-336)))) (-2626 ((|#1| $) NIL) (($ $ (-839)) NIL (|has| |#1| (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 |#1|) $) NIL) (((-1064 $) $ (-839)) NIL (|has| |#1| (-336)))) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3721 (((-1064 |#1|) $) NIL (|has| |#1| (-336)))) (-1806 (((-1064 |#1|) $) NIL (|has| |#1| (-336))) (((-3 (-1064 |#1|) "failed") $ $) NIL (|has| |#1| (-336)))) (-2468 (($ $ (-1064 |#1|)) NIL (|has| |#1| (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL (|has| |#1| (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| |#1| (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 |#1|)) NIL)) (-1349 (($) NIL (|has| |#1| (-336)))) (-3481 (($) NIL (|has| |#1| (-336)))) (-2085 (((-1148 |#1|) $) NIL) (((-621 |#1|) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) NIL)) (-1274 (($ $) NIL (|has| |#1| (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3584 (($ $) NIL (|has| |#1| (-336))) (($ $ (-701)) NIL (|has| |#1| (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-327 |#1| |#2|) (-297 |#1|) (-318) (-839)) (T -327))
-NIL
-(-297 |#1|)
-((-1551 (((-107) (-578 (-866 |#1|))) 31)) (-3727 (((-578 (-866 |#1|)) (-578 (-866 |#1|))) 42)) (-1872 (((-3 (-578 (-866 |#1|)) "failed") (-578 (-866 |#1|))) 38)))
-(((-328 |#1| |#2|) (-10 -7 (-15 -1551 ((-107) (-578 (-866 |#1|)))) (-15 -1872 ((-3 (-578 (-866 |#1|)) "failed") (-578 (-866 |#1|)))) (-15 -3727 ((-578 (-866 |#1|)) (-578 (-866 |#1|))))) (-419) (-578 (-1070))) (T -328))
-((-3727 (*1 *2 *2) (-12 (-5 *2 (-578 (-866 *3))) (-4 *3 (-419)) (-5 *1 (-328 *3 *4)) (-14 *4 (-578 (-1070))))) (-1872 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-866 *3))) (-4 *3 (-419)) (-5 *1 (-328 *3 *4)) (-14 *4 (-578 (-1070))))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-419)) (-5 *2 (-107)) (-5 *1 (-328 *4 *5)) (-14 *5 (-578 (-1070))))))
-(-10 -7 (-15 -1551 ((-107) (-578 (-866 |#1|)))) (-15 -1872 ((-3 (-578 (-866 |#1|)) "failed") (-578 (-866 |#1|)))) (-15 -3727 ((-578 (-866 |#1|)) (-578 (-866 |#1|)))))
-((-3736 (((-107) $ $) NIL)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) 14)) (-2153 ((|#1| $ (-501)) NIL)) (-3159 (((-501) $ (-501)) NIL)) (-2451 (($ (-1 |#1| |#1|) $) 32)) (-1620 (($ (-1 (-501) (-501)) $) 24)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 26)) (-3708 (((-1018) $) NIL)) (-1575 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-501)))) $) 28)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 38) (($ |#1|) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 9 T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL) (($ |#1| (-501)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-329 |#1|) (-13 (-440) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-501))) (-15 -3796 ((-701) $)) (-15 -3159 ((-501) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1620 ($ (-1 (-501) (-501)) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-501)))) $)))) (-1001)) (T -329))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-329 *2)) (-4 *2 (-1001)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-329 *2)) (-4 *2 (-1001)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-329 *2)) (-4 *2 (-1001)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) (-3159 (*1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-329 *2)) (-4 *2 (-1001)))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-501) (-501))) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) (-2451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-329 *3)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-501))))) (-5 *1 (-329 *3)) (-4 *3 (-1001)))))
-(-13 (-440) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-501))) (-15 -3796 ((-701) $)) (-15 -3159 ((-501) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1620 ($ (-1 (-501) (-501)) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-501)))) $))))
-((-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 13)) (-2865 (($ $) 14)) (-1559 (((-373 $) $) 29)) (-1628 (((-107) $) 25)) (-3833 (($ $) 18)) (-3664 (($ $ $) 22) (($ (-578 $)) NIL)) (-3739 (((-373 $) $) 30)) (-3694 (((-3 $ "failed") $ $) 21)) (-1864 (((-701) $) 24)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 34)) (-2442 (((-107) $ $) 15)) (-3803 (($ $ $) 32)))
-(((-330 |#1|) (-10 -8 (-15 -3803 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -1628 ((-107) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -1864 ((-701) |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|)) (-15 -2442 ((-107) |#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|))) (-331)) (T -330))
-NIL
-(-10 -8 (-15 -3803 (|#1| |#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -1628 ((-107) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -1864 ((-701) |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|)) (-15 -2442 ((-107) |#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66)))
-(((-331) (-1180)) (T -331))
-((-3803 (*1 *1 *1 *1) (-4 *1 (-331))))
-(-13 (-276) (-1108) (-216) (-10 -8 (-15 -3803 ($ $ $)) (-6 -4165) (-6 -4159)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T))
-((-3736 (((-107) $ $) NIL)) (-2186 ((|#1| $ |#1|) 29)) (-1998 (($ $ (-1053)) 22)) (-1225 (((-3 |#1| "failed") $) 28)) (-3505 ((|#1| $) 26)) (-2342 (($ (-356)) 21) (($ (-356) (-1053)) 20)) (-3986 (((-356) $) 24)) (-3460 (((-1053) $) NIL)) (-3947 (((-1053) $) 25)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 19)) (-3371 (($ $) 23)) (-3751 (((-107) $ $) 18)))
-(((-332 |#1|) (-13 (-333 (-356) |#1|) (-10 -8 (-15 -1225 ((-3 |#1| "failed") $)))) (-1001)) (T -332))
-((-1225 (*1 *2 *1) (|partial| -12 (-5 *1 (-332 *2)) (-4 *2 (-1001)))))
-(-13 (-333 (-356) |#1|) (-10 -8 (-15 -1225 ((-3 |#1| "failed") $))))
-((-3736 (((-107) $ $) 7)) (-2186 ((|#2| $ |#2|) 13)) (-1998 (($ $ (-1053)) 18)) (-3505 ((|#2| $) 14)) (-2342 (($ |#1|) 20) (($ |#1| (-1053)) 19)) (-3986 ((|#1| $) 16)) (-3460 (((-1053) $) 9)) (-3947 (((-1053) $) 15)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3371 (($ $) 17)) (-3751 (((-107) $ $) 6)))
-(((-333 |#1| |#2|) (-1180) (-1001) (-1001)) (T -333))
-((-2342 (*1 *1 *2) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-2342 (*1 *1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *1 (-333 *2 *4)) (-4 *2 (-1001)) (-4 *4 (-1001)))) (-1998 (*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-3371 (*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-1053)))) (-3505 (*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-2186 (*1 *2 *1 *2) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))))
-(-13 (-1001) (-10 -8 (-15 -2342 ($ |t#1|)) (-15 -2342 ($ |t#1| (-1053))) (-15 -1998 ($ $ (-1053))) (-15 -3371 ($ $)) (-15 -3986 (|t#1| $)) (-15 -3947 ((-1053) $)) (-15 -3505 (|t#2| $)) (-15 -2186 (|t#2| $ |t#2|))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-1763 (((-1148 (-621 |#2|)) (-1148 $)) 61)) (-2311 (((-621 |#2|) (-1148 $)) 119)) (-1909 ((|#2| $) 32)) (-3867 (((-621 |#2|) $ (-1148 $)) 123)) (-1887 (((-3 $ "failed") $) 75)) (-3925 ((|#2| $) 35)) (-2292 (((-1064 |#2|) $) 83)) (-2398 ((|#2| (-1148 $)) 106)) (-3333 (((-1064 |#2|) $) 28)) (-3656 (((-107)) 100)) (-3142 (($ (-1148 |#2|) (-1148 $)) 113)) (-2174 (((-3 $ "failed") $) 79)) (-3930 (((-107)) 95)) (-2838 (((-107)) 90)) (-3874 (((-107)) 53)) (-4146 (((-621 |#2|) (-1148 $)) 117)) (-3821 ((|#2| $) 31)) (-1472 (((-621 |#2|) $ (-1148 $)) 122)) (-1992 (((-3 $ "failed") $) 73)) (-3784 ((|#2| $) 34)) (-3474 (((-1064 |#2|) $) 82)) (-1600 ((|#2| (-1148 $)) 104)) (-2270 (((-1064 |#2|) $) 26)) (-2172 (((-107)) 99)) (-3808 (((-107)) 92)) (-2417 (((-107)) 51)) (-2794 (((-107)) 87)) (-2780 (((-107)) 101)) (-2085 (((-1148 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) 111)) (-1977 (((-107)) 97)) (-4102 (((-578 (-1148 |#2|))) 86)) (-1273 (((-107)) 98)) (-2625 (((-107)) 96)) (-3675 (((-107)) 46)) (-3258 (((-107)) 102)))
-(((-334 |#1| |#2|) (-10 -8 (-15 -2292 ((-1064 |#2|) |#1|)) (-15 -3474 ((-1064 |#2|) |#1|)) (-15 -4102 ((-578 (-1148 |#2|)))) (-15 -1887 ((-3 |#1| "failed") |#1|)) (-15 -1992 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -2838 ((-107))) (-15 -3808 ((-107))) (-15 -3930 ((-107))) (-15 -2417 ((-107))) (-15 -3874 ((-107))) (-15 -2794 ((-107))) (-15 -3258 ((-107))) (-15 -2780 ((-107))) (-15 -3656 ((-107))) (-15 -2172 ((-107))) (-15 -3675 ((-107))) (-15 -1273 ((-107))) (-15 -2625 ((-107))) (-15 -1977 ((-107))) (-15 -3333 ((-1064 |#2|) |#1|)) (-15 -2270 ((-1064 |#2|) |#1|)) (-15 -2311 ((-621 |#2|) (-1148 |#1|))) (-15 -4146 ((-621 |#2|) (-1148 |#1|))) (-15 -2398 (|#2| (-1148 |#1|))) (-15 -1600 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3925 (|#2| |#1|)) (-15 -3784 (|#2| |#1|)) (-15 -1909 (|#2| |#1|)) (-15 -3821 (|#2| |#1|)) (-15 -3867 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1472 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1763 ((-1148 (-621 |#2|)) (-1148 |#1|)))) (-335 |#2|) (-156)) (T -334))
-((-1977 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2625 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-1273 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3675 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2172 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3656 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2780 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3258 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2794 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3874 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2417 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3930 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-3808 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-2838 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) (-4102 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-578 (-1148 *4))) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))))
-(-10 -8 (-15 -2292 ((-1064 |#2|) |#1|)) (-15 -3474 ((-1064 |#2|) |#1|)) (-15 -4102 ((-578 (-1148 |#2|)))) (-15 -1887 ((-3 |#1| "failed") |#1|)) (-15 -1992 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -2838 ((-107))) (-15 -3808 ((-107))) (-15 -3930 ((-107))) (-15 -2417 ((-107))) (-15 -3874 ((-107))) (-15 -2794 ((-107))) (-15 -3258 ((-107))) (-15 -2780 ((-107))) (-15 -3656 ((-107))) (-15 -2172 ((-107))) (-15 -3675 ((-107))) (-15 -1273 ((-107))) (-15 -2625 ((-107))) (-15 -1977 ((-107))) (-15 -3333 ((-1064 |#2|) |#1|)) (-15 -2270 ((-1064 |#2|) |#1|)) (-15 -2311 ((-621 |#2|) (-1148 |#1|))) (-15 -4146 ((-621 |#2|) (-1148 |#1|))) (-15 -2398 (|#2| (-1148 |#1|))) (-15 -1600 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3925 (|#2| |#1|)) (-15 -3784 (|#2| |#1|)) (-15 -1909 (|#2| |#1|)) (-15 -3821 (|#2| |#1|)) (-15 -3867 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1472 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1763 ((-1148 (-621 |#2|)) (-1148 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1738 (((-3 $ "failed")) 37 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-1763 (((-1148 (-621 |#1|)) (-1148 $)) 78)) (-1674 (((-1148 $)) 81)) (-2540 (($) 17 T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 40 (|has| |#1| (-508)))) (-1956 (((-3 $ "failed")) 38 (|has| |#1| (-508)))) (-2311 (((-621 |#1|) (-1148 $)) 65)) (-1909 ((|#1| $) 74)) (-3867 (((-621 |#1|) $ (-1148 $)) 76)) (-1887 (((-3 $ "failed") $) 45 (|has| |#1| (-508)))) (-2911 (($ $ (-839)) 28)) (-3925 ((|#1| $) 72)) (-2292 (((-1064 |#1|) $) 42 (|has| |#1| (-508)))) (-2398 ((|#1| (-1148 $)) 67)) (-3333 (((-1064 |#1|) $) 63)) (-3656 (((-107)) 57)) (-3142 (($ (-1148 |#1|) (-1148 $)) 69)) (-2174 (((-3 $ "failed") $) 47 (|has| |#1| (-508)))) (-3689 (((-839)) 80)) (-3168 (((-107)) 54)) (-3554 (($ $ (-839)) 33)) (-3930 (((-107)) 50)) (-2838 (((-107)) 48)) (-3874 (((-107)) 52)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 41 (|has| |#1| (-508)))) (-2653 (((-3 $ "failed")) 39 (|has| |#1| (-508)))) (-4146 (((-621 |#1|) (-1148 $)) 66)) (-3821 ((|#1| $) 75)) (-1472 (((-621 |#1|) $ (-1148 $)) 77)) (-1992 (((-3 $ "failed") $) 46 (|has| |#1| (-508)))) (-3381 (($ $ (-839)) 29)) (-3784 ((|#1| $) 73)) (-3474 (((-1064 |#1|) $) 43 (|has| |#1| (-508)))) (-1600 ((|#1| (-1148 $)) 68)) (-2270 (((-1064 |#1|) $) 64)) (-2172 (((-107)) 58)) (-3460 (((-1053) $) 9)) (-3808 (((-107)) 49)) (-2417 (((-107)) 51)) (-2794 (((-107)) 53)) (-3708 (((-1018) $) 10)) (-2780 (((-107)) 56)) (-2085 (((-1148 |#1|) $ (-1148 $)) 71) (((-621 |#1|) (-1148 $) (-1148 $)) 70)) (-3056 (((-578 (-866 |#1|)) (-1148 $)) 79)) (-2144 (($ $ $) 25)) (-1977 (((-107)) 62)) (-3691 (((-786) $) 11)) (-4102 (((-578 (-1148 |#1|))) 44 (|has| |#1| (-508)))) (-1363 (($ $ $ $) 26)) (-1273 (((-107)) 60)) (-2033 (($ $ $) 24)) (-2625 (((-107)) 61)) (-3675 (((-107)) 59)) (-3258 (((-107)) 55)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-335 |#1|) (-1180) (-156)) (T -335))
-((-1674 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1148 *1)) (-4 *1 (-335 *3)))) (-3689 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-839)))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-578 (-866 *4))))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-1148 (-621 *4))))) (-1472 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-3867 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-2085 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-1148 *4)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-3142 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-156)) (-4 *1 (-335 *4)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-2398 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *2)) (-4 *2 (-156)))) (-4146 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-1064 *3)))) (-3333 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-1064 *3)))) (-1977 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2625 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1273 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3675 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2172 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3656 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2780 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3258 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3168 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2794 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3874 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2417 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3930 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3808 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2838 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2174 (*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) (-1992 (*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) (-1887 (*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) (-4102 (*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-578 (-1148 *3))))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-1064 *3)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-1064 *3)))) (-1765 (*1 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4119 (-578 *1)))) (-4 *1 (-335 *3)))) (-3054 (*1 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4119 (-578 *1)))) (-4 *1 (-335 *3)))) (-2653 (*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156)))) (-1956 (*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156)))) (-1738 (*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156)))))
-(-13 (-675 |t#1|) (-10 -8 (-15 -1674 ((-1148 $))) (-15 -3689 ((-839))) (-15 -3056 ((-578 (-866 |t#1|)) (-1148 $))) (-15 -1763 ((-1148 (-621 |t#1|)) (-1148 $))) (-15 -1472 ((-621 |t#1|) $ (-1148 $))) (-15 -3867 ((-621 |t#1|) $ (-1148 $))) (-15 -3821 (|t#1| $)) (-15 -1909 (|t#1| $)) (-15 -3784 (|t#1| $)) (-15 -3925 (|t#1| $)) (-15 -2085 ((-1148 |t#1|) $ (-1148 $))) (-15 -2085 ((-621 |t#1|) (-1148 $) (-1148 $))) (-15 -3142 ($ (-1148 |t#1|) (-1148 $))) (-15 -1600 (|t#1| (-1148 $))) (-15 -2398 (|t#1| (-1148 $))) (-15 -4146 ((-621 |t#1|) (-1148 $))) (-15 -2311 ((-621 |t#1|) (-1148 $))) (-15 -2270 ((-1064 |t#1|) $)) (-15 -3333 ((-1064 |t#1|) $)) (-15 -1977 ((-107))) (-15 -2625 ((-107))) (-15 -1273 ((-107))) (-15 -3675 ((-107))) (-15 -2172 ((-107))) (-15 -3656 ((-107))) (-15 -2780 ((-107))) (-15 -3258 ((-107))) (-15 -3168 ((-107))) (-15 -2794 ((-107))) (-15 -3874 ((-107))) (-15 -2417 ((-107))) (-15 -3930 ((-107))) (-15 -3808 ((-107))) (-15 -2838 ((-107))) (IF (|has| |t#1| (-508)) (PROGN (-15 -2174 ((-3 $ "failed") $)) (-15 -1992 ((-3 $ "failed") $)) (-15 -1887 ((-3 $ "failed") $)) (-15 -4102 ((-578 (-1148 |t#1|)))) (-15 -3474 ((-1064 |t#1|) $)) (-15 -2292 ((-1064 |t#1|) $)) (-15 -1765 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -2653 ((-3 $ "failed"))) (-15 -1956 ((-3 $ "failed"))) (-15 -1738 ((-3 $ "failed"))) (-6 -4164)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-651) . T) ((-675 |#1|) . T) ((-692) . T) ((-964 |#1|) . T) ((-1001) . T))
-((-3736 (((-107) $ $) 7)) (-3796 (((-701)) 16)) (-2890 (($) 13)) (-3104 (((-839) $) 14)) (-3460 (((-1053) $) 9)) (-3506 (($ (-839)) 15)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)))
-(((-336) (-1180)) (T -336))
-((-3796 (*1 *2) (-12 (-4 *1 (-336)) (-5 *2 (-701)))) (-3506 (*1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-336)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-839)))) (-2890 (*1 *1) (-4 *1 (-336))))
-(-13 (-1001) (-10 -8 (-15 -3796 ((-701))) (-15 -3506 ($ (-839))) (-15 -3104 ((-839) $)) (-15 -2890 ($))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-2239 (((-621 |#2|) (-1148 $)) 40)) (-3142 (($ (-1148 |#2|) (-1148 $)) 35)) (-3070 (((-621 |#2|) $ (-1148 $)) 43)) (-2532 ((|#2| (-1148 $)) 13)) (-2085 (((-1148 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) 25)))
-(((-337 |#1| |#2| |#3|) (-10 -8 (-15 -2239 ((-621 |#2|) (-1148 |#1|))) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3070 ((-621 |#2|) |#1| (-1148 |#1|)))) (-338 |#2| |#3|) (-156) (-1125 |#2|)) (T -337))
-NIL
-(-10 -8 (-15 -2239 ((-621 |#2|) (-1148 |#1|))) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3070 ((-621 |#2|) |#1| (-1148 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2239 (((-621 |#1|) (-1148 $)) 46)) (-2225 ((|#1| $) 52)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3142 (($ (-1148 |#1|) (-1148 $)) 48)) (-3070 (((-621 |#1|) $ (-1148 $)) 53)) (-2174 (((-3 $ "failed") $) 34)) (-3689 (((-839)) 54)) (-1355 (((-107) $) 31)) (-2626 ((|#1| $) 51)) (-1792 ((|#2| $) 44 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2532 ((|#1| (-1148 $)) 47)) (-2085 (((-1148 |#1|) $ (-1148 $)) 50) (((-621 |#1|) (-1148 $) (-1148 $)) 49)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37)) (-1274 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-2942 ((|#2| $) 45)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-338 |#1| |#2|) (-1180) (-156) (-1125 |t#1|)) (T -338))
-((-3689 (*1 *2) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-839)))) (-3070 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) (-2085 (*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *4)))) (-2085 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) (-3142 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-156)) (-4 *1 (-338 *4 *5)) (-4 *5 (-1125 *4)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *2 *4)) (-4 *4 (-1125 *2)) (-4 *2 (-156)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) (-2942 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-156)) (-4 *3 (-331)) (-4 *2 (-1125 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -3689 ((-839))) (-15 -3070 ((-621 |t#1|) $ (-1148 $))) (-15 -2225 (|t#1| $)) (-15 -2626 (|t#1| $)) (-15 -2085 ((-1148 |t#1|) $ (-1148 $))) (-15 -2085 ((-621 |t#1|) (-1148 $) (-1148 $))) (-15 -3142 ($ (-1148 |t#1|) (-1148 $))) (-15 -2532 (|t#1| (-1148 $))) (-15 -2239 ((-621 |t#1|) (-1148 $))) (-15 -2942 (|t#2| $)) (IF (|has| |t#1| (-331)) (-15 -1792 (|t#2| $)) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) . T) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-2045 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-3441 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-2861 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-3785 (($ $) 25)) (-1934 (((-501) (-1 (-107) |#2|) $) NIL) (((-501) |#2| $) 11) (((-501) |#2| $ (-501)) NIL)) (-3216 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-339 |#1| |#2|) (-10 -8 (-15 -3441 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2045 ((-107) |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2861 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-340 |#2|) (-1104)) (T -339))
-NIL
-(-10 -8 (-15 -3441 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2045 ((-107) |#1|)) (-15 -2861 (|#1| |#1|)) (-15 -3216 (|#1| |#1| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2861 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3785 (|#1| |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-1934 (((-501) (-1 (-107) |#1|) $) 97) (((-501) |#1| $) 96 (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) 95 (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 83 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 85 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 82 (|has| |#1| (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-340 |#1|) (-1180) (-1104)) (T -340))
-((-3216 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) (-3785 (*1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)))) (-2861 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) (-2045 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-340 *4)) (-4 *4 (-1104)) (-5 *2 (-107)))) (-1934 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-340 *4)) (-4 *4 (-1104)) (-5 *2 (-501)))) (-1934 (*1 *2 *3 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-501)))) (-1934 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) (-2861 (*1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) (-2045 (*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-777)) (-5 *2 (-107)))) (-2355 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (|has| *1 (-6 -4168)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) (-1375 (*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-340 *2)) (-4 *2 (-1104)))) (-3441 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4168)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) (-3441 (*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))))
-(-13 (-586 |t#1|) (-10 -8 (-6 -4167) (-15 -3216 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -3785 ($ $)) (-15 -2861 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -2045 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -1934 ((-501) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -1934 ((-501) |t#1| $)) (-15 -1934 ((-501) |t#1| $ (-501)))) |noBranch|) (IF (|has| |t#1| (-777)) (PROGN (-6 (-777)) (-15 -3216 ($ $ $)) (-15 -2861 ($ $)) (-15 -2045 ((-107) $))) |noBranch|) (IF (|has| $ (-6 -4168)) (PROGN (-15 -2355 ($ $ $ (-501))) (-15 -1375 ($ $)) (-15 -3441 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-777)) (-15 -3441 ($ $)) |noBranch|)) |noBranch|)))
-(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-777) |has| |#1| (-777)) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1104) . T))
-((-3162 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3547 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1212 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3547 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3162 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1104) (-340 |#1|) (-1104) (-340 |#3|)) (T -341))
-((-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-4 *2 (-340 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-340 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-340 *5)) (-4 *6 (-340 *2)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-340 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-340 *5)))))
-(-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3547 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3162 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3514 (((-578 |#1|) $) 32)) (-2055 (($ $ (-701)) 33)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2194 (((-1171 |#1| |#2|) (-1171 |#1| |#2|) $) 36)) (-3660 (($ $) 34)) (-3049 (((-1171 |#1| |#2|) (-1171 |#1| |#2|) $) 37)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3195 (($ $ |#1| $) 31) (($ $ (-578 |#1|) (-578 $)) 30)) (-1201 (((-701) $) 38)) (-3699 (($ $ $) 29)) (-3691 (((-786) $) 11) (($ |#1|) 41) (((-1162 |#1| |#2|) $) 40) (((-1171 |#1| |#2|) $) 39)) (-3189 ((|#2| (-1171 |#1| |#2|) $) 42)) (-1850 (($) 18 T CONST)) (-3116 (($ (-606 |#1|)) 35)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#2|) 28 (|has| |#2| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-342 |#1| |#2|) (-1180) (-777) (-156)) (T -342))
-((-3189 (*1 *2 *3 *1) (-12 (-5 *3 (-1171 *4 *2)) (-4 *1 (-342 *4 *2)) (-4 *4 (-777)) (-4 *2 (-156)))) (-3691 (*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-1162 *3 *4)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-1171 *3 *4)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-701)))) (-3049 (*1 *2 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-2194 (*1 *2 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-3116 (*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-4 *1 (-342 *3 *4)) (-4 *4 (-156)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-578 *3)))) (-3195 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-777)) (-4 *5 (-156)))))
-(-13 (-573 |t#2|) (-10 -8 (-15 -3189 (|t#2| (-1171 |t#1| |t#2|) $)) (-15 -3691 ($ |t#1|)) (-15 -3691 ((-1162 |t#1| |t#2|) $)) (-15 -3691 ((-1171 |t#1| |t#2|) $)) (-15 -1201 ((-701) $)) (-15 -3049 ((-1171 |t#1| |t#2|) (-1171 |t#1| |t#2|) $)) (-15 -2194 ((-1171 |t#1| |t#2|) (-1171 |t#1| |t#2|) $)) (-15 -3116 ($ (-606 |t#1|))) (-15 -3660 ($ $)) (-15 -2055 ($ $ (-701))) (-15 -3514 ((-578 |t#1|) $)) (-15 -3195 ($ $ |t#1| $)) (-15 -3195 ($ $ (-578 |t#1|) (-578 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#2|) . T) ((-573 |#2|) . T) ((-648 |#2|) . T) ((-964 |#2|) . T) ((-1001) . T))
-((-3860 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 22)) (-2426 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-2503 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21)))
-(((-343 |#1| |#2|) (-10 -7 (-15 -2426 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2503 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -3860 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1104) (-13 (-340 |#1|) (-10 -7 (-6 -4168)))) (T -343))
-((-3860 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))))) (-2503 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))))) (-2426 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))))))
-(-10 -7 (-15 -2426 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2503 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -3860 (|#2| (-1 (-107) |#1| |#1|) |#2|)))
-((-3868 (((-621 |#2|) (-621 $)) NIL) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 19) (((-621 (-501)) (-621 $)) 13)))
-(((-344 |#1| |#2|) (-10 -8 (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 |#2|) (-621 |#1|)))) (-345 |#2|) (-959)) (T -344))
-NIL
-(-10 -8 (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 |#2|) (-621 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3868 (((-621 |#1|) (-621 $)) 36) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 35) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 43 (|has| |#1| (-577 (-501)))) (((-621 (-501)) (-621 $)) 42 (|has| |#1| (-577 (-501))))) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-345 |#1|) (-1180) (-959)) (T -345))
-NIL
-(-13 (-577 |t#1|) (-10 -7 (IF (|has| |t#1| (-577 (-501))) (-6 (-577 (-501))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 32)) (-2197 (((-501) $) 54)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2805 (($ $) 108)) (-3978 (($ $) 80)) (-3937 (($ $) 69)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) 43)) (-2781 (((-107) $ $) NIL)) (-3970 (($ $) 78)) (-3929 (($ $) 67)) (-1417 (((-501) $) 62)) (-1525 (($ $ (-501)) 61)) (-3984 (($ $) NIL)) (-3945 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-1453 (($ $) 110)) (-3765 (((-3 (-501) "failed") $) 187) (((-3 (-375 (-501)) "failed") $) 183)) (-3490 (((-501) $) 185) (((-375 (-501)) $) 181)) (-3023 (($ $ $) NIL)) (-3839 (((-501) $ $) 100)) (-2174 (((-3 $ "failed") $) 112)) (-2693 (((-375 (-501)) $ (-701)) 188) (((-375 (-501)) $ (-701) (-701)) 180)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3943 (((-839)) 71) (((-839) (-839)) 96 (|has| $ (-6 -4158)))) (-2164 (((-107) $) 104)) (-2003 (($) 39)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL)) (-3436 (((-1154) (-701)) 150)) (-2147 (((-1154)) 155) (((-1154) (-701)) 156)) (-1353 (((-1154)) 157) (((-1154) (-701)) 158)) (-1437 (((-1154)) 153) (((-1154) (-701)) 154)) (-3169 (((-501) $) 57)) (-1355 (((-107) $) 102)) (-1342 (($ $ (-501)) NIL)) (-3373 (($ $) 47)) (-2626 (($ $) NIL)) (-4067 (((-107) $) 34)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL) (($) NIL (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1323 (($ $ $) NIL) (($) 97 (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1828 (((-501) $) 17)) (-2287 (($) 85) (($ $) 90)) (-3266 (($) 89) (($ $) 91)) (-1635 (($ $) 81)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 114)) (-3039 (((-839) (-501)) 42 (|has| $ (-6 -4158)))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) 52)) (-3383 (($ $) 107)) (-2017 (($ (-501) (-501)) 105) (($ (-501) (-501) (-839)) 106)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3027 (((-501) $) 19)) (-3793 (($) 92)) (-1989 (($ $) 77)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3960 (((-839)) 98) (((-839) (-839)) 99 (|has| $ (-6 -4158)))) (-2596 (($ $ (-701)) NIL) (($ $) 113)) (-1537 (((-839) (-501)) 46 (|has| $ (-6 -4158)))) (-3991 (($ $) NIL)) (-3949 (($ $) NIL)) (-3981 (($ $) NIL)) (-3940 (($ $) NIL)) (-3975 (($ $) 79)) (-3933 (($ $) 68)) (-1248 (((-346) $) 173) (((-199) $) 175) (((-810 (-346)) $) NIL) (((-1053) $) 160) (((-490) $) 171) (($ (-199)) 179)) (-3691 (((-786) $) 162) (($ (-501)) 184) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-501)) 184) (($ (-375 (-501))) NIL) (((-199) $) 176)) (-3965 (((-701)) NIL)) (-2803 (($ $) 109)) (-2751 (((-839)) 53) (((-839) (-839)) 64 (|has| $ (-6 -4158)))) (-1965 (((-839)) 101)) (-4003 (($ $) 84)) (-3958 (($ $) 45) (($ $ $) 51)) (-2442 (((-107) $ $) NIL)) (-3995 (($ $) 82)) (-3952 (($ $) 36)) (-4013 (($ $) NIL)) (-3964 (($ $) NIL)) (-3550 (($ $) NIL)) (-3967 (($ $) NIL)) (-4008 (($ $) NIL)) (-3961 (($ $) NIL)) (-3999 (($ $) 83)) (-3955 (($ $) 48)) (-1720 (($ $) 50)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 33 T CONST)) (-1925 (($) 37 T CONST)) (-3671 (((-1053) $) 27) (((-1053) $ (-107)) 29) (((-1154) (-753) $) 30) (((-1154) (-753) $ (-107)) 31)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 38)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 41)) (-3803 (($ $ $) 44) (($ $ (-501)) 40)) (-3797 (($ $) 35) (($ $ $) 49)) (-3790 (($ $ $) 60)) (** (($ $ (-839)) 65) (($ $ (-701)) NIL) (($ $ (-501)) 86) (($ $ (-375 (-501))) 123) (($ $ $) 115)) (* (($ (-839) $) 63) (($ (-701) $) NIL) (($ (-501) $) 66) (($ $ $) 59) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL)))
-(((-346) (-13 (-372) (-206) (-556 (-1053)) (-751) (-555 (-199)) (-1090) (-556 (-490)) (-10 -8 (-15 -3803 ($ $ (-501))) (-15 ** ($ $ $)) (-15 -3373 ($ $)) (-15 -3839 ((-501) $ $)) (-15 -1525 ($ $ (-501))) (-15 -2693 ((-375 (-501)) $ (-701))) (-15 -2693 ((-375 (-501)) $ (-701) (-701))) (-15 -2287 ($)) (-15 -3266 ($)) (-15 -3793 ($)) (-15 -3958 ($ $ $)) (-15 -2287 ($ $)) (-15 -3266 ($ $)) (-15 -1248 ($ (-199))) (-15 -1353 ((-1154))) (-15 -1353 ((-1154) (-701))) (-15 -1437 ((-1154))) (-15 -1437 ((-1154) (-701))) (-15 -2147 ((-1154))) (-15 -2147 ((-1154) (-701))) (-15 -3436 ((-1154) (-701))) (-6 -4158) (-6 -4150)))) (T -346))
-((** (*1 *1 *1 *1) (-5 *1 (-346))) (-3803 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) (-3373 (*1 *1 *1) (-5 *1 (-346))) (-3839 (*1 *2 *1 *1) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) (-2693 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-346)))) (-2693 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-346)))) (-2287 (*1 *1) (-5 *1 (-346))) (-3266 (*1 *1) (-5 *1 (-346))) (-3793 (*1 *1) (-5 *1 (-346))) (-3958 (*1 *1 *1 *1) (-5 *1 (-346))) (-2287 (*1 *1 *1) (-5 *1 (-346))) (-3266 (*1 *1 *1) (-5 *1 (-346))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-346)))) (-1353 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) (-1437 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) (-2147 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346)))) (-2147 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))))
-(-13 (-372) (-206) (-556 (-1053)) (-751) (-555 (-199)) (-1090) (-556 (-490)) (-10 -8 (-15 -3803 ($ $ (-501))) (-15 ** ($ $ $)) (-15 -3373 ($ $)) (-15 -3839 ((-501) $ $)) (-15 -1525 ($ $ (-501))) (-15 -2693 ((-375 (-501)) $ (-701))) (-15 -2693 ((-375 (-501)) $ (-701) (-701))) (-15 -2287 ($)) (-15 -3266 ($)) (-15 -3793 ($)) (-15 -3958 ($ $ $)) (-15 -2287 ($ $)) (-15 -3266 ($ $)) (-15 -1248 ($ (-199))) (-15 -1353 ((-1154))) (-15 -1353 ((-1154) (-701))) (-15 -1437 ((-1154))) (-15 -1437 ((-1154) (-701))) (-15 -2147 ((-1154))) (-15 -2147 ((-1154) (-701))) (-15 -3436 ((-1154) (-701))) (-6 -4158) (-6 -4150)))
-((-3549 (((-578 (-262 (-866 (-152 |#1|)))) (-262 (-375 (-866 (-152 (-501))))) |#1|) 52) (((-578 (-262 (-866 (-152 |#1|)))) (-375 (-866 (-152 (-501)))) |#1|) 51) (((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-262 (-375 (-866 (-152 (-501)))))) |#1|) 47) (((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-375 (-866 (-152 (-501))))) |#1|) 40)) (-1717 (((-578 (-578 (-152 |#1|))) (-578 (-375 (-866 (-152 (-501))))) (-578 (-1070)) |#1|) 28) (((-578 (-152 |#1|)) (-375 (-866 (-152 (-501)))) |#1|) 15)))
-(((-347 |#1|) (-10 -7 (-15 -3549 ((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-375 (-866 (-152 (-501))))) |#1|)) (-15 -3549 ((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-262 (-375 (-866 (-152 (-501)))))) |#1|)) (-15 -3549 ((-578 (-262 (-866 (-152 |#1|)))) (-375 (-866 (-152 (-501)))) |#1|)) (-15 -3549 ((-578 (-262 (-866 (-152 |#1|)))) (-262 (-375 (-866 (-152 (-501))))) |#1|)) (-15 -1717 ((-578 (-152 |#1|)) (-375 (-866 (-152 (-501)))) |#1|)) (-15 -1717 ((-578 (-578 (-152 |#1|))) (-578 (-375 (-866 (-152 (-501))))) (-578 (-1070)) |#1|))) (-13 (-331) (-775))) (T -347))
-((-1717 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-375 (-866 (-152 (-501)))))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 (-152 *5)))) (-5 *1 (-347 *5)) (-4 *5 (-13 (-331) (-775))))) (-1717 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 (-501))))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 (-152 (-501)))))) (-5 *2 (-578 (-262 (-866 (-152 *4))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 (-501))))) (-5 *2 (-578 (-262 (-866 (-152 *4))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 (-152 (-501))))))) (-5 *2 (-578 (-578 (-262 (-866 (-152 *4)))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 (-152 (-501)))))) (-5 *2 (-578 (-578 (-262 (-866 (-152 *4)))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))))
-(-10 -7 (-15 -3549 ((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-375 (-866 (-152 (-501))))) |#1|)) (-15 -3549 ((-578 (-578 (-262 (-866 (-152 |#1|))))) (-578 (-262 (-375 (-866 (-152 (-501)))))) |#1|)) (-15 -3549 ((-578 (-262 (-866 (-152 |#1|)))) (-375 (-866 (-152 (-501)))) |#1|)) (-15 -3549 ((-578 (-262 (-866 (-152 |#1|)))) (-262 (-375 (-866 (-152 (-501))))) |#1|)) (-15 -1717 ((-578 (-152 |#1|)) (-375 (-866 (-152 (-501)))) |#1|)) (-15 -1717 ((-578 (-578 (-152 |#1|))) (-578 (-375 (-866 (-152 (-501))))) (-578 (-1070)) |#1|)))
-((-2778 (((-578 (-262 (-866 |#1|))) (-262 (-375 (-866 (-501)))) |#1|) 47) (((-578 (-262 (-866 |#1|))) (-375 (-866 (-501))) |#1|) 46) (((-578 (-578 (-262 (-866 |#1|)))) (-578 (-262 (-375 (-866 (-501))))) |#1|) 42) (((-578 (-578 (-262 (-866 |#1|)))) (-578 (-375 (-866 (-501)))) |#1|) 36)) (-2277 (((-578 |#1|) (-375 (-866 (-501))) |#1|) 19) (((-578 (-578 |#1|)) (-578 (-375 (-866 (-501)))) (-578 (-1070)) |#1|) 31)))
-(((-348 |#1|) (-10 -7 (-15 -2778 ((-578 (-578 (-262 (-866 |#1|)))) (-578 (-375 (-866 (-501)))) |#1|)) (-15 -2778 ((-578 (-578 (-262 (-866 |#1|)))) (-578 (-262 (-375 (-866 (-501))))) |#1|)) (-15 -2778 ((-578 (-262 (-866 |#1|))) (-375 (-866 (-501))) |#1|)) (-15 -2778 ((-578 (-262 (-866 |#1|))) (-262 (-375 (-866 (-501)))) |#1|)) (-15 -2277 ((-578 (-578 |#1|)) (-578 (-375 (-866 (-501)))) (-578 (-1070)) |#1|)) (-15 -2277 ((-578 |#1|) (-375 (-866 (-501))) |#1|))) (-13 (-775) (-331))) (T -348))
-((-2277 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-501)))) (-5 *2 (-578 *4)) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) (-2277 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-375 (-866 (-501))))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 *5))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-775) (-331))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 (-501))))) (-5 *2 (-578 (-262 (-866 *4)))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-501)))) (-5 *2 (-578 (-262 (-866 *4)))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 (-501)))))) (-5 *2 (-578 (-578 (-262 (-866 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 (-501))))) (-5 *2 (-578 (-578 (-262 (-866 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))))
-(-10 -7 (-15 -2778 ((-578 (-578 (-262 (-866 |#1|)))) (-578 (-375 (-866 (-501)))) |#1|)) (-15 -2778 ((-578 (-578 (-262 (-866 |#1|)))) (-578 (-262 (-375 (-866 (-501))))) |#1|)) (-15 -2778 ((-578 (-262 (-866 |#1|))) (-375 (-866 (-501))) |#1|)) (-15 -2778 ((-578 (-262 (-866 |#1|))) (-262 (-375 (-866 (-501)))) |#1|)) (-15 -2277 ((-578 (-578 |#1|)) (-578 (-375 (-866 (-501)))) (-578 (-1070)) |#1|)) (-15 -2277 ((-578 |#1|) (-375 (-866 (-501))) |#1|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 27)) (-1850 (($) 12 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18)))
-(((-349 |#1| |#2|) (-13 (-106 |#1| |#1|) (-471 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-648 |#1|)) |noBranch|))) (-959) (-777)) (T -349))
-NIL
-(-13 (-106 |#1| |#1|) (-471 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-648 |#1|)) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 25)) (-3490 ((|#2| $) 27)) (-3858 (($ $) NIL)) (-3706 (((-701) $) 10)) (-2713 (((-578 $) $) 20)) (-2706 (((-107) $) NIL)) (-2607 (($ |#2| |#1|) 18)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3950 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-3845 ((|#2| $) 15)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 43) (($ |#2|) 26)) (-1303 (((-578 |#1|) $) 17)) (-2495 ((|#1| $ |#2|) 45)) (-1850 (($) 28 T CONST)) (-1914 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34)))
-(((-350 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-959) (-777)) (T -350))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-350 *3 *2)) (-4 *3 (-959)) (-4 *2 (-777)))))
+((-1867 (($ $) 6)) (-2624 (($ $) 7)) (** (($ $ $) 8)))
+(((-256) (-1184)) (T -256))
+((** (*1 *1 *1 *1) (-4 *1 (-256))) (-2624 (*1 *1 *1) (-4 *1 (-256))) (-1867 (*1 *1 *1) (-4 *1 (-256))))
+(-13 (-10 -8 (-15 -1867 ($ $)) (-15 -2624 ($ $)) (-15 ** ($ $ $))))
+((-1371 (((-583 (-1054 |#1|)) (-1054 |#1|) |#1|) 35)) (-1535 ((|#2| |#2| |#1|) 38)) (-1932 ((|#2| |#2| |#1|) 40)) (-2456 ((|#2| |#2| |#1|) 39)))
+(((-257 |#1| |#2|) (-10 -7 (-15 -1535 (|#2| |#2| |#1|)) (-15 -2456 (|#2| |#2| |#1|)) (-15 -1932 (|#2| |#2| |#1|)) (-15 -1371 ((-583 (-1054 |#1|)) (-1054 |#1|) |#1|))) (-333) (-1145 |#1|)) (T -257))
+((-1371 (*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1054 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1054 *4)) (-4 *5 (-1145 *4)))) (-1932 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))) (-2456 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))) (-1535 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))))
+(-10 -7 (-15 -1535 (|#2| |#2| |#1|)) (-15 -2456 (|#2| |#2| |#1|)) (-15 -1932 (|#2| |#2| |#1|)) (-15 -1371 ((-583 (-1054 |#1|)) (-1054 |#1|) |#1|)))
+((-1449 ((|#2| $ |#1|) 6)))
+(((-258 |#1| |#2|) (-1184) (-1003) (-1108)) (T -258))
+((-1449 (*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))))
+(-13 (-10 -8 (-15 -1449 (|t#2| $ |t#1|))))
+((-1445 ((|#3| $ |#2| |#3|) 12)) (-1377 ((|#3| $ |#2|) 10)))
+(((-259 |#1| |#2| |#3|) (-10 -8 (-15 -1445 (|#3| |#1| |#2| |#3|)) (-15 -1377 (|#3| |#1| |#2|))) (-260 |#2| |#3|) (-1003) (-1108)) (T -259))
+NIL
+(-10 -8 (-15 -1445 (|#3| |#1| |#2| |#3|)) (-15 -1377 (|#3| |#1| |#2|)))
+((-2411 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4181)))) (-1445 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 11)) (-1449 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-260 |#1| |#2|) (-1184) (-1003) (-1108)) (T -260))
+((-1449 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-1377 (*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-1445 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))))
+(-13 (-258 |t#1| |t#2|) (-10 -8 (-15 -1449 (|t#2| $ |t#1| |t#2|)) (-15 -1377 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2411 (|t#2| $ |t#1| |t#2|)) (-15 -1445 (|t#2| $ |t#1| |t#2|))) |noBranch|)))
+(((-258 |#1| |#2|) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 34)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 39)) (-1213 (($ $) 37)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) 32)) (-3225 (($ |#2| |#3|) 19)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 ((|#3| $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 20)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3841 (((-3 $ "failed") $ $) NIL)) (-3146 (((-703) $) 33)) (-1449 ((|#2| $ |#2|) 41)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 24)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 27 T CONST)) (-2409 (($) 35 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36)))
+(((-261 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-278) (-10 -8 (-15 -1734 (|#3| $)) (-15 -2256 (|#2| $)) (-15 -3225 ($ |#2| |#3|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)) (-15 -1449 (|#2| $ |#2|)))) (-156) (-1130 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -261))
+((-3621 (*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1734 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1130 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3225 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1130 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3841 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4118 (*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1449 (*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1130 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-278) (-10 -8 (-15 -1734 (|#3| $)) (-15 -2256 (|#2| $)) (-15 -3225 ($ |#2| |#3|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)) (-15 -1449 (|#2| $ |#2|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-262) (-1184)) (T -262))
+NIL
+(-13 (-961) (-106 $ $) (-10 -7 (-6 -4173)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1357 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 83)) (-2735 (((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|)))) 78) (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703)) 36)) (-1850 (((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))) 80)) (-1817 (((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|)))) 60)) (-2964 (((-583 (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (-623 (-377 (-874 |#1|)))) 59)) (-3669 (((-874 |#1|) (-623 (-377 (-874 |#1|)))) 47) (((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1073)) 48)))
+(((-263 |#1|) (-10 -7 (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1073))) (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -2964 ((-583 (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -1817 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -1357 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -1850 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|)))))) (-421)) (T -263))
+((-1850 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-2735 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1063 (-1073) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) (-1817 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4))))) (-5 *1 (-263 *4)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1073)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))))
+(-10 -7 (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))) (-1073))) (-15 -3669 ((-874 |#1|) (-623 (-377 (-874 |#1|))))) (-15 -2964 ((-583 (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (-623 (-377 (-874 |#1|))))) (-15 -1817 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|))) (-623 (-377 (-874 |#1|))) (-703) (-703))) (-15 -2735 ((-583 (-623 (-377 (-874 |#1|)))) (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|)))))) (-623 (-377 (-874 |#1|))))) (-15 -1357 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))) (-15 -1850 ((-583 (-2 (|:| |eigval| (-3 (-377 (-874 |#1|)) (-1063 (-1073) (-874 |#1|)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 |#1|))))))) (-623 (-377 (-874 |#1|))))))
+((-1893 (((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)) 14)))
+(((-264 |#1| |#2|) (-10 -7 (-15 -1893 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|)))) (-1108) (-1108)) (T -264))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))))
+(-10 -7 (-15 -1893 ((-265 |#2|) (-1 |#2| |#1|) (-265 |#1|))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2814 (((-107) $) NIL (|has| |#1| (-21)))) (-3137 (($ $) 22)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2302 (($ $ $) 93 (|has| |#1| (-273)))) (-3092 (($) NIL (-3807 (|has| |#1| (-21)) (|has| |#1| (-659))) CONST)) (-1596 (($ $) 8 (|has| |#1| (-21)))) (-1542 (((-3 $ "failed") $) 68 (|has| |#1| (-659)))) (-3616 ((|#1| $) 21)) (-3621 (((-3 $ "failed") $) 66 (|has| |#1| (-659)))) (-3848 (((-107) $) NIL (|has| |#1| (-659)))) (-1893 (($ (-1 |#1| |#1|) $) 24)) (-3603 ((|#1| $) 9)) (-3375 (($ $) 57 (|has| |#1| (-21)))) (-3862 (((-3 $ "failed") $) 67 (|has| |#1| (-659)))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-4118 (($ $) 70 (-3807 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2367 (((-583 $) $) 19 (|has| |#1| (-509)))) (-2051 (($ $ $) 34 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 $)) 37 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-1073) |#1|) 27 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 31 (|has| |#1| (-478 (-1073) |#1|)))) (-2126 (($ |#1| |#1|) 17)) (-3141 (((-125)) 88 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) 85 (|has| |#1| (-822 (-1073))))) (-1487 (($ $ $) NIL (|has| |#1| (-442)))) (-3394 (($ $ $) NIL (|has| |#1| (-442)))) (-2256 (($ (-517)) NIL (|has| |#1| (-961))) (((-107) $) 45 (|has| |#1| (-1003))) (((-787) $) 44 (|has| |#1| (-1003)))) (-2961 (((-703)) 73 (|has| |#1| (-961)))) (-2207 (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (-2396 (($) 55 (|has| |#1| (-21)) CONST)) (-2409 (($) 63 (|has| |#1| (-659)) CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073))))) (-1547 (($ |#1| |#1|) 20) (((-107) $ $) 40 (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 90 (-3807 (|has| |#1| (-333)) (|has| |#1| (-442))))) (-1654 (($ |#1| $) 53 (|has| |#1| (-21))) (($ $ |#1|) 54 (|has| |#1| (-21))) (($ $ $) 52 (|has| |#1| (-21))) (($ $) 51 (|has| |#1| (-21)))) (-1642 (($ |#1| $) 48 (|has| |#1| (-25))) (($ $ |#1|) 49 (|has| |#1| (-25))) (($ $ $) 47 (|has| |#1| (-25)))) (** (($ $ (-517)) NIL (|has| |#1| (-442))) (($ $ (-703)) NIL (|has| |#1| (-659))) (($ $ (-843)) NIL (|has| |#1| (-1015)))) (* (($ $ |#1|) 61 (|has| |#1| (-1015))) (($ |#1| $) 60 (|has| |#1| (-1015))) (($ $ $) 59 (|has| |#1| (-1015))) (($ (-517) $) 76 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-25)))))
+(((-265 |#1|) (-13 (-1108) (-10 -8 (-15 -1547 ($ |#1| |#1|)) (-15 -2126 ($ |#1| |#1|)) (-15 -3137 ($ $)) (-15 -3603 (|#1| $)) (-15 -3616 (|#1| $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1073) |#1|)) (-6 (-478 (-1073) |#1|)) |noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -2051 ($ $ $)) (-15 -2051 ($ $ (-583 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1642 ($ |#1| $)) (-15 -1642 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3375 ($ $)) (-15 -1596 ($ $)) (-15 -1654 ($ |#1| $)) (-15 -1654 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|) (IF (|has| |#1| (-509)) (-15 -2367 ((-583 $) $)) |noBranch|) (IF (|has| |#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1160 |#1|)) (-15 -1667 ($ $ $)) (-15 -4118 ($ $))) |noBranch|) (IF (|has| |#1| (-273)) (-15 -2302 ($ $ $)) |noBranch|))) (-1108)) (T -265))
+((-1547 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-2126 (*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-3137 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-3603 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-3616 (*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) (-2051 (*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)) (-5 *1 (-265 *2)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) (-1642 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) (-1642 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) (-3375 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-1596 (*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-1654 (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-1654 (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) (-3862 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))) (-1542 (*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))) (-2367 (*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1108)))) (-2302 (*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1108)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) (-1667 (*1 *1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))) (-4118 (*1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))))
+(-13 (-1108) (-10 -8 (-15 -1547 ($ |#1| |#1|)) (-15 -2126 ($ |#1| |#1|)) (-15 -3137 ($ $)) (-15 -3603 (|#1| $)) (-15 -3616 (|#1| $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-478 (-1073) |#1|)) (-6 (-478 (-1073) |#1|)) |noBranch|) (IF (|has| |#1| (-1003)) (PROGN (-6 (-1003)) (-6 (-557 (-107))) (IF (|has| |#1| (-280 |#1|)) (PROGN (-15 -2051 ($ $ $)) (-15 -2051 ($ $ (-583 $)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1642 ($ |#1| $)) (-15 -1642 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3375 ($ $)) (-15 -1596 ($ $)) (-15 -1654 ($ |#1| $)) (-15 -1654 ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-1015)) (PROGN (-6 (-1015)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |noBranch|) (IF (|has| |#1| (-659)) (PROGN (-6 (-659)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-442)) (PROGN (-6 (-442)) (-15 -3862 ((-3 $ "failed") $)) (-15 -1542 ((-3 $ "failed") $))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-6 (-961)) (-6 (-106 |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|) (IF (|has| |#1| (-509)) (-15 -2367 ((-583 $) $)) |noBranch|) (IF (|has| |#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-1160 |#1|)) (-15 -1667 ($ $ $)) (-15 -4118 ($ $))) |noBranch|) (IF (|has| |#1| (-273)) (-15 -2302 ($ $ $)) |noBranch|)))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-266 |#1| |#2|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003)) (T -266))
+NIL
+(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))
+((-2101 (((-282) (-1056) (-583 (-1056))) 16) (((-282) (-1056) (-1056)) 15) (((-282) (-583 (-1056))) 14) (((-282) (-1056)) 12)))
+(((-267) (-10 -7 (-15 -2101 ((-282) (-1056))) (-15 -2101 ((-282) (-583 (-1056)))) (-15 -2101 ((-282) (-1056) (-1056))) (-15 -2101 ((-282) (-1056) (-583 (-1056)))))) (T -267))
+((-2101 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1056))) (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2101 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-282)) (-5 *1 (-267)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))))
+(-10 -7 (-15 -2101 ((-282) (-1056))) (-15 -2101 ((-282) (-583 (-1056)))) (-15 -2101 ((-282) (-1056) (-1056))) (-15 -2101 ((-282) (-1056) (-583 (-1056)))))
+((-1893 ((|#2| (-1 |#2| |#1|) (-1056) (-556 |#1|)) 17)))
+(((-268 |#1| |#2|) (-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-1056) (-556 |#1|)))) (-273) (-1108)) (T -268))
+((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1056)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1108)) (-5 *1 (-268 *6 *2)))))
+(-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-1056) (-556 |#1|))))
+((-1893 ((|#2| (-1 |#2| |#1|) (-556 |#1|)) 17)))
+(((-269 |#1| |#2|) (-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-556 |#1|)))) (-273) (-273)) (T -269))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))))
+(-10 -7 (-15 -1893 (|#2| (-1 |#2| |#1|) (-556 |#1|))))
+((-1204 (((-107) (-199)) 10)))
+(((-270 |#1| |#2|) (-10 -7 (-15 -1204 ((-107) (-199)))) (-199) (-199)) (T -270))
+((-1204 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1204 ((-107) (-199))))
+((-2888 (((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199)))) 88)) (-2743 (((-1054 (-199)) (-1153 (-286 (-199))) (-583 (-1073)) (-998 (-772 (-199)))) 103) (((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199)))) 58)) (-4053 (((-583 (-1056)) (-1054 (-199))) NIL)) (-1218 (((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199)))) 55)) (-2826 (((-583 (-199)) (-874 (-377 (-517))) (-1073) (-998 (-772 (-199)))) 47)) (-2024 (((-583 (-1056)) (-583 (-199))) NIL)) (-3339 (((-199) (-998 (-772 (-199)))) 23)) (-3191 (((-199) (-998 (-772 (-199)))) 24)) (-4096 (((-107) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 51)) (-2129 (((-1056) (-199)) NIL)))
+(((-271) (-10 -7 (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -4096 ((-107) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2888 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-1153 (-286 (-199))) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2826 ((-583 (-199)) (-874 (-377 (-517))) (-1073) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))))) (T -271))
+((-4053 (*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-271)))) (-2826 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) (-2743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) (-2888 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) (-1218 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))) (-4096 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))))
+(-10 -7 (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -4096 ((-107) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1218 ((-583 (-199)) (-286 (-199)) (-1073) (-998 (-772 (-199))))) (-15 -2888 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-286 (-199)) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2743 ((-1054 (-199)) (-1153 (-286 (-199))) (-583 (-1073)) (-998 (-772 (-199))))) (-15 -2826 ((-583 (-199)) (-874 (-377 (-517))) (-1073) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))))
+((-3726 (((-583 (-556 $)) $) 28)) (-2302 (($ $ (-265 $)) 80) (($ $ (-583 (-265 $))) 120) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-1772 (((-3 (-556 $) "failed") $) 110)) (-3189 (((-556 $) $) 109)) (-3374 (($ $) 19) (($ (-583 $)) 54)) (-4001 (((-583 (-109)) $) 37)) (-3072 (((-109) (-109)) 90)) (-1769 (((-107) $) 128)) (-1893 (($ (-1 $ $) (-556 $)) 88)) (-1783 (((-3 (-556 $) "failed") $) 92)) (-1851 (($ (-109) $) 60) (($ (-109) (-583 $)) 98)) (-1609 (((-107) $ (-109)) 114) (((-107) $ (-1073)) 113)) (-1881 (((-703) $) 45)) (-3832 (((-107) $ $) 58) (((-107) $ (-1073)) 49)) (-3998 (((-107) $) 126)) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) 118) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 83) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) 68) (($ $ (-1073) (-1 $ $)) 74) (($ $ (-583 (-109)) (-583 (-1 $ $))) 82) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 84) (($ $ (-109) (-1 $ (-583 $))) 70) (($ $ (-109) (-1 $ $)) 76)) (-1449 (($ (-109) $) 61) (($ (-109) $ $) 62) (($ (-109) $ $ $) 63) (($ (-109) $ $ $ $) 64) (($ (-109) (-583 $)) 106)) (-1630 (($ $) 51) (($ $ $) 116)) (-4148 (($ $) 17) (($ (-583 $)) 53)) (-4074 (((-107) (-109)) 22)))
+(((-272 |#1|) (-10 -8 (-15 -1769 ((-107) |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -3832 ((-107) |#1| (-1073))) (-15 -3832 ((-107) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1851 (|#1| (-109) (-583 |#1|))) (-15 -1851 (|#1| (-109) |#1|)) (-15 -1609 ((-107) |#1| (-1073))) (-15 -1609 ((-107) |#1| (-109))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -4001 ((-583 (-109)) |#1|)) (-15 -3726 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1881 ((-703) |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -3374 (|#1| (-583 |#1|))) (-15 -3374 (|#1| |#1|)) (-15 -4148 (|#1| (-583 |#1|))) (-15 -4148 (|#1| |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|))) (-273)) (T -272))
+((-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))))
+(-10 -8 (-15 -1769 ((-107) |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -3832 ((-107) |#1| (-1073))) (-15 -3832 ((-107) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#1| |#1|) (-556 |#1|))) (-15 -1851 (|#1| (-109) (-583 |#1|))) (-15 -1851 (|#1| (-109) |#1|)) (-15 -1609 ((-107) |#1| (-1073))) (-15 -1609 ((-107) |#1| (-109))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -4001 ((-583 (-109)) |#1|)) (-15 -3726 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -1881 ((-703) |#1|)) (-15 -1630 (|#1| |#1| |#1|)) (-15 -1630 (|#1| |#1|)) (-15 -3374 (|#1| (-583 |#1|))) (-15 -3374 (|#1| |#1|)) (-15 -4148 (|#1| (-583 |#1|))) (-15 -4148 (|#1| |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|)))
+((-2750 (((-107) $ $) 7)) (-3726 (((-583 (-556 $)) $) 44)) (-2302 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-1772 (((-3 (-556 $) "failed") $) 69)) (-3189 (((-556 $) $) 68)) (-3374 (($ $) 51) (($ (-583 $)) 50)) (-4001 (((-583 (-109)) $) 43)) (-3072 (((-109) (-109)) 42)) (-1769 (((-107) $) 22 (|has| $ (-952 (-517))))) (-1607 (((-1069 $) (-556 $)) 25 (|has| $ (-961)))) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-1893 (($ (-1 $ $) (-556 $)) 36)) (-1783 (((-3 (-556 $) "failed") $) 46)) (-3985 (((-1056) $) 9)) (-2343 (((-583 (-556 $)) $) 45)) (-1851 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-1609 (((-107) $ (-109)) 40) (((-107) $ (-1073)) 39)) (-1881 (((-703) $) 47)) (-3206 (((-1021) $) 10)) (-3832 (((-107) $ $) 35) (((-107) $ (-1073)) 34)) (-3998 (((-107) $) 23 (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1073) (-1 $ (-583 $))) 31) (($ $ (-1073) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26)) (-1449 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1630 (($ $) 49) (($ $ $) 48)) (-2135 (($ $) 24 (|has| $ (-961)))) (-2256 (((-787) $) 11) (($ (-556 $)) 70)) (-4148 (($ $) 53) (($ (-583 $)) 52)) (-4074 (((-107) (-109)) 41)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
+(((-273) (-1184)) (T -273))
+((-1449 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1449 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) (-2302 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-4148 (*1 *1 *1) (-4 *1 (-273))) (-4148 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-3374 (*1 *1 *1) (-4 *1 (-273))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) (-1630 (*1 *1 *1) (-4 *1 (-273))) (-1630 (*1 *1 *1 *1) (-4 *1 (-273))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))) (-4001 (*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))) (-3072 (*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-4074 (*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-1609 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) (-1609 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) (-1851 (*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) (-1851 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) (-1893 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) (-3832 (*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))) (-3832 (*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1069 *1)))) (-2135 (*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) (-1769 (*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))))
+(-13 (-779) (-952 (-556 $)) (-478 (-556 $) $) (-280 $) (-10 -8 (-15 -1449 ($ (-109) $)) (-15 -1449 ($ (-109) $ $)) (-15 -1449 ($ (-109) $ $ $)) (-15 -1449 ($ (-109) $ $ $ $)) (-15 -1449 ($ (-109) (-583 $))) (-15 -2302 ($ $ (-265 $))) (-15 -2302 ($ $ (-583 (-265 $)))) (-15 -2302 ($ $ (-583 (-556 $)) (-583 $))) (-15 -4148 ($ $)) (-15 -4148 ($ (-583 $))) (-15 -3374 ($ $)) (-15 -3374 ($ (-583 $))) (-15 -1630 ($ $)) (-15 -1630 ($ $ $)) (-15 -1881 ((-703) $)) (-15 -1783 ((-3 (-556 $) "failed") $)) (-15 -2343 ((-583 (-556 $)) $)) (-15 -3726 ((-583 (-556 $)) $)) (-15 -4001 ((-583 (-109)) $)) (-15 -3072 ((-109) (-109))) (-15 -4074 ((-107) (-109))) (-15 -1609 ((-107) $ (-109))) (-15 -1609 ((-107) $ (-1073))) (-15 -1851 ($ (-109) $)) (-15 -1851 ($ (-109) (-583 $))) (-15 -1893 ($ (-1 $ $) (-556 $))) (-15 -3832 ((-107) $ $)) (-15 -3832 ((-107) $ (-1073))) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-1 $ $)))) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-1 $ (-583 $))))) (-15 -2051 ($ $ (-1073) (-1 $ (-583 $)))) (-15 -2051 ($ $ (-1073) (-1 $ $))) (-15 -2051 ($ $ (-583 (-109)) (-583 (-1 $ $)))) (-15 -2051 ($ $ (-583 (-109)) (-583 (-1 $ (-583 $))))) (-15 -2051 ($ $ (-109) (-1 $ (-583 $)))) (-15 -2051 ($ $ (-109) (-1 $ $))) (IF (|has| $ (-961)) (PROGN (-15 -1607 ((-1069 $) (-556 $))) (-15 -2135 ($ $))) |noBranch|) (IF (|has| $ (-952 (-517))) (PROGN (-15 -3998 ((-107) $)) (-15 -1769 ((-107) $))) |noBranch|)))
+(((-97) . T) ((-557 (-787)) . T) ((-280 $) . T) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-779) . T) ((-952 (-556 $)) . T) ((-1003) . T))
+((-1841 (((-583 |#1|) (-583 |#1|)) 10)))
+(((-274 |#1|) (-10 -7 (-15 -1841 ((-583 |#1|) (-583 |#1|)))) (-777)) (T -274))
+((-1841 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
+(-10 -7 (-15 -1841 ((-583 |#1|) (-583 |#1|))))
+((-1893 (((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)) 15)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -1893 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|)))) (-961) (-961)) (T -275))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))))
+(-10 -7 (-15 -1893 ((-623 |#2|) (-1 |#2| |#1|) (-623 |#1|))))
+((-3188 (((-1153 (-286 (-349))) (-1153 (-286 (-199)))) 105)) (-2096 (((-998 (-772 (-199))) (-998 (-772 (-349)))) 39)) (-4053 (((-583 (-1056)) (-1054 (-199))) 87)) (-2308 (((-286 (-349)) (-874 (-199))) 49)) (-2721 (((-199) (-874 (-199))) 45)) (-2952 (((-1056) (-349)) 167)) (-2287 (((-772 (-199)) (-772 (-349))) 33)) (-2430 (((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1153 (-286 (-199)))) 142)) (-2326 (((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) 180) (((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) 178)) (-2790 (((-623 (-199)) (-583 (-199)) (-703)) 13)) (-3952 (((-1153 (-632)) (-583 (-199))) 94)) (-2024 (((-583 (-1056)) (-583 (-199))) 74)) (-2966 (((-3 (-286 (-199)) "failed") (-286 (-199))) 120)) (-1204 (((-107) (-199) (-998 (-772 (-199)))) 109)) (-2660 (((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) 198)) (-3339 (((-199) (-998 (-772 (-199)))) 107)) (-3191 (((-199) (-998 (-772 (-199)))) 108)) (-1651 (((-199) (-377 (-517))) 26)) (-3180 (((-1056) (-349)) 72)) (-1836 (((-199) (-349)) 17)) (-2455 (((-349) (-1153 (-286 (-199)))) 153)) (-2648 (((-286 (-199)) (-286 (-349))) 23)) (-1828 (((-377 (-517)) (-286 (-199))) 52)) (-3007 (((-286 (-377 (-517))) (-286 (-199))) 68)) (-4108 (((-286 (-349)) (-286 (-199))) 98)) (-2374 (((-199) (-286 (-199))) 53)) (-3856 (((-583 (-199)) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) 63)) (-2799 (((-998 (-772 (-199))) (-998 (-772 (-199)))) 60)) (-2129 (((-1056) (-199)) 71)) (-2979 (((-632) (-199)) 90)) (-2055 (((-377 (-517)) (-199)) 54)) (-3910 (((-286 (-349)) (-199)) 48)) (-3645 (((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349))))) 42)) (-2452 (((-950) (-583 (-950))) 163) (((-950) (-950) (-950)) 160)) (-3529 (((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 194)))
+(((-276) (-10 -7 (-15 -1836 ((-199) (-349))) (-15 -2648 ((-286 (-199)) (-286 (-349)))) (-15 -2287 ((-772 (-199)) (-772 (-349)))) (-15 -2096 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3645 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2055 ((-377 (-517)) (-199))) (-15 -1828 ((-377 (-517)) (-286 (-199)))) (-15 -2374 ((-199) (-286 (-199)))) (-15 -2966 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2455 ((-349) (-1153 (-286 (-199))))) (-15 -2430 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1153 (-286 (-199))))) (-15 -3007 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -2799 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -3856 ((-583 (-199)) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-15 -2979 ((-632) (-199))) (-15 -3952 ((-1153 (-632)) (-583 (-199)))) (-15 -4108 ((-286 (-349)) (-286 (-199)))) (-15 -3188 ((-1153 (-286 (-349))) (-1153 (-286 (-199))))) (-15 -1204 ((-107) (-199) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -3180 ((-1056) (-349))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2452 ((-950) (-950) (-950))) (-15 -2452 ((-950) (-583 (-950)))) (-15 -2952 ((-1056) (-349))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))))) (-15 -3529 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2660 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -2308 ((-286 (-349)) (-874 (-199)))) (-15 -2721 ((-199) (-874 (-199)))) (-15 -3910 ((-286 (-349)) (-199))) (-15 -1651 ((-199) (-377 (-517)))) (-15 -2790 ((-623 (-199)) (-583 (-199)) (-703))))) (T -276))
+((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3910 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2721 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2952 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) (-2452 (*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))) (-3180 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-276)))) (-1204 (*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-1153 (-286 (-349)))) (-5 *1 (-276)))) (-4108 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))) (-3952 (*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1153 (-632))) (-5 *1 (-276)))) (-2979 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))) (-2799 (*1 *2 *2) (-12 (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))) (-2966 (*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))) (-1828 (*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
+(-10 -7 (-15 -1836 ((-199) (-349))) (-15 -2648 ((-286 (-199)) (-286 (-349)))) (-15 -2287 ((-772 (-199)) (-772 (-349)))) (-15 -2096 ((-998 (-772 (-199))) (-998 (-772 (-349))))) (-15 -3645 ((-583 (-998 (-772 (-199)))) (-583 (-998 (-772 (-349)))))) (-15 -2055 ((-377 (-517)) (-199))) (-15 -1828 ((-377 (-517)) (-286 (-199)))) (-15 -2374 ((-199) (-286 (-199)))) (-15 -2966 ((-3 (-286 (-199)) "failed") (-286 (-199)))) (-15 -2455 ((-349) (-1153 (-286 (-199))))) (-15 -2430 ((-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517))) (-1153 (-286 (-199))))) (-15 -3007 ((-286 (-377 (-517))) (-286 (-199)))) (-15 -2799 ((-998 (-772 (-199))) (-998 (-772 (-199))))) (-15 -3856 ((-583 (-199)) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-15 -2979 ((-632) (-199))) (-15 -3952 ((-1153 (-632)) (-583 (-199)))) (-15 -4108 ((-286 (-349)) (-286 (-199)))) (-15 -3188 ((-1153 (-286 (-349))) (-1153 (-286 (-199))))) (-15 -1204 ((-107) (-199) (-998 (-772 (-199))))) (-15 -2129 ((-1056) (-199))) (-15 -3180 ((-1056) (-349))) (-15 -2024 ((-583 (-1056)) (-583 (-199)))) (-15 -4053 ((-583 (-1056)) (-1054 (-199)))) (-15 -3339 ((-199) (-998 (-772 (-199))))) (-15 -3191 ((-199) (-998 (-772 (-199))))) (-15 -2452 ((-950) (-950) (-950))) (-15 -2452 ((-950) (-583 (-950)))) (-15 -2952 ((-1056) (-349))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))))) (-15 -2326 ((-950) (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))))) (-15 -3529 ((-950) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2660 ((-950) (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))) (-15 -2308 ((-286 (-349)) (-874 (-199)))) (-15 -2721 ((-199) (-874 (-199)))) (-15 -3910 ((-286 (-349)) (-199))) (-15 -1651 ((-199) (-377 (-517)))) (-15 -2790 ((-623 (-199)) (-583 (-199)) (-703))))
+((-1707 (((-107) $ $) 11)) (-2518 (($ $ $) 15)) (-2497 (($ $ $) 14)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 43)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1401 (($ $ $) 20) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 31) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 36)) (-2476 (((-3 $ "failed") $ $) 17)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 45)))
+(((-277 |#1|) (-10 -8 (-15 -2377 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2069 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -1707 ((-107) |#1| |#1|)) (-15 -1737 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1780 ((-2 (|:| -1931 (-583 |#1|)) (|:| -3220 |#1|)) (-583 |#1|))) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|))) (-278)) (T -277))
+NIL
+(-10 -8 (-15 -2377 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -2069 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2069 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -2518 (|#1| |#1| |#1|)) (-15 -2497 (|#1| |#1| |#1|)) (-15 -1707 ((-107) |#1| |#1|)) (-15 -1737 ((-3 (-583 |#1|) "failed") (-583 |#1|) |#1|)) (-15 -1780 ((-2 (|:| -1931 (-583 |#1|)) (|:| -3220 |#1|)) (-583 |#1|))) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-278) (-1184)) (T -278))
+((-1707 (*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))) (-3146 (*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))) (-1306 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-278)))) (-2497 (*1 *1 *1 *1) (-4 *1 (-278))) (-2518 (*1 *1 *1 *1) (-4 *1 (-278))) (-2069 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-278)))) (-2069 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) (-2377 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
+(-13 (-842) (-10 -8 (-15 -1707 ((-107) $ $)) (-15 -3146 ((-703) $)) (-15 -1306 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2497 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -2069 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $)) (-15 -2069 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2377 ((-3 (-583 $) "failed") (-583 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2051 (($ $ (-583 |#2|) (-583 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-265 |#2|)) 11) (($ $ (-583 (-265 |#2|))) NIL)))
+(((-279 |#1| |#2|) (-10 -8 (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|)))) (-280 |#2|) (-1003)) (T -279))
+NIL
+(-10 -8 (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))))
+((-2051 (($ $ (-583 |#1|) (-583 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-265 |#1|)) 11) (($ $ (-583 (-265 |#1|))) 10)))
+(((-280 |#1|) (-1184) (-1003)) (T -280))
+((-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003)))))
+(-13 (-478 |t#1| |t#1|) (-10 -8 (-15 -2051 ($ $ (-265 |t#1|))) (-15 -2051 ($ $ (-583 (-265 |t#1|))))))
+(((-478 |#1| |#1|) . T))
+((-2051 ((|#1| (-1 |#1| (-517)) (-1075 (-377 (-517)))) 24)))
+(((-281 |#1|) (-10 -7 (-15 -2051 (|#1| (-1 |#1| (-517)) (-1075 (-377 (-517)))))) (-37 (-377 (-517)))) (T -281))
+((-2051 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1075 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))))
+(-10 -7 (-15 -2051 (|#1| (-1 |#1| (-517)) (-1075 (-377 (-517))))))
+((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 7)) (-1547 (((-107) $ $) 9)))
+(((-282) (-1003)) (T -282))
+NIL
+(-1003)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 62)) (-2668 (((-1140 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1140 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-1139 |#2| |#3| |#4|) "failed") $) 24)) (-3189 (((-1140 |#1| |#2| |#3| |#4|) $) NIL) (((-1073) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-517) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-517)))) (((-1139 |#2| |#3| |#4|) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-1140 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1153 (-1140 |#1| |#2| |#3| |#4|)))) (-623 $) (-1153 $)) NIL) (((-623 (-1140 |#1| |#2| |#3| |#4|)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-1140 |#1| |#2| |#3| |#4|) $) 21)) (-1319 (((-3 $ "failed") $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-1049)))) (-2475 (((-107) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-3099 (($ $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1893 (($ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) $) NIL)) (-3020 (((-3 (-772 |#2|) "failed") $) 76)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-278)))) (-2597 (((-1140 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-1140 |#1| |#2| |#3| |#4|)) (-583 (-1140 |#1| |#2| |#3| |#4|))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-265 (-1140 |#1| |#2| |#3| |#4|))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-265 (-1140 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-280 (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-583 (-1073)) (-583 (-1140 |#1| |#2| |#3| |#4|))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-478 (-1073) (-1140 |#1| |#2| |#3| |#4|)))) (($ $ (-1073) (-1140 |#1| |#2| |#3| |#4|)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-478 (-1073) (-1140 |#1| |#2| |#3| |#4|))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-1140 |#1| |#2| |#3| |#4|)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-258 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1073)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-1140 |#1| |#2| |#3| |#4|) $) 17)) (-3645 (((-814 (-517)) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-558 (-493)))) (((-349) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-937))) (((-199) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1140 |#1| |#2| |#3| |#4|) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-1140 |#1| |#2| |#3| |#4|)) 28) (($ (-1073)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-952 (-1073)))) (($ (-1139 |#2| |#3| |#4|)) 36)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-1140 |#1| |#2| |#3| |#4|) (-831))) (|has| (-1140 |#1| |#2| |#3| |#4|) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-1140 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 41 T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-207))) (($ $ (-1073)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-822 (-1073)))) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) (-703)) NIL) (($ $ (-1 (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-1140 |#1| |#2| |#3| |#4|) (-779)))) (-1667 (($ $ $) 33) (($ (-1140 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) 30)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-1140 |#1| |#2| |#3| |#4|) $) 29) (($ $ (-1140 |#1| |#2| |#3| |#4|)) NIL)))
+(((-283 |#1| |#2| |#3| |#4|) (-13 (-909 (-1140 |#1| |#2| |#3| |#4|)) (-952 (-1139 |#2| |#3| |#4|)) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -2256 ($ (-1139 |#2| |#3| |#4|))))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1094) (-400 |#1|)) (-1073) |#2|) (T -283))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1139 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) (-3020 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))))
+(-13 (-909 (-1140 |#1| |#2| |#3| |#4|)) (-952 (-1139 |#2| |#3| |#4|)) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -2256 ($ (-1139 |#2| |#3| |#4|)))))
+((-1893 (((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)) 13)))
+(((-284 |#1| |#2|) (-10 -7 (-15 -1893 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|)))) (-779) (-779)) (T -284))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))))
+(-10 -7 (-15 -1893 ((-286 |#2|) (-1 |#2| |#1|) (-286 |#1|))))
+((-1590 (((-51) |#2| (-265 |#2|) (-703)) 33) (((-51) |#2| (-265 |#2|)) 24) (((-51) |#2| (-703)) 28) (((-51) |#2|) 25) (((-51) (-1073)) 21)) (-2925 (((-51) |#2| (-265 |#2|) (-377 (-517))) 51) (((-51) |#2| (-265 |#2|)) 48) (((-51) |#2| (-377 (-517))) 50) (((-51) |#2|) 49) (((-51) (-1073)) 47)) (-1613 (((-51) |#2| (-265 |#2|) (-377 (-517))) 46) (((-51) |#2| (-265 |#2|)) 43) (((-51) |#2| (-377 (-517))) 45) (((-51) |#2|) 44) (((-51) (-1073)) 42)) (-1601 (((-51) |#2| (-265 |#2|) (-517)) 39) (((-51) |#2| (-265 |#2|)) 35) (((-51) |#2| (-517)) 38) (((-51) |#2|) 36) (((-51) (-1073)) 34)))
+(((-285 |#1| |#2|) (-10 -7 (-15 -1590 ((-51) (-1073))) (-15 -1590 ((-51) |#2|)) (-15 -1590 ((-51) |#2| (-703))) (-15 -1590 ((-51) |#2| (-265 |#2|))) (-15 -1590 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1601 ((-51) (-1073))) (-15 -1601 ((-51) |#2|)) (-15 -1601 ((-51) |#2| (-517))) (-15 -1601 ((-51) |#2| (-265 |#2|))) (-15 -1601 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1613 ((-51) (-1073))) (-15 -1613 ((-51) |#2|)) (-15 -1613 ((-51) |#2| (-377 (-517)))) (-15 -1613 ((-51) |#2| (-265 |#2|))) (-15 -1613 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -2925 ((-51) (-1073))) (-15 -2925 ((-51) |#2|)) (-15 -2925 ((-51) |#2| (-377 (-517)))) (-15 -2925 ((-51) |#2| (-265 |#2|))) (-15 -2925 ((-51) |#2| (-265 |#2|) (-377 (-517))))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -285))
+((-2925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1613 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1613 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1613 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) (-1601 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1601 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1601 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1590 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))))
+(-10 -7 (-15 -1590 ((-51) (-1073))) (-15 -1590 ((-51) |#2|)) (-15 -1590 ((-51) |#2| (-703))) (-15 -1590 ((-51) |#2| (-265 |#2|))) (-15 -1590 ((-51) |#2| (-265 |#2|) (-703))) (-15 -1601 ((-51) (-1073))) (-15 -1601 ((-51) |#2|)) (-15 -1601 ((-51) |#2| (-517))) (-15 -1601 ((-51) |#2| (-265 |#2|))) (-15 -1601 ((-51) |#2| (-265 |#2|) (-517))) (-15 -1613 ((-51) (-1073))) (-15 -1613 ((-51) |#2|)) (-15 -1613 ((-51) |#2| (-377 (-517)))) (-15 -1613 ((-51) |#2| (-265 |#2|))) (-15 -1613 ((-51) |#2| (-265 |#2|) (-377 (-517)))) (-15 -2925 ((-51) (-1073))) (-15 -2925 ((-51) |#2|)) (-15 -2925 ((-51) |#2| (-377 (-517)))) (-15 -2925 ((-51) |#2| (-265 |#2|))) (-15 -2925 ((-51) |#2| (-265 |#2|) (-377 (-517)))))
+((-2750 (((-107) $ $) NIL)) (-2888 (((-583 $) $ (-1073)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $) (-1073)) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-3869 (($ $ (-1073)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1069 $) (-1073)) NIL (|has| |#1| (-509))) (($ (-1069 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-2814 (((-107) $) 27 (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1364 (((-583 (-1073)) $) 346)) (-2352 (((-377 (-1069 $)) $ (-556 $)) NIL (|has| |#1| (-509)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-3726 (((-583 (-556 $)) $) NIL)) (-1865 (($ $) 156 (|has| |#1| (-509)))) (-1721 (($ $) 132 (|has| |#1| (-509)))) (-3036 (($ $ (-996 $)) 217 (|has| |#1| (-509))) (($ $ (-1073)) 213 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) 362) (($ $ (-583 (-556 $)) (-583 $)) 405)) (-3143 (((-388 (-1069 $)) (-1069 $)) 290 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-2535 (($ $) NIL (|has| |#1| (-509)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-509)))) (-3766 (($ $) NIL (|has| |#1| (-509)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-509)))) (-1839 (($ $) 152 (|has| |#1| (-509)))) (-1701 (($ $) 128 (|has| |#1| (-509)))) (-4081 (($ $ (-517)) 68 (|has| |#1| (-509)))) (-1887 (($ $) 160 (|has| |#1| (-509)))) (-1743 (($ $) 136 (|has| |#1| (-509)))) (-3092 (($) NIL (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-1649 (((-583 $) $ (-1073)) NIL (|has| |#1| (-509))) (((-583 $) $) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $) (-1073)) NIL (|has| |#1| (-509))) (((-583 $) (-1069 $)) NIL (|has| |#1| (-509))) (((-583 $) (-874 $)) NIL (|has| |#1| (-509)))) (-3267 (($ $ (-1073)) NIL (|has| |#1| (-509))) (($ $) NIL (|has| |#1| (-509))) (($ (-1069 $) (-1073)) 119 (|has| |#1| (-509))) (($ (-1069 $)) NIL (|has| |#1| (-509))) (($ (-874 $)) NIL (|has| |#1| (-509)))) (-1772 (((-3 (-556 $) "failed") $) 17) (((-3 (-1073) "failed") $) NIL) (((-3 |#1| "failed") $) 414) (((-3 (-47) "failed") $) 319 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-874 |#1|)) "failed") $) NIL (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) NIL (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 45 (-3807 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 (((-556 $) $) 11) (((-1073) $) NIL) ((|#1| $) 396) (((-47) $) NIL (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-874 |#1|)) $) NIL (|has| |#1| (-509))) (((-874 |#1|) $) NIL (|has| |#1| (-961))) (((-377 (-517)) $) 303 (-3807 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-2518 (($ $ $) NIL (|has| |#1| (-509)))) (-3355 (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 112 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 104 (|has| |#1| (-961))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (-3225 (($ $) 86 (|has| |#1| (-509)))) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2497 (($ $ $) NIL (|has| |#1| (-509)))) (-3485 (($ $ (-996 $)) 221 (|has| |#1| (-509))) (($ $ (-1073)) 219 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-509)))) (-3849 (((-107) $) NIL (|has| |#1| (-509)))) (-1264 (($ $ $) 187 (|has| |#1| (-509)))) (-2645 (($) 122 (|has| |#1| (-509)))) (-3647 (($ $ $) 207 (|has| |#1| (-509)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 368 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 374 (|has| |#1| (-808 (-349))))) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) 262)) (-3848 (((-107) $) 25 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1405 (($ $) 67 (|has| |#1| (-961)))) (-1787 (((-1026 |#1| (-556 $)) $) 81 (|has| |#1| (-961)))) (-3509 (((-107) $) 60 (|has| |#1| (-509)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-509)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-1607 (((-1069 $) (-556 $)) 263 (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) 401)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-1867 (($ $) 126 (|has| |#1| (-509)))) (-3139 (($ $) 232 (|has| |#1| (-509)))) (-1365 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) 48)) (-1851 (($ (-109) $) NIL) (($ (-109) (-583 $)) 406)) (-3703 (((-3 (-583 $) "failed") $) NIL (|has| |#1| (-1015)))) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) NIL (|has| |#1| (-961)))) (-3401 (((-3 (-583 $) "failed") $) 409 (|has| |#1| (-25)))) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 413 (|has| |#1| (-25)))) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) NIL (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) NIL (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) NIL (|has| |#1| (-961)))) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) 52)) (-4118 (($ $) NIL (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-2082 (($ $ (-1073)) 236 (|has| |#1| (-509))) (($ $ (-996 $)) 238 (|has| |#1| (-509)))) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 43)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 283 (|has| |#1| (-509)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-3210 (($ $ (-1073)) 211 (|has| |#1| (-509))) (($ $) 209 (|has| |#1| (-509)))) (-3663 (($ $) 203 (|has| |#1| (-509)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 288 (-12 (|has| |#1| (-421)) (|has| |#1| (-509))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-509)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-509)))) (-2624 (($ $) 124 (|has| |#1| (-509)))) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 400) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) 356) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1073)) NIL (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-558 (-493)))) (($ $) NIL (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1073)) 344 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1073)) 343 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) NIL (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ (-583 $))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ $)) NIL (|has| |#1| (-961)))) (-3146 (((-703) $) NIL (|has| |#1| (-509)))) (-1655 (($ $) 224 (|has| |#1| (-509)))) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-1630 (($ $) NIL) (($ $ $) NIL)) (-1689 (($ $) 234 (|has| |#1| (-509)))) (-2150 (($ $) 185 (|has| |#1| (-509)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-961))) (($ $ (-1073)) NIL (|has| |#1| (-961)))) (-2971 (($ $) 69 (|has| |#1| (-509)))) (-1800 (((-1026 |#1| (-556 $)) $) 83 (|has| |#1| (-509)))) (-2135 (($ $) 301 (|has| $ (-961)))) (-1898 (($ $) 162 (|has| |#1| (-509)))) (-1754 (($ $) 138 (|has| |#1| (-509)))) (-1876 (($ $) 158 (|has| |#1| (-509)))) (-1732 (($ $) 134 (|has| |#1| (-509)))) (-1853 (($ $) 154 (|has| |#1| (-509)))) (-1711 (($ $) 130 (|has| |#1| (-509)))) (-3645 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) NIL (|has| |#1| (-509))) (((-493) $) 341 (|has| |#1| (-558 (-493))))) (-1487 (($ $ $) NIL (|has| |#1| (-442)))) (-3394 (($ $ $) NIL (|has| |#1| (-442)))) (-2256 (((-787) $) 399) (($ (-556 $)) 390) (($ (-1073)) 358) (($ |#1|) 320) (($ $) NIL (|has| |#1| (-509))) (($ (-47)) 295 (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) (($ (-1026 |#1| (-556 $))) 85 (|has| |#1| (-961))) (($ (-377 |#1|)) NIL (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) NIL (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) NIL (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) NIL (|has| |#1| (-509))) (($ (-874 |#1|)) NIL (|has| |#1| (-961))) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-509)) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 34 (-3807 (|has| |#1| (-952 (-517))) (|has| |#1| (-961))))) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL (|has| |#1| (-961)))) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-1270 (($ $ $) 205 (|has| |#1| (-509)))) (-2570 (($ $ $) 191 (|has| |#1| (-509)))) (-2480 (($ $ $) 195 (|has| |#1| (-509)))) (-3233 (($ $ $) 189 (|has| |#1| (-509)))) (-1324 (($ $ $) 193 (|has| |#1| (-509)))) (-4074 (((-107) (-109)) 9)) (-3707 (($ $) 168 (|has| |#1| (-509)))) (-1788 (($ $) 144 (|has| |#1| (-509)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 164 (|has| |#1| (-509)))) (-1765 (($ $) 140 (|has| |#1| (-509)))) (-3731 (($ $) 172 (|has| |#1| (-509)))) (-1814 (($ $) 148 (|has| |#1| (-509)))) (-3760 (($ (-1073) $) NIL) (($ (-1073) $ $) NIL) (($ (-1073) $ $ $) NIL) (($ (-1073) $ $ $ $) NIL) (($ (-1073) (-583 $)) NIL)) (-3312 (($ $) 199 (|has| |#1| (-509)))) (-1730 (($ $) 197 (|has| |#1| (-509)))) (-1492 (($ $) 174 (|has| |#1| (-509)))) (-1827 (($ $) 150 (|has| |#1| (-509)))) (-3719 (($ $) 170 (|has| |#1| (-509)))) (-1802 (($ $) 146 (|has| |#1| (-509)))) (-3695 (($ $) 166 (|has| |#1| (-509)))) (-1777 (($ $) 142 (|has| |#1| (-509)))) (-3710 (($ $) 177 (|has| |#1| (-509)))) (-2207 (($ $ (-517)) NIL (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) NIL (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (-2396 (($) 20 (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) CONST)) (-3362 (($ $) 228 (|has| |#1| (-509)))) (-2409 (($) 22 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))) CONST)) (-1564 (($ $) 179 (|has| |#1| (-509))) (($ $ $) 181 (|has| |#1| (-509)))) (-3452 (($ $) 226 (|has| |#1| (-509)))) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-961))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-961))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-961))) (($ $ (-1073)) NIL (|has| |#1| (-961)))) (-2037 (($ $) 230 (|has| |#1| (-509)))) (-2350 (($ $ $) 183 (|has| |#1| (-509)))) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 78)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 77)) (-1667 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 95 (|has| |#1| (-509))) (($ $ $) 42 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1654 (($ $ $) 40 (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ $) 29 (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (-1642 (($ $ $) 38 (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))) (** (($ $ $) 62 (|has| |#1| (-509))) (($ $ (-377 (-517))) 298 (|has| |#1| (-509))) (($ $ (-517)) 73 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 70 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ $ (-843)) 75 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015))))) (* (($ (-377 (-517)) $) NIL (|has| |#1| (-509))) (($ $ (-377 (-517))) NIL (|has| |#1| (-509))) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156))) (($ $ $) 36 (-3807 (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) (|has| |#1| (-1015)))) (($ (-517) $) 32 (-3807 (|has| |#1| (-21)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-703) $) NIL (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))))) (($ (-843) $) NIL (-3807 (|has| |#1| (-25)) (-12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))))))
+(((-286 |#1|) (-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1094)) (-6 (-145)) (-6 (-569)) (-6 (-1037)) (-15 -3225 ($ $)) (-15 -3509 ((-107) $)) (-15 -4081 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -2209 ((-388 (-1069 $)) (-1069 $))) (-15 -3143 ((-388 (-1069 $)) (-1069 $)))) |noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |noBranch|)) |noBranch|))) (-779)) (T -286))
+((-3225 (*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) (-3509 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-4081 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-2209 (*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) (-3143 (*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))))
+(-13 (-400 |#1|) (-10 -8 (IF (|has| |#1| (-509)) (PROGN (-6 (-29 |#1|)) (-6 (-1094)) (-6 (-145)) (-6 (-569)) (-6 (-1037)) (-15 -3225 ($ $)) (-15 -3509 ((-107) $)) (-15 -4081 ($ $ (-517))) (IF (|has| |#1| (-421)) (PROGN (-15 -2209 ((-388 (-1069 $)) (-1069 $))) (-15 -3143 ((-388 (-1069 $)) (-1069 $)))) |noBranch|) (IF (|has| |#1| (-952 (-517))) (-6 (-952 (-47))) |noBranch|)) |noBranch|)))
+((-3316 (((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)) 86) (((-51) |#2| (-109) (-265 |#2|) (-265 |#2|)) 82) (((-51) |#2| (-109) (-265 |#2|) |#2|) 84) (((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|) 85) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 78) (((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 80) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|)) 81) (((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|))) 79) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 87) (((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|)) 83)))
+(((-287 |#1| |#2|) (-10 -7 (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-509) (-558 (-493))) (-400 |#1|)) (T -287))
+((-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))) (-3316 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) (-3316 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) (-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3316 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) (-3316 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3316 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) (-3316 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))))
+(-10 -7 (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-583 (-265 |#2|)) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 |#2|))) (-15 -3316 ((-51) (-583 |#2|) (-583 (-109)) (-265 |#2|) (-583 (-265 |#2|)))) (-15 -3316 ((-51) (-265 |#2|) (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) |#2|)) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-265 |#2|))) (-15 -3316 ((-51) |#2| (-109) (-265 |#2|) (-583 |#2|))))
+((-2996 (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1056)) 45) (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517)) 46) (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1056)) 42) (((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517)) 43)) (-3002 (((-1 (-199) (-199)) (-199)) 44)))
+(((-288) (-10 -7 (-15 -3002 ((-1 (-199) (-199)) (-199))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1056))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1056))))) (T -288))
+((-2996 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-2996 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-2996 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-2996 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) (-3002 (*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
+(-10 -7 (-15 -3002 ((-1 (-199) (-199)) (-199))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-1 (-199) (-199)) (-517) (-1056))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517))) (-15 -2996 ((-1104 (-848)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-199) (-517) (-1056))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 24)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 19)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 30)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) 15)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-1373 (((-377 (-517)) $) 16)) (-2697 (($ (-1139 |#1| |#2| |#3|)) 11)) (-2077 (((-1139 |#1| |#2| |#3|) $) 12)) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 10)) (-2256 (((-787) $) 36) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 28)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) NIL)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 26)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 31)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-289 |#1| |#2| |#3|) (-13 (-1135 |#1|) (-724) (-10 -8 (-15 -2697 ($ (-1139 |#1| |#2| |#3|))) (-15 -2077 ((-1139 |#1| |#2| |#3|) $)) (-15 -1373 ((-377 (-517)) $)))) (-13 (-333) (-779)) (-1073) |#1|) (T -289))
+((-2697 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-1139 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))) (-1373 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))))
+(-13 (-1135 |#1|) (-724) (-10 -8 (-15 -2697 ($ (-1139 |#1| |#2| |#3|))) (-15 -2077 ((-1139 |#1| |#2| |#3|) $)) (-15 -1373 ((-377 (-517)) $))))
+((-3824 (((-2 (|:| -2077 (-703)) (|:| -1931 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703)) 24)) (-1867 (((-583 (-2 (|:| -1931 (-703)) (|:| |logand| |#1|))) (-388 |#1|)) 28)))
+(((-290 |#1|) (-10 -7 (-15 -3824 ((-2 (|:| -2077 (-703)) (|:| -1931 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1867 ((-583 (-2 (|:| -1931 (-703)) (|:| |logand| |#1|))) (-388 |#1|)))) (-509)) (T -290))
+((-1867 (*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1931 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) (-3824 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))))
+(-10 -7 (-15 -3824 ((-2 (|:| -2077 (-703)) (|:| -1931 |#1|) (|:| |radicand| (-583 |#1|))) (-388 |#1|) (-703))) (-15 -1867 ((-583 (-2 (|:| -1931 (-703)) (|:| |logand| |#1|))) (-388 |#1|))))
+((-1364 (((-583 |#2|) (-1069 |#4|)) 43)) (-1435 ((|#3| (-517)) 46)) (-2951 (((-1069 |#4|) (-1069 |#3|)) 30)) (-2298 (((-1069 |#4|) (-1069 |#4|) (-517)) 55)) (-3864 (((-1069 |#3|) (-1069 |#4|)) 21)) (-3688 (((-583 (-703)) (-1069 |#4|) (-583 |#2|)) 40)) (-3465 (((-1069 |#3|) (-1069 |#4|) (-583 |#2|) (-583 |#3|)) 35)))
+(((-291 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3465 ((-1069 |#3|) (-1069 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3688 ((-583 (-703)) (-1069 |#4|) (-583 |#2|))) (-15 -1364 ((-583 |#2|) (-1069 |#4|))) (-15 -3864 ((-1069 |#3|) (-1069 |#4|))) (-15 -2951 ((-1069 |#4|) (-1069 |#3|))) (-15 -2298 ((-1069 |#4|) (-1069 |#4|) (-517))) (-15 -1435 (|#3| (-517)))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|)) (T -291))
+((-1435 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5)))) (-2298 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-1069 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3864 (*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-291 *4 *5 *6 *7)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) (-3465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1069 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3465 ((-1069 |#3|) (-1069 |#4|) (-583 |#2|) (-583 |#3|))) (-15 -3688 ((-583 (-703)) (-1069 |#4|) (-583 |#2|))) (-15 -1364 ((-583 |#2|) (-1069 |#4|))) (-15 -3864 ((-1069 |#3|) (-1069 |#4|))) (-15 -2951 ((-1069 |#4|) (-1069 |#3|))) (-15 -2298 ((-1069 |#4|) (-1069 |#4|) (-517))) (-15 -1435 (|#3| (-517))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 14)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $) 18)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3466 ((|#1| $ (-517)) NIL)) (-2902 (((-517) $ (-517)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3420 (($ (-1 |#1| |#1|) $) NIL)) (-2777 (($ (-1 (-517) (-517)) $) 10)) (-3985 (((-1056) $) NIL)) (-3299 (($ $ $) NIL (|has| (-517) (-724)))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-2720 (((-517) |#1| $) NIL)) (-2396 (($) 15 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 21 (|has| |#1| (-779)))) (-1654 (($ $) 11) (($ $ $) 20)) (-1642 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL) (($ (-517) |#1|) 19)))
+(((-292 |#1|) (-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|))) (-1003)) (T -292))
+NIL
+(-13 (-21) (-650 (-517)) (-293 |#1| (-517)) (-10 -7 (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $) 27)) (-4038 (((-3 $ "failed") $ $) 19)) (-1611 (((-703) $) 28)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 32)) (-3189 ((|#1| $) 31)) (-3466 ((|#1| $ (-517)) 25)) (-2902 ((|#2| $ (-517)) 26)) (-3420 (($ (-1 |#1| |#1|) $) 22)) (-2777 (($ (-1 |#2| |#2|) $) 23)) (-3985 (((-1056) $) 9)) (-3299 (($ $ $) 21 (|has| |#2| (-724)))) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ |#1|) 33)) (-2720 ((|#2| |#1| $) 24)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1642 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ |#2| |#1|) 29)))
+(((-293 |#1| |#2|) (-1184) (-1003) (-123)) (T -293))
+((-1642 (*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))))) (-2902 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) (-2720 (*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) (-2777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) (-3299 (*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724)))))
+(-13 (-123) (-952 |t#1|) (-10 -8 (-15 -1642 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1611 ((-703) $)) (-15 -2223 ((-583 (-2 (|:| |gen| |t#1|) (|:| -2624 |t#2|))) $)) (-15 -2902 (|t#2| $ (-517))) (-15 -3466 (|t#1| $ (-517))) (-15 -2720 (|t#2| |t#1| $)) (-15 -2777 ($ (-1 |t#2| |t#2|) $)) (-15 -3420 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-724)) (-15 -3299 ($ $ $)) |noBranch|)))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-952 |#1|) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3466 ((|#1| $ (-517)) NIL)) (-2902 (((-703) $ (-517)) NIL)) (-3420 (($ (-1 |#1| |#1|) $) NIL)) (-2777 (($ (-1 (-703) (-703)) $) NIL)) (-3985 (((-1056) $) NIL)) (-3299 (($ $ $) NIL (|has| (-703) (-724)))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-2720 (((-703) |#1| $) NIL)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-703) |#1|) NIL)))
+(((-294 |#1|) (-293 |#1| (-703)) (-1003)) (T -294))
+NIL
+(-293 |#1| (-703))
+((-3534 (($ $) 52)) (-1436 (($ $ |#2| |#3| $) 14)) (-3328 (($ (-1 |#3| |#3|) $) 35)) (-4127 (((-107) $) 27)) (-4141 ((|#2| $) 29)) (-2476 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 45)) (-3266 ((|#2| $) 48)) (-1311 (((-583 |#2|) $) 38)) (-2053 (($ $ $ (-703)) 23)) (-1667 (($ $ |#2|) 42)))
+(((-295 |#1| |#2| |#3|) (-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2053 (|#1| |#1| |#1| (-703))) (-15 -1436 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1667 (|#1| |#1| |#2|))) (-296 |#2| |#3|) (-961) (-724)) (T -295))
+NIL
+(-10 -8 (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2053 (|#1| |#1| |#1| (-703))) (-15 -1436 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1667 (|#1| |#1| |#2|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 90 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 88 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 87)) (-3189 (((-517) $) 91 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 89 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 86)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 75 (|has| |#1| (-421)))) (-1436 (($ $ |#1| |#2| $) 79)) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 82)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61)) (-2349 ((|#2| $) 81)) (-3328 (($ (-1 |#2| |#2|) $) 80)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 85)) (-4141 ((|#1| $) 84)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-509)))) (-3688 ((|#2| $) 64)) (-3266 ((|#1| $) 76 (|has| |#1| (-421)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47) (($ (-377 (-517))) 57 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-1311 (((-583 |#1|) $) 83)) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 78 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-296 |#1| |#2|) (-1184) (-961) (-724)) (T -296))
+((-4127 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3328 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-1436 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) (-2053 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421)))))
+(-13 (-46 |t#1| |t#2|) (-381 |t#1|) (-10 -8 (-15 -4127 ((-107) $)) (-15 -4141 (|t#1| $)) (-15 -1311 ((-583 |t#1|) $)) (-15 -1577 ((-703) $)) (-15 -2349 (|t#2| $)) (-15 -3328 ($ (-1 |t#2| |t#2|) $)) (-15 -1436 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-156)) (-15 -2053 ($ $ $ (-703))) |noBranch|) (IF (|has| |t#1| (-509)) (-15 -2476 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -3266 (|t#1| $)) (-15 -3534 ($ $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-381 |#1|) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2484 (((-107) (-107)) NIL)) (-2411 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3483 (($ $) NIL (|has| |#1| (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3809 (($ $ (-517)) NIL)) (-4019 (((-703) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1977 (($ (-583 |#1|)) NIL)) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2568 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-297 |#1|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107))))) (-1108)) (T -297))
+((-1977 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-297 *3)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))))
+(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107)))))
+((-2909 (((-107) $) 42)) (-3250 (((-703)) 22)) (-1472 ((|#2| $) 46) (($ $ (-843)) 102)) (-1611 (((-703)) 96)) (-1967 (($ (-1153 |#2|)) 20)) (-2434 (((-107) $) 114)) (-1506 ((|#2| $) 48) (($ $ (-843)) 100)) (-3777 (((-1069 |#2|) $) NIL) (((-1069 $) $ (-843)) 93)) (-1704 (((-1069 |#2|) $) 83)) (-2729 (((-1069 |#2|) $) 80) (((-3 (-1069 |#2|) "failed") $ $) 77)) (-3600 (($ $ (-1069 |#2|)) 53)) (-3327 (((-765 (-843))) 28) (((-843)) 43)) (-3141 (((-125)) 25)) (-3688 (((-765 (-843)) $) 30) (((-843) $) 115)) (-1224 (($) 108)) (-4114 (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $)) 39)) (-1328 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1871 (((-107) $) 41)))
+(((-298 |#1| |#2|) (-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1611 ((-703))) (-15 -1328 (|#1| |#1|)) (-15 -2729 ((-3 (-1069 |#2|) "failed") |#1| |#1|)) (-15 -2729 ((-1069 |#2|) |#1|)) (-15 -1704 ((-1069 |#2|) |#1|)) (-15 -3600 (|#1| |#1| (-1069 |#2|))) (-15 -2434 ((-107) |#1|)) (-15 -1224 (|#1|)) (-15 -1472 (|#1| |#1| (-843))) (-15 -1506 (|#1| |#1| (-843))) (-15 -3777 ((-1069 |#1|) |#1| (-843))) (-15 -1472 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3688 ((-843) |#1|)) (-15 -3327 ((-843))) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3250 ((-703))) (-15 -3327 ((-765 (-843)))) (-15 -3688 ((-765 (-843)) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|)) (-15 -3141 ((-125)))) (-299 |#2|) (-333)) (T -298))
+((-3141 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3327 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3250 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-3327 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) (-1611 (*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))))
+(-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1611 ((-703))) (-15 -1328 (|#1| |#1|)) (-15 -2729 ((-3 (-1069 |#2|) "failed") |#1| |#1|)) (-15 -2729 ((-1069 |#2|) |#1|)) (-15 -1704 ((-1069 |#2|) |#1|)) (-15 -3600 (|#1| |#1| (-1069 |#2|))) (-15 -2434 ((-107) |#1|)) (-15 -1224 (|#1|)) (-15 -1472 (|#1| |#1| (-843))) (-15 -1506 (|#1| |#1| (-843))) (-15 -3777 ((-1069 |#1|) |#1| (-843))) (-15 -1472 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3688 ((-843) |#1|)) (-15 -3327 ((-843))) (-15 -3777 ((-1069 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3250 ((-703))) (-15 -3327 ((-765 (-843)))) (-15 -3688 ((-765 (-843)) |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|)) (-15 -3141 ((-125))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-2909 (((-107) $) 94)) (-3250 (((-703)) 90)) (-1472 ((|#1| $) 140) (($ $ (-843)) 137 (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 122 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-1611 (((-703)) 112 (|has| |#1| (-338)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 101)) (-3189 ((|#1| $) 100)) (-1967 (($ (-1153 |#1|)) 146)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-338)))) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-3209 (($) 109 (|has| |#1| (-338)))) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3442 (($) 124 (|has| |#1| (-338)))) (-3391 (((-107) $) 125 (|has| |#1| (-338)))) (-2378 (($ $ (-703)) 87 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) 71)) (-3972 (((-843) $) 127 (|has| |#1| (-338))) (((-765 (-843)) $) 84 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) 31)) (-2453 (($) 135 (|has| |#1| (-338)))) (-2434 (((-107) $) 134 (|has| |#1| (-338)))) (-1506 ((|#1| $) 141) (($ $ (-843)) 138 (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) 113 (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-3777 (((-1069 |#1|) $) 145) (((-1069 $) $ (-843)) 139 (|has| |#1| (-338)))) (-1549 (((-843) $) 110 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) 131 (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) 130 (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) 129 (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) 132 (|has| |#1| (-338)))) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2836 (($) 114 (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 111 (|has| |#1| (-338)))) (-3202 (((-107) $) 93)) (-3206 (((-1021) $) 10)) (-3220 (($) 133 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 121 (|has| |#1| (-338)))) (-3755 (((-388 $) $) 74)) (-3327 (((-765 (-843))) 91) (((-843)) 143)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-703) $) 126 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 85 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) 99)) (-3127 (($ $) 118 (|has| |#1| (-338))) (($ $ (-703)) 116 (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) 92) (((-843) $) 142)) (-2135 (((-1069 |#1|)) 144)) (-1766 (($) 123 (|has| |#1| (-338)))) (-1224 (($) 136 (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 148) (((-623 |#1|) (-1153 $)) 147)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 120 (|has| |#1| (-338)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-1328 (($ $) 119 (|has| |#1| (-338))) (((-3 $ "failed") $) 83 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 150) (((-1153 $) (-843)) 149)) (-3329 (((-107) $ $) 39)) (-1871 (((-107) $) 95)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-4103 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-2731 (($ $) 117 (|has| |#1| (-338))) (($ $ (-703)) 115 (|has| |#1| (-338)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64) (($ $ |#1|) 98)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-299 |#1|) (-1184) (-333)) (T -299))
+((-1753 (*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *3)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *4)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1153 *3)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) (-2135 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) (-3327 (*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) (-3777 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1069 *1)) (-4 *1 (-299 *4)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1472 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) (-1224 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2453 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-2434 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) (-3220 (*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) (-3600 (*1 *1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))) (-2729 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))))
+(-13 (-1170 |t#1|) (-952 |t#1|) (-10 -8 (-15 -1753 ((-1153 $))) (-15 -1753 ((-1153 $) (-843))) (-15 -4114 ((-1153 |t#1|) $)) (-15 -4114 ((-623 |t#1|) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|))) (-15 -3777 ((-1069 |t#1|) $)) (-15 -2135 ((-1069 |t#1|))) (-15 -3327 ((-843))) (-15 -3688 ((-843) $)) (-15 -1506 (|t#1| $)) (-15 -1472 (|t#1| $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-319)) (-15 -3777 ((-1069 $) $ (-843))) (-15 -1506 ($ $ (-843))) (-15 -1472 ($ $ (-843))) (-15 -1224 ($)) (-15 -2453 ($)) (-15 -2434 ((-107) $)) (-15 -3220 ($)) (-15 -3600 ($ $ (-1069 |t#1|))) (-15 -1704 ((-1069 |t#1|) $)) (-15 -2729 ((-1069 |t#1|) $)) (-15 -2729 ((-3 (-1069 |t#1|) "failed") $ $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-207) |has| |#1| (-338)) ((-217) . T) ((-262) . T) ((-278) . T) ((-1170 |#1|) . T) ((-333) . T) ((-372) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-338) |has| |#1| (-338)) ((-319) |has| |#1| (-338)) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-338)) ((-1112) . T) ((-1160 |#1|) . T))
+((-2750 (((-107) $ $) NIL)) (-1823 (($ (-1072) $) 88)) (-3646 (($) 76)) (-2576 (((-1021) (-1021)) 11)) (-2338 (($) 77)) (-3361 (($) 90) (($ (-286 (-632))) 96) (($ (-286 (-634))) 93) (($ (-286 (-627))) 99) (($ (-286 (-349))) 105) (($ (-286 (-517))) 102) (($ (-286 (-153 (-349)))) 108)) (-3016 (($ (-1072) $) 89)) (-2220 (($ (-583 (-787))) 79)) (-3578 (((-1158) $) 73)) (-1796 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3715 (($ (-1021)) 45)) (-3986 (((-1007) $) 25)) (-1468 (($ (-996 (-874 (-517))) $) 85) (($ (-996 (-874 (-517))) (-874 (-517)) $) 86)) (-4147 (($ (-1021)) 87)) (-2618 (($ (-1072) $) 110) (($ (-1072) $ $) 111)) (-2537 (($ (-1073) (-583 (-1073))) 75)) (-3104 (($ (-1056)) 82) (($ (-583 (-1056))) 80)) (-2256 (((-787) $) 113)) (-3071 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787)))) $) 37)) (-2341 (($ (-1056)) 182)) (-2652 (($ (-583 $)) 109)) (-1946 (($ (-1073) (-1056)) 115) (($ (-1073) (-286 (-634))) 155) (($ (-1073) (-286 (-632))) 156) (($ (-1073) (-286 (-627))) 157) (($ (-1073) (-623 (-634))) 118) (($ (-1073) (-623 (-632))) 121) (($ (-1073) (-623 (-627))) 124) (($ (-1073) (-1153 (-634))) 127) (($ (-1073) (-1153 (-632))) 130) (($ (-1073) (-1153 (-627))) 133) (($ (-1073) (-623 (-286 (-634)))) 136) (($ (-1073) (-623 (-286 (-632)))) 139) (($ (-1073) (-623 (-286 (-627)))) 142) (($ (-1073) (-1153 (-286 (-634)))) 145) (($ (-1073) (-1153 (-286 (-632)))) 148) (($ (-1073) (-1153 (-286 (-627)))) 151) (($ (-1073) (-583 (-874 (-517))) (-286 (-634))) 152) (($ (-1073) (-583 (-874 (-517))) (-286 (-632))) 153) (($ (-1073) (-583 (-874 (-517))) (-286 (-627))) 154) (($ (-1073) (-286 (-517))) 179) (($ (-1073) (-286 (-349))) 180) (($ (-1073) (-286 (-153 (-349)))) 181) (($ (-1073) (-623 (-286 (-517)))) 160) (($ (-1073) (-623 (-286 (-349)))) 163) (($ (-1073) (-623 (-286 (-153 (-349))))) 166) (($ (-1073) (-1153 (-286 (-517)))) 169) (($ (-1073) (-1153 (-286 (-349)))) 172) (($ (-1073) (-1153 (-286 (-153 (-349))))) 175) (($ (-1073) (-583 (-874 (-517))) (-286 (-517))) 176) (($ (-1073) (-583 (-874 (-517))) (-286 (-349))) 177) (($ (-1073) (-583 (-874 (-517))) (-286 (-153 (-349)))) 178)) (-1547 (((-107) $ $) NIL)))
+(((-300) (-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -1468 ($ (-996 (-874 (-517))) $)) (-15 -1468 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -1823 ($ (-1072) $)) (-15 -3016 ($ (-1072) $)) (-15 -3715 ($ (-1021))) (-15 -4147 ($ (-1021))) (-15 -3104 ($ (-1056))) (-15 -3104 ($ (-583 (-1056)))) (-15 -2341 ($ (-1056))) (-15 -3361 ($)) (-15 -3361 ($ (-286 (-632)))) (-15 -3361 ($ (-286 (-634)))) (-15 -3361 ($ (-286 (-627)))) (-15 -3361 ($ (-286 (-349)))) (-15 -3361 ($ (-286 (-517)))) (-15 -3361 ($ (-286 (-153 (-349))))) (-15 -2618 ($ (-1072) $)) (-15 -2618 ($ (-1072) $ $)) (-15 -1946 ($ (-1073) (-1056))) (-15 -1946 ($ (-1073) (-286 (-634)))) (-15 -1946 ($ (-1073) (-286 (-632)))) (-15 -1946 ($ (-1073) (-286 (-627)))) (-15 -1946 ($ (-1073) (-623 (-634)))) (-15 -1946 ($ (-1073) (-623 (-632)))) (-15 -1946 ($ (-1073) (-623 (-627)))) (-15 -1946 ($ (-1073) (-1153 (-634)))) (-15 -1946 ($ (-1073) (-1153 (-632)))) (-15 -1946 ($ (-1073) (-1153 (-627)))) (-15 -1946 ($ (-1073) (-623 (-286 (-634))))) (-15 -1946 ($ (-1073) (-623 (-286 (-632))))) (-15 -1946 ($ (-1073) (-623 (-286 (-627))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-634))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-632))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-627))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-634)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-632)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-627)))) (-15 -1946 ($ (-1073) (-286 (-517)))) (-15 -1946 ($ (-1073) (-286 (-349)))) (-15 -1946 ($ (-1073) (-286 (-153 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-517))))) (-15 -1946 ($ (-1073) (-623 (-286 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-517))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-349))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-517)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-349)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2652 ($ (-583 $))) (-15 -3646 ($)) (-15 -2338 ($)) (-15 -2220 ($ (-583 (-787)))) (-15 -2537 ($ (-1073) (-583 (-1073)))) (-15 -1796 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3071 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3578 ((-1158) $)) (-15 -3986 ((-1007) $)) (-15 -2576 ((-1021) (-1021)))))) (T -300))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) (-1468 (*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300)))) (-1468 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) (-1823 (*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-3016 (*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-3715 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-300)))) (-2341 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))) (-3361 (*1 *1) (-5 *1 (-300))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) (-3361 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2618 (*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-2618 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-634)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-632)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-627)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-517)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-349)))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-153 (-349))))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) (-1946 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))) (-3646 (*1 *1) (-5 *1 (-300))) (-2338 (*1 *1) (-5 *1 (-300))) (-2220 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))) (-2537 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-300)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))) (-3071 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-300)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300)))) (-2576 (*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -1468 ($ (-996 (-874 (-517))) $)) (-15 -1468 ($ (-996 (-874 (-517))) (-874 (-517)) $)) (-15 -1823 ($ (-1072) $)) (-15 -3016 ($ (-1072) $)) (-15 -3715 ($ (-1021))) (-15 -4147 ($ (-1021))) (-15 -3104 ($ (-1056))) (-15 -3104 ($ (-583 (-1056)))) (-15 -2341 ($ (-1056))) (-15 -3361 ($)) (-15 -3361 ($ (-286 (-632)))) (-15 -3361 ($ (-286 (-634)))) (-15 -3361 ($ (-286 (-627)))) (-15 -3361 ($ (-286 (-349)))) (-15 -3361 ($ (-286 (-517)))) (-15 -3361 ($ (-286 (-153 (-349))))) (-15 -2618 ($ (-1072) $)) (-15 -2618 ($ (-1072) $ $)) (-15 -1946 ($ (-1073) (-1056))) (-15 -1946 ($ (-1073) (-286 (-634)))) (-15 -1946 ($ (-1073) (-286 (-632)))) (-15 -1946 ($ (-1073) (-286 (-627)))) (-15 -1946 ($ (-1073) (-623 (-634)))) (-15 -1946 ($ (-1073) (-623 (-632)))) (-15 -1946 ($ (-1073) (-623 (-627)))) (-15 -1946 ($ (-1073) (-1153 (-634)))) (-15 -1946 ($ (-1073) (-1153 (-632)))) (-15 -1946 ($ (-1073) (-1153 (-627)))) (-15 -1946 ($ (-1073) (-623 (-286 (-634))))) (-15 -1946 ($ (-1073) (-623 (-286 (-632))))) (-15 -1946 ($ (-1073) (-623 (-286 (-627))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-634))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-632))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-627))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-634)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-632)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-627)))) (-15 -1946 ($ (-1073) (-286 (-517)))) (-15 -1946 ($ (-1073) (-286 (-349)))) (-15 -1946 ($ (-1073) (-286 (-153 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-517))))) (-15 -1946 ($ (-1073) (-623 (-286 (-349))))) (-15 -1946 ($ (-1073) (-623 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-517))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-349))))) (-15 -1946 ($ (-1073) (-1153 (-286 (-153 (-349)))))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-517)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-349)))) (-15 -1946 ($ (-1073) (-583 (-874 (-517))) (-286 (-153 (-349))))) (-15 -2652 ($ (-583 $))) (-15 -3646 ($)) (-15 -2338 ($)) (-15 -2220 ($ (-583 (-787)))) (-15 -2537 ($ (-1073) (-583 (-1073)))) (-15 -1796 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3071 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 $)) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| $))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| $))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787)))) $)) (-15 -3578 ((-1158) $)) (-15 -3986 ((-1007) $)) (-15 -2576 ((-1021) (-1021)))))
+((-2750 (((-107) $ $) NIL)) (-1474 (((-107) $) 11)) (-1701 (($ |#1|) 8)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1711 (($ |#1|) 9)) (-2256 (((-787) $) 17)) (-2921 ((|#1| $) 12)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 19)))
+(((-301 |#1|) (-13 (-779) (-10 -8 (-15 -1701 ($ |#1|)) (-15 -1711 ($ |#1|)) (-15 -1474 ((-107) $)) (-15 -2921 (|#1| $)))) (-779)) (T -301))
+((-1701 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1711 (*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))) (-2921 (*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))))
+(-13 (-779) (-10 -8 (-15 -1701 ($ |#1|)) (-15 -1711 ($ |#1|)) (-15 -1474 ((-107) $)) (-15 -2921 (|#1| $))))
+((-2525 (((-300) (-1073) (-874 (-517))) 22)) (-2180 (((-300) (-1073) (-874 (-517))) 26)) (-3486 (((-300) (-1073) (-996 (-874 (-517))) (-996 (-874 (-517)))) 25) (((-300) (-1073) (-874 (-517)) (-874 (-517))) 23)) (-3684 (((-300) (-1073) (-874 (-517))) 30)))
+(((-302) (-10 -7 (-15 -2525 ((-300) (-1073) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-874 (-517)) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -2180 ((-300) (-1073) (-874 (-517)))) (-15 -3684 ((-300) (-1073) (-874 (-517)))))) (T -302))
+((-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) (-3486 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) (-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(-10 -7 (-15 -2525 ((-300) (-1073) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-874 (-517)) (-874 (-517)))) (-15 -3486 ((-300) (-1073) (-996 (-874 (-517))) (-996 (-874 (-517))))) (-15 -2180 ((-300) (-1073) (-874 (-517)))) (-15 -3684 ((-300) (-1073) (-874 (-517)))))
+((-1893 (((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)) 31)))
+(((-303 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-333) (-1130 |#5|) (-1130 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -303))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1130 *9)) (-4 *11 (-1130 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))))
+(-10 -7 (-15 -1893 ((-306 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-306 |#1| |#2| |#3| |#4|))))
+((-1470 (((-107) $) 14)))
+(((-304 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1470 ((-107) |#1|))) (-305 |#2| |#3| |#4| |#5|) (-333) (-1130 |#2|) (-1130 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -304))
+NIL
+(-10 -8 (-15 -1470 ((-107) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3225 (($ $) 26)) (-1470 (((-107) $) 25)) (-3985 (((-1056) $) 9)) (-4014 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 32)) (-3206 (((-1021) $) 10)) (-3220 (((-3 |#4| "failed") $) 24)) (-1966 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-517)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2132 (((-2 (|:| -3402 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20)))
+(((-305 |#1| |#2| |#3| |#4|) (-1184) (-333) (-1130 |t#1|) (-1130 (-377 |t#2|)) (-312 |t#1| |t#2| |t#3|)) (T -305))
+((-4014 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) (-1966 (*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))) (-1966 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) (-1966 (*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) (-1966 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1130 *2)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3402 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) (-3225 (*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))) (-3220 (*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) (-1966 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -4014 ((-383 |t#2| (-377 |t#2|) |t#3| |t#4|) $)) (-15 -1966 ($ (-383 |t#2| (-377 |t#2|) |t#3| |t#4|))) (-15 -1966 ($ |t#4|)) (-15 -1966 ($ |t#1| |t#1|)) (-15 -1966 ($ |t#1| |t#1| (-517))) (-15 -2132 ((-2 (|:| -3402 (-383 |t#2| (-377 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3225 ($ $)) (-15 -1470 ((-107) $)) (-15 -3220 ((-3 |t#4| "failed") $)) (-15 -1966 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ $) 32)) (-1470 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3651 (((-1153 |#4|) $) 124)) (-4014 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 30)) (-3206 (((-1021) $) NIL)) (-3220 (((-3 |#4| "failed") $) 35)) (-2414 (((-1153 |#4|) $) 117)) (-1966 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 40) (($ |#4|) 42) (($ |#1| |#1|) 44) (($ |#1| |#1| (-517)) 46) (($ |#4| |#2| |#2| |#2| |#1|) 48)) (-2132 (((-2 (|:| -3402 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 38)) (-2256 (((-787) $) 17)) (-2396 (($) 14 T CONST)) (-1547 (((-107) $ $) 20)) (-1654 (($ $) 27) (($ $ $) NIL)) (-1642 (($ $ $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 23)))
+(((-306 |#1| |#2| |#3| |#4|) (-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2414 ((-1153 |#4|) $)) (-15 -3651 ((-1153 |#4|) $)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -306))
+((-2414 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))) (-3651 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
+(-13 (-305 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2414 ((-1153 |#4|) $)) (-15 -3651 ((-1153 |#4|) $))))
+((-2051 (($ $ (-1073) |#2|) NIL) (($ $ (-583 (-1073)) (-583 |#2|)) 18) (($ $ (-583 (-265 |#2|))) 14) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-1449 (($ $ |#2|) 11)))
+(((-307 |#1| |#2|) (-10 -8 (-15 -1449 (|#1| |#1| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-1073) |#2|))) (-308 |#2|) (-1003)) (T -307))
+NIL
+(-10 -8 (-15 -1449 (|#1| |#1| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-1073) |#2|)))
+((-1893 (($ (-1 |#1| |#1|) $) 6)) (-2051 (($ $ (-1073) |#1|) 17 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 16 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-583 (-265 |#1|))) 15 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 14 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-280 |#1|))) (($ $ (-583 |#1|) (-583 |#1|)) 12 (|has| |#1| (-280 |#1|)))) (-1449 (($ $ |#1|) 11 (|has| |#1| (-258 |#1| |#1|)))))
+(((-308 |#1|) (-1184) (-1003)) (T -308))
+((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003)))))
+(-13 (-10 -8 (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-258 |t#1| |t#1|)) (-6 (-258 |t#1| $)) |noBranch|) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |noBranch|) (IF (|has| |t#1| (-478 (-1073) |t#1|)) (-6 (-478 (-1073) |t#1|)) |noBranch|)))
+(((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-1073)) $) NIL)) (-1636 (((-107)) 89) (((-107) (-107)) 90)) (-3726 (((-583 (-556 $)) $) NIL)) (-1865 (($ $) NIL)) (-1721 (($ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-3766 (($ $) NIL)) (-1839 (($ $) NIL)) (-1701 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-286 |#3|)) 69) (((-3 $ "failed") (-1073)) 95) (((-3 $ "failed") (-286 (-517))) 56 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-377 (-874 (-517)))) 62 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-874 (-517))) 57 (|has| |#3| (-952 (-517)))) (((-3 $ "failed") (-286 (-349))) 87 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-377 (-874 (-349)))) 80 (|has| |#3| (-952 (-349)))) (((-3 $ "failed") (-874 (-349))) 75 (|has| |#3| (-952 (-349))))) (-3189 (((-556 $) $) NIL) ((|#3| $) NIL) (($ (-286 |#3|)) 70) (($ (-1073)) 96) (($ (-286 (-517))) 58 (|has| |#3| (-952 (-517)))) (($ (-377 (-874 (-517)))) 63 (|has| |#3| (-952 (-517)))) (($ (-874 (-517))) 59 (|has| |#3| (-952 (-517)))) (($ (-286 (-349))) 88 (|has| |#3| (-952 (-349)))) (($ (-377 (-874 (-349)))) 81 (|has| |#3| (-952 (-349)))) (($ (-874 (-349))) 77 (|has| |#3| (-952 (-349))))) (-3621 (((-3 $ "failed") $) NIL)) (-2645 (($) 10)) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) NIL)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1607 (((-1069 $) (-556 $)) NIL (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) NIL)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-3720 (($ $) 92)) (-1867 (($ $) NIL)) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) NIL)) (-1851 (($ (-109) $) 91) (($ (-109) (-583 $)) NIL)) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) NIL)) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-2624 (($ $) NIL)) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1630 (($ $) NIL) (($ $ $) NIL)) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL)) (-2135 (($ $) NIL (|has| $ (-961)))) (-1853 (($ $) NIL)) (-1711 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-556 $)) NIL) (($ |#3|) NIL) (($ (-517)) NIL) (((-286 |#3|) $) 94)) (-2961 (((-703)) NIL)) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-4074 (((-107) (-109)) NIL)) (-1788 (($ $) NIL)) (-1765 (($ $) NIL)) (-1777 (($ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 93 T CONST)) (-2409 (($) 22 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-309 |#1| |#2| |#3|) (-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1073)) (-10 -8 (-15 -3189 ($ (-286 |#3|))) (-15 -1772 ((-3 $ "failed") (-286 |#3|))) (-15 -3189 ($ (-1073))) (-15 -1772 ((-3 $ "failed") (-1073))) (-15 -2256 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3189 ($ (-286 (-517)))) (-15 -1772 ((-3 $ "failed") (-286 (-517)))) (-15 -3189 ($ (-377 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3189 ($ (-874 (-517)))) (-15 -1772 ((-3 $ "failed") (-874 (-517))))) |noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3189 ($ (-286 (-349)))) (-15 -1772 ((-3 $ "failed") (-286 (-349)))) (-15 -3189 ($ (-377 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3189 ($ (-874 (-349)))) (-15 -1772 ((-3 $ "failed") (-874 (-349))))) |noBranch|) (-15 -3710 ($ $)) (-15 -3766 ($ $)) (-15 -2624 ($ $)) (-15 -1867 ($ $)) (-15 -3720 ($ $)) (-15 -1701 ($ $)) (-15 -1711 ($ $)) (-15 -1721 ($ $)) (-15 -1765 ($ $)) (-15 -1777 ($ $)) (-15 -1788 ($ $)) (-15 -1839 ($ $)) (-15 -1853 ($ $)) (-15 -1865 ($ $)) (-15 -2645 ($)) (-15 -1364 ((-583 (-1073)) $)) (-15 -1636 ((-107))) (-15 -1636 ((-107) (-107))))) (-583 (-1073)) (-583 (-1073)) (-357)) (T -309))
+((-3189 (*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-3710 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-2624 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1867 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-3720 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1701 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1711 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1721 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1765 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1777 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1788 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1839 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1853 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1865 (*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-2645 (*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) (-1636 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) (-1636 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))))
+(-13 (-273) (-37 |#3|) (-952 |#3|) (-822 (-1073)) (-10 -8 (-15 -3189 ($ (-286 |#3|))) (-15 -1772 ((-3 $ "failed") (-286 |#3|))) (-15 -3189 ($ (-1073))) (-15 -1772 ((-3 $ "failed") (-1073))) (-15 -2256 ((-286 |#3|) $)) (IF (|has| |#3| (-952 (-517))) (PROGN (-15 -3189 ($ (-286 (-517)))) (-15 -1772 ((-3 $ "failed") (-286 (-517)))) (-15 -3189 ($ (-377 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-517))))) (-15 -3189 ($ (-874 (-517)))) (-15 -1772 ((-3 $ "failed") (-874 (-517))))) |noBranch|) (IF (|has| |#3| (-952 (-349))) (PROGN (-15 -3189 ($ (-286 (-349)))) (-15 -1772 ((-3 $ "failed") (-286 (-349)))) (-15 -3189 ($ (-377 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3189 ($ (-874 (-349)))) (-15 -1772 ((-3 $ "failed") (-874 (-349))))) |noBranch|) (-15 -3710 ($ $)) (-15 -3766 ($ $)) (-15 -2624 ($ $)) (-15 -1867 ($ $)) (-15 -3720 ($ $)) (-15 -1701 ($ $)) (-15 -1711 ($ $)) (-15 -1721 ($ $)) (-15 -1765 ($ $)) (-15 -1777 ($ $)) (-15 -1788 ($ $)) (-15 -1839 ($ $)) (-15 -1853 ($ $)) (-15 -1865 ($ $)) (-15 -2645 ($)) (-15 -1364 ((-583 (-1073)) $)) (-15 -1636 ((-107))) (-15 -1636 ((-107) (-107)))))
+((-1893 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-310 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|))) (-1112) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-1112) (-1130 |#5|) (-1130 (-377 |#6|)) (-312 |#5| |#6| |#7|)) (T -310))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1112)) (-4 *8 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *9 (-1130 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1130 (-377 *9))))))
+(-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2039 (((-2 (|:| |num| (-1153 |#3|)) (|:| |den| |#3|)) $) 37)) (-1967 (($ (-1153 (-377 |#3|)) (-1153 $)) NIL) (($ (-1153 (-377 |#3|))) NIL) (($ (-1153 |#3|) |#3|) 158)) (-3843 (((-1153 $) (-1153 $)) 142)) (-3407 (((-583 (-583 |#2|))) 115)) (-3384 (((-107) |#2| |#2|) 71)) (-3534 (($ $) 136)) (-1790 (((-703)) 30)) (-1870 (((-1153 $) (-1153 $)) 195)) (-2043 (((-583 (-874 |#2|)) (-1073)) 108)) (-2491 (((-107) $) 155)) (-3291 (((-107) $) 24) (((-107) $ |#2|) 28) (((-107) $ |#3|) 199)) (-3854 (((-3 |#3| "failed")) 48)) (-1786 (((-703)) 167)) (-1449 ((|#2| $ |#2| |#2|) 129)) (-3259 (((-3 |#3| "failed")) 66)) (-3127 (($ $ (-1 (-377 |#3|) (-377 |#3|)) (-703)) NIL) (($ $ (-1 (-377 |#3|) (-377 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 203) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-3696 (((-1153 $) (-1153 $)) 148)) (-3148 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 64)) (-4065 (((-107)) 32)))
+(((-311 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3407 ((-583 (-583 |#2|)))) (-15 -2043 ((-583 (-874 |#2|)) (-1073))) (-15 -3148 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3854 ((-3 |#3| "failed"))) (-15 -3259 ((-3 |#3| "failed"))) (-15 -1449 (|#2| |#1| |#2| |#2|)) (-15 -3534 (|#1| |#1|)) (-15 -1967 (|#1| (-1153 |#3|) |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3291 ((-107) |#1| |#3|)) (-15 -3291 ((-107) |#1| |#2|)) (-15 -2039 ((-2 (|:| |num| (-1153 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3843 ((-1153 |#1|) (-1153 |#1|))) (-15 -1870 ((-1153 |#1|) (-1153 |#1|))) (-15 -3696 ((-1153 |#1|) (-1153 |#1|))) (-15 -3291 ((-107) |#1|)) (-15 -2491 ((-107) |#1|)) (-15 -3384 ((-107) |#2| |#2|)) (-15 -4065 ((-107))) (-15 -1786 ((-703))) (-15 -1790 ((-703))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -1967 (|#1| (-1153 (-377 |#3|)))) (-15 -1967 (|#1| (-1153 (-377 |#3|)) (-1153 |#1|)))) (-312 |#2| |#3| |#4|) (-1112) (-1130 |#2|) (-1130 (-377 |#3|))) (T -311))
+((-1790 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-1786 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-4065 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) (-3384 (*1 *2 *3 *3) (-12 (-4 *3 (-1112)) (-4 *5 (-1130 *3)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) (-3259 (*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-3854 (*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) (-3407 (*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))))
+(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3407 ((-583 (-583 |#2|)))) (-15 -2043 ((-583 (-874 |#2|)) (-1073))) (-15 -3148 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3854 ((-3 |#3| "failed"))) (-15 -3259 ((-3 |#3| "failed"))) (-15 -1449 (|#2| |#1| |#2| |#2|)) (-15 -3534 (|#1| |#1|)) (-15 -1967 (|#1| (-1153 |#3|) |#3|)) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3291 ((-107) |#1| |#3|)) (-15 -3291 ((-107) |#1| |#2|)) (-15 -2039 ((-2 (|:| |num| (-1153 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3843 ((-1153 |#1|) (-1153 |#1|))) (-15 -1870 ((-1153 |#1|) (-1153 |#1|))) (-15 -3696 ((-1153 |#1|) (-1153 |#1|))) (-15 -3291 ((-107) |#1|)) (-15 -2491 ((-107) |#1|)) (-15 -3384 ((-107) |#2| |#2|)) (-15 -4065 ((-107))) (-15 -1786 ((-703))) (-15 -1790 ((-703))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)))) (-15 -3127 (|#1| |#1| (-1 (-377 |#3|) (-377 |#3|)) (-703))) (-15 -1967 (|#1| (-1153 (-377 |#3|)))) (-15 -1967 (|#1| (-1153 (-377 |#3|)) (-1153 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2039 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 196)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 93 (|has| (-377 |#2|) (-333)))) (-1213 (($ $) 94 (|has| (-377 |#2|) (-333)))) (-2454 (((-107) $) 96 (|has| (-377 |#2|) (-333)))) (-3055 (((-623 (-377 |#2|)) (-1153 $)) 46) (((-623 (-377 |#2|))) 61)) (-1472 (((-377 |#2|) $) 52)) (-1926 (((-1082 (-843) (-703)) (-517)) 147 (|has| (-377 |#2|) (-319)))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 113 (|has| (-377 |#2|) (-333)))) (-2759 (((-388 $) $) 114 (|has| (-377 |#2|) (-333)))) (-1707 (((-107) $ $) 104 (|has| (-377 |#2|) (-333)))) (-1611 (((-703)) 87 (|has| (-377 |#2|) (-338)))) (-2752 (((-107)) 213)) (-1639 (((-107) |#1|) 212) (((-107) |#2|) 211)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 169 (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) 166)) (-3189 (((-517) $) 170 (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) 168 (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) 165)) (-1967 (($ (-1153 (-377 |#2|)) (-1153 $)) 48) (($ (-1153 (-377 |#2|))) 64) (($ (-1153 |#2|) |#2|) 189)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-377 |#2|) (-319)))) (-2518 (($ $ $) 108 (|has| (-377 |#2|) (-333)))) (-2410 (((-623 (-377 |#2|)) $ (-1153 $)) 53) (((-623 (-377 |#2|)) $) 59)) (-3355 (((-623 (-517)) (-623 $)) 164 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 163 (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-377 |#2|))) (|:| |vec| (-1153 (-377 |#2|)))) (-623 $) (-1153 $)) 162) (((-623 (-377 |#2|)) (-623 $)) 161)) (-3843 (((-1153 $) (-1153 $)) 201)) (-3225 (($ |#3|) 158) (((-3 $ "failed") (-377 |#3|)) 155 (|has| (-377 |#2|) (-333)))) (-3621 (((-3 $ "failed") $) 34)) (-3407 (((-583 (-583 |#1|))) 182 (|has| |#1| (-338)))) (-3384 (((-107) |#1| |#1|) 217)) (-2261 (((-843)) 54)) (-3209 (($) 90 (|has| (-377 |#2|) (-338)))) (-2866 (((-107)) 210)) (-2666 (((-107) |#1|) 209) (((-107) |#2|) 208)) (-2497 (($ $ $) 107 (|has| (-377 |#2|) (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 102 (|has| (-377 |#2|) (-333)))) (-3534 (($ $) 188)) (-3442 (($) 149 (|has| (-377 |#2|) (-319)))) (-3391 (((-107) $) 150 (|has| (-377 |#2|) (-319)))) (-2378 (($ $ (-703)) 141 (|has| (-377 |#2|) (-319))) (($ $) 140 (|has| (-377 |#2|) (-319)))) (-3849 (((-107) $) 115 (|has| (-377 |#2|) (-333)))) (-3972 (((-843) $) 152 (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) 138 (|has| (-377 |#2|) (-319)))) (-3848 (((-107) $) 31)) (-1790 (((-703)) 220)) (-1870 (((-1153 $) (-1153 $)) 202)) (-1506 (((-377 |#2|) $) 51)) (-2043 (((-583 (-874 |#1|)) (-1073)) 183 (|has| |#1| (-333)))) (-1319 (((-3 $ "failed") $) 142 (|has| (-377 |#2|) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| (-377 |#2|) (-333)))) (-3777 ((|#3| $) 44 (|has| (-377 |#2|) (-333)))) (-1549 (((-843) $) 89 (|has| (-377 |#2|) (-338)))) (-3216 ((|#3| $) 156)) (-1365 (($ (-583 $)) 100 (|has| (-377 |#2|) (-333))) (($ $ $) 99 (|has| (-377 |#2|) (-333)))) (-3985 (((-1056) $) 9)) (-1909 (((-623 (-377 |#2|))) 197)) (-2041 (((-623 (-377 |#2|))) 199)) (-4118 (($ $) 116 (|has| (-377 |#2|) (-333)))) (-3454 (($ (-1153 |#2|) |#2|) 194)) (-3580 (((-623 (-377 |#2|))) 198)) (-1872 (((-623 (-377 |#2|))) 200)) (-1920 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1784 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 195)) (-1924 (((-1153 $)) 206)) (-2216 (((-1153 $)) 207)) (-2491 (((-107) $) 205)) (-3291 (((-107) $) 204) (((-107) $ |#1|) 192) (((-107) $ |#2|) 191)) (-2836 (($) 143 (|has| (-377 |#2|) (-319)) CONST)) (-3448 (($ (-843)) 88 (|has| (-377 |#2|) (-338)))) (-3854 (((-3 |#2| "failed")) 185)) (-3206 (((-1021) $) 10)) (-1786 (((-703)) 219)) (-3220 (($) 160)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 101 (|has| (-377 |#2|) (-333)))) (-1401 (($ (-583 $)) 98 (|has| (-377 |#2|) (-333))) (($ $ $) 97 (|has| (-377 |#2|) (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 146 (|has| (-377 |#2|) (-319)))) (-3755 (((-388 $) $) 112 (|has| (-377 |#2|) (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 109 (|has| (-377 |#2|) (-333)))) (-2476 (((-3 $ "failed") $ $) 92 (|has| (-377 |#2|) (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| (-377 |#2|) (-333)))) (-3146 (((-703) $) 105 (|has| (-377 |#2|) (-333)))) (-1449 ((|#1| $ |#1| |#1|) 187)) (-3259 (((-3 |#2| "failed")) 186)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106 (|has| (-377 |#2|) (-333)))) (-3010 (((-377 |#2|) (-1153 $)) 47) (((-377 |#2|)) 60)) (-1620 (((-703) $) 151 (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) 139 (|has| (-377 |#2|) (-319)))) (-3127 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 123 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 122 (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-583 (-1073)) (-583 (-703))) 130 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073) (-703)) 131 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1073))) 132 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073)) 133 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 135 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 137 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2970 (((-623 (-377 |#2|)) (-1153 $) (-1 (-377 |#2|) (-377 |#2|))) 154 (|has| (-377 |#2|) (-333)))) (-2135 ((|#3|) 159)) (-1766 (($) 148 (|has| (-377 |#2|) (-319)))) (-4114 (((-1153 (-377 |#2|)) $ (-1153 $)) 50) (((-623 (-377 |#2|)) (-1153 $) (-1153 $)) 49) (((-1153 (-377 |#2|)) $) 66) (((-623 (-377 |#2|)) (-1153 $)) 65)) (-3645 (((-1153 (-377 |#2|)) $) 63) (($ (-1153 (-377 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 145 (|has| (-377 |#2|) (-319)))) (-3696 (((-1153 $) (-1153 $)) 203)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 |#2|)) 37) (($ (-377 (-517))) 86 (-3807 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-952 (-377 (-517)))))) (($ $) 91 (|has| (-377 |#2|) (-333)))) (-1328 (($ $) 144 (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) 43 (|has| (-377 |#2|) (-132)))) (-3669 ((|#3| $) 45)) (-2961 (((-703)) 29)) (-2025 (((-107)) 216)) (-2992 (((-107) |#1|) 215) (((-107) |#2|) 214)) (-1753 (((-1153 $)) 67)) (-3329 (((-107) $ $) 95 (|has| (-377 |#2|) (-333)))) (-3148 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-4065 (((-107)) 218)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| (-377 |#2|) (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) 125 (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) 124 (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1073)) (-583 (-703))) 126 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073) (-703)) 127 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-583 (-1073))) 128 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-1073)) 129 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) (-4035 (|has| (-377 |#2|) (-822 (-1073))) (|has| (-377 |#2|) (-333))))) (($ $ (-703)) 134 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) 136 (-3807 (-4035 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-207))) (-4035 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 121 (|has| (-377 |#2|) (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 |#2|)) 39) (($ (-377 |#2|) $) 38) (($ (-377 (-517)) $) 120 (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) 119 (|has| (-377 |#2|) (-333)))))
+(((-312 |#1| |#2| |#3|) (-1184) (-1112) (-1130 |t#1|) (-1130 (-377 |t#2|))) (T -312))
+((-1790 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))) (-1786 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))) (-4065 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3384 (*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2025 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2992 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2992 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-2752 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-1639 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-1639 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-2866 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2666 (*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-2666 (*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-2216 (*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))) (-1924 (*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))) (-2491 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-3843 (*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-1872 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2041 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-3580 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-1909 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))) (-1784 (*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))) (-3454 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))) (-1920 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))) (-3291 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) (-3291 (*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) (-1449 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) (-3259 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))) (-3854 (*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))) (-3148 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-1112)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4))))) (-3407 (*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
+(-13 (-657 (-377 |t#2|) |t#3|) (-10 -8 (-15 -1790 ((-703))) (-15 -1786 ((-703))) (-15 -4065 ((-107))) (-15 -3384 ((-107) |t#1| |t#1|)) (-15 -2025 ((-107))) (-15 -2992 ((-107) |t#1|)) (-15 -2992 ((-107) |t#2|)) (-15 -2752 ((-107))) (-15 -1639 ((-107) |t#1|)) (-15 -1639 ((-107) |t#2|)) (-15 -2866 ((-107))) (-15 -2666 ((-107) |t#1|)) (-15 -2666 ((-107) |t#2|)) (-15 -2216 ((-1153 $))) (-15 -1924 ((-1153 $))) (-15 -2491 ((-107) $)) (-15 -3291 ((-107) $)) (-15 -3696 ((-1153 $) (-1153 $))) (-15 -1870 ((-1153 $) (-1153 $))) (-15 -3843 ((-1153 $) (-1153 $))) (-15 -1872 ((-623 (-377 |t#2|)))) (-15 -2041 ((-623 (-377 |t#2|)))) (-15 -3580 ((-623 (-377 |t#2|)))) (-15 -1909 ((-623 (-377 |t#2|)))) (-15 -2039 ((-2 (|:| |num| (-1153 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1967 ($ (-1153 |t#2|) |t#2|)) (-15 -1784 ((-2 (|:| |num| (-1153 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3454 ($ (-1153 |t#2|) |t#2|)) (-15 -1920 ((-2 (|:| |num| (-623 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3291 ((-107) $ |t#1|)) (-15 -3291 ((-107) $ |t#2|)) (-15 -3127 ($ $ (-1 |t#2| |t#2|))) (-15 -1967 ($ (-1153 |t#2|) |t#2|)) (-15 -3534 ($ $)) (-15 -1449 (|t#1| $ |t#1| |t#1|)) (-15 -3259 ((-3 |t#2| "failed"))) (-15 -3854 ((-3 |t#2| "failed"))) (-15 -3148 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-333)) (-15 -2043 ((-583 (-874 |t#1|)) (-1073))) |noBranch|) (IF (|has| |t#1| (-338)) (-15 -3407 ((-583 (-583 |t#1|)))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-37 (-377 |#2|)) . T) ((-37 $) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-106 (-377 |#2|) (-377 |#2|)) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-132))) ((-134) |has| (-377 |#2|) (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#3|) . T) ((-205 (-377 |#2|)) |has| (-377 |#2|) (-333)) ((-207) -3807 (|has| (-377 |#2|) (-319)) (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333)))) ((-217) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-262) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-278) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-333) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-372) |has| (-377 |#2|) (-319)) ((-338) -3807 (|has| (-377 |#2|) (-338)) (|has| (-377 |#2|) (-319))) ((-319) |has| (-377 |#2|) (-319)) ((-340 (-377 |#2|) |#3|) . T) ((-379 (-377 |#2|) |#3|) . T) ((-347 (-377 |#2|)) . T) ((-381 (-377 |#2|)) . T) ((-421) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-509) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-585 (-377 |#2|)) . T) ((-585 $) . T) ((-579 (-377 |#2|)) . T) ((-579 (-517)) |has| (-377 |#2|) (-579 (-517))) ((-650 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-650 (-377 |#2|)) . T) ((-650 $) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-657 (-377 |#2|) |#3|) . T) ((-659) . T) ((-822 (-1073)) -12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073)))) ((-842) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-952 (-377 (-517))) |has| (-377 |#2|) (-952 (-377 (-517)))) ((-952 (-377 |#2|)) . T) ((-952 (-517)) |has| (-377 |#2|) (-952 (-517))) ((-967 (-377 (-517))) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))) ((-967 (-377 |#2|)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| (-377 |#2|) (-319)) ((-1112) -3807 (|has| (-377 |#2|) (-319)) (|has| (-377 |#2|) (-333))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-832 |#1|) "failed") $) NIL)) (-3189 (((-832 |#1|) $) NIL)) (-1967 (($ (-1153 (-832 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-832 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-832 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-832 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-1506 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-832 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-1704 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-2729 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1069 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-3600 (($ $ (-1069 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3978 (((-879 (-1021))) NIL)) (-3220 (($) NIL (|has| (-832 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-832 |#1|))) NIL)) (-1766 (($) NIL (|has| (-832 |#1|) (-338)))) (-1224 (($) NIL (|has| (-832 |#1|) (-338)))) (-4114 (((-1153 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
+(((-313 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -3978 ((-879 (-1021)))))) (-843) (-843)) (T -313))
+((-3978 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -3978 ((-879 (-1021))))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 46)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 43 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 113)) (-3189 ((|#1| $) 84)) (-1967 (($ (-1153 |#1|)) 102)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 93 (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) 96 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 128 (|has| |#1| (-338)))) (-3391 (((-107) $) 49 (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) 47 (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) 130 (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) 88) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) 138 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 145)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 70 (|has| |#1| (-338)))) (-3202 (((-107) $) 116)) (-3206 (((-1021) $) NIL)) (-3978 (((-879 (-1021))) 44)) (-3220 (($) 126 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 91 (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) 67) (((-843)) 68)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) 129 (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) 123 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) 94)) (-1766 (($) 127 (|has| |#1| (-338)))) (-1224 (($) 135 (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 59) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) 141) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 74)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 137)) (-1753 (((-1153 $)) 115) (((-1153 $) (-843)) 72)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 32 T CONST)) (-2409 (($) 19 T CONST)) (-4103 (($ $) 80 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) 48)) (-1667 (($ $ $) 143) (($ $ |#1|) 144)) (-1654 (($ $) 125) (($ $ $) NIL)) (-1642 (($ $ $) 61)) (** (($ $ (-843)) 147) (($ $ (-703)) 148) (($ $ (-517)) 146)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 75) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 142)))
+(((-314 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021)))))) (-319) (-1069 |#1|)) (T -314))
+((-3978 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1069 *3)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021))))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) NIL) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3978 (((-879 (-1021))) NIL)) (-3220 (($) NIL (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-315 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021)))))) (-319) (-843)) (T -315))
+((-3978 (*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -3978 ((-879 (-1021))))))
+((-2987 (((-703) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) 40)) (-4004 (((-879 (-1021)) (-1069 |#1|)) 84)) (-2706 (((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) (-1069 |#1|)) 77)) (-3909 (((-623 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) 85)) (-3584 (((-3 (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) "failed") (-843)) 10)) (-3987 (((-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) (-843)) 15)))
+(((-316 |#1|) (-10 -7 (-15 -4004 ((-879 (-1021)) (-1069 |#1|))) (-15 -2706 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) (-1069 |#1|))) (-15 -3909 ((-623 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -2987 ((-703) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3584 ((-3 (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) "failed") (-843))) (-15 -3987 ((-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) (-843)))) (-319)) (T -316))
+((-3987 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1069 *4) (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-3584 (*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4)))))
+(-10 -7 (-15 -4004 ((-879 (-1021)) (-1069 |#1|))) (-15 -2706 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) (-1069 |#1|))) (-15 -3909 ((-623 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -2987 ((-703) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3584 ((-3 (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) "failed") (-843))) (-15 -3987 ((-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) (-843))))
+((-2256 ((|#1| |#3|) 84) ((|#3| |#1|) 68)))
+(((-317 |#1| |#2| |#3|) (-10 -7 (-15 -2256 (|#3| |#1|)) (-15 -2256 (|#1| |#3|))) (-299 |#2|) (-319) (-299 |#2|)) (T -317))
+((-2256 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) (-2256 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))))
+(-10 -7 (-15 -2256 (|#3| |#1|)) (-15 -2256 (|#1| |#3|)))
+((-3391 (((-107) $) 50)) (-3972 (((-765 (-843)) $) 21) (((-843) $) 51)) (-1319 (((-3 $ "failed") $) 16)) (-2836 (($) 9)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 91)) (-1620 (((-3 (-703) "failed") $ $) 70) (((-703) $) 59)) (-3127 (($ $ (-703)) NIL) (($ $) 8)) (-1766 (($) 44)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 33)) (-1328 (((-3 $ "failed") $) 39) (($ $) 38)))
+(((-318 |#1|) (-10 -8 (-15 -3972 ((-843) |#1|)) (-15 -1620 ((-703) |#1|)) (-15 -3391 ((-107) |#1|)) (-15 -1766 (|#1|)) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -1328 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1620 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3972 ((-765 (-843)) |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)))) (-319)) (T -318))
+NIL
+(-10 -8 (-15 -3972 ((-843) |#1|)) (-15 -1620 ((-703) |#1|)) (-15 -3391 ((-107) |#1|)) (-15 -1766 (|#1|)) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -1328 (|#1| |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1620 ((-3 (-703) "failed") |#1| |#1|)) (-15 -3972 ((-765 (-843)) |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1926 (((-1082 (-843) (-703)) (-517)) 93)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-1611 (((-703)) 103)) (-3092 (($) 17 T CONST)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-3209 (($) 106)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3442 (($) 91)) (-3391 (((-107) $) 90)) (-2378 (($ $) 79) (($ $ (-703)) 78)) (-3849 (((-107) $) 71)) (-3972 (((-765 (-843)) $) 81) (((-843) $) 88)) (-3848 (((-107) $) 31)) (-1319 (((-3 $ "failed") $) 102)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1549 (((-843) $) 105)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2836 (($) 101 T CONST)) (-3448 (($ (-843)) 104)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 94)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-3 (-703) "failed") $ $) 80) (((-703) $) 89)) (-3127 (($ $ (-703)) 99) (($ $) 97)) (-1766 (($) 92)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 95)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1328 (((-3 $ "failed") $) 82) (($ $) 96)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-703)) 100) (($ $) 98)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-319) (-1184)) (T -319))
+((-1328 (*1 *1 *1) (-4 *1 (-319))) (-3870 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1153 *1)))) (-1226 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))))) (-1926 (*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1082 (-843) (-703))))) (-1766 (*1 *1) (-4 *1 (-319))) (-3442 (*1 *1) (-4 *1 (-319))) (-3391 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) (-2174 (*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-372) (-338) (-1049) (-207) (-10 -8 (-15 -1328 ($ $)) (-15 -3870 ((-3 (-1153 $) "failed") (-623 $))) (-15 -1226 ((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517)))))) (-15 -1926 ((-1082 (-843) (-703)) (-517))) (-15 -1766 ($)) (-15 -3442 ($)) (-15 -3391 ((-107) $)) (-15 -1620 ((-703) $)) (-15 -3972 ((-843) $)) (-15 -2174 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-207) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) . T) ((-338) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) . T) ((-1112) . T))
+((-4140 (((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|) 51)) (-2216 (((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 49)))
+(((-320 |#1| |#2| |#3|) (-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|))) (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $)))) (-1130 |#1|) (-379 |#1| |#2|)) (T -320))
+((-4140 (*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2216 (*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-2987 (((-703)) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-832 |#1|) "failed") $) NIL)) (-3189 (((-832 |#1|) $) NIL)) (-1967 (($ (-1153 (-832 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-832 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-832 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-832 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-1506 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-832 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-1704 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-2729 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1069 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-3600 (($ $ (-1069 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-1298 (((-1153 (-583 (-2 (|:| -3199 (-832 |#1|)) (|:| -3448 (-1021)))))) NIL)) (-3786 (((-623 (-832 |#1|))) NIL)) (-3220 (($) NIL (|has| (-832 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-832 |#1|))) NIL)) (-1766 (($) NIL (|has| (-832 |#1|) (-338)))) (-1224 (($) NIL (|has| (-832 |#1|) (-338)))) (-4114 (((-1153 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
+(((-321 |#1| |#2|) (-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 (-832 |#1|)) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 (-832 |#1|)))) (-15 -2987 ((-703))))) (-843) (-843)) (T -321))
+((-1298 (*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 (-832 *3)) (|:| -3448 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-3786 (*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2987 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(-13 (-299 (-832 |#1|)) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 (-832 |#1|)) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 (-832 |#1|)))) (-15 -2987 ((-703)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 74)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) 92) (($ $ (-843)) 90 (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 148 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-2987 (((-703)) 89)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) 162 (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 111)) (-3189 ((|#1| $) 91)) (-1967 (($ (-1153 |#1|)) 57)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 187 (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) 158 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 149 (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) 97 (|has| |#1| (-338)))) (-2434 (((-107) $) 175 (|has| |#1| (-338)))) (-1506 ((|#1| $) 94) (($ $ (-843)) 93 (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) 188) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) 133 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) 73 (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) 70 (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) 82 (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) 69 (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 191)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 136 (|has| |#1| (-338)))) (-3202 (((-107) $) 107)) (-3206 (((-1021) $) NIL)) (-1298 (((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) 83)) (-3786 (((-623 |#1|)) 87)) (-3220 (($) 96 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 150 (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) 151)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) 62)) (-2135 (((-1069 |#1|)) 152)) (-1766 (($) 132 (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 105) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) 123) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 56)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 156)) (-1753 (((-1153 $)) 172) (((-1153 $) (-843)) 100)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 30 T CONST)) (-2409 (($) 22 T CONST)) (-4103 (($ $) 106 (|has| |#1| (-338))) (($ $ (-703)) 98 (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) 60)) (-1667 (($ $ $) 103) (($ $ |#1|) 104)) (-1654 (($ $) 177) (($ $ $) 181)) (-1642 (($ $ $) 179)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 137)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 185) (($ $ $) 142) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 102)))
+(((-322 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703))))) (-319) (-3 (-1069 |#1|) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (T -322))
+((-1298 (*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) *2)))) (-3786 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))) (-2987 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))))
+(-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-2987 (((-703)) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) NIL) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-1298 (((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021)))))) NIL)) (-3786 (((-623 |#1|)) NIL)) (-3220 (($) NIL (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-323 |#1| |#2|) (-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703))))) (-319) (-843)) (T -323))
+((-1298 (*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-3786 (*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))) (-2987 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(-13 (-299 |#1|) (-10 -7 (-15 -1298 ((-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))))) (-15 -3786 ((-623 |#1|))) (-15 -2987 ((-703)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-832 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-832 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-832 |#1|) "failed") $) NIL)) (-3189 (((-832 |#1|) $) NIL)) (-1967 (($ (-1153 (-832 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-832 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-832 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-832 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-832 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-832 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-832 |#1|) (-338)))) (-1506 (((-832 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-832 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-832 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-832 |#1|) (-338)))) (-1704 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338)))) (-2729 (((-1069 (-832 |#1|)) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-1069 (-832 |#1|)) "failed") $ $) NIL (|has| (-832 |#1|) (-338)))) (-3600 (($ $ (-1069 (-832 |#1|))) NIL (|has| (-832 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-832 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-832 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| (-832 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-832 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-832 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-832 |#1|))) NIL)) (-1766 (($) NIL (|has| (-832 |#1|) (-338)))) (-1224 (($) NIL (|has| (-832 |#1|) (-338)))) (-4114 (((-1153 (-832 |#1|)) $) NIL) (((-623 (-832 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-832 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-832 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-832 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-832 |#1|) (-132)) (|has| (-832 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-832 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-832 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-832 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-832 |#1|)) NIL) (($ (-832 |#1|) $) NIL)))
+(((-324 |#1| |#2|) (-299 (-832 |#1|)) (-843) (-843)) (T -324))
+NIL
+(-299 (-832 |#1|))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) 119 (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) 138 (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 91)) (-3189 ((|#1| $) 88)) (-1967 (($ (-1153 |#1|)) 83)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 115 (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) 80 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 39 (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) 120 (|has| |#1| (-338)))) (-2434 (((-107) $) 72 (|has| |#1| (-338)))) (-1506 ((|#1| $) 38) (($ $ (-843)) 40 (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) 62) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) 95 (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) 93 (|has| |#1| (-338)))) (-3202 (((-107) $) 140)) (-3206 (((-1021) $) NIL)) (-3220 (($) 35 (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 113 (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) 137)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) 56)) (-2135 (((-1069 |#1|)) 86)) (-1766 (($) 125 (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) 50) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) 136) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 85)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 142)) (-1753 (((-1153 $)) 107) (((-1153 $) (-843)) 46)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 109 T CONST)) (-2409 (($) 31 T CONST)) (-4103 (($ $) 65 (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) 105)) (-1667 (($ $ $) 97) (($ $ |#1|) 98)) (-1654 (($ $) 78) (($ $ $) 103)) (-1642 (($ $ $) 101)) (** (($ $ (-843)) NIL) (($ $ (-703)) 41) (($ $ (-517)) 128)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 76) (($ $ $) 53) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 74)))
+(((-325 |#1| |#2|) (-299 |#1|) (-319) (-1069 |#1|)) (T -325))
+NIL
+(-299 |#1|)
+((-3708 ((|#1| (-1069 |#2|)) 51)))
+(((-326 |#1| |#2|) (-10 -7 (-15 -3708 (|#1| (-1069 |#2|)))) (-13 (-372) (-10 -7 (-15 -2256 (|#1| |#2|)) (-15 -1549 ((-843) |#1|)) (-15 -1753 ((-1153 |#1|) (-843))) (-15 -4103 (|#1| |#1|)))) (-319)) (T -326))
+((-3708 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2256 (*2 *4)) (-15 -1549 ((-843) *2)) (-15 -1753 ((-1153 *2) (-843))) (-15 -4103 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
+(-10 -7 (-15 -3708 (|#1| (-1069 |#2|))))
+((-1825 (((-879 (-1069 |#1|)) (-1069 |#1|)) 36)) (-3209 (((-1069 |#1|) (-843) (-843)) 109) (((-1069 |#1|) (-843)) 108)) (-3391 (((-107) (-1069 |#1|)) 81)) (-2540 (((-843) (-843)) 71)) (-1186 (((-843) (-843)) 73)) (-3397 (((-843) (-843)) 69)) (-2434 (((-107) (-1069 |#1|)) 85)) (-1418 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 97)) (-4068 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 100)) (-2538 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 99)) (-3318 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 98)) (-2176 (((-3 (-1069 |#1|) "failed") (-1069 |#1|)) 94)) (-3428 (((-1069 |#1|) (-1069 |#1|)) 62)) (-2804 (((-1069 |#1|) (-843)) 103)) (-2543 (((-1069 |#1|) (-843)) 106)) (-2020 (((-1069 |#1|) (-843)) 105)) (-3386 (((-1069 |#1|) (-843)) 104)) (-3868 (((-1069 |#1|) (-843)) 101)))
+(((-327 |#1|) (-10 -7 (-15 -3391 ((-107) (-1069 |#1|))) (-15 -2434 ((-107) (-1069 |#1|))) (-15 -3397 ((-843) (-843))) (-15 -2540 ((-843) (-843))) (-15 -1186 ((-843) (-843))) (-15 -3868 ((-1069 |#1|) (-843))) (-15 -2804 ((-1069 |#1|) (-843))) (-15 -3386 ((-1069 |#1|) (-843))) (-15 -2020 ((-1069 |#1|) (-843))) (-15 -2543 ((-1069 |#1|) (-843))) (-15 -2176 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -1418 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3318 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -2538 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -4068 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3209 ((-1069 |#1|) (-843))) (-15 -3209 ((-1069 |#1|) (-843) (-843))) (-15 -3428 ((-1069 |#1|) (-1069 |#1|))) (-15 -1825 ((-879 (-1069 |#1|)) (-1069 |#1|)))) (-319)) (T -327))
+((-1825 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1069 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1069 *4)))) (-3428 (*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3209 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-4068 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2538 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-3318 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-1418 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2176 (*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))) (-2543 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-3868 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) (-1186 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-2540 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-3397 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
+(-10 -7 (-15 -3391 ((-107) (-1069 |#1|))) (-15 -2434 ((-107) (-1069 |#1|))) (-15 -3397 ((-843) (-843))) (-15 -2540 ((-843) (-843))) (-15 -1186 ((-843) (-843))) (-15 -3868 ((-1069 |#1|) (-843))) (-15 -2804 ((-1069 |#1|) (-843))) (-15 -3386 ((-1069 |#1|) (-843))) (-15 -2020 ((-1069 |#1|) (-843))) (-15 -2543 ((-1069 |#1|) (-843))) (-15 -2176 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -1418 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3318 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -2538 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -4068 ((-3 (-1069 |#1|) "failed") (-1069 |#1|))) (-15 -3209 ((-1069 |#1|) (-843))) (-15 -3209 ((-1069 |#1|) (-843) (-843))) (-15 -3428 ((-1069 |#1|) (-1069 |#1|))) (-15 -1825 ((-879 (-1069 |#1|)) (-1069 |#1|))))
+((-3179 (((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|) 33)))
+(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -3179 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|))) (-319) (-1130 |#1|) (-1130 |#2|)) (T -328))
+((-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))))
+(-10 -7 (-15 -3179 ((-3 (-583 |#3|) "failed") (-583 |#3|) |#3|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| |#1| (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| |#1| (-338)))) (-3391 (((-107) $) NIL (|has| |#1| (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| |#1| (-338))) (((-765 (-843)) $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| |#1| (-338)))) (-2434 (((-107) $) NIL (|has| |#1| (-338)))) (-1506 ((|#1| $) NIL) (($ $ (-843)) NIL (|has| |#1| (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 |#1|) $) NIL) (((-1069 $) $ (-843)) NIL (|has| |#1| (-338)))) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-1704 (((-1069 |#1|) $) NIL (|has| |#1| (-338)))) (-2729 (((-1069 |#1|) $) NIL (|has| |#1| (-338))) (((-3 (-1069 |#1|) "failed") $ $) NIL (|has| |#1| (-338)))) (-3600 (($ $ (-1069 |#1|)) NIL (|has| |#1| (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| |#1| (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| |#1| (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 |#1|)) NIL)) (-1766 (($) NIL (|has| |#1| (-338)))) (-1224 (($) NIL (|has| |#1| (-338)))) (-4114 (((-1153 |#1|) $) NIL) (((-623 |#1|) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) NIL)) (-1328 (($ $) NIL (|has| |#1| (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-2731 (($ $) NIL (|has| |#1| (-338))) (($ $ (-703)) NIL (|has| |#1| (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-329 |#1| |#2|) (-299 |#1|) (-319) (-843)) (T -329))
+NIL
+(-299 |#1|)
+((-3958 (((-107) (-583 (-874 |#1|))) 31)) (-1759 (((-583 (-874 |#1|)) (-583 (-874 |#1|))) 42)) (-2066 (((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|))) 38)))
+(((-330 |#1| |#2|) (-10 -7 (-15 -3958 ((-107) (-583 (-874 |#1|)))) (-15 -2066 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -1759 ((-583 (-874 |#1|)) (-583 (-874 |#1|))))) (-421) (-583 (-1073))) (T -330))
+((-1759 (*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) (-2066 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1073))))))
+(-10 -7 (-15 -3958 ((-107) (-583 (-874 |#1|)))) (-15 -2066 ((-3 (-583 (-874 |#1|)) "failed") (-583 (-874 |#1|)))) (-15 -1759 ((-583 (-874 |#1|)) (-583 (-874 |#1|)))))
+((-2750 (((-107) $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) 14)) (-3466 ((|#1| $ (-517)) NIL)) (-3882 (((-517) $ (-517)) NIL)) (-3420 (($ (-1 |#1| |#1|) $) 32)) (-2125 (($ (-1 (-517) (-517)) $) 24)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 26)) (-3206 (((-1021) $) NIL)) (-2879 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $) 28)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 38) (($ |#1|) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 9 T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ |#1| (-517)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-331 |#1|) (-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1611 ((-703) $)) (-15 -3882 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-517) (-517)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $)))) (-1003)) (T -331))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3882 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) (-2125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))))
+(-13 (-442) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-517))) (-15 -1611 ((-703) $)) (-15 -3882 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-517) (-517)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-517)))) $))))
+((-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 13)) (-1213 (($ $) 14)) (-2759 (((-388 $) $) 29)) (-3849 (((-107) $) 25)) (-4118 (($ $) 18)) (-1401 (($ $ $) 22) (($ (-583 $)) NIL)) (-3755 (((-388 $) $) 30)) (-2476 (((-3 $ "failed") $ $) 21)) (-3146 (((-703) $) 24)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 34)) (-3329 (((-107) $ $) 15)) (-1667 (($ $ $) 32)))
+(((-332 |#1|) (-10 -8 (-15 -1667 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|))) (-333)) (T -332))
+NIL
+(-10 -8 (-15 -1667 (|#1| |#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-333) (-1184)) (T -333))
+((-1667 (*1 *1 *1 *1) (-4 *1 (-333))))
+(-13 (-278) (-1112) (-217) (-10 -8 (-15 -1667 ($ $ $)) (-6 -4178) (-6 -4172)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
+((-2750 (((-107) $ $) 7)) (-3733 ((|#2| $ |#2|) 13)) (-1723 (($ $ (-1056)) 18)) (-1457 ((|#2| $) 14)) (-1513 (($ |#1|) 20) (($ |#1| (-1056)) 19)) (-1207 ((|#1| $) 16)) (-3985 (((-1056) $) 9)) (-2845 (((-1056) $) 15)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2463 (($ $) 17)) (-1547 (((-107) $ $) 6)))
+(((-334 |#1| |#2|) (-1184) (-1003) (-1003)) (T -334))
+((-1513 (*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2463 (*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2845 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1056)))) (-1457 (*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3733 (*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -1513 ($ |t#1|)) (-15 -1513 ($ |t#1| (-1056))) (-15 -1723 ($ $ (-1056))) (-15 -2463 ($ $)) (-15 -1207 (|t#1| $)) (-15 -2845 ((-1056) $)) (-15 -1457 (|t#2| $)) (-15 -3733 (|t#2| $ |t#2|))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-3733 ((|#1| $ |#1|) 29)) (-1723 (($ $ (-1056)) 22)) (-2595 (((-3 |#1| "failed") $) 28)) (-1457 ((|#1| $) 26)) (-1513 (($ (-358)) 21) (($ (-358) (-1056)) 20)) (-1207 (((-358) $) 24)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) 25)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 19)) (-2463 (($ $) 23)) (-1547 (((-107) $ $) 18)))
+(((-335 |#1|) (-13 (-334 (-358) |#1|) (-10 -8 (-15 -2595 ((-3 |#1| "failed") $)))) (-1003)) (T -335))
+((-2595 (*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003)))))
+(-13 (-334 (-358) |#1|) (-10 -8 (-15 -2595 ((-3 |#1| "failed") $))))
+((-3533 (((-1153 (-623 |#2|)) (-1153 $)) 61)) (-2619 (((-623 |#2|) (-1153 $)) 119)) (-2299 ((|#2| $) 32)) (-3343 (((-623 |#2|) $ (-1153 $)) 123)) (-2158 (((-3 $ "failed") $) 75)) (-3866 ((|#2| $) 35)) (-2417 (((-1069 |#2|) $) 83)) (-4069 ((|#2| (-1153 $)) 106)) (-2085 (((-1069 |#2|) $) 28)) (-2362 (((-107)) 100)) (-1967 (($ (-1153 |#2|) (-1153 $)) 113)) (-3621 (((-3 $ "failed") $) 79)) (-2754 (((-107)) 95)) (-3983 (((-107)) 90)) (-3414 (((-107)) 53)) (-2010 (((-623 |#2|) (-1153 $)) 117)) (-1188 ((|#2| $) 31)) (-3914 (((-623 |#2|) $ (-1153 $)) 122)) (-1680 (((-3 $ "failed") $) 73)) (-3913 ((|#2| $) 34)) (-4121 (((-1069 |#2|) $) 82)) (-1988 ((|#2| (-1153 $)) 104)) (-2190 (((-1069 |#2|) $) 26)) (-3606 (((-107)) 99)) (-4045 (((-107)) 92)) (-1286 (((-107)) 51)) (-1848 (((-107)) 87)) (-1697 (((-107)) 101)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) 111)) (-1561 (((-107)) 97)) (-1582 (((-583 (-1153 |#2|))) 86)) (-1316 (((-107)) 98)) (-2687 (((-107)) 96)) (-2524 (((-107)) 46)) (-3642 (((-107)) 102)))
+(((-336 |#1| |#2|) (-10 -8 (-15 -2417 ((-1069 |#2|) |#1|)) (-15 -4121 ((-1069 |#2|) |#1|)) (-15 -1582 ((-583 (-1153 |#2|)))) (-15 -2158 ((-3 |#1| "failed") |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-107))) (-15 -4045 ((-107))) (-15 -2754 ((-107))) (-15 -1286 ((-107))) (-15 -3414 ((-107))) (-15 -1848 ((-107))) (-15 -3642 ((-107))) (-15 -1697 ((-107))) (-15 -2362 ((-107))) (-15 -3606 ((-107))) (-15 -2524 ((-107))) (-15 -1316 ((-107))) (-15 -2687 ((-107))) (-15 -1561 ((-107))) (-15 -2085 ((-1069 |#2|) |#1|)) (-15 -2190 ((-1069 |#2|) |#1|)) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3866 (|#2| |#1|)) (-15 -3913 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -1188 (|#2| |#1|)) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|)))) (-337 |#2|) (-156)) (T -336))
+((-1561 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2687 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1316 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2524 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3606 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2362 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1697 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3642 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1848 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3414 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1286 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-2754 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-4045 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-3983 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) (-1582 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1153 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))))
+(-10 -8 (-15 -2417 ((-1069 |#2|) |#1|)) (-15 -4121 ((-1069 |#2|) |#1|)) (-15 -1582 ((-583 (-1153 |#2|)))) (-15 -2158 ((-3 |#1| "failed") |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-107))) (-15 -4045 ((-107))) (-15 -2754 ((-107))) (-15 -1286 ((-107))) (-15 -3414 ((-107))) (-15 -1848 ((-107))) (-15 -3642 ((-107))) (-15 -1697 ((-107))) (-15 -2362 ((-107))) (-15 -3606 ((-107))) (-15 -2524 ((-107))) (-15 -1316 ((-107))) (-15 -2687 ((-107))) (-15 -1561 ((-107))) (-15 -2085 ((-1069 |#2|) |#1|)) (-15 -2190 ((-1069 |#2|) |#1|)) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3866 (|#2| |#1|)) (-15 -3913 (|#2| |#1|)) (-15 -2299 (|#2| |#1|)) (-15 -1188 (|#2| |#1|)) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3295 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3533 (((-1153 (-623 |#1|)) (-1153 $)) 78)) (-3456 (((-1153 $)) 81)) (-3092 (($) 17 T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1450 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2619 (((-623 |#1|) (-1153 $)) 65)) (-2299 ((|#1| $) 74)) (-3343 (((-623 |#1|) $ (-1153 $)) 76)) (-2158 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-3380 (($ $ (-843)) 28)) (-3866 ((|#1| $) 72)) (-2417 (((-1069 |#1|) $) 42 (|has| |#1| (-509)))) (-4069 ((|#1| (-1153 $)) 67)) (-2085 (((-1069 |#1|) $) 63)) (-2362 (((-107)) 57)) (-1967 (($ (-1153 |#1|) (-1153 $)) 69)) (-3621 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-2261 (((-843)) 80)) (-3962 (((-107)) 54)) (-3730 (($ $ (-843)) 33)) (-2754 (((-107)) 50)) (-3983 (((-107)) 48)) (-3414 (((-107)) 52)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1793 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2010 (((-623 |#1|) (-1153 $)) 66)) (-1188 ((|#1| $) 75)) (-3914 (((-623 |#1|) $ (-1153 $)) 77)) (-1680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-2572 (($ $ (-843)) 29)) (-3913 ((|#1| $) 73)) (-4121 (((-1069 |#1|) $) 43 (|has| |#1| (-509)))) (-1988 ((|#1| (-1153 $)) 68)) (-2190 (((-1069 |#1|) $) 64)) (-3606 (((-107)) 58)) (-3985 (((-1056) $) 9)) (-4045 (((-107)) 49)) (-1286 (((-107)) 51)) (-1848 (((-107)) 53)) (-3206 (((-1021) $) 10)) (-1697 (((-107)) 56)) (-4114 (((-1153 |#1|) $ (-1153 $)) 71) (((-623 |#1|) (-1153 $) (-1153 $)) 70)) (-2278 (((-583 (-874 |#1|)) (-1153 $)) 79)) (-3394 (($ $ $) 25)) (-1561 (((-107)) 62)) (-2256 (((-787) $) 11)) (-1582 (((-583 (-1153 |#1|))) 44 (|has| |#1| (-509)))) (-3917 (($ $ $ $) 26)) (-1316 (((-107)) 60)) (-1956 (($ $ $) 24)) (-2687 (((-107)) 61)) (-2524 (((-107)) 59)) (-3642 (((-107)) 55)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-337 |#1|) (-1184) (-156)) (T -337))
+((-3456 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-337 *3)))) (-2261 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))))) (-3914 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-3343 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1188 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2299 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-3866 (*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-4114 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 *4)))) (-4114 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) (-1988 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-4069 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) (-2010 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))) (-1561 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2687 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1316 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2524 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3606 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2362 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1697 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3642 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3962 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1848 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3414 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-1286 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-2754 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-4045 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3983 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))) (-3621 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1680 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-2158 (*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) (-1582 (*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1153 *3))))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))) (-3550 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) (-2257 (*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) (-1793 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-1450 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) (-3295 (*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(-13 (-677 |t#1|) (-10 -8 (-15 -3456 ((-1153 $))) (-15 -2261 ((-843))) (-15 -2278 ((-583 (-874 |t#1|)) (-1153 $))) (-15 -3533 ((-1153 (-623 |t#1|)) (-1153 $))) (-15 -3914 ((-623 |t#1|) $ (-1153 $))) (-15 -3343 ((-623 |t#1|) $ (-1153 $))) (-15 -1188 (|t#1| $)) (-15 -2299 (|t#1| $)) (-15 -3913 (|t#1| $)) (-15 -3866 (|t#1| $)) (-15 -4114 ((-1153 |t#1|) $ (-1153 $))) (-15 -4114 ((-623 |t#1|) (-1153 $) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|) (-1153 $))) (-15 -1988 (|t#1| (-1153 $))) (-15 -4069 (|t#1| (-1153 $))) (-15 -2010 ((-623 |t#1|) (-1153 $))) (-15 -2619 ((-623 |t#1|) (-1153 $))) (-15 -2190 ((-1069 |t#1|) $)) (-15 -2085 ((-1069 |t#1|) $)) (-15 -1561 ((-107))) (-15 -2687 ((-107))) (-15 -1316 ((-107))) (-15 -2524 ((-107))) (-15 -3606 ((-107))) (-15 -2362 ((-107))) (-15 -1697 ((-107))) (-15 -3642 ((-107))) (-15 -3962 ((-107))) (-15 -1848 ((-107))) (-15 -3414 ((-107))) (-15 -1286 ((-107))) (-15 -2754 ((-107))) (-15 -4045 ((-107))) (-15 -3983 ((-107))) (IF (|has| |t#1| (-509)) (PROGN (-15 -3621 ((-3 $ "failed") $)) (-15 -1680 ((-3 $ "failed") $)) (-15 -2158 ((-3 $ "failed") $)) (-15 -1582 ((-583 (-1153 |t#1|)))) (-15 -4121 ((-1069 |t#1|) $)) (-15 -2417 ((-1069 |t#1|) $)) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -1793 ((-3 $ "failed"))) (-15 -1450 ((-3 $ "failed"))) (-15 -3295 ((-3 $ "failed"))) (-6 -4177)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T))
+((-2750 (((-107) $ $) 7)) (-1611 (((-703)) 16)) (-3209 (($) 13)) (-1549 (((-843) $) 14)) (-3985 (((-1056) $) 9)) (-3448 (($ (-843)) 15)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
+(((-338) (-1184)) (T -338))
+((-1611 (*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) (-3448 (*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) (-3209 (*1 *1) (-4 *1 (-338))))
+(-13 (-1003) (-10 -8 (-15 -1611 ((-703))) (-15 -3448 ($ (-843))) (-15 -1549 ((-843) $)) (-15 -3209 ($))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-3055 (((-623 |#2|) (-1153 $)) 40)) (-1967 (($ (-1153 |#2|) (-1153 $)) 35)) (-2410 (((-623 |#2|) $ (-1153 $)) 43)) (-3010 ((|#2| (-1153 $)) 13)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) 25)))
+(((-339 |#1| |#2| |#3|) (-10 -8 (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|)))) (-340 |#2| |#3|) (-156) (-1130 |#2|)) (T -339))
+NIL
+(-10 -8 (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3055 (((-623 |#1|) (-1153 $)) 46)) (-1472 ((|#1| $) 52)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48)) (-2410 (((-623 |#1|) $ (-1153 $)) 53)) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-843)) 54)) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 51)) (-3777 ((|#2| $) 44 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3010 ((|#1| (-1153 $)) 47)) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1328 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3669 ((|#2| $) 45)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-340 |#1| |#2|) (-1184) (-156) (-1130 |t#1|)) (T -340))
+((-2261 (*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-843)))) (-2410 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) (-4114 (*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *4)))) (-4114 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1130 *4)))) (-3010 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1130 *2)) (-4 *2 (-156)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1130 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -2261 ((-843))) (-15 -2410 ((-623 |t#1|) $ (-1153 $))) (-15 -1472 (|t#1| $)) (-15 -1506 (|t#1| $)) (-15 -4114 ((-1153 |t#1|) $ (-1153 $))) (-15 -4114 ((-623 |t#1|) (-1153 $) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|) (-1153 $))) (-15 -3010 (|t#1| (-1153 $))) (-15 -3055 ((-623 |t#1|) (-1153 $))) (-15 -3669 (|t#2| $)) (IF (|has| |t#1| (-333)) (-15 -3777 (|t#2| $)) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-3905 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3225 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1893 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-341 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1108) (-343 |#1|) (-1108) (-343 |#3|)) (T -341))
+((-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))))
+(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2044 (((-107) (-1 (-107) |#2| |#2|) $) NIL) (((-107) $) 18)) (-2034 (($ (-1 (-107) |#2| |#2|) $) NIL) (($ $) 28)) (-3166 (($ (-1 (-107) |#2| |#2|) $) 27) (($ $) 22)) (-3093 (($ $) 25)) (-2607 (((-517) (-1 (-107) |#2|) $) NIL) (((-517) |#2| $) 11) (((-517) |#2| $ (-517)) NIL)) (-3237 (($ (-1 (-107) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-342 |#1| |#2|) (-10 -8 (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3166 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|))) (-343 |#2|) (-1108)) (T -342))
+NIL
+(-10 -8 (-15 -2034 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -3166 (|#1| |#1|)) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -3166 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3093 (|#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-343 |#1|) (-1184) (-1108)) (T -343))
+((-3237 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-3093 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)))) (-3166 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-2044 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-2607 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-517)))) (-2607 (*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-517)))) (-2607 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) (-3166 (*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) (-2044 (*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-779)) (-5 *2 (-107)))) (-1906 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-4020 (*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)))) (-2034 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) (-2034 (*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))))
+(-13 (-588 |t#1|) (-10 -8 (-6 -4180) (-15 -3237 ($ (-1 (-107) |t#1| |t#1|) $ $)) (-15 -3093 ($ $)) (-15 -3166 ($ (-1 (-107) |t#1| |t#1|) $)) (-15 -2044 ((-107) (-1 (-107) |t#1| |t#1|) $)) (-15 -2607 ((-517) (-1 (-107) |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2607 ((-517) |t#1| $)) (-15 -2607 ((-517) |t#1| $ (-517)))) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-6 (-779)) (-15 -3237 ($ $ $)) (-15 -3166 ($ $)) (-15 -2044 ((-107) $))) |noBranch|) (IF (|has| $ (-6 -4181)) (PROGN (-15 -1906 ($ $ $ (-517))) (-15 -4020 ($ $)) (-15 -2034 ($ (-1 (-107) |t#1| |t#1|) $)) (IF (|has| |t#1| (-779)) (-15 -2034 ($ $)) |noBranch|)) |noBranch|)))
+(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3463 (((-583 |#1|) $) 32)) (-3883 (($ $ (-703)) 33)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3791 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 36)) (-2402 (($ $) 34)) (-2208 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 37)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2051 (($ $ |#1| $) 31) (($ $ (-583 |#1|) (-583 $)) 30)) (-3688 (((-703) $) 38)) (-2276 (($ $ $) 29)) (-2256 (((-787) $) 11) (($ |#1|) 41) (((-1166 |#1| |#2|) $) 40) (((-1175 |#1| |#2|) $) 39)) (-1931 ((|#2| (-1175 |#1| |#2|) $) 42)) (-2396 (($) 18 T CONST)) (-1691 (($ (-608 |#1|)) 35)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#2|) 28 (|has| |#2| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-344 |#1| |#2|) (-1184) (-779) (-156)) (T -344))
+((-1931 (*1 *2 *3 *1) (-12 (-5 *3 (-1175 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) (-2256 (*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1166 *3 *4)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1175 *3 *4)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) (-2208 (*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3791 (*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-1691 (*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))) (-2402 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) (-2051 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))))
+(-13 (-574 |t#2|) (-10 -8 (-15 -1931 (|t#2| (-1175 |t#1| |t#2|) $)) (-15 -2256 ($ |t#1|)) (-15 -2256 ((-1166 |t#1| |t#2|) $)) (-15 -2256 ((-1175 |t#1| |t#2|) $)) (-15 -3688 ((-703) $)) (-15 -2208 ((-1175 |t#1| |t#2|) (-1175 |t#1| |t#2|) $)) (-15 -3791 ((-1175 |t#1| |t#2|) (-1175 |t#1| |t#2|) $)) (-15 -1691 ($ (-608 |t#1|))) (-15 -2402 ($ $)) (-15 -3883 ($ $ (-703))) (-15 -3463 ((-583 |t#1|) $)) (-15 -2051 ($ $ |t#1| $)) (-15 -2051 ($ $ (-583 |t#1|) (-583 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-574 |#2|) . T) ((-650 |#2|) . T) ((-967 |#2|) . T) ((-1003) . T))
+((-1489 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 22)) (-1380 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 12)) (-2773 ((|#2| (-1 (-107) |#1| |#1|) |#2|) 21)))
+(((-345 |#1| |#2|) (-10 -7 (-15 -1380 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2773 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1489 (|#2| (-1 (-107) |#1| |#1|) |#2|))) (-1108) (-13 (-343 |#1|) (-10 -7 (-6 -4181)))) (T -345))
+((-1489 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))) (-2773 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))) (-1380 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))))
+(-10 -7 (-15 -1380 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -2773 (|#2| (-1 (-107) |#1| |#1|) |#2|)) (-15 -1489 (|#2| (-1 (-107) |#1| |#1|) |#2|)))
+((-3355 (((-623 |#2|) (-623 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 19) (((-623 (-517)) (-623 $)) 13)))
+(((-346 |#1| |#2|) (-10 -8 (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 |#2|) (-623 |#1|)))) (-347 |#2|) (-961)) (T -346))
+NIL
+(-10 -8 (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 |#2|) (-623 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3355 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 35) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 43 (|has| |#1| (-579 (-517)))) (((-623 (-517)) (-623 $)) 42 (|has| |#1| (-579 (-517))))) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-347 |#1|) (-1184) (-961)) (T -347))
+NIL
+(-13 (-579 |t#1|) (-10 -7 (IF (|has| |t#1| (-579 (-517))) (-6 (-579 (-517))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-3681 (((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|) 52) (((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|) 51) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|) 47) (((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|) 40)) (-3674 (((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1073)) |#1|) 28) (((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|) 15)))
+(((-348 |#1|) (-10 -7 (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3674 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3674 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1073)) |#1|))) (-13 (-333) (-777))) (T -348))
+((-3674 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3681 ((-583 (-583 (-265 (-874 (-153 |#1|))))) (-583 (-265 (-377 (-874 (-153 (-517)))))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3681 ((-583 (-265 (-874 (-153 |#1|)))) (-265 (-377 (-874 (-153 (-517))))) |#1|)) (-15 -3674 ((-583 (-153 |#1|)) (-377 (-874 (-153 (-517)))) |#1|)) (-15 -3674 ((-583 (-583 (-153 |#1|))) (-583 (-377 (-874 (-153 (-517))))) (-583 (-1073)) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 33)) (-2668 (((-517) $) 55)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-1974 (($ $) 109)) (-1865 (($ $) 81)) (-1721 (($ $) 70)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) 44)) (-1707 (((-107) $ $) NIL)) (-1839 (($ $) 79)) (-1701 (($ $) 68)) (-3709 (((-517) $) 63)) (-1363 (($ $ (-517)) 62)) (-1887 (($ $) NIL)) (-1743 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-2531 (($ $) 111)) (-1772 (((-3 (-517) "failed") $) 187) (((-3 (-377 (-517)) "failed") $) 183)) (-3189 (((-517) $) 185) (((-377 (-517)) $) 181)) (-2518 (($ $ $) NIL)) (-1320 (((-517) $ $) 101)) (-3621 (((-3 $ "failed") $) 113)) (-3934 (((-377 (-517)) $ (-703)) 188) (((-377 (-517)) $ (-703) (-703)) 180)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3554 (((-843)) 72) (((-843) (-843)) 97 (|has| $ (-6 -4171)))) (-3556 (((-107) $) 105)) (-2645 (($) 40)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-1986 (((-1158) (-703)) 150)) (-3424 (((-1158)) 155) (((-1158) (-703)) 156)) (-3789 (((-1158)) 157) (((-1158) (-703)) 158)) (-2678 (((-1158)) 153) (((-1158) (-703)) 154)) (-3972 (((-517) $) 58)) (-3848 (((-107) $) 103)) (-3824 (($ $ (-517)) NIL)) (-2485 (($ $) 48)) (-1506 (($ $) NIL)) (-2475 (((-107) $) 35)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL) (($) NIL (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3099 (($ $ $) NIL) (($) 98 (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3371 (((-517) $) 17)) (-2365 (($) 86) (($ $) 91)) (-3720 (($) 90) (($ $) 92)) (-1867 (($ $) 82)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 115)) (-2138 (((-843) (-517)) 43 (|has| $ (-6 -4171)))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) 53)) (-2597 (($ $) 108)) (-4005 (($ (-517) (-517)) 106) (($ (-517) (-517) (-843)) 107)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2077 (((-517) $) 19)) (-3963 (($) 93)) (-2624 (($ $) 78)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-843)) 99) (((-843) (-843)) 100 (|has| $ (-6 -4171)))) (-3127 (($ $ (-703)) NIL) (($ $) 114)) (-2646 (((-843) (-517)) 47 (|has| $ (-6 -4171)))) (-1898 (($ $) NIL)) (-1754 (($ $) NIL)) (-1876 (($ $) NIL)) (-1732 (($ $) NIL)) (-1853 (($ $) 80)) (-1711 (($ $) 69)) (-3645 (((-349) $) 173) (((-199) $) 175) (((-814 (-349)) $) NIL) (((-1056) $) 160) (((-493) $) 171) (($ (-199)) 179)) (-2256 (((-787) $) 162) (($ (-517)) 184) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-517)) 184) (($ (-377 (-517))) NIL) (((-199) $) 176)) (-2961 (((-703)) NIL)) (-1949 (($ $) 110)) (-1398 (((-843)) 54) (((-843) (-843)) 65 (|has| $ (-6 -4171)))) (-2372 (((-843)) 102)) (-3707 (($ $) 85)) (-1788 (($ $) 46) (($ $ $) 52)) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) 83)) (-1765 (($ $) 37)) (-3731 (($ $) NIL)) (-1814 (($ $) NIL)) (-1492 (($ $) NIL)) (-1827 (($ $) NIL)) (-3719 (($ $) NIL)) (-1802 (($ $) NIL)) (-3695 (($ $) 84)) (-1777 (($ $) 49)) (-3710 (($ $) 51)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 34 T CONST)) (-2409 (($) 38 T CONST)) (-2482 (((-1056) $) 27) (((-1056) $ (-107)) 29) (((-1158) (-754) $) 30) (((-1158) (-754) $ (-107)) 31)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 39)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 42)) (-1667 (($ $ $) 45) (($ $ (-517)) 41)) (-1654 (($ $) 36) (($ $ $) 50)) (-1642 (($ $ $) 61)) (** (($ $ (-843)) 66) (($ $ (-703)) NIL) (($ $ (-517)) 87) (($ $ (-377 (-517))) 124) (($ $ $) 116)) (* (($ (-843) $) 64) (($ (-703) $) NIL) (($ (-517) $) 67) (($ $ $) 60) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-349) (-13 (-374) (-207) (-558 (-1056)) (-760) (-557 (-199)) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2485 ($ $)) (-15 -1320 ((-517) $ $)) (-15 -1363 ($ $ (-517))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703))) (-15 -2365 ($)) (-15 -3720 ($)) (-15 -3963 ($)) (-15 -1788 ($ $ $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -3645 ($ (-199))) (-15 -3789 ((-1158))) (-15 -3789 ((-1158) (-703))) (-15 -2678 ((-1158))) (-15 -2678 ((-1158) (-703))) (-15 -3424 ((-1158))) (-15 -3424 ((-1158) (-703))) (-15 -1986 ((-1158) (-703))) (-6 -4171) (-6 -4163)))) (T -349))
+((** (*1 *1 *1 *1) (-5 *1 (-349))) (-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-2485 (*1 *1 *1) (-5 *1 (-349))) (-1320 (*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) (-3934 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-3934 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) (-2365 (*1 *1) (-5 *1 (-349))) (-3720 (*1 *1) (-5 *1 (-349))) (-3963 (*1 *1) (-5 *1 (-349))) (-1788 (*1 *1 *1 *1) (-5 *1 (-349))) (-2365 (*1 *1 *1) (-5 *1 (-349))) (-3720 (*1 *1 *1) (-5 *1 (-349))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) (-3789 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) (-2678 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))) (-2678 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) (-3424 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) (-1986 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))))
+(-13 (-374) (-207) (-558 (-1056)) (-760) (-557 (-199)) (-1094) (-558 (-493)) (-10 -8 (-15 -1667 ($ $ (-517))) (-15 ** ($ $ $)) (-15 -2485 ($ $)) (-15 -1320 ((-517) $ $)) (-15 -1363 ($ $ (-517))) (-15 -3934 ((-377 (-517)) $ (-703))) (-15 -3934 ((-377 (-517)) $ (-703) (-703))) (-15 -2365 ($)) (-15 -3720 ($)) (-15 -3963 ($)) (-15 -1788 ($ $ $)) (-15 -2365 ($ $)) (-15 -3720 ($ $)) (-15 -3645 ($ (-199))) (-15 -3789 ((-1158))) (-15 -3789 ((-1158) (-703))) (-15 -2678 ((-1158))) (-15 -2678 ((-1158) (-703))) (-15 -3424 ((-1158))) (-15 -3424 ((-1158) (-703))) (-15 -1986 ((-1158) (-703))) (-6 -4171) (-6 -4163)))
+((-1674 (((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|) 47) (((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|) 46) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|) 42) (((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|) 36)) (-2262 (((-583 |#1|) (-377 (-874 (-517))) |#1|) 19) (((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1073)) |#1|) 31)))
+(((-350 |#1|) (-10 -7 (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -2262 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1073)) |#1|)) (-15 -2262 ((-583 |#1|) (-377 (-874 (-517))) |#1|))) (-13 (-777) (-333))) (T -350))
+((-2262 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-2262 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
+(-10 -7 (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-377 (-874 (-517)))) |#1|)) (-15 -1674 ((-583 (-583 (-265 (-874 |#1|)))) (-583 (-265 (-377 (-874 (-517))))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-377 (-874 (-517))) |#1|)) (-15 -1674 ((-583 (-265 (-874 |#1|))) (-265 (-377 (-874 (-517)))) |#1|)) (-15 -2262 ((-583 (-583 |#1|)) (-583 (-377 (-874 (-517)))) (-583 (-1073)) |#1|)) (-15 -2262 ((-583 |#1|) (-377 (-874 (-517))) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 25)) (-3189 ((|#2| $) 27)) (-1212 (($ $) NIL)) (-1577 (((-703) $) 10)) (-4094 (((-583 $) $) 20)) (-4031 (((-107) $) NIL)) (-3419 (($ |#2| |#1|) 18)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2854 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-4152 ((|#2| $) 15)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 43) (($ |#2|) 26)) (-1311 (((-583 |#1|) $) 17)) (-2720 ((|#1| $ |#2|) 45)) (-2396 (($) 28 T CONST)) (-2332 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 31) (($ $ |#1|) 32) (($ |#1| |#2|) 33) (($ |#2| |#1|) 34)))
+(((-351 |#1| |#2|) (-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-961) (-779)) (T -351))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)))))
(-13 (-352 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-621 (-630))) 14) (($ (-578 (-298))) 13) (($ (-298)) 12) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 11)))
-(((-351) (-1180)) (T -351))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-621 (-630))) (-4 *1 (-351)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-351)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-351)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-351)))))
-(-13 (-364) (-10 -8 (-15 -3691 ($ (-621 (-630)))) (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))))))
-(((-555 (-786)) . T) ((-364) . T) ((-1104) . T))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#2| "failed") $) 44)) (-3490 ((|#2| $) 43)) (-3858 (($ $) 30)) (-3706 (((-701) $) 34)) (-2713 (((-578 $) $) 35)) (-2706 (((-107) $) 38)) (-2607 (($ |#2| |#1|) 39)) (-1212 (($ (-1 |#1| |#1|) $) 40)) (-3950 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3845 ((|#2| $) 33)) (-3850 ((|#1| $) 32)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ |#2|) 45)) (-1303 (((-578 |#1|) $) 36)) (-2495 ((|#1| $ |#2|) 41)) (-1850 (($) 18 T CONST)) (-1914 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-352 |#1| |#2|) (-1180) (-959) (-1001)) (T -352))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1001)))) (-2495 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-959)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)))) (-2607 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1001)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-107)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 *3)))) (-2713 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 *1)) (-4 *1 (-352 *3 *4)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-701)))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1001)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-959)))) (-3950 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1001)))))
-(-13 (-106 |t#1| |t#1|) (-950 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2495 (|t#1| $ |t#2|)) (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (-15 -2607 ($ |t#2| |t#1|)) (-15 -2706 ((-107) $)) (-15 -1914 ((-578 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1303 ((-578 |t#1|) $)) (-15 -2713 ((-578 $) $)) (-15 -3706 ((-701) $)) (-15 -3845 (|t#2| $)) (-15 -3850 (|t#1| $)) (-15 -3950 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3858 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-648 |t#1|)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) |has| |#1| (-156)) ((-950 |#2|) . T) ((-964 |#1|) . T) ((-1001) . T))
-((-3765 (((-3 $ "failed") (-621 (-282 (-346)))) 21) (((-3 $ "failed") (-621 (-282 (-501)))) 19) (((-3 $ "failed") (-621 (-866 (-346)))) 17) (((-3 $ "failed") (-621 (-866 (-501)))) 15) (((-3 $ "failed") (-621 (-375 (-866 (-346))))) 13) (((-3 $ "failed") (-621 (-375 (-866 (-501))))) 11)) (-3490 (($ (-621 (-282 (-346)))) 22) (($ (-621 (-282 (-501)))) 20) (($ (-621 (-866 (-346)))) 18) (($ (-621 (-866 (-501)))) 16) (($ (-621 (-375 (-866 (-346))))) 14) (($ (-621 (-375 (-866 (-501))))) 12)) (-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-578 (-298))) 25) (($ (-298)) 24) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 23)))
-(((-353) (-1180)) (T -353))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-353)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-353)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-282 (-346)))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-282 (-346)))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-282 (-501)))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-282 (-501)))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-866 (-346)))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-866 (-346)))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-866 (-501)))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-866 (-501)))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-375 (-866 (-346))))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-375 (-866 (-346))))) (-4 *1 (-353)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-621 (-375 (-866 (-501))))) (-4 *1 (-353)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-375 (-866 (-501))))) (-4 *1 (-353)))))
-(-13 (-364) (-10 -8 (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3490 ($ (-621 (-282 (-346))))) (-15 -3765 ((-3 $ "failed") (-621 (-282 (-346))))) (-15 -3490 ($ (-621 (-282 (-501))))) (-15 -3765 ((-3 $ "failed") (-621 (-282 (-501))))) (-15 -3490 ($ (-621 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-621 (-866 (-346))))) (-15 -3490 ($ (-621 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-621 (-866 (-501))))) (-15 -3490 ($ (-621 (-375 (-866 (-346)))))) (-15 -3765 ((-3 $ "failed") (-621 (-375 (-866 (-346)))))) (-15 -3490 ($ (-621 (-375 (-866 (-501)))))) (-15 -3765 ((-3 $ "failed") (-621 (-375 (-866 (-501))))))))
-(((-555 (-786)) . T) ((-364) . T) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3796 (((-701) $) 56)) (-2540 (($) NIL T CONST)) (-2194 (((-3 $ "failed") $ $) 58)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3840 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-1355 (((-107) $) 14)) (-2153 ((|#1| $ (-501)) NIL)) (-3159 (((-701) $ (-501)) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2451 (($ (-1 |#1| |#1|) $) 37)) (-1620 (($ (-1 (-701) (-701)) $) 34)) (-3049 (((-3 $ "failed") $ $) 49)) (-3460 (((-1053) $) NIL)) (-1954 (($ $ $) 25)) (-3650 (($ $ $) 23)) (-3708 (((-1018) $) NIL)) (-1575 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $) 31)) (-2419 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-3691 (((-786) $) 21) (($ |#1|) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1925 (($) 9 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 41)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) 60 (|has| |#1| (-777)))) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ |#1| (-701)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
-(((-354 |#1|) (-13 (-657) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-701))) (-15 -3650 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -3049 ((-3 $ "failed") $ $)) (-15 -2194 ((-3 $ "failed") $ $)) (-15 -2419 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3840 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3796 ((-701) $)) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $)) (-15 -3159 ((-701) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1620 ($ (-1 (-701) (-701)) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|))) (-1001)) (T -354))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-3650 (*1 *1 *1 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-1954 (*1 *1 *1 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-3049 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-2194 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-2419 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-354 *3)) (|:| |rm| (-354 *3)))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-3840 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-354 *3)) (|:| |mm| (-354 *3)) (|:| |rm| (-354 *3)))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-701))))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-3159 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701)) (-5 *1 (-354 *4)) (-4 *4 (-1001)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-354 *2)) (-4 *2 (-1001)))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-701) (-701))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) (-2451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-354 *3)))))
-(-13 (-657) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-701))) (-15 -3650 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -3049 ((-3 $ "failed") $ $)) (-15 -2194 ((-3 $ "failed") $ $)) (-15 -2419 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3840 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3796 ((-701) $)) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $)) (-15 -3159 ((-701) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1620 ($ (-1 (-701) (-701)) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 47)) (-3490 (((-501) $) 46)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-4111 (($ $ $) 54)) (-1323 (($ $ $) 53)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 42)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-501)) 48)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 51)) (-3768 (((-107) $ $) 50)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 52)) (-3762 (((-107) $ $) 49)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-355) (-1180)) (T -355))
-NIL
-(-13 (-508) (-777) (-950 (-501)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-777) . T) ((-950 (-501)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-2199 (((-107) $) 20)) (-4118 (((-107) $) 19)) (-3634 (($ (-1053) (-1053) (-1053)) 21)) (-3986 (((-1053) $) 16)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1913 (($ (-1053) (-1053) (-1053)) 14)) (-4120 (((-1053) $) 17)) (-3165 (((-107) $) 18)) (-3849 (((-1053) $) 15)) (-3691 (((-786) $) 12) (($ (-1053)) 13) (((-1053) $) 9)) (-3751 (((-107) $ $) 7)))
-(((-356) (-357)) (T -356))
-NIL
-(-357)
-((-3736 (((-107) $ $) 7)) (-2199 (((-107) $) 14)) (-4118 (((-107) $) 15)) (-3634 (($ (-1053) (-1053) (-1053)) 13)) (-3986 (((-1053) $) 18)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1913 (($ (-1053) (-1053) (-1053)) 20)) (-4120 (((-1053) $) 17)) (-3165 (((-107) $) 16)) (-3849 (((-1053) $) 19)) (-3691 (((-786) $) 11) (($ (-1053)) 22) (((-1053) $) 21)) (-3751 (((-107) $ $) 6)))
-(((-357) (-1180)) (T -357))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) (-1913 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))) (-3849 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) (-3986 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107)))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107)))) (-2199 (*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107)))) (-3634 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ($ (-1053))) (-15 -3691 ((-1053) $)) (-15 -1913 ($ (-1053) (-1053) (-1053))) (-15 -3849 ((-1053) $)) (-15 -3986 ((-1053) $)) (-15 -4120 ((-1053) $)) (-15 -3165 ((-107) $)) (-15 -4118 ((-107) $)) (-15 -2199 ((-107) $)) (-15 -3634 ($ (-1053) (-1053) (-1053)))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3872 (((-786) $) 50)) (-2540 (($) NIL T CONST)) (-2911 (($ $ (-839)) NIL)) (-3554 (($ $ (-839)) NIL)) (-3381 (($ $ (-839)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($ (-701)) 26)) (-3613 (((-701)) 15)) (-4050 (((-786) $) 52)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) NIL)) (-1363 (($ $ $ $) NIL)) (-2033 (($ $ $) NIL)) (-1850 (($) 20 T CONST)) (-3751 (((-107) $ $) 28)) (-3797 (($ $) 34) (($ $ $) 36)) (-3790 (($ $ $) 37)) (** (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-358 |#1| |#2| |#3|) (-13 (-675 |#3|) (-10 -8 (-15 -3613 ((-701))) (-15 -4050 ((-786) $)) (-15 -3872 ((-786) $)) (-15 -3987 ($ (-701))))) (-701) (-701) (-156)) (T -358))
-((-3613 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-156)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-156)))) (-3987 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))))
-(-13 (-675 |#3|) (-10 -8 (-15 -3613 ((-701))) (-15 -4050 ((-786) $)) (-15 -3872 ((-786) $)) (-15 -3987 ($ (-701)))))
-((-2020 (((-1053)) 10)) (-1530 (((-1042 (-1053))) 28)) (-2505 (((-1154) (-1053)) 25) (((-1154) (-356)) 24)) (-2514 (((-1154)) 26)) (-3898 (((-1042 (-1053))) 27)))
-(((-359) (-10 -7 (-15 -3898 ((-1042 (-1053)))) (-15 -1530 ((-1042 (-1053)))) (-15 -2514 ((-1154))) (-15 -2505 ((-1154) (-356))) (-15 -2505 ((-1154) (-1053))) (-15 -2020 ((-1053))))) (T -359))
-((-2020 (*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-359)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-359)))) (-2505 (*1 *2 *3) (-12 (-5 *3 (-356)) (-5 *2 (-1154)) (-5 *1 (-359)))) (-2514 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-359)))) (-1530 (*1 *2) (-12 (-5 *2 (-1042 (-1053))) (-5 *1 (-359)))) (-3898 (*1 *2) (-12 (-5 *2 (-1042 (-1053))) (-5 *1 (-359)))))
-(-10 -7 (-15 -3898 ((-1042 (-1053)))) (-15 -1530 ((-1042 (-1053)))) (-15 -2514 ((-1154))) (-15 -2505 ((-1154) (-356))) (-15 -2505 ((-1154) (-1053))) (-15 -2020 ((-1053))))
-((-3169 (((-701) (-301 |#1| |#2| |#3| |#4|)) 16)))
-(((-360 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3169 ((-701) (-301 |#1| |#2| |#3| |#4|)))) (-13 (-336) (-331)) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -360))
-((-3169 (*1 *2 *3) (-12 (-5 *3 (-301 *4 *5 *6 *7)) (-4 *4 (-13 (-336) (-331))) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-4 *7 (-310 *4 *5 *6)) (-5 *2 (-701)) (-5 *1 (-360 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3169 ((-701) (-301 |#1| |#2| |#3| |#4|))))
-((-3736 (((-107) $ $) NIL)) (-4103 (((-578 (-1053)) $ (-578 (-1053))) 37)) (-2291 (((-578 (-1053)) $ (-578 (-1053))) 38)) (-3232 (((-578 (-1053)) $ (-578 (-1053))) 39)) (-3615 (((-578 (-1053)) $) 34)) (-3634 (($) 23)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3772 (((-578 (-1053)) $) 35)) (-2680 (((-578 (-1053)) $) 36)) (-2125 (((-1154) $ (-501)) 32) (((-1154) $) 33)) (-1248 (($ (-786) (-501)) 29)) (-3691 (((-786) $) 41) (($ (-786)) 25)) (-3751 (((-107) $ $) NIL)))
-(((-361) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-786))) (-15 -1248 ($ (-786) (-501))) (-15 -2125 ((-1154) $ (-501))) (-15 -2125 ((-1154) $)) (-15 -2680 ((-578 (-1053)) $)) (-15 -3772 ((-578 (-1053)) $)) (-15 -3634 ($)) (-15 -3615 ((-578 (-1053)) $)) (-15 -3232 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -2291 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -4103 ((-578 (-1053)) $ (-578 (-1053))))))) (T -361))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-361)))) (-1248 (*1 *1 *2 *3) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-361)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-361)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-361)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-3634 (*1 *1) (-5 *1 (-361))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-3232 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-2291 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) (-4103 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ($ (-786))) (-15 -1248 ($ (-786) (-501))) (-15 -2125 ((-1154) $ (-501))) (-15 -2125 ((-1154) $)) (-15 -2680 ((-578 (-1053)) $)) (-15 -3772 ((-578 (-1053)) $)) (-15 -3634 ($)) (-15 -3615 ((-578 (-1053)) $)) (-15 -3232 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -2291 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -4103 ((-578 (-1053)) $ (-578 (-1053))))))
-((-3691 (((-361) |#1|) 11)))
-(((-362 |#1|) (-10 -7 (-15 -3691 ((-361) |#1|))) (-1001)) (T -362))
-((-3691 (*1 *2 *3) (-12 (-5 *2 (-361)) (-5 *1 (-362 *3)) (-4 *3 (-1001)))))
-(-10 -7 (-15 -3691 ((-361) |#1|)))
-((-3282 (((-578 (-1053)) (-578 (-1053))) 8)) (-2522 (((-1154) (-356)) 27)) (-2708 (((-1003) (-1070) (-578 (-1070)) (-1073) (-578 (-1070))) 59) (((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)) (-1070)) 35) (((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070))) 34)))
-(((-363) (-10 -7 (-15 -2708 ((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)))) (-15 -2708 ((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)) (-1070))) (-15 -2708 ((-1003) (-1070) (-578 (-1070)) (-1073) (-578 (-1070)))) (-15 -2522 ((-1154) (-356))) (-15 -3282 ((-578 (-1053)) (-578 (-1053)))))) (T -363))
-((-3282 (*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-363)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-356)) (-5 *2 (-1154)) (-5 *1 (-363)))) (-2708 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *5 (-1073)) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))) (-2708 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-578 (-578 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-578 (-3 (|:| |array| (-578 *3)) (|:| |scalar| (-1070))))) (-5 *6 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))) (-2708 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-578 (-578 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-578 (-3 (|:| |array| (-578 *3)) (|:| |scalar| (-1070))))) (-5 *6 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))))
-(-10 -7 (-15 -2708 ((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)))) (-15 -2708 ((-1003) (-1070) (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070)))) (-578 (-578 (-3 (|:| |array| (-578 (-1070))) (|:| |scalar| (-1070))))) (-578 (-1070)) (-1070))) (-15 -2708 ((-1003) (-1070) (-578 (-1070)) (-1073) (-578 (-1070)))) (-15 -2522 ((-1154) (-356))) (-15 -3282 ((-578 (-1053)) (-578 (-1053)))))
-((-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8)))
-(((-364) (-1180)) (T -364))
-((-2522 (*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1154)))))
-(-13 (-1104) (-555 (-786)) (-10 -8 (-15 -2522 ((-1154) $))))
-(((-555 (-786)) . T) ((-1104) . T))
-((-3765 (((-3 $ "failed") (-282 (-346))) 21) (((-3 $ "failed") (-282 (-501))) 19) (((-3 $ "failed") (-866 (-346))) 17) (((-3 $ "failed") (-866 (-501))) 15) (((-3 $ "failed") (-375 (-866 (-346)))) 13) (((-3 $ "failed") (-375 (-866 (-501)))) 11)) (-3490 (($ (-282 (-346))) 22) (($ (-282 (-501))) 20) (($ (-866 (-346))) 18) (($ (-866 (-501))) 16) (($ (-375 (-866 (-346)))) 14) (($ (-375 (-866 (-501)))) 12)) (-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-578 (-298))) 25) (($ (-298)) 24) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 23)))
-(((-365) (-1180)) (T -365))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-365)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-365)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-346))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-501))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-346))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-346))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-501))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-346)))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-346)))) (-4 *1 (-365)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-501)))) (-4 *1 (-365)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-501)))) (-4 *1 (-365)))))
-(-13 (-364) (-10 -8 (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3490 ($ (-282 (-346)))) (-15 -3765 ((-3 $ "failed") (-282 (-346)))) (-15 -3490 ($ (-282 (-501)))) (-15 -3765 ((-3 $ "failed") (-282 (-501)))) (-15 -3490 ($ (-866 (-346)))) (-15 -3765 ((-3 $ "failed") (-866 (-346)))) (-15 -3490 ($ (-866 (-501)))) (-15 -3765 ((-3 $ "failed") (-866 (-501)))) (-15 -3490 ($ (-375 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-346))))) (-15 -3490 ($ (-375 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-375 (-866 (-501)))))))
-(((-555 (-786)) . T) ((-364) . T) ((-1104) . T))
-((-2522 (((-1154) $) 37)) (-3691 (((-786) $) 89) (($ (-298)) 92) (($ (-578 (-298))) 91) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 88) (($ (-282 (-632))) 52) (($ (-282 (-630))) 66) (($ (-282 (-625))) 78) (($ (-262 (-282 (-632)))) 62) (($ (-262 (-282 (-630)))) 74) (($ (-262 (-282 (-625)))) 86) (($ (-282 (-501))) 96) (($ (-282 (-346))) 108) (($ (-282 (-152 (-346)))) 120) (($ (-262 (-282 (-501)))) 104) (($ (-262 (-282 (-346)))) 116) (($ (-262 (-282 (-152 (-346))))) 128)))
-(((-366 |#1| |#2| |#3| |#4|) (-13 (-364) (-10 -8 (-15 -3691 ($ (-298))) (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3691 ($ (-282 (-632)))) (-15 -3691 ($ (-282 (-630)))) (-15 -3691 ($ (-282 (-625)))) (-15 -3691 ($ (-262 (-282 (-632))))) (-15 -3691 ($ (-262 (-282 (-630))))) (-15 -3691 ($ (-262 (-282 (-625))))) (-15 -3691 ($ (-282 (-501)))) (-15 -3691 ($ (-282 (-346)))) (-15 -3691 ($ (-282 (-152 (-346))))) (-15 -3691 ($ (-262 (-282 (-501))))) (-15 -3691 ($ (-262 (-282 (-346))))) (-15 -3691 ($ (-262 (-282 (-152 (-346)))))))) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-1070)) (-1074)) (T -366))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-632))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-630))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-625))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-632)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-630)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-625)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-282 (-152 (-346)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-501)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-346)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-152 (-346))))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))))
-(-13 (-364) (-10 -8 (-15 -3691 ($ (-298))) (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3691 ($ (-282 (-632)))) (-15 -3691 ($ (-282 (-630)))) (-15 -3691 ($ (-282 (-625)))) (-15 -3691 ($ (-262 (-282 (-632))))) (-15 -3691 ($ (-262 (-282 (-630))))) (-15 -3691 ($ (-262 (-282 (-625))))) (-15 -3691 ($ (-282 (-501)))) (-15 -3691 ($ (-282 (-346)))) (-15 -3691 ($ (-282 (-152 (-346))))) (-15 -3691 ($ (-262 (-282 (-501))))) (-15 -3691 ($ (-262 (-282 (-346))))) (-15 -3691 ($ (-262 (-282 (-152 (-346))))))))
-((-3736 (((-107) $ $) NIL)) (-3499 ((|#2| $) 36)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1886 (($ (-375 |#2|)) 84)) (-3677 (((-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))) $) 37)) (-2596 (($ $) 32) (($ $ (-701)) 34)) (-1248 (((-375 |#2|) $) 46)) (-3699 (($ (-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|)))) 31)) (-3691 (((-786) $) 120)) (-3584 (($ $) 33) (($ $ (-701)) 35)) (-3751 (((-107) $ $) NIL)) (-3790 (($ |#2| $) 39)))
-(((-367 |#1| |#2|) (-13 (-1001) (-556 (-375 |#2|)) (-10 -8 (-15 -3790 ($ |#2| $)) (-15 -1886 ($ (-375 |#2|))) (-15 -3499 (|#2| $)) (-15 -3677 ((-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))) $)) (-15 -3699 ($ (-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))))) (-15 -2596 ($ $)) (-15 -3584 ($ $)) (-15 -2596 ($ $ (-701))) (-15 -3584 ($ $ (-701))))) (-13 (-331) (-134)) (-1125 |#1|)) (T -367))
-((-3790 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *2)) (-4 *2 (-1125 *3)))) (-1886 (*1 *1 *2) (-12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)))) (-3499 (*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-367 *3 *2)) (-4 *3 (-13 (-331) (-134))))) (-3677 (*1 *2 *1) (-12 (-4 *3 (-13 (-331) (-134))) (-5 *2 (-578 (-2 (|:| -3027 (-701)) (|:| -2896 *4) (|:| |num| *4)))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3027 (-701)) (|:| -2896 *4) (|:| |num| *4)))) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)))) (-2596 (*1 *1 *1) (-12 (-4 *2 (-13 (-331) (-134))) (-5 *1 (-367 *2 *3)) (-4 *3 (-1125 *2)))) (-3584 (*1 *1 *1) (-12 (-4 *2 (-13 (-331) (-134))) (-5 *1 (-367 *2 *3)) (-4 *3 (-1125 *2)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))))
-(-13 (-1001) (-556 (-375 |#2|)) (-10 -8 (-15 -3790 ($ |#2| $)) (-15 -1886 ($ (-375 |#2|))) (-15 -3499 (|#2| $)) (-15 -3677 ((-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))) $)) (-15 -3699 ($ (-578 (-2 (|:| -3027 (-701)) (|:| -2896 |#2|) (|:| |num| |#2|))))) (-15 -2596 ($ $)) (-15 -3584 ($ $)) (-15 -2596 ($ $ (-701))) (-15 -3584 ($ $ (-701)))))
-((-3736 (((-107) $ $) 9 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))))) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 15 (|has| |#1| (-806 (-346)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 14 (|has| |#1| (-806 (-501))))) (-3460 (((-1053) $) 13 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))))) (-3708 (((-1018) $) 12 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))))) (-3691 (((-786) $) 11 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))))) (-3751 (((-107) $ $) 10 (-1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))))))
-(((-368 |#1|) (-1180) (-1104)) (T -368))
-NIL
-(-13 (-1104) (-10 -7 (IF (|has| |t#1| (-806 (-501))) (-6 (-806 (-501))) |noBranch|) (IF (|has| |t#1| (-806 (-346))) (-6 (-806 (-346))) |noBranch|)))
-(((-97) -1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))) ((-555 (-786)) -1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-1001) -1405 (|has| |#1| (-806 (-501))) (|has| |#1| (-806 (-346)))) ((-1104) . T))
-((-3067 (($ $) 10) (($ $ (-701)) 11)))
-(((-369 |#1|) (-10 -8 (-15 -3067 (|#1| |#1| (-701))) (-15 -3067 (|#1| |#1|))) (-370)) (T -369))
-NIL
-(-10 -8 (-15 -3067 (|#1| |#1| (-701))) (-15 -3067 (|#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-3067 (($ $) 79) (($ $ (-701)) 78)) (-1628 (((-107) $) 71)) (-3169 (((-762 (-839)) $) 81)) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1984 (((-3 (-701) "failed") $ $) 80)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65)) (-1274 (((-3 $ "failed") $) 82)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66)))
-(((-370) (-1180)) (T -370))
-((-3169 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-762 (-839))))) (-1984 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-370)) (-5 *2 (-701)))) (-3067 (*1 *1 *1) (-4 *1 (-370))) (-3067 (*1 *1 *1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-701)))))
-(-13 (-331) (-132) (-10 -8 (-15 -3169 ((-762 (-839)) $)) (-15 -1984 ((-3 (-701) "failed") $ $)) (-15 -3067 ($ $)) (-15 -3067 ($ $ (-701)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T))
-((-2017 (($ (-501) (-501)) 11) (($ (-501) (-501) (-839)) NIL)) (-3960 (((-839)) 16) (((-839) (-839)) NIL)))
-(((-371 |#1|) (-10 -8 (-15 -3960 ((-839) (-839))) (-15 -3960 ((-839))) (-15 -2017 (|#1| (-501) (-501) (-839))) (-15 -2017 (|#1| (-501) (-501)))) (-372)) (T -371))
-((-3960 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-371 *3)) (-4 *3 (-372)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-371 *3)) (-4 *3 (-372)))))
-(-10 -8 (-15 -3960 ((-839) (-839))) (-15 -3960 ((-839))) (-15 -2017 (|#1| (-501) (-501) (-839))) (-15 -2017 (|#1| (-501) (-501))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2197 (((-501) $) 89)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-2805 (($ $) 87)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-3743 (($ $) 97)) (-2781 (((-107) $ $) 59)) (-1417 (((-501) $) 114)) (-2540 (($) 17 T CONST)) (-1453 (($ $) 86)) (-3765 (((-3 (-501) "failed") $) 102) (((-3 (-375 (-501)) "failed") $) 99)) (-3490 (((-501) $) 101) (((-375 (-501)) $) 98)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-3943 (((-839)) 130) (((-839) (-839)) 127 (|has| $ (-6 -4158)))) (-2164 (((-107) $) 112)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 93)) (-3169 (((-501) $) 136)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 96)) (-2626 (($ $) 92)) (-4067 (((-107) $) 113)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-4111 (($ $ $) 111) (($) 124 (-12 (-3031 (|has| $ (-6 -4158))) (-3031 (|has| $ (-6 -4150)))))) (-1323 (($ $ $) 110) (($) 123 (-12 (-3031 (|has| $ (-6 -4158))) (-3031 (|has| $ (-6 -4150)))))) (-1828 (((-501) $) 133)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3039 (((-839) (-501)) 126 (|has| $ (-6 -4158)))) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2801 (($ $) 88)) (-3383 (($ $) 90)) (-2017 (($ (-501) (-501)) 138) (($ (-501) (-501) (-839)) 137)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-3027 (((-501) $) 134)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3960 (((-839)) 131) (((-839) (-839)) 128 (|has| $ (-6 -4158)))) (-1537 (((-839) (-501)) 125 (|has| $ (-6 -4158)))) (-1248 (((-346) $) 105) (((-199) $) 104) (((-810 (-346)) $) 94)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ (-501)) 103) (($ (-375 (-501))) 100)) (-3965 (((-701)) 29)) (-2803 (($ $) 91)) (-2751 (((-839)) 132) (((-839) (-839)) 129 (|has| $ (-6 -4158)))) (-1965 (((-839)) 135)) (-2442 (((-107) $ $) 39)) (-1720 (($ $) 115)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 108)) (-3768 (((-107) $ $) 107)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 109)) (-3762 (((-107) $ $) 106)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68) (($ $ (-375 (-501))) 95)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66)))
-(((-372) (-1180)) (T -372))
-((-2017 (*1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-372)))) (-2017 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-839)) (-4 *1 (-372)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) (-1965 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) (-3027 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) (-1828 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) (-2751 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) (-3960 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) (-3943 (*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) (-3039 (*1 *2 *3) (-12 (-5 *3 (-501)) (|has| *1 (-6 -4158)) (-4 *1 (-372)) (-5 *2 (-839)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-501)) (|has| *1 (-6 -4158)) (-4 *1 (-372)) (-5 *2 (-839)))) (-4111 (*1 *1) (-12 (-4 *1 (-372)) (-3031 (|has| *1 (-6 -4158))) (-3031 (|has| *1 (-6 -4150))))) (-1323 (*1 *1) (-12 (-4 *1 (-372)) (-3031 (|has| *1 (-6 -4158))) (-3031 (|has| *1 (-6 -4150))))))
-(-13 (-967) (-10 -8 (-6 -2391) (-15 -2017 ($ (-501) (-501))) (-15 -2017 ($ (-501) (-501) (-839))) (-15 -3169 ((-501) $)) (-15 -1965 ((-839))) (-15 -3027 ((-501) $)) (-15 -1828 ((-501) $)) (-15 -2751 ((-839))) (-15 -3960 ((-839))) (-15 -3943 ((-839))) (IF (|has| $ (-6 -4158)) (PROGN (-15 -2751 ((-839) (-839))) (-15 -3960 ((-839) (-839))) (-15 -3943 ((-839) (-839))) (-15 -3039 ((-839) (-501))) (-15 -1537 ((-839) (-501)))) |noBranch|) (IF (|has| $ (-6 -4150)) |noBranch| (IF (|has| $ (-6 -4158)) |noBranch| (PROGN (-15 -4111 ($)) (-15 -1323 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-156) . T) ((-556 (-199)) . T) ((-556 (-346)) . T) ((-556 (-810 (-346))) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-775) . T) ((-777) . T) ((-806 (-346)) . T) ((-841) . T) ((-916) . T) ((-933) . T) ((-967) . T) ((-950 (-375 (-501))) . T) ((-950 (-501)) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 40)) (-3568 (($ $) 55)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 142)) (-2865 (($ $) NIL)) (-1639 (((-107) $) 34)) (-1738 ((|#1| $) 12)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-1108)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-1108)))) (-4093 (($ |#1| (-501)) 30)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 112)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 53)) (-2174 (((-3 $ "failed") $) 127)) (-2870 (((-3 (-375 (-501)) "failed") $) 61 (|has| |#1| (-500)))) (-1696 (((-107) $) 57 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 59 (|has| |#1| (-500)))) (-1829 (($ |#1| (-501)) 32)) (-1628 (((-107) $) 148 (|has| |#1| (-1108)))) (-1355 (((-107) $) 41)) (-3364 (((-701) $) 36)) (-3048 (((-3 "nil" "sqfr" "irred" "prime") $ (-501)) 133)) (-2153 ((|#1| $ (-501)) 132)) (-2724 (((-501) $ (-501)) 131)) (-1988 (($ |#1| (-501)) 29)) (-1212 (($ (-1 |#1| |#1|) $) 139)) (-1726 (($ |#1| (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501))))) 56)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3594 (($ |#1| (-501)) 31)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) 143 (|has| |#1| (-419)))) (-2756 (($ |#1| (-501) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-1575 (((-578 (-2 (|:| -3739 |#1|) (|:| -3027 (-501)))) $) 52)) (-3328 (((-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))) $) 11)) (-3739 (((-373 $) $) NIL (|has| |#1| (-1108)))) (-3694 (((-3 $ "failed") $ $) 134)) (-3027 (((-501) $) 128)) (-1967 ((|#1| $) 54)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 76 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 81 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) $) NIL (|has| |#1| (-476 (-1070) $))) (($ $ (-578 (-1070)) (-578 $)) 82 (|has| |#1| (-476 (-1070) $))) (($ $ (-578 (-262 $))) 78 (|has| |#1| (-278 $))) (($ $ (-262 $)) NIL (|has| |#1| (-278 $))) (($ $ $ $) NIL (|has| |#1| (-278 $))) (($ $ (-578 $) (-578 $)) NIL (|has| |#1| (-278 $)))) (-2007 (($ $ |#1|) 68 (|has| |#1| (-256 |#1| |#1|))) (($ $ $) 69 (|has| |#1| (-256 $ $)))) (-2596 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) 138)) (-1248 (((-490) $) 26 (|has| |#1| (-556 (-490)))) (((-346) $) 88 (|has| |#1| (-933))) (((-199) $) 91 (|has| |#1| (-933)))) (-3691 (((-786) $) 110) (($ (-501)) 44) (($ $) NIL) (($ |#1|) 43) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501)))))) (-3965 (((-701)) 46)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 38 T CONST)) (-1925 (($) 37 T CONST)) (-3584 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3751 (((-107) $ $) 92)) (-3797 (($ $) 124) (($ $ $) NIL)) (-3790 (($ $ $) 136)) (** (($ $ (-839)) NIL) (($ $ (-701)) 98)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL)))
-(((-373 |#1|) (-13 (-508) (-204 |#1|) (-37 |#1|) (-306 |#1|) (-380 |#1|) (-10 -8 (-15 -1967 (|#1| $)) (-15 -3027 ((-501) $)) (-15 -1726 ($ |#1| (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))))) (-15 -3328 ((-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))) $)) (-15 -1988 ($ |#1| (-501))) (-15 -1575 ((-578 (-2 (|:| -3739 |#1|) (|:| -3027 (-501)))) $)) (-15 -3594 ($ |#1| (-501))) (-15 -2724 ((-501) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -3048 ((-3 "nil" "sqfr" "irred" "prime") $ (-501))) (-15 -3364 ((-701) $)) (-15 -1829 ($ |#1| (-501))) (-15 -4093 ($ |#1| (-501))) (-15 -2756 ($ |#1| (-501) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1738 (|#1| $)) (-15 -3568 ($ $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-419)) (-6 (-419)) |noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |noBranch|) (IF (|has| |#1| (-1108)) (-6 (-1108)) |noBranch|) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|) (IF (|has| |#1| (-256 $ $)) (-6 (-256 $ $)) |noBranch|) (IF (|has| |#1| (-278 $)) (-6 (-278 $)) |noBranch|) (IF (|has| |#1| (-476 (-1070) $)) (-6 (-476 (-1070) $)) |noBranch|))) (-508)) (T -373))
-((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-508)) (-5 *1 (-373 *3)))) (-1967 (*1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-1726 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-501))))) (-4 *2 (-508)) (-5 *1 (-373 *2)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-501))))) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-1988 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3739 *3) (|:| -3027 (-501))))) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-3594 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-2724 (*1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-3048 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-373 *4)) (-4 *4 (-508)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) (-1829 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-4093 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-2756 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-1738 (*1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-3568 (*1 *1 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) (-2870 (*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))))
-(-13 (-508) (-204 |#1|) (-37 |#1|) (-306 |#1|) (-380 |#1|) (-10 -8 (-15 -1967 (|#1| $)) (-15 -3027 ((-501) $)) (-15 -1726 ($ |#1| (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))))) (-15 -3328 ((-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-501)))) $)) (-15 -1988 ($ |#1| (-501))) (-15 -1575 ((-578 (-2 (|:| -3739 |#1|) (|:| -3027 (-501)))) $)) (-15 -3594 ($ |#1| (-501))) (-15 -2724 ((-501) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -3048 ((-3 "nil" "sqfr" "irred" "prime") $ (-501))) (-15 -3364 ((-701) $)) (-15 -1829 ($ |#1| (-501))) (-15 -4093 ($ |#1| (-501))) (-15 -2756 ($ |#1| (-501) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1738 (|#1| $)) (-15 -3568 ($ $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-419)) (-6 (-419)) |noBranch|) (IF (|has| |#1| (-933)) (-6 (-933)) |noBranch|) (IF (|has| |#1| (-1108)) (-6 (-1108)) |noBranch|) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|) (IF (|has| |#1| (-256 $ $)) (-6 (-256 $ $)) |noBranch|) (IF (|has| |#1| (-278 $)) (-6 (-278 $)) |noBranch|) (IF (|has| |#1| (-476 (-1070) $)) (-6 (-476 (-1070) $)) |noBranch|)))
-((-1212 (((-373 |#2|) (-1 |#2| |#1|) (-373 |#1|)) 20)))
-(((-374 |#1| |#2|) (-10 -7 (-15 -1212 ((-373 |#2|) (-1 |#2| |#1|) (-373 |#1|)))) (-508) (-508)) (T -374))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-373 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-5 *2 (-373 *6)) (-5 *1 (-374 *5 *6)))))
-(-10 -7 (-15 -1212 ((-373 |#2|) (-1 |#2| |#1|) (-373 |#1|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 13)) (-2197 ((|#1| $) 21 (|has| |#1| (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| |#1| (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 17) (((-3 (-1070) "failed") $) NIL (|has| |#1| (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) 70 (|has| |#1| (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501))))) (-3490 ((|#1| $) 15) (((-1070) $) NIL (|has| |#1| (-950 (-1070)))) (((-375 (-501)) $) 67 (|has| |#1| (-950 (-501)))) (((-501) $) NIL (|has| |#1| (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) 50)) (-2890 (($) NIL (|has| |#1| (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| |#1| (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| |#1| (-806 (-346))))) (-1355 (((-107) $) 64)) (-2117 (($ $) NIL)) (-2946 ((|#1| $) 71)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-1046)))) (-4067 (((-107) $) NIL (|has| |#1| (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 97)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| |#1| (-276)))) (-3383 ((|#1| $) 28 (|has| |#1| (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 133 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 129 (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|)))) (-1864 (((-701) $) NIL)) (-2007 (($ $ |#1|) NIL (|has| |#1| (-256 |#1| |#1|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-3307 (($ $) NIL)) (-2949 ((|#1| $) 73)) (-1248 (((-810 (-501)) $) NIL (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| |#1| (-556 (-810 (-346))))) (((-490) $) NIL (|has| |#1| (-556 (-490)))) (((-346) $) NIL (|has| |#1| (-933))) (((-199) $) NIL (|has| |#1| (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 10) (($ (-1070)) NIL (|has| |#1| (-950 (-1070))))) (-1274 (((-3 $ "failed") $) 99 (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 100)) (-2803 ((|#1| $) 26 (|has| |#1| (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| |#1| (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 22 T CONST)) (-1925 (($) 8 T CONST)) (-3671 (((-1053) $) 43 (-12 (|has| |#1| (-500)) (|has| |#1| (-751)))) (((-1053) $ (-107)) 44 (-12 (|has| |#1| (-500)) (|has| |#1| (-751)))) (((-1154) (-753) $) 45 (-12 (|has| |#1| (-500)) (|has| |#1| (-751)))) (((-1154) (-753) $ (-107)) 46 (-12 (|has| |#1| (-500)) (|has| |#1| (-751))))) (-3584 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 56)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) 24 (|has| |#1| (-777)))) (-3803 (($ $ $) 124) (($ |#1| |#1|) 52)) (-3797 (($ $) 25) (($ $ $) 55)) (-3790 (($ $ $) 53)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 123)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 60) (($ $ $) 57) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-375 |#1|) (-13 (-906 |#1|) (-10 -7 (IF (|has| |#1| (-500)) (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4154)) (IF (|has| |#1| (-419)) (IF (|has| |#1| (-6 -4165)) (-6 -4154) |noBranch|) |noBranch|) |noBranch|))) (-508)) (T -375))
-NIL
-(-13 (-906 |#1|) (-10 -7 (IF (|has| |#1| (-500)) (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4154)) (IF (|has| |#1| (-419)) (IF (|has| |#1| (-6 -4165)) (-6 -4154) |noBranch|) |noBranch|) |noBranch|)))
-((-1212 (((-375 |#2|) (-1 |#2| |#1|) (-375 |#1|)) 13)))
-(((-376 |#1| |#2|) (-10 -7 (-15 -1212 ((-375 |#2|) (-1 |#2| |#1|) (-375 |#1|)))) (-508) (-508)) (T -376))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-375 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-5 *2 (-375 *6)) (-5 *1 (-376 *5 *6)))))
-(-10 -7 (-15 -1212 ((-375 |#2|) (-1 |#2| |#1|) (-375 |#1|))))
-((-2239 (((-621 |#2|) (-1148 $)) NIL) (((-621 |#2|)) 18)) (-3142 (($ (-1148 |#2|) (-1148 $)) NIL) (($ (-1148 |#2|)) 26)) (-3070 (((-621 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) $) 22)) (-1792 ((|#3| $) 59)) (-2532 ((|#2| (-1148 $)) NIL) ((|#2|) 20)) (-2085 (((-1148 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) NIL) (((-1148 |#2|) $) NIL) (((-621 |#2|) (-1148 $)) 24)) (-1248 (((-1148 |#2|) $) 11) (($ (-1148 |#2|)) 13)) (-2942 ((|#3| $) 51)))
-(((-377 |#1| |#2| |#3|) (-10 -8 (-15 -3070 ((-621 |#2|) |#1|)) (-15 -2532 (|#2|)) (-15 -2239 ((-621 |#2|))) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1792 (|#3| |#1|)) (-15 -2942 (|#3| |#1|)) (-15 -2239 ((-621 |#2|) (-1148 |#1|))) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3070 ((-621 |#2|) |#1| (-1148 |#1|)))) (-378 |#2| |#3|) (-156) (-1125 |#2|)) (T -377))
-((-2239 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)) (-5 *1 (-377 *3 *4 *5)) (-4 *3 (-378 *4 *5)))) (-2532 (*1 *2) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-156)) (-5 *1 (-377 *3 *2 *4)) (-4 *3 (-378 *2 *4)))))
-(-10 -8 (-15 -3070 ((-621 |#2|) |#1|)) (-15 -2532 (|#2|)) (-15 -2239 ((-621 |#2|))) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1792 (|#3| |#1|)) (-15 -2942 (|#3| |#1|)) (-15 -2239 ((-621 |#2|) (-1148 |#1|))) (-15 -2532 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3070 ((-621 |#2|) |#1| (-1148 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2239 (((-621 |#1|) (-1148 $)) 46) (((-621 |#1|)) 61)) (-2225 ((|#1| $) 52)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3142 (($ (-1148 |#1|) (-1148 $)) 48) (($ (-1148 |#1|)) 64)) (-3070 (((-621 |#1|) $ (-1148 $)) 53) (((-621 |#1|) $) 59)) (-2174 (((-3 $ "failed") $) 34)) (-3689 (((-839)) 54)) (-1355 (((-107) $) 31)) (-2626 ((|#1| $) 51)) (-1792 ((|#2| $) 44 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2532 ((|#1| (-1148 $)) 47) ((|#1|) 60)) (-2085 (((-1148 |#1|) $ (-1148 $)) 50) (((-621 |#1|) (-1148 $) (-1148 $)) 49) (((-1148 |#1|) $) 66) (((-621 |#1|) (-1148 $)) 65)) (-1248 (((-1148 |#1|) $) 63) (($ (-1148 |#1|)) 62)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37)) (-1274 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-2942 ((|#2| $) 45)) (-3965 (((-701)) 29)) (-4119 (((-1148 $)) 67)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-378 |#1| |#2|) (-1180) (-156) (-1125 |t#1|)) (T -378))
-((-4119 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *1)) (-4 *1 (-378 *3 *4)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *3)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-378 *3 *4)) (-4 *4 (-1125 *3)))) (-1248 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *3)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-378 *3 *4)) (-4 *4 (-1125 *3)))) (-2239 (*1 *2) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-621 *3)))) (-2532 (*1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-621 *3)))))
-(-13 (-338 |t#1| |t#2|) (-10 -8 (-15 -4119 ((-1148 $))) (-15 -2085 ((-1148 |t#1|) $)) (-15 -2085 ((-621 |t#1|) (-1148 $))) (-15 -3142 ($ (-1148 |t#1|))) (-15 -1248 ((-1148 |t#1|) $)) (-15 -1248 ($ (-1148 |t#1|))) (-15 -2239 ((-621 |t#1|))) (-15 -2532 (|t#1|)) (-15 -3070 ((-621 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-338 |#1| |#2|) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) . T) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) 27) (((-3 (-501) "failed") $) 19)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) 24) (((-501) $) 14)) (-3691 (($ |#2|) NIL) (($ (-375 (-501))) 22) (($ (-501)) 11)))
-(((-379 |#1| |#2|) (-10 -8 (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|))) (-380 |#2|) (-1104)) (T -379))
-NIL
-(-10 -8 (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)))
-((-3765 (((-3 |#1| "failed") $) 7) (((-3 (-375 (-501)) "failed") $) 16 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 13 (|has| |#1| (-950 (-501))))) (-3490 ((|#1| $) 8) (((-375 (-501)) $) 15 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 12 (|has| |#1| (-950 (-501))))) (-3691 (($ |#1|) 6) (($ (-375 (-501))) 17 (|has| |#1| (-950 (-375 (-501))))) (($ (-501)) 14 (|has| |#1| (-950 (-501))))))
-(((-380 |#1|) (-1180) (-1104)) (T -380))
-NIL
-(-13 (-950 |t#1|) (-10 -7 (IF (|has| |t#1| (-950 (-501))) (-6 (-950 (-501))) |noBranch|) (IF (|has| |t#1| (-950 (-375 (-501)))) (-6 (-950 (-375 (-501)))) |noBranch|)))
-(((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T))
-((-3736 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-3127 ((|#4| (-701) (-1148 |#4|)) 55)) (-1355 (((-107) $) NIL)) (-2946 (((-1148 |#4|) $) 17)) (-2626 ((|#2| $) 53)) (-1743 (($ $) 136)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 98)) (-3463 (($ (-1148 |#4|)) 97)) (-3708 (((-1018) $) NIL)) (-2949 ((|#1| $) 18)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 131)) (-4119 (((-1148 |#4|) $) 126)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 11 T CONST)) (-3751 (((-107) $ $) 39)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 119)) (* (($ $ $) 118)))
-(((-381 |#1| |#2| |#3| |#4|) (-13 (-440) (-10 -8 (-15 -3463 ($ (-1148 |#4|))) (-15 -4119 ((-1148 |#4|) $)) (-15 -2626 (|#2| $)) (-15 -2946 ((-1148 |#4|) $)) (-15 -2949 (|#1| $)) (-15 -1743 ($ $)) (-15 -3127 (|#4| (-701) (-1148 |#4|))))) (-276) (-906 |#1|) (-1125 |#2|) (-13 (-378 |#2| |#3|) (-950 |#2|))) (T -381))
-((-3463 (*1 *1 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *3 (-276)) (-5 *1 (-381 *3 *4 *5 *6)))) (-4119 (*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-381 *3 *4 *5 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))))) (-2626 (*1 *2 *1) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-906 *3)) (-5 *1 (-381 *3 *2 *4 *5)) (-4 *3 (-276)) (-4 *5 (-13 (-378 *2 *4) (-950 *2))))) (-2946 (*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-381 *3 *4 *5 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))))) (-2949 (*1 *2 *1) (-12 (-4 *3 (-906 *2)) (-4 *4 (-1125 *3)) (-4 *2 (-276)) (-5 *1 (-381 *2 *3 *4 *5)) (-4 *5 (-13 (-378 *3 *4) (-950 *3))))) (-1743 (*1 *1 *1) (-12 (-4 *2 (-276)) (-4 *3 (-906 *2)) (-4 *4 (-1125 *3)) (-5 *1 (-381 *2 *3 *4 *5)) (-4 *5 (-13 (-378 *3 *4) (-950 *3))))) (-3127 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-1148 *2)) (-4 *5 (-276)) (-4 *6 (-906 *5)) (-4 *2 (-13 (-378 *6 *7) (-950 *6))) (-5 *1 (-381 *5 *6 *7 *2)) (-4 *7 (-1125 *6)))))
-(-13 (-440) (-10 -8 (-15 -3463 ($ (-1148 |#4|))) (-15 -4119 ((-1148 |#4|) $)) (-15 -2626 (|#2| $)) (-15 -2946 ((-1148 |#4|) $)) (-15 -2949 (|#1| $)) (-15 -1743 ($ $)) (-15 -3127 (|#4| (-701) (-1148 |#4|)))))
-((-1212 (((-381 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-381 |#1| |#2| |#3| |#4|)) 33)))
-(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1212 ((-381 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-381 |#1| |#2| |#3| |#4|)))) (-276) (-906 |#1|) (-1125 |#2|) (-13 (-378 |#2| |#3|) (-950 |#2|)) (-276) (-906 |#5|) (-1125 |#6|) (-13 (-378 |#6| |#7|) (-950 |#6|))) (T -382))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-381 *5 *6 *7 *8)) (-4 *5 (-276)) (-4 *6 (-906 *5)) (-4 *7 (-1125 *6)) (-4 *8 (-13 (-378 *6 *7) (-950 *6))) (-4 *9 (-276)) (-4 *10 (-906 *9)) (-4 *11 (-1125 *10)) (-5 *2 (-381 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-378 *10 *11) (-950 *10))))))
-(-10 -7 (-15 -1212 ((-381 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-381 |#1| |#2| |#3| |#4|))))
-((-3736 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-2626 ((|#2| $) 60)) (-1356 (($ (-1148 |#4|)) 25) (($ (-381 |#1| |#2| |#3| |#4|)) 75 (|has| |#4| (-950 |#2|)))) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 34)) (-4119 (((-1148 |#4|) $) 26)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1925 (($) 23 T CONST)) (-3751 (((-107) $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ $ $) 72)))
-(((-383 |#1| |#2| |#3| |#4| |#5|) (-13 (-657) (-10 -8 (-15 -4119 ((-1148 |#4|) $)) (-15 -2626 (|#2| $)) (-15 -1356 ($ (-1148 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1356 ($ (-381 |#1| |#2| |#3| |#4|))) |noBranch|))) (-276) (-906 |#1|) (-1125 |#2|) (-378 |#2| |#3|) (-1148 |#4|)) (T -383))
-((-4119 (*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-383 *3 *4 *5 *6 *7)) (-4 *6 (-378 *4 *5)) (-14 *7 *2))) (-2626 (*1 *2 *1) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-906 *3)) (-5 *1 (-383 *3 *2 *4 *5 *6)) (-4 *3 (-276)) (-4 *5 (-378 *2 *4)) (-14 *6 (-1148 *5)))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-378 *4 *5)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *3 (-276)) (-5 *1 (-383 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1356 (*1 *1 *2) (-12 (-5 *2 (-381 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *6 (-378 *4 *5)) (-14 *7 (-1148 *6)) (-5 *1 (-383 *3 *4 *5 *6 *7)))))
-(-13 (-657) (-10 -8 (-15 -4119 ((-1148 |#4|) $)) (-15 -2626 (|#2| $)) (-15 -1356 ($ (-1148 |#4|))) (IF (|has| |#4| (-950 |#2|)) (-15 -1356 ($ (-381 |#1| |#2| |#3| |#4|))) |noBranch|)))
-((-1212 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-384 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|))) (-386 |#2|) (-156) (-386 |#4|) (-156)) (T -384))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-386 *6)) (-5 *1 (-384 *4 *5 *2 *6)) (-4 *4 (-386 *5)))))
-(-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1738 (((-3 $ "failed")) 85)) (-1763 (((-1148 (-621 |#2|)) (-1148 $)) NIL) (((-1148 (-621 |#2|))) 90)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 84)) (-1956 (((-3 $ "failed")) 83)) (-2311 (((-621 |#2|) (-1148 $)) NIL) (((-621 |#2|)) 101)) (-3867 (((-621 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) $) 109)) (-3665 (((-1064 (-866 |#2|))) 54)) (-2398 ((|#2| (-1148 $)) NIL) ((|#2|) 105)) (-3142 (($ (-1148 |#2|) (-1148 $)) NIL) (($ (-1148 |#2|)) 112)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 82)) (-2653 (((-3 $ "failed")) 74)) (-4146 (((-621 |#2|) (-1148 $)) NIL) (((-621 |#2|)) 99)) (-1472 (((-621 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) $) 107)) (-2582 (((-1064 (-866 |#2|))) 53)) (-1600 ((|#2| (-1148 $)) NIL) ((|#2|) 103)) (-2085 (((-1148 |#2|) $ (-1148 $)) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) NIL) (((-1148 |#2|) $) NIL) (((-621 |#2|) (-1148 $)) 111)) (-1248 (((-1148 |#2|) $) 95) (($ (-1148 |#2|)) 97)) (-3056 (((-578 (-866 |#2|)) (-1148 $)) NIL) (((-578 (-866 |#2|))) 93)) (-1183 (($ (-621 |#2|) $) 89)))
-(((-385 |#1| |#2|) (-10 -8 (-15 -1183 (|#1| (-621 |#2|) |#1|)) (-15 -3665 ((-1064 (-866 |#2|)))) (-15 -2582 ((-1064 (-866 |#2|)))) (-15 -3867 ((-621 |#2|) |#1|)) (-15 -1472 ((-621 |#2|) |#1|)) (-15 -2311 ((-621 |#2|))) (-15 -4146 ((-621 |#2|))) (-15 -2398 (|#2|)) (-15 -1600 (|#2|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -3056 ((-578 (-866 |#2|)))) (-15 -1763 ((-1148 (-621 |#2|)))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1738 ((-3 |#1| "failed"))) (-15 -1956 ((-3 |#1| "failed"))) (-15 -2653 ((-3 |#1| "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed"))) (-15 -1765 ((-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed"))) (-15 -2311 ((-621 |#2|) (-1148 |#1|))) (-15 -4146 ((-621 |#2|) (-1148 |#1|))) (-15 -2398 (|#2| (-1148 |#1|))) (-15 -1600 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3867 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1472 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1763 ((-1148 (-621 |#2|)) (-1148 |#1|))) (-15 -3056 ((-578 (-866 |#2|)) (-1148 |#1|)))) (-386 |#2|) (-156)) (T -385))
-((-1763 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-3056 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-578 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-1600 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-385 *3 *2)) (-4 *3 (-386 *2)))) (-2398 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-385 *3 *2)) (-4 *3 (-386 *2)))) (-4146 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-621 *4)) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-2311 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-621 *4)) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-2582 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) (-3665 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))))
-(-10 -8 (-15 -1183 (|#1| (-621 |#2|) |#1|)) (-15 -3665 ((-1064 (-866 |#2|)))) (-15 -2582 ((-1064 (-866 |#2|)))) (-15 -3867 ((-621 |#2|) |#1|)) (-15 -1472 ((-621 |#2|) |#1|)) (-15 -2311 ((-621 |#2|))) (-15 -4146 ((-621 |#2|))) (-15 -2398 (|#2|)) (-15 -1600 (|#2|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -3142 (|#1| (-1148 |#2|))) (-15 -3056 ((-578 (-866 |#2|)))) (-15 -1763 ((-1148 (-621 |#2|)))) (-15 -2085 ((-621 |#2|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1|)) (-15 -1738 ((-3 |#1| "failed"))) (-15 -1956 ((-3 |#1| "failed"))) (-15 -2653 ((-3 |#1| "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed"))) (-15 -1765 ((-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed"))) (-15 -2311 ((-621 |#2|) (-1148 |#1|))) (-15 -4146 ((-621 |#2|) (-1148 |#1|))) (-15 -2398 (|#2| (-1148 |#1|))) (-15 -1600 (|#2| (-1148 |#1|))) (-15 -3142 (|#1| (-1148 |#2|) (-1148 |#1|))) (-15 -2085 ((-621 |#2|) (-1148 |#1|) (-1148 |#1|))) (-15 -2085 ((-1148 |#2|) |#1| (-1148 |#1|))) (-15 -3867 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1472 ((-621 |#2|) |#1| (-1148 |#1|))) (-15 -1763 ((-1148 (-621 |#2|)) (-1148 |#1|))) (-15 -3056 ((-578 (-866 |#2|)) (-1148 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1738 (((-3 $ "failed")) 37 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-1763 (((-1148 (-621 |#1|)) (-1148 $)) 78) (((-1148 (-621 |#1|))) 100)) (-1674 (((-1148 $)) 81)) (-2540 (($) 17 T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 40 (|has| |#1| (-508)))) (-1956 (((-3 $ "failed")) 38 (|has| |#1| (-508)))) (-2311 (((-621 |#1|) (-1148 $)) 65) (((-621 |#1|)) 92)) (-1909 ((|#1| $) 74)) (-3867 (((-621 |#1|) $ (-1148 $)) 76) (((-621 |#1|) $) 90)) (-1887 (((-3 $ "failed") $) 45 (|has| |#1| (-508)))) (-3665 (((-1064 (-866 |#1|))) 88 (|has| |#1| (-331)))) (-2911 (($ $ (-839)) 28)) (-3925 ((|#1| $) 72)) (-2292 (((-1064 |#1|) $) 42 (|has| |#1| (-508)))) (-2398 ((|#1| (-1148 $)) 67) ((|#1|) 94)) (-3333 (((-1064 |#1|) $) 63)) (-3656 (((-107)) 57)) (-3142 (($ (-1148 |#1|) (-1148 $)) 69) (($ (-1148 |#1|)) 98)) (-2174 (((-3 $ "failed") $) 47 (|has| |#1| (-508)))) (-3689 (((-839)) 80)) (-3168 (((-107)) 54)) (-3554 (($ $ (-839)) 33)) (-3930 (((-107)) 50)) (-2838 (((-107)) 48)) (-3874 (((-107)) 52)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) 41 (|has| |#1| (-508)))) (-2653 (((-3 $ "failed")) 39 (|has| |#1| (-508)))) (-4146 (((-621 |#1|) (-1148 $)) 66) (((-621 |#1|)) 93)) (-3821 ((|#1| $) 75)) (-1472 (((-621 |#1|) $ (-1148 $)) 77) (((-621 |#1|) $) 91)) (-1992 (((-3 $ "failed") $) 46 (|has| |#1| (-508)))) (-2582 (((-1064 (-866 |#1|))) 89 (|has| |#1| (-331)))) (-3381 (($ $ (-839)) 29)) (-3784 ((|#1| $) 73)) (-3474 (((-1064 |#1|) $) 43 (|has| |#1| (-508)))) (-1600 ((|#1| (-1148 $)) 68) ((|#1|) 95)) (-2270 (((-1064 |#1|) $) 64)) (-2172 (((-107)) 58)) (-3460 (((-1053) $) 9)) (-3808 (((-107)) 49)) (-2417 (((-107)) 51)) (-2794 (((-107)) 53)) (-3708 (((-1018) $) 10)) (-2780 (((-107)) 56)) (-2007 ((|#1| $ (-501)) 101)) (-2085 (((-1148 |#1|) $ (-1148 $)) 71) (((-621 |#1|) (-1148 $) (-1148 $)) 70) (((-1148 |#1|) $) 103) (((-621 |#1|) (-1148 $)) 102)) (-1248 (((-1148 |#1|) $) 97) (($ (-1148 |#1|)) 96)) (-3056 (((-578 (-866 |#1|)) (-1148 $)) 79) (((-578 (-866 |#1|))) 99)) (-2144 (($ $ $) 25)) (-1977 (((-107)) 62)) (-3691 (((-786) $) 11)) (-4119 (((-1148 $)) 104)) (-4102 (((-578 (-1148 |#1|))) 44 (|has| |#1| (-508)))) (-1363 (($ $ $ $) 26)) (-1273 (((-107)) 60)) (-1183 (($ (-621 |#1|) $) 87)) (-2033 (($ $ $) 24)) (-2625 (((-107)) 61)) (-3675 (((-107)) 59)) (-3258 (((-107)) 55)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-386 |#1|) (-1180) (-156)) (T -386))
-((-4119 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1148 *1)) (-4 *1 (-386 *3)))) (-2085 (*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 *3)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-386 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-386 *2)) (-4 *2 (-156)))) (-1763 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 (-621 *3))))) (-3056 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-578 (-866 *3))))) (-3142 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-386 *3)))) (-1248 (*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 *3)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-386 *3)))) (-1600 (*1 *2) (-12 (-4 *1 (-386 *2)) (-4 *2 (-156)))) (-2398 (*1 *2) (-12 (-4 *1 (-386 *2)) (-4 *2 (-156)))) (-4146 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))) (-2311 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))) (-3867 (*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))) (-2582 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-4 *3 (-331)) (-5 *2 (-1064 (-866 *3))))) (-3665 (*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-4 *3 (-331)) (-5 *2 (-1064 (-866 *3))))) (-1183 (*1 *1 *2 *1) (-12 (-5 *2 (-621 *3)) (-4 *1 (-386 *3)) (-4 *3 (-156)))))
-(-13 (-335 |t#1|) (-10 -8 (-15 -4119 ((-1148 $))) (-15 -2085 ((-1148 |t#1|) $)) (-15 -2085 ((-621 |t#1|) (-1148 $))) (-15 -2007 (|t#1| $ (-501))) (-15 -1763 ((-1148 (-621 |t#1|)))) (-15 -3056 ((-578 (-866 |t#1|)))) (-15 -3142 ($ (-1148 |t#1|))) (-15 -1248 ((-1148 |t#1|) $)) (-15 -1248 ($ (-1148 |t#1|))) (-15 -1600 (|t#1|)) (-15 -2398 (|t#1|)) (-15 -4146 ((-621 |t#1|))) (-15 -2311 ((-621 |t#1|))) (-15 -1472 ((-621 |t#1|) $)) (-15 -3867 ((-621 |t#1|) $)) (IF (|has| |t#1| (-331)) (PROGN (-15 -2582 ((-1064 (-866 |t#1|)))) (-15 -3665 ((-1064 (-866 |t#1|))))) |noBranch|) (-15 -1183 ($ (-621 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-335 |#1|) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-651) . T) ((-675 |#1|) . T) ((-692) . T) ((-964 |#1|) . T) ((-1001) . T))
-((-3237 (((-373 |#1|) (-373 |#1|) (-1 (-373 |#1|) |#1|)) 20)) (-4029 (((-373 |#1|) (-373 |#1|) (-373 |#1|)) 15)))
-(((-387 |#1|) (-10 -7 (-15 -3237 ((-373 |#1|) (-373 |#1|) (-1 (-373 |#1|) |#1|))) (-15 -4029 ((-373 |#1|) (-373 |#1|) (-373 |#1|)))) (-508)) (T -387))
-((-4029 (*1 *2 *2 *2) (-12 (-5 *2 (-373 *3)) (-4 *3 (-508)) (-5 *1 (-387 *3)))) (-3237 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-373 *4) *4)) (-4 *4 (-508)) (-5 *2 (-373 *4)) (-5 *1 (-387 *4)))))
-(-10 -7 (-15 -3237 ((-373 |#1|) (-373 |#1|) (-1 (-373 |#1|) |#1|))) (-15 -4029 ((-373 |#1|) (-373 |#1|) (-373 |#1|))))
-((-3800 (((-578 (-1070)) $) 72)) (-3728 (((-375 (-1064 $)) $ (-553 $)) 268)) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-578 (-553 $)) (-578 $)) 233)) (-3765 (((-3 (-553 $) "failed") $) NIL) (((-3 (-1070) "failed") $) 75) (((-3 (-501) "failed") $) NIL) (((-3 |#2| "failed") $) 229) (((-3 (-375 (-866 |#2|)) "failed") $) 319) (((-3 (-866 |#2|) "failed") $) 231) (((-3 (-375 (-501)) "failed") $) NIL)) (-3490 (((-553 $) $) NIL) (((-1070) $) 30) (((-501) $) NIL) ((|#2| $) 227) (((-375 (-866 |#2|)) $) 300) (((-866 |#2|) $) 228) (((-375 (-501)) $) NIL)) (-1853 (((-108) (-108)) 47)) (-2117 (($ $) 87)) (-2789 (((-3 (-553 $) "failed") $) 224)) (-3724 (((-578 (-553 $)) $) 225)) (-2948 (((-3 (-578 $) "failed") $) 243)) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $) 250)) (-1285 (((-3 (-578 $) "failed") $) 241)) (-3475 (((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $) 259)) (-2551 (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $) 247) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108)) 214) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070)) 216)) (-3837 (((-107) $) 19)) (-3841 ((|#2| $) 21)) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) 232) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) 96) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL) (($ $ (-1070)) 57) (($ $ (-578 (-1070))) 236) (($ $) 237) (($ $ (-108) $ (-1070)) 60) (($ $ (-578 (-108)) (-578 $) (-1070)) 67) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $))) 107) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $)))) 238) (($ $ (-1070) (-701) (-1 $ (-578 $))) 94) (($ $ (-1070) (-701) (-1 $ $)) 93)) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) 106)) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) 234)) (-3307 (($ $) 279)) (-1248 (((-810 (-501)) $) 253) (((-810 (-346)) $) 256) (($ (-373 $)) 315) (((-490) $) NIL)) (-3691 (((-786) $) 235) (($ (-553 $)) 84) (($ (-1070)) 26) (($ |#2|) NIL) (($ (-1023 |#2| (-553 $))) NIL) (($ (-375 |#2|)) 284) (($ (-866 (-375 |#2|))) 324) (($ (-375 (-866 (-375 |#2|)))) 296) (($ (-375 (-866 |#2|))) 290) (($ $) NIL) (($ (-866 |#2|)) 183) (($ (-375 (-501))) 329) (($ (-501)) NIL)) (-3965 (((-701)) 79)) (-3811 (((-107) (-108)) 41)) (-4043 (($ (-1070) $) 33) (($ (-1070) $ $) 34) (($ (-1070) $ $ $) 35) (($ (-1070) $ $ $ $) 36) (($ (-1070) (-578 $)) 39)) (* (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ |#2| $) 261) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL)))
-(((-388 |#1| |#2|) (-10 -8 (-15 * (|#1| (-839) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3965 ((-701))) (-15 -3691 (|#1| (-501))) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-866 |#2|) |#1|)) (-15 -3765 ((-3 (-866 |#2|) "failed") |#1|)) (-15 -3691 (|#1| (-866 |#2|))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3490 ((-375 (-866 |#2|)) |#1|)) (-15 -3765 ((-3 (-375 (-866 |#2|)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-866 |#2|)))) (-15 -3728 ((-375 (-1064 |#1|)) |#1| (-553 |#1|))) (-15 -3691 (|#1| (-375 (-866 (-375 |#2|))))) (-15 -3691 (|#1| (-866 (-375 |#2|)))) (-15 -3691 (|#1| (-375 |#2|))) (-15 -3307 (|#1| |#1|)) (-15 -1248 (|#1| (-373 |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-701) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-701) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-701)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-701)) (-578 (-1 |#1| |#1|)))) (-15 -2000 ((-3 (-2 (|:| |val| |#1|) (|:| -3027 (-501))) "failed") |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1| (-1070))) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1| (-108))) (-15 -2117 (|#1| |#1|)) (-15 -3691 (|#1| (-1023 |#2| (-553 |#1|)))) (-15 -3475 ((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 |#1|))) "failed") |#1|)) (-15 -1285 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1|)) (-15 -2948 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 |#1|) (-1070))) (-15 -3195 (|#1| |#1| (-108) |#1| (-1070))) (-15 -3195 (|#1| |#1|)) (-15 -3195 (|#1| |#1| (-578 (-1070)))) (-15 -3195 (|#1| |#1| (-1070))) (-15 -4043 (|#1| (-1070) (-578 |#1|))) (-15 -4043 (|#1| (-1070) |#1| |#1| |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1| |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1|)) (-15 -3800 ((-578 (-1070)) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3837 ((-107) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3691 (|#1| (-1070))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| |#1|)))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| |#1|)))) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -3724 ((-578 (-553 |#1|)) |#1|)) (-15 -2789 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -3631 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3631 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3631 (|#1| |#1| (-262 |#1|))) (-15 -2007 (|#1| (-108) (-578 |#1|))) (-15 -2007 (|#1| (-108) |#1| |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-553 |#1|) |#1|)) (-15 -3490 ((-553 |#1|) |#1|)) (-15 -3765 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -3691 (|#1| (-553 |#1|))) (-15 -3691 ((-786) |#1|))) (-389 |#2|) (-777)) (T -388))
-((-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *4 (-777)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-388 *4 *5)) (-4 *4 (-389 *5)))) (-3965 (*1 *2) (-12 (-4 *4 (-777)) (-5 *2 (-701)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))))
-(-10 -8 (-15 * (|#1| (-839) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3965 ((-701))) (-15 -3691 (|#1| (-501))) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-866 |#2|) |#1|)) (-15 -3765 ((-3 (-866 |#2|) "failed") |#1|)) (-15 -3691 (|#1| (-866 |#2|))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3691 (|#1| |#1|)) (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3490 ((-375 (-866 |#2|)) |#1|)) (-15 -3765 ((-3 (-375 (-866 |#2|)) "failed") |#1|)) (-15 -3691 (|#1| (-375 (-866 |#2|)))) (-15 -3728 ((-375 (-1064 |#1|)) |#1| (-553 |#1|))) (-15 -3691 (|#1| (-375 (-866 (-375 |#2|))))) (-15 -3691 (|#1| (-866 (-375 |#2|)))) (-15 -3691 (|#1| (-375 |#2|))) (-15 -3307 (|#1| |#1|)) (-15 -1248 (|#1| (-373 |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-701) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-701) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-701)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-701)) (-578 (-1 |#1| |#1|)))) (-15 -2000 ((-3 (-2 (|:| |val| |#1|) (|:| -3027 (-501))) "failed") |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1| (-1070))) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1| (-108))) (-15 -2117 (|#1| |#1|)) (-15 -3691 (|#1| (-1023 |#2| (-553 |#1|)))) (-15 -3475 ((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 |#1|))) "failed") |#1|)) (-15 -1285 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 |#1|)) (|:| -3027 (-501))) "failed") |#1|)) (-15 -2948 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 |#1|) (-1070))) (-15 -3195 (|#1| |#1| (-108) |#1| (-1070))) (-15 -3195 (|#1| |#1|)) (-15 -3195 (|#1| |#1| (-578 (-1070)))) (-15 -3195 (|#1| |#1| (-1070))) (-15 -4043 (|#1| (-1070) (-578 |#1|))) (-15 -4043 (|#1| (-1070) |#1| |#1| |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1| |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1| |#1|)) (-15 -4043 (|#1| (-1070) |#1|)) (-15 -3800 ((-578 (-1070)) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3837 ((-107) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3691 (|#1| (-1070))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-108) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-108)) (-578 (-1 |#1| |#1|)))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| |#1|))) (-15 -3195 (|#1| |#1| (-1070) (-1 |#1| (-578 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| (-578 |#1|))))) (-15 -3195 (|#1| |#1| (-578 (-1070)) (-578 (-1 |#1| |#1|)))) (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -3724 ((-578 (-553 |#1|)) |#1|)) (-15 -2789 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -3631 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3631 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3631 (|#1| |#1| (-262 |#1|))) (-15 -2007 (|#1| (-108) (-578 |#1|))) (-15 -2007 (|#1| (-108) |#1| |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1| |#1|)) (-15 -2007 (|#1| (-108) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3195 (|#1| |#1| (-578 (-553 |#1|)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-553 |#1|) |#1|)) (-15 -3490 ((-553 |#1|) |#1|)) (-15 -3765 ((-3 (-553 |#1|) "failed") |#1|)) (-15 -3691 (|#1| (-553 |#1|))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 116 (|has| |#1| (-25)))) (-3800 (((-578 (-1070)) $) 203)) (-3728 (((-375 (-1064 $)) $ (-553 $)) 171 (|has| |#1| (-508)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 143 (|has| |#1| (-508)))) (-2865 (($ $) 144 (|has| |#1| (-508)))) (-1639 (((-107) $) 146 (|has| |#1| (-508)))) (-3709 (((-578 (-553 $)) $) 44)) (-3177 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3631 (($ $ (-262 $)) 56) (($ $ (-578 (-262 $))) 55) (($ $ (-578 (-553 $)) (-578 $)) 54)) (-3676 (($ $) 163 (|has| |#1| (-508)))) (-1559 (((-373 $) $) 164 (|has| |#1| (-508)))) (-2781 (((-107) $ $) 154 (|has| |#1| (-508)))) (-2540 (($) 102 (-1405 (|has| |#1| (-1012)) (|has| |#1| (-25))) CONST)) (-3765 (((-3 (-553 $) "failed") $) 69) (((-3 (-1070) "failed") $) 216) (((-3 (-501) "failed") $) 209 (|has| |#1| (-950 (-501)))) (((-3 |#1| "failed") $) 207) (((-3 (-375 (-866 |#1|)) "failed") $) 169 (|has| |#1| (-508))) (((-3 (-866 |#1|) "failed") $) 123 (|has| |#1| (-959))) (((-3 (-375 (-501)) "failed") $) 95 (-1405 (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501))))))) (-3490 (((-553 $) $) 68) (((-1070) $) 215) (((-501) $) 210 (|has| |#1| (-950 (-501)))) ((|#1| $) 206) (((-375 (-866 |#1|)) $) 168 (|has| |#1| (-508))) (((-866 |#1|) $) 122 (|has| |#1| (-959))) (((-375 (-501)) $) 94 (-1405 (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501))))))) (-3023 (($ $ $) 158 (|has| |#1| (-508)))) (-3868 (((-621 (-501)) (-621 $)) 137 (-1280 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 136 (-1280 (|has| |#1| (-577 (-501))) (|has| |#1| (-959)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 135 (|has| |#1| (-959))) (((-621 |#1|) (-621 $)) 134 (|has| |#1| (-959)))) (-2174 (((-3 $ "failed") $) 105 (|has| |#1| (-1012)))) (-3034 (($ $ $) 157 (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 152 (|has| |#1| (-508)))) (-1628 (((-107) $) 165 (|has| |#1| (-508)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 212 (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 211 (|has| |#1| (-806 (-346))))) (-2446 (($ $) 51) (($ (-578 $)) 50)) (-2389 (((-578 (-108)) $) 43)) (-1853 (((-108) (-108)) 42)) (-1355 (((-107) $) 103 (|has| |#1| (-1012)))) (-3729 (((-107) $) 22 (|has| $ (-950 (-501))))) (-2117 (($ $) 186 (|has| |#1| (-959)))) (-2946 (((-1023 |#1| (-553 $)) $) 187 (|has| |#1| (-959)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 161 (|has| |#1| (-508)))) (-1983 (((-1064 $) (-553 $)) 25 (|has| $ (-959)))) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-1212 (($ (-1 $ $) (-553 $)) 36)) (-2789 (((-3 (-553 $) "failed") $) 46)) (-1697 (($ (-578 $)) 150 (|has| |#1| (-508))) (($ $ $) 149 (|has| |#1| (-508)))) (-3460 (((-1053) $) 9)) (-3724 (((-578 (-553 $)) $) 45)) (-3136 (($ (-108) $) 38) (($ (-108) (-578 $)) 37)) (-2948 (((-3 (-578 $) "failed") $) 192 (|has| |#1| (-1012)))) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $) 183 (|has| |#1| (-959)))) (-1285 (((-3 (-578 $) "failed") $) 190 (|has| |#1| (-25)))) (-3475 (((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2551 (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $) 191 (|has| |#1| (-1012))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108)) 185 (|has| |#1| (-959))) (((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070)) 184 (|has| |#1| (-959)))) (-3109 (((-107) $ (-108)) 40) (((-107) $ (-1070)) 39)) (-3833 (($ $) 107 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508))))) (-2696 (((-701) $) 47)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 205)) (-3841 ((|#1| $) 204)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 151 (|has| |#1| (-508)))) (-3664 (($ (-578 $)) 148 (|has| |#1| (-508))) (($ $ $) 147 (|has| |#1| (-508)))) (-2816 (((-107) $ $) 35) (((-107) $ (-1070)) 34)) (-3739 (((-373 $) $) 162 (|has| |#1| (-508)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-508))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 159 (|has| |#1| (-508)))) (-3694 (((-3 $ "failed") $ $) 142 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 153 (|has| |#1| (-508)))) (-3172 (((-107) $) 23 (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) 67) (($ $ (-578 (-553 $)) (-578 $)) 66) (($ $ (-578 (-262 $))) 65) (($ $ (-262 $)) 64) (($ $ $ $) 63) (($ $ (-578 $) (-578 $)) 62) (($ $ (-578 (-1070)) (-578 (-1 $ $))) 33) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) 32) (($ $ (-1070) (-1 $ (-578 $))) 31) (($ $ (-1070) (-1 $ $)) 30) (($ $ (-578 (-108)) (-578 (-1 $ $))) 29) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) 28) (($ $ (-108) (-1 $ (-578 $))) 27) (($ $ (-108) (-1 $ $)) 26) (($ $ (-1070)) 197 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070))) 196 (|has| |#1| (-556 (-490)))) (($ $) 195 (|has| |#1| (-556 (-490)))) (($ $ (-108) $ (-1070)) 194 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-108)) (-578 $) (-1070)) 193 (|has| |#1| (-556 (-490)))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $))) 182 (|has| |#1| (-959))) (($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $)))) 181 (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ (-578 $))) 180 (|has| |#1| (-959))) (($ $ (-1070) (-701) (-1 $ $)) 179 (|has| |#1| (-959)))) (-1864 (((-701) $) 155 (|has| |#1| (-508)))) (-2007 (($ (-108) $) 61) (($ (-108) $ $) 60) (($ (-108) $ $ $) 59) (($ (-108) $ $ $ $) 58) (($ (-108) (-578 $)) 57)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 156 (|has| |#1| (-508)))) (-4106 (($ $) 49) (($ $ $) 48)) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 128 (|has| |#1| (-959))) (($ $ (-1070) (-701)) 127 (|has| |#1| (-959))) (($ $ (-578 (-1070))) 126 (|has| |#1| (-959))) (($ $ (-1070)) 125 (|has| |#1| (-959)))) (-3307 (($ $) 176 (|has| |#1| (-508)))) (-2949 (((-1023 |#1| (-553 $)) $) 177 (|has| |#1| (-508)))) (-2264 (($ $) 24 (|has| $ (-959)))) (-1248 (((-810 (-501)) $) 214 (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) 213 (|has| |#1| (-556 (-810 (-346))))) (($ (-373 $)) 178 (|has| |#1| (-508))) (((-490) $) 97 (|has| |#1| (-556 (-490))))) (-3097 (($ $ $) 111 (|has| |#1| (-440)))) (-2144 (($ $ $) 112 (|has| |#1| (-440)))) (-3691 (((-786) $) 11) (($ (-553 $)) 70) (($ (-1070)) 217) (($ |#1|) 208) (($ (-1023 |#1| (-553 $))) 188 (|has| |#1| (-959))) (($ (-375 |#1|)) 174 (|has| |#1| (-508))) (($ (-866 (-375 |#1|))) 173 (|has| |#1| (-508))) (($ (-375 (-866 (-375 |#1|)))) 172 (|has| |#1| (-508))) (($ (-375 (-866 |#1|))) 170 (|has| |#1| (-508))) (($ $) 141 (|has| |#1| (-508))) (($ (-866 |#1|)) 124 (|has| |#1| (-959))) (($ (-375 (-501))) 96 (-1405 (|has| |#1| (-508)) (-12 (|has| |#1| (-950 (-501))) (|has| |#1| (-508))) (|has| |#1| (-950 (-375 (-501)))))) (($ (-501)) 93 (-1405 (|has| |#1| (-959)) (|has| |#1| (-950 (-501)))))) (-1274 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-3965 (((-701)) 133 (|has| |#1| (-959)))) (-1831 (($ $) 53) (($ (-578 $)) 52)) (-3811 (((-107) (-108)) 41)) (-2442 (((-107) $ $) 145 (|has| |#1| (-508)))) (-4043 (($ (-1070) $) 202) (($ (-1070) $ $) 201) (($ (-1070) $ $ $) 200) (($ (-1070) $ $ $ $) 199) (($ (-1070) (-578 $)) 198)) (-3948 (($ $ (-501)) 110 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508)))) (($ $ (-701)) 104 (|has| |#1| (-1012))) (($ $ (-839)) 100 (|has| |#1| (-1012)))) (-1850 (($) 115 (|has| |#1| (-25)) CONST)) (-1925 (($) 101 (|has| |#1| (-1012)) CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 132 (|has| |#1| (-959))) (($ $ (-1070) (-701)) 131 (|has| |#1| (-959))) (($ $ (-578 (-1070))) 130 (|has| |#1| (-959))) (($ $ (-1070)) 129 (|has| |#1| (-959)))) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3803 (($ (-1023 |#1| (-553 $)) (-1023 |#1| (-553 $))) 175 (|has| |#1| (-508))) (($ $ $) 108 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508))))) (-3797 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-3790 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-501)) 109 (-1405 (|has| |#1| (-440)) (|has| |#1| (-508)))) (($ $ (-701)) 106 (|has| |#1| (-1012))) (($ $ (-839)) 99 (|has| |#1| (-1012)))) (* (($ (-375 (-501)) $) 167 (|has| |#1| (-508))) (($ $ (-375 (-501))) 166 (|has| |#1| (-508))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-501) $) 121 (|has| |#1| (-21))) (($ (-701) $) 117 (|has| |#1| (-25))) (($ (-839) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1012)))))
-(((-389 |#1|) (-1180) (-777)) (T -389))
-((-3837 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-777)) (-5 *2 (-107)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-777)) (-5 *2 (-578 (-1070))))) (-4043 (*1 *1 *2 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) (-4043 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) (-4043 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) (-4043 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) (-4043 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-578 *1)) (-4 *1 (-389 *4)) (-4 *4 (-777)))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-556 (-490))))) (-3195 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1070))) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-556 (-490))))) (-3195 (*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-556 (-490))))) (-3195 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1070)) (-4 *1 (-389 *4)) (-4 *4 (-777)) (-4 *4 (-556 (-490))))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 *1)) (-5 *4 (-1070)) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-556 (-490))))) (-2948 (*1 *2 *1) (|partial| -12 (-4 *3 (-1012)) (-4 *3 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-389 *3)))) (-2551 (*1 *2 *1) (|partial| -12 (-4 *3 (-1012)) (-4 *3 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *3)))) (-1285 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-389 *3)))) (-3475 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 (-501)) (|:| |var| (-553 *1)))) (-4 *1 (-389 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1023 *3 (-553 *1))) (-4 *3 (-959)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-2946 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *3 (-777)) (-5 *2 (-1023 *3 (-553 *1))) (-4 *1 (-389 *3)))) (-2117 (*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-959)))) (-2551 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-108)) (-4 *4 (-959)) (-4 *4 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *4)))) (-2551 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-959)) (-4 *4 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *4)))) (-2000 (*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *3 (-777)) (-5 *2 (-2 (|:| |val| *1) (|:| -3027 (-501)))) (-4 *1 (-389 *3)))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-701))) (-5 *4 (-578 (-1 *1 *1))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-701))) (-5 *4 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *4 (-1 *1 (-578 *1))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) (-3195 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *4 (-1 *1 *1)) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-373 *1)) (-4 *1 (-389 *3)) (-4 *3 (-508)) (-4 *3 (-777)))) (-2949 (*1 *2 *1) (-12 (-4 *3 (-508)) (-4 *3 (-777)) (-5 *2 (-1023 *3 (-553 *1))) (-4 *1 (-389 *3)))) (-3307 (*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-508)))) (-3803 (*1 *1 *2 *2) (-12 (-5 *2 (-1023 *3 (-553 *1))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-375 *3)) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-866 (-375 *3))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-375 *3)))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-553 *1)) (-4 *1 (-389 *4)) (-4 *4 (-777)) (-4 *4 (-508)) (-5 *2 (-375 (-1064 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-1012)))))
-(-13 (-267) (-950 (-1070)) (-804 |t#1|) (-368 |t#1|) (-380 |t#1|) (-10 -8 (-15 -3837 ((-107) $)) (-15 -3841 (|t#1| $)) (-15 -3800 ((-578 (-1070)) $)) (-15 -4043 ($ (-1070) $)) (-15 -4043 ($ (-1070) $ $)) (-15 -4043 ($ (-1070) $ $ $)) (-15 -4043 ($ (-1070) $ $ $ $)) (-15 -4043 ($ (-1070) (-578 $))) (IF (|has| |t#1| (-556 (-490))) (PROGN (-6 (-556 (-490))) (-15 -3195 ($ $ (-1070))) (-15 -3195 ($ $ (-578 (-1070)))) (-15 -3195 ($ $)) (-15 -3195 ($ $ (-108) $ (-1070))) (-15 -3195 ($ $ (-578 (-108)) (-578 $) (-1070)))) |noBranch|) (IF (|has| |t#1| (-1012)) (PROGN (-6 (-657)) (-15 ** ($ $ (-701))) (-15 -2948 ((-3 (-578 $) "failed") $)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-440)) (-6 (-440)) |noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1285 ((-3 (-578 $) "failed") $)) (-15 -3475 ((-3 (-2 (|:| -3189 (-501)) (|:| |var| (-553 $))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |t#1| (-959)) (PROGN (-6 (-959)) (-6 (-950 (-866 |t#1|))) (-6 (-820 (-1070))) (-6 (-345 |t#1|)) (-15 -3691 ($ (-1023 |t#1| (-553 $)))) (-15 -2946 ((-1023 |t#1| (-553 $)) $)) (-15 -2117 ($ $)) (-15 -2551 ((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-108))) (-15 -2551 ((-3 (-2 (|:| |var| (-553 $)) (|:| -3027 (-501))) "failed") $ (-1070))) (-15 -2000 ((-3 (-2 (|:| |val| $) (|:| -3027 (-501))) "failed") $)) (-15 -3195 ($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ $)))) (-15 -3195 ($ $ (-578 (-1070)) (-578 (-701)) (-578 (-1 $ (-578 $))))) (-15 -3195 ($ $ (-1070) (-701) (-1 $ (-578 $)))) (-15 -3195 ($ $ (-1070) (-701) (-1 $ $)))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-6 (-331)) (-6 (-950 (-375 (-866 |t#1|)))) (-15 -1248 ($ (-373 $))) (-15 -2949 ((-1023 |t#1| (-553 $)) $)) (-15 -3307 ($ $)) (-15 -3803 ($ (-1023 |t#1| (-553 $)) (-1023 |t#1| (-553 $)))) (-15 -3691 ($ (-375 |t#1|))) (-15 -3691 ($ (-866 (-375 |t#1|)))) (-15 -3691 ($ (-375 (-866 (-375 |t#1|))))) (-15 -3728 ((-375 (-1064 $)) $ (-553 $))) (IF (|has| |t#1| (-950 (-501))) (-6 (-950 (-375 (-501)))) |noBranch|)) |noBranch|)))
-(((-21) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 (-375 (-501))) |has| |#1| (-508)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-508)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-508)) ((-123) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) |has| |#1| (-508)) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501)))) ((-216) |has| |#1| (-508)) ((-260) |has| |#1| (-508)) ((-276) |has| |#1| (-508)) ((-278 $) . T) ((-267) . T) ((-331) |has| |#1| (-508)) ((-345 |#1|) |has| |#1| (-959)) ((-368 |#1|) . T) ((-380 |#1|) . T) ((-419) |has| |#1| (-508)) ((-440) |has| |#1| (-440)) ((-476 (-553 $) $) . T) ((-476 $ $) . T) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-508)) ((-583 |#1|) |has| |#1| (-156)) ((-583 $) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-577 (-501)) -12 (|has| |#1| (-577 (-501))) (|has| |#1| (-959))) ((-577 |#1|) |has| |#1| (-959)) ((-648 (-375 (-501))) |has| |#1| (-508)) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) -1405 (|has| |#1| (-1012)) (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-440)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-777) . T) ((-820 (-1070)) |has| |#1| (-959)) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-804 |#1|) . T) ((-841) |has| |#1| (-508)) ((-950 (-375 (-501))) -1405 (|has| |#1| (-950 (-375 (-501)))) (-12 (|has| |#1| (-508)) (|has| |#1| (-950 (-501))))) ((-950 (-375 (-866 |#1|))) |has| |#1| (-508)) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 (-553 $)) . T) ((-950 (-866 |#1|)) |has| |#1| (-959)) ((-950 (-1070)) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) |has| |#1| (-508)) ((-964 |#1|) |has| |#1| (-156)) ((-964 $) |has| |#1| (-508)) ((-959) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-965) -1405 (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1012) -1405 (|has| |#1| (-1012)) (|has| |#1| (-959)) (|has| |#1| (-508)) (|has| |#1| (-440)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1001) . T) ((-1104) . T) ((-1108) |has| |#1| (-508)))
-((-1212 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-959) (-777)) (-389 |#1|) (-13 (-959) (-777)) (-389 |#3|)) (T -390))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-959) (-777))) (-4 *6 (-13 (-959) (-777))) (-4 *2 (-389 *6)) (-5 *1 (-390 *5 *4 *6 *2)) (-4 *4 (-389 *5)))))
-(-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1410 ((|#2| |#2|) 160)) (-2356 (((-3 (|:| |%expansion| (-281 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107)) 55)))
-(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2356 ((-3 (|:| |%expansion| (-281 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107))) (-15 -1410 (|#2| |#2|))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|)) (-1070) |#2|) (T -391))
-((-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1090) (-389 *3))) (-14 *4 (-1070)) (-14 *5 *2))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |%expansion| (-281 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-391 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-14 *6 (-1070)) (-14 *7 *3))))
-(-10 -7 (-15 -2356 ((-3 (|:| |%expansion| (-281 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107))) (-15 -1410 (|#2| |#2|)))
-((-1410 ((|#2| |#2|) 87)) (-1294 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053)) 46)) (-3126 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053)) 152)))
-(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1294 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053))) (-15 -3126 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053))) (-15 -1410 (|#2| |#2|))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|) (-10 -8 (-15 -3691 ($ |#3|)))) (-775) (-13 (-1128 |#2| |#3|) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $)))) (-898 |#4|) (-1070)) (T -392))
-((-1410 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *2 (-13 (-27) (-1090) (-389 *3) (-10 -8 (-15 -3691 ($ *4))))) (-4 *4 (-775)) (-4 *5 (-13 (-1128 *2 *4) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1070)))) (-3126 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-27) (-1090) (-389 *6) (-10 -8 (-15 -3691 ($ *7))))) (-4 *7 (-775)) (-4 *8 (-13 (-1128 *3 *7) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1053)) (-4 *9 (-898 *8)) (-14 *10 (-1070)))) (-1294 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-27) (-1090) (-389 *6) (-10 -8 (-15 -3691 ($ *7))))) (-4 *7 (-775)) (-4 *8 (-13 (-1128 *3 *7) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1053)) (-4 *9 (-898 *8)) (-14 *10 (-1070)))))
-(-10 -7 (-15 -1294 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053))) (-15 -3126 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053))))) |#2| (-107) (-1053))) (-15 -1410 (|#2| |#2|)))
-((-3524 (($) 44)) (-1442 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3217 (($ $ $) 39)) (-3599 (((-107) $ $) 28)) (-3796 (((-701)) 47)) (-2198 (($ (-578 |#2|)) 20) (($) NIL)) (-2890 (($) 53)) (-4111 ((|#2| $) 61)) (-1323 ((|#2| $) 59)) (-3104 (((-839) $) 55)) (-3420 (($ $ $) 35)) (-3506 (($ (-839)) 50)) (-3327 (($ $ |#2|) NIL) (($ $ $) 38)) (-3713 (((-701) (-1 (-107) |#2|) $) NIL) (((-701) |#2| $) 26)) (-3699 (($ (-578 |#2|)) 24)) (-2655 (($ $) 46)) (-3691 (((-786) $) 33)) (-1393 (((-701) $) 21)) (-3910 (($ (-578 |#2|)) 19) (($) NIL)) (-3751 (((-107) $ $) 16)) (-3762 (((-107) $ $) 13)))
-(((-393 |#1| |#2|) (-10 -8 (-15 -3796 ((-701))) (-15 -3506 (|#1| (-839))) (-15 -3104 ((-839) |#1|)) (-15 -2890 (|#1|)) (-15 -4111 (|#2| |#1|)) (-15 -1323 (|#2| |#1|)) (-15 -3524 (|#1|)) (-15 -2655 (|#1| |#1|)) (-15 -1393 ((-701) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3910 (|#1|)) (-15 -3910 (|#1| (-578 |#2|))) (-15 -2198 (|#1|)) (-15 -2198 (|#1| (-578 |#2|))) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#2|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3599 ((-107) |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#2| |#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|))) (-394 |#2|) (-1001)) (T -393))
-((-3796 (*1 *2) (-12 (-4 *4 (-1001)) (-5 *2 (-701)) (-5 *1 (-393 *3 *4)) (-4 *3 (-394 *4)))))
-(-10 -8 (-15 -3796 ((-701))) (-15 -3506 (|#1| (-839))) (-15 -3104 ((-839) |#1|)) (-15 -2890 (|#1|)) (-15 -4111 (|#2| |#1|)) (-15 -1323 (|#2| |#1|)) (-15 -3524 (|#1|)) (-15 -2655 (|#1| |#1|)) (-15 -1393 ((-701) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3910 (|#1|)) (-15 -3910 (|#1| (-578 |#2|))) (-15 -2198 (|#1|)) (-15 -2198 (|#1| (-578 |#2|))) (-15 -3420 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#2|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3599 ((-107) |#1| |#1|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#2| |#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)))
-((-3736 (((-107) $ $) 18)) (-3524 (($) 67 (|has| |#1| (-336)))) (-1442 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3217 (($ $ $) 78)) (-3599 (((-107) $ $) 79)) (-2997 (((-107) $ (-701)) 8)) (-3796 (((-701)) 61 (|has| |#1| (-336)))) (-2198 (($ (-578 |#1|)) 74) (($) 73)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2890 (($) 64 (|has| |#1| (-336)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-4111 ((|#1| $) 65 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1323 ((|#1| $) 66 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3104 (((-839) $) 63 (|has| |#1| (-336)))) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22)) (-3420 (($ $ $) 75)) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3506 (($ (-839)) 62 (|has| |#1| (-336)))) (-3708 (((-1018) $) 21)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3327 (($ $ |#1|) 77) (($ $ $) 76)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-2655 (($ $) 68 (|has| |#1| (-336)))) (-3691 (((-786) $) 20)) (-1393 (((-701) $) 69)) (-3910 (($ (-578 |#1|)) 72) (($) 71)) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19)) (-3762 (((-107) $ $) 70)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-394 |#1|) (-1180) (-1001)) (T -394))
-((-1393 (*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1001)) (-5 *2 (-701)))) (-2655 (*1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-336)))) (-3524 (*1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-336)) (-4 *2 (-1001)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-777)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-777)))))
-(-13 (-202 |t#1|) (-999 |t#1|) (-10 -8 (-6 -4167) (-15 -1393 ((-701) $)) (IF (|has| |t#1| (-336)) (PROGN (-6 (-336)) (-15 -2655 ($ $)) (-15 -3524 ($))) |noBranch|) (IF (|has| |t#1| (-777)) (PROGN (-15 -1323 (|t#1| $)) (-15 -4111 (|t#1| $))) |noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-202 |#1|) . T) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-336) |has| |#1| (-336)) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-999 |#1|) . T) ((-1001) . T) ((-1104) . T))
-((-3162 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3547 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1212 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3547 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3162 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1001) (-394 |#1|) (-1001) (-394 |#3|)) (T -395))
-((-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1001)) (-4 *5 (-1001)) (-4 *2 (-394 *5)) (-5 *1 (-395 *6 *4 *5 *2)) (-4 *4 (-394 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1001)) (-4 *2 (-1001)) (-5 *1 (-395 *5 *4 *2 *6)) (-4 *4 (-394 *5)) (-4 *6 (-394 *2)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-394 *6)) (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-394 *5)))))
-(-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3547 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3162 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2377 (((-530 |#2|) |#2| (-1070)) 35)) (-3009 (((-530 |#2|) |#2| (-1070)) 19)) (-3279 ((|#2| |#2| (-1070)) 24)))
-(((-396 |#1| |#2|) (-10 -7 (-15 -3009 ((-530 |#2|) |#2| (-1070))) (-15 -2377 ((-530 |#2|) |#2| (-1070))) (-15 -3279 (|#2| |#2| (-1070)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-29 |#1|))) (T -396))
-((-3279 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1090) (-29 *4))))) (-2377 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1090) (-29 *5))))) (-3009 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1090) (-29 *5))))))
-(-10 -7 (-15 -3009 ((-530 |#2|) |#2| (-1070))) (-15 -2377 ((-530 |#2|) |#2| (-1070))) (-15 -3279 (|#2| |#2| (-1070))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3992 (($ |#2| |#1|) 35)) (-2204 (($ |#2| |#1|) 33)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-299 |#2|)) 25)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 10 T CONST)) (-1925 (($) 16 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 34)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4154)) (IF (|has| |#1| (-6 -4154)) (-6 -4154) |noBranch|) |noBranch|) (-15 -3691 ($ |#1|)) (-15 -3691 ($ (-299 |#2|))) (-15 -3992 ($ |#2| |#1|)) (-15 -2204 ($ |#2| |#1|)))) (-13 (-156) (-37 (-375 (-501)))) (-13 (-777) (-21))) (T -397))
-((-3691 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-375 (-501))))) (-4 *3 (-13 (-777) (-21))))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-299 *4)) (-4 *4 (-13 (-777) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))))) (-3992 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))) (-4 *2 (-13 (-777) (-21))))) (-2204 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))) (-4 *2 (-13 (-777) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4154)) (IF (|has| |#1| (-6 -4154)) (-6 -4154) |noBranch|) |noBranch|) (-15 -3691 ($ |#1|)) (-15 -3691 ($ (-299 |#2|))) (-15 -3992 ($ |#2| |#1|)) (-15 -2204 ($ |#2| |#1|))))
-((-3188 (((-3 |#2| (-578 |#2|)) |#2| (-1070)) 104)))
-(((-398 |#1| |#2|) (-10 -7 (-15 -3188 ((-3 |#2| (-578 |#2|)) |#2| (-1070)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-879) (-29 |#1|))) (T -398))
-((-3188 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 *3 (-578 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1090) (-879) (-29 *5))))))
-(-10 -7 (-15 -3188 ((-3 |#2| (-578 |#2|)) |#2| (-1070))))
-((-2726 ((|#2| |#2| |#2|) 33)) (-1853 (((-108) (-108)) 44)) (-4048 ((|#2| |#2|) 66)) (-3254 ((|#2| |#2|) 69)) (-3041 ((|#2| |#2|) 32)) (-1223 ((|#2| |#2| |#2|) 35)) (-3076 ((|#2| |#2| |#2|) 37)) (-1730 ((|#2| |#2| |#2|) 34)) (-2108 ((|#2| |#2| |#2|) 36)) (-3811 (((-107) (-108)) 42)) (-2134 ((|#2| |#2|) 39)) (-2338 ((|#2| |#2|) 38)) (-1720 ((|#2| |#2|) 27)) (-3705 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3360 ((|#2| |#2| |#2|) 31)))
-(((-399 |#1| |#2|) (-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -1720 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3360 (|#2| |#2| |#2|)) (-15 -3041 (|#2| |#2|)) (-15 -2726 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2| |#2|)) (-15 -1223 (|#2| |#2| |#2|)) (-15 -2108 (|#2| |#2| |#2|)) (-15 -3076 (|#2| |#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2134 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -4048 (|#2| |#2|))) (-13 (-777) (-508)) (-389 |#1|)) (T -399))
-((-4048 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3254 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-2134 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-2338 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3076 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-2108 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-1223 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-1730 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-2726 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3041 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3360 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3705 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-3705 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-1720 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *4)) (-4 *4 (-389 *3)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *5 (-389 *4)))))
-(-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -1720 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -3705 (|#2| |#2| |#2|)) (-15 -3360 (|#2| |#2| |#2|)) (-15 -3041 (|#2| |#2|)) (-15 -2726 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2| |#2|)) (-15 -1223 (|#2| |#2| |#2|)) (-15 -2108 (|#2| |#2| |#2|)) (-15 -3076 (|#2| |#2| |#2|)) (-15 -2338 (|#2| |#2|)) (-15 -2134 (|#2| |#2|)) (-15 -3254 (|#2| |#2|)) (-15 -4048 (|#2| |#2|)))
-((-1317 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1064 |#2|)) (|:| |pol2| (-1064 |#2|)) (|:| |prim| (-1064 |#2|))) |#2| |#2|) 93 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1064 |#2|))) (|:| |prim| (-1064 |#2|))) (-578 |#2|)) 58)))
-(((-400 |#1| |#2|) (-10 -7 (-15 -1317 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1064 |#2|))) (|:| |prim| (-1064 |#2|))) (-578 |#2|))) (IF (|has| |#2| (-27)) (-15 -1317 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1064 |#2|)) (|:| |pol2| (-1064 |#2|)) (|:| |prim| (-1064 |#2|))) |#2| |#2|)) |noBranch|)) (-13 (-508) (-777) (-134)) (-389 |#1|)) (T -400))
-((-1317 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-508) (-777) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1064 *3)) (|:| |pol2| (-1064 *3)) (|:| |prim| (-1064 *3)))) (-5 *1 (-400 *4 *3)) (-4 *3 (-27)) (-4 *3 (-389 *4)))) (-1317 (*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-389 *4)) (-4 *4 (-13 (-508) (-777) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-578 (-1064 *5))) (|:| |prim| (-1064 *5)))) (-5 *1 (-400 *4 *5)))))
-(-10 -7 (-15 -1317 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-578 (-1064 |#2|))) (|:| |prim| (-1064 |#2|))) (-578 |#2|))) (IF (|has| |#2| (-27)) (-15 -1317 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1064 |#2|)) (|:| |pol2| (-1064 |#2|)) (|:| |prim| (-1064 |#2|))) |#2| |#2|)) |noBranch|))
-((-3231 (((-1154)) 18)) (-3542 (((-1064 (-375 (-501))) |#2| (-553 |#2|)) 40) (((-375 (-501)) |#2|) 23)))
-(((-401 |#1| |#2|) (-10 -7 (-15 -3542 ((-375 (-501)) |#2|)) (-15 -3542 ((-1064 (-375 (-501))) |#2| (-553 |#2|))) (-15 -3231 ((-1154)))) (-13 (-777) (-508) (-950 (-501))) (-389 |#1|)) (T -401))
-((-3231 (*1 *2) (-12 (-4 *3 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-1154)) (-5 *1 (-401 *3 *4)) (-4 *4 (-389 *3)))) (-3542 (*1 *2 *3 *4) (-12 (-5 *4 (-553 *3)) (-4 *3 (-389 *5)) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-401 *5 *3)))) (-3542 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-401 *4 *3)) (-4 *3 (-389 *4)))))
-(-10 -7 (-15 -3542 ((-375 (-501)) |#2|)) (-15 -3542 ((-1064 (-375 (-501))) |#2| (-553 |#2|))) (-15 -3231 ((-1154))))
-((-4133 (((-107) $) 28)) (-1787 (((-107) $) 30)) (-1680 (((-107) $) 31)) (-2276 (((-107) $) 34)) (-1244 (((-107) $) 29)) (-2881 (((-107) $) 33)) (-3691 (((-786) $) 18) (($ (-1053)) 27) (($ (-1070)) 23) (((-1070) $) 22) (((-1003) $) 21)) (-1362 (((-107) $) 32)) (-3751 (((-107) $ $) 15)))
-(((-402) (-13 (-555 (-786)) (-10 -8 (-15 -3691 ($ (-1053))) (-15 -3691 ($ (-1070))) (-15 -3691 ((-1070) $)) (-15 -3691 ((-1003) $)) (-15 -4133 ((-107) $)) (-15 -1244 ((-107) $)) (-15 -1680 ((-107) $)) (-15 -2881 ((-107) $)) (-15 -2276 ((-107) $)) (-15 -1362 ((-107) $)) (-15 -1787 ((-107) $)) (-15 -3751 ((-107) $ $))))) (T -402))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-402)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-402)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-402)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-402)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-1244 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-1680 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) (-3751 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))))
-(-13 (-555 (-786)) (-10 -8 (-15 -3691 ($ (-1053))) (-15 -3691 ($ (-1070))) (-15 -3691 ((-1070) $)) (-15 -3691 ((-1003) $)) (-15 -4133 ((-107) $)) (-15 -1244 ((-107) $)) (-15 -1680 ((-107) $)) (-15 -2881 ((-107) $)) (-15 -2276 ((-107) $)) (-15 -1362 ((-107) $)) (-15 -1787 ((-107) $)) (-15 -3751 ((-107) $ $))))
-((-2458 (((-3 (-373 (-1064 (-375 (-501)))) "failed") |#3|) 68)) (-2832 (((-373 |#3|) |#3|) 33)) (-3642 (((-3 (-373 (-1064 (-47))) "failed") |#3|) 27 (|has| |#2| (-950 (-47))))) (-4097 (((-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107))) |#3|) 35)))
-(((-403 |#1| |#2| |#3|) (-10 -7 (-15 -2832 ((-373 |#3|) |#3|)) (-15 -2458 ((-3 (-373 (-1064 (-375 (-501)))) "failed") |#3|)) (-15 -4097 ((-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107))) |#3|)) (IF (|has| |#2| (-950 (-47))) (-15 -3642 ((-3 (-373 (-1064 (-47))) "failed") |#3|)) |noBranch|)) (-13 (-508) (-777) (-950 (-501))) (-389 |#1|) (-1125 |#2|)) (T -403))
-((-3642 (*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-47))) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 (-1064 (-47)))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))) (-4097 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107)))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))) (-2458 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 (-1064 (-375 (-501))))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))) (-2832 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 *3)) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))))
-(-10 -7 (-15 -2832 ((-373 |#3|) |#3|)) (-15 -2458 ((-3 (-373 (-1064 (-375 (-501)))) "failed") |#3|)) (-15 -4097 ((-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107))) |#3|)) (IF (|has| |#2| (-950 (-47))) (-15 -3642 ((-3 (-373 (-1064 (-47))) "failed") |#3|)) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-2936 (((-3 (|:| |fst| (-402)) (|:| -2645 "void")) $) 10)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2384 (($) 31)) (-3544 (($) 37)) (-3068 (($) 33)) (-3362 (($) 35)) (-2350 (($) 32)) (-1719 (($) 34)) (-3480 (($) 36)) (-3152 (((-107) $) 8)) (-2261 (((-578 (-866 (-501))) $) 16)) (-3699 (($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-1070)) (-107)) 25) (($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-866 (-501))) (-107)) 26)) (-3691 (((-786) $) 21) (($ (-402)) 28)) (-3751 (((-107) $ $) NIL)))
-(((-404) (-13 (-1001) (-10 -8 (-15 -3691 ((-786) $)) (-15 -3691 ($ (-402))) (-15 -2936 ((-3 (|:| |fst| (-402)) (|:| -2645 "void")) $)) (-15 -2261 ((-578 (-866 (-501))) $)) (-15 -3152 ((-107) $)) (-15 -3699 ($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-1070)) (-107))) (-15 -3699 ($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-866 (-501))) (-107))) (-15 -2384 ($)) (-15 -2350 ($)) (-15 -3068 ($)) (-15 -3544 ($)) (-15 -1719 ($)) (-15 -3362 ($)) (-15 -3480 ($))))) (T -404))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-404)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-404)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *1 (-404)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-578 (-866 (-501)))) (-5 *1 (-404)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *3 (-578 (-1070))) (-5 *4 (-107)) (-5 *1 (-404)))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-107)) (-5 *1 (-404)))) (-2384 (*1 *1) (-5 *1 (-404))) (-2350 (*1 *1) (-5 *1 (-404))) (-3068 (*1 *1) (-5 *1 (-404))) (-3544 (*1 *1) (-5 *1 (-404))) (-1719 (*1 *1) (-5 *1 (-404))) (-3362 (*1 *1) (-5 *1 (-404))) (-3480 (*1 *1) (-5 *1 (-404))))
-(-13 (-1001) (-10 -8 (-15 -3691 ((-786) $)) (-15 -3691 ($ (-402))) (-15 -2936 ((-3 (|:| |fst| (-402)) (|:| -2645 "void")) $)) (-15 -2261 ((-578 (-866 (-501))) $)) (-15 -3152 ((-107) $)) (-15 -3699 ($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-1070)) (-107))) (-15 -3699 ($ (-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-578 (-866 (-501))) (-107))) (-15 -2384 ($)) (-15 -2350 ($)) (-15 -3068 ($)) (-15 -3544 ($)) (-15 -1719 ($)) (-15 -3362 ($)) (-15 -3480 ($))))
-((-3736 (((-107) $ $) NIL)) (-2186 (((-1053) $ (-1053)) NIL)) (-1998 (($ $ (-1053)) NIL)) (-3505 (((-1053) $) NIL)) (-2542 (((-356) (-356) (-356)) 17) (((-356) (-356)) 15)) (-2342 (($ (-356)) NIL) (($ (-356) (-1053)) NIL)) (-3986 (((-356) $) NIL)) (-3460 (((-1053) $) NIL)) (-3947 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3219 (((-1154) (-1053)) 9)) (-3931 (((-1154) (-1053)) 10)) (-1531 (((-1154)) 11)) (-3691 (((-786) $) NIL)) (-3371 (($ $) 34)) (-3751 (((-107) $ $) NIL)))
-(((-405) (-13 (-333 (-356) (-1053)) (-10 -7 (-15 -2542 ((-356) (-356) (-356))) (-15 -2542 ((-356) (-356))) (-15 -3219 ((-1154) (-1053))) (-15 -3931 ((-1154) (-1053))) (-15 -1531 ((-1154)))))) (T -405))
-((-2542 (*1 *2 *2 *2) (-12 (-5 *2 (-356)) (-5 *1 (-405)))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-356)) (-5 *1 (-405)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-405)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-405)))) (-1531 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-405)))))
-(-13 (-333 (-356) (-1053)) (-10 -7 (-15 -2542 ((-356) (-356) (-356))) (-15 -2542 ((-356) (-356))) (-15 -3219 ((-1154) (-1053))) (-15 -3931 ((-1154) (-1053))) (-15 -1531 ((-1154)))))
-((-3736 (((-107) $ $) NIL)) (-3986 (((-1070) $) 8)) (-3460 (((-1053) $) 16)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 13)))
-(((-406 |#1|) (-13 (-1001) (-10 -8 (-15 -3986 ((-1070) $)))) (-1070)) (T -406))
-((-3986 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-406 *3)) (-14 *3 *2))))
-(-13 (-1001) (-10 -8 (-15 -3986 ((-1070) $))))
-((-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-1148 (-630))) 14) (($ (-578 (-298))) 13) (($ (-298)) 12) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 11)))
-(((-407) (-1180)) (T -407))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-630))) (-4 *1 (-407)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-407)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-407)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-407)))))
-(-13 (-364) (-10 -8 (-15 -3691 ($ (-1148 (-630)))) (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))))))
-(((-555 (-786)) . T) ((-364) . T) ((-1104) . T))
-((-3765 (((-3 $ "failed") (-1148 (-282 (-346)))) 21) (((-3 $ "failed") (-1148 (-282 (-501)))) 19) (((-3 $ "failed") (-1148 (-866 (-346)))) 17) (((-3 $ "failed") (-1148 (-866 (-501)))) 15) (((-3 $ "failed") (-1148 (-375 (-866 (-346))))) 13) (((-3 $ "failed") (-1148 (-375 (-866 (-501))))) 11)) (-3490 (($ (-1148 (-282 (-346)))) 22) (($ (-1148 (-282 (-501)))) 20) (($ (-1148 (-866 (-346)))) 18) (($ (-1148 (-866 (-501)))) 16) (($ (-1148 (-375 (-866 (-346))))) 14) (($ (-1148 (-375 (-866 (-501))))) 12)) (-2522 (((-1154) $) 7)) (-3691 (((-786) $) 8) (($ (-578 (-298))) 25) (($ (-298)) 24) (($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) 23)))
-(((-408) (-1180)) (T -408))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-408)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-408)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-282 (-346)))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-282 (-346)))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-282 (-501)))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-282 (-501)))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-866 (-346)))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-866 (-346)))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-866 (-501)))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-866 (-501)))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 (-346))))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-375 (-866 (-346))))) (-4 *1 (-408)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 (-501))))) (-4 *1 (-408)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-375 (-866 (-501))))) (-4 *1 (-408)))))
-(-13 (-364) (-10 -8 (-15 -3691 ($ (-578 (-298)))) (-15 -3691 ($ (-298))) (-15 -3691 ($ (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298)))))) (-15 -3490 ($ (-1148 (-282 (-346))))) (-15 -3765 ((-3 $ "failed") (-1148 (-282 (-346))))) (-15 -3490 ($ (-1148 (-282 (-501))))) (-15 -3765 ((-3 $ "failed") (-1148 (-282 (-501))))) (-15 -3490 ($ (-1148 (-866 (-346))))) (-15 -3765 ((-3 $ "failed") (-1148 (-866 (-346))))) (-15 -3490 ($ (-1148 (-866 (-501))))) (-15 -3765 ((-3 $ "failed") (-1148 (-866 (-501))))) (-15 -3490 ($ (-1148 (-375 (-866 (-346)))))) (-15 -3765 ((-3 $ "failed") (-1148 (-375 (-866 (-346)))))) (-15 -3490 ($ (-1148 (-375 (-866 (-501)))))) (-15 -3765 ((-3 $ "failed") (-1148 (-375 (-866 (-501))))))))
-(((-555 (-786)) . T) ((-364) . T) ((-1104) . T))
-((-1546 (((-107)) 17)) (-3605 (((-107) (-107)) 18)) (-2202 (((-107)) 13)) (-3877 (((-107) (-107)) 14)) (-3842 (((-107)) 15)) (-2657 (((-107) (-107)) 16)) (-2878 (((-839) (-839)) 21) (((-839)) 20)) (-3364 (((-701) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501))))) 41)) (-2185 (((-839) (-839)) 23) (((-839)) 22)) (-2302 (((-2 (|:| -1451 (-501)) (|:| -1575 (-578 |#1|))) |#1|) 61)) (-1726 (((-373 |#1|) (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501))))))) 125)) (-3120 (((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107)) 151)) (-2452 (((-373 |#1|) |#1| (-701) (-701)) 164) (((-373 |#1|) |#1| (-578 (-701)) (-701)) 161) (((-373 |#1|) |#1| (-578 (-701))) 163) (((-373 |#1|) |#1| (-701)) 162) (((-373 |#1|) |#1|) 160)) (-3452 (((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701) (-107)) 166) (((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701)) 167) (((-3 |#1| "failed") (-839) |#1| (-578 (-701))) 169) (((-3 |#1| "failed") (-839) |#1| (-701)) 168) (((-3 |#1| "failed") (-839) |#1|) 170)) (-3739 (((-373 |#1|) |#1| (-701) (-701)) 159) (((-373 |#1|) |#1| (-578 (-701)) (-701)) 155) (((-373 |#1|) |#1| (-578 (-701))) 157) (((-373 |#1|) |#1| (-701)) 156) (((-373 |#1|) |#1|) 154)) (-3562 (((-107) |#1|) 36)) (-3968 (((-667 (-701)) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501))))) 66)) (-1926 (((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107) (-997 (-701)) (-701)) 153)))
-(((-409 |#1|) (-10 -7 (-15 -1726 ((-373 |#1|) (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))))) (-15 -3968 ((-667 (-701)) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))))) (-15 -2185 ((-839))) (-15 -2185 ((-839) (-839))) (-15 -2878 ((-839))) (-15 -2878 ((-839) (-839))) (-15 -3364 ((-701) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))))) (-15 -2302 ((-2 (|:| -1451 (-501)) (|:| -1575 (-578 |#1|))) |#1|)) (-15 -1546 ((-107))) (-15 -3605 ((-107) (-107))) (-15 -2202 ((-107))) (-15 -3877 ((-107) (-107))) (-15 -3562 ((-107) |#1|)) (-15 -3842 ((-107))) (-15 -2657 ((-107) (-107))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3739 ((-373 |#1|) |#1| (-701))) (-15 -3739 ((-373 |#1|) |#1| (-578 (-701)))) (-15 -3739 ((-373 |#1|) |#1| (-578 (-701)) (-701))) (-15 -3739 ((-373 |#1|) |#1| (-701) (-701))) (-15 -2452 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1| (-701))) (-15 -2452 ((-373 |#1|) |#1| (-578 (-701)))) (-15 -2452 ((-373 |#1|) |#1| (-578 (-701)) (-701))) (-15 -2452 ((-373 |#1|) |#1| (-701) (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1|)) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701) (-107))) (-15 -3120 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107))) (-15 -1926 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107) (-997 (-701)) (-701)))) (-1125 (-501))) (T -409))
-((-1926 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-997 (-701))) (-5 *6 (-701)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3120 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3452 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *6 (-107)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-3452 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-3452 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-3452 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-701)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-3452 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-839)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) (-2452 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-701))) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-701))) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2657 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3842 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3562 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3877 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2202 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-1546 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2302 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1451 (-501)) (|:| -1575 (-578 *3)))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 *4) (|:| -1201 (-501))))) (-4 *4 (-1125 (-501))) (-5 *2 (-701)) (-5 *1 (-409 *4)))) (-2878 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2878 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2185 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-2185 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 *4) (|:| -1201 (-501))))) (-4 *4 (-1125 (-501))) (-5 *2 (-667 (-701))) (-5 *1 (-409 *4)))) (-1726 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *4) (|:| -3257 (-501))))))) (-4 *4 (-1125 (-501))) (-5 *2 (-373 *4)) (-5 *1 (-409 *4)))))
-(-10 -7 (-15 -1726 ((-373 |#1|) (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))))) (-15 -3968 ((-667 (-701)) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))))) (-15 -2185 ((-839))) (-15 -2185 ((-839) (-839))) (-15 -2878 ((-839))) (-15 -2878 ((-839) (-839))) (-15 -3364 ((-701) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))))) (-15 -2302 ((-2 (|:| -1451 (-501)) (|:| -1575 (-578 |#1|))) |#1|)) (-15 -1546 ((-107))) (-15 -3605 ((-107) (-107))) (-15 -2202 ((-107))) (-15 -3877 ((-107) (-107))) (-15 -3562 ((-107) |#1|)) (-15 -3842 ((-107))) (-15 -2657 ((-107) (-107))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3739 ((-373 |#1|) |#1| (-701))) (-15 -3739 ((-373 |#1|) |#1| (-578 (-701)))) (-15 -3739 ((-373 |#1|) |#1| (-578 (-701)) (-701))) (-15 -3739 ((-373 |#1|) |#1| (-701) (-701))) (-15 -2452 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1| (-701))) (-15 -2452 ((-373 |#1|) |#1| (-578 (-701)))) (-15 -2452 ((-373 |#1|) |#1| (-578 (-701)) (-701))) (-15 -2452 ((-373 |#1|) |#1| (-701) (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1|)) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701))) (-15 -3452 ((-3 |#1| "failed") (-839) |#1| (-578 (-701)) (-701) (-107))) (-15 -3120 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107))) (-15 -1926 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107) (-997 (-701)) (-701))))
-((-1630 (((-501) |#2|) 48) (((-501) |#2| (-701)) 47)) (-1485 (((-501) |#2|) 55)) (-2476 ((|#3| |#2|) 25)) (-2626 ((|#3| |#2| (-839)) 14)) (-4139 ((|#3| |#2|) 15)) (-3435 ((|#3| |#2|) 9)) (-2696 ((|#3| |#2|) 10)) (-3652 ((|#3| |#2| (-839)) 62) ((|#3| |#2|) 30)) (-2378 (((-501) |#2|) 57)))
-(((-410 |#1| |#2| |#3|) (-10 -7 (-15 -2378 ((-501) |#2|)) (-15 -3652 (|#3| |#2|)) (-15 -3652 (|#3| |#2| (-839))) (-15 -1485 ((-501) |#2|)) (-15 -1630 ((-501) |#2| (-701))) (-15 -1630 ((-501) |#2|)) (-15 -2626 (|#3| |#2| (-839))) (-15 -2476 (|#3| |#2|)) (-15 -3435 (|#3| |#2|)) (-15 -2696 (|#3| |#2|)) (-15 -4139 (|#3| |#2|))) (-959) (-1125 |#1|) (-13 (-372) (-950 |#1|) (-331) (-1090) (-254))) (T -410))
-((-4139 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-2476 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-2626 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-959)) (-4 *2 (-13 (-372) (-950 *5) (-331) (-1090) (-254))) (-5 *1 (-410 *5 *3 *2)) (-4 *3 (-1125 *5)))) (-1630 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254))))) (-1630 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *5 *3 *6)) (-4 *3 (-1125 *5)) (-4 *6 (-13 (-372) (-950 *5) (-331) (-1090) (-254))))) (-1485 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254))))) (-3652 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-959)) (-4 *2 (-13 (-372) (-950 *5) (-331) (-1090) (-254))) (-5 *1 (-410 *5 *3 *2)) (-4 *3 (-1125 *5)))) (-3652 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) (-2378 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254))))))
-(-10 -7 (-15 -2378 ((-501) |#2|)) (-15 -3652 (|#3| |#2|)) (-15 -3652 (|#3| |#2| (-839))) (-15 -1485 ((-501) |#2|)) (-15 -1630 ((-501) |#2| (-701))) (-15 -1630 ((-501) |#2|)) (-15 -2626 (|#3| |#2| (-839))) (-15 -2476 (|#3| |#2|)) (-15 -3435 (|#3| |#2|)) (-15 -2696 (|#3| |#2|)) (-15 -4139 (|#3| |#2|)))
-((-2296 ((|#2| (-1148 |#1|)) 36)) (-2110 ((|#2| |#2| |#1|) 49)) (-1444 ((|#2| |#2| |#1|) 41)) (-3785 ((|#2| |#2|) 38)) (-1257 (((-107) |#2|) 30)) (-2828 (((-578 |#2|) (-839) (-373 |#2|)) 16)) (-3452 ((|#2| (-839) (-373 |#2|)) 21)) (-3968 (((-667 (-701)) (-373 |#2|)) 25)))
-(((-411 |#1| |#2|) (-10 -7 (-15 -1257 ((-107) |#2|)) (-15 -2296 (|#2| (-1148 |#1|))) (-15 -3785 (|#2| |#2|)) (-15 -1444 (|#2| |#2| |#1|)) (-15 -2110 (|#2| |#2| |#1|)) (-15 -3968 ((-667 (-701)) (-373 |#2|))) (-15 -3452 (|#2| (-839) (-373 |#2|))) (-15 -2828 ((-578 |#2|) (-839) (-373 |#2|)))) (-959) (-1125 |#1|)) (T -411))
-((-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-373 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-959)) (-5 *2 (-578 *6)) (-5 *1 (-411 *5 *6)))) (-3452 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-373 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-411 *5 *2)) (-4 *5 (-959)))) (-3968 (*1 *2 *3) (-12 (-5 *3 (-373 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-959)) (-5 *2 (-667 (-701))) (-5 *1 (-411 *4 *5)))) (-2110 (*1 *2 *2 *3) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))) (-1444 (*1 *2 *2 *3) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-959)) (-4 *2 (-1125 *4)) (-5 *1 (-411 *4 *2)))) (-1257 (*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-107)) (-5 *1 (-411 *4 *3)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -1257 ((-107) |#2|)) (-15 -2296 (|#2| (-1148 |#1|))) (-15 -3785 (|#2| |#2|)) (-15 -1444 (|#2| |#2| |#1|)) (-15 -2110 (|#2| |#2| |#1|)) (-15 -3968 ((-667 (-701)) (-373 |#2|))) (-15 -3452 (|#2| (-839) (-373 |#2|))) (-15 -2828 ((-578 |#2|) (-839) (-373 |#2|))))
-((-3880 (((-701)) 41)) (-1297 (((-701)) 23 (|has| |#1| (-372))) (((-701) (-701)) 22 (|has| |#1| (-372)))) (-2145 (((-501) |#1|) 18 (|has| |#1| (-372)))) (-2336 (((-501) |#1|) 20 (|has| |#1| (-372)))) (-1813 (((-701)) 40) (((-701) (-701)) 39)) (-2444 ((|#1| (-701) (-501)) 29)) (-3047 (((-1154)) 43)))
-(((-412 |#1|) (-10 -7 (-15 -2444 (|#1| (-701) (-501))) (-15 -1813 ((-701) (-701))) (-15 -1813 ((-701))) (-15 -3880 ((-701))) (-15 -3047 ((-1154))) (IF (|has| |#1| (-372)) (PROGN (-15 -2336 ((-501) |#1|)) (-15 -2145 ((-501) |#1|)) (-15 -1297 ((-701) (-701))) (-15 -1297 ((-701)))) |noBranch|)) (-959)) (T -412))
-((-1297 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) (-1297 (*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) (-2145 (*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) (-3047 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) (-3880 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) (-1813 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) (-1813 (*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) (-2444 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-501)) (-5 *1 (-412 *2)) (-4 *2 (-959)))))
-(-10 -7 (-15 -2444 (|#1| (-701) (-501))) (-15 -1813 ((-701) (-701))) (-15 -1813 ((-701))) (-15 -3880 ((-701))) (-15 -3047 ((-1154))) (IF (|has| |#1| (-372)) (PROGN (-15 -2336 ((-501) |#1|)) (-15 -2145 ((-501) |#1|)) (-15 -1297 ((-701) (-701))) (-15 -1297 ((-701)))) |noBranch|))
-((-2208 (((-578 (-501)) (-501)) 57)) (-1628 (((-107) (-152 (-501))) 61)) (-3739 (((-373 (-152 (-501))) (-152 (-501))) 56)))
-(((-413) (-10 -7 (-15 -3739 ((-373 (-152 (-501))) (-152 (-501)))) (-15 -2208 ((-578 (-501)) (-501))) (-15 -1628 ((-107) (-152 (-501)))))) (T -413))
-((-1628 (*1 *2 *3) (-12 (-5 *3 (-152 (-501))) (-5 *2 (-107)) (-5 *1 (-413)))) (-2208 (*1 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-413)) (-5 *3 (-501)))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 (-152 (-501)))) (-5 *1 (-413)) (-5 *3 (-152 (-501))))))
-(-10 -7 (-15 -3739 ((-373 (-152 (-501))) (-152 (-501)))) (-15 -2208 ((-578 (-501)) (-501))) (-15 -1628 ((-107) (-152 (-501)))))
-((-1315 ((|#4| |#4| (-578 |#4|)) 22 (|has| |#1| (-331)))) (-3727 (((-578 |#4|) (-578 |#4|) (-1053) (-1053)) 41) (((-578 |#4|) (-578 |#4|) (-1053)) 40) (((-578 |#4|) (-578 |#4|)) 35)))
-(((-414 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3727 ((-578 |#4|) (-578 |#4|))) (-15 -3727 ((-578 |#4|) (-578 |#4|) (-1053))) (-15 -3727 ((-578 |#4|) (-578 |#4|) (-1053) (-1053))) (IF (|has| |#1| (-331)) (-15 -1315 (|#4| |#4| (-578 |#4|))) |noBranch|)) (-419) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -414))
-((-1315 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-331)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *2)))) (-3727 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *7)))) (-3727 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *7)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-414 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3727 ((-578 |#4|) (-578 |#4|))) (-15 -3727 ((-578 |#4|) (-578 |#4|) (-1053))) (-15 -3727 ((-578 |#4|) (-578 |#4|) (-1053) (-1053))) (IF (|has| |#1| (-331)) (-15 -1315 (|#4| |#4| (-578 |#4|))) |noBranch|))
-((-1930 ((|#4| |#4| (-578 |#4|)) 57)) (-2603 (((-578 |#4|) (-578 |#4|) (-1053) (-1053)) 17) (((-578 |#4|) (-578 |#4|) (-1053)) 16) (((-578 |#4|) (-578 |#4|)) 11)))
-(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1930 (|#4| |#4| (-578 |#4|))) (-15 -2603 ((-578 |#4|) (-578 |#4|))) (-15 -2603 ((-578 |#4|) (-578 |#4|) (-1053))) (-15 -2603 ((-578 |#4|) (-578 |#4|) (-1053) (-1053)))) (-276) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -415))
-((-2603 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *7)))) (-2603 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *7)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-415 *3 *4 *5 *6)))) (-1930 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1930 (|#4| |#4| (-578 |#4|))) (-15 -2603 ((-578 |#4|) (-578 |#4|))) (-15 -2603 ((-578 |#4|) (-578 |#4|) (-1053))) (-15 -2603 ((-578 |#4|) (-578 |#4|) (-1053) (-1053))))
-((-2257 (((-578 (-578 |#4|)) (-578 |#4|) (-107)) 70) (((-578 (-578 |#4|)) (-578 |#4|)) 69) (((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-107)) 63) (((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|)) 64)) (-2691 (((-578 (-578 |#4|)) (-578 |#4|) (-107)) 40) (((-578 (-578 |#4|)) (-578 |#4|)) 60)))
-(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2691 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -2691 ((-578 (-578 |#4|)) (-578 |#4|) (-107))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-107))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-107)))) (-13 (-276) (-134)) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -416))
-((-2257 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-2257 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2257 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-2257 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) (-2691 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))))
-(-10 -7 (-15 -2691 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -2691 ((-578 (-578 |#4|)) (-578 |#4|) (-107))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-578 |#4|) (-107))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|))) (-15 -2257 ((-578 (-578 |#4|)) (-578 |#4|) (-107))))
-((-1878 (((-701) |#4|) 12)) (-4051 (((-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))) |#4| (-701) (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|)))) 31)) (-3829 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3012 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-1403 ((|#4| |#4| (-578 |#4|)) 39)) (-2012 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|)) 68)) (-1558 (((-1154) |#4|) 41)) (-3545 (((-1154) (-578 |#4|)) 50)) (-2319 (((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501)) 47)) (-2583 (((-1154) (-501)) 75)) (-3696 (((-578 |#4|) (-578 |#4|)) 73)) (-2885 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|)) |#4| (-701)) 25)) (-2407 (((-501) |#4|) 74)) (-2487 ((|#4| |#4|) 29)) (-2028 (((-578 |#4|) (-578 |#4|) (-501) (-501)) 54)) (-3725 (((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501) (-501)) 85)) (-2615 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2465 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (-3316 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (-2578 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-1710 (((-107) |#2| |#2|) 55)) (-2536 (((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2594 (((-107) |#2| |#2| |#2| |#2|) 58)) (-3734 ((|#4| |#4| (-578 |#4|)) 69)))
-(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3734 (|#4| |#4| (-578 |#4|))) (-15 -1403 (|#4| |#4| (-578 |#4|))) (-15 -2028 ((-578 |#4|) (-578 |#4|) (-501) (-501))) (-15 -2465 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1710 ((-107) |#2| |#2|)) (-15 -2594 ((-107) |#2| |#2| |#2| |#2|)) (-15 -2536 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2578 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3316 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2012 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|))) (-15 -2487 (|#4| |#4|)) (-15 -4051 ((-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))) |#4| (-701) (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))))) (-15 -3012 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3829 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3696 ((-578 |#4|) (-578 |#4|))) (-15 -2407 ((-501) |#4|)) (-15 -1558 ((-1154) |#4|)) (-15 -2319 ((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501))) (-15 -3725 ((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501) (-501))) (-15 -3545 ((-1154) (-578 |#4|))) (-15 -2583 ((-1154) (-501))) (-15 -2615 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2885 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|)) |#4| (-701))) (-15 -1878 ((-701) |#4|))) (-419) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -417))
-((-1878 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-701)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-2885 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-701)) (|:| -2663 *4))) (-5 *5 (-701)) (-4 *4 (-870 *6 *7 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-417 *6 *7 *8 *4)))) (-2615 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-723)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *5 *6 *7)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) (-3545 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *7)))) (-3725 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-701)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-723)) (-4 *4 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *4)))) (-2319 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-701)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-723)) (-4 *4 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *4)))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-2407 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-501)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6)))) (-3829 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-723)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-723)) (-4 *2 (-870 *4 *5 *6)) (-5 *1 (-417 *4 *5 *6 *2)) (-4 *4 (-419)) (-4 *6 (-777)))) (-4051 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 *3)))) (-5 *4 (-701)) (-4 *3 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *3)))) (-2487 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-417 *5 *6 *7 *3)))) (-3316 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-723)) (-4 *6 (-870 *4 *3 *5)) (-4 *4 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *4 *3 *5 *6)))) (-2578 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-723)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6)))) (-2536 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-723)) (-4 *3 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *3)))) (-2594 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-419)) (-4 *3 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *3 *5 *6)) (-4 *6 (-870 *4 *3 *5)))) (-1710 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *3 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *3 *5 *6)) (-4 *6 (-870 *4 *3 *5)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-723)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *5 *6 *7)))) (-2028 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-501)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *7)))) (-1403 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *2)))) (-3734 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3734 (|#4| |#4| (-578 |#4|))) (-15 -1403 (|#4| |#4| (-578 |#4|))) (-15 -2028 ((-578 |#4|) (-578 |#4|) (-501) (-501))) (-15 -2465 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1710 ((-107) |#2| |#2|)) (-15 -2594 ((-107) |#2| |#2| |#2| |#2|)) (-15 -2536 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2578 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3316 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2012 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-578 |#4|))) (-15 -2487 (|#4| |#4|)) (-15 -4051 ((-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))) |#4| (-701) (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|))))) (-15 -3012 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3829 ((-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-578 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3696 ((-578 |#4|) (-578 |#4|))) (-15 -2407 ((-501) |#4|)) (-15 -1558 ((-1154) |#4|)) (-15 -2319 ((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501))) (-15 -3725 ((-501) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-501) (-501) (-501) (-501))) (-15 -3545 ((-1154) (-578 |#4|))) (-15 -2583 ((-1154) (-501))) (-15 -2615 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2885 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-701)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-701)) (|:| -2663 |#4|)) |#4| (-701))) (-15 -1878 ((-701) |#4|)))
-((-1697 (($ $ $) 14) (($ (-578 $)) 21)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 41)) (-3664 (($ $ $) NIL) (($ (-578 $)) 22)))
-(((-418 |#1|) (-10 -8 (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1697 (|#1| (-578 |#1|))) (-15 -1697 (|#1| |#1| |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|))) (-419)) (T -418))
-NIL
-(-10 -8 (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1697 (|#1| (-578 |#1|))) (-15 -1697 (|#1| |#1| |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3664 (|#1| |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3694 (((-3 $ "failed") $ $) 42)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-419) (-1180)) (T -419))
-((-3664 (*1 *1 *1 *1) (-4 *1 (-419))) (-3664 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-419)))) (-1697 (*1 *1 *1 *1) (-4 *1 (-419))) (-1697 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-419)))) (-3424 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-419)))))
-(-13 (-508) (-10 -8 (-15 -3664 ($ $ $)) (-15 -3664 ($ (-578 $))) (-15 -1697 ($ $ $)) (-15 -1697 ($ (-578 $))) (-15 -3424 ((-1064 $) (-1064 $) (-1064 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 (-375 (-866 |#1|)))) (-1148 $)) NIL) (((-1148 (-621 (-375 (-866 |#1|))))) NIL)) (-1674 (((-1148 $)) NIL)) (-2540 (($) NIL T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL)) (-1956 (((-3 $ "failed")) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-2311 (((-621 (-375 (-866 |#1|))) (-1148 $)) NIL) (((-621 (-375 (-866 |#1|)))) NIL)) (-1909 (((-375 (-866 |#1|)) $) NIL)) (-3867 (((-621 (-375 (-866 |#1|))) $ (-1148 $)) NIL) (((-621 (-375 (-866 |#1|))) $) NIL)) (-1887 (((-3 $ "failed") $) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-3665 (((-1064 (-866 (-375 (-866 |#1|))))) NIL (|has| (-375 (-866 |#1|)) (-331))) (((-1064 (-375 (-866 |#1|)))) 79 (|has| |#1| (-508)))) (-2911 (($ $ (-839)) NIL)) (-3925 (((-375 (-866 |#1|)) $) NIL)) (-2292 (((-1064 (-375 (-866 |#1|))) $) 77 (|has| (-375 (-866 |#1|)) (-508)))) (-2398 (((-375 (-866 |#1|)) (-1148 $)) NIL) (((-375 (-866 |#1|))) NIL)) (-3333 (((-1064 (-375 (-866 |#1|))) $) NIL)) (-3656 (((-107)) NIL)) (-3142 (($ (-1148 (-375 (-866 |#1|))) (-1148 $)) 97) (($ (-1148 (-375 (-866 |#1|)))) NIL)) (-2174 (((-3 $ "failed") $) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-3689 (((-839)) NIL)) (-3168 (((-107)) NIL)) (-3554 (($ $ (-839)) NIL)) (-3930 (((-107)) NIL)) (-2838 (((-107)) NIL)) (-3874 (((-107)) NIL)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL)) (-2653 (((-3 $ "failed")) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-4146 (((-621 (-375 (-866 |#1|))) (-1148 $)) NIL) (((-621 (-375 (-866 |#1|)))) NIL)) (-3821 (((-375 (-866 |#1|)) $) NIL)) (-1472 (((-621 (-375 (-866 |#1|))) $ (-1148 $)) NIL) (((-621 (-375 (-866 |#1|))) $) NIL)) (-1992 (((-3 $ "failed") $) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-2582 (((-1064 (-866 (-375 (-866 |#1|))))) NIL (|has| (-375 (-866 |#1|)) (-331))) (((-1064 (-375 (-866 |#1|)))) 78 (|has| |#1| (-508)))) (-3381 (($ $ (-839)) NIL)) (-3784 (((-375 (-866 |#1|)) $) NIL)) (-3474 (((-1064 (-375 (-866 |#1|))) $) 72 (|has| (-375 (-866 |#1|)) (-508)))) (-1600 (((-375 (-866 |#1|)) (-1148 $)) NIL) (((-375 (-866 |#1|))) NIL)) (-2270 (((-1064 (-375 (-866 |#1|))) $) NIL)) (-2172 (((-107)) NIL)) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) NIL)) (-2417 (((-107)) NIL)) (-2794 (((-107)) NIL)) (-3708 (((-1018) $) NIL)) (-1325 (((-375 (-866 |#1|)) $ $) 66 (|has| |#1| (-508)))) (-2492 (((-375 (-866 |#1|)) $) 65 (|has| |#1| (-508)))) (-2959 (((-375 (-866 |#1|)) $) 89 (|has| |#1| (-508)))) (-1498 (((-1064 (-375 (-866 |#1|))) $) 83 (|has| |#1| (-508)))) (-3138 (((-375 (-866 |#1|))) 67 (|has| |#1| (-508)))) (-1874 (((-375 (-866 |#1|)) $ $) 54 (|has| |#1| (-508)))) (-3467 (((-375 (-866 |#1|)) $) 53 (|has| |#1| (-508)))) (-3899 (((-375 (-866 |#1|)) $) 88 (|has| |#1| (-508)))) (-2729 (((-1064 (-375 (-866 |#1|))) $) 82 (|has| |#1| (-508)))) (-3178 (((-375 (-866 |#1|))) 64 (|has| |#1| (-508)))) (-3020 (($) 95) (($ (-1070)) 101) (($ (-1148 (-1070))) 100) (($ (-1148 $)) 90) (($ (-1070) (-1148 $)) 99) (($ (-1148 (-1070)) (-1148 $)) 98)) (-2780 (((-107)) NIL)) (-2007 (((-375 (-866 |#1|)) $ (-501)) NIL)) (-2085 (((-1148 (-375 (-866 |#1|))) $ (-1148 $)) 92) (((-621 (-375 (-866 |#1|))) (-1148 $) (-1148 $)) NIL) (((-1148 (-375 (-866 |#1|))) $) 37) (((-621 (-375 (-866 |#1|))) (-1148 $)) NIL)) (-1248 (((-1148 (-375 (-866 |#1|))) $) NIL) (($ (-1148 (-375 (-866 |#1|)))) 34)) (-3056 (((-578 (-866 (-375 (-866 |#1|)))) (-1148 $)) NIL) (((-578 (-866 (-375 (-866 |#1|))))) NIL) (((-578 (-866 |#1|)) (-1148 $)) 93 (|has| |#1| (-508))) (((-578 (-866 |#1|))) 94 (|has| |#1| (-508)))) (-2144 (($ $ $) NIL)) (-1977 (((-107)) NIL)) (-3691 (((-786) $) NIL) (($ (-1148 (-375 (-866 |#1|)))) NIL)) (-4119 (((-1148 $)) 56)) (-4102 (((-578 (-1148 (-375 (-866 |#1|))))) NIL (|has| (-375 (-866 |#1|)) (-508)))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) NIL)) (-1183 (($ (-621 (-375 (-866 |#1|))) $) NIL)) (-2033 (($ $ $) NIL)) (-2625 (((-107)) NIL)) (-3675 (((-107)) NIL)) (-3258 (((-107)) NIL)) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) 91)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 52) (($ $ (-375 (-866 |#1|))) NIL) (($ (-375 (-866 |#1|)) $) NIL) (($ (-1037 |#2| (-375 (-866 |#1|))) $) NIL)))
-(((-420 |#1| |#2| |#3| |#4|) (-13 (-386 (-375 (-866 |#1|))) (-583 (-1037 |#2| (-375 (-866 |#1|)))) (-10 -8 (-15 -3691 ($ (-1148 (-375 (-866 |#1|))))) (-15 -1765 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3020 ($)) (-15 -3020 ($ (-1070))) (-15 -3020 ($ (-1148 (-1070)))) (-15 -3020 ($ (-1148 $))) (-15 -3020 ($ (-1070) (-1148 $))) (-15 -3020 ($ (-1148 (-1070)) (-1148 $))) (IF (|has| |#1| (-508)) (PROGN (-15 -2582 ((-1064 (-375 (-866 |#1|))))) (-15 -2729 ((-1064 (-375 (-866 |#1|))) $)) (-15 -3467 ((-375 (-866 |#1|)) $)) (-15 -3899 ((-375 (-866 |#1|)) $)) (-15 -3665 ((-1064 (-375 (-866 |#1|))))) (-15 -1498 ((-1064 (-375 (-866 |#1|))) $)) (-15 -2492 ((-375 (-866 |#1|)) $)) (-15 -2959 ((-375 (-866 |#1|)) $)) (-15 -1874 ((-375 (-866 |#1|)) $ $)) (-15 -3178 ((-375 (-866 |#1|)))) (-15 -1325 ((-375 (-866 |#1|)) $ $)) (-15 -3138 ((-375 (-866 |#1|)))) (-15 -3056 ((-578 (-866 |#1|)) (-1148 $))) (-15 -3056 ((-578 (-866 |#1|))))) |noBranch|))) (-156) (-839) (-578 (-1070)) (-1148 (-621 |#1|))) (T -420))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 *3)))) (-4 *3 (-156)) (-14 *6 (-1148 (-621 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))))) (-1765 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-420 *3 *4 *5 *6)) (|:| -4119 (-578 (-420 *3 *4 *5 *6))))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3054 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-420 *3 *4 *5 *6)) (|:| -4119 (-578 (-420 *3 *4 *5 *6))))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3020 (*1 *1) (-12 (-5 *1 (-420 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-839)) (-14 *4 (-578 (-1070))) (-14 *5 (-1148 (-621 *2))))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 *2)) (-14 *6 (-1148 (-621 *3))))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1148 (-1070))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-1148 (-420 *3 *4 *5 *6))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3020 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 *2)) (-14 *7 (-1148 (-621 *4))))) (-3020 (*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-1070))) (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 (-1070))) (-14 *7 (-1148 (-621 *4))))) (-2582 (*1 *2) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3467 (*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3899 (*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3665 (*1 *2) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-2492 (*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-1874 (*1 *2 *1 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3178 (*1 *2) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-1325 (*1 *2 *1 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3138 (*1 *2) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) (-3056 (*1 *2 *3) (-12 (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *2 (-578 (-866 *4))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-508)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 (-1070))) (-14 *7 (-1148 (-621 *4))))) (-3056 (*1 *2) (-12 (-5 *2 (-578 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(-13 (-386 (-375 (-866 |#1|))) (-583 (-1037 |#2| (-375 (-866 |#1|)))) (-10 -8 (-15 -3691 ($ (-1148 (-375 (-866 |#1|))))) (-15 -1765 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3054 ((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed"))) (-15 -3020 ($)) (-15 -3020 ($ (-1070))) (-15 -3020 ($ (-1148 (-1070)))) (-15 -3020 ($ (-1148 $))) (-15 -3020 ($ (-1070) (-1148 $))) (-15 -3020 ($ (-1148 (-1070)) (-1148 $))) (IF (|has| |#1| (-508)) (PROGN (-15 -2582 ((-1064 (-375 (-866 |#1|))))) (-15 -2729 ((-1064 (-375 (-866 |#1|))) $)) (-15 -3467 ((-375 (-866 |#1|)) $)) (-15 -3899 ((-375 (-866 |#1|)) $)) (-15 -3665 ((-1064 (-375 (-866 |#1|))))) (-15 -1498 ((-1064 (-375 (-866 |#1|))) $)) (-15 -2492 ((-375 (-866 |#1|)) $)) (-15 -2959 ((-375 (-866 |#1|)) $)) (-15 -1874 ((-375 (-866 |#1|)) $ $)) (-15 -3178 ((-375 (-866 |#1|)))) (-15 -1325 ((-375 (-866 |#1|)) $ $)) (-15 -3138 ((-375 (-866 |#1|)))) (-15 -3056 ((-578 (-866 |#1|)) (-1148 $))) (-15 -3056 ((-578 (-866 |#1|))))) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 13)) (-3800 (((-578 (-787 |#1|)) $) 73)) (-3728 (((-1064 $) $ (-787 |#1|)) 46) (((-1064 |#2|) $) 115)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) 21) (((-701) $ (-578 (-787 |#1|))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 44) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-787 |#1|) "failed") $) NIL)) (-3490 ((|#2| $) 42) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-787 |#1|) $) NIL)) (-1749 (($ $ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-1474 (($ $ (-578 (-501))) 78)) (-3858 (($ $) 67)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| |#3| $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) 58)) (-3794 (($ (-1064 |#2|) (-787 |#1|)) 120) (($ (-1064 $) (-787 |#1|)) 52)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) 59)) (-3787 (($ |#2| |#3|) 28) (($ $ (-787 |#1|) (-701)) 30) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-787 |#1|)) NIL)) (-2285 ((|#3| $) NIL) (((-701) $ (-787 |#1|)) 50) (((-578 (-701)) $ (-578 (-787 |#1|))) 57)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 |#3| |#3|) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-2752 (((-3 (-787 |#1|) "failed") $) 39)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) 41)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-787 |#1|)) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 40)) (-3841 ((|#2| $) 113)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) 125 (|has| |#2| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-787 |#1|) |#2|) 85) (($ $ (-578 (-787 |#1|)) (-578 |#2|)) 88) (($ $ (-787 |#1|) $) 83) (($ $ (-578 (-787 |#1|)) (-578 $)) 104)) (-2532 (($ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-787 |#1|)) 53) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1201 ((|#3| $) 66) (((-701) $ (-787 |#1|)) 37) (((-578 (-701)) $ (-578 (-787 |#1|))) 56)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-787 |#1|) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) 122 (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) 141) (($ (-501)) NIL) (($ |#2|) 84) (($ (-787 |#1|)) 31) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#2| (-508)))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ |#3|) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 16 T CONST)) (-1925 (($) 25 T CONST)) (-3584 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) 64 (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 109)) (** (($ $ (-839)) NIL) (($ $ (-701)) 107)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 29) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-421 |#1| |#2| |#3|) (-13 (-870 |#2| |#3| (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501)))))) (-578 (-1070)) (-959) (-211 (-3581 |#1|) (-701))) (T -421))
-((-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-14 *3 (-578 (-1070))) (-5 *1 (-421 *3 *4 *5)) (-4 *4 (-959)) (-4 *5 (-211 (-3581 *3) (-701))))))
-(-13 (-870 |#2| |#3| (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501))))))
-((-2422 (((-107) |#1| (-578 |#2|)) 65)) (-3741 (((-3 (-1148 (-578 |#2|)) "failed") (-701) |#1| (-578 |#2|)) 74)) (-3240 (((-3 (-578 |#2|) "failed") |#2| |#1| (-1148 (-578 |#2|))) 76)) (-3220 ((|#2| |#2| |#1|) 28)) (-3350 (((-701) |#2| (-578 |#2|)) 20)))
-(((-422 |#1| |#2|) (-10 -7 (-15 -3220 (|#2| |#2| |#1|)) (-15 -3350 ((-701) |#2| (-578 |#2|))) (-15 -3741 ((-3 (-1148 (-578 |#2|)) "failed") (-701) |#1| (-578 |#2|))) (-15 -3240 ((-3 (-578 |#2|) "failed") |#2| |#1| (-1148 (-578 |#2|)))) (-15 -2422 ((-107) |#1| (-578 |#2|)))) (-276) (-1125 |#1|)) (T -422))
-((-2422 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-1125 *3)) (-4 *3 (-276)) (-5 *2 (-107)) (-5 *1 (-422 *3 *5)))) (-3240 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1148 (-578 *3))) (-4 *4 (-276)) (-5 *2 (-578 *3)) (-5 *1 (-422 *4 *3)) (-4 *3 (-1125 *4)))) (-3741 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-276)) (-4 *6 (-1125 *4)) (-5 *2 (-1148 (-578 *6))) (-5 *1 (-422 *4 *6)) (-5 *5 (-578 *6)))) (-3350 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-276)) (-5 *2 (-701)) (-5 *1 (-422 *5 *3)))) (-3220 (*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-5 *1 (-422 *3 *2)) (-4 *2 (-1125 *3)))))
-(-10 -7 (-15 -3220 (|#2| |#2| |#1|)) (-15 -3350 ((-701) |#2| (-578 |#2|))) (-15 -3741 ((-3 (-1148 (-578 |#2|)) "failed") (-701) |#1| (-578 |#2|))) (-15 -3240 ((-3 (-578 |#2|) "failed") |#2| |#1| (-1148 (-578 |#2|)))) (-15 -2422 ((-107) |#1| (-578 |#2|))))
-((-3739 (((-373 |#5|) |#5|) 24)))
-(((-423 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3739 ((-373 |#5|) |#5|))) (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070))))) (-723) (-508) (-508) (-870 |#4| |#2| |#1|)) (T -423))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *5 (-723)) (-4 *7 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-423 *4 *5 *6 *7 *3)) (-4 *6 (-508)) (-4 *3 (-870 *7 *5 *4)))))
-(-10 -7 (-15 -3739 ((-373 |#5|) |#5|)))
-((-3959 ((|#3|) 36)) (-3424 (((-1064 |#4|) (-1064 |#4|) (-1064 |#4|)) 32)))
-(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3424 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -3959 (|#3|))) (-723) (-777) (-830) (-870 |#3| |#1| |#2|)) (T -424))
-((-3959 (*1 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-830)) (-5 *1 (-424 *3 *4 *2 *5)) (-4 *5 (-870 *2 *3 *4)))) (-3424 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-830)) (-5 *1 (-424 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3424 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -3959 (|#3|)))
-((-3739 (((-373 (-1064 |#1|)) (-1064 |#1|)) 41)))
-(((-425 |#1|) (-10 -7 (-15 -3739 ((-373 (-1064 |#1|)) (-1064 |#1|)))) (-276)) (T -425))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-276)) (-5 *2 (-373 (-1064 *4))) (-5 *1 (-425 *4)) (-5 *3 (-1064 *4)))))
-(-10 -7 (-15 -3739 ((-373 (-1064 |#1|)) (-1064 |#1|))))
-((-3818 (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-701))) 42) (((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-701))) 41) (((-50) |#2| (-1070) (-262 |#2|)) 35) (((-50) (-1 |#2| (-501)) (-262 |#2|)) 27)) (-2973 (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))) 80) (((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))) 79) (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501))) 78) (((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501))) 77) (((-50) |#2| (-1070) (-262 |#2|)) 72) (((-50) (-1 |#2| (-501)) (-262 |#2|)) 71)) (-3826 (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))) 66) (((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))) 64)) (-3822 (((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501))) 48) (((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501))) 47)))
-(((-426 |#1| |#2|) (-10 -7 (-15 -3818 ((-50) (-1 |#2| (-501)) (-262 |#2|))) (-15 -3818 ((-50) |#2| (-1070) (-262 |#2|))) (-15 -3818 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-701)))) (-15 -3818 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-701)))) (-15 -3822 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501)))) (-15 -3822 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501)))) (-15 -3826 ((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -3826 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -2973 ((-50) (-1 |#2| (-501)) (-262 |#2|))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|))) (-15 -2973 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501)))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501)))) (-15 -2973 ((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501))))) (-13 (-508) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -426))
-((-2973 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-375 (-501)))) (-5 *7 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *8))) (-4 *8 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *8 *3)))) (-2973 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-375 (-501)))) (-5 *4 (-262 *8)) (-5 *5 (-1116 (-375 (-501)))) (-5 *6 (-375 (-501))) (-4 *8 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *8)))) (-2973 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) (-2973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-501))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) (-2973 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *3)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-501))) (-5 *4 (-262 *6)) (-4 *6 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *5 *6)))) (-3826 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-375 (-501)))) (-5 *7 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *8))) (-4 *8 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *8 *3)))) (-3826 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-375 (-501)))) (-5 *4 (-262 *8)) (-5 *5 (-1116 (-375 (-501)))) (-5 *6 (-375 (-501))) (-4 *8 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *8)))) (-3822 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) (-3822 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-501))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) (-3818 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-701))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-701))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) (-3818 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *3)))) (-3818 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-501))) (-5 *4 (-262 *6)) (-4 *6 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *5 *6)))))
-(-10 -7 (-15 -3818 ((-50) (-1 |#2| (-501)) (-262 |#2|))) (-15 -3818 ((-50) |#2| (-1070) (-262 |#2|))) (-15 -3818 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-701)))) (-15 -3818 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-701)))) (-15 -3822 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501)))) (-15 -3822 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501)))) (-15 -3826 ((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -3826 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -2973 ((-50) (-1 |#2| (-501)) (-262 |#2|))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|))) (-15 -2973 ((-50) (-1 |#2| (-501)) (-262 |#2|) (-1116 (-501)))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-501)))) (-15 -2973 ((-50) (-1 |#2| (-375 (-501))) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))) (-15 -2973 ((-50) |#2| (-1070) (-262 |#2|) (-1116 (-375 (-501))) (-375 (-501)))))
-((-3220 ((|#2| |#2| |#1|) 15)) (-2699 (((-578 |#2|) |#2| (-578 |#2|) |#1| (-839)) 65)) (-1718 (((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-839)) 58)))
-(((-427 |#1| |#2|) (-10 -7 (-15 -1718 ((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-839))) (-15 -2699 ((-578 |#2|) |#2| (-578 |#2|) |#1| (-839))) (-15 -3220 (|#2| |#2| |#1|))) (-276) (-1125 |#1|)) (T -427))
-((-3220 (*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1125 *3)))) (-2699 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-578 *3)) (-5 *5 (-839)) (-4 *3 (-1125 *4)) (-4 *4 (-276)) (-5 *1 (-427 *4 *3)))) (-1718 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-839)) (-4 *5 (-276)) (-4 *3 (-1125 *5)) (-5 *2 (-2 (|:| |plist| (-578 *3)) (|:| |modulo| *5))) (-5 *1 (-427 *5 *3)) (-5 *4 (-578 *3)))))
-(-10 -7 (-15 -1718 ((-2 (|:| |plist| (-578 |#2|)) (|:| |modulo| |#1|)) |#2| (-578 |#2|) |#1| (-839))) (-15 -2699 ((-578 |#2|) |#2| (-578 |#2|) |#1| (-839))) (-15 -3220 (|#2| |#2| |#1|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 28)) (-1822 (($ |#3|) 25)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) 32)) (-1769 (($ |#2| |#4| $) 33)) (-3787 (($ |#2| (-644 |#3| |#4| |#5|)) 24)) (-3845 (((-644 |#3| |#4| |#5|) $) 15)) (-2965 ((|#3| $) 19)) (-3372 ((|#4| $) 17)) (-3850 ((|#2| $) 29)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-2774 (($ |#2| |#3| |#4|) 26)) (-1850 (($) 36 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 34)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-428 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-648 |#6|) (-648 |#2|) (-10 -8 (-15 -3850 (|#2| $)) (-15 -3845 ((-644 |#3| |#4| |#5|) $)) (-15 -3372 (|#4| $)) (-15 -2965 (|#3| $)) (-15 -3858 ($ $)) (-15 -3787 ($ |#2| (-644 |#3| |#4| |#5|))) (-15 -1822 ($ |#3|)) (-15 -2774 ($ |#2| |#3| |#4|)) (-15 -1769 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-578 (-1070)) (-156) (-777) (-211 (-3581 |#1|) (-701)) (-1 (-107) (-2 (|:| -3506 |#3|) (|:| -3027 |#4|)) (-2 (|:| -3506 |#3|) (|:| -3027 |#4|))) (-870 |#2| |#4| (-787 |#1|))) (T -428))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *6 (-211 (-3581 *3) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-5 *1 (-428 *3 *4 *5 *6 *7 *2)) (-4 *5 (-777)) (-4 *2 (-870 *4 *6 (-787 *3))))) (-3850 (*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *4) (|:| -3027 *5)) (-2 (|:| -3506 *4) (|:| -3027 *5)))) (-4 *2 (-156)) (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *4 (-777)) (-4 *7 (-870 *2 *5 (-787 *3))))) (-3845 (*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *6 (-211 (-3581 *3) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-5 *2 (-644 *5 *6 *7)) (-5 *1 (-428 *3 *4 *5 *6 *7 *8)) (-4 *5 (-777)) (-4 *8 (-870 *4 *6 (-787 *3))))) (-3372 (*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *2)) (-2 (|:| -3506 *5) (|:| -3027 *2)))) (-4 *2 (-211 (-3581 *3) (-701))) (-5 *1 (-428 *3 *4 *5 *2 *6 *7)) (-4 *5 (-777)) (-4 *7 (-870 *4 *2 (-787 *3))))) (-2965 (*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *5)) (-2 (|:| -3506 *2) (|:| -3027 *5)))) (-4 *2 (-777)) (-5 *1 (-428 *3 *4 *2 *5 *6 *7)) (-4 *7 (-870 *4 *5 (-787 *3))))) (-3858 (*1 *1 *1) (-12 (-14 *2 (-578 (-1070))) (-4 *3 (-156)) (-4 *5 (-211 (-3581 *2) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *4) (|:| -3027 *5)) (-2 (|:| -3506 *4) (|:| -3027 *5)))) (-5 *1 (-428 *2 *3 *4 *5 *6 *7)) (-4 *4 (-777)) (-4 *7 (-870 *3 *5 (-787 *2))))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-644 *5 *6 *7)) (-4 *5 (-777)) (-4 *6 (-211 (-3581 *4) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-14 *4 (-578 (-1070))) (-4 *2 (-156)) (-5 *1 (-428 *4 *2 *5 *6 *7 *8)) (-4 *8 (-870 *2 *6 (-787 *4))))) (-1822 (*1 *1 *2) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *5)) (-2 (|:| -3506 *2) (|:| -3027 *5)))) (-5 *1 (-428 *3 *4 *2 *5 *6 *7)) (-4 *2 (-777)) (-4 *7 (-870 *4 *5 (-787 *3))))) (-2774 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-578 (-1070))) (-4 *2 (-156)) (-4 *4 (-211 (-3581 *5) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *3) (|:| -3027 *4)) (-2 (|:| -3506 *3) (|:| -3027 *4)))) (-5 *1 (-428 *5 *2 *3 *4 *6 *7)) (-4 *3 (-777)) (-4 *7 (-870 *2 *4 (-787 *5))))) (-1769 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-578 (-1070))) (-4 *2 (-156)) (-4 *3 (-211 (-3581 *4) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *3)) (-2 (|:| -3506 *5) (|:| -3027 *3)))) (-5 *1 (-428 *4 *2 *5 *3 *6 *7)) (-4 *5 (-777)) (-4 *7 (-870 *2 *3 (-787 *4))))))
-(-13 (-648 |#6|) (-648 |#2|) (-10 -8 (-15 -3850 (|#2| $)) (-15 -3845 ((-644 |#3| |#4| |#5|) $)) (-15 -3372 (|#4| $)) (-15 -2965 (|#3| $)) (-15 -3858 ($ $)) (-15 -3787 ($ |#2| (-644 |#3| |#4| |#5|))) (-15 -1822 ($ |#3|)) (-15 -2774 ($ |#2| |#3| |#4|)) (-15 -1769 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2824 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
-(((-429 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2824 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-723) (-777) (-508) (-870 |#3| |#1| |#2|) (-13 (-950 (-375 (-501))) (-331) (-10 -8 (-15 -3691 ($ |#4|)) (-15 -2946 (|#4| $)) (-15 -2949 (|#4| $))))) (T -429))
-((-2824 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-777)) (-4 *5 (-723)) (-4 *6 (-508)) (-4 *7 (-870 *6 *5 *3)) (-5 *1 (-429 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-375 (-501))) (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))))
-(-10 -7 (-15 -2824 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-3736 (((-107) $ $) NIL)) (-3800 (((-578 |#3|) $) 41)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) NIL (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4110 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 47)) (-3490 (($ (-578 |#4|)) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167)))) (-2732 (((-578 |#4|) $) 18 (|has| $ (-6 -4167)))) (-2361 ((|#3| $) 45)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 14 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2519 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 21)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-3708 (((-1018) $) NIL)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 39)) (-3122 (($) 17)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) 16)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490)))) (($ (-578 |#4|)) 49)) (-3699 (($ (-578 |#4|)) 13)) (-1638 (($ $ |#3|) NIL)) (-2482 (($ $ |#3|) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) 38) (((-578 |#4|) $) 48)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 30)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-430 |#1| |#2| |#3| |#4|) (-13 (-891 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1248 ($ (-578 |#4|))) (-6 -4167) (-6 -4168))) (-959) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -430))
-((-1248 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-430 *3 *4 *5 *6)))))
-(-13 (-891 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1248 ($ (-578 |#4|))) (-6 -4167) (-6 -4168)))
-((-1850 (($) 11)) (-1925 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-431 |#1| |#2| |#3|) (-10 -8 (-15 -1925 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1850 (|#1|))) (-432 |#2| |#3|) (-156) (-23)) (T -431))
-NIL
-(-10 -8 (-15 -1925 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1850 (|#1|)))
-((-3736 (((-107) $ $) 7)) (-3765 (((-3 |#1| "failed") $) 26)) (-3490 ((|#1| $) 25)) (-1758 (($ $ $) 23)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1201 ((|#2| $) 19)) (-3691 (((-786) $) 11) (($ |#1|) 27)) (-1850 (($) 18 T CONST)) (-1925 (($) 24 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 15) (($ $ $) 13)) (-3790 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-432 |#1| |#2|) (-1180) (-156) (-23)) (T -432))
-((-1925 (*1 *1) (-12 (-4 *1 (-432 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1758 (*1 *1 *1 *1) (-12 (-4 *1 (-432 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
-(-13 (-437 |t#1| |t#2|) (-950 |t#1|) (-10 -8 (-15 (-1925) ($) -3897) (-15 -1758 ($ $ $))))
-(((-97) . T) ((-555 (-786)) . T) ((-437 |#1| |#2|) . T) ((-950 |#1|) . T) ((-1001) . T))
-((-1655 (((-1148 (-1148 (-501))) (-1148 (-1148 (-501))) (-839)) 18)) (-2328 (((-1148 (-1148 (-501))) (-839)) 16)))
-(((-433) (-10 -7 (-15 -1655 ((-1148 (-1148 (-501))) (-1148 (-1148 (-501))) (-839))) (-15 -2328 ((-1148 (-1148 (-501))) (-839))))) (T -433))
-((-2328 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 (-1148 (-501)))) (-5 *1 (-433)))) (-1655 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-1148 (-501)))) (-5 *3 (-839)) (-5 *1 (-433)))))
-(-10 -7 (-15 -1655 ((-1148 (-1148 (-501))) (-1148 (-1148 (-501))) (-839))) (-15 -2328 ((-1148 (-1148 (-501))) (-839))))
-((-3536 (((-501) (-501)) 30) (((-501)) 22)) (-3286 (((-501) (-501)) 26) (((-501)) 18)) (-2709 (((-501) (-501)) 28) (((-501)) 20)) (-2932 (((-107) (-107)) 12) (((-107)) 10)) (-1724 (((-107) (-107)) 11) (((-107)) 9)) (-1428 (((-107) (-107)) 24) (((-107)) 15)))
-(((-434) (-10 -7 (-15 -1724 ((-107))) (-15 -2932 ((-107))) (-15 -1724 ((-107) (-107))) (-15 -2932 ((-107) (-107))) (-15 -1428 ((-107))) (-15 -2709 ((-501))) (-15 -3286 ((-501))) (-15 -3536 ((-501))) (-15 -1428 ((-107) (-107))) (-15 -2709 ((-501) (-501))) (-15 -3286 ((-501) (-501))) (-15 -3536 ((-501) (-501))))) (T -434))
-((-3536 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-2709 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-1428 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-3536 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-3286 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-2709 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) (-1428 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-2932 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-1724 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-2932 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) (-1724 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))))
-(-10 -7 (-15 -1724 ((-107))) (-15 -2932 ((-107))) (-15 -1724 ((-107) (-107))) (-15 -2932 ((-107) (-107))) (-15 -1428 ((-107))) (-15 -2709 ((-501))) (-15 -3286 ((-501))) (-15 -3536 ((-501))) (-15 -1428 ((-107) (-107))) (-15 -2709 ((-501) (-501))) (-15 -3286 ((-501) (-501))) (-15 -3536 ((-501) (-501))))
-((-3736 (((-107) $ $) NIL)) (-3876 (((-578 (-346)) $) 27) (((-578 (-346)) $ (-578 (-346))) 90)) (-1487 (((-578 (-991 (-346))) $) 14) (((-578 (-991 (-346))) $ (-578 (-991 (-346)))) 87)) (-2479 (((-578 (-578 (-863 (-199)))) (-578 (-578 (-863 (-199)))) (-578 (-795))) 42)) (-2806 (((-578 (-578 (-863 (-199)))) $) 83)) (-1801 (((-1154) $ (-863 (-199)) (-795)) 103)) (-2746 (($ $) 82) (($ (-578 (-578 (-863 (-199))))) 93) (($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839))) 92) (($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)) (-578 (-232))) 94)) (-3460 (((-1053) $) NIL)) (-3626 (((-501) $) 65)) (-3708 (((-1018) $) NIL)) (-1876 (($) 91)) (-3055 (((-578 (-199)) (-578 (-578 (-863 (-199))))) 52)) (-2278 (((-1154) $ (-578 (-863 (-199))) (-795) (-795) (-839)) 97) (((-1154) $ (-863 (-199))) 99) (((-1154) $ (-863 (-199)) (-795) (-795) (-839)) 98)) (-3691 (((-786) $) 109) (($ (-578 (-578 (-863 (-199))))) 104)) (-2140 (((-1154) $ (-863 (-199))) 102)) (-3751 (((-107) $ $) NIL)))
-(((-435) (-13 (-1001) (-10 -8 (-15 -1876 ($)) (-15 -2746 ($ $)) (-15 -2746 ($ (-578 (-578 (-863 (-199)))))) (-15 -2746 ($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)))) (-15 -2746 ($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)) (-578 (-232)))) (-15 -2806 ((-578 (-578 (-863 (-199)))) $)) (-15 -3626 ((-501) $)) (-15 -1487 ((-578 (-991 (-346))) $)) (-15 -1487 ((-578 (-991 (-346))) $ (-578 (-991 (-346))))) (-15 -3876 ((-578 (-346)) $)) (-15 -3876 ((-578 (-346)) $ (-578 (-346)))) (-15 -2278 ((-1154) $ (-578 (-863 (-199))) (-795) (-795) (-839))) (-15 -2278 ((-1154) $ (-863 (-199)))) (-15 -2278 ((-1154) $ (-863 (-199)) (-795) (-795) (-839))) (-15 -2140 ((-1154) $ (-863 (-199)))) (-15 -1801 ((-1154) $ (-863 (-199)) (-795))) (-15 -3691 ($ (-578 (-578 (-863 (-199)))))) (-15 -3691 ((-786) $)) (-15 -2479 ((-578 (-578 (-863 (-199)))) (-578 (-578 (-863 (-199)))) (-578 (-795)))) (-15 -3055 ((-578 (-199)) (-578 (-578 (-863 (-199))))))))) (T -435))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-435)))) (-1876 (*1 *1) (-5 *1 (-435))) (-2746 (*1 *1 *1) (-5 *1 (-435))) (-2746 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) (-2746 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *4 (-578 (-839))) (-5 *1 (-435)))) (-2746 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *4 (-578 (-839))) (-5 *5 (-578 (-232))) (-5 *1 (-435)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-435)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-435)))) (-1487 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-435)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-435)))) (-3876 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-435)))) (-2278 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *2 (-1154)) (-5 *1 (-435)))) (-2278 (*1 *2 *1 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-435)))) (-2278 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-863 (-199))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *2 (-1154)) (-5 *1 (-435)))) (-2140 (*1 *2 *1 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-435)))) (-1801 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-863 (-199))) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-435)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) (-2479 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *1 (-435)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-578 (-199))) (-5 *1 (-435)))))
-(-13 (-1001) (-10 -8 (-15 -1876 ($)) (-15 -2746 ($ $)) (-15 -2746 ($ (-578 (-578 (-863 (-199)))))) (-15 -2746 ($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)))) (-15 -2746 ($ (-578 (-578 (-863 (-199)))) (-578 (-795)) (-578 (-795)) (-578 (-839)) (-578 (-232)))) (-15 -2806 ((-578 (-578 (-863 (-199)))) $)) (-15 -3626 ((-501) $)) (-15 -1487 ((-578 (-991 (-346))) $)) (-15 -1487 ((-578 (-991 (-346))) $ (-578 (-991 (-346))))) (-15 -3876 ((-578 (-346)) $)) (-15 -3876 ((-578 (-346)) $ (-578 (-346)))) (-15 -2278 ((-1154) $ (-578 (-863 (-199))) (-795) (-795) (-839))) (-15 -2278 ((-1154) $ (-863 (-199)))) (-15 -2278 ((-1154) $ (-863 (-199)) (-795) (-795) (-839))) (-15 -2140 ((-1154) $ (-863 (-199)))) (-15 -1801 ((-1154) $ (-863 (-199)) (-795))) (-15 -3691 ($ (-578 (-578 (-863 (-199)))))) (-15 -3691 ((-786) $)) (-15 -2479 ((-578 (-578 (-863 (-199)))) (-578 (-578 (-863 (-199)))) (-578 (-795)))) (-15 -3055 ((-578 (-199)) (-578 (-578 (-863 (-199))))))))
-((-3797 (($ $) NIL) (($ $ $) 11)))
-(((-436 |#1| |#2| |#3|) (-10 -8 (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|))) (-437 |#2| |#3|) (-156) (-23)) (T -436))
-NIL
-(-10 -8 (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1201 ((|#2| $) 19)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 15) (($ $ $) 13)) (-3790 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
-(((-437 |#1| |#2|) (-1180) (-156) (-23)) (T -437))
-((-1201 (*1 *2 *1) (-12 (-4 *1 (-437 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-1850 (*1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
-(-13 (-1001) (-10 -8 (-15 -1201 (|t#2| $)) (-15 (-1850) ($) -3897) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3797 ($ $)) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3290 (((-3 (-578 (-447 |#1| |#2|)) "failed") (-578 (-447 |#1| |#2|)) (-578 (-787 |#1|))) 88)) (-1430 (((-578 (-578 (-220 |#1| |#2|))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|))) 86)) (-1668 (((-2 (|:| |dpolys| (-578 (-220 |#1| |#2|))) (|:| |coords| (-578 (-501)))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|))) 58)))
-(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -1430 ((-578 (-578 (-220 |#1| |#2|))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|)))) (-15 -3290 ((-3 (-578 (-447 |#1| |#2|)) "failed") (-578 (-447 |#1| |#2|)) (-578 (-787 |#1|)))) (-15 -1668 ((-2 (|:| |dpolys| (-578 (-220 |#1| |#2|))) (|:| |coords| (-578 (-501)))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|))))) (-578 (-1070)) (-419) (-419)) (T -438))
-((-1668 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-787 *5))) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-2 (|:| |dpolys| (-578 (-220 *5 *6))) (|:| |coords| (-578 (-501))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-578 (-220 *5 *6))) (-4 *7 (-419)))) (-3290 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-447 *4 *5))) (-5 *3 (-578 (-787 *4))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-438 *4 *5 *6)) (-4 *6 (-419)))) (-1430 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-787 *5))) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-578 (-578 (-220 *5 *6)))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-578 (-220 *5 *6))) (-4 *7 (-419)))))
-(-10 -7 (-15 -1430 ((-578 (-578 (-220 |#1| |#2|))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|)))) (-15 -3290 ((-3 (-578 (-447 |#1| |#2|)) "failed") (-578 (-447 |#1| |#2|)) (-578 (-787 |#1|)))) (-15 -1668 ((-2 (|:| |dpolys| (-578 (-220 |#1| |#2|))) (|:| |coords| (-578 (-501)))) (-578 (-220 |#1| |#2|)) (-578 (-787 |#1|)))))
-((-2174 (((-3 $ "failed") $) 11)) (-3097 (($ $ $) 20)) (-2144 (($ $ $) 21)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 14)) (-3803 (($ $ $) 9)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 19)))
-(((-439 |#1|) (-10 -8 (-15 -2144 (|#1| |#1| |#1|)) (-15 -3097 (|#1| |#1| |#1|)) (-15 -3948 (|#1| |#1| (-501))) (-15 ** (|#1| |#1| (-501))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -3948 (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-701))) (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839)))) (-440)) (T -439))
-NIL
-(-10 -8 (-15 -2144 (|#1| |#1| |#1|)) (-15 -3097 (|#1| |#1| |#1|)) (-15 -3948 (|#1| |#1| (-501))) (-15 ** (|#1| |#1| (-501))) (-15 -3803 (|#1| |#1| |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -3948 (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-701))) (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839))))
-((-3736 (((-107) $ $) 7)) (-2540 (($) 20 T CONST)) (-2174 (((-3 $ "failed") $) 16)) (-1355 (((-107) $) 19)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 27)) (-3708 (((-1018) $) 10)) (-3097 (($ $ $) 23)) (-2144 (($ $ $) 22)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 13) (($ $ (-701)) 17) (($ $ (-501)) 24)) (-1925 (($) 21 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 26)) (** (($ $ (-839)) 14) (($ $ (-701)) 18) (($ $ (-501)) 25)) (* (($ $ $) 15)))
-(((-440) (-1180)) (T -440))
-((-3833 (*1 *1 *1) (-4 *1 (-440))) (-3803 (*1 *1 *1 *1) (-4 *1 (-440))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-440)) (-5 *2 (-501)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-440)) (-5 *2 (-501)))) (-3097 (*1 *1 *1 *1) (-4 *1 (-440))) (-2144 (*1 *1 *1 *1) (-4 *1 (-440))))
-(-13 (-657) (-10 -8 (-15 -3833 ($ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ (-501))) (-15 -3948 ($ $ (-501))) (-6 -4164) (-15 -3097 ($ $ $)) (-15 -2144 ($ $ $))))
-(((-97) . T) ((-555 (-786)) . T) ((-657) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 17)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) NIL) (($ $ (-375 (-501)) (-375 (-501))) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) NIL) (((-375 (-501)) $ (-375 (-501))) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL) (($ $ (-375 (-501))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) NIL) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 22)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 26 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 33 (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 27 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) NIL) (($ $ $) NIL (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) 25 (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $ (-1145 |#2|)) 15)) (-1201 (((-375 (-501)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1145 |#2|)) NIL) (($ (-1130 |#1| |#2| |#3|)) 9) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 18)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) 24)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-441 |#1| |#2| |#3|) (-13 (-1132 |#1|) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -3691 ($ (-1130 |#1| |#2| |#3|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -441))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-441 *3 *4 *5)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))))
-(-13 (-1132 |#1|) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -3691 ($ (-1130 |#1| |#2| |#3|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|)))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) 18)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) 19)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 16)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-442 |#1| |#2| |#3| |#4|) (-1081 |#1| |#2|) (-1001) (-1001) (-1081 |#1| |#2|) |#2|) (T -442))
-NIL
-(-1081 |#1| |#2|)
-((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) NIL)) (-2073 (((-578 $) (-578 |#4|)) NIL)) (-3800 (((-578 |#3|) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2599 ((|#4| |#4| $) NIL)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) 26 (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4110 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) NIL)) (-3490 (($ (-578 |#4|)) NIL)) (-1199 (((-3 $ "failed") $) 39)) (-1778 ((|#4| |#4| $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1379 ((|#4| |#4| $) NIL)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) NIL)) (-2732 (((-578 |#4|) $) 16 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2361 ((|#3| $) 33)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 17 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2519 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 21)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1383 (((-3 |#4| "failed") $) 37)) (-3574 (((-578 |#4|) $) NIL)) (-1590 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1762 ((|#4| |#4| $) NIL)) (-3523 (((-107) $ $) NIL)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3618 ((|#4| |#4| $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 |#4| "failed") $) 35)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3478 (((-3 $ "failed") $ |#4|) 46)) (-3718 (($ $ |#4|) NIL)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 15)) (-3122 (($) 13)) (-1201 (((-701) $) NIL)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) 12)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 20)) (-1638 (($ $ |#3|) 42)) (-2482 (($ $ |#3|) 43)) (-1218 (($ $) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) 31) (((-578 |#4|) $) 40)) (-4104 (((-701) $) NIL (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) NIL)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) NIL)) (-2659 (((-107) |#3| $) NIL)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-443 |#1| |#2| |#3| |#4|) (-1099 |#1| |#2| |#3| |#4|) (-508) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -443))
-NIL
-(-1099 |#1| |#2| |#3| |#4|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2003 (($) 18)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1248 (((-346) $) 22) (((-199) $) 25) (((-375 (-1064 (-501))) $) 19) (((-490) $) 52)) (-3691 (((-786) $) 50) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (((-199) $) 24) (((-346) $) 21)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 36 T CONST)) (-1925 (($) 11 T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL)))
-(((-444) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))) (-933) (-555 (-199)) (-555 (-346)) (-556 (-375 (-1064 (-501)))) (-556 (-490)) (-10 -8 (-15 -2003 ($))))) (T -444))
-((-2003 (*1 *1) (-5 *1 (-444))))
-(-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))) (-933) (-555 (-199)) (-555 (-346)) (-556 (-375 (-1064 (-501)))) (-556 (-490)) (-10 -8 (-15 -2003 ($))))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) 16)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) 20)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 18)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) 13)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 19)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 11 (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) 15 (|has| $ (-6 -4167)))))
-(((-445 |#1| |#2| |#3|) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) (-1001) (-1001) (-1053)) (T -445))
-NIL
-(-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167)))
-((-2036 (((-501) (-501) (-501)) 7)) (-2999 (((-107) (-501) (-501) (-501) (-501)) 11)) (-1949 (((-1148 (-578 (-501))) (-701) (-701)) 22)))
-(((-446) (-10 -7 (-15 -2036 ((-501) (-501) (-501))) (-15 -2999 ((-107) (-501) (-501) (-501) (-501))) (-15 -1949 ((-1148 (-578 (-501))) (-701) (-701))))) (T -446))
-((-1949 (*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1148 (-578 (-501)))) (-5 *1 (-446)))) (-2999 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-107)) (-5 *1 (-446)))) (-2036 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-446)))))
-(-10 -7 (-15 -2036 ((-501) (-501) (-501))) (-15 -2999 ((-107) (-501) (-501) (-501) (-501))) (-15 -1949 ((-1148 (-578 (-501))) (-701) (-701))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-787 |#1|)) $) NIL)) (-3728 (((-1064 $) $ (-787 |#1|)) NIL) (((-1064 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-787 |#1|))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-787 |#1|) "failed") $) NIL)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-787 |#1|) $) NIL)) (-1749 (($ $ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-1474 (($ $ (-578 (-501))) NIL)) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| (-448 (-3581 |#1|) (-701)) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#2|) (-787 |#1|)) NIL) (($ (-1064 $) (-787 |#1|)) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#2| (-448 (-3581 |#1|) (-701))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-787 |#1|)) NIL)) (-2285 (((-448 (-3581 |#1|) (-701)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 (-448 (-3581 |#1|) (-701)) (-448 (-3581 |#1|) (-701))) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-2752 (((-3 (-787 |#1|) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-787 |#1|)) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#2| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-787 |#1|) |#2|) NIL) (($ $ (-578 (-787 |#1|)) (-578 |#2|)) NIL) (($ $ (-787 |#1|) $) NIL) (($ $ (-578 (-787 |#1|)) (-578 $)) NIL)) (-2532 (($ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1201 (((-448 (-3581 |#1|) (-701)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-787 |#1|) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-787 |#1|)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#2| (-508)))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-448 (-3581 |#1|) (-701))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-447 |#1| |#2|) (-13 (-870 |#2| (-448 (-3581 |#1|) (-701)) (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501)))))) (-578 (-1070)) (-959)) (T -447))
-((-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-447 *3 *4)) (-14 *3 (-578 (-1070))) (-4 *4 (-959)))))
-(-13 (-870 |#2| (-448 (-3581 |#1|) (-701)) (-787 |#1|)) (-10 -8 (-15 -1474 ($ $ (-578 (-501))))))
-((-3736 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3292 (((-107) $) NIL (|has| |#2| (-123)))) (-1822 (($ (-839)) NIL (|has| |#2| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#2| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#2| (-336)))) (-1417 (((-501) $) NIL (|has| |#2| (-775)))) (-3754 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1001)))) (-3490 (((-501) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) ((|#2| $) NIL (|has| |#2| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL (|has| |#2| (-959))) (((-621 |#2|) (-621 $)) NIL (|has| |#2| (-959)))) (-2174 (((-3 $ "failed") $) NIL (|has| |#2| (-959)))) (-2890 (($) NIL (|has| |#2| (-336)))) (-2156 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ (-501)) 11)) (-2164 (((-107) $) NIL (|has| |#2| (-775)))) (-2732 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#2| (-959)))) (-4067 (((-107) $) NIL (|has| |#2| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#2| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#2| (-1001)))) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#2| (-336)))) (-3708 (((-1018) $) NIL (|has| |#2| (-1001)))) (-1190 ((|#2| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-501)) NIL)) (-1293 ((|#2| $ $) NIL (|has| |#2| (-959)))) (-3759 (($ (-1148 |#2|)) NIL)) (-3613 (((-125)) NIL (|has| |#2| (-331)))) (-2596 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#2|) $) NIL) (((-786) $) NIL (|has| |#2| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (|has| |#2| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (($ |#2|) NIL (|has| |#2| (-1001)))) (-3965 (((-701)) NIL (|has| |#2| (-959)))) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#2| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (-1850 (($) NIL (|has| |#2| (-123)) CONST)) (-1925 (($) NIL (|has| |#2| (-959)) CONST)) (-3584 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3751 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3773 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3762 (((-107) $ $) 15 (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $ $) NIL (|has| |#2| (-959))) (($ $) NIL (|has| |#2| (-959)))) (-3790 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (* (($ $ $) NIL (|has| |#2| (-959))) (($ (-501) $) NIL (|has| |#2| (-959))) (($ $ |#2|) NIL (|has| |#2| (-657))) (($ |#2| $) NIL (|has| |#2| (-657))) (($ (-701) $) NIL (|has| |#2| (-123))) (($ (-839) $) NIL (|has| |#2| (-25)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-448 |#1| |#2|) (-211 |#1| |#2|) (-701) (-723)) (T -448))
-NIL
-(-211 |#1| |#2|)
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-2213 (($ $ $) 32)) (-3216 (($ $ $) 31)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1323 ((|#1| $) 26)) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) 27)) (-4114 (($ |#1| $) 10)) (-2719 (($ (-578 |#1|)) 12)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1251 ((|#1| $) 23)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 9)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 29)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) 21 (|has| $ (-6 -4167)))))
-(((-449 |#1|) (-13 (-884 |#1|) (-10 -8 (-15 -2719 ($ (-578 |#1|))))) (-777)) (T -449))
-((-2719 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-449 *3)))))
-(-13 (-884 |#1|) (-10 -8 (-15 -2719 ($ (-578 |#1|)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3547 (($ $) 69)) (-2748 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-3463 (((-381 |#2| (-375 |#2|) |#3| |#4|) $) 43)) (-3708 (((-1018) $) NIL)) (-3987 (((-3 |#4| "failed") $) 105)) (-1281 (($ (-381 |#2| (-375 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-501)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-1688 (((-2 (|:| -3611 (-381 |#2| (-375 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-3691 (((-786) $) 100)) (-1850 (($) 33 T CONST)) (-3751 (((-107) $ $) 107)) (-3797 (($ $) 72) (($ $ $) NIL)) (-3790 (($ $ $) 70)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 73)))
-(((-450 |#1| |#2| |#3| |#4|) (-304 |#1| |#2| |#3| |#4|) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -450))
-NIL
-(-304 |#1| |#2| |#3| |#4|)
-((-3638 (((-501) (-578 (-501))) 28)) (-3553 ((|#1| (-578 |#1|)) 54)) (-2280 (((-578 |#1|) (-578 |#1|)) 55)) (-1213 (((-578 |#1|) (-578 |#1|)) 57)) (-3664 ((|#1| (-578 |#1|)) 56)) (-1734 (((-578 (-501)) (-578 |#1|)) 31)))
-(((-451 |#1|) (-10 -7 (-15 -3664 (|#1| (-578 |#1|))) (-15 -3553 (|#1| (-578 |#1|))) (-15 -1213 ((-578 |#1|) (-578 |#1|))) (-15 -2280 ((-578 |#1|) (-578 |#1|))) (-15 -1734 ((-578 (-501)) (-578 |#1|))) (-15 -3638 ((-501) (-578 (-501))))) (-1125 (-501))) (T -451))
-((-3638 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-501)) (-5 *1 (-451 *4)) (-4 *4 (-1125 *2)))) (-1734 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1125 (-501))) (-5 *2 (-578 (-501))) (-5 *1 (-451 *4)))) (-2280 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1125 (-501))) (-5 *1 (-451 *3)))) (-1213 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1125 (-501))) (-5 *1 (-451 *3)))) (-3553 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-451 *2)) (-4 *2 (-1125 (-501))))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-451 *2)) (-4 *2 (-1125 (-501))))))
-(-10 -7 (-15 -3664 (|#1| (-578 |#1|))) (-15 -3553 (|#1| (-578 |#1|))) (-15 -1213 ((-578 |#1|) (-578 |#1|))) (-15 -2280 ((-578 |#1|) (-578 |#1|))) (-15 -1734 ((-578 (-501)) (-578 |#1|))) (-15 -3638 ((-501) (-578 (-501)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-501) $) NIL (|has| (-501) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-501) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-501) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-501) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-501) (-950 (-501))))) (-3490 (((-501) $) NIL) (((-1070) $) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-501) (-950 (-501)))) (((-501) $) NIL (|has| (-501) (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-501) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-501) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-501) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-501) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-501) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-501) (-1046)))) (-4067 (((-107) $) NIL (|has| (-501) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-501) (-777)))) (-1212 (($ (-1 (-501) (-501)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-501) (-1046)) CONST)) (-3827 (($ (-375 (-501))) 8)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-501) (-276))) (((-375 (-501)) $) NIL)) (-3383 (((-501) $) NIL (|has| (-501) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-501)) (-578 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-501) (-501)) NIL (|has| (-501) (-278 (-501)))) (($ $ (-262 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-262 (-501)))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-1070)) (-578 (-501))) NIL (|has| (-501) (-476 (-1070) (-501)))) (($ $ (-1070) (-501)) NIL (|has| (-501) (-476 (-1070) (-501))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-501)) NIL (|has| (-501) (-256 (-501) (-501))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-501) $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| (-501) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-501) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-501) (-556 (-490)))) (((-346) $) NIL (|has| (-501) (-933))) (((-199) $) NIL (|has| (-501) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-501) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 7) (($ (-501)) NIL) (($ (-1070)) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL) (((-918 16) $) 9)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-501) (-830))) (|has| (-501) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-501) $) NIL (|has| (-501) (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-501) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3803 (($ $ $) NIL) (($ (-501) (-501)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-501) $) NIL) (($ $ (-501)) NIL)))
-(((-452) (-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 16) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -3827 ($ (-375 (-501))))))) (T -452))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-918 16)) (-5 *1 (-452)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))) (-3827 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))))
-(-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -3691 ((-918 16) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -3827 ($ (-375 (-501))))))
-((-3380 (((-578 |#2|) $) 22)) (-2211 (((-107) |#2| $) 27)) (-2369 (((-107) (-1 (-107) |#2|) $) 20)) (-3195 (($ $ (-578 (-262 |#2|))) 12) (($ $ (-262 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-578 |#2|) (-578 |#2|)) NIL)) (-3713 (((-701) (-1 (-107) |#2|) $) 21) (((-701) |#2| $) 25)) (-3691 (((-786) $) 36)) (-1200 (((-107) (-1 (-107) |#2|) $) 19)) (-3751 (((-107) $ $) 30)) (-3581 (((-701) $) 16)))
-(((-453 |#1| |#2|) (-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3380 ((-578 |#2|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|))) (-454 |#2|) (-1104)) (T -453))
-NIL
-(-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#2| |#2|)) (-15 -3195 (|#1| |#1| (-262 |#2|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#2|)))) (-15 -2211 ((-107) |#2| |#1|)) (-15 -3713 ((-701) |#2| |#1|)) (-15 -3380 ((-578 |#2|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#2|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-454 |#1|) (-1180) (-1104)) (T -454))
-((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-454 *3)) (-4 *3 (-1104)))) (-2519 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4168)) (-4 *1 (-454 *3)) (-4 *3 (-1104)))) (-1200 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-107)))) (-2369 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-107)))) (-3713 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-701)))) (-2732 (*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))) (-3380 (*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))) (-3713 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-701)))) (-2211 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |t#1| (-1001)) (IF (|has| |t#1| (-278 |t#1|)) (-6 (-278 |t#1|)) |noBranch|) |noBranch|) (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4168)) (-15 -2519 ($ (-1 |t#1| |t#1|) $)) |noBranch|) (IF (|has| $ (-6 -4167)) (PROGN (-15 -1200 ((-107) (-1 (-107) |t#1|) $)) (-15 -2369 ((-107) (-1 (-107) |t#1|) $)) (-15 -3713 ((-701) (-1 (-107) |t#1|) $)) (-15 -2732 ((-578 |t#1|) $)) (-15 -3380 ((-578 |t#1|) $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -3713 ((-701) |t#1| $)) (-15 -2211 ((-107) |t#1| $))) |noBranch|)) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3978 (($ $) 15)) (-3970 (($ $) 24)) (-3984 (($ $) 12)) (-3991 (($ $) 10)) (-3981 (($ $) 17)) (-3975 (($ $) 22)))
-(((-455 |#1|) (-10 -8 (-15 -3975 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|))) (-456)) (T -455))
-NIL
-(-10 -8 (-15 -3975 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)))
-((-3978 (($ $) 11)) (-3970 (($ $) 10)) (-3984 (($ $) 9)) (-3991 (($ $) 8)) (-3981 (($ $) 7)) (-3975 (($ $) 6)))
-(((-456) (-1180)) (T -456))
-((-3978 (*1 *1 *1) (-4 *1 (-456))) (-3970 (*1 *1 *1) (-4 *1 (-456))) (-3984 (*1 *1 *1) (-4 *1 (-456))) (-3991 (*1 *1 *1) (-4 *1 (-456))) (-3981 (*1 *1 *1) (-4 *1 (-456))) (-3975 (*1 *1 *1) (-4 *1 (-456))))
-(-13 (-10 -8 (-15 -3975 ($ $)) (-15 -3981 ($ $)) (-15 -3991 ($ $)) (-15 -3984 ($ $)) (-15 -3970 ($ $)) (-15 -3978 ($ $))))
-((-3739 (((-373 |#4|) |#4| (-1 (-373 |#2|) |#2|)) 42)))
-(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4| (-1 (-373 |#2|) |#2|)))) (-331) (-1125 |#1|) (-13 (-331) (-134) (-655 |#1| |#2|)) (-1125 |#3|)) (T -457))
-((-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-4 *7 (-13 (-331) (-134) (-655 *5 *6))) (-5 *2 (-373 *3)) (-5 *1 (-457 *5 *6 *7 *3)) (-4 *3 (-1125 *7)))))
-(-10 -7 (-15 -3739 ((-373 |#4|) |#4| (-1 (-373 |#2|) |#2|))))
-((-3736 (((-107) $ $) NIL)) (-3588 (((-578 $) (-1064 $) (-1070)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-866 $)) NIL)) (-3448 (($ (-1064 $) (-1070)) NIL) (($ (-1064 $)) NIL) (($ (-866 $)) NIL)) (-3292 (((-107) $) 36)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-1358 (((-107) $ $) 62)) (-3709 (((-578 (-553 $)) $) 46)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3631 (($ $ (-262 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-1271 (((-578 $) (-1064 $) (-1070)) NIL) (((-578 $) (-1064 $)) NIL) (((-578 $) (-866 $)) NIL)) (-2899 (($ (-1064 $) (-1070)) NIL) (($ (-1064 $)) NIL) (($ (-866 $)) NIL)) (-3765 (((-3 (-553 $) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL)) (-3490 (((-553 $) $) NIL) (((-501) $) NIL) (((-375 (-501)) $) 48)) (-3023 (($ $ $) NIL)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-375 (-501)))) (|:| |vec| (-1148 (-375 (-501))))) (-621 $) (-1148 $)) NIL) (((-621 (-375 (-501))) (-621 $)) NIL)) (-3547 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2446 (($ $) NIL) (($ (-578 $)) NIL)) (-2389 (((-578 (-108)) $) NIL)) (-1853 (((-108) (-108)) NIL)) (-1355 (((-107) $) 39)) (-3729 (((-107) $) NIL (|has| $ (-950 (-501))))) (-2946 (((-1023 (-501) (-553 $)) $) 34)) (-1342 (($ $ (-501)) NIL)) (-2626 (((-1064 $) (-1064 $) (-553 $)) 77) (((-1064 $) (-1064 $) (-578 (-553 $))) 53) (($ $ (-553 $)) 66) (($ $ (-578 (-553 $))) 67)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1983 (((-1064 $) (-553 $)) 64 (|has| $ (-959)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 $ $) (-553 $)) NIL)) (-2789 (((-3 (-553 $) "failed") $) NIL)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3724 (((-578 (-553 $)) $) NIL)) (-3136 (($ (-108) $) NIL) (($ (-108) (-578 $)) NIL)) (-3109 (((-107) $ (-108)) NIL) (((-107) $ (-1070)) NIL)) (-3833 (($ $) NIL)) (-2696 (((-701) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-2816 (((-107) $ $) NIL) (((-107) $ (-1070)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL (|has| $ (-950 (-501))))) (-3195 (($ $ (-553 $) $) NIL) (($ $ (-578 (-553 $)) (-578 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-1070)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-1070) (-1 $ (-578 $))) NIL) (($ $ (-1070) (-1 $ $)) NIL) (($ $ (-578 (-108)) (-578 (-1 $ $))) NIL) (($ $ (-578 (-108)) (-578 (-1 $ (-578 $)))) NIL) (($ $ (-108) (-1 $ (-578 $))) NIL) (($ $ (-108) (-1 $ $)) NIL)) (-1864 (((-701) $) NIL)) (-2007 (($ (-108) $) NIL) (($ (-108) $ $) NIL) (($ (-108) $ $ $) NIL) (($ (-108) $ $ $ $) NIL) (($ (-108) (-578 $)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-4106 (($ $) NIL) (($ $ $) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) 33)) (-2949 (((-1023 (-501) (-553 $)) $) 17)) (-2264 (($ $) NIL (|has| $ (-959)))) (-1248 (((-346) $) 91) (((-199) $) 99) (((-152 (-346)) $) 107)) (-3691 (((-786) $) NIL) (($ (-553 $)) NIL) (($ (-375 (-501))) NIL) (($ $) NIL) (($ (-501)) NIL) (($ (-1023 (-501) (-553 $))) 18)) (-3965 (((-701)) NIL)) (-1831 (($ $) NIL) (($ (-578 $)) NIL)) (-3811 (((-107) (-108)) 83)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-501)) NIL) (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 9 T CONST)) (-1925 (($) 19 T CONST)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 21)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3803 (($ $ $) 41)) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-375 (-501))) NIL) (($ $ (-501)) 44) (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ $ $) 24) (($ (-501) $) NIL) (($ (-701) $) NIL) (($ (-839) $) NIL)))
-(((-458) (-13 (-267) (-27) (-950 (-501)) (-950 (-375 (-501))) (-577 (-501)) (-933) (-577 (-375 (-501))) (-134) (-556 (-152 (-346))) (-206) (-10 -8 (-15 -3691 ($ (-1023 (-501) (-553 $)))) (-15 -2946 ((-1023 (-501) (-553 $)) $)) (-15 -2949 ((-1023 (-501) (-553 $)) $)) (-15 -3547 ($ $)) (-15 -1358 ((-107) $ $)) (-15 -2626 ((-1064 $) (-1064 $) (-553 $))) (-15 -2626 ((-1064 $) (-1064 $) (-578 (-553 $)))) (-15 -2626 ($ $ (-553 $))) (-15 -2626 ($ $ (-578 (-553 $))))))) (T -458))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) (-2949 (*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) (-3547 (*1 *1 *1) (-5 *1 (-458))) (-1358 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-458)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-458))) (-5 *3 (-553 (-458))) (-5 *1 (-458)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-458))) (-5 *3 (-578 (-553 (-458)))) (-5 *1 (-458)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-553 (-458))) (-5 *1 (-458)))) (-2626 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-553 (-458)))) (-5 *1 (-458)))))
-(-13 (-267) (-27) (-950 (-501)) (-950 (-375 (-501))) (-577 (-501)) (-933) (-577 (-375 (-501))) (-134) (-556 (-152 (-346))) (-206) (-10 -8 (-15 -3691 ($ (-1023 (-501) (-553 $)))) (-15 -2946 ((-1023 (-501) (-553 $)) $)) (-15 -2949 ((-1023 (-501) (-553 $)) $)) (-15 -3547 ($ $)) (-15 -1358 ((-107) $ $)) (-15 -2626 ((-1064 $) (-1064 $) (-553 $))) (-15 -2626 ((-1064 $) (-1064 $) (-578 (-553 $)))) (-15 -2626 ($ $ (-553 $))) (-15 -2626 ($ $ (-578 (-553 $))))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) 25 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 22 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 21)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 14)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 12 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) 23 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) 10 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 13)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) 24) (($ $ (-1116 (-501))) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 9 (|has| $ (-6 -4167)))))
-(((-459 |#1| |#2|) (-19 |#1|) (-1104) (-501)) (T -459))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#2| "failed") $) 44)) (-3189 ((|#2| $) 43)) (-1212 (($ $) 30)) (-1577 (((-703) $) 34)) (-4094 (((-583 $) $) 35)) (-4031 (((-107) $) 38)) (-3419 (($ |#2| |#1|) 39)) (-1893 (($ (-1 |#1| |#1|) $) 40)) (-2854 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-4152 ((|#2| $) 33)) (-1191 ((|#1| $) 32)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ |#2|) 45)) (-1311 (((-583 |#1|) $) 36)) (-2720 ((|#1| $ |#2|) 41)) (-2396 (($) 18 T CONST)) (-2332 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-352 |#1| |#2|) (-1184) (-961) (-1003)) (T -352))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) (-3419 (*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-2332 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-4094 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) (-4152 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) (-2854 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))))
+(-13 (-106 |t#1| |t#1|) (-952 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2720 (|t#1| $ |t#2|)) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -3419 ($ |t#2| |t#1|)) (-15 -4031 ((-107) $)) (-15 -2332 ((-583 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1311 ((-583 |t#1|) $)) (-15 -4094 ((-583 $) $)) (-15 -1577 ((-703) $)) (-15 -4152 (|t#2| $)) (-15 -1191 (|t#1| $)) (-15 -2854 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1212 ($ $)) (IF (|has| |t#1| (-156)) (-6 (-650 |t#1|)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) |has| |#1| (-156)) ((-952 |#2|) . T) ((-967 |#1|) . T) ((-1003) . T))
+((-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-623 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 11)))
+(((-353) (-1184)) (T -353))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-353)))))
+(-13 (-365) (-10 -8 (-15 -2256 ($ (-623 (-632)))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
+((-1772 (((-3 $ "failed") (-623 (-286 (-349)))) 21) (((-3 $ "failed") (-623 (-286 (-517)))) 19) (((-3 $ "failed") (-623 (-874 (-349)))) 17) (((-3 $ "failed") (-623 (-874 (-517)))) 15) (((-3 $ "failed") (-623 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-623 (-377 (-874 (-517))))) 11)) (-3189 (($ (-623 (-286 (-349)))) 22) (($ (-623 (-286 (-517)))) 20) (($ (-623 (-874 (-349)))) 18) (($ (-623 (-874 (-517)))) 16) (($ (-623 (-377 (-874 (-349))))) 14) (($ (-623 (-377 (-874 (-517))))) 12)) (-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 23)))
+(((-354) (-1184)) (T -354))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))))
+(-13 (-365) (-10 -8 (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -3189 ($ (-623 (-286 (-349))))) (-15 -1772 ((-3 $ "failed") (-623 (-286 (-349))))) (-15 -3189 ($ (-623 (-286 (-517))))) (-15 -1772 ((-3 $ "failed") (-623 (-286 (-517))))) (-15 -3189 ($ (-623 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-623 (-874 (-349))))) (-15 -3189 ($ (-623 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-623 (-874 (-517))))) (-15 -3189 ($ (-623 (-377 (-874 (-349)))))) (-15 -1772 ((-3 $ "failed") (-623 (-377 (-874 (-349)))))) (-15 -3189 ($ (-623 (-377 (-874 (-517)))))) (-15 -1772 ((-3 $ "failed") (-623 (-377 (-874 (-517))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 27)) (-2396 (($) 12 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 18)))
+(((-355 |#1| |#2|) (-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|))) (-961) (-779)) (T -355))
+NIL
+(-13 (-106 |#1| |#1|) (-473 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-156)) (-6 (-650 |#1|)) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-1611 (((-703) $) 56)) (-3092 (($) NIL T CONST)) (-3791 (((-3 $ "failed") $ $) 58)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1337 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 52)) (-3848 (((-107) $) 14)) (-3466 ((|#1| $ (-517)) NIL)) (-3882 (((-703) $ (-517)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3420 (($ (-1 |#1| |#1|) $) 37)) (-2125 (($ (-1 (-703) (-703)) $) 34)) (-2208 (((-3 $ "failed") $ $) 49)) (-3985 (((-1056) $) NIL)) (-2611 (($ $ $) 25)) (-2301 (($ $ $) 23)) (-3206 (((-1021) $) NIL)) (-2879 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $) 31)) (-1306 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 55)) (-2256 (((-787) $) 21) (($ |#1|) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2409 (($) 9 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 41)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 60 (|has| |#1| (-779)))) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ |#1| (-703)) 40)) (* (($ $ $) 47) (($ |#1| $) 29) (($ $ |#1|) 27)))
+(((-356 |#1|) (-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -1306 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-703) (-703)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|))) (-1003)) (T -356))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2611 (*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2208 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-3791 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-1306 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1337 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) (-2125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3)))))
+(-13 (-659) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -1306 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2125 ($ (-1 (-703) (-703)) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-779)) (-6 (-779)) |noBranch|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 47)) (-3189 (((-517) $) 46)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-2967 (($ $ $) 54)) (-3099 (($ $ $) 53)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 48)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 51)) (-1583 (((-107) $ $) 50)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 52)) (-1572 (((-107) $ $) 49)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-357) (-1184)) (T -357))
+NIL
+(-13 (-509) (-779) (-952 (-517)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2680 (((-107) $) 20)) (-1742 (((-107) $) 19)) (-3462 (($ (-1056) (-1056) (-1056)) 21)) (-1207 (((-1056) $) 16)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1502 (($ (-1056) (-1056) (-1056)) 14)) (-1764 (((-1056) $) 17)) (-3935 (((-107) $) 18)) (-2173 (((-1056) $) 15)) (-2256 (((-787) $) 12) (($ (-1056)) 13) (((-1056) $) 9)) (-1547 (((-107) $ $) 7)))
+(((-358) (-359)) (T -358))
+NIL
+(-359)
+((-2750 (((-107) $ $) 7)) (-2680 (((-107) $) 14)) (-1742 (((-107) $) 15)) (-3462 (($ (-1056) (-1056) (-1056)) 13)) (-1207 (((-1056) $) 18)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1502 (($ (-1056) (-1056) (-1056)) 20)) (-1764 (((-1056) $) 17)) (-3935 (((-107) $) 16)) (-2173 (((-1056) $) 19)) (-2256 (((-787) $) 11) (($ (-1056)) 22) (((-1056) $) 21)) (-1547 (((-107) $ $) 6)))
+(((-359) (-1184)) (T -359))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-1502 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) (-2173 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-1207 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-1764 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) (-3935 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-2680 (*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))) (-3462 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ($ (-1056))) (-15 -2256 ((-1056) $)) (-15 -1502 ($ (-1056) (-1056) (-1056))) (-15 -2173 ((-1056) $)) (-15 -1207 ((-1056) $)) (-15 -1764 ((-1056) $)) (-15 -3935 ((-107) $)) (-15 -1742 ((-107) $)) (-15 -2680 ((-107) $)) (-15 -3462 ($ (-1056) (-1056) (-1056)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3395 (((-787) $) 50)) (-3092 (($) NIL T CONST)) (-3380 (($ $ (-843)) NIL)) (-3730 (($ $ (-843)) NIL)) (-2572 (($ $ (-843)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($ (-703)) 26)) (-3141 (((-703)) 15)) (-2376 (((-787) $) 52)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) NIL)) (-3917 (($ $ $ $) NIL)) (-1956 (($ $ $) NIL)) (-2396 (($) 20 T CONST)) (-1547 (((-107) $ $) 28)) (-1654 (($ $) 34) (($ $ $) 36)) (-1642 (($ $ $) 37)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-360 |#1| |#2| |#3|) (-13 (-677 |#3|) (-10 -8 (-15 -3141 ((-703))) (-15 -2376 ((-787) $)) (-15 -3395 ((-787) $)) (-15 -3220 ($ (-703))))) (-703) (-703) (-156)) (T -360))
+((-3141 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) (-2376 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))))
+(-13 (-677 |#3|) (-10 -8 (-15 -3141 ((-703))) (-15 -2376 ((-787) $)) (-15 -3395 ((-787) $)) (-15 -3220 ($ (-703)))))
+((-1866 (((-1056)) 10)) (-4012 (((-1045 (-1056))) 28)) (-4124 (((-1158) (-1056)) 25) (((-1158) (-358)) 24)) (-4137 (((-1158)) 26)) (-3657 (((-1045 (-1056))) 27)))
+(((-361) (-10 -7 (-15 -3657 ((-1045 (-1056)))) (-15 -4012 ((-1045 (-1056)))) (-15 -4137 ((-1158))) (-15 -4124 ((-1158) (-358))) (-15 -4124 ((-1158) (-1056))) (-15 -1866 ((-1056))))) (T -361))
+((-1866 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-361)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-361)))) (-4124 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-361)))) (-4137 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-361)))) (-4012 (*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361)))) (-3657 (*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361)))))
+(-10 -7 (-15 -3657 ((-1045 (-1056)))) (-15 -4012 ((-1045 (-1056)))) (-15 -4137 ((-1158))) (-15 -4124 ((-1158) (-358))) (-15 -4124 ((-1158) (-1056))) (-15 -1866 ((-1056))))
+((-3972 (((-703) (-306 |#1| |#2| |#3| |#4|)) 16)))
+(((-362 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|)))) (-13 (-338) (-333)) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -362))
+((-3972 (*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|))))
+((-2256 (((-364) |#1|) 11)))
+(((-363 |#1|) (-10 -7 (-15 -2256 ((-364) |#1|))) (-1003)) (T -363))
+((-2256 (*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -2256 ((-364) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-1594 (((-583 (-1056)) $ (-583 (-1056))) 37)) (-2404 (((-583 (-1056)) $ (-583 (-1056))) 38)) (-3385 (((-583 (-1056)) $ (-583 (-1056))) 39)) (-3157 (((-583 (-1056)) $) 34)) (-3462 (($) 23)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1415 (((-583 (-1056)) $) 35)) (-2054 (((-583 (-1056)) $) 36)) (-1242 (((-1158) $ (-517)) 32) (((-1158) $) 33)) (-3645 (($ (-787) (-517)) 29)) (-2256 (((-787) $) 41) (($ (-787)) 25)) (-1547 (((-107) $ $) NIL)))
+(((-364) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -1415 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -2404 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))) (T -364))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) (-1242 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-364)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-364)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-3462 (*1 *1) (-5 *1 (-364))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-3385 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-2404 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) (-1594 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -1415 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -2404 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))
+((-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8)))
+(((-365) (-1184)) (T -365))
+((-4155 (*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1158)))))
+(-13 (-1108) (-557 (-787)) (-10 -8 (-15 -4155 ((-1158) $))))
+(((-557 (-787)) . T) ((-1108) . T))
+((-1772 (((-3 $ "failed") (-286 (-349))) 21) (((-3 $ "failed") (-286 (-517))) 19) (((-3 $ "failed") (-874 (-349))) 17) (((-3 $ "failed") (-874 (-517))) 15) (((-3 $ "failed") (-377 (-874 (-349)))) 13) (((-3 $ "failed") (-377 (-874 (-517)))) 11)) (-3189 (($ (-286 (-349))) 22) (($ (-286 (-517))) 20) (($ (-874 (-349))) 18) (($ (-874 (-517))) 16) (($ (-377 (-874 (-349)))) 14) (($ (-377 (-874 (-517)))) 12)) (-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 23)))
+(((-366) (-1184)) (T -366))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))))
+(-13 (-365) (-10 -8 (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -3189 ($ (-286 (-349)))) (-15 -1772 ((-3 $ "failed") (-286 (-349)))) (-15 -3189 ($ (-286 (-517)))) (-15 -1772 ((-3 $ "failed") (-286 (-517)))) (-15 -3189 ($ (-874 (-349)))) (-15 -1772 ((-3 $ "failed") (-874 (-349)))) (-15 -3189 ($ (-874 (-517)))) (-15 -1772 ((-3 $ "failed") (-874 (-517)))) (-15 -3189 ($ (-377 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-349))))) (-15 -3189 ($ (-377 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-377 (-874 (-517)))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
+((-2736 (((-583 (-1056)) (-583 (-1056))) 8)) (-4155 (((-1158) (-358)) 27)) (-4048 (((-1007) (-1073) (-583 (-1073)) (-1076) (-583 (-1073))) 59) (((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)) (-1073)) 35) (((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073))) 34)))
+(((-367) (-10 -7 (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)))) (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)) (-1073))) (-15 -4048 ((-1007) (-1073) (-583 (-1073)) (-1076) (-583 (-1073)))) (-15 -4155 ((-1158) (-358))) (-15 -2736 ((-583 (-1056)) (-583 (-1056)))))) (T -367))
+((-2736 (*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-367)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-367)))) (-4048 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *5 (-1076)) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-4048 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) (-4048 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))))
+(-10 -7 (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)))) (-15 -4048 ((-1007) (-1073) (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073)))) (-583 (-583 (-3 (|:| |array| (-583 (-1073))) (|:| |scalar| (-1073))))) (-583 (-1073)) (-1073))) (-15 -4048 ((-1007) (-1073) (-583 (-1073)) (-1076) (-583 (-1073)))) (-15 -4155 ((-1158) (-358))) (-15 -2736 ((-583 (-1056)) (-583 (-1056)))))
+((-4155 (((-1158) $) 37)) (-2256 (((-787) $) 89) (($ (-300)) 92) (($ (-583 (-300))) 91) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 88) (($ (-286 (-634))) 52) (($ (-286 (-632))) 66) (($ (-286 (-627))) 78) (($ (-265 (-286 (-634)))) 62) (($ (-265 (-286 (-632)))) 74) (($ (-265 (-286 (-627)))) 86) (($ (-286 (-517))) 96) (($ (-286 (-349))) 108) (($ (-286 (-153 (-349)))) 120) (($ (-265 (-286 (-517)))) 104) (($ (-265 (-286 (-349)))) 116) (($ (-265 (-286 (-153 (-349))))) 128)))
+(((-368 |#1| |#2| |#3| |#4|) (-13 (-365) (-10 -8 (-15 -2256 ($ (-300))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -2256 ($ (-286 (-634)))) (-15 -2256 ($ (-286 (-632)))) (-15 -2256 ($ (-286 (-627)))) (-15 -2256 ($ (-265 (-286 (-634))))) (-15 -2256 ($ (-265 (-286 (-632))))) (-15 -2256 ($ (-265 (-286 (-627))))) (-15 -2256 ($ (-286 (-517)))) (-15 -2256 ($ (-286 (-349)))) (-15 -2256 ($ (-286 (-153 (-349))))) (-15 -2256 ($ (-265 (-286 (-517))))) (-15 -2256 ($ (-265 (-286 (-349))))) (-15 -2256 ($ (-265 (-286 (-153 (-349)))))))) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-1077)) (T -368))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))))
+(-13 (-365) (-10 -8 (-15 -2256 ($ (-300))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -2256 ($ (-286 (-634)))) (-15 -2256 ($ (-286 (-632)))) (-15 -2256 ($ (-286 (-627)))) (-15 -2256 ($ (-265 (-286 (-634))))) (-15 -2256 ($ (-265 (-286 (-632))))) (-15 -2256 ($ (-265 (-286 (-627))))) (-15 -2256 ($ (-286 (-517)))) (-15 -2256 ($ (-286 (-349)))) (-15 -2256 ($ (-286 (-153 (-349))))) (-15 -2256 ($ (-265 (-286 (-517))))) (-15 -2256 ($ (-265 (-286 (-349))))) (-15 -2256 ($ (-265 (-286 (-153 (-349))))))))
+((-2750 (((-107) $ $) NIL)) (-1388 ((|#2| $) 36)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2149 (($ (-377 |#2|)) 84)) (-2544 (((-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))) $) 37)) (-3127 (($ $) 32) (($ $ (-703)) 34)) (-3645 (((-377 |#2|) $) 46)) (-2276 (($ (-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|)))) 31)) (-2256 (((-787) $) 120)) (-2731 (($ $) 33) (($ $ (-703)) 35)) (-1547 (((-107) $ $) NIL)) (-1642 (($ |#2| $) 39)))
+(((-369 |#1| |#2|) (-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1642 ($ |#2| $)) (-15 -2149 ($ (-377 |#2|))) (-15 -1388 (|#2| $)) (-15 -2544 ((-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))))) (-15 -3127 ($ $)) (-15 -2731 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2731 ($ $ (-703))))) (-13 (-333) (-134)) (-1130 |#1|)) (T -369))
+((-1642 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1130 *3)))) (-2149 (*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-1388 (*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))) (-2544 (*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) (-3127 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) (-2731 (*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))))
+(-13 (-1003) (-558 (-377 |#2|)) (-10 -8 (-15 -1642 ($ |#2| $)) (-15 -2149 ($ (-377 |#2|))) (-15 -1388 (|#2| $)) (-15 -2544 ((-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -2077 (-703)) (|:| -2986 |#2|) (|:| |num| |#2|))))) (-15 -3127 ($ $)) (-15 -2731 ($ $)) (-15 -3127 ($ $ (-703))) (-15 -2731 ($ $ (-703)))))
+((-2750 (((-107) $ $) 9 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 15 (|has| |#1| (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 14 (|has| |#1| (-808 (-517))))) (-3985 (((-1056) $) 13 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-3206 (((-1021) $) 12 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-2256 (((-787) $) 11 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))) (-1547 (((-107) $ $) 10 (-3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))))))
+(((-370 |#1|) (-1184) (-1108)) (T -370))
+NIL
+(-13 (-1108) (-10 -7 (IF (|has| |t#1| (-808 (-517))) (-6 (-808 (-517))) |noBranch|) (IF (|has| |t#1| (-808 (-349))) (-6 (-808 (-349))) |noBranch|)))
+(((-97) -3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-557 (-787)) -3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-1003) -3807 (|has| |#1| (-808 (-517))) (|has| |#1| (-808 (-349)))) ((-1108) . T))
+((-2378 (($ $) 10) (($ $ (-703)) 11)))
+(((-371 |#1|) (-10 -8 (-15 -2378 (|#1| |#1| (-703))) (-15 -2378 (|#1| |#1|))) (-372)) (T -371))
+NIL
+(-10 -8 (-15 -2378 (|#1| |#1| (-703))) (-15 -2378 (|#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-2378 (($ $) 79) (($ $ (-703)) 78)) (-3849 (((-107) $) 71)) (-3972 (((-765 (-843)) $) 81)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-3 (-703) "failed") $ $) 80)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65)) (-1328 (((-3 $ "failed") $) 82)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-372) (-1184)) (T -372))
+((-3972 (*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) (-1620 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))) (-2378 (*1 *1 *1) (-4 *1 (-372))) (-2378 (*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))))
+(-13 (-333) (-132) (-10 -8 (-15 -3972 ((-765 (-843)) $)) (-15 -1620 ((-3 (-703) "failed") $ $)) (-15 -2378 ($ $)) (-15 -2378 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-132) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
+((-4005 (($ (-517) (-517)) 11) (($ (-517) (-517) (-843)) NIL)) (-2930 (((-843)) 16) (((-843) (-843)) NIL)))
+(((-373 |#1|) (-10 -8 (-15 -2930 ((-843) (-843))) (-15 -2930 ((-843))) (-15 -4005 (|#1| (-517) (-517) (-843))) (-15 -4005 (|#1| (-517) (-517)))) (-374)) (T -373))
+((-2930 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))))
+(-10 -8 (-15 -2930 ((-843) (-843))) (-15 -2930 ((-843))) (-15 -4005 (|#1| (-517) (-517) (-843))) (-15 -4005 (|#1| (-517) (-517))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 (((-517) $) 89)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1974 (($ $) 87)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 97)) (-1707 (((-107) $ $) 59)) (-3709 (((-517) $) 114)) (-3092 (($) 17 T CONST)) (-2531 (($ $) 86)) (-1772 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3189 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3554 (((-843)) 130) (((-843) (-843)) 127 (|has| $ (-6 -4171)))) (-3556 (((-107) $) 112)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-3972 (((-517) $) 136)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 96)) (-1506 (($ $) 92)) (-2475 (((-107) $) 113)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2967 (($ $ $) 111) (($) 124 (-12 (-2630 (|has| $ (-6 -4171))) (-2630 (|has| $ (-6 -4163)))))) (-3099 (($ $ $) 110) (($) 123 (-12 (-2630 (|has| $ (-6 -4171))) (-2630 (|has| $ (-6 -4163)))))) (-3371 (((-517) $) 133)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2138 (((-843) (-517)) 126 (|has| $ (-6 -4171)))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1927 (($ $) 88)) (-2597 (($ $) 90)) (-4005 (($ (-517) (-517)) 138) (($ (-517) (-517) (-843)) 137)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2077 (((-517) $) 134)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2930 (((-843)) 131) (((-843) (-843)) 128 (|has| $ (-6 -4171)))) (-2646 (((-843) (-517)) 125 (|has| $ (-6 -4171)))) (-3645 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-2961 (((-703)) 29)) (-1949 (($ $) 91)) (-1398 (((-843)) 132) (((-843) (-843)) 129 (|has| $ (-6 -4171)))) (-2372 (((-843)) 135)) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 115)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 108)) (-1583 (((-107) $ $) 107)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 109)) (-1572 (((-107) $ $) 106)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-374) (-1184)) (T -374))
+((-4005 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) (-4005 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-2372 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) (-1398 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-2930 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-3554 (*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) (-2138 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))) (-2646 (*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))) (-2967 (*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))) (-3099 (*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))))
+(-13 (-970) (-10 -8 (-6 -3383) (-15 -4005 ($ (-517) (-517))) (-15 -4005 ($ (-517) (-517) (-843))) (-15 -3972 ((-517) $)) (-15 -2372 ((-843))) (-15 -2077 ((-517) $)) (-15 -3371 ((-517) $)) (-15 -1398 ((-843))) (-15 -2930 ((-843))) (-15 -3554 ((-843))) (IF (|has| $ (-6 -4171)) (PROGN (-15 -1398 ((-843) (-843))) (-15 -2930 ((-843) (-843))) (-15 -3554 ((-843) (-843))) (-15 -2138 ((-843) (-517))) (-15 -2646 ((-843) (-517)))) |noBranch|) (IF (|has| $ (-6 -4163)) |noBranch| (IF (|has| $ (-6 -4171)) |noBranch| (PROGN (-15 -2967 ($)) (-15 -3099 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-970) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
+((-1893 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 20)))
+(((-375 |#1| |#2|) (-10 -7 (-15 -1893 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-509) (-509)) (T -375))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))))
+(-10 -7 (-15 -1893 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
+((-1893 (((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)) 13)))
+(((-376 |#1| |#2|) (-10 -7 (-15 -1893 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|)))) (-509) (-509)) (T -376))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))))
+(-10 -7 (-15 -1893 ((-377 |#2|) (-1 |#2| |#1|) (-377 |#1|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 13)) (-2668 ((|#1| $) 21 (|has| |#1| (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| |#1| (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 17) (((-3 (-1073) "failed") $) NIL (|has| |#1| (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) 70 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517))))) (-3189 ((|#1| $) 15) (((-1073) $) NIL (|has| |#1| (-952 (-1073)))) (((-377 (-517)) $) 67 (|has| |#1| (-952 (-517)))) (((-517) $) NIL (|has| |#1| (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 50)) (-3209 (($) NIL (|has| |#1| (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| |#1| (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#1| (-808 (-349))))) (-3848 (((-107) $) 64)) (-1405 (($ $) NIL)) (-1787 ((|#1| $) 71)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-2475 (((-107) $) NIL (|has| |#1| (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 97)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| |#1| (-278)))) (-2597 ((|#1| $) 28 (|has| |#1| (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 133 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 129 (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) NIL)) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2971 (($ $) NIL)) (-1800 ((|#1| $) 73)) (-3645 (((-814 (-517)) $) NIL (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#1| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#1| (-558 (-493)))) (((-349) $) NIL (|has| |#1| (-937))) (((-199) $) NIL (|has| |#1| (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 113 (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 10) (($ (-1073)) NIL (|has| |#1| (-952 (-1073))))) (-1328 (((-3 $ "failed") $) 99 (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 100)) (-1949 ((|#1| $) 26 (|has| |#1| (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| |#1| (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 22 T CONST)) (-2409 (($) 8 T CONST)) (-2482 (((-1056) $) 43 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1056) $ (-107)) 44 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1158) (-754) $) 45 (-12 (|has| |#1| (-502)) (|has| |#1| (-760)))) (((-1158) (-754) $ (-107)) 46 (-12 (|has| |#1| (-502)) (|has| |#1| (-760))))) (-2731 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 56)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) 24 (|has| |#1| (-779)))) (-1667 (($ $ $) 124) (($ |#1| |#1|) 52)) (-1654 (($ $) 25) (($ $ $) 55)) (-1642 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 123)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 60) (($ $ $) 57) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-377 |#1|) (-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4167)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4178)) (-6 -4167) |noBranch|) |noBranch|) |noBranch|))) (-509)) (T -377))
+NIL
+(-13 (-909 |#1|) (-10 -7 (IF (|has| |#1| (-502)) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4167)) (IF (|has| |#1| (-421)) (IF (|has| |#1| (-6 -4178)) (-6 -4167) |noBranch|) |noBranch|) |noBranch|)))
+((-3055 (((-623 |#2|) (-1153 $)) NIL) (((-623 |#2|)) 18)) (-1967 (($ (-1153 |#2|) (-1153 $)) NIL) (($ (-1153 |#2|)) 26)) (-2410 (((-623 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) $) 22)) (-3777 ((|#3| $) 59)) (-3010 ((|#2| (-1153 $)) NIL) ((|#2|) 20)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $)) 24)) (-3645 (((-1153 |#2|) $) 11) (($ (-1153 |#2|)) 13)) (-3669 ((|#3| $) 51)))
+(((-378 |#1| |#2| |#3|) (-10 -8 (-15 -2410 ((-623 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3055 ((-623 |#2|))) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 (|#3| |#1|)) (-15 -3669 (|#3| |#1|)) (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|)))) (-379 |#2| |#3|) (-156) (-1130 |#2|)) (T -378))
+((-3055 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) (-3010 (*1 *2) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))))
+(-10 -8 (-15 -2410 ((-623 |#2|) |#1|)) (-15 -3010 (|#2|)) (-15 -3055 ((-623 |#2|))) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3777 (|#3| |#1|)) (-15 -3669 (|#3| |#1|)) (-15 -3055 ((-623 |#2|) (-1153 |#1|))) (-15 -3010 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -2410 ((-623 |#2|) |#1| (-1153 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3055 (((-623 |#1|) (-1153 $)) 46) (((-623 |#1|)) 61)) (-1472 ((|#1| $) 52)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48) (($ (-1153 |#1|)) 64)) (-2410 (((-623 |#1|) $ (-1153 $)) 53) (((-623 |#1|) $) 59)) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-843)) 54)) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 51)) (-3777 ((|#2| $) 44 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3010 ((|#1| (-1153 $)) 47) ((|#1|) 60)) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49) (((-1153 |#1|) $) 66) (((-623 |#1|) (-1153 $)) 65)) (-3645 (((-1153 |#1|) $) 63) (($ (-1153 |#1|)) 62)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37)) (-1328 (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3669 ((|#2| $) 45)) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 67)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-379 |#1| |#2|) (-1184) (-156) (-1130 |t#1|)) (T -379))
+((-1753 (*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *1)) (-4 *1 (-379 *3 *4)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) (-3055 (*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3)))) (-3010 (*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) (-2410 (*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3)))))
+(-13 (-340 |t#1| |t#2|) (-10 -8 (-15 -1753 ((-1153 $))) (-15 -4114 ((-1153 |t#1|) $)) (-15 -4114 ((-623 |t#1|) (-1153 $))) (-15 -1967 ($ (-1153 |t#1|))) (-15 -3645 ((-1153 |t#1|) $)) (-15 -3645 ($ (-1153 |t#1|))) (-15 -3055 ((-623 |t#1|))) (-15 -3010 (|t#1|)) (-15 -2410 ((-623 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-340 |#1| |#2|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) 27) (((-3 (-517) "failed") $) 19)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) 24) (((-517) $) 14)) (-2256 (($ |#2|) NIL) (($ (-377 (-517))) 22) (($ (-517)) 11)))
+(((-380 |#1| |#2|) (-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|))) (-381 |#2|) (-1108)) (T -380))
+NIL
+(-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)))
+((-1772 (((-3 |#1| "failed") $) 7) (((-3 (-377 (-517)) "failed") $) 16 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 13 (|has| |#1| (-952 (-517))))) (-3189 ((|#1| $) 8) (((-377 (-517)) $) 15 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 12 (|has| |#1| (-952 (-517))))) (-2256 (($ |#1|) 6) (($ (-377 (-517))) 17 (|has| |#1| (-952 (-377 (-517))))) (($ (-517)) 14 (|has| |#1| (-952 (-517))))))
+(((-381 |#1|) (-1184) (-1108)) (T -381))
+NIL
+(-13 (-952 |t#1|) (-10 -7 (IF (|has| |t#1| (-952 (-517))) (-6 (-952 (-517))) |noBranch|) (IF (|has| |t#1| (-952 (-377 (-517)))) (-6 (-952 (-377 (-517)))) |noBranch|)))
+(((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T))
+((-1893 (((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)) 33)))
+(((-382 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|)))) (-278) (-909 |#1|) (-1130 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|)) (-278) (-909 |#5|) (-1130 |#6|) (-13 (-379 |#6| |#7|) (-952 |#6|))) (T -382))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1130 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1130 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10))))))
+(-10 -7 (-15 -1893 ((-383 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-383 |#1| |#2| |#3| |#4|))))
+((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-1803 ((|#4| (-703) (-1153 |#4|)) 55)) (-3848 (((-107) $) NIL)) (-1787 (((-1153 |#4|) $) 17)) (-1506 ((|#2| $) 53)) (-3349 (($ $) 136)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 98)) (-4014 (($ (-1153 |#4|)) 97)) (-3206 (((-1021) $) NIL)) (-1800 ((|#1| $) 18)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 131)) (-1753 (((-1153 |#4|) $) 126)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 11 T CONST)) (-1547 (((-107) $ $) 39)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 119)) (* (($ $ $) 118)))
+(((-383 |#1| |#2| |#3| |#4|) (-13 (-442) (-10 -8 (-15 -4014 ($ (-1153 |#4|))) (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -1787 ((-1153 |#4|) $)) (-15 -1800 (|#1| $)) (-15 -3349 ($ $)) (-15 -1803 (|#4| (-703) (-1153 |#4|))))) (-278) (-909 |#1|) (-1130 |#2|) (-13 (-379 |#2| |#3|) (-952 |#2|))) (T -383))
+((-4014 (*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) (-1753 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-1506 (*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) (-1800 (*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-3349 (*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1153 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1130 *6)))))
+(-13 (-442) (-10 -8 (-15 -4014 ($ (-1153 |#4|))) (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -1787 ((-1153 |#4|) $)) (-15 -1800 (|#1| $)) (-15 -3349 ($ $)) (-15 -1803 (|#4| (-703) (-1153 |#4|)))))
+((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-1506 ((|#2| $) 60)) (-3855 (($ (-1153 |#4|)) 25) (($ (-383 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-952 |#2|)))) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 34)) (-1753 (((-1153 |#4|) $) 26)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2409 (($) 23 T CONST)) (-1547 (((-107) $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ $ $) 72)))
+(((-384 |#1| |#2| |#3| |#4| |#5|) (-13 (-659) (-10 -8 (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -3855 ($ (-1153 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -3855 ($ (-383 |#1| |#2| |#3| |#4|))) |noBranch|))) (-278) (-909 |#1|) (-1130 |#2|) (-379 |#2| |#3|) (-1153 |#4|)) (T -384))
+((-1753 (*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) (-1506 (*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1153 *5)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))))
+(-13 (-659) (-10 -8 (-15 -1753 ((-1153 |#4|) $)) (-15 -1506 (|#2| $)) (-15 -3855 ($ (-1153 |#4|))) (IF (|has| |#4| (-952 |#2|)) (-15 -3855 ($ (-383 |#1| |#2| |#3| |#4|))) |noBranch|)))
+((-1893 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-385 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) (-387 |#2|) (-156) (-387 |#4|) (-156)) (T -385))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))))
+(-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3295 (((-3 $ "failed")) 85)) (-3533 (((-1153 (-623 |#2|)) (-1153 $)) NIL) (((-1153 (-623 |#2|))) 90)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 84)) (-1450 (((-3 $ "failed")) 83)) (-2619 (((-623 |#2|) (-1153 $)) NIL) (((-623 |#2|)) 101)) (-3343 (((-623 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) $) 109)) (-2436 (((-1069 (-874 |#2|))) 54)) (-4069 ((|#2| (-1153 $)) NIL) ((|#2|) 105)) (-1967 (($ (-1153 |#2|) (-1153 $)) NIL) (($ (-1153 |#2|)) 112)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 82)) (-1793 (((-3 $ "failed")) 74)) (-2010 (((-623 |#2|) (-1153 $)) NIL) (((-623 |#2|)) 99)) (-3914 (((-623 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) $) 107)) (-2300 (((-1069 (-874 |#2|))) 53)) (-1988 ((|#2| (-1153 $)) NIL) ((|#2|) 103)) (-4114 (((-1153 |#2|) $ (-1153 $)) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $)) 111)) (-3645 (((-1153 |#2|) $) 95) (($ (-1153 |#2|)) 97)) (-2278 (((-583 (-874 |#2|)) (-1153 $)) NIL) (((-583 (-874 |#2|))) 93)) (-1587 (($ (-623 |#2|) $) 89)))
+(((-386 |#1| |#2|) (-10 -8 (-15 -1587 (|#1| (-623 |#2|) |#1|)) (-15 -2436 ((-1069 (-874 |#2|)))) (-15 -2300 ((-1069 (-874 |#2|)))) (-15 -3343 ((-623 |#2|) |#1|)) (-15 -3914 ((-623 |#2|) |#1|)) (-15 -2619 ((-623 |#2|))) (-15 -2010 ((-623 |#2|))) (-15 -4069 (|#2|)) (-15 -1988 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -2278 ((-583 (-874 |#2|)))) (-15 -3533 ((-1153 (-623 |#2|)))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3295 ((-3 |#1| "failed"))) (-15 -1450 ((-3 |#1| "failed"))) (-15 -1793 ((-3 |#1| "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|))) (-15 -2278 ((-583 (-874 |#2|)) (-1153 |#1|)))) (-387 |#2|) (-156)) (T -386))
+((-3533 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2278 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-1988 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-4069 (*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) (-2010 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2619 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2300 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) (-2436 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))))
+(-10 -8 (-15 -1587 (|#1| (-623 |#2|) |#1|)) (-15 -2436 ((-1069 (-874 |#2|)))) (-15 -2300 ((-1069 (-874 |#2|)))) (-15 -3343 ((-623 |#2|) |#1|)) (-15 -3914 ((-623 |#2|) |#1|)) (-15 -2619 ((-623 |#2|))) (-15 -2010 ((-623 |#2|))) (-15 -4069 (|#2|)) (-15 -1988 (|#2|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1967 (|#1| (-1153 |#2|))) (-15 -2278 ((-583 (-874 |#2|)))) (-15 -3533 ((-1153 (-623 |#2|)))) (-15 -4114 ((-623 |#2|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1|)) (-15 -3295 ((-3 |#1| "failed"))) (-15 -1450 ((-3 |#1| "failed"))) (-15 -1793 ((-3 |#1| "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -3550 ((-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed"))) (-15 -2619 ((-623 |#2|) (-1153 |#1|))) (-15 -2010 ((-623 |#2|) (-1153 |#1|))) (-15 -4069 (|#2| (-1153 |#1|))) (-15 -1988 (|#2| (-1153 |#1|))) (-15 -1967 (|#1| (-1153 |#2|) (-1153 |#1|))) (-15 -4114 ((-623 |#2|) (-1153 |#1|) (-1153 |#1|))) (-15 -4114 ((-1153 |#2|) |#1| (-1153 |#1|))) (-15 -3343 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3914 ((-623 |#2|) |#1| (-1153 |#1|))) (-15 -3533 ((-1153 (-623 |#2|)) (-1153 |#1|))) (-15 -2278 ((-583 (-874 |#2|)) (-1153 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3295 (((-3 $ "failed")) 37 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3533 (((-1153 (-623 |#1|)) (-1153 $)) 78) (((-1153 (-623 |#1|))) 100)) (-3456 (((-1153 $)) 81)) (-3092 (($) 17 T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 40 (|has| |#1| (-509)))) (-1450 (((-3 $ "failed")) 38 (|has| |#1| (-509)))) (-2619 (((-623 |#1|) (-1153 $)) 65) (((-623 |#1|)) 92)) (-2299 ((|#1| $) 74)) (-3343 (((-623 |#1|) $ (-1153 $)) 76) (((-623 |#1|) $) 90)) (-2158 (((-3 $ "failed") $) 45 (|has| |#1| (-509)))) (-2436 (((-1069 (-874 |#1|))) 88 (|has| |#1| (-333)))) (-3380 (($ $ (-843)) 28)) (-3866 ((|#1| $) 72)) (-2417 (((-1069 |#1|) $) 42 (|has| |#1| (-509)))) (-4069 ((|#1| (-1153 $)) 67) ((|#1|) 94)) (-2085 (((-1069 |#1|) $) 63)) (-2362 (((-107)) 57)) (-1967 (($ (-1153 |#1|) (-1153 $)) 69) (($ (-1153 |#1|)) 98)) (-3621 (((-3 $ "failed") $) 47 (|has| |#1| (-509)))) (-2261 (((-843)) 80)) (-3962 (((-107)) 54)) (-3730 (($ $ (-843)) 33)) (-2754 (((-107)) 50)) (-3983 (((-107)) 48)) (-3414 (((-107)) 52)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) 41 (|has| |#1| (-509)))) (-1793 (((-3 $ "failed")) 39 (|has| |#1| (-509)))) (-2010 (((-623 |#1|) (-1153 $)) 66) (((-623 |#1|)) 93)) (-1188 ((|#1| $) 75)) (-3914 (((-623 |#1|) $ (-1153 $)) 77) (((-623 |#1|) $) 91)) (-1680 (((-3 $ "failed") $) 46 (|has| |#1| (-509)))) (-2300 (((-1069 (-874 |#1|))) 89 (|has| |#1| (-333)))) (-2572 (($ $ (-843)) 29)) (-3913 ((|#1| $) 73)) (-4121 (((-1069 |#1|) $) 43 (|has| |#1| (-509)))) (-1988 ((|#1| (-1153 $)) 68) ((|#1|) 95)) (-2190 (((-1069 |#1|) $) 64)) (-3606 (((-107)) 58)) (-3985 (((-1056) $) 9)) (-4045 (((-107)) 49)) (-1286 (((-107)) 51)) (-1848 (((-107)) 53)) (-3206 (((-1021) $) 10)) (-1697 (((-107)) 56)) (-1449 ((|#1| $ (-517)) 101)) (-4114 (((-1153 |#1|) $ (-1153 $)) 71) (((-623 |#1|) (-1153 $) (-1153 $)) 70) (((-1153 |#1|) $) 103) (((-623 |#1|) (-1153 $)) 102)) (-3645 (((-1153 |#1|) $) 97) (($ (-1153 |#1|)) 96)) (-2278 (((-583 (-874 |#1|)) (-1153 $)) 79) (((-583 (-874 |#1|))) 99)) (-3394 (($ $ $) 25)) (-1561 (((-107)) 62)) (-2256 (((-787) $) 11)) (-1753 (((-1153 $)) 104)) (-1582 (((-583 (-1153 |#1|))) 44 (|has| |#1| (-509)))) (-3917 (($ $ $ $) 26)) (-1316 (((-107)) 60)) (-1587 (($ (-623 |#1|) $) 87)) (-1956 (($ $ $) 24)) (-2687 (((-107)) 61)) (-2524 (((-107)) 59)) (-3642 (((-107)) 55)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-387 |#1|) (-1184) (-156)) (T -387))
+((-1753 (*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-387 *3)))) (-4114 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-3533 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 (-623 *3))))) (-2278 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) (-1988 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-4069 (*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))) (-2010 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2619 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))) (-2300 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) (-2436 (*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) (-1587 (*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))))
+(-13 (-337 |t#1|) (-10 -8 (-15 -1753 ((-1153 $))) (-15 -4114 ((-1153 |t#1|) $)) (-15 -4114 ((-623 |t#1|) (-1153 $))) (-15 -1449 (|t#1| $ (-517))) (-15 -3533 ((-1153 (-623 |t#1|)))) (-15 -2278 ((-583 (-874 |t#1|)))) (-15 -1967 ($ (-1153 |t#1|))) (-15 -3645 ((-1153 |t#1|) $)) (-15 -3645 ($ (-1153 |t#1|))) (-15 -1988 (|t#1|)) (-15 -4069 (|t#1|)) (-15 -2010 ((-623 |t#1|))) (-15 -2619 ((-623 |t#1|))) (-15 -3914 ((-623 |t#1|) $)) (-15 -3343 ((-623 |t#1|) $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -2300 ((-1069 (-874 |t#1|)))) (-15 -2436 ((-1069 (-874 |t#1|))))) |noBranch|) (-15 -1587 ($ (-623 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-337 |#1|) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-677 |#1|) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 40)) (-2719 (($ $) 55)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 143)) (-1213 (($ $) NIL)) (-2454 (((-107) $) 34)) (-3295 ((|#1| $) 12)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-1112)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-1112)))) (-2693 (($ |#1| (-517)) 30)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 113)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 53)) (-3621 (((-3 $ "failed") $) 128)) (-1256 (((-3 (-377 (-517)) "failed") $) 61 (|has| |#1| (-502)))) (-1355 (((-107) $) 57 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 68 (|has| |#1| (-502)))) (-2897 (($ |#1| (-517)) 32)) (-3849 (((-107) $) 149 (|has| |#1| (-1112)))) (-3848 (((-107) $) 41)) (-2383 (((-703) $) 36)) (-2196 (((-3 "nil" "sqfr" "irred" "prime") $ (-517)) 134)) (-3466 ((|#1| $ (-517)) 133)) (-1238 (((-517) $ (-517)) 132)) (-1645 (($ |#1| (-517)) 29)) (-1893 (($ (-1 |#1| |#1|) $) 140)) (-3204 (($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517))))) 56)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2955 (($ |#1| (-517)) 31)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 144 (|has| |#1| (-421)))) (-1456 (($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime")) 28)) (-2879 (((-583 (-2 (|:| -3755 |#1|) (|:| -2077 (-517)))) $) 52)) (-3176 (((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $) 11)) (-3755 (((-388 $) $) NIL (|has| |#1| (-1112)))) (-2476 (((-3 $ "failed") $ $) 135)) (-2077 (((-517) $) 129)) (-3502 ((|#1| $) 54)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 77 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 82 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) $) NIL (|has| |#1| (-478 (-1073) $))) (($ $ (-583 (-1073)) (-583 $)) 83 (|has| |#1| (-478 (-1073) $))) (($ $ (-583 (-265 $))) 79 (|has| |#1| (-280 $))) (($ $ (-265 $)) NIL (|has| |#1| (-280 $))) (($ $ $ $) NIL (|has| |#1| (-280 $))) (($ $ (-583 $) (-583 $)) NIL (|has| |#1| (-280 $)))) (-1449 (($ $ |#1|) 69 (|has| |#1| (-258 |#1| |#1|))) (($ $ $) 70 (|has| |#1| (-258 $ $)))) (-3127 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) 139)) (-3645 (((-493) $) 26 (|has| |#1| (-558 (-493)))) (((-349) $) 89 (|has| |#1| (-937))) (((-199) $) 92 (|has| |#1| (-937)))) (-2256 (((-787) $) 111) (($ (-517)) 44) (($ $) NIL) (($ |#1|) 43) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517)))))) (-2961 (((-703)) 46)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 38 T CONST)) (-2409 (($) 37 T CONST)) (-2731 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1547 (((-107) $ $) 93)) (-1654 (($ $) 125) (($ $ $) NIL)) (-1642 (($ $ $) 137)) (** (($ $ (-843)) NIL) (($ $ (-703)) 99)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 48) (($ $ $) 47) (($ |#1| $) 49) (($ $ |#1|) NIL)))
+(((-388 |#1|) (-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3502 (|#1| $)) (-15 -2077 ((-517) $)) (-15 -3204 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -3176 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1645 ($ |#1| (-517))) (-15 -2879 ((-583 (-2 (|:| -3755 |#1|) (|:| -2077 (-517)))) $)) (-15 -2955 ($ |#1| (-517))) (-15 -1238 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2196 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2383 ((-703) $)) (-15 -2897 ($ |#1| (-517))) (-15 -2693 ($ |#1| (-517))) (-15 -1456 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3295 (|#1| $)) (-15 -2719 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |noBranch|) (IF (|has| |#1| (-478 (-1073) $)) (-6 (-478 (-1073) $)) |noBranch|))) (-509)) (T -388))
+((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) (-3502 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3204 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-1645 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -2077 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2955 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1238 (*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2196 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) (-2897 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2693 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1456 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-3295 (*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-2719 (*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) (-1256 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))))
+(-13 (-509) (-205 |#1|) (-37 |#1|) (-308 |#1|) (-381 |#1|) (-10 -8 (-15 -3502 (|#1| $)) (-15 -2077 ((-517) $)) (-15 -3204 ($ |#1| (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))))) (-15 -3176 ((-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-517)))) $)) (-15 -1645 ($ |#1| (-517))) (-15 -2879 ((-583 (-2 (|:| -3755 |#1|) (|:| -2077 (-517)))) $)) (-15 -2955 ($ |#1| (-517))) (-15 -1238 ((-517) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2196 ((-3 "nil" "sqfr" "irred" "prime") $ (-517))) (-15 -2383 ((-703) $)) (-15 -2897 ($ |#1| (-517))) (-15 -2693 ($ |#1| (-517))) (-15 -1456 ($ |#1| (-517) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3295 (|#1| $)) (-15 -2719 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-421)) (-6 (-421)) |noBranch|) (IF (|has| |#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |#1| (-1112)) (-6 (-1112)) |noBranch|) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |#1| (-258 $ $)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |#1| (-280 $)) (-6 (-280 $)) |noBranch|) (IF (|has| |#1| (-478 (-1073) $)) (-6 (-478 (-1073) $)) |noBranch|)))
+((-3437 (((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|)) 20)) (-2203 (((-388 |#1|) (-388 |#1|) (-388 |#1|)) 15)))
+(((-389 |#1|) (-10 -7 (-15 -3437 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2203 ((-388 |#1|) (-388 |#1|) (-388 |#1|)))) (-509)) (T -389))
+((-2203 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))) (-3437 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))))
+(-10 -7 (-15 -3437 ((-388 |#1|) (-388 |#1|) (-1 (-388 |#1|) |#1|))) (-15 -2203 ((-388 |#1|) (-388 |#1|) (-388 |#1|))))
+((-3653 ((|#2| |#2|) 160)) (-1916 (((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107)) 55)))
+(((-390 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1916 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107))) (-15 -3653 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|)) (-1073) |#2|) (T -390))
+((-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1094) (-400 *3))) (-14 *4 (-1073)) (-14 *5 *2))) (-1916 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-14 *6 (-1073)) (-14 *7 *3))))
+(-10 -7 (-15 -1916 ((-3 (|:| |%expansion| (-283 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107))) (-15 -3653 (|#2| |#2|)))
+((-1893 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-391 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-961) (-779)) (-400 |#1|) (-13 (-961) (-779)) (-400 |#3|)) (T -391))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))))
+(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3653 ((|#2| |#2|) 87)) (-1217 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056)) 46)) (-1791 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056)) 152)))
+(((-392 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1217 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -1791 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -3653 (|#2| |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|) (-10 -8 (-15 -2256 ($ |#3|)))) (-777) (-13 (-1132 |#2| |#3|) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $)))) (-900 |#4|) (-1073)) (T -392))
+((-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1094) (-400 *3) (-10 -8 (-15 -2256 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1132 *2 *4) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1073)))) (-1791 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073)))) (-1217 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073)))))
+(-10 -7 (-15 -1217 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -1791 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056))))) |#2| (-107) (-1056))) (-15 -3653 (|#2| |#2|)))
+((-3905 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3225 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1893 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1003) (-395 |#1|) (-1003) (-395 |#3|)) (T -393))
+((-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))))
+(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3225 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3905 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3416 (($) 44)) (-1413 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3245 (($ $ $) 39)) (-3009 (((-107) $ $) 28)) (-1611 (((-703)) 47)) (-1362 (($ (-583 |#2|)) 20) (($) NIL)) (-3209 (($) 53)) (-2967 ((|#2| $) 61)) (-3099 ((|#2| $) 59)) (-1549 (((-843) $) 55)) (-1812 (($ $ $) 35)) (-3448 (($ (-843)) 50)) (-3170 (($ $ |#2|) NIL) (($ $ $) 38)) (-3217 (((-703) (-1 (-107) |#2|) $) NIL) (((-703) |#2| $) 26)) (-2276 (($ (-583 |#2|)) 24)) (-1819 (($ $) 46)) (-2256 (((-787) $) 33)) (-2201 (((-703) $) 21)) (-3167 (($ (-583 |#2|)) 19) (($) NIL)) (-1547 (((-107) $ $) 16)) (-1572 (((-107) $ $) 13)))
+(((-394 |#1| |#2|) (-10 -8 (-15 -1611 ((-703))) (-15 -3448 (|#1| (-843))) (-15 -1549 ((-843) |#1|)) (-15 -3209 (|#1|)) (-15 -2967 (|#2| |#1|)) (-15 -3099 (|#2| |#1|)) (-15 -3416 (|#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2201 ((-703) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3167 (|#1|)) (-15 -3167 (|#1| (-583 |#2|))) (-15 -1362 (|#1|)) (-15 -1362 (|#1| (-583 |#2|))) (-15 -1812 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3009 ((-107) |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#2| |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|))) (-395 |#2|) (-1003)) (T -394))
+((-1611 (*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
+(-10 -8 (-15 -1611 ((-703))) (-15 -3448 (|#1| (-843))) (-15 -1549 ((-843) |#1|)) (-15 -3209 (|#1|)) (-15 -2967 (|#2| |#1|)) (-15 -3099 (|#2| |#1|)) (-15 -3416 (|#1|)) (-15 -1819 (|#1| |#1|)) (-15 -2201 ((-703) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3167 (|#1|)) (-15 -3167 (|#1| (-583 |#2|))) (-15 -1362 (|#1|)) (-15 -1362 (|#1| (-583 |#2|))) (-15 -1812 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3009 ((-107) |#1| |#1|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#2| |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -3217 ((-703) |#2| |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)))
+((-2750 (((-107) $ $) 18)) (-3416 (($) 67 (|has| |#1| (-338)))) (-1413 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3245 (($ $ $) 78)) (-3009 (((-107) $ $) 79)) (-2953 (((-107) $ (-703)) 8)) (-1611 (((-703)) 61 (|has| |#1| (-338)))) (-1362 (($ (-583 |#1|)) 74) (($) 73)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-3209 (($) 64 (|has| |#1| (-338)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2967 ((|#1| $) 65 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3099 ((|#1| $) 66 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-1549 (((-843) $) 63 (|has| |#1| (-338)))) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22)) (-1812 (($ $ $) 75)) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3448 (($ (-843)) 62 (|has| |#1| (-338)))) (-3206 (((-1021) $) 21)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3170 (($ $ |#1|) 77) (($ $ $) 76)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-1819 (($ $) 68 (|has| |#1| (-338)))) (-2256 (((-787) $) 20)) (-2201 (((-703) $) 69)) (-3167 (($ (-583 |#1|)) 72) (($) 71)) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-1572 (((-107) $ $) 70)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-395 |#1|) (-1184) (-1003)) (T -395))
+((-2201 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-1819 (*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338)))) (-3416 (*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003)))) (-3099 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-2967 (*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))))
+(-13 (-203 |t#1|) (-1001 |t#1|) (-10 -8 (-6 -4180) (-15 -2201 ((-703) $)) (IF (|has| |t#1| (-338)) (PROGN (-6 (-338)) (-15 -1819 ($ $)) (-15 -3416 ($))) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -3099 (|t#1| $)) (-15 -2967 (|t#1| $))) |noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-203 |#1|) . T) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-338) |has| |#1| (-338)) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1001 |#1|) . T) ((-1003) . T) ((-1108) . T))
+((-3889 (((-534 |#2|) |#2| (-1073)) 35)) (-3050 (((-534 |#2|) |#2| (-1073)) 19)) (-2701 ((|#2| |#2| (-1073)) 24)))
+(((-396 |#1| |#2|) (-10 -7 (-15 -3050 ((-534 |#2|) |#2| (-1073))) (-15 -3889 ((-534 |#2|) |#2| (-1073))) (-15 -2701 (|#2| |#2| (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-29 |#1|))) (T -396))
+((-2701 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1094) (-29 *4))))) (-3889 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))))
+(-10 -7 (-15 -3050 ((-534 |#2|) |#2| (-1073))) (-15 -3889 ((-534 |#2|) |#2| (-1073))) (-15 -2701 (|#2| |#2| (-1073))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3117 (($ |#2| |#1|) 35)) (-2725 (($ |#2| |#1|) 33)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-301 |#2|)) 25)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 10 T CONST)) (-2409 (($) 16 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 34)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-397 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4167)) (IF (|has| |#1| (-6 -4167)) (-6 -4167) |noBranch|) |noBranch|) (-15 -2256 ($ |#1|)) (-15 -2256 ($ (-301 |#2|))) (-15 -3117 ($ |#2| |#1|)) (-15 -2725 ($ |#2| |#1|)))) (-13 (-156) (-37 (-377 (-517)))) (-13 (-779) (-21))) (T -397))
+((-2256 (*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) (-3117 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))) (-2725 (*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4167)) (IF (|has| |#1| (-6 -4167)) (-6 -4167) |noBranch|) |noBranch|) (-15 -2256 ($ |#1|)) (-15 -2256 ($ (-301 |#2|))) (-15 -3117 ($ |#2| |#1|)) (-15 -2725 ($ |#2| |#1|))))
+((-4151 (((-3 |#2| (-583 |#2|)) |#2| (-1073)) 104)))
+(((-398 |#1| |#2|) (-10 -7 (-15 -4151 ((-3 |#2| (-583 |#2|)) |#2| (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-29 |#1|))) (T -398))
+((-4151 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1094) (-880) (-29 *5))))))
+(-10 -7 (-15 -4151 ((-3 |#2| (-583 |#2|)) |#2| (-1073))))
+((-1364 (((-583 (-1073)) $) 72)) (-2352 (((-377 (-1069 $)) $ (-556 $)) 268)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) 233)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 (-1073) "failed") $) 75) (((-3 (-517) "failed") $) NIL) (((-3 |#2| "failed") $) 229) (((-3 (-377 (-874 |#2|)) "failed") $) 319) (((-3 (-874 |#2|) "failed") $) 231) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-556 $) $) NIL) (((-1073) $) 30) (((-517) $) NIL) ((|#2| $) 227) (((-377 (-874 |#2|)) $) 300) (((-874 |#2|) $) 228) (((-377 (-517)) $) NIL)) (-3072 (((-109) (-109)) 47)) (-1405 (($ $) 87)) (-1783 (((-3 (-556 $) "failed") $) 224)) (-2343 (((-583 (-556 $)) $) 225)) (-3703 (((-3 (-583 $) "failed") $) 243)) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) 250)) (-3401 (((-3 (-583 $) "failed") $) 241)) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 259)) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) 247) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) 214) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) 216)) (-4127 (((-107) $) 19)) (-4141 ((|#2| $) 21)) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) 232) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 96) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL) (($ $ (-1073)) 57) (($ $ (-583 (-1073))) 236) (($ $) 237) (($ $ (-109) $ (-1073)) 60) (($ $ (-583 (-109)) (-583 $) (-1073)) 67) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) 107) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 238) (($ $ (-1073) (-703) (-1 $ (-583 $))) 94) (($ $ (-1073) (-703) (-1 $ $)) 93)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) 106)) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) 234)) (-2971 (($ $) 279)) (-3645 (((-814 (-517)) $) 253) (((-814 (-349)) $) 256) (($ (-388 $)) 315) (((-493) $) NIL)) (-2256 (((-787) $) 235) (($ (-556 $)) 84) (($ (-1073)) 26) (($ |#2|) NIL) (($ (-1026 |#2| (-556 $))) NIL) (($ (-377 |#2|)) 284) (($ (-874 (-377 |#2|))) 324) (($ (-377 (-874 (-377 |#2|)))) 296) (($ (-377 (-874 |#2|))) 290) (($ $) NIL) (($ (-874 |#2|)) 183) (($ (-377 (-517))) 329) (($ (-517)) NIL)) (-2961 (((-703)) 79)) (-4074 (((-107) (-109)) 41)) (-3760 (($ (-1073) $) 33) (($ (-1073) $ $) 34) (($ (-1073) $ $ $) 35) (($ (-1073) $ $ $ $) 36) (($ (-1073) (-583 $)) 39)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#2| $) 261) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-399 |#1| |#2|) (-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2961 ((-703))) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-874 |#2|) |#1|)) (-15 -1772 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2256 (|#1| (-874 |#2|))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3189 ((-377 (-874 |#2|)) |#1|)) (-15 -1772 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-874 |#2|)))) (-15 -2352 ((-377 (-1069 |#1|)) |#1| (-556 |#1|))) (-15 -2256 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2256 (|#1| (-874 (-377 |#2|)))) (-15 -2256 (|#1| (-377 |#2|))) (-15 -2971 (|#1| |#1|)) (-15 -3645 (|#1| (-388 |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1735 ((-3 (-2 (|:| |val| |#1|) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-1073))) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-109))) (-15 -1405 (|#1| |#1|)) (-15 -2256 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -4133 ((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1073))) (-15 -2051 (|#1| |#1| (-109) |#1| (-1073))) (-15 -2051 (|#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 (-1073)))) (-15 -2051 (|#1| |#1| (-1073))) (-15 -3760 (|#1| (-1073) (-583 |#1|))) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1|)) (-15 -1364 ((-583 (-1073)) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -2343 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2256 (|#1| (-556 |#1|))) (-15 -2256 ((-787) |#1|))) (-400 |#2|) (-779)) (T -399))
+((-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) (-2961 (*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))))
+(-10 -8 (-15 * (|#1| (-843) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2961 ((-703))) (-15 -2256 (|#1| (-517))) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-874 |#2|) |#1|)) (-15 -1772 ((-3 (-874 |#2|) "failed") |#1|)) (-15 -2256 (|#1| (-874 |#2|))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2256 (|#1| |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -3189 ((-377 (-874 |#2|)) |#1|)) (-15 -1772 ((-3 (-377 (-874 |#2|)) "failed") |#1|)) (-15 -2256 (|#1| (-377 (-874 |#2|)))) (-15 -2352 ((-377 (-1069 |#1|)) |#1| (-556 |#1|))) (-15 -2256 (|#1| (-377 (-874 (-377 |#2|))))) (-15 -2256 (|#1| (-874 (-377 |#2|)))) (-15 -2256 (|#1| (-377 |#2|))) (-15 -2971 (|#1| |#1|)) (-15 -3645 (|#1| (-388 |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-703) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-703)) (-583 (-1 |#1| |#1|)))) (-15 -1735 ((-3 (-2 (|:| |val| |#1|) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-1073))) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1| (-109))) (-15 -1405 (|#1| |#1|)) (-15 -2256 (|#1| (-1026 |#2| (-556 |#1|)))) (-15 -4133 ((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 |#1|))) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 |#1|)) (|:| -2077 (-517))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 |#1|) (-1073))) (-15 -2051 (|#1| |#1| (-109) |#1| (-1073))) (-15 -2051 (|#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 (-1073)))) (-15 -2051 (|#1| |#1| (-1073))) (-15 -3760 (|#1| (-1073) (-583 |#1|))) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1| |#1|)) (-15 -3760 (|#1| (-1073) |#1|)) (-15 -1364 ((-583 (-1073)) |#1|)) (-15 -4141 (|#2| |#1|)) (-15 -4127 ((-107) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-109) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-109)) (-583 (-1 |#1| |#1|)))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| |#1|))) (-15 -2051 (|#1| |#1| (-1073) (-1 |#1| (-583 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| (-583 |#1|))))) (-15 -2051 (|#1| |#1| (-583 (-1073)) (-583 (-1 |#1| |#1|)))) (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -2343 ((-583 (-556 |#1|)) |#1|)) (-15 -1783 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2302 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2302 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2302 (|#1| |#1| (-265 |#1|))) (-15 -1449 (|#1| (-109) (-583 |#1|))) (-15 -1449 (|#1| (-109) |#1| |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1| |#1|)) (-15 -1449 (|#1| (-109) |#1|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -2051 (|#1| |#1| (-583 (-556 |#1|)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-556 |#1|) |#1|)) (-15 -3189 ((-556 |#1|) |#1|)) (-15 -1772 ((-3 (-556 |#1|) "failed") |#1|)) (-15 -2256 (|#1| (-556 |#1|))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 116 (|has| |#1| (-25)))) (-1364 (((-583 (-1073)) $) 203)) (-2352 (((-377 (-1069 $)) $ (-556 $)) 171 (|has| |#1| (-509)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 143 (|has| |#1| (-509)))) (-1213 (($ $) 144 (|has| |#1| (-509)))) (-2454 (((-107) $) 146 (|has| |#1| (-509)))) (-3726 (((-583 (-556 $)) $) 44)) (-4038 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-2302 (($ $ (-265 $)) 56) (($ $ (-583 (-265 $))) 55) (($ $ (-583 (-556 $)) (-583 $)) 54)) (-2535 (($ $) 163 (|has| |#1| (-509)))) (-2759 (((-388 $) $) 164 (|has| |#1| (-509)))) (-1707 (((-107) $ $) 154 (|has| |#1| (-509)))) (-3092 (($) 102 (-3807 (|has| |#1| (-1015)) (|has| |#1| (-25))) CONST)) (-1772 (((-3 (-556 $) "failed") $) 69) (((-3 (-1073) "failed") $) 216) (((-3 (-517) "failed") $) 209 (|has| |#1| (-952 (-517)))) (((-3 |#1| "failed") $) 207) (((-3 (-377 (-874 |#1|)) "failed") $) 169 (|has| |#1| (-509))) (((-3 (-874 |#1|) "failed") $) 123 (|has| |#1| (-961))) (((-3 (-377 (-517)) "failed") $) 95 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 (((-556 $) $) 68) (((-1073) $) 215) (((-517) $) 210 (|has| |#1| (-952 (-517)))) ((|#1| $) 206) (((-377 (-874 |#1|)) $) 168 (|has| |#1| (-509))) (((-874 |#1|) $) 122 (|has| |#1| (-961))) (((-377 (-517)) $) 94 (-3807 (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517))))))) (-2518 (($ $ $) 158 (|has| |#1| (-509)))) (-3355 (((-623 (-517)) (-623 $)) 137 (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 136 (-4035 (|has| |#1| (-579 (-517))) (|has| |#1| (-961)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 135 (|has| |#1| (-961))) (((-623 |#1|) (-623 $)) 134 (|has| |#1| (-961)))) (-3621 (((-3 $ "failed") $) 105 (|has| |#1| (-1015)))) (-2497 (($ $ $) 157 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 152 (|has| |#1| (-509)))) (-3849 (((-107) $) 165 (|has| |#1| (-509)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 212 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 211 (|has| |#1| (-808 (-349))))) (-3374 (($ $) 51) (($ (-583 $)) 50)) (-4001 (((-583 (-109)) $) 43)) (-3072 (((-109) (-109)) 42)) (-3848 (((-107) $) 103 (|has| |#1| (-1015)))) (-1769 (((-107) $) 22 (|has| $ (-952 (-517))))) (-1405 (($ $) 186 (|has| |#1| (-961)))) (-1787 (((-1026 |#1| (-556 $)) $) 187 (|has| |#1| (-961)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 161 (|has| |#1| (-509)))) (-1607 (((-1069 $) (-556 $)) 25 (|has| $ (-961)))) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-1893 (($ (-1 $ $) (-556 $)) 36)) (-1783 (((-3 (-556 $) "failed") $) 46)) (-1365 (($ (-583 $)) 150 (|has| |#1| (-509))) (($ $ $) 149 (|has| |#1| (-509)))) (-3985 (((-1056) $) 9)) (-2343 (((-583 (-556 $)) $) 45)) (-1851 (($ (-109) $) 38) (($ (-109) (-583 $)) 37)) (-3703 (((-3 (-583 $) "failed") $) 192 (|has| |#1| (-1015)))) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $) 183 (|has| |#1| (-961)))) (-3401 (((-3 (-583 $) "failed") $) 190 (|has| |#1| (-25)))) (-4133 (((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3174 (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $) 191 (|has| |#1| (-1015))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109)) 185 (|has| |#1| (-961))) (((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073)) 184 (|has| |#1| (-961)))) (-1609 (((-107) $ (-109)) 40) (((-107) $ (-1073)) 39)) (-4118 (($ $) 107 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1881 (((-703) $) 47)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 205)) (-4141 ((|#1| $) 204)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 151 (|has| |#1| (-509)))) (-1401 (($ (-583 $)) 148 (|has| |#1| (-509))) (($ $ $) 147 (|has| |#1| (-509)))) (-3832 (((-107) $ $) 35) (((-107) $ (-1073)) 34)) (-3755 (((-388 $) $) 162 (|has| |#1| (-509)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-509))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 159 (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ $) 142 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 153 (|has| |#1| (-509)))) (-3998 (((-107) $) 23 (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) 67) (($ $ (-583 (-556 $)) (-583 $)) 66) (($ $ (-583 (-265 $))) 65) (($ $ (-265 $)) 64) (($ $ $ $) 63) (($ $ (-583 $) (-583 $)) 62) (($ $ (-583 (-1073)) (-583 (-1 $ $))) 33) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) 32) (($ $ (-1073) (-1 $ (-583 $))) 31) (($ $ (-1073) (-1 $ $)) 30) (($ $ (-583 (-109)) (-583 (-1 $ $))) 29) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) 28) (($ $ (-109) (-1 $ (-583 $))) 27) (($ $ (-109) (-1 $ $)) 26) (($ $ (-1073)) 197 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073))) 196 (|has| |#1| (-558 (-493)))) (($ $) 195 (|has| |#1| (-558 (-493)))) (($ $ (-109) $ (-1073)) 194 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-109)) (-583 $) (-1073)) 193 (|has| |#1| (-558 (-493)))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $))) 182 (|has| |#1| (-961))) (($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $)))) 181 (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ (-583 $))) 180 (|has| |#1| (-961))) (($ $ (-1073) (-703) (-1 $ $)) 179 (|has| |#1| (-961)))) (-3146 (((-703) $) 155 (|has| |#1| (-509)))) (-1449 (($ (-109) $) 61) (($ (-109) $ $) 60) (($ (-109) $ $ $) 59) (($ (-109) $ $ $ $) 58) (($ (-109) (-583 $)) 57)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 156 (|has| |#1| (-509)))) (-1630 (($ $) 49) (($ $ $) 48)) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 128 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 127 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 126 (|has| |#1| (-961))) (($ $ (-1073)) 125 (|has| |#1| (-961)))) (-2971 (($ $) 176 (|has| |#1| (-509)))) (-1800 (((-1026 |#1| (-556 $)) $) 177 (|has| |#1| (-509)))) (-2135 (($ $) 24 (|has| $ (-961)))) (-3645 (((-814 (-517)) $) 214 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 213 (|has| |#1| (-558 (-814 (-349))))) (($ (-388 $)) 178 (|has| |#1| (-509))) (((-493) $) 97 (|has| |#1| (-558 (-493))))) (-1487 (($ $ $) 111 (|has| |#1| (-442)))) (-3394 (($ $ $) 112 (|has| |#1| (-442)))) (-2256 (((-787) $) 11) (($ (-556 $)) 70) (($ (-1073)) 217) (($ |#1|) 208) (($ (-1026 |#1| (-556 $))) 188 (|has| |#1| (-961))) (($ (-377 |#1|)) 174 (|has| |#1| (-509))) (($ (-874 (-377 |#1|))) 173 (|has| |#1| (-509))) (($ (-377 (-874 (-377 |#1|)))) 172 (|has| |#1| (-509))) (($ (-377 (-874 |#1|))) 170 (|has| |#1| (-509))) (($ $) 141 (|has| |#1| (-509))) (($ (-874 |#1|)) 124 (|has| |#1| (-961))) (($ (-377 (-517))) 96 (-3807 (|has| |#1| (-509)) (-12 (|has| |#1| (-952 (-517))) (|has| |#1| (-509))) (|has| |#1| (-952 (-377 (-517)))))) (($ (-517)) 93 (-3807 (|has| |#1| (-961)) (|has| |#1| (-952 (-517)))))) (-1328 (((-3 $ "failed") $) 138 (|has| |#1| (-132)))) (-2961 (((-703)) 133 (|has| |#1| (-961)))) (-4148 (($ $) 53) (($ (-583 $)) 52)) (-4074 (((-107) (-109)) 41)) (-3329 (((-107) $ $) 145 (|has| |#1| (-509)))) (-3760 (($ (-1073) $) 202) (($ (-1073) $ $) 201) (($ (-1073) $ $ $) 200) (($ (-1073) $ $ $ $) 199) (($ (-1073) (-583 $)) 198)) (-2207 (($ $ (-517)) 110 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 104 (|has| |#1| (-1015))) (($ $ (-843)) 100 (|has| |#1| (-1015)))) (-2396 (($) 115 (|has| |#1| (-25)) CONST)) (-2409 (($) 101 (|has| |#1| (-1015)) CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 132 (|has| |#1| (-961))) (($ $ (-1073) (-703)) 131 (|has| |#1| (-961))) (($ $ (-583 (-1073))) 130 (|has| |#1| (-961))) (($ $ (-1073)) 129 (|has| |#1| (-961)))) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1667 (($ (-1026 |#1| (-556 $)) (-1026 |#1| (-556 $))) 175 (|has| |#1| (-509))) (($ $ $) 108 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509))))) (-1654 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-1642 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-517)) 109 (-3807 (|has| |#1| (-442)) (|has| |#1| (-509)))) (($ $ (-703)) 106 (|has| |#1| (-1015))) (($ $ (-843)) 99 (|has| |#1| (-1015)))) (* (($ (-377 (-517)) $) 167 (|has| |#1| (-509))) (($ $ (-377 (-517))) 166 (|has| |#1| (-509))) (($ |#1| $) 140 (|has| |#1| (-156))) (($ $ |#1|) 139 (|has| |#1| (-156))) (($ (-517) $) 121 (|has| |#1| (-21))) (($ (-703) $) 117 (|has| |#1| (-25))) (($ (-843) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1015)))))
+(((-400 |#1|) (-1184) (-779)) (T -400))
+((-4127 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))) (-4141 (*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1073))))) (-3760 (*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) (-3760 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-2051 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) (-2051 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) (-2051 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1073)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1073)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) (-3703 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-3174 (*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) (-4133 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) (-3174 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) (-3174 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) (-1735 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-2051 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) (-1800 (*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) (-2971 (*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) (-1667 (*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) (-2352 (*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1069 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015)))))
+(-13 (-273) (-952 (-1073)) (-806 |t#1|) (-370 |t#1|) (-381 |t#1|) (-10 -8 (-15 -4127 ((-107) $)) (-15 -4141 (|t#1| $)) (-15 -1364 ((-583 (-1073)) $)) (-15 -3760 ($ (-1073) $)) (-15 -3760 ($ (-1073) $ $)) (-15 -3760 ($ (-1073) $ $ $)) (-15 -3760 ($ (-1073) $ $ $ $)) (-15 -3760 ($ (-1073) (-583 $))) (IF (|has| |t#1| (-558 (-493))) (PROGN (-6 (-558 (-493))) (-15 -2051 ($ $ (-1073))) (-15 -2051 ($ $ (-583 (-1073)))) (-15 -2051 ($ $)) (-15 -2051 ($ $ (-109) $ (-1073))) (-15 -2051 ($ $ (-583 (-109)) (-583 $) (-1073)))) |noBranch|) (IF (|has| |t#1| (-1015)) (PROGN (-6 (-659)) (-15 ** ($ $ (-703))) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-442)) (-6 (-442)) |noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -4133 ((-3 (-2 (|:| -1931 (-517)) (|:| |var| (-556 $))) "failed") $))) |noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-6 (-961)) (-6 (-952 (-874 |t#1|))) (-6 (-822 (-1073))) (-6 (-347 |t#1|)) (-15 -2256 ($ (-1026 |t#1| (-556 $)))) (-15 -1787 ((-1026 |t#1| (-556 $)) $)) (-15 -1405 ($ $)) (-15 -3174 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-109))) (-15 -3174 ((-3 (-2 (|:| |var| (-556 $)) (|:| -2077 (-517))) "failed") $ (-1073))) (-15 -1735 ((-3 (-2 (|:| |val| $) (|:| -2077 (-517))) "failed") $)) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ $)))) (-15 -2051 ($ $ (-583 (-1073)) (-583 (-703)) (-583 (-1 $ (-583 $))))) (-15 -2051 ($ $ (-1073) (-703) (-1 $ (-583 $)))) (-15 -2051 ($ $ (-1073) (-703) (-1 $ $)))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-333)) (-6 (-952 (-377 (-874 |t#1|)))) (-15 -3645 ($ (-388 $))) (-15 -1800 ((-1026 |t#1| (-556 $)) $)) (-15 -2971 ($ $)) (-15 -1667 ($ (-1026 |t#1| (-556 $)) (-1026 |t#1| (-556 $)))) (-15 -2256 ($ (-377 |t#1|))) (-15 -2256 ($ (-874 (-377 |t#1|)))) (-15 -2256 ($ (-377 (-874 (-377 |t#1|))))) (-15 -2352 ((-377 (-1069 $)) $ (-556 $))) (IF (|has| |t#1| (-952 (-517))) (-6 (-952 (-377 (-517)))) |noBranch|)) |noBranch|)))
+(((-21) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-23) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 (-377 (-517))) |has| |#1| (-509)) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-509)) ((-106 |#1| |#1|) |has| |#1| (-156)) ((-106 $ $) |has| |#1| (-509)) ((-123) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132)) (|has| |#1| (-21))) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) |has| |#1| (-509)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-217) |has| |#1| (-509)) ((-262) |has| |#1| (-509)) ((-278) |has| |#1| (-509)) ((-280 $) . T) ((-273) . T) ((-333) |has| |#1| (-509)) ((-347 |#1|) |has| |#1| (-961)) ((-370 |#1|) . T) ((-381 |#1|) . T) ((-421) |has| |#1| (-509)) ((-442) |has| |#1| (-442)) ((-478 (-556 $) $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-509)) ((-585 |#1|) |has| |#1| (-156)) ((-585 $) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-579 (-517)) -12 (|has| |#1| (-579 (-517))) (|has| |#1| (-961))) ((-579 |#1|) |has| |#1| (-961)) ((-650 (-377 (-517))) |has| |#1| (-509)) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) -3807 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-779) . T) ((-822 (-1073)) |has| |#1| (-961)) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-842) |has| |#1| (-509)) ((-952 (-377 (-517))) -3807 (|has| |#1| (-952 (-377 (-517)))) (-12 (|has| |#1| (-509)) (|has| |#1| (-952 (-517))))) ((-952 (-377 (-874 |#1|))) |has| |#1| (-509)) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-556 $)) . T) ((-952 (-874 |#1|)) |has| |#1| (-961)) ((-952 (-1073)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-509)) ((-967 |#1|) |has| |#1| (-156)) ((-967 $) |has| |#1| (-509)) ((-961) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-968) -3807 (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1015) -3807 (|has| |#1| (-1015)) (|has| |#1| (-961)) (|has| |#1| (-509)) (|has| |#1| (-442)) (|has| |#1| (-156)) (|has| |#1| (-134)) (|has| |#1| (-132))) ((-1003) . T) ((-1108) . T) ((-1112) |has| |#1| (-509)))
+((-1264 ((|#2| |#2| |#2|) 33)) (-3072 (((-109) (-109)) 44)) (-2359 ((|#2| |#2|) 66)) (-3597 ((|#2| |#2|) 69)) (-2150 ((|#2| |#2|) 32)) (-2570 ((|#2| |#2| |#2|) 35)) (-2480 ((|#2| |#2| |#2|) 37)) (-3233 ((|#2| |#2| |#2|) 34)) (-1324 ((|#2| |#2| |#2|) 36)) (-4074 (((-107) (-109)) 42)) (-3312 ((|#2| |#2|) 39)) (-1730 ((|#2| |#2|) 38)) (-3710 ((|#2| |#2|) 27)) (-1564 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2350 ((|#2| |#2| |#2|) 31)))
+(((-401 |#1| |#2|) (-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3710 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1564 (|#2| |#2| |#2|)) (-15 -2350 (|#2| |#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -1264 (|#2| |#2| |#2|)) (-15 -3233 (|#2| |#2| |#2|)) (-15 -2570 (|#2| |#2| |#2|)) (-15 -1324 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (-15 -2359 (|#2| |#2|))) (-13 (-779) (-509)) (-400 |#1|)) (T -401))
+((-2359 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3597 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3312 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1730 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2480 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1324 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2570 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3233 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1264 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2150 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-2350 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1564 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3710 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))))
+(-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3710 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1564 (|#2| |#2| |#2|)) (-15 -2350 (|#2| |#2| |#2|)) (-15 -2150 (|#2| |#2|)) (-15 -1264 (|#2| |#2| |#2|)) (-15 -3233 (|#2| |#2| |#2|)) (-15 -2570 (|#2| |#2| |#2|)) (-15 -1324 (|#2| |#2| |#2|)) (-15 -2480 (|#2| |#2| |#2|)) (-15 -1730 (|#2| |#2|)) (-15 -3312 (|#2| |#2|)) (-15 -3597 (|#2| |#2|)) (-15 -2359 (|#2| |#2|)))
+((-3442 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1069 |#2|)) (|:| |pol2| (-1069 |#2|)) (|:| |prim| (-1069 |#2|))) |#2| |#2|) 93 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1069 |#2|))) (|:| |prim| (-1069 |#2|))) (-583 |#2|)) 58)))
+(((-402 |#1| |#2|) (-10 -7 (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1069 |#2|))) (|:| |prim| (-1069 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1069 |#2|)) (|:| |pol2| (-1069 |#2|)) (|:| |prim| (-1069 |#2|))) |#2| |#2|)) |noBranch|)) (-13 (-509) (-779) (-134)) (-400 |#1|)) (T -402))
+((-3442 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1069 *3)) (|:| |pol2| (-1069 *3)) (|:| |prim| (-1069 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-402 *4 *5)))))
+(-10 -7 (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-583 (-1069 |#2|))) (|:| |prim| (-1069 |#2|))) (-583 |#2|))) (IF (|has| |#2| (-27)) (-15 -3442 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1069 |#2|)) (|:| |pol2| (-1069 |#2|)) (|:| |prim| (-1069 |#2|))) |#2| |#2|)) |noBranch|))
+((-3376 (((-1158)) 18)) (-3613 (((-1069 (-377 (-517))) |#2| (-556 |#2|)) 40) (((-377 (-517)) |#2|) 23)))
+(((-403 |#1| |#2|) (-10 -7 (-15 -3613 ((-377 (-517)) |#2|)) (-15 -3613 ((-1069 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3376 ((-1158)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|)) (T -403))
+((-3376 (*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1158)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-403 *5 *3)))) (-3613 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))))
+(-10 -7 (-15 -3613 ((-377 (-517)) |#2|)) (-15 -3613 ((-1069 (-377 (-517))) |#2| (-556 |#2|))) (-15 -3376 ((-1158))))
+((-1908 (((-107) $) 28)) (-3737 (((-107) $) 30)) (-1973 (((-107) $) 31)) (-2251 (((-107) $) 34)) (-2427 (((-107) $) 29)) (-1340 (((-107) $) 33)) (-2256 (((-787) $) 18) (($ (-1056)) 27) (($ (-1073)) 23) (((-1073) $) 22) (((-1007) $) 21)) (-3902 (((-107) $) 32)) (-1547 (((-107) $ $) 15)))
+(((-404) (-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1056))) (-15 -2256 ($ (-1073))) (-15 -2256 ((-1073) $)) (-15 -2256 ((-1007) $)) (-15 -1908 ((-107) $)) (-15 -2427 ((-107) $)) (-15 -1973 ((-107) $)) (-15 -1340 ((-107) $)) (-15 -2251 ((-107) $)) (-15 -3902 ((-107) $)) (-15 -3737 ((-107) $)) (-15 -1547 ((-107) $ $))))) (T -404))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-404)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1973 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-2251 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3902 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) (-1547 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1056))) (-15 -2256 ($ (-1073))) (-15 -2256 ((-1073) $)) (-15 -2256 ((-1007) $)) (-15 -1908 ((-107) $)) (-15 -2427 ((-107) $)) (-15 -1973 ((-107) $)) (-15 -1340 ((-107) $)) (-15 -2251 ((-107) $)) (-15 -3902 ((-107) $)) (-15 -3737 ((-107) $)) (-15 -1547 ((-107) $ $))))
+((-3494 (((-3 (-388 (-1069 (-377 (-517)))) "failed") |#3|) 69)) (-3950 (((-388 |#3|) |#3|) 33)) (-2229 (((-3 (-388 (-1069 (-47))) "failed") |#3|) 44 (|has| |#2| (-952 (-47))))) (-2728 (((-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107))) |#3|) 35)))
+(((-405 |#1| |#2| |#3|) (-10 -7 (-15 -3950 ((-388 |#3|) |#3|)) (-15 -3494 ((-3 (-388 (-1069 (-377 (-517)))) "failed") |#3|)) (-15 -2728 ((-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -2229 ((-3 (-388 (-1069 (-47))) "failed") |#3|)) |noBranch|)) (-13 (-509) (-779) (-952 (-517))) (-400 |#1|) (-1130 |#2|)) (T -405))
+((-2229 (*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-2728 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-3494 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-3950 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
+(-10 -7 (-15 -3950 ((-388 |#3|) |#3|)) (-15 -3494 ((-3 (-388 (-1069 (-377 (-517)))) "failed") |#3|)) (-15 -2728 ((-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107))) |#3|)) (IF (|has| |#2| (-952 (-47))) (-15 -2229 ((-3 (-388 (-1069 (-47))) "failed") |#3|)) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-3733 (((-1056) $ (-1056)) NIL)) (-1723 (($ $ (-1056)) NIL)) (-1457 (((-1056) $) NIL)) (-3112 (((-358) (-358) (-358)) 17) (((-358) (-358)) 15)) (-1513 (($ (-358)) NIL) (($ (-358) (-1056)) NIL)) (-1207 (((-358) $) NIL)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3262 (((-1158) (-1056)) 9)) (-2762 (((-1158) (-1056)) 10)) (-2593 (((-1158)) 11)) (-2256 (((-787) $) NIL)) (-2463 (($ $) 34)) (-1547 (((-107) $ $) NIL)))
+(((-406) (-13 (-334 (-358) (-1056)) (-10 -7 (-15 -3112 ((-358) (-358) (-358))) (-15 -3112 ((-358) (-358))) (-15 -3262 ((-1158) (-1056))) (-15 -2762 ((-1158) (-1056))) (-15 -2593 ((-1158)))))) (T -406))
+((-3112 (*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3112 (*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))) (-2593 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-406)))))
+(-13 (-334 (-358) (-1056)) (-10 -7 (-15 -3112 ((-358) (-358) (-358))) (-15 -3112 ((-358) (-358))) (-15 -3262 ((-1158) (-1056))) (-15 -2762 ((-1158) (-1056))) (-15 -2593 ((-1158)))))
+((-2750 (((-107) $ $) NIL)) (-3614 (((-3 (|:| |fst| (-404)) (|:| -2677 "void")) $) 10)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3961 (($) 31)) (-3637 (($) 37)) (-2386 (($) 33)) (-2366 (($) 35)) (-1861 (($) 32)) (-3697 (($) 34)) (-1215 (($) 36)) (-2045 (((-107) $) 8)) (-2108 (((-583 (-874 (-517))) $) 16)) (-2276 (($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-107)) 25) (($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-874 (-517))) (-107)) 26)) (-2256 (((-787) $) 21) (($ (-404)) 28)) (-1547 (((-107) $ $) NIL)))
+(((-407) (-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -2256 ($ (-404))) (-15 -3614 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2108 ((-583 (-874 (-517))) $)) (-15 -2045 ((-107) $)) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-107))) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-874 (-517))) (-107))) (-15 -3961 ($)) (-15 -1861 ($)) (-15 -2386 ($)) (-15 -3637 ($)) (-15 -3697 ($)) (-15 -2366 ($)) (-15 -1215 ($))))) (T -407))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-407)))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-1073))) (-5 *4 (-107)) (-5 *1 (-407)))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) (-3961 (*1 *1) (-5 *1 (-407))) (-1861 (*1 *1) (-5 *1 (-407))) (-2386 (*1 *1) (-5 *1 (-407))) (-3637 (*1 *1) (-5 *1 (-407))) (-3697 (*1 *1) (-5 *1 (-407))) (-2366 (*1 *1) (-5 *1 (-407))) (-1215 (*1 *1) (-5 *1 (-407))))
+(-13 (-1003) (-10 -8 (-15 -2256 ((-787) $)) (-15 -2256 ($ (-404))) (-15 -3614 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2108 ((-583 (-874 (-517))) $)) (-15 -2045 ((-107) $)) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-1073)) (-107))) (-15 -2276 ($ (-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-583 (-874 (-517))) (-107))) (-15 -3961 ($)) (-15 -1861 ($)) (-15 -2386 ($)) (-15 -3637 ($)) (-15 -3697 ($)) (-15 -2366 ($)) (-15 -1215 ($))))
+((-2750 (((-107) $ $) NIL)) (-1207 (((-1073) $) 8)) (-3985 (((-1056) $) 16)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 13)))
+(((-408 |#1|) (-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $)))) (-1073)) (T -408))
+((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-408 *3)) (-14 *3 *2))))
+(-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $))))
+((-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-1153 (-632))) 14) (($ (-583 (-300))) 13) (($ (-300)) 12) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 11)))
+(((-409) (-1184)) (T -409))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-632))) (-4 *1 (-409)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-409)))))
+(-13 (-365) (-10 -8 (-15 -2256 ($ (-1153 (-632)))) (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
+((-1772 (((-3 $ "failed") (-1153 (-286 (-349)))) 21) (((-3 $ "failed") (-1153 (-286 (-517)))) 19) (((-3 $ "failed") (-1153 (-874 (-349)))) 17) (((-3 $ "failed") (-1153 (-874 (-517)))) 15) (((-3 $ "failed") (-1153 (-377 (-874 (-349))))) 13) (((-3 $ "failed") (-1153 (-377 (-874 (-517))))) 11)) (-3189 (($ (-1153 (-286 (-349)))) 22) (($ (-1153 (-286 (-517)))) 20) (($ (-1153 (-874 (-349)))) 18) (($ (-1153 (-874 (-517)))) 16) (($ (-1153 (-377 (-874 (-349))))) 14) (($ (-1153 (-377 (-874 (-517))))) 12)) (-4155 (((-1158) $) 7)) (-2256 (((-787) $) 8) (($ (-583 (-300))) 25) (($ (-300)) 24) (($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) 23)))
+(((-410) (-1184)) (T -410))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))))
+(-13 (-365) (-10 -8 (-15 -2256 ($ (-583 (-300)))) (-15 -2256 ($ (-300))) (-15 -2256 ($ (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300)))))) (-15 -3189 ($ (-1153 (-286 (-349))))) (-15 -1772 ((-3 $ "failed") (-1153 (-286 (-349))))) (-15 -3189 ($ (-1153 (-286 (-517))))) (-15 -1772 ((-3 $ "failed") (-1153 (-286 (-517))))) (-15 -3189 ($ (-1153 (-874 (-349))))) (-15 -1772 ((-3 $ "failed") (-1153 (-874 (-349))))) (-15 -3189 ($ (-1153 (-874 (-517))))) (-15 -1772 ((-3 $ "failed") (-1153 (-874 (-517))))) (-15 -3189 ($ (-1153 (-377 (-874 (-349)))))) (-15 -1772 ((-3 $ "failed") (-1153 (-377 (-874 (-349)))))) (-15 -3189 ($ (-1153 (-377 (-874 (-517)))))) (-15 -1772 ((-3 $ "failed") (-1153 (-377 (-874 (-517))))))))
+(((-557 (-787)) . T) ((-365) . T) ((-1108) . T))
+((-2823 (((-107)) 17)) (-3073 (((-107) (-107)) 18)) (-2713 (((-107)) 13)) (-3438 (((-107) (-107)) 14)) (-1344 (((-107)) 15)) (-1845 (((-107) (-107)) 16)) (-1317 (((-843) (-843)) 21) (((-843)) 20)) (-2383 (((-703) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517))))) 41)) (-3723 (((-843) (-843)) 23) (((-843)) 22)) (-2526 (((-2 (|:| -2508 (-517)) (|:| -2879 (-583 |#1|))) |#1|) 61)) (-3204 (((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517))))))) 125)) (-1724 (((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)) 151)) (-3432 (((-388 |#1|) |#1| (-703) (-703)) 164) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 161) (((-388 |#1|) |#1| (-583 (-703))) 163) (((-388 |#1|) |#1| (-703)) 162) (((-388 |#1|) |#1|) 160)) (-3911 (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107)) 166) (((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703)) 167) (((-3 |#1| "failed") (-843) |#1| (-583 (-703))) 169) (((-3 |#1| "failed") (-843) |#1| (-703)) 168) (((-3 |#1| "failed") (-843) |#1|) 170)) (-3755 (((-388 |#1|) |#1| (-703) (-703)) 159) (((-388 |#1|) |#1| (-583 (-703)) (-703)) 155) (((-388 |#1|) |#1| (-583 (-703))) 157) (((-388 |#1|) |#1| (-703)) 156) (((-388 |#1|) |#1|) 154)) (-3808 (((-107) |#1|) 36)) (-2981 (((-670 (-703)) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517))))) 66)) (-2412 (((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)) 153)))
+(((-411 |#1|) (-10 -7 (-15 -3204 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))))) (-15 -2981 ((-670 (-703)) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -3723 ((-843))) (-15 -3723 ((-843) (-843))) (-15 -1317 ((-843))) (-15 -1317 ((-843) (-843))) (-15 -2383 ((-703) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -2526 ((-2 (|:| -2508 (-517)) (|:| -2879 (-583 |#1|))) |#1|)) (-15 -2823 ((-107))) (-15 -3073 ((-107) (-107))) (-15 -2713 ((-107))) (-15 -3438 ((-107) (-107))) (-15 -3808 ((-107) |#1|)) (-15 -1344 ((-107))) (-15 -1845 ((-107) (-107))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1| (-703))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3755 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1| (-703))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3432 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1|)) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107))) (-15 -2412 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107) (-1005 (-703)) (-703)))) (-1130 (-517))) (T -411))
+((-2412 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3911 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) (-3432 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1845 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1344 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3808 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3438 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2713 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3073 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2823 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2526 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2508 (-517)) (|:| -2879 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))) (-1317 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-1317 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3723 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-3723 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *4) (|:| -3631 (-517))))))) (-4 *4 (-1130 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
+(-10 -7 (-15 -3204 ((-388 |#1|) (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))))) (-15 -2981 ((-670 (-703)) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -3723 ((-843))) (-15 -3723 ((-843) (-843))) (-15 -1317 ((-843))) (-15 -1317 ((-843) (-843))) (-15 -2383 ((-703) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))))) (-15 -2526 ((-2 (|:| -2508 (-517)) (|:| -2879 (-583 |#1|))) |#1|)) (-15 -2823 ((-107))) (-15 -3073 ((-107) (-107))) (-15 -2713 ((-107))) (-15 -3438 ((-107) (-107))) (-15 -3808 ((-107) |#1|)) (-15 -1344 ((-107))) (-15 -1845 ((-107) (-107))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3755 ((-388 |#1|) |#1| (-703))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3755 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3755 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1| (-703))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)))) (-15 -3432 ((-388 |#1|) |#1| (-583 (-703)) (-703))) (-15 -3432 ((-388 |#1|) |#1| (-703) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1|)) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703))) (-15 -3911 ((-3 |#1| "failed") (-843) |#1| (-583 (-703)) (-703) (-107))) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107))) (-15 -2412 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107) (-1005 (-703)) (-703))))
+((-3867 (((-517) |#2|) 48) (((-517) |#2| (-703)) 47)) (-1843 (((-517) |#2|) 55)) (-3693 ((|#3| |#2|) 25)) (-1506 ((|#3| |#2| (-843)) 14)) (-2195 ((|#3| |#2|) 15)) (-1975 ((|#3| |#2|) 9)) (-1881 ((|#3| |#2|) 10)) (-2322 ((|#3| |#2| (-843)) 62) ((|#3| |#2|) 30)) (-3898 (((-517) |#2|) 57)))
+(((-412 |#1| |#2| |#3|) (-10 -7 (-15 -3898 ((-517) |#2|)) (-15 -2322 (|#3| |#2|)) (-15 -2322 (|#3| |#2| (-843))) (-15 -1843 ((-517) |#2|)) (-15 -3867 ((-517) |#2| (-703))) (-15 -3867 ((-517) |#2|)) (-15 -1506 (|#3| |#2| (-843))) (-15 -3693 (|#3| |#2|)) (-15 -1975 (|#3| |#2|)) (-15 -1881 (|#3| |#2|)) (-15 -2195 (|#3| |#2|))) (-961) (-1130 |#1|) (-13 (-374) (-952 |#1|) (-333) (-1094) (-256))) (T -412))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-1881 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-1975 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-3693 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))) (-3867 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1130 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1094) (-256))))) (-1843 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))) (-2322 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))) (-2322 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))))
+(-10 -7 (-15 -3898 ((-517) |#2|)) (-15 -2322 (|#3| |#2|)) (-15 -2322 (|#3| |#2| (-843))) (-15 -1843 ((-517) |#2|)) (-15 -3867 ((-517) |#2| (-703))) (-15 -3867 ((-517) |#2|)) (-15 -1506 (|#3| |#2| (-843))) (-15 -3693 (|#3| |#2|)) (-15 -1975 (|#3| |#2|)) (-15 -1881 (|#3| |#2|)) (-15 -2195 (|#3| |#2|)))
+((-2464 ((|#2| (-1153 |#1|)) 36)) (-1335 ((|#2| |#2| |#1|) 49)) (-2443 ((|#2| |#2| |#1|) 41)) (-3093 ((|#2| |#2|) 38)) (-4156 (((-107) |#2|) 30)) (-3920 (((-583 |#2|) (-843) (-388 |#2|)) 16)) (-3911 ((|#2| (-843) (-388 |#2|)) 21)) (-2981 (((-670 (-703)) (-388 |#2|)) 25)))
+(((-413 |#1| |#2|) (-10 -7 (-15 -4156 ((-107) |#2|)) (-15 -2464 (|#2| (-1153 |#1|))) (-15 -3093 (|#2| |#2|)) (-15 -2443 (|#2| |#2| |#1|)) (-15 -1335 (|#2| |#2| |#1|)) (-15 -2981 ((-670 (-703)) (-388 |#2|))) (-15 -3911 (|#2| (-843) (-388 |#2|))) (-15 -3920 ((-583 |#2|) (-843) (-388 |#2|)))) (-961) (-1130 |#1|)) (T -413))
+((-3920 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961)))) (-2981 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))) (-1335 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) (-2443 (*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) (-3093 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-961)) (-4 *2 (-1130 *4)) (-5 *1 (-413 *4 *2)))) (-4156 (*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -4156 ((-107) |#2|)) (-15 -2464 (|#2| (-1153 |#1|))) (-15 -3093 (|#2| |#2|)) (-15 -2443 (|#2| |#2| |#1|)) (-15 -1335 (|#2| |#2| |#1|)) (-15 -2981 ((-670 (-703)) (-388 |#2|))) (-15 -3911 (|#2| (-843) (-388 |#2|))) (-15 -3920 ((-583 |#2|) (-843) (-388 |#2|))))
+((-3479 (((-703)) 41)) (-1248 (((-703)) 23 (|has| |#1| (-374))) (((-703) (-703)) 22 (|has| |#1| (-374)))) (-3403 (((-517) |#1|) 18 (|has| |#1| (-374)))) (-1708 (((-517) |#1|) 20 (|has| |#1| (-374)))) (-2780 (((-703)) 40) (((-703) (-703)) 39)) (-3351 ((|#1| (-703) (-517)) 29)) (-2186 (((-1158)) 43)))
+(((-414 |#1|) (-10 -7 (-15 -3351 (|#1| (-703) (-517))) (-15 -2780 ((-703) (-703))) (-15 -2780 ((-703))) (-15 -3479 ((-703))) (-15 -2186 ((-1158))) (IF (|has| |#1| (-374)) (PROGN (-15 -1708 ((-517) |#1|)) (-15 -3403 ((-517) |#1|)) (-15 -1248 ((-703) (-703))) (-15 -1248 ((-703)))) |noBranch|)) (-961)) (T -414))
+((-1248 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-1248 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-3403 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-1708 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) (-2186 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-3479 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2780 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-2780 (*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961)))))
+(-10 -7 (-15 -3351 (|#1| (-703) (-517))) (-15 -2780 ((-703) (-703))) (-15 -2780 ((-703))) (-15 -3479 ((-703))) (-15 -2186 ((-1158))) (IF (|has| |#1| (-374)) (PROGN (-15 -1708 ((-517) |#1|)) (-15 -3403 ((-517) |#1|)) (-15 -1248 ((-703) (-703))) (-15 -1248 ((-703)))) |noBranch|))
+((-2760 (((-583 (-517)) (-517)) 57)) (-3849 (((-107) (-153 (-517))) 61)) (-3755 (((-388 (-153 (-517))) (-153 (-517))) 56)))
+(((-415) (-10 -7 (-15 -3755 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -2760 ((-583 (-517)) (-517))) (-15 -3849 ((-107) (-153 (-517)))))) (T -415))
+((-3849 (*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) (-2760 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))))
+(-10 -7 (-15 -3755 ((-388 (-153 (-517))) (-153 (-517)))) (-15 -2760 ((-583 (-517)) (-517))) (-15 -3849 ((-107) (-153 (-517)))))
+((-2446 ((|#4| |#4| (-583 |#4|)) 57)) (-2481 (((-583 |#4|) (-583 |#4|) (-1056) (-1056)) 17) (((-583 |#4|) (-583 |#4|) (-1056)) 16) (((-583 |#4|) (-583 |#4|)) 11)))
+(((-416 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2446 (|#4| |#4| (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056) (-1056)))) (-278) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -416))
+((-2481 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-2481 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) (-2481 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2446 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2446 (|#4| |#4| (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -2481 ((-583 |#4|) (-583 |#4|) (-1056) (-1056))))
+((-2086 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 70) (((-583 (-583 |#4|)) (-583 |#4|)) 69) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107)) 63) (((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|)) 64)) (-3923 (((-583 (-583 |#4|)) (-583 |#4|) (-107)) 40) (((-583 (-583 |#4|)) (-583 |#4|)) 60)))
+(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-107)))) (-13 (-278) (-134)) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -417))
+((-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2086 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2086 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-2086 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) (-3923 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(-10 -7 (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -3923 ((-583 (-583 |#4|)) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-583 |#4|) (-107))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|))) (-15 -2086 ((-583 (-583 |#4|)) (-583 |#4|) (-107))))
+((-2097 (((-703) |#4|) 12)) (-2385 (((-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)))) 31)) (-1249 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3080 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 38)) (-3595 ((|#4| |#4| (-583 |#4|)) 39)) (-1805 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|)) 68)) (-2751 (((-1158) |#4|) 41)) (-3649 (((-1158) (-583 |#4|)) 50)) (-1510 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517)) 47)) (-2309 (((-1158) (-517)) 75)) (-1505 (((-583 |#4|) (-583 |#4|)) 73)) (-1378 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)) |#4| (-703)) 25)) (-4159 (((-517) |#4|) 74)) (-3798 ((|#4| |#4|) 29)) (-1921 (((-583 |#4|) (-583 |#4|) (-517) (-517)) 54)) (-1736 (((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517)) 85)) (-2587 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3572 (((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 57)) (-3065 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 56)) (-2259 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 35)) (-3607 (((-107) |#2| |#2|) 55)) (-3052 (((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2390 (((-107) |#2| |#2| |#2| |#2|) 58)) (-1820 ((|#4| |#4| (-583 |#4|)) 69)))
+(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1820 (|#4| |#4| (-583 |#4|))) (-15 -3595 (|#4| |#4| (-583 |#4|))) (-15 -1921 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -3572 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3607 ((-107) |#2| |#2|)) (-15 -2390 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3052 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2259 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3065 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1805 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3798 (|#4| |#4|)) (-15 -2385 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))))) (-15 -3080 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1249 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1505 ((-583 |#4|) (-583 |#4|))) (-15 -4159 ((-517) |#4|)) (-15 -2751 ((-1158) |#4|)) (-15 -1510 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -1736 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -3649 ((-1158) (-583 |#4|))) (-15 -2309 ((-1158) (-517))) (-15 -2587 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1378 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)) |#4| (-703))) (-15 -2097 ((-703) |#4|))) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -418))
+((-2097 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1913 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))) (-2587 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-2309 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)))) (-1736 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-1510 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1505 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-1249 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3080 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))) (-2385 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))) (-3798 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))) (-3065 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))) (-2259 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))) (-3052 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))) (-2390 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-3607 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))) (-1921 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))) (-3595 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))) (-1820 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1820 (|#4| |#4| (-583 |#4|))) (-15 -3595 (|#4| |#4| (-583 |#4|))) (-15 -1921 ((-583 |#4|) (-583 |#4|) (-517) (-517))) (-15 -3572 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3607 ((-107) |#2| |#2|)) (-15 -2390 ((-107) |#2| |#2| |#2| |#2|)) (-15 -3052 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2259 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3065 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1805 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-583 |#4|))) (-15 -3798 (|#4| |#4|)) (-15 -2385 ((-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))) |#4| (-703) (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|))))) (-15 -3080 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1249 ((-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-583 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1505 ((-583 |#4|) (-583 |#4|))) (-15 -4159 ((-517) |#4|)) (-15 -2751 ((-1158) |#4|)) (-15 -1510 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517))) (-15 -1736 ((-517) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-517) (-517) (-517) (-517))) (-15 -3649 ((-1158) (-583 |#4|))) (-15 -2309 ((-1158) (-517))) (-15 -2587 ((-107) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1378 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-703)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-703)) (|:| -1913 |#4|)) |#4| (-703))) (-15 -2097 ((-703) |#4|)))
+((-1441 ((|#4| |#4| (-583 |#4|)) 22 (|has| |#1| (-333)))) (-1759 (((-583 |#4|) (-583 |#4|) (-1056) (-1056)) 41) (((-583 |#4|) (-583 |#4|) (-1056)) 40) (((-583 |#4|) (-583 |#4|)) 35)))
+(((-419 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1759 ((-583 |#4|) (-583 |#4|))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056) (-1056))) (IF (|has| |#1| (-333)) (-15 -1441 (|#4| |#4| (-583 |#4|))) |noBranch|)) (-421) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -419))
+((-1441 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) (-1759 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1759 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1759 ((-583 |#4|) (-583 |#4|))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056))) (-15 -1759 ((-583 |#4|) (-583 |#4|) (-1056) (-1056))) (IF (|has| |#1| (-333)) (-15 -1441 (|#4| |#4| (-583 |#4|))) |noBranch|))
+((-1365 (($ $ $) 14) (($ (-583 $)) 21)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 41)) (-1401 (($ $ $) NIL) (($ (-583 $)) 22)))
+(((-420 |#1|) (-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -1365 (|#1| (-583 |#1|))) (-15 -1365 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|))) (-421)) (T -420))
+NIL
+(-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -1365 (|#1| (-583 |#1|))) (-15 -1365 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -1401 (|#1| |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-421) (-1184)) (T -421))
+((-1401 (*1 *1 *1 *1) (-4 *1 (-421))) (-1401 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-1365 (*1 *1 *1 *1) (-4 *1 (-421))) (-1365 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) (-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-421)))))
+(-13 (-509) (-10 -8 (-15 -1401 ($ $ $)) (-15 -1401 ($ (-583 $))) (-15 -1365 ($ $ $)) (-15 -1365 ($ (-583 $))) (-15 -1862 ((-1069 $) (-1069 $) (-1069 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 (-377 (-874 |#1|)))) (-1153 $)) NIL) (((-1153 (-623 (-377 (-874 |#1|))))) NIL)) (-3456 (((-1153 $)) NIL)) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL)) (-1450 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2619 (((-623 (-377 (-874 |#1|))) (-1153 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-2299 (((-377 (-874 |#1|)) $) NIL)) (-3343 (((-623 (-377 (-874 |#1|))) $ (-1153 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-2158 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2436 (((-1069 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1069 (-377 (-874 |#1|)))) 81 (|has| |#1| (-509)))) (-3380 (($ $ (-843)) NIL)) (-3866 (((-377 (-874 |#1|)) $) NIL)) (-2417 (((-1069 (-377 (-874 |#1|))) $) 79 (|has| (-377 (-874 |#1|)) (-509)))) (-4069 (((-377 (-874 |#1|)) (-1153 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-2085 (((-1069 (-377 (-874 |#1|))) $) NIL)) (-2362 (((-107)) NIL)) (-1967 (($ (-1153 (-377 (-874 |#1|))) (-1153 $)) 101) (($ (-1153 (-377 (-874 |#1|)))) NIL)) (-3621 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2261 (((-843)) NIL)) (-3962 (((-107)) NIL)) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL)) (-3983 (((-107)) NIL)) (-3414 (((-107)) NIL)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL)) (-1793 (((-3 $ "failed")) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2010 (((-623 (-377 (-874 |#1|))) (-1153 $)) NIL) (((-623 (-377 (-874 |#1|)))) NIL)) (-1188 (((-377 (-874 |#1|)) $) NIL)) (-3914 (((-623 (-377 (-874 |#1|))) $ (-1153 $)) NIL) (((-623 (-377 (-874 |#1|))) $) NIL)) (-1680 (((-3 $ "failed") $) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-2300 (((-1069 (-874 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-333))) (((-1069 (-377 (-874 |#1|)))) 80 (|has| |#1| (-509)))) (-2572 (($ $ (-843)) NIL)) (-3913 (((-377 (-874 |#1|)) $) NIL)) (-4121 (((-1069 (-377 (-874 |#1|))) $) 74 (|has| (-377 (-874 |#1|)) (-509)))) (-1988 (((-377 (-874 |#1|)) (-1153 $)) NIL) (((-377 (-874 |#1|))) NIL)) (-2190 (((-1069 (-377 (-874 |#1|))) $) NIL)) (-3606 (((-107)) NIL)) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL)) (-1286 (((-107)) NIL)) (-1848 (((-107)) NIL)) (-3206 (((-1021) $) NIL)) (-3281 (((-377 (-874 |#1|)) $ $) 68 (|has| |#1| (-509)))) (-3834 (((-377 (-874 |#1|)) $) 91 (|has| |#1| (-509)))) (-3776 (((-377 (-874 |#1|)) $) 93 (|has| |#1| (-509)))) (-2311 (((-1069 (-377 (-874 |#1|))) $) 85 (|has| |#1| (-509)))) (-1922 (((-377 (-874 |#1|))) 69 (|has| |#1| (-509)))) (-2076 (((-377 (-874 |#1|)) $ $) 60 (|has| |#1| (-509)))) (-4051 (((-377 (-874 |#1|)) $) 90 (|has| |#1| (-509)))) (-3668 (((-377 (-874 |#1|)) $) 92 (|has| |#1| (-509)))) (-1293 (((-1069 (-377 (-874 |#1|))) $) 84 (|has| |#1| (-509)))) (-4046 (((-377 (-874 |#1|))) 65 (|has| |#1| (-509)))) (-3154 (($) 99) (($ (-1073)) 105) (($ (-1153 (-1073))) 104) (($ (-1153 $)) 94) (($ (-1073) (-1153 $)) 103) (($ (-1153 (-1073)) (-1153 $)) 102)) (-1697 (((-107)) NIL)) (-1449 (((-377 (-874 |#1|)) $ (-517)) NIL)) (-4114 (((-1153 (-377 (-874 |#1|))) $ (-1153 $)) 96) (((-623 (-377 (-874 |#1|))) (-1153 $) (-1153 $)) NIL) (((-1153 (-377 (-874 |#1|))) $) 37) (((-623 (-377 (-874 |#1|))) (-1153 $)) NIL)) (-3645 (((-1153 (-377 (-874 |#1|))) $) NIL) (($ (-1153 (-377 (-874 |#1|)))) 34)) (-2278 (((-583 (-874 (-377 (-874 |#1|)))) (-1153 $)) NIL) (((-583 (-874 (-377 (-874 |#1|))))) NIL) (((-583 (-874 |#1|)) (-1153 $)) 97 (|has| |#1| (-509))) (((-583 (-874 |#1|))) 98 (|has| |#1| (-509)))) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL)) (-2256 (((-787) $) NIL) (($ (-1153 (-377 (-874 |#1|)))) NIL)) (-1753 (((-1153 $)) 56)) (-1582 (((-583 (-1153 (-377 (-874 |#1|))))) NIL (|has| (-377 (-874 |#1|)) (-509)))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL)) (-1587 (($ (-623 (-377 (-874 |#1|))) $) NIL)) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL)) (-2524 (((-107)) NIL)) (-3642 (((-107)) NIL)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) 95)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 52) (($ $ (-377 (-874 |#1|))) NIL) (($ (-377 (-874 |#1|)) $) NIL) (($ (-1040 |#2| (-377 (-874 |#1|))) $) NIL)))
+(((-422 |#1| |#2| |#3| |#4|) (-13 (-387 (-377 (-874 |#1|))) (-585 (-1040 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2256 ($ (-1153 (-377 (-874 |#1|))))) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -3154 ($)) (-15 -3154 ($ (-1073))) (-15 -3154 ($ (-1153 (-1073)))) (-15 -3154 ($ (-1153 $))) (-15 -3154 ($ (-1073) (-1153 $))) (-15 -3154 ($ (-1153 (-1073)) (-1153 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -2300 ((-1069 (-377 (-874 |#1|))))) (-15 -1293 ((-1069 (-377 (-874 |#1|))) $)) (-15 -4051 ((-377 (-874 |#1|)) $)) (-15 -3668 ((-377 (-874 |#1|)) $)) (-15 -2436 ((-1069 (-377 (-874 |#1|))))) (-15 -2311 ((-1069 (-377 (-874 |#1|))) $)) (-15 -3834 ((-377 (-874 |#1|)) $)) (-15 -3776 ((-377 (-874 |#1|)) $)) (-15 -2076 ((-377 (-874 |#1|)) $ $)) (-15 -4046 ((-377 (-874 |#1|)))) (-15 -3281 ((-377 (-874 |#1|)) $ $)) (-15 -1922 ((-377 (-874 |#1|)))) (-15 -2278 ((-583 (-874 |#1|)) (-1153 $))) (-15 -2278 ((-583 (-874 |#1|))))) |noBranch|))) (-156) (-843) (-583 (-1073)) (-1153 (-623 |#1|))) (T -422))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))) (-3550 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2257 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1073))) (-14 *5 (-1153 (-623 *2))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-1153 (-1073))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1 *2) (-12 (-5 *2 (-1153 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3154 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1153 (-623 *4))))) (-3154 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-1073))) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))) (-2300 (*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2436 (*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3834 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2076 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-4046 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-3281 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-1922 (*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))) (-2278 (*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(-13 (-387 (-377 (-874 |#1|))) (-585 (-1040 |#2| (-377 (-874 |#1|)))) (-10 -8 (-15 -2256 ($ (-1153 (-377 (-874 |#1|))))) (-15 -3550 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -2257 ((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed"))) (-15 -3154 ($)) (-15 -3154 ($ (-1073))) (-15 -3154 ($ (-1153 (-1073)))) (-15 -3154 ($ (-1153 $))) (-15 -3154 ($ (-1073) (-1153 $))) (-15 -3154 ($ (-1153 (-1073)) (-1153 $))) (IF (|has| |#1| (-509)) (PROGN (-15 -2300 ((-1069 (-377 (-874 |#1|))))) (-15 -1293 ((-1069 (-377 (-874 |#1|))) $)) (-15 -4051 ((-377 (-874 |#1|)) $)) (-15 -3668 ((-377 (-874 |#1|)) $)) (-15 -2436 ((-1069 (-377 (-874 |#1|))))) (-15 -2311 ((-1069 (-377 (-874 |#1|))) $)) (-15 -3834 ((-377 (-874 |#1|)) $)) (-15 -3776 ((-377 (-874 |#1|)) $)) (-15 -2076 ((-377 (-874 |#1|)) $ $)) (-15 -4046 ((-377 (-874 |#1|)))) (-15 -3281 ((-377 (-874 |#1|)) $ $)) (-15 -1922 ((-377 (-874 |#1|)))) (-15 -2278 ((-583 (-874 |#1|)) (-1153 $))) (-15 -2278 ((-583 (-874 |#1|))))) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 13)) (-1364 (((-583 (-789 |#1|)) $) 73)) (-2352 (((-1069 $) $ (-789 |#1|)) 46) (((-1069 |#2|) $) 115)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) 21) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 44) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) 42) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3924 (($ $ (-583 (-517))) 78)) (-1212 (($ $) 67)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| |#3| $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 58)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) 120) (($ (-1069 $) (-789 |#1|)) 52)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) 59)) (-1339 (($ |#2| |#3|) 28) (($ $ (-789 |#1|) (-703)) 30) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 ((|#3| $) NIL) (((-703) $ (-789 |#1|)) 50) (((-583 (-703)) $ (-583 (-789 |#1|))) 57)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 |#3| |#3|) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) 39)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) 41)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 40)) (-4141 ((|#2| $) 113)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) 125 (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) 85) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) 88) (($ $ (-789 |#1|) $) 83) (($ $ (-583 (-789 |#1|)) (-583 $)) 104)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) 53) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 ((|#3| $) 66) (((-703) $ (-789 |#1|)) 37) (((-583 (-703)) $ (-583 (-789 |#1|))) 56)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) 122 (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) 141) (($ (-517)) NIL) (($ |#2|) 84) (($ (-789 |#1|)) 31) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ |#3|) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 16 T CONST)) (-2409 (($) 25 T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) 64 (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 109)) (** (($ $ (-843)) NIL) (($ $ (-703)) 107)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 29) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-423 |#1| |#2| |#3|) (-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) (-583 (-1073)) (-961) (-212 (-2296 |#1|) (-703))) (T -423))
+((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1073))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2296 *3) (-703))))))
+(-13 (-871 |#2| |#3| (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517))))))
+((-1341 (((-107) |#1| (-583 |#2|)) 65)) (-1877 (((-3 (-1153 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|)) 74)) (-3477 (((-3 (-583 |#2|) "failed") |#2| |#1| (-1153 (-583 |#2|))) 76)) (-3271 ((|#2| |#2| |#1|) 28)) (-2242 (((-703) |#2| (-583 |#2|)) 20)))
+(((-424 |#1| |#2|) (-10 -7 (-15 -3271 (|#2| |#2| |#1|)) (-15 -2242 ((-703) |#2| (-583 |#2|))) (-15 -1877 ((-3 (-1153 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -3477 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1153 (-583 |#2|)))) (-15 -1341 ((-107) |#1| (-583 |#2|)))) (-278) (-1130 |#1|)) (T -424))
+((-1341 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1130 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))) (-3477 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1153 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1130 *4)))) (-1877 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1130 *4)) (-5 *2 (-1153 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))) (-2242 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))) (-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1130 *3)))))
+(-10 -7 (-15 -3271 (|#2| |#2| |#1|)) (-15 -2242 ((-703) |#2| (-583 |#2|))) (-15 -1877 ((-3 (-1153 (-583 |#2|)) "failed") (-703) |#1| (-583 |#2|))) (-15 -3477 ((-3 (-583 |#2|) "failed") |#2| |#1| (-1153 (-583 |#2|)))) (-15 -1341 ((-107) |#1| (-583 |#2|))))
+((-3755 (((-388 |#5|) |#5|) 24)))
+(((-425 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3755 ((-388 |#5|) |#5|))) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073))))) (-725) (-509) (-509) (-871 |#4| |#2| |#1|)) (T -425))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4)))))
+(-10 -7 (-15 -3755 ((-388 |#5|) |#5|)))
+((-2916 ((|#3|) 36)) (-1862 (((-1069 |#4|) (-1069 |#4|) (-1069 |#4|)) 32)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1862 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2916 (|#3|))) (-725) (-779) (-831) (-871 |#3| |#1| |#2|)) (T -426))
+((-2916 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1862 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2916 (|#3|)))
+((-3755 (((-388 (-1069 |#1|)) (-1069 |#1|)) 41)))
+(((-427 |#1|) (-10 -7 (-15 -3755 ((-388 (-1069 |#1|)) (-1069 |#1|)))) (-278)) (T -427))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1069 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1069 *4)))))
+(-10 -7 (-15 -3755 ((-388 (-1069 |#1|)) (-1069 |#1|))))
+((-1590 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-703))) 42) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-703))) 41) (((-51) |#2| (-1073) (-265 |#2|)) 35) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 27)) (-2925 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 80) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 79) (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517))) 78) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517))) 77) (((-51) |#2| (-1073) (-265 |#2|)) 72) (((-51) (-1 |#2| (-517)) (-265 |#2|)) 71)) (-1613 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 66) (((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))) 64)) (-1601 (((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517))) 48) (((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517))) 47)))
+(((-428 |#1| |#2|) (-10 -7 (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-703)))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-703)))) (-15 -1601 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -1601 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -1613 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -1613 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517))))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -428))
+((-2925 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-2925 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-2925 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) (-1613 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) (-1613 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) (-1601 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1590 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-703))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-703))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) (-1590 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) (-1590 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))))
+(-10 -7 (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -1590 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-703)))) (-15 -1590 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-703)))) (-15 -1601 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -1601 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -1613 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -1613 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|))) (-15 -2925 ((-51) (-1 |#2| (-517)) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-517)))) (-15 -2925 ((-51) (-1 |#2| (-377 (-517))) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))) (-15 -2925 ((-51) |#2| (-1073) (-265 |#2|) (-1121 (-377 (-517))) (-377 (-517)))))
+((-3271 ((|#2| |#2| |#1|) 15)) (-3965 (((-583 |#2|) |#2| (-583 |#2|) |#1| (-843)) 65)) (-3685 (((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843)) 58)))
+(((-429 |#1| |#2|) (-10 -7 (-15 -3685 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -3965 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -3271 (|#2| |#2| |#1|))) (-278) (-1130 |#1|)) (T -429))
+((-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1130 *3)))) (-3965 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1130 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))) (-3685 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1130 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
+(-10 -7 (-15 -3685 ((-2 (|:| |plist| (-583 |#2|)) (|:| |modulo| |#1|)) |#2| (-583 |#2|) |#1| (-843))) (-15 -3965 ((-583 |#2|) |#2| (-583 |#2|) |#1| (-843))) (-15 -3271 (|#2| |#2| |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 28)) (-2847 (($ |#3|) 25)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) 32)) (-3589 (($ |#2| |#4| $) 33)) (-1339 (($ |#2| (-646 |#3| |#4| |#5|)) 24)) (-4152 (((-646 |#3| |#4| |#5|) $) 15)) (-2684 ((|#3| $) 19)) (-2472 ((|#4| $) 17)) (-1191 ((|#2| $) 29)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-1637 (($ |#2| |#3| |#4|) 26)) (-2396 (($) 36 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 34)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-430 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1191 (|#2| $)) (-15 -4152 ((-646 |#3| |#4| |#5|) $)) (-15 -2472 (|#4| $)) (-15 -2684 (|#3| $)) (-15 -1212 ($ $)) (-15 -1339 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -2847 ($ |#3|)) (-15 -1637 ($ |#2| |#3| |#4|)) (-15 -3589 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-583 (-1073)) (-156) (-779) (-212 (-2296 |#1|) (-703)) (-1 (-107) (-2 (|:| -3448 |#3|) (|:| -2077 |#4|)) (-2 (|:| -3448 |#3|) (|:| -2077 |#4|))) (-871 |#2| |#4| (-789 |#1|))) (T -430))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) (-1191 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) (-4152 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) (-2472 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *2)) (-2 (|:| -3448 *5) (|:| -2077 *2)))) (-4 *2 (-212 (-2296 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3))))) (-2684 (*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-1212 (*1 *1 *1) (-12 (-14 *2 (-583 (-1073))) (-4 *3 (-156)) (-4 *5 (-212 (-2296 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2296 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) (-2847 (*1 *1 *2) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) (-1637 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1073))) (-4 *2 (-156)) (-4 *4 (-212 (-2296 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *4)) (-2 (|:| -3448 *3) (|:| -2077 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5))))) (-3589 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-4 *3 (-212 (-2296 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *3)) (-2 (|:| -3448 *5) (|:| -2077 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4))))))
+(-13 (-650 |#6|) (-650 |#2|) (-10 -8 (-15 -1191 (|#2| $)) (-15 -4152 ((-646 |#3| |#4| |#5|) $)) (-15 -2472 (|#4| $)) (-15 -2684 (|#3| $)) (-15 -1212 ($ $)) (-15 -1339 ($ |#2| (-646 |#3| |#4| |#5|))) (-15 -2847 ($ |#3|)) (-15 -1637 ($ |#2| |#3| |#4|)) (-15 -3589 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-3899 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 35)))
+(((-431 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3899 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2256 ($ |#4|)) (-15 -1787 (|#4| $)) (-15 -1800 (|#4| $))))) (T -431))
+((-3899 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
+(-10 -7 (-15 -3899 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2750 (((-107) $ $) NIL)) (-1364 (((-583 |#3|) $) 41)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) NIL (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 47)) (-3189 (($ (-583 |#4|)) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180)))) (-1536 (((-583 |#4|) $) 18 (|has| $ (-6 -4180)))) (-1976 ((|#3| $) 45)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 14 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 26 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3206 (((-1021) $) NIL)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 39)) (-1746 (($) 17)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 16)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493)))) (($ (-583 |#4|)) 49)) (-2276 (($ (-583 |#4|)) 13)) (-2442 (($ $ |#3|) NIL)) (-3759 (($ $ |#3|) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 38) (((-583 |#4|) $) 48)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 30)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-432 |#1| |#2| |#3| |#4|) (-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3645 ($ (-583 |#4|))) (-6 -4180) (-6 -4181))) (-961) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -432))
+((-3645 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))))
+(-13 (-893 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3645 ($ (-583 |#4|))) (-6 -4180) (-6 -4181)))
+((-2396 (($) 11)) (-2409 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-433 |#1| |#2| |#3|) (-10 -8 (-15 -2409 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2396 (|#1|))) (-434 |#2| |#3|) (-156) (-23)) (T -433))
+NIL
+(-10 -8 (-15 -2409 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2396 (|#1|)))
+((-2750 (((-107) $ $) 7)) (-1772 (((-3 |#1| "failed") $) 26)) (-3189 ((|#1| $) 25)) (-3485 (($ $ $) 23)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 ((|#2| $) 19)) (-2256 (((-787) $) 11) (($ |#1|) 27)) (-2396 (($) 18 T CONST)) (-2409 (($) 24 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 15) (($ $ $) 13)) (-1642 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-434 |#1| |#2|) (-1184) (-156) (-23)) (T -434))
+((-2409 (*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-3485 (*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
+(-13 (-439 |t#1| |t#2|) (-952 |t#1|) (-10 -8 (-15 (-2409) ($) -1619) (-15 -3485 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-439 |#1| |#2|) . T) ((-952 |#1|) . T) ((-1003) . T))
+((-3049 (((-1153 (-1153 (-517))) (-1153 (-1153 (-517))) (-843)) 18)) (-1614 (((-1153 (-1153 (-517))) (-843)) 16)))
+(((-435) (-10 -7 (-15 -3049 ((-1153 (-1153 (-517))) (-1153 (-1153 (-517))) (-843))) (-15 -1614 ((-1153 (-1153 (-517))) (-843))))) (T -435))
+((-1614 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 (-517)))) (-5 *1 (-435)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 (-1153 (-517)))) (-5 *3 (-843)) (-5 *1 (-435)))))
+(-10 -7 (-15 -3049 ((-1153 (-1153 (-517))) (-1153 (-1153 (-517))) (-843))) (-15 -1614 ((-1153 (-1153 (-517))) (-843))))
+((-3553 (((-517) (-517)) 30) (((-517)) 22)) (-2761 (((-517) (-517)) 26) (((-517)) 18)) (-4056 (((-517) (-517)) 28) (((-517)) 20)) (-3579 (((-107) (-107)) 12) (((-107)) 10)) (-3742 (((-107) (-107)) 11) (((-107)) 9)) (-2594 (((-107) (-107)) 24) (((-107)) 15)))
+(((-436) (-10 -7 (-15 -3742 ((-107))) (-15 -3579 ((-107))) (-15 -3742 ((-107) (-107))) (-15 -3579 ((-107) (-107))) (-15 -2594 ((-107))) (-15 -4056 ((-517))) (-15 -2761 ((-517))) (-15 -3553 ((-517))) (-15 -2594 ((-107) (-107))) (-15 -4056 ((-517) (-517))) (-15 -2761 ((-517) (-517))) (-15 -3553 ((-517) (-517))))) (T -436))
+((-3553 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-4056 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2594 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3553 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2761 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-4056 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) (-2594 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3579 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3742 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3579 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) (-3742 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(-10 -7 (-15 -3742 ((-107))) (-15 -3579 ((-107))) (-15 -3742 ((-107) (-107))) (-15 -3579 ((-107) (-107))) (-15 -2594 ((-107))) (-15 -4056 ((-517))) (-15 -2761 ((-517))) (-15 -3553 ((-517))) (-15 -2594 ((-107) (-107))) (-15 -4056 ((-517) (-517))) (-15 -2761 ((-517) (-517))) (-15 -3553 ((-517) (-517))))
+((-2750 (((-107) $ $) NIL)) (-3029 (((-583 (-349)) $) 27) (((-583 (-349)) $ (-583 (-349))) 90)) (-1868 (((-583 (-998 (-349))) $) 14) (((-583 (-998 (-349))) $ (-583 (-998 (-349)))) 87)) (-3729 (((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797))) 42)) (-1985 (((-583 (-583 (-865 (-199)))) $) 83)) (-2889 (((-1158) $ (-865 (-199)) (-797)) 103)) (-1452 (($ $) 82) (($ (-583 (-583 (-865 (-199))))) 93) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843))) 92) (($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236))) 94)) (-3985 (((-1056) $) NIL)) (-3435 (((-517) $) 65)) (-3206 (((-1021) $) NIL)) (-2089 (($) 91)) (-2267 (((-583 (-199)) (-583 (-583 (-865 (-199))))) 52)) (-2271 (((-1158) $ (-583 (-865 (-199))) (-797) (-797) (-843)) 97) (((-1158) $ (-865 (-199))) 99) (((-1158) $ (-865 (-199)) (-797) (-797) (-843)) 98)) (-2256 (((-787) $) 109) (($ (-583 (-583 (-865 (-199))))) 104)) (-3366 (((-1158) $ (-865 (-199))) 102)) (-1547 (((-107) $ $) NIL)))
+(((-437) (-13 (-1003) (-10 -8 (-15 -2089 ($)) (-15 -1452 ($ $)) (-15 -1452 ($ (-583 (-583 (-865 (-199)))))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -1985 ((-583 (-583 (-865 (-199)))) $)) (-15 -3435 ((-517) $)) (-15 -1868 ((-583 (-998 (-349))) $)) (-15 -1868 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -3029 ((-583 (-349)) $)) (-15 -3029 ((-583 (-349)) $ (-583 (-349)))) (-15 -2271 ((-1158) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -2271 ((-1158) $ (-865 (-199)))) (-15 -2271 ((-1158) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -3366 ((-1158) $ (-865 (-199)))) (-15 -2889 ((-1158) $ (-865 (-199)) (-797))) (-15 -2256 ($ (-583 (-583 (-865 (-199)))))) (-15 -2256 ((-787) $)) (-15 -3729 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -2267 ((-583 (-199)) (-583 (-583 (-865 (-199))))))))) (T -437))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) (-2089 (*1 *1) (-5 *1 (-437))) (-1452 (*1 *1 *1) (-5 *1 (-437))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-1452 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) (-1452 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) (-1985 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-1868 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) (-3029 (*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-3029 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) (-2271 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2271 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2271 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))) (-3366 (*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2889 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-437)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) (-3729 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
+(-13 (-1003) (-10 -8 (-15 -2089 ($)) (-15 -1452 ($ $)) (-15 -1452 ($ (-583 (-583 (-865 (-199)))))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)))) (-15 -1452 ($ (-583 (-583 (-865 (-199)))) (-583 (-797)) (-583 (-797)) (-583 (-843)) (-583 (-236)))) (-15 -1985 ((-583 (-583 (-865 (-199)))) $)) (-15 -3435 ((-517) $)) (-15 -1868 ((-583 (-998 (-349))) $)) (-15 -1868 ((-583 (-998 (-349))) $ (-583 (-998 (-349))))) (-15 -3029 ((-583 (-349)) $)) (-15 -3029 ((-583 (-349)) $ (-583 (-349)))) (-15 -2271 ((-1158) $ (-583 (-865 (-199))) (-797) (-797) (-843))) (-15 -2271 ((-1158) $ (-865 (-199)))) (-15 -2271 ((-1158) $ (-865 (-199)) (-797) (-797) (-843))) (-15 -3366 ((-1158) $ (-865 (-199)))) (-15 -2889 ((-1158) $ (-865 (-199)) (-797))) (-15 -2256 ($ (-583 (-583 (-865 (-199)))))) (-15 -2256 ((-787) $)) (-15 -3729 ((-583 (-583 (-865 (-199)))) (-583 (-583 (-865 (-199)))) (-583 (-797)))) (-15 -2267 ((-583 (-199)) (-583 (-583 (-865 (-199))))))))
+((-1654 (($ $) NIL) (($ $ $) 11)))
+(((-438 |#1| |#2| |#3|) (-10 -8 (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|))) (-439 |#2| |#3|) (-156) (-23)) (T -438))
+NIL
+(-10 -8 (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 ((|#2| $) 19)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 15) (($ $ $) 13)) (-1642 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+(((-439 |#1| |#2|) (-1184) (-156) (-23)) (T -439))
+((-3688 (*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) (-2396 (*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) (-1654 (*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))))
+(-13 (-1003) (-10 -8 (-15 -3688 (|t#2| $)) (-15 (-2396) ($) -1619) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1654 ($ $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2796 (((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|))) 88)) (-2615 (((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 86)) (-3285 (((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))) 58)))
+(((-440 |#1| |#2| |#3|) (-10 -7 (-15 -2615 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -3285 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|))))) (-583 (-1073)) (-421) (-421)) (T -440))
+((-3285 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))) (-2796 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))) (-2615 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(-10 -7 (-15 -2615 ((-583 (-583 (-221 |#1| |#2|))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -2796 ((-3 (-583 (-449 |#1| |#2|)) "failed") (-583 (-449 |#1| |#2|)) (-583 (-789 |#1|)))) (-15 -3285 ((-2 (|:| |dpolys| (-583 (-221 |#1| |#2|))) (|:| |coords| (-583 (-517)))) (-583 (-221 |#1| |#2|)) (-583 (-789 |#1|)))))
+((-3621 (((-3 $ "failed") $) 11)) (-1487 (($ $ $) 20)) (-3394 (($ $ $) 21)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 14)) (-1667 (($ $ $) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 19)))
+(((-441 |#1|) (-10 -8 (-15 -3394 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-442)) (T -441))
+NIL
+(-10 -8 (-15 -3394 (|#1| |#1| |#1|)) (-15 -1487 (|#1| |#1| |#1|)) (-15 -2207 (|#1| |#1| (-517))) (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
+((-2750 (((-107) $ $) 7)) (-3092 (($) 20 T CONST)) (-3621 (((-3 $ "failed") $) 16)) (-3848 (((-107) $) 19)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 27)) (-3206 (((-1021) $) 10)) (-1487 (($ $ $) 23)) (-3394 (($ $ $) 22)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2409 (($) 21 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
+(((-442) (-1184)) (T -442))
+((-4118 (*1 *1 *1) (-4 *1 (-442))) (-1667 (*1 *1 *1 *1) (-4 *1 (-442))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) (-1487 (*1 *1 *1 *1) (-4 *1 (-442))) (-3394 (*1 *1 *1 *1) (-4 *1 (-442))))
+(-13 (-659) (-10 -8 (-15 -4118 ($ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ (-517))) (-15 -2207 ($ $ (-517))) (-6 -4177) (-15 -1487 ($ $ $)) (-15 -3394 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 17)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) NIL) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 22)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 26 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 33 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 27 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) 25 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1149 |#2|)) 15)) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1149 |#2|)) NIL) (($ (-1139 |#1| |#2| |#3|)) 9) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 18)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 24)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-443 |#1| |#2| |#3|) (-13 (-1135 |#1|) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -2256 ($ (-1139 |#1| |#2| |#3|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -443))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1135 |#1|) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -2256 ($ (-1139 |#1| |#2| |#3|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) 18)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 19)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 16)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-444 |#1| |#2| |#3| |#4|) (-1085 |#1| |#2|) (-1003) (-1003) (-1085 |#1| |#2|) |#2|) (T -444))
+NIL
+(-1085 |#1| |#2|)
+((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) NIL)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) 26 (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 39)) (-3659 ((|#4| |#4| $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-1536 (((-583 |#4|) $) 16 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 17 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2068 (((-3 |#4| "failed") $) 37)) (-2774 (((-583 |#4|) $) NIL)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) 46)) (-1672 (($ $ |#4|) NIL)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 13)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 12)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 20)) (-2442 (($ $ |#3|) 42)) (-3759 (($ $ |#3|) 43)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-1871 (((-107) |#3| $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-445 |#1| |#2| |#3| |#4|) (-1102 |#1| |#2| |#3| |#4|) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -445))
+NIL
+(-1102 |#1| |#2| |#3| |#4|)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-2645 (($) 18)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3645 (((-349) $) 22) (((-199) $) 25) (((-377 (-1069 (-517))) $) 19) (((-493) $) 52)) (-2256 (((-787) $) 50) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (((-199) $) 24) (((-349) $) 21)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 36 T CONST)) (-2409 (($) 11 T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-446) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1069 (-517)))) (-558 (-493)) (-10 -8 (-15 -2645 ($))))) (T -446))
+((-2645 (*1 *1) (-5 *1 (-446))))
+(-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))) (-937) (-557 (-199)) (-557 (-349)) (-558 (-377 (-1069 (-517)))) (-558 (-493)) (-10 -8 (-15 -2645 ($))))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) 16)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 20)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 18)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) 13)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 19)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 11 (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) 15 (|has| $ (-6 -4180)))))
+(((-447 |#1| |#2| |#3|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003) (-1056)) (T -447))
+NIL
+(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))
+((-1991 (((-517) (-517) (-517)) 7)) (-2973 (((-107) (-517) (-517) (-517) (-517)) 11)) (-3464 (((-1153 (-583 (-517))) (-703) (-703)) 22)))
+(((-448) (-10 -7 (-15 -1991 ((-517) (-517) (-517))) (-15 -2973 ((-107) (-517) (-517) (-517) (-517))) (-15 -3464 ((-1153 (-583 (-517))) (-703) (-703))))) (T -448))
+((-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1153 (-583 (-517)))) (-5 *1 (-448)))) (-2973 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))) (-1991 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
+(-10 -7 (-15 -1991 ((-517) (-517) (-517))) (-15 -2973 ((-107) (-517) (-517) (-517) (-517))) (-15 -3464 ((-1153 (-583 (-517))) (-703) (-703))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-789 |#1|)) $) NIL)) (-2352 (((-1069 $) $ (-789 |#1|)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3924 (($ $ (-583 (-517))) NIL)) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-450 (-2296 |#1|) (-703)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) NIL) (($ (-1069 $) (-789 |#1|)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-450 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 (((-450 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-450 (-2296 |#1|) (-703)) (-450 (-2296 |#1|) (-703))) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 (((-450 (-2296 |#1|) (-703)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-450 (-2296 |#1|) (-703))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-449 |#1| |#2|) (-13 (-871 |#2| (-450 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517)))))) (-583 (-1073)) (-961)) (T -449))
+((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961)))))
+(-13 (-871 |#2| (-450 (-2296 |#1|) (-703)) (-789 |#1|)) (-10 -8 (-15 -3924 ($ $ (-583 (-517))))))
+((-2750 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2814 (((-107) $) NIL (|has| |#2| (-123)))) (-2847 (($ (-843)) NIL (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#2| (-338)))) (-3709 (((-517) $) NIL (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-3209 (($) NIL (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) 11)) (-3556 (((-107) $) NIL (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#2| (-961)))) (-2475 (((-107) $) NIL (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#2| (-338)))) (-3206 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1647 ((|#2| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3501 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) NIL)) (-3141 (((-125)) NIL (|has| |#2| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-2961 (((-703)) NIL (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#2| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2396 (($) NIL (|has| |#2| (-123)) CONST)) (-2409 (($) NIL (|has| |#2| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1547 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 15 (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1642 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-450 |#1| |#2|) (-212 |#1| |#2|) (-703) (-725)) (T -450))
+NIL
+(-212 |#1| |#2|)
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2797 (($ $ $) 32)) (-3237 (($ $ $) 31)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3099 ((|#1| $) 26)) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 27)) (-1710 (($ |#1| $) 10)) (-1189 (($ (-583 |#1|)) 12)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4006 ((|#1| $) 23)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 9)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 29)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) 21 (|has| $ (-6 -4180)))))
+(((-451 |#1|) (-13 (-886 |#1|) (-10 -8 (-15 -1189 ($ (-583 |#1|))))) (-779)) (T -451))
+((-1189 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
+(-13 (-886 |#1|) (-10 -8 (-15 -1189 ($ (-583 |#1|)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ $) 69)) (-1470 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-4014 (((-383 |#2| (-377 |#2|) |#3| |#4|) $) 43)) (-3206 (((-1021) $) NIL)) (-3220 (((-3 |#4| "failed") $) 105)) (-1966 (($ (-383 |#2| (-377 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 113) (($ |#1| |#1| (-517)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 125)) (-2132 (((-2 (|:| -3402 (-383 |#2| (-377 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 45)) (-2256 (((-787) $) 100)) (-2396 (($) 33 T CONST)) (-1547 (((-107) $ $) 107)) (-1654 (($ $) 72) (($ $ $) NIL)) (-1642 (($ $ $) 70)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 73)))
+(((-452 |#1| |#2| |#3| |#4|) (-305 |#1| |#2| |#3| |#4|) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -452))
+NIL
+(-305 |#1| |#2| |#3| |#4|)
+((-2189 (((-517) (-583 (-517))) 28)) (-3717 ((|#1| (-583 |#1|)) 54)) (-2292 (((-583 |#1|) (-583 |#1|)) 55)) (-3315 (((-583 |#1|) (-583 |#1|)) 57)) (-1401 ((|#1| (-583 |#1|)) 56)) (-3266 (((-583 (-517)) (-583 |#1|)) 31)))
+(((-453 |#1|) (-10 -7 (-15 -1401 (|#1| (-583 |#1|))) (-15 -3717 (|#1| (-583 |#1|))) (-15 -3315 ((-583 |#1|) (-583 |#1|))) (-15 -2292 ((-583 |#1|) (-583 |#1|))) (-15 -3266 ((-583 (-517)) (-583 |#1|))) (-15 -2189 ((-517) (-583 (-517))))) (-1130 (-517))) (T -453))
+((-2189 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1130 *2)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1130 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))))
+(-10 -7 (-15 -1401 (|#1| (-583 |#1|))) (-15 -3717 (|#1| (-583 |#1|))) (-15 -3315 ((-583 |#1|) (-583 |#1|))) (-15 -2292 ((-583 |#1|) (-583 |#1|))) (-15 -3266 ((-583 (-517)) (-583 |#1|))) (-15 -2189 ((-517) (-583 (-517)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-517) $) NIL (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-1229 (($ (-377 (-517))) 8)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) NIL)) (-2597 (((-517) $) NIL (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 7) (($ (-517)) NIL) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL) (((-920 16) $) 9)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-517) $) NIL (|has| (-517) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1667 (($ $ $) NIL) (($ (-517) (-517)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) NIL) (($ $ (-517)) NIL)))
+(((-454) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 16) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1229 ($ (-377 (-517))))))) (T -454))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) (-1229 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
+(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -2256 ((-920 16) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1229 ($ (-377 (-517))))))
+((-2560 (((-583 |#2|) $) 22)) (-2787 (((-107) |#2| $) 27)) (-2048 (((-107) (-1 (-107) |#2|) $) 20)) (-2051 (($ $ (-583 (-265 |#2|))) 12) (($ $ (-265 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-583 |#2|) (-583 |#2|)) NIL)) (-3217 (((-703) (-1 (-107) |#2|) $) 21) (((-703) |#2| $) 25)) (-2256 (((-787) $) 36)) (-3675 (((-107) (-1 (-107) |#2|) $) 19)) (-1547 (((-107) $ $) 30)) (-2296 (((-703) $) 16)))
+(((-455 |#1| |#2|) (-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -2560 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|))) (-456 |#2|) (-1108)) (T -455))
+NIL
+(-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#2| |#2|)) (-15 -2051 (|#1| |#1| (-265 |#2|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#2|)))) (-15 -2787 ((-107) |#2| |#1|)) (-15 -3217 ((-703) |#2| |#1|)) (-15 -2560 ((-583 |#2|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#2|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)))
+((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-456 |#1|) (-1184) (-1108)) (T -456))
+((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))) (-1433 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))) (-3675 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-2048 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-3217 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-703)))) (-1536 (*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) (-2560 (*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) (-3217 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-703)))) (-2787 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |t#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |t#1| (-1003)) (IF (|has| |t#1| (-280 |t#1|)) (-6 (-280 |t#1|)) |noBranch|) |noBranch|) (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4181)) (-15 -1433 ($ (-1 |t#1| |t#1|) $)) |noBranch|) (IF (|has| $ (-6 -4180)) (PROGN (-15 -3675 ((-107) (-1 (-107) |t#1|) $)) (-15 -2048 ((-107) (-1 (-107) |t#1|) $)) (-15 -3217 ((-703) (-1 (-107) |t#1|) $)) (-15 -1536 ((-583 |t#1|) $)) (-15 -2560 ((-583 |t#1|) $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -3217 ((-703) |t#1| $)) (-15 -2787 ((-107) |t#1| $))) |noBranch|)) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-1865 (($ $) 15)) (-1839 (($ $) 24)) (-1887 (($ $) 12)) (-1898 (($ $) 10)) (-1876 (($ $) 17)) (-1853 (($ $) 22)))
+(((-457 |#1|) (-10 -8 (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|))) (-458)) (T -457))
+NIL
+(-10 -8 (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)))
+((-1865 (($ $) 11)) (-1839 (($ $) 10)) (-1887 (($ $) 9)) (-1898 (($ $) 8)) (-1876 (($ $) 7)) (-1853 (($ $) 6)))
+(((-458) (-1184)) (T -458))
+((-1865 (*1 *1 *1) (-4 *1 (-458))) (-1839 (*1 *1 *1) (-4 *1 (-458))) (-1887 (*1 *1 *1) (-4 *1 (-458))) (-1898 (*1 *1 *1) (-4 *1 (-458))) (-1876 (*1 *1 *1) (-4 *1 (-458))) (-1853 (*1 *1 *1) (-4 *1 (-458))))
+(-13 (-10 -8 (-15 -1853 ($ $)) (-15 -1876 ($ $)) (-15 -1898 ($ $)) (-15 -1887 ($ $)) (-15 -1839 ($ $)) (-15 -1865 ($ $))))
+((-3755 (((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)) 42)))
+(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|)))) (-333) (-1130 |#1|) (-13 (-333) (-134) (-657 |#1| |#2|)) (-1130 |#3|)) (T -459))
+((-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1130 *7)))))
+(-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 |#2|) |#2|))))
+((-2750 (((-107) $ $) NIL)) (-2888 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3869 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-2814 (((-107) $) 36)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-3865 (((-107) $ $) 62)) (-3726 (((-583 (-556 $)) $) 46)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2302 (($ $ (-265 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-1649 (((-583 $) (-1069 $) (-1073)) NIL) (((-583 $) (-1069 $)) NIL) (((-583 $) (-874 $)) NIL)) (-3267 (($ (-1069 $) (-1073)) NIL) (($ (-1069 $)) NIL) (($ (-874 $)) NIL)) (-1772 (((-3 (-556 $) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL)) (-3189 (((-556 $) $) NIL) (((-517) $) NIL) (((-377 (-517)) $) 48)) (-2518 (($ $ $) NIL)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-377 (-517)))) (|:| |vec| (-1153 (-377 (-517))))) (-623 $) (-1153 $)) NIL) (((-623 (-377 (-517))) (-623 $)) NIL)) (-3225 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3374 (($ $) NIL) (($ (-583 $)) NIL)) (-4001 (((-583 (-109)) $) NIL)) (-3072 (((-109) (-109)) NIL)) (-3848 (((-107) $) 39)) (-1769 (((-107) $) NIL (|has| $ (-952 (-517))))) (-1787 (((-1026 (-517) (-556 $)) $) 34)) (-3824 (($ $ (-517)) NIL)) (-1506 (((-1069 $) (-1069 $) (-556 $)) 77) (((-1069 $) (-1069 $) (-583 (-556 $))) 53) (($ $ (-556 $)) 66) (($ $ (-583 (-556 $))) 67)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1607 (((-1069 $) (-556 $)) 64 (|has| $ (-961)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 $ $) (-556 $)) NIL)) (-1783 (((-3 (-556 $) "failed") $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-2343 (((-583 (-556 $)) $) NIL)) (-1851 (($ (-109) $) NIL) (($ (-109) (-583 $)) NIL)) (-1609 (((-107) $ (-109)) NIL) (((-107) $ (-1073)) NIL)) (-4118 (($ $) NIL)) (-1881 (((-703) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3832 (((-107) $ $) NIL) (((-107) $ (-1073)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL (|has| $ (-952 (-517))))) (-2051 (($ $ (-556 $) $) NIL) (($ $ (-583 (-556 $)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-1073)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-1073) (-1 $ (-583 $))) NIL) (($ $ (-1073) (-1 $ $)) NIL) (($ $ (-583 (-109)) (-583 (-1 $ $))) NIL) (($ $ (-583 (-109)) (-583 (-1 $ (-583 $)))) NIL) (($ $ (-109) (-1 $ (-583 $))) NIL) (($ $ (-109) (-1 $ $)) NIL)) (-3146 (((-703) $) NIL)) (-1449 (($ (-109) $) NIL) (($ (-109) $ $) NIL) (($ (-109) $ $ $) NIL) (($ (-109) $ $ $ $) NIL) (($ (-109) (-583 $)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1630 (($ $) NIL) (($ $ $) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) 33)) (-1800 (((-1026 (-517) (-556 $)) $) 17)) (-2135 (($ $) NIL (|has| $ (-961)))) (-3645 (((-349) $) 91) (((-199) $) 99) (((-153 (-349)) $) 107)) (-2256 (((-787) $) NIL) (($ (-556 $)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-1026 (-517) (-556 $))) 18)) (-2961 (((-703)) NIL)) (-4148 (($ $) NIL) (($ (-583 $)) NIL)) (-4074 (((-107) (-109)) 83)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-517)) NIL) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 9 T CONST)) (-2409 (($) 19 T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 21)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1667 (($ $ $) 41)) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-377 (-517))) NIL) (($ $ (-517)) 44) (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ $ $) 24) (($ (-517) $) NIL) (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-460) (-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -3865 ((-107) $ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))) (T -460))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) (-3225 (*1 *1 *1) (-5 *1 (-460))) (-3865 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) (-1506 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))))
+(-13 (-273) (-27) (-952 (-517)) (-952 (-377 (-517))) (-579 (-517)) (-937) (-579 (-377 (-517))) (-134) (-558 (-153 (-349))) (-207) (-10 -8 (-15 -2256 ($ (-1026 (-517) (-556 $)))) (-15 -1787 ((-1026 (-517) (-556 $)) $)) (-15 -1800 ((-1026 (-517) (-556 $)) $)) (-15 -3225 ($ $)) (-15 -3865 ((-107) $ $)) (-15 -1506 ((-1069 $) (-1069 $) (-556 $))) (-15 -1506 ((-1069 $) (-1069 $) (-583 (-556 $)))) (-15 -1506 ($ $ (-556 $))) (-15 -1506 ($ $ (-583 (-556 $))))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 25 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 22 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 21)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 14)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 12 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) 23 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) 10 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 13)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 24) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 9 (|has| $ (-6 -4180)))))
+(((-461 |#1| |#2|) (-19 |#1|) (-1108) (-517)) (T -461))
NIL
(-19 |#1|)
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) NIL)) (-2400 (($ $ (-501) (-459 |#1| |#3|)) NIL)) (-2480 (($ $ (-501) (-459 |#1| |#2|)) NIL)) (-2540 (($) NIL T CONST)) (-2358 (((-459 |#1| |#3|) $ (-501)) NIL)) (-2156 ((|#1| $ (-501) (-501) |#1|) NIL)) (-1905 ((|#1| $ (-501) (-501)) NIL)) (-2732 (((-578 |#1|) $) NIL)) (-1648 (((-701) $) NIL)) (-3634 (($ (-701) (-701) |#1|) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) (-501)) NIL) ((|#1| $ (-501) (-501) |#1|) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-2952 (((-459 |#1| |#2|) $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-460 |#1| |#2| |#3|) (-55 |#1| (-459 |#1| |#3|) (-459 |#1| |#2|)) (-1104) (-501) (-501)) (T -460))
-NIL
-(-55 |#1| (-459 |#1| |#3|) (-459 |#1| |#2|))
-((-1985 (((-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-701) (-701)) 27)) (-3328 (((-578 (-1064 |#1|)) |#1| (-701) (-701) (-701)) 34)) (-3716 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-578 |#3|) (-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-701)) 83)))
-(((-461 |#1| |#2| |#3|) (-10 -7 (-15 -3328 ((-578 (-1064 |#1|)) |#1| (-701) (-701) (-701))) (-15 -1985 ((-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-701) (-701))) (-15 -3716 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-578 |#3|) (-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-701)))) (-318) (-1125 |#1|) (-1125 |#2|)) (T -461))
-((-3716 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-2 (|:| -4119 (-621 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-621 *7))))) (-5 *5 (-701)) (-4 *8 (-1125 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-318)) (-5 *2 (-2 (|:| -4119 (-621 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-621 *7)))) (-5 *1 (-461 *6 *7 *8)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-4 *5 (-318)) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -4119 (-621 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-621 *6))))) (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-2 (|:| -4119 (-621 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-621 *6)))) (-4 *7 (-1125 *6)))) (-3328 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-701)) (-4 *3 (-318)) (-4 *5 (-1125 *3)) (-5 *2 (-578 (-1064 *3))) (-5 *1 (-461 *3 *5 *6)) (-4 *6 (-1125 *5)))))
-(-10 -7 (-15 -3328 ((-578 (-1064 |#1|)) |#1| (-701) (-701) (-701))) (-15 -1985 ((-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-701) (-701))) (-15 -3716 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) (-578 |#3|) (-578 (-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) (-701))))
-((-1335 (((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|)))) 60)) (-1307 ((|#1| (-621 |#1|) |#1| (-701)) 25)) (-2575 (((-701) (-701) (-701)) 30)) (-3753 (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 42)) (-3066 (((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|) 50) (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 47)) (-4026 ((|#1| (-621 |#1|) (-621 |#1|) |#1| (-501)) 29)) (-1651 ((|#1| (-621 |#1|)) 18)))
-(((-462 |#1| |#2| |#3|) (-10 -7 (-15 -1651 (|#1| (-621 |#1|))) (-15 -1307 (|#1| (-621 |#1|) |#1| (-701))) (-15 -4026 (|#1| (-621 |#1|) (-621 |#1|) |#1| (-501))) (-15 -2575 ((-701) (-701) (-701))) (-15 -3066 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3066 ((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|)) (-15 -3753 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -1335 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|)))))) (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $)))) (-1125 |#1|) (-378 |#1| |#2|)) (T -462))
-((-1335 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-3753 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-3066 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-3066 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-2575 (*1 *2 *2 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) (-4026 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-501)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *5 (-1125 *2)) (-5 *1 (-462 *2 *5 *6)) (-4 *6 (-378 *2 *5)))) (-1307 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-701)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *5 (-1125 *2)) (-5 *1 (-462 *2 *5 *6)) (-4 *6 (-378 *2 *5)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *4 (-1125 *2)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-5 *1 (-462 *2 *4 *5)) (-4 *5 (-378 *2 *4)))))
-(-10 -7 (-15 -1651 (|#1| (-621 |#1|))) (-15 -1307 (|#1| (-621 |#1|) |#1| (-701))) (-15 -4026 (|#1| (-621 |#1|) (-621 |#1|) |#1| (-501))) (-15 -2575 ((-701) (-701) (-701))) (-15 -3066 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3066 ((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|)) (-15 -3753 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -1335 ((-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))) (-2 (|:| -4119 (-621 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-621 |#1|))))))
-((-3736 (((-107) $ $) NIL)) (-2308 (($ $) NIL)) (-1950 (($ $ $) 36)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| (-107) (-777))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-107) (-777)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4168)))) (-2861 (($ $) NIL (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-107) $ (-1116 (-501)) (-107)) NIL (|has| $ (-6 -4168))) (((-107) $ (-501) (-107)) 37 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-1526 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-3547 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-2156 (((-107) $ (-501) (-107)) NIL (|has| $ (-6 -4168)))) (-1905 (((-107) $ (-501)) NIL)) (-1934 (((-501) (-107) $ (-501)) NIL (|has| (-107) (-1001))) (((-501) (-107) $) NIL (|has| (-107) (-1001))) (((-501) (-1 (-107) (-107)) $) NIL)) (-2732 (((-578 (-107)) $) NIL (|has| $ (-6 -4167)))) (-4057 (($ $ $) 34)) (-3031 (($ $) NIL)) (-3134 (($ $ $) NIL)) (-3634 (($ (-701) (-107)) 24)) (-1969 (($ $ $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 8 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL)) (-3216 (($ $ $) NIL (|has| (-107) (-777))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-3380 (((-578 (-107)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL)) (-2519 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-107) (-107) (-107)) $ $) 31) (($ (-1 (-107) (-107)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ (-107) $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-107) $) NIL (|has| (-501) (-777)))) (-2520 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-3084 (($ $ (-107)) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-107)) (-578 (-107))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-262 (-107))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001)))) (($ $ (-578 (-262 (-107)))) NIL (-12 (|has| (-107) (-278 (-107))) (|has| (-107) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001))))) (-4137 (((-578 (-107)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 25)) (-2007 (($ $ (-1116 (-501))) NIL) (((-107) $ (-501)) 19) (((-107) $ (-501) (-107)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-3713 (((-701) (-107) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-107) (-1001)))) (((-701) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) 26)) (-1248 (((-490) $) NIL (|has| (-107) (-556 (-490))))) (-3699 (($ (-578 (-107))) NIL)) (-3934 (($ (-578 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-3691 (((-786) $) 23)) (-1200 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4167)))) (-1280 (($ $ $) 32)) (-3948 (($ $) NIL)) (-3099 (($ $ $) NIL)) (-3038 (($ $ $) 40)) (-3045 (($ $) 38)) (-3032 (($ $ $) 39)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 27)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 28)) (-3092 (($ $ $) NIL)) (-3581 (((-701) $) 10 (|has| $ (-6 -4167)))))
-(((-463 |#1|) (-13 (-118) (-10 -8 (-15 -3045 ($ $)) (-15 -3038 ($ $ $)) (-15 -3032 ($ $ $)))) (-501)) (T -463))
-((-3045 (*1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) (-3038 (*1 *1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) (-3032 (*1 *1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))))
-(-13 (-118) (-10 -8 (-15 -3045 ($ $)) (-15 -3038 ($ $ $)) (-15 -3032 ($ $ $))))
-((-3370 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1064 |#4|)) 34)) (-3412 (((-1064 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1064 |#4|)) 21)) (-2052 (((-3 (-621 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-621 (-1064 |#4|))) 45)) (-1863 (((-1064 (-1064 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
-(((-464 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3412 (|#2| (-1 |#1| |#4|) (-1064 |#4|))) (-15 -3412 ((-1064 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3370 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1064 |#4|))) (-15 -2052 ((-3 (-621 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-621 (-1064 |#4|)))) (-15 -1863 ((-1064 (-1064 |#4|)) (-1 |#4| |#1|) |#3|))) (-959) (-1125 |#1|) (-1125 |#2|) (-959)) (T -464))
-((-1863 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *6 (-1125 *5)) (-5 *2 (-1064 (-1064 *7))) (-5 *1 (-464 *5 *6 *4 *7)) (-4 *4 (-1125 *6)))) (-2052 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-621 (-1064 *8))) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-1125 *5)) (-5 *2 (-621 *6)) (-5 *1 (-464 *5 *6 *7 *8)) (-4 *7 (-1125 *6)))) (-3370 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1064 *7)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-464 *5 *2 *6 *7)) (-4 *6 (-1125 *2)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *4 (-1125 *5)) (-5 *2 (-1064 *7)) (-5 *1 (-464 *5 *4 *6 *7)) (-4 *6 (-1125 *4)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1064 *7)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-464 *5 *2 *6 *7)) (-4 *6 (-1125 *2)))))
-(-10 -7 (-15 -3412 (|#2| (-1 |#1| |#4|) (-1064 |#4|))) (-15 -3412 ((-1064 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3370 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1064 |#4|))) (-15 -2052 ((-3 (-621 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-621 (-1064 |#4|)))) (-15 -1863 ((-1064 (-1064 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-3736 (((-107) $ $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3512 (((-1154) $) 18)) (-2007 (((-1053) $ (-1070)) 22)) (-2125 (((-1154) $) 14)) (-3691 (((-786) $) 20) (($ (-1053)) 19)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 8)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 7)))
-(((-465) (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $)) (-15 -3691 ($ (-1053)))))) (T -465))
-((-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1053)) (-5 *1 (-465)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-465)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-465)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-465)))))
-(-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $)) (-15 -3691 ($ (-1053)))))
-((-3473 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1644 ((|#1| |#4|) 10)) (-4132 ((|#3| |#4|) 17)))
-(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1644 (|#1| |#4|)) (-15 -4132 (|#3| |#4|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-508) (-906 |#1|) (-340 |#1|) (-340 |#2|)) (T -466))
-((-3473 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-466 *4 *5 *6 *3)) (-4 *6 (-340 *4)) (-4 *3 (-340 *5)))) (-4132 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-4 *2 (-340 *4)) (-5 *1 (-466 *4 *5 *2 *3)) (-4 *3 (-340 *5)))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-466 *2 *4 *5 *3)) (-4 *5 (-340 *2)) (-4 *3 (-340 *4)))))
-(-10 -7 (-15 -1644 (|#1| |#4|)) (-15 -4132 (|#3| |#4|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-3736 (((-107) $ $) NIL)) (-3681 (((-107) $ (-578 |#3|)) 101) (((-107) $) 102)) (-3292 (((-107) $) 144)) (-3476 (($ $ |#4|) 93) (($ $ |#4| (-578 |#3|)) 97)) (-3520 (((-1060 (-578 (-866 |#1|)) (-578 (-262 (-866 |#1|)))) (-578 |#4|)) 137 (|has| |#3| (-556 (-1070))))) (-3236 (($ $ $) 87) (($ $ |#4|) 85)) (-1355 (((-107) $) 143)) (-2483 (($ $) 105)) (-3460 (((-1053) $) NIL)) (-3420 (($ $ $) 79) (($ (-578 $)) 81)) (-2304 (((-107) |#4| $) 104)) (-2409 (((-107) $ $) 68)) (-3463 (($ (-578 |#4|)) 86)) (-3708 (((-1018) $) NIL)) (-2397 (($ (-578 |#4|)) 141)) (-3928 (((-107) $) 142)) (-3727 (($ $) 70)) (-3983 (((-578 |#4|) $) 55)) (-2119 (((-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|)) NIL)) (-4031 (((-107) |#4| $) 73)) (-3613 (((-501) $ (-578 |#3|)) 106) (((-501) $) 107)) (-3691 (((-786) $) 140) (($ (-578 |#4|)) 82)) (-3025 (($ (-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $))) NIL)) (-3751 (((-107) $ $) 69)) (-3790 (($ $ $) 89)) (** (($ $ (-701)) 92)) (* (($ $ $) 91)))
-(((-467 |#1| |#2| |#3| |#4|) (-13 (-1001) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-701))) (-15 -3790 ($ $ $)) (-15 -1355 ((-107) $)) (-15 -3292 ((-107) $)) (-15 -4031 ((-107) |#4| $)) (-15 -2409 ((-107) $ $)) (-15 -2304 ((-107) |#4| $)) (-15 -3681 ((-107) $ (-578 |#3|))) (-15 -3681 ((-107) $)) (-15 -3420 ($ $ $)) (-15 -3420 ($ (-578 $))) (-15 -3236 ($ $ $)) (-15 -3236 ($ $ |#4|)) (-15 -3727 ($ $)) (-15 -2119 ((-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|))) (-15 -3025 ($ (-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)))) (-15 -3613 ((-501) $ (-578 |#3|))) (-15 -3613 ((-501) $)) (-15 -2483 ($ $)) (-15 -3463 ($ (-578 |#4|))) (-15 -2397 ($ (-578 |#4|))) (-15 -3928 ((-107) $)) (-15 -3983 ((-578 |#4|) $)) (-15 -3691 ($ (-578 |#4|))) (-15 -3476 ($ $ |#4|)) (-15 -3476 ($ $ |#4| (-578 |#3|))) (IF (|has| |#3| (-556 (-1070))) (-15 -3520 ((-1060 (-578 (-866 |#1|)) (-578 (-262 (-866 |#1|)))) (-578 |#4|))) |noBranch|))) (-331) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -467))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-1355 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3292 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-4031 (*1 *2 *3 *1) (-12 (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-2409 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-2304 (*1 *2 *3 *1) (-12 (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))) (-3681 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) (-3681 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3420 (*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-3420 (*1 *1 *2) (-12 (-5 *2 (-578 (-467 *3 *4 *5 *6))) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3236 (*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-3236 (*1 *1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))) (-3727 (*1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-2119 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-2 (|:| |mval| (-621 *4)) (|:| |invmval| (-621 *4)) (|:| |genIdeal| (-467 *4 *5 *6 *7)))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) (-3025 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-621 *3)) (|:| |invmval| (-621 *3)) (|:| |genIdeal| (-467 *3 *4 *5 *6)))) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3613 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-501)) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) (-3613 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-501)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-2483 (*1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-3463 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))) (-2397 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))) (-3928 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3983 (*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *6)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))) (-3476 (*1 *1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))) (-3476 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *1 (-467 *4 *5 *6 *2)) (-4 *2 (-870 *4 *5 *6)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *6 (-556 (-1070))) (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1060 (-578 (-866 *4)) (-578 (-262 (-866 *4))))) (-5 *1 (-467 *4 *5 *6 *7)))))
-(-13 (-1001) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-701))) (-15 -3790 ($ $ $)) (-15 -1355 ((-107) $)) (-15 -3292 ((-107) $)) (-15 -4031 ((-107) |#4| $)) (-15 -2409 ((-107) $ $)) (-15 -2304 ((-107) |#4| $)) (-15 -3681 ((-107) $ (-578 |#3|))) (-15 -3681 ((-107) $)) (-15 -3420 ($ $ $)) (-15 -3420 ($ (-578 $))) (-15 -3236 ($ $ $)) (-15 -3236 ($ $ |#4|)) (-15 -3727 ($ $)) (-15 -2119 ((-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)) $ (-578 |#3|))) (-15 -3025 ($ (-2 (|:| |mval| (-621 |#1|)) (|:| |invmval| (-621 |#1|)) (|:| |genIdeal| $)))) (-15 -3613 ((-501) $ (-578 |#3|))) (-15 -3613 ((-501) $)) (-15 -2483 ($ $)) (-15 -3463 ($ (-578 |#4|))) (-15 -2397 ($ (-578 |#4|))) (-15 -3928 ((-107) $)) (-15 -3983 ((-578 |#4|) $)) (-15 -3691 ($ (-578 |#4|))) (-15 -3476 ($ $ |#4|)) (-15 -3476 ($ $ |#4| (-578 |#3|))) (IF (|has| |#3| (-556 (-1070))) (-15 -3520 ((-1060 (-578 (-866 |#1|)) (-578 (-262 (-866 |#1|)))) (-578 |#4|))) |noBranch|)))
-((-1982 (((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) 144)) (-2550 (((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) 145)) (-2893 (((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) 103)) (-1628 (((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) NIL)) (-2387 (((-578 (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) 147)) (-3591 (((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-578 (-787 |#1|))) 159)))
-(((-468 |#1| |#2|) (-10 -7 (-15 -1982 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2550 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -1628 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2893 ((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2387 ((-578 (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -3591 ((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-578 (-787 |#1|))))) (-578 (-1070)) (-701)) (T -468))
-((-3591 (*1 *2 *2 *3) (-12 (-5 *2 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-5 *3 (-578 (-787 *4))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *1 (-468 *4 *5)))) (-2387 (*1 *2 *3) (-12 (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-578 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501)))))) (-5 *1 (-468 *4 *5)) (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))))) (-2893 (*1 *2 *2) (-12 (-5 *2 (-467 (-375 (-501)) (-212 *4 (-701)) (-787 *3) (-220 *3 (-375 (-501))))) (-14 *3 (-578 (-1070))) (-14 *4 (-701)) (-5 *1 (-468 *3 *4)))) (-1628 (*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5)))))
-(-10 -7 (-15 -1982 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2550 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -1628 ((-107) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2893 ((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -2387 ((-578 (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501))))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))))) (-15 -3591 ((-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-467 (-375 (-501)) (-212 |#2| (-701)) (-787 |#1|) (-220 |#1| (-375 (-501)))) (-578 (-787 |#1|)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1850 (($) 12 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) 11) (($ $ $) 23)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 18)))
-(((-469 |#1| |#2|) (-13 (-21) (-471 |#1| |#2|)) (-21) (-777)) (T -469))
-NIL
-(-13 (-21) (-471 |#1| |#2|))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 12)) (-2540 (($) NIL T CONST)) (-3858 (($ $) 26)) (-3787 (($ |#1| |#2|) 23)) (-1212 (($ (-1 |#1| |#1|) $) 25)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) 27)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1850 (($) 10 T CONST)) (-3751 (((-107) $ $) NIL)) (-3790 (($ $ $) 17)) (* (($ (-839) $) NIL) (($ (-701) $) 22)))
-(((-470 |#1| |#2|) (-13 (-23) (-471 |#1| |#2|)) (-23) (-777)) (T -470))
-NIL
-(-13 (-23) (-471 |#1| |#2|))
-((-3736 (((-107) $ $) 7)) (-3858 (($ $) 13)) (-3787 (($ |#1| |#2|) 16)) (-1212 (($ (-1 |#1| |#1|) $) 17)) (-2668 ((|#2| $) 14)) (-3850 ((|#1| $) 15)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)))
-(((-471 |#1| |#2|) (-1180) (-1001) (-777)) (T -471))
-((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-471 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-777)))) (-3787 (*1 *1 *2 *3) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-777)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1001)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-471 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-777)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-777)))))
-(-13 (-1001) (-10 -8 (-15 -1212 ($ (-1 |t#1| |t#1|) $)) (-15 -3787 ($ |t#1| |t#2|)) (-15 -3850 (|t#1| $)) (-15 -2668 (|t#2| $)) (-15 -3858 ($ $))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3858 (($ $) 24)) (-3787 (($ |#1| |#2|) 21)) (-1212 (($ (-1 |#1| |#1|) $) 23)) (-2668 ((|#2| $) 26)) (-3850 ((|#1| $) 25)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 20)) (-3751 (((-107) $ $) 13)))
-(((-472 |#1| |#2|) (-471 |#1| |#2|) (-1001) (-777)) (T -472))
-NIL
-(-471 |#1| |#2|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1850 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 13)) (-3790 (($ $ $) NIL)) (* (($ (-701) $) NIL) (($ (-839) $) NIL)))
-(((-473 |#1| |#2|) (-13 (-722) (-471 |#1| |#2|)) (-722) (-777)) (T -473))
-NIL
-(-13 (-722) (-471 |#1| |#2|))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3405 (($ $ $) 16)) (-3177 (((-3 $ "failed") $ $) 13)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2668 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL)) (-1850 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-701) $) NIL) (($ (-839) $) NIL)))
-(((-474 |#1| |#2|) (-13 (-723) (-471 |#1| |#2|)) (-723) (-777)) (T -474))
-NIL
-(-13 (-723) (-471 |#1| |#2|))
-((-3195 (($ $ (-578 |#2|) (-578 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-475 |#1| |#2| |#3|) (-10 -8 (-15 -3195 (|#1| |#1| |#2| |#3|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#3|)))) (-476 |#2| |#3|) (-1001) (-1104)) (T -475))
-NIL
-(-10 -8 (-15 -3195 (|#1| |#1| |#2| |#3|)) (-15 -3195 (|#1| |#1| (-578 |#2|) (-578 |#3|))))
-((-3195 (($ $ (-578 |#1|) (-578 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-476 |#1| |#2|) (-1180) (-1001) (-1104)) (T -476))
-((-3195 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *5)) (-4 *1 (-476 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1104)))) (-3195 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1104)))))
-(-13 (-10 -8 (-15 -3195 ($ $ |t#1| |t#2|)) (-15 -3195 ($ $ (-578 |t#1|) (-578 |t#2|)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 16)) (-1395 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $) 18)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-2153 ((|#1| $ (-501)) 23)) (-3301 ((|#2| $ (-501)) 21)) (-2451 (($ (-1 |#1| |#1|) $) 46)) (-2210 (($ (-1 |#2| |#2|) $) 43)) (-3460 (((-1053) $) NIL)) (-1327 (($ $ $) 53 (|has| |#2| (-722)))) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 42) (($ |#1|) NIL)) (-2495 ((|#2| |#1| $) 49)) (-1850 (($) 11 T CONST)) (-3751 (((-107) $ $) 29)) (-3790 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-839) $) NIL) (($ (-701) $) 36) (($ |#2| |#1|) 31)))
-(((-477 |#1| |#2| |#3|) (-291 |#1| |#2|) (-1001) (-123) |#2|) (T -477))
-NIL
-(-291 |#1| |#2|)
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-2298 (((-107) (-107)) 24)) (-3754 ((|#1| $ (-501) |#1|) 27 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) 51)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2921 (($ $) 54 (|has| |#1| (-1001)))) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) 43)) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2489 (($ $ (-501)) 13)) (-2705 (((-701) $) 11)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 22)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 20 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) 19 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4114 (($ $ $ (-501)) 50) (($ |#1| $ (-501)) 36)) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1599 (($ (-578 |#1|)) 28)) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) 18 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 39)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 14)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) 32) (($ $ (-1116 (-501))) NIL)) (-1386 (($ $ (-1116 (-501))) 49) (($ $ (-501)) 44)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) 40 (|has| $ (-6 -4168)))) (-3764 (($ $) 31)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-1186 (($ $ $) 41) (($ $ |#1|) 38)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 15 (|has| $ (-6 -4167)))))
-(((-478 |#1| |#2|) (-13 (-19 |#1|) (-252 |#1|) (-10 -8 (-15 -1599 ($ (-578 |#1|))) (-15 -2705 ((-701) $)) (-15 -2489 ($ $ (-501))) (-15 -2298 ((-107) (-107))))) (-1104) (-501)) (T -478))
-((-1599 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-478 *3 *4)) (-14 *4 (-501)))) (-2705 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-501)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 *2))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-501)))))
-(-13 (-19 |#1|) (-252 |#1|) (-10 -8 (-15 -1599 ($ (-578 |#1|))) (-15 -2705 ((-701) $)) (-15 -2489 ($ $ (-501))) (-15 -2298 ((-107) (-107)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (((-528 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-528 |#1|) (-336)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-528 |#1|) (-336)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL (|has| (-528 |#1|) (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-528 |#1|) "failed") $) NIL)) (-3490 (((-528 |#1|) $) NIL)) (-3142 (($ (-1148 (-528 |#1|))) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-528 |#1|) (-336)))) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-528 |#1|) (-336)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL (|has| (-528 |#1|) (-336)))) (-3521 (((-107) $) NIL (|has| (-528 |#1|) (-336)))) (-3067 (($ $ (-701)) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336)))) (($ $) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336))))) (-1628 (((-107) $) NIL)) (-3169 (((-839) $) NIL (|has| (-528 |#1|) (-336))) (((-762 (-839)) $) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336))))) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| (-528 |#1|) (-336)))) (-1928 (((-107) $) NIL (|has| (-528 |#1|) (-336)))) (-2626 (((-528 |#1|) $) NIL) (($ $ (-839)) NIL (|has| (-528 |#1|) (-336)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-528 |#1|) (-336)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 (-528 |#1|)) $) NIL) (((-1064 $) $ (-839)) NIL (|has| (-528 |#1|) (-336)))) (-3104 (((-839) $) NIL (|has| (-528 |#1|) (-336)))) (-3721 (((-1064 (-528 |#1|)) $) NIL (|has| (-528 |#1|) (-336)))) (-1806 (((-1064 (-528 |#1|)) $) NIL (|has| (-528 |#1|) (-336))) (((-3 (-1064 (-528 |#1|)) "failed") $ $) NIL (|has| (-528 |#1|) (-336)))) (-2468 (($ $ (-1064 (-528 |#1|))) NIL (|has| (-528 |#1|) (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-528 |#1|) (-336)) CONST)) (-3506 (($ (-839)) NIL (|has| (-528 |#1|) (-336)))) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL (|has| (-528 |#1|) (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-528 |#1|) (-336)))) (-3739 (((-373 $) $) NIL)) (-2906 (((-762 (-839))) NIL) (((-839)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-701) $) NIL (|has| (-528 |#1|) (-336))) (((-3 (-701) "failed") $ $) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336))))) (-3613 (((-125)) NIL)) (-2596 (($ $) NIL (|has| (-528 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-528 |#1|) (-336)))) (-1201 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-2264 (((-1064 (-528 |#1|))) NIL)) (-1349 (($) NIL (|has| (-528 |#1|) (-336)))) (-3481 (($) NIL (|has| (-528 |#1|) (-336)))) (-2085 (((-1148 (-528 |#1|)) $) NIL) (((-621 (-528 |#1|)) (-1148 $)) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-528 |#1|) (-336)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-528 |#1|)) NIL)) (-1274 (($ $) NIL (|has| (-528 |#1|) (-336))) (((-3 $ "failed") $) NIL (-1405 (|has| (-528 |#1|) (-132)) (|has| (-528 |#1|) (-336))))) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL) (((-1148 $) (-839)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $) NIL (|has| (-528 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-528 |#1|) (-336)))) (-3584 (($ $) NIL (|has| (-528 |#1|) (-336))) (($ $ (-701)) NIL (|has| (-528 |#1|) (-336)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL) (($ $ (-528 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-528 |#1|)) NIL) (($ (-528 |#1|) $) NIL)))
-(((-479 |#1| |#2|) (-297 (-528 |#1|)) (-839) (-839)) (T -479))
-NIL
-(-297 (-528 |#1|))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) 33)) (-2400 (($ $ (-501) |#4|) NIL)) (-2480 (($ $ (-501) |#5|) NIL)) (-2540 (($) NIL T CONST)) (-2358 ((|#4| $ (-501)) NIL)) (-2156 ((|#1| $ (-501) (-501) |#1|) 32)) (-1905 ((|#1| $ (-501) (-501)) 30)) (-2732 (((-578 |#1|) $) NIL)) (-1648 (((-701) $) 26)) (-3634 (($ (-701) (-701) |#1|) 23)) (-3248 (((-701) $) 28)) (-3379 (((-107) $ (-701)) NIL)) (-1567 (((-501) $) 24)) (-2734 (((-501) $) 25)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) 27)) (-3491 (((-501) $) 29)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) 36 (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 14)) (-3122 (($) 15)) (-2007 ((|#1| $ (-501) (-501)) 31) ((|#1| $ (-501) (-501) |#1|) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-2952 ((|#5| $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-480 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1104) (-501) (-501) (-340 |#1|) (-340 |#1|)) (T -480))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL)) (-4087 (($ $ (-517) (-461 |#1| |#3|)) NIL)) (-3739 (($ $ (-517) (-461 |#1| |#2|)) NIL)) (-3092 (($) NIL T CONST)) (-1939 (((-461 |#1| |#3|) $ (-517)) NIL)) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-461 |#1| |#2|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-462 |#1| |#2| |#3|) (-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|)) (-1108) (-517) (-517)) (T -462))
+NIL
+(-55 |#1| (-461 |#1| |#3|) (-461 |#1| |#2|))
+((-1631 (((-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703)) 27)) (-3176 (((-583 (-1069 |#1|)) |#1| (-703) (-703) (-703)) 34)) (-1659 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)) 83)))
+(((-463 |#1| |#2| |#3|) (-10 -7 (-15 -3176 ((-583 (-1069 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1631 ((-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -1659 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703)))) (-319) (-1130 |#1|) (-1130 |#2|)) (T -463))
+((-1659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1130 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) (-1631 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1130 *6)))) (-3176 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1130 *3)) (-5 *2 (-583 (-1069 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1130 *5)))))
+(-10 -7 (-15 -3176 ((-583 (-1069 |#1|)) |#1| (-703) (-703) (-703))) (-15 -1631 ((-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-703) (-703))) (-15 -1659 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) (-583 |#3|) (-583 (-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) (-703))))
+((-2293 (((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))) 60)) (-1358 ((|#1| (-623 |#1|) |#1| (-703)) 25)) (-2240 (((-703) (-703) (-703)) 30)) (-1954 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 42)) (-2368 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 50) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 47)) (-2184 ((|#1| (-623 |#1|) (-623 |#1|) |#1| (-517)) 29)) (-2671 ((|#1| (-623 |#1|)) 18)))
+(((-464 |#1| |#2| |#3|) (-10 -7 (-15 -2671 (|#1| (-623 |#1|))) (-15 -1358 (|#1| (-623 |#1|) |#1| (-703))) (-15 -2184 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2240 ((-703) (-703) (-703))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1954 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2293 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|)))))) (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $)))) (-1130 |#1|) (-379 |#1| |#2|)) (T -464))
+((-2293 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-1954 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2368 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2368 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2240 (*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2184 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-1358 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))) (-2671 (*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1130 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))))
+(-10 -7 (-15 -2671 (|#1| (-623 |#1|))) (-15 -1358 (|#1| (-623 |#1|) |#1| (-703))) (-15 -2184 (|#1| (-623 |#1|) (-623 |#1|) |#1| (-517))) (-15 -2240 ((-703) (-703) (-703))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2368 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -1954 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -2293 ((-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))) (-2 (|:| -1753 (-623 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-623 |#1|))))))
+((-2750 (((-107) $ $) NIL)) (-1460 (($ $) NIL)) (-2775 (($ $ $) 35)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| (-107) (-779))) (((-107) (-1 (-107) (-107) (-107)) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-107) (-779)))) (($ (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-107) $ (-1121 (-517)) (-107)) NIL (|has| $ (-6 -4181))) (((-107) $ (-517) (-107)) 36 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-2052 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (($ (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3225 (((-107) (-1 (-107) (-107) (-107)) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107)) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-107) (-107)) $ (-107) (-107)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1445 (((-107) $ (-517) (-107)) NIL (|has| $ (-6 -4181)))) (-1377 (((-107) $ (-517)) NIL)) (-2607 (((-517) (-107) $ (-517)) NIL (|has| (-107) (-1003))) (((-517) (-107) $) NIL (|has| (-107) (-1003))) (((-517) (-1 (-107) (-107)) $) NIL)) (-1536 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-4025 (($ $ $) 33)) (-2630 (($ $) NIL)) (-1888 (($ $ $) NIL)) (-3462 (($ (-703) (-107)) 23)) (-1514 (($ $ $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 8 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL)) (-3237 (($ $ $) NIL (|has| (-107) (-779))) (($ (-1 (-107) (-107) (-107)) $ $) NIL)) (-2560 (((-583 (-107)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL)) (-1433 (($ (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-107) (-107) (-107)) $ $) 30) (($ (-1 (-107) (-107)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ (-107) $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-107) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-107) "failed") (-1 (-107) (-107)) $) NIL)) (-2565 (($ $ (-107)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-107)) (-583 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-107) (-107)) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-265 (-107))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003)))) (($ $ (-583 (-265 (-107)))) NIL (-12 (|has| (-107) (-280 (-107))) (|has| (-107) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003))))) (-1941 (((-583 (-107)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 24)) (-1449 (($ $ (-1121 (-517))) NIL) (((-107) $ (-517)) 18) (((-107) $ (-517) (-107)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3217 (((-703) (-107) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-107) (-1003)))) (((-703) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) 25)) (-3645 (((-493) $) NIL (|has| (-107) (-558 (-493))))) (-2276 (($ (-583 (-107))) NIL)) (-2452 (($ (-583 $)) NIL) (($ $ $) NIL) (($ (-107) $) NIL) (($ $ (-107)) NIL)) (-2256 (((-787) $) 22)) (-3675 (((-107) (-1 (-107) (-107)) $) NIL (|has| $ (-6 -4180)))) (-4035 (($ $ $) 31)) (-2207 (($ $) NIL)) (-2391 (($ $ $) NIL)) (-3555 (($ $ $) 39)) (-3563 (($ $) 37)) (-3545 (($ $ $) 38)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 26)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 27)) (-2382 (($ $ $) NIL)) (-2296 (((-703) $) 10 (|has| $ (-6 -4180)))))
+(((-465 |#1|) (-13 (-118) (-10 -8 (-15 -3563 ($ $)) (-15 -3555 ($ $ $)) (-15 -3545 ($ $ $)))) (-517)) (T -465))
+((-3563 (*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3555 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) (-3545 (*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))))
+(-13 (-118) (-10 -8 (-15 -3563 ($ $)) (-15 -3555 ($ $ $)) (-15 -3545 ($ $ $))))
+((-2449 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1069 |#4|)) 34)) (-1718 (((-1069 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1069 |#4|)) 21)) (-3863 (((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1069 |#4|))) 45)) (-3138 (((-1069 (-1069 |#4|)) (-1 |#4| |#1|) |#3|) 54)))
+(((-466 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1718 (|#2| (-1 |#1| |#4|) (-1069 |#4|))) (-15 -1718 ((-1069 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2449 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1069 |#4|))) (-15 -3863 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1069 |#4|)))) (-15 -3138 ((-1069 (-1069 |#4|)) (-1 |#4| |#1|) |#3|))) (-961) (-1130 |#1|) (-1130 |#2|) (-961)) (T -466))
+((-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1130 *6)))) (-3863 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1069 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1130 *6)))) (-2449 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1130 *5)) (-5 *2 (-1069 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1130 *4)))) (-1718 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))))
+(-10 -7 (-15 -1718 (|#2| (-1 |#1| |#4|) (-1069 |#4|))) (-15 -1718 ((-1069 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2449 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1069 |#4|))) (-15 -3863 ((-3 (-623 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-623 (-1069 |#4|)))) (-15 -3138 ((-1069 (-1069 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3307 (((-1158) $) 18)) (-1449 (((-1056) $ (-1073)) 22)) (-1242 (((-1158) $) 14)) (-2256 (((-787) $) 20) (($ (-1056)) 19)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 8)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 7)))
+(((-467) (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -2256 ($ (-1056)))))) (T -467))
+((-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1056)) (-5 *1 (-467)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-467)))))
+(-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $)) (-15 -2256 ($ (-1056)))))
+((-4112 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3484 ((|#1| |#4|) 10)) (-1897 ((|#3| |#4|) 17)))
+(((-468 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3484 (|#1| |#4|)) (-15 -1897 (|#3| |#4|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-509) (-909 |#1|) (-343 |#1|) (-343 |#2|)) (T -468))
+((-4112 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) (-1897 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))))
+(-10 -7 (-15 -3484 (|#1| |#4|)) (-15 -1897 (|#3| |#4|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2750 (((-107) $ $) NIL)) (-2591 (((-107) $ (-583 |#3|)) 101) (((-107) $) 102)) (-2814 (((-107) $) 144)) (-4145 (($ $ |#4|) 93) (($ $ |#4| (-583 |#3|)) 97)) (-3382 (((-1063 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|)) 137 (|has| |#3| (-558 (-1073))))) (-3425 (($ $ $) 87) (($ $ |#4|) 85)) (-3848 (((-107) $) 143)) (-3769 (($ $) 105)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 79) (($ (-583 $)) 81)) (-2549 (((-107) |#4| $) 104)) (-1204 (((-107) $ $) 68)) (-4014 (($ (-583 |#4|)) 86)) (-3206 (((-1021) $) NIL)) (-4060 (($ (-583 |#4|)) 141)) (-2745 (((-107) $) 142)) (-1759 (($ $) 70)) (-3079 (((-583 |#4|) $) 55)) (-1419 (((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|)) NIL)) (-2224 (((-107) |#4| $) 73)) (-3141 (((-517) $ (-583 |#3|)) 106) (((-517) $) 107)) (-2256 (((-787) $) 140) (($ (-583 |#4|)) 82)) (-2058 (($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $))) NIL)) (-1547 (((-107) $ $) 69)) (-1642 (($ $ $) 89)) (** (($ $ (-703)) 92)) (* (($ $ $) 91)))
+(((-469 |#1| |#2| |#3| |#4|) (-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1642 ($ $ $)) (-15 -3848 ((-107) $)) (-15 -2814 ((-107) $)) (-15 -2224 ((-107) |#4| $)) (-15 -1204 ((-107) $ $)) (-15 -2549 ((-107) |#4| $)) (-15 -2591 ((-107) $ (-583 |#3|))) (-15 -2591 ((-107) $)) (-15 -1812 ($ $ $)) (-15 -1812 ($ (-583 $))) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ |#4|)) (-15 -1759 ($ $)) (-15 -1419 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -2058 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -3141 ((-517) $ (-583 |#3|))) (-15 -3141 ((-517) $)) (-15 -3769 ($ $)) (-15 -4014 ($ (-583 |#4|))) (-15 -4060 ($ (-583 |#4|))) (-15 -2745 ((-107) $)) (-15 -3079 ((-583 |#4|) $)) (-15 -2256 ($ (-583 |#4|))) (-15 -4145 ($ $ |#4|)) (-15 -4145 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1073))) (-15 -3382 ((-1063 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |noBranch|))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -469))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3848 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2814 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2224 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-1204 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2549 (*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))) (-2591 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2591 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1812 (*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3425 (*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3425 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-1759 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-1419 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-2058 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) (-3141 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3769 (*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-4060 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-2745 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-3079 (*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) (-4145 (*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) (-3382 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1073))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1063 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
+(-13 (-1003) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 -1642 ($ $ $)) (-15 -3848 ((-107) $)) (-15 -2814 ((-107) $)) (-15 -2224 ((-107) |#4| $)) (-15 -1204 ((-107) $ $)) (-15 -2549 ((-107) |#4| $)) (-15 -2591 ((-107) $ (-583 |#3|))) (-15 -2591 ((-107) $)) (-15 -1812 ($ $ $)) (-15 -1812 ($ (-583 $))) (-15 -3425 ($ $ $)) (-15 -3425 ($ $ |#4|)) (-15 -1759 ($ $)) (-15 -1419 ((-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)) $ (-583 |#3|))) (-15 -2058 ($ (-2 (|:| |mval| (-623 |#1|)) (|:| |invmval| (-623 |#1|)) (|:| |genIdeal| $)))) (-15 -3141 ((-517) $ (-583 |#3|))) (-15 -3141 ((-517) $)) (-15 -3769 ($ $)) (-15 -4014 ($ (-583 |#4|))) (-15 -4060 ($ (-583 |#4|))) (-15 -2745 ((-107) $)) (-15 -3079 ((-583 |#4|) $)) (-15 -2256 ($ (-583 |#4|))) (-15 -4145 ($ $ |#4|)) (-15 -4145 ($ $ |#4| (-583 |#3|))) (IF (|has| |#3| (-558 (-1073))) (-15 -3382 ((-1063 (-583 (-874 |#1|)) (-583 (-265 (-874 |#1|)))) (-583 |#4|))) |noBranch|)))
+((-1597 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 144)) (-3164 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 145)) (-3702 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 103)) (-3849 (((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) NIL)) (-3984 (((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) 147)) (-2920 (((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))) 159)))
+(((-470 |#1| |#2|) (-10 -7 (-15 -1597 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3164 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3849 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3702 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3984 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2920 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|))))) (-583 (-1073)) (-703)) (T -470))
+((-2920 (*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))) (-3984 (*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))) (-3702 (*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
+(-10 -7 (-15 -1597 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3164 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3849 ((-107) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3702 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -3984 ((-583 (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517))))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))))) (-15 -2920 ((-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-469 (-377 (-517)) (-214 |#2| (-703)) (-789 |#1|) (-221 |#1| (-377 (-517)))) (-583 (-789 |#1|)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) 12 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) 11) (($ $ $) 23)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 18)))
+(((-471 |#1| |#2|) (-13 (-21) (-473 |#1| |#2|)) (-21) (-779)) (T -471))
+NIL
+(-13 (-21) (-473 |#1| |#2|))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 12)) (-3092 (($) NIL T CONST)) (-1212 (($ $) 26)) (-1339 (($ |#1| |#2|) 23)) (-1893 (($ (-1 |#1| |#1|) $) 25)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) 10 T CONST)) (-1547 (((-107) $ $) NIL)) (-1642 (($ $ $) 17)) (* (($ (-843) $) NIL) (($ (-703) $) 22)))
+(((-472 |#1| |#2|) (-13 (-23) (-473 |#1| |#2|)) (-23) (-779)) (T -472))
+NIL
+(-13 (-23) (-473 |#1| |#2|))
+((-2750 (((-107) $ $) 7)) (-1212 (($ $) 13)) (-1339 (($ |#1| |#2|) 16)) (-1893 (($ (-1 |#1| |#1|) $) 17)) (-1968 ((|#2| $) 14)) (-1191 ((|#1| $) 15)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
+(((-473 |#1| |#2|) (-1184) (-1003) (-779)) (T -473))
+((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) (-1339 (*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))))
+(-13 (-1003) (-10 -8 (-15 -1893 ($ (-1 |t#1| |t#1|) $)) (-15 -1339 ($ |t#1| |t#2|)) (-15 -1191 (|t#1| $)) (-15 -1968 (|t#2| $)) (-15 -1212 ($ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 13)) (-1642 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-474 |#1| |#2|) (-13 (-724) (-473 |#1| |#2|)) (-724) (-779)) (T -474))
+NIL
+(-13 (-724) (-473 |#1| |#2|))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1640 (($ $ $) 16)) (-4038 (((-3 $ "failed") $ $) 13)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1968 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL)) (-2396 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-475 |#1| |#2|) (-13 (-725) (-473 |#1| |#2|)) (-725) (-779)) (T -475))
+NIL
+(-13 (-725) (-473 |#1| |#2|))
+((-2750 (((-107) $ $) NIL)) (-1212 (($ $) 24)) (-1339 (($ |#1| |#2|) 21)) (-1893 (($ (-1 |#1| |#1|) $) 23)) (-1968 ((|#2| $) 26)) (-1191 ((|#1| $) 25)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 20)) (-1547 (((-107) $ $) 13)))
+(((-476 |#1| |#2|) (-473 |#1| |#2|) (-1003) (-779)) (T -476))
+NIL
+(-473 |#1| |#2|)
+((-2051 (($ $ (-583 |#2|) (-583 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-477 |#1| |#2| |#3|) (-10 -8 (-15 -2051 (|#1| |#1| |#2| |#3|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#3|)))) (-478 |#2| |#3|) (-1003) (-1108)) (T -477))
+NIL
+(-10 -8 (-15 -2051 (|#1| |#1| |#2| |#3|)) (-15 -2051 (|#1| |#1| (-583 |#2|) (-583 |#3|))))
+((-2051 (($ $ (-583 |#1|) (-583 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-478 |#1| |#2|) (-1184) (-1003) (-1108)) (T -478))
+((-2051 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1108)))) (-2051 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1108)))))
+(-13 (-10 -8 (-15 -2051 ($ $ |t#1| |t#2|)) (-15 -2051 ($ $ (-583 |t#1|) (-583 |t#2|)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 16)) (-2223 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $) 18)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3466 ((|#1| $ (-517)) 23)) (-2902 ((|#2| $ (-517)) 21)) (-3420 (($ (-1 |#1| |#1|) $) 46)) (-2777 (($ (-1 |#2| |#2|) $) 43)) (-3985 (((-1056) $) NIL)) (-3299 (($ $ $) 53 (|has| |#2| (-724)))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 42) (($ |#1|) NIL)) (-2720 ((|#2| |#1| $) 49)) (-2396 (($) 11 T CONST)) (-1547 (((-107) $ $) 29)) (-1642 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-843) $) NIL) (($ (-703) $) 36) (($ |#2| |#1|) 31)))
+(((-479 |#1| |#2| |#3|) (-293 |#1| |#2|) (-1003) (-123) |#2|) (T -479))
+NIL
+(-293 |#1| |#2|)
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2484 (((-107) (-107)) 24)) (-2411 ((|#1| $ (-517) |#1|) 27 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) 51)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3483 (($ $) 54 (|has| |#1| (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 43)) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-3809 (($ $ (-517)) 13)) (-4019 (((-703) $) 11)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 22)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 20 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 34)) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 35) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) 19 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-1710 (($ $ $ (-517)) 50) (($ |#1| $ (-517)) 36)) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1977 (($ (-583 |#1|)) 28)) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) 18 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 39)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 14)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 32) (($ $ (-1121 (-517))) NIL)) (-2154 (($ $ (-1121 (-517))) 49) (($ $ (-517)) 44)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) 40 (|has| $ (-6 -4181)))) (-2433 (($ $) 31)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2568 (($ $ $) 41) (($ $ |#1|) 38)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) 37) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 15 (|has| $ (-6 -4180)))))
+(((-480 |#1| |#2|) (-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107))))) (-1108) (-517)) (T -480))
+((-1977 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))) (-4019 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 *2))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517)))))
+(-13 (-19 |#1|) (-254 |#1|) (-10 -8 (-15 -1977 ($ (-583 |#1|))) (-15 -4019 ((-703) $)) (-15 -3809 ($ $ (-517))) (-15 -2484 ((-107) (-107)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-530 |#1|) (-338)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL (|has| (-530 |#1|) (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-530 |#1|) "failed") $) NIL)) (-3189 (((-530 |#1|) $) NIL)) (-1967 (($ (-1153 (-530 |#1|))) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-530 |#1|) (-338)))) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-530 |#1|) (-338)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL (|has| (-530 |#1|) (-338)))) (-3391 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-2378 (($ $ (-703)) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338)))) (($ $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3849 (((-107) $) NIL)) (-3972 (((-843) $) NIL (|has| (-530 |#1|) (-338))) (((-765 (-843)) $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| (-530 |#1|) (-338)))) (-2434 (((-107) $) NIL (|has| (-530 |#1|) (-338)))) (-1506 (((-530 |#1|) $) NIL) (($ $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-530 |#1|) (-338)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 (-530 |#1|)) $) NIL) (((-1069 $) $ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-1549 (((-843) $) NIL (|has| (-530 |#1|) (-338)))) (-1704 (((-1069 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338)))) (-2729 (((-1069 (-530 |#1|)) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-1069 (-530 |#1|)) "failed") $ $) NIL (|has| (-530 |#1|) (-338)))) (-3600 (($ $ (-1069 (-530 |#1|))) NIL (|has| (-530 |#1|) (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-530 |#1|) (-338)) CONST)) (-3448 (($ (-843)) NIL (|has| (-530 |#1|) (-338)))) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| (-530 |#1|) (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-530 |#1|) (-338)))) (-3755 (((-388 $) $) NIL)) (-3327 (((-765 (-843))) NIL) (((-843)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-703) $) NIL (|has| (-530 |#1|) (-338))) (((-3 (-703) "failed") $ $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-3141 (((-125)) NIL)) (-3127 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-3688 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-2135 (((-1069 (-530 |#1|))) NIL)) (-1766 (($) NIL (|has| (-530 |#1|) (-338)))) (-1224 (($) NIL (|has| (-530 |#1|) (-338)))) (-4114 (((-1153 (-530 |#1|)) $) NIL) (((-623 (-530 |#1|)) (-1153 $)) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-530 |#1|) (-338)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-530 |#1|)) NIL)) (-1328 (($ $) NIL (|has| (-530 |#1|) (-338))) (((-3 $ "failed") $) NIL (-3807 (|has| (-530 |#1|) (-132)) (|has| (-530 |#1|) (-338))))) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL) (((-1153 $) (-843)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-2731 (($ $) NIL (|has| (-530 |#1|) (-338))) (($ $ (-703)) NIL (|has| (-530 |#1|) (-338)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL) (($ $ (-530 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-530 |#1|)) NIL) (($ (-530 |#1|) $) NIL)))
+(((-481 |#1| |#2|) (-299 (-530 |#1|)) (-843) (-843)) (T -481))
+NIL
+(-299 (-530 |#1|))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) 33)) (-4087 (($ $ (-517) |#4|) NIL)) (-3739 (($ $ (-517) |#5|) NIL)) (-3092 (($) NIL T CONST)) (-1939 ((|#4| $ (-517)) NIL)) (-1445 ((|#1| $ (-517) (-517) |#1|) 32)) (-1377 ((|#1| $ (-517) (-517)) 30)) (-1536 (((-583 |#1|) $) NIL)) (-1477 (((-703) $) 26)) (-3462 (($ (-703) (-703) |#1|) 23)) (-1486 (((-703) $) 28)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) 24)) (-1338 (((-517) $) 25)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) 27)) (-1307 (((-517) $) 29)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) 36 (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 15)) (-1449 ((|#1| $ (-517) (-517)) 31) ((|#1| $ (-517) (-517) |#1|) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 ((|#5| $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-482 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1108) (-517) (-517) (-343 |#1|) (-343 |#1|)) (T -482))
NIL
(-55 |#1| |#4| |#5|)
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2786 ((|#1| $) NIL)) (-1511 (($ $) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 57 (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| |#1| (-777))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777)))) (($ (-1 (-107) |#1| |#1|) $) 55 (|has| $ (-6 -4168)))) (-2861 (($ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) 23 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 21 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4168))) (($ $ "rest" $) 24 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) NIL)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1564 ((|#1| $) NIL)) (-2540 (($) NIL T CONST)) (-1375 (($ $) 28 (|has| $ (-6 -4168)))) (-3785 (($ $) 29)) (-1199 (($ $) 18) (($ $ (-701)) 32)) (-2921 (($ $) 53 (|has| |#1| (-1001)))) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) NIL)) (-1526 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-1934 (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001))) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) (-1 (-107) |#1|) $) NIL)) (-2732 (((-578 |#1|) $) 27 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 31 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) 56)) (-3216 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 51 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3143 (($ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) 50 (|has| |#1| (-1001)))) (-1383 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-4114 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) 13) (($ $ (-701)) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-3654 (((-107) $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 12)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) 17)) (-3122 (($) 16)) (-2007 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1116 (-501))) NIL) ((|#1| $ (-501)) NIL) ((|#1| $ (-501) |#1|) NIL)) (-1932 (((-501) $ $) NIL)) (-1386 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-2622 (((-107) $) 33)) (-1455 (($ $) NIL)) (-3873 (($ $) NIL (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) 35)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) 34)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 26)) (-1186 (($ $ $) 52) (($ $ |#1|) NIL)) (-3934 (($ $ $) NIL) (($ |#1| $) 10) (($ (-578 $)) NIL) (($ $ |#1|) NIL)) (-3691 (((-786) $) 45 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 47 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 9 (|has| $ (-6 -4167)))))
-(((-481 |#1| |#2|) (-601 |#1|) (-1104) (-501)) (T -481))
-NIL
-(-601 |#1|)
-((-1933 ((|#4| |#4|) 26)) (-3689 (((-701) |#4|) 31)) (-3752 (((-701) |#4|) 32)) (-3552 (((-578 |#3|) |#4|) 37 (|has| |#3| (-6 -4168)))) (-1616 (((-3 |#4| "failed") |#4|) 47)) (-3852 ((|#4| |#4|) 40)) (-3315 ((|#1| |#4|) 39)))
-(((-482 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1933 (|#4| |#4|)) (-15 -3689 ((-701) |#4|)) (-15 -3752 ((-701) |#4|)) (IF (|has| |#3| (-6 -4168)) (-15 -3552 ((-578 |#3|) |#4|)) |noBranch|) (-15 -3315 (|#1| |#4|)) (-15 -3852 (|#4| |#4|)) (-15 -1616 ((-3 |#4| "failed") |#4|))) (-331) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|)) (T -482))
-((-1616 (*1 *2 *2) (|partial| -12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3852 (*1 *2 *2) (-12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3315 (*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-331)) (-5 *1 (-482 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) (-3552 (*1 *2 *3) (-12 (|has| *6 (-6 -4168)) (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-578 *6)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(-10 -7 (-15 -1933 (|#4| |#4|)) (-15 -3689 ((-701) |#4|)) (-15 -3752 ((-701) |#4|)) (IF (|has| |#3| (-6 -4168)) (-15 -3552 ((-578 |#3|) |#4|)) |noBranch|) (-15 -3315 (|#1| |#4|)) (-15 -3852 (|#4| |#4|)) (-15 -1616 ((-3 |#4| "failed") |#4|)))
-((-1933 ((|#8| |#4|) 20)) (-3552 (((-578 |#3|) |#4|) 29 (|has| |#7| (-6 -4168)))) (-1616 (((-3 |#8| "failed") |#4|) 23)))
-(((-483 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1933 (|#8| |#4|)) (-15 -1616 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4168)) (-15 -3552 ((-578 |#3|) |#4|)) |noBranch|)) (-508) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|) (-906 |#1|) (-340 |#5|) (-340 |#5|) (-618 |#5| |#6| |#7|)) (T -483))
-((-3552 (*1 *2 *3) (-12 (|has| *9 (-6 -4168)) (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)) (-5 *2 (-578 *6)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-618 *4 *5 *6)) (-4 *10 (-618 *7 *8 *9)))) (-1616 (*1 *2 *3) (|partial| -12 (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *2 (-618 *7 *8 *9)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-618 *4 *5 *6)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)))) (-1933 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *2 (-618 *7 *8 *9)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-618 *4 *5 *6)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)))))
-(-10 -7 (-15 -1933 (|#8| |#4|)) (-15 -1616 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4168)) (-15 -3552 ((-578 |#3|) |#4|)) |noBranch|))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701) (-701)) NIL)) (-2412 (($ $ $) NIL)) (-2676 (($ (-546 |#1| |#3|)) NIL) (($ $) NIL)) (-2981 (((-107) $) NIL)) (-1198 (($ $ (-501) (-501)) 12)) (-3935 (($ $ (-501) (-501)) NIL)) (-3548 (($ $ (-501) (-501) (-501) (-501)) NIL)) (-3173 (($ $) NIL)) (-4007 (((-107) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3251 (($ $ (-501) (-501) $) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) NIL) (($ $ (-578 (-501)) (-578 (-501)) $) NIL)) (-2400 (($ $ (-501) (-546 |#1| |#3|)) NIL)) (-2480 (($ $ (-501) (-546 |#1| |#2|)) NIL)) (-1292 (($ (-701) |#1|) NIL)) (-2540 (($) NIL T CONST)) (-1933 (($ $) 19 (|has| |#1| (-276)))) (-2358 (((-546 |#1| |#3|) $ (-501)) NIL)) (-3689 (((-701) $) 22 (|has| |#1| (-508)))) (-2156 ((|#1| $ (-501) (-501) |#1|) NIL)) (-1905 ((|#1| $ (-501) (-501)) NIL)) (-2732 (((-578 |#1|) $) NIL)) (-3752 (((-701) $) 24 (|has| |#1| (-508)))) (-3552 (((-578 (-546 |#1| |#2|)) $) 27 (|has| |#1| (-508)))) (-1648 (((-701) $) NIL)) (-3634 (($ (-701) (-701) |#1|) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3572 ((|#1| $) 17 (|has| |#1| (-6 (-4169 "*"))))) (-1567 (((-501) $) 10)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) 11)) (-3491 (((-501) $) NIL)) (-2630 (($ (-578 (-578 |#1|))) NIL)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2237 (((-578 (-578 |#1|)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1616 (((-3 $ "failed") $) 31 (|has| |#1| (-331)))) (-1452 (($ $ $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) (-501)) NIL) ((|#1| $ (-501) (-501) |#1|) NIL) (($ $ (-578 (-501)) (-578 (-501))) NIL)) (-3133 (($ (-578 |#1|)) NIL) (($ (-578 $)) NIL)) (-3697 (((-107) $) NIL)) (-3315 ((|#1| $) 15 (|has| |#1| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-2952 (((-546 |#1| |#2|) $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001))) (($ (-546 |#1| |#2|)) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-501) $) NIL) (((-546 |#1| |#2|) $ (-546 |#1| |#2|)) NIL) (((-546 |#1| |#3|) (-546 |#1| |#3|) $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-484 |#1| |#2| |#3|) (-618 |#1| (-546 |#1| |#3|) (-546 |#1| |#2|)) (-959) (-501) (-501)) (T -484))
-NIL
-(-618 |#1| (-546 |#1| |#3|) (-546 |#1| |#2|))
-((-3758 (((-1064 |#1|) (-701)) 74)) (-2225 (((-1148 |#1|) (-1148 |#1|) (-839)) 67)) (-2396 (((-1154) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) |#1|) 82)) (-3863 (((-1148 |#1|) (-1148 |#1|) (-701)) 36)) (-2890 (((-1148 |#1|) (-839)) 69)) (-3610 (((-1148 |#1|) (-1148 |#1|) (-501)) 24)) (-2663 (((-1064 |#1|) (-1148 |#1|)) 75)) (-4065 (((-1148 |#1|) (-839)) 93)) (-1928 (((-107) (-1148 |#1|)) 78)) (-2626 (((-1148 |#1|) (-1148 |#1|) (-839)) 59)) (-1792 (((-1064 |#1|) (-1148 |#1|)) 87)) (-3104 (((-839) (-1148 |#1|)) 56)) (-3833 (((-1148 |#1|) (-1148 |#1|)) 30)) (-3506 (((-1148 |#1|) (-839) (-839)) 95)) (-2307 (((-1148 |#1|) (-1148 |#1|) (-1018) (-1018)) 23)) (-2493 (((-1148 |#1|) (-1148 |#1|) (-701) (-1018)) 37)) (-4119 (((-1148 (-1148 |#1|)) (-839)) 92)) (-3803 (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 79)) (** (((-1148 |#1|) (-1148 |#1|) (-501)) 43)) (* (((-1148 |#1|) (-1148 |#1|) (-1148 |#1|)) 25)))
-(((-485 |#1|) (-10 -7 (-15 -2396 ((-1154) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) |#1|)) (-15 -2890 ((-1148 |#1|) (-839))) (-15 -3506 ((-1148 |#1|) (-839) (-839))) (-15 -2663 ((-1064 |#1|) (-1148 |#1|))) (-15 -3758 ((-1064 |#1|) (-701))) (-15 -2493 ((-1148 |#1|) (-1148 |#1|) (-701) (-1018))) (-15 -3863 ((-1148 |#1|) (-1148 |#1|) (-701))) (-15 -2307 ((-1148 |#1|) (-1148 |#1|) (-1018) (-1018))) (-15 -3610 ((-1148 |#1|) (-1148 |#1|) (-501))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-501))) (-15 * ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3803 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2626 ((-1148 |#1|) (-1148 |#1|) (-839))) (-15 -2225 ((-1148 |#1|) (-1148 |#1|) (-839))) (-15 -3833 ((-1148 |#1|) (-1148 |#1|))) (-15 -3104 ((-839) (-1148 |#1|))) (-15 -1928 ((-107) (-1148 |#1|))) (-15 -4119 ((-1148 (-1148 |#1|)) (-839))) (-15 -4065 ((-1148 |#1|) (-839))) (-15 -1792 ((-1064 |#1|) (-1148 |#1|)))) (-318)) (T -485))
-((-1792 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)))) (-4065 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 (-1148 *4))) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-485 *4)))) (-3104 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-839)) (-5 *1 (-485 *4)))) (-3833 (*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) (-2225 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-839)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-839)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-3803 (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-501)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-501)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-2307 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1018)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-3863 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) (-2493 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1148 *5)) (-5 *3 (-701)) (-5 *4 (-1018)) (-4 *5 (-318)) (-5 *1 (-485 *5)))) (-3758 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)))) (-3506 (*1 *2 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) (-2396 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-1154)) (-5 *1 (-485 *4)))))
-(-10 -7 (-15 -2396 ((-1154) (-1148 (-578 (-2 (|:| -2150 |#1|) (|:| -3506 (-1018))))) |#1|)) (-15 -2890 ((-1148 |#1|) (-839))) (-15 -3506 ((-1148 |#1|) (-839) (-839))) (-15 -2663 ((-1064 |#1|) (-1148 |#1|))) (-15 -3758 ((-1064 |#1|) (-701))) (-15 -2493 ((-1148 |#1|) (-1148 |#1|) (-701) (-1018))) (-15 -3863 ((-1148 |#1|) (-1148 |#1|) (-701))) (-15 -2307 ((-1148 |#1|) (-1148 |#1|) (-1018) (-1018))) (-15 -3610 ((-1148 |#1|) (-1148 |#1|) (-501))) (-15 ** ((-1148 |#1|) (-1148 |#1|) (-501))) (-15 * ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -3803 ((-1148 |#1|) (-1148 |#1|) (-1148 |#1|))) (-15 -2626 ((-1148 |#1|) (-1148 |#1|) (-839))) (-15 -2225 ((-1148 |#1|) (-1148 |#1|) (-839))) (-15 -3833 ((-1148 |#1|) (-1148 |#1|))) (-15 -3104 ((-839) (-1148 |#1|))) (-15 -1928 ((-107) (-1148 |#1|))) (-15 -4119 ((-1148 (-1148 |#1|)) (-839))) (-15 -4065 ((-1148 |#1|) (-839))) (-15 -1792 ((-1064 |#1|) (-1148 |#1|))))
-((-1957 (((-1 |#1| |#1|) |#1|) 11)) (-1309 (((-1 |#1| |#1|)) 10)))
-(((-486 |#1|) (-10 -7 (-15 -1309 ((-1 |#1| |#1|))) (-15 -1957 ((-1 |#1| |#1|) |#1|))) (-13 (-657) (-25))) (T -486))
-((-1957 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-486 *3)) (-4 *3 (-13 (-657) (-25))))) (-1309 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-486 *3)) (-4 *3 (-13 (-657) (-25))))))
-(-10 -7 (-15 -1309 ((-1 |#1| |#1|))) (-15 -1957 ((-1 |#1| |#1|) |#1|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3405 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-3787 (($ (-701) |#1|) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 (-701) (-701)) $) NIL)) (-2668 ((|#1| $) NIL)) (-3850 (((-701) $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 20)) (-1850 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-701) $) NIL) (($ (-839) $) NIL)))
-(((-487 |#1|) (-13 (-723) (-471 (-701) |#1|)) (-777)) (T -487))
-NIL
-(-13 (-723) (-471 (-701) |#1|))
-((-2640 (((-578 |#2|) (-1064 |#1|) |#3|) 83)) (-2725 (((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#2|))))) (-621 |#1|) |#3| (-1 (-373 (-1064 |#1|)) (-1064 |#1|))) 99)) (-2712 (((-1064 |#1|) (-621 |#1|)) 95)))
-(((-488 |#1| |#2| |#3|) (-10 -7 (-15 -2712 ((-1064 |#1|) (-621 |#1|))) (-15 -2640 ((-578 |#2|) (-1064 |#1|) |#3|)) (-15 -2725 ((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#2|))))) (-621 |#1|) |#3| (-1 (-373 (-1064 |#1|)) (-1064 |#1|))))) (-331) (-331) (-13 (-331) (-775))) (T -488))
-((-2725 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *6)) (-5 *5 (-1 (-373 (-1064 *6)) (-1064 *6))) (-4 *6 (-331)) (-5 *2 (-578 (-2 (|:| |outval| *7) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 *7)))))) (-5 *1 (-488 *6 *7 *4)) (-4 *7 (-331)) (-4 *4 (-13 (-331) (-775))))) (-2640 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *5)) (-4 *5 (-331)) (-5 *2 (-578 *6)) (-5 *1 (-488 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775))))) (-2712 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-331)) (-5 *2 (-1064 *4)) (-5 *1 (-488 *4 *5 *6)) (-4 *5 (-331)) (-4 *6 (-13 (-331) (-775))))))
-(-10 -7 (-15 -2712 ((-1064 |#1|) (-621 |#1|))) (-15 -2640 ((-578 |#2|) (-1064 |#1|) |#3|)) (-15 -2725 ((-578 (-2 (|:| |outval| |#2|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#2|))))) (-621 |#1|) |#3| (-1 (-373 (-1064 |#1|)) (-1064 |#1|)))))
-((-2040 (((-769 (-501))) 11)) (-2051 (((-769 (-501))) 13)) (-2029 (((-762 (-501))) 8)))
-(((-489) (-10 -7 (-15 -2029 ((-762 (-501)))) (-15 -2040 ((-769 (-501)))) (-15 -2051 ((-769 (-501)))))) (T -489))
-((-2051 (*1 *2) (-12 (-5 *2 (-769 (-501))) (-5 *1 (-489)))) (-2040 (*1 *2) (-12 (-5 *2 (-769 (-501))) (-5 *1 (-489)))) (-2029 (*1 *2) (-12 (-5 *2 (-762 (-501))) (-5 *1 (-489)))))
-(-10 -7 (-15 -2029 ((-762 (-501)))) (-15 -2040 ((-769 (-501)))) (-15 -2051 ((-769 (-501)))))
-((-3736 (((-107) $ $) NIL)) (-2066 (((-1053) $) 46)) (-2494 (((-107) $) 43)) (-2892 (((-1070) $) 44)) (-2588 (((-107) $) 41)) (-2011 (((-1053) $) 42)) (-2321 (((-107) $) NIL)) (-1536 (((-107) $) NIL)) (-3889 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-1682 (($ $ (-578 (-1070))) 20)) (-1771 (((-50) $) 22)) (-1680 (((-107) $) NIL)) (-2004 (((-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-1684 (($ $ (-578 (-1070)) (-1070)) 58)) (-2370 (((-107) $) NIL)) (-2017 (((-199) $) NIL)) (-2591 (($ $) 38)) (-4055 (((-786) $) NIL)) (-2499 (((-107) $ $) NIL)) (-2007 (($ $ (-501)) NIL) (($ $ (-578 (-501))) NIL)) (-3770 (((-578 $) $) 28)) (-2351 (((-1070) (-578 $)) 47)) (-1248 (($ (-578 $)) 51) (($ (-1053)) NIL) (($ (-1070)) 18) (($ (-501)) 8) (($ (-199)) 25) (($ (-786)) NIL) (((-1003) $) 11) (($ (-1003)) 12)) (-3701 (((-1070) (-1070) (-578 $)) 50)) (-3691 (((-786) $) NIL)) (-1329 (($ $) 49)) (-1321 (($ $) 48)) (-2406 (($ $ (-578 $)) 55)) (-2750 (((-107) $) 27)) (-1850 (($) 9 T CONST)) (-1925 (($) 10 T CONST)) (-3751 (((-107) $ $) 59)) (-3803 (($ $ $) 64)) (-3790 (($ $ $) 60)) (** (($ $ (-701)) 63) (($ $ (-501)) 62)) (* (($ $ $) 61)) (-3581 (((-501) $) NIL)))
-(((-490) (-13 (-1004 (-1053) (-1070) (-501) (-199) (-786)) (-556 (-1003)) (-10 -8 (-15 -1771 ((-50) $)) (-15 -1248 ($ (-1003))) (-15 -2406 ($ $ (-578 $))) (-15 -1684 ($ $ (-578 (-1070)) (-1070))) (-15 -1682 ($ $ (-578 (-1070)))) (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ (-701))) (-15 ** ($ $ (-501))) (-15 0 ($) -3897) (-15 1 ($) -3897) (-15 -2591 ($ $)) (-15 -2066 ((-1053) $)) (-15 -2351 ((-1070) (-578 $))) (-15 -3701 ((-1070) (-1070) (-578 $)))))) (T -490))
-((-1771 (*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-490)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-1003)) (-5 *1 (-490)))) (-2406 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-490))) (-5 *1 (-490)))) (-1684 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-1070)) (-5 *1 (-490)))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-490)))) (-3790 (*1 *1 *1 *1) (-5 *1 (-490))) (* (*1 *1 *1 *1) (-5 *1 (-490))) (-3803 (*1 *1 *1 *1) (-5 *1 (-490))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-490)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-490)))) (-1850 (*1 *1) (-5 *1 (-490))) (-1925 (*1 *1) (-5 *1 (-490))) (-2591 (*1 *1 *1) (-5 *1 (-490))) (-2066 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-490)))) (-2351 (*1 *2 *3) (-12 (-5 *3 (-578 (-490))) (-5 *2 (-1070)) (-5 *1 (-490)))) (-3701 (*1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-490))) (-5 *1 (-490)))))
-(-13 (-1004 (-1053) (-1070) (-501) (-199) (-786)) (-556 (-1003)) (-10 -8 (-15 -1771 ((-50) $)) (-15 -1248 ($ (-1003))) (-15 -2406 ($ $ (-578 $))) (-15 -1684 ($ $ (-578 (-1070)) (-1070))) (-15 -1682 ($ $ (-578 (-1070)))) (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ (-701))) (-15 ** ($ $ (-501))) (-15 (-1850) ($) -3897) (-15 (-1925) ($) -3897) (-15 -2591 ($ $)) (-15 -2066 ((-1053) $)) (-15 -2351 ((-1070) (-578 $))) (-15 -3701 ((-1070) (-1070) (-578 $)))))
-((-2161 (((-490) (-1070)) 15)) (-1771 ((|#1| (-490)) 20)))
-(((-491 |#1|) (-10 -7 (-15 -2161 ((-490) (-1070))) (-15 -1771 (|#1| (-490)))) (-1104)) (T -491))
-((-1771 (*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *1 (-491 *2)) (-4 *2 (-1104)))) (-2161 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-490)) (-5 *1 (-491 *4)) (-4 *4 (-1104)))))
-(-10 -7 (-15 -2161 ((-490) (-1070))) (-15 -1771 (|#1| (-490))))
-((-1677 ((|#2| |#2|) 17)) (-3892 ((|#2| |#2|) 13)) (-1540 ((|#2| |#2| (-501) (-501)) 20)) (-2216 ((|#2| |#2|) 15)))
-(((-492 |#1| |#2|) (-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1540 (|#2| |#2| (-501) (-501)))) (-13 (-508) (-134)) (-1142 |#1|)) (T -492))
-((-1540 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-492 *4 *2)) (-4 *2 (-1142 *4)))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))))
-(-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1540 (|#2| |#2| (-501) (-501))))
-((-3227 (((-578 (-262 (-866 |#2|))) (-578 |#2|) (-578 (-1070))) 32)) (-1706 (((-578 |#2|) (-866 |#1|) |#3|) 53) (((-578 |#2|) (-1064 |#1|) |#3|) 52)) (-1753 (((-578 (-578 |#2|)) (-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)) |#3|) 87)))
-(((-493 |#1| |#2| |#3|) (-10 -7 (-15 -1706 ((-578 |#2|) (-1064 |#1|) |#3|)) (-15 -1706 ((-578 |#2|) (-866 |#1|) |#3|)) (-15 -1753 ((-578 (-578 |#2|)) (-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)) |#3|)) (-15 -3227 ((-578 (-262 (-866 |#2|))) (-578 |#2|) (-578 (-1070))))) (-419) (-331) (-13 (-331) (-775))) (T -493))
-((-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1070))) (-4 *6 (-331)) (-5 *2 (-578 (-262 (-866 *6)))) (-5 *1 (-493 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-13 (-331) (-775))))) (-1753 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-493 *6 *7 *5)) (-4 *7 (-331)) (-4 *5 (-13 (-331) (-775))))) (-1706 (*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-4 *5 (-419)) (-5 *2 (-578 *6)) (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775))))) (-1706 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *5)) (-4 *5 (-419)) (-5 *2 (-578 *6)) (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775))))))
-(-10 -7 (-15 -1706 ((-578 |#2|) (-1064 |#1|) |#3|)) (-15 -1706 ((-578 |#2|) (-866 |#1|) |#3|)) (-15 -1753 ((-578 (-578 |#2|)) (-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)) |#3|)) (-15 -3227 ((-578 (-262 (-866 |#2|))) (-578 |#2|) (-578 (-1070)))))
-((-3220 ((|#2| |#2| |#1|) 17)) (-2057 ((|#2| (-578 |#2|)) 26)) (-1588 ((|#2| (-578 |#2|)) 45)))
-(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2057 (|#2| (-578 |#2|))) (-15 -1588 (|#2| (-578 |#2|))) (-15 -3220 (|#2| |#2| |#1|))) (-276) (-1125 |#1|) |#1| (-1 |#1| |#1| (-701))) (T -494))
-((-3220 (*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-701))) (-5 *1 (-494 *3 *2 *4 *5)) (-4 *2 (-1125 *3)))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-494 *4 *2 *5 *6)) (-4 *4 (-276)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-701))))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-494 *4 *2 *5 *6)) (-4 *4 (-276)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-701))))))
-(-10 -7 (-15 -2057 (|#2| (-578 |#2|))) (-15 -1588 (|#2| (-578 |#2|))) (-15 -3220 (|#2| |#2| |#1|)))
-((-3739 (((-373 (-1064 |#4|)) (-1064 |#4|) (-1 (-373 (-1064 |#3|)) (-1064 |#3|))) 79) (((-373 |#4|) |#4| (-1 (-373 (-1064 |#3|)) (-1064 |#3|))) 164)))
-(((-495 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4| (-1 (-373 (-1064 |#3|)) (-1064 |#3|)))) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|) (-1 (-373 (-1064 |#3|)) (-1064 |#3|))))) (-777) (-723) (-13 (-276) (-134)) (-870 |#3| |#2| |#1|)) (T -495))
-((-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 (-1064 *7)) (-1064 *7))) (-4 *7 (-13 (-276) (-134))) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *8 (-870 *7 *6 *5)) (-5 *2 (-373 (-1064 *8))) (-5 *1 (-495 *5 *6 *7 *8)) (-5 *3 (-1064 *8)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 (-1064 *7)) (-1064 *7))) (-4 *7 (-13 (-276) (-134))) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *2 (-373 *3)) (-5 *1 (-495 *5 *6 *7 *3)) (-4 *3 (-870 *7 *6 *5)))))
-(-10 -7 (-15 -3739 ((-373 |#4|) |#4| (-1 (-373 (-1064 |#3|)) (-1064 |#3|)))) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|) (-1 (-373 (-1064 |#3|)) (-1064 |#3|)))))
-((-1677 ((|#4| |#4|) 73)) (-3892 ((|#4| |#4|) 69)) (-1540 ((|#4| |#4| (-501) (-501)) 75)) (-2216 ((|#4| |#4|) 71)))
-(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3892 (|#4| |#4|)) (-15 -2216 (|#4| |#4|)) (-15 -1677 (|#4| |#4|)) (-15 -1540 (|#4| |#4| (-501) (-501)))) (-13 (-331) (-336) (-556 (-501))) (-1125 |#1|) (-655 |#1| |#2|) (-1142 |#3|)) (T -496))
-((-1540 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-331) (-336) (-556 *3))) (-4 *5 (-1125 *4)) (-4 *6 (-655 *4 *5)) (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-1142 *6)))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))))
-(-10 -7 (-15 -3892 (|#4| |#4|)) (-15 -2216 (|#4| |#4|)) (-15 -1677 (|#4| |#4|)) (-15 -1540 (|#4| |#4| (-501) (-501))))
-((-1677 ((|#2| |#2|) 27)) (-3892 ((|#2| |#2|) 23)) (-1540 ((|#2| |#2| (-501) (-501)) 29)) (-2216 ((|#2| |#2|) 25)))
-(((-497 |#1| |#2|) (-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1540 (|#2| |#2| (-501) (-501)))) (-13 (-331) (-336) (-556 (-501))) (-1142 |#1|)) (T -497))
-((-1540 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-331) (-336) (-556 *3))) (-5 *1 (-497 *4 *2)) (-4 *2 (-1142 *4)))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) (-2216 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))))
-(-10 -7 (-15 -3892 (|#2| |#2|)) (-15 -2216 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1540 (|#2| |#2| (-501) (-501))))
-((-3339 (((-3 (-501) "failed") |#2| |#1| (-1 (-3 (-501) "failed") |#1|)) 14) (((-3 (-501) "failed") |#2| |#1| (-501) (-1 (-3 (-501) "failed") |#1|)) 13) (((-3 (-501) "failed") |#2| (-501) (-1 (-3 (-501) "failed") |#1|)) 26)))
-(((-498 |#1| |#2|) (-10 -7 (-15 -3339 ((-3 (-501) "failed") |#2| (-501) (-1 (-3 (-501) "failed") |#1|))) (-15 -3339 ((-3 (-501) "failed") |#2| |#1| (-501) (-1 (-3 (-501) "failed") |#1|))) (-15 -3339 ((-3 (-501) "failed") |#2| |#1| (-1 (-3 (-501) "failed") |#1|)))) (-959) (-1125 |#1|)) (T -498))
-((-3339 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-501) "failed") *4)) (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *4 *3)) (-4 *3 (-1125 *4)))) (-3339 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-501) "failed") *4)) (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *4 *3)) (-4 *3 (-1125 *4)))) (-3339 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-501) "failed") *5)) (-4 *5 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *5 *3)) (-4 *3 (-1125 *5)))))
-(-10 -7 (-15 -3339 ((-3 (-501) "failed") |#2| (-501) (-1 (-3 (-501) "failed") |#1|))) (-15 -3339 ((-3 (-501) "failed") |#2| |#1| (-501) (-1 (-3 (-501) "failed") |#1|))) (-15 -3339 ((-3 (-501) "failed") |#2| |#1| (-1 (-3 (-501) "failed") |#1|))))
-((-2619 (($ $ $) 78)) (-1559 (((-373 $) $) 46)) (-3765 (((-3 (-501) "failed") $) 58)) (-3490 (((-501) $) 36)) (-2870 (((-3 (-375 (-501)) "failed") $) 73)) (-1696 (((-107) $) 23)) (-3518 (((-375 (-501)) $) 71)) (-1628 (((-107) $) 49)) (-3185 (($ $ $ $) 85)) (-2164 (((-107) $) 15)) (-2940 (($ $ $) 56)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 68)) (-3493 (((-3 $ "failed") $) 63)) (-4100 (($ $) 22)) (-3437 (($ $ $) 83)) (-3746 (($) 59)) (-3260 (($ $) 52)) (-3739 (((-373 $) $) 44)) (-3172 (((-107) $) 13)) (-1864 (((-701) $) 27)) (-2596 (($ $ (-701)) NIL) (($ $) 10)) (-3764 (($ $) 16)) (-1248 (((-501) $) NIL) (((-490) $) 35) (((-810 (-501)) $) 39) (((-346) $) 30) (((-199) $) 32)) (-3965 (((-701)) 8)) (-1808 (((-107) $ $) 19)) (-1299 (($ $ $) 54)))
-(((-499 |#1|) (-10 -8 (-15 -3437 (|#1| |#1| |#1|)) (-15 -3185 (|#1| |#1| |#1| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -2619 (|#1| |#1| |#1|)) (-15 -1808 ((-107) |#1| |#1|)) (-15 -3172 ((-107) |#1|)) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -1299 (|#1| |#1| |#1|)) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -1248 ((-501) |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2164 ((-107) |#1|)) (-15 -1864 ((-701) |#1|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -1628 ((-107) |#1|)) (-15 -3965 ((-701)))) (-500)) (T -499))
-((-3965 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-499 *3)) (-4 *3 (-500)))))
-(-10 -8 (-15 -3437 (|#1| |#1| |#1|)) (-15 -3185 (|#1| |#1| |#1| |#1|)) (-15 -4100 (|#1| |#1|)) (-15 -3764 (|#1| |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -2619 (|#1| |#1| |#1|)) (-15 -1808 ((-107) |#1| |#1|)) (-15 -3172 ((-107) |#1|)) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -3260 (|#1| |#1|)) (-15 -1299 (|#1| |#1| |#1|)) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -1248 ((-501) |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2164 ((-107) |#1|)) (-15 -1864 ((-701) |#1|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -1628 ((-107) |#1|)) (-15 -3965 ((-701))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-2619 (($ $ $) 100)) (-3177 (((-3 $ "failed") $ $) 19)) (-3887 (($ $ $ $) 88)) (-3676 (($ $) 51)) (-1559 (((-373 $) $) 52)) (-2781 (((-107) $ $) 140)) (-1417 (((-501) $) 129)) (-1525 (($ $ $) 103)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 121)) (-3490 (((-501) $) 120)) (-3023 (($ $ $) 144)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 119) (((-621 (-501)) (-621 $)) 118)) (-2174 (((-3 $ "failed") $) 34)) (-2870 (((-3 (-375 (-501)) "failed") $) 97)) (-1696 (((-107) $) 99)) (-3518 (((-375 (-501)) $) 98)) (-2890 (($) 96) (($ $) 95)) (-3034 (($ $ $) 143)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 138)) (-1628 (((-107) $) 53)) (-3185 (($ $ $ $) 86)) (-2002 (($ $ $) 101)) (-2164 (((-107) $) 131)) (-2940 (($ $ $) 112)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 115)) (-1355 (((-107) $) 31)) (-3729 (((-107) $) 107)) (-3493 (((-3 $ "failed") $) 109)) (-4067 (((-107) $) 130)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 147)) (-4124 (($ $ $ $) 87)) (-4111 (($ $ $) 132)) (-1323 (($ $ $) 133)) (-4100 (($ $) 90)) (-4139 (($ $) 104)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3437 (($ $ $) 85)) (-3746 (($) 108 T CONST)) (-2170 (($ $) 92)) (-3708 (((-1018) $) 10) (($ $) 94)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3260 (($ $) 113)) (-3739 (((-373 $) $) 50)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 146) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 145)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 139)) (-3172 (((-107) $) 106)) (-1864 (((-701) $) 141)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 142)) (-2596 (($ $ (-701)) 126) (($ $) 124)) (-2565 (($ $) 91)) (-3764 (($ $) 93)) (-1248 (((-501) $) 123) (((-490) $) 117) (((-810 (-501)) $) 116) (((-346) $) 111) (((-199) $) 110)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-501)) 122)) (-3965 (((-701)) 29)) (-1808 (((-107) $ $) 102)) (-1299 (($ $ $) 114)) (-1965 (($) 105)) (-2442 (((-107) $ $) 39)) (-3429 (($ $ $ $) 89)) (-1720 (($ $) 128)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-701)) 127) (($ $) 125)) (-3778 (((-107) $ $) 135)) (-3768 (((-107) $ $) 136)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 134)) (-3762 (((-107) $ $) 137)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-500) (-1180)) (T -500))
-((-3729 (*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) (-1965 (*1 *1) (-4 *1 (-500))) (-4139 (*1 *1 *1) (-4 *1 (-500))) (-1525 (*1 *1 *1 *1) (-4 *1 (-500))) (-1808 (*1 *2 *1 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) (-2002 (*1 *1 *1 *1) (-4 *1 (-500))) (-2619 (*1 *1 *1 *1) (-4 *1 (-500))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-375 (-501))))) (-2870 (*1 *2 *1) (|partial| -12 (-4 *1 (-500)) (-5 *2 (-375 (-501))))) (-2890 (*1 *1) (-4 *1 (-500))) (-2890 (*1 *1 *1) (-4 *1 (-500))) (-3708 (*1 *1 *1) (-4 *1 (-500))) (-3764 (*1 *1 *1) (-4 *1 (-500))) (-2170 (*1 *1 *1) (-4 *1 (-500))) (-2565 (*1 *1 *1) (-4 *1 (-500))) (-4100 (*1 *1 *1) (-4 *1 (-500))) (-3429 (*1 *1 *1 *1 *1) (-4 *1 (-500))) (-3887 (*1 *1 *1 *1 *1) (-4 *1 (-500))) (-4124 (*1 *1 *1 *1 *1) (-4 *1 (-500))) (-3185 (*1 *1 *1 *1 *1) (-4 *1 (-500))) (-3437 (*1 *1 *1 *1) (-4 *1 (-500))))
-(-13 (-1108) (-276) (-750) (-206) (-556 (-501)) (-950 (-501)) (-577 (-501)) (-556 (-490)) (-556 (-810 (-501))) (-806 (-501)) (-130) (-933) (-134) (-1046) (-10 -8 (-15 -3729 ((-107) $)) (-15 -3172 ((-107) $)) (-6 -4166) (-15 -1965 ($)) (-15 -4139 ($ $)) (-15 -1525 ($ $ $)) (-15 -1808 ((-107) $ $)) (-15 -2002 ($ $ $)) (-15 -2619 ($ $ $)) (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $)) (-15 -2890 ($)) (-15 -2890 ($ $)) (-15 -3708 ($ $)) (-15 -3764 ($ $)) (-15 -2170 ($ $)) (-15 -2565 ($ $)) (-15 -4100 ($ $)) (-15 -3429 ($ $ $ $)) (-15 -3887 ($ $ $ $)) (-15 -4124 ($ $ $ $)) (-15 -3185 ($ $ $ $)) (-15 -3437 ($ $ $)) (-6 -4165)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-130) . T) ((-156) . T) ((-556 (-199)) . T) ((-556 (-346)) . T) ((-556 (-490)) . T) ((-556 (-501)) . T) ((-556 (-810 (-501))) . T) ((-206) . T) ((-260) . T) ((-276) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-577 (-501)) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-750) . T) ((-775) . T) ((-777) . T) ((-806 (-501)) . T) ((-841) . T) ((-933) . T) ((-950 (-501)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) . T) ((-1108) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 25)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 86)) (-2865 (($ $) 87)) (-1639 (((-107) $) NIL)) (-2619 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) 42)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-1525 (($ $ $) 80)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL)) (-3490 (((-501) $) NIL)) (-3023 (($ $ $) 79)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 60) (((-621 (-501)) (-621 $)) 57)) (-2174 (((-3 $ "failed") $) 83)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL)) (-1696 (((-107) $) NIL)) (-3518 (((-375 (-501)) $) NIL)) (-2890 (($) 62) (($ $) 63)) (-3034 (($ $ $) 78)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3185 (($ $ $ $) NIL)) (-2002 (($ $ $) 54)) (-2164 (((-107) $) NIL)) (-2940 (($ $ $) NIL)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL)) (-1355 (((-107) $) 26)) (-3729 (((-107) $) 73)) (-3493 (((-3 $ "failed") $) NIL)) (-4067 (((-107) $) 34)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4124 (($ $ $ $) 43)) (-4111 (($ $ $) 75)) (-1323 (($ $ $) 74)) (-4100 (($ $) NIL)) (-4139 (($ $) 40)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) 53)) (-3437 (($ $ $) NIL)) (-3746 (($) NIL T CONST)) (-2170 (($ $) 31)) (-3708 (((-1018) $) NIL) (($ $) 33)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 117)) (-3664 (($ $ $) 84) (($ (-578 $)) NIL)) (-3260 (($ $) NIL)) (-3739 (((-373 $) $) 103)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) 82)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 77)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-2565 (($ $) 32)) (-3764 (($ $) 30)) (-1248 (((-501) $) 39) (((-490) $) 51) (((-810 (-501)) $) NIL) (((-346) $) 46) (((-199) $) 48) (((-1053) $) 52)) (-3691 (((-786) $) 37) (($ (-501)) 38) (($ $) NIL) (($ (-501)) 38)) (-3965 (((-701)) NIL)) (-1808 (((-107) $ $) NIL)) (-1299 (($ $ $) NIL)) (-1965 (($) 29)) (-2442 (((-107) $ $) NIL)) (-3429 (($ $ $ $) 41)) (-1720 (($ $) 61)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 27 T CONST)) (-1925 (($) 28 T CONST)) (-3671 (((-1053) $) 20) (((-1053) $ (-107)) 22) (((-1154) (-753) $) 23) (((-1154) (-753) $ (-107)) 24)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 64)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 65)) (-3797 (($ $) 66) (($ $ $) 68)) (-3790 (($ $ $) 67)) (** (($ $ (-839)) NIL) (($ $ (-701)) 72)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 70) (($ $ $) 69)))
-(((-501) (-13 (-500) (-556 (-1053)) (-751) (-10 -8 (-15 -2890 ($ $)) (-6 -4154) (-6 -4159) (-6 -4155) (-6 -4149)))) (T -501))
-((-2890 (*1 *1 *1) (-5 *1 (-501))))
-(-13 (-500) (-556 (-1053)) (-751) (-10 -8 (-15 -2890 ($ $)) (-6 -4154) (-6 -4159) (-6 -4155) (-6 -4149)))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) NIL)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-502 |#1| |#2| |#3|) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) (-1001) (-1001) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167)))) (T -502))
-NIL
-(-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167)))
-((-4128 (((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-1 (-1064 |#2|) (-1064 |#2|))) 49)))
-(((-503 |#1| |#2|) (-10 -7 (-15 -4128 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-1 (-1064 |#2|) (-1064 |#2|))))) (-13 (-777) (-508)) (-13 (-27) (-389 |#1|))) (T -503))
-((-4128 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-1 (-1064 *3) (-1064 *3))) (-4 *3 (-13 (-27) (-389 *6))) (-4 *6 (-13 (-777) (-508))) (-5 *2 (-530 *3)) (-5 *1 (-503 *6 *3)))))
-(-10 -7 (-15 -4128 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-1 (-1064 |#2|) (-1064 |#2|)))))
-((-2163 (((-530 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-4046 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-1545 (((-530 |#5|) |#5| (-1 |#3| |#3|)) 198)))
-(((-504 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1545 ((-530 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2163 ((-530 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4046 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-777) (-508) (-950 (-501))) (-13 (-27) (-389 |#1|)) (-1125 |#2|) (-1125 (-375 |#3|)) (-310 |#2| |#3| |#4|)) (T -504))
-((-4046 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-27) (-389 *4))) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-4 *7 (-1125 (-375 *6))) (-5 *1 (-504 *4 *5 *6 *7 *2)) (-4 *2 (-310 *5 *6 *7)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-27) (-389 *5))) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-4 *8 (-1125 (-375 *7))) (-5 *2 (-530 *3)) (-5 *1 (-504 *5 *6 *7 *8 *3)) (-4 *3 (-310 *6 *7 *8)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-27) (-389 *5))) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-4 *8 (-1125 (-375 *7))) (-5 *2 (-530 *3)) (-5 *1 (-504 *5 *6 *7 *8 *3)) (-4 *3 (-310 *6 *7 *8)))))
-(-10 -7 (-15 -1545 ((-530 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2163 ((-530 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4046 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-1550 (((-107) (-501) (-501)) 10)) (-2561 (((-501) (-501)) 7)) (-1521 (((-501) (-501) (-501)) 8)))
-(((-505) (-10 -7 (-15 -2561 ((-501) (-501))) (-15 -1521 ((-501) (-501) (-501))) (-15 -1550 ((-107) (-501) (-501))))) (T -505))
-((-1550 (*1 *2 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-107)) (-5 *1 (-505)))) (-1521 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-505)))) (-2561 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-505)))))
-(-10 -7 (-15 -2561 ((-501) (-501))) (-15 -1521 ((-501) (-501) (-501))) (-15 -1550 ((-107) (-501) (-501))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1783 ((|#1| $) 61)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3978 (($ $) 91)) (-3937 (($ $) 74)) (-3405 ((|#1| $) 62)) (-3177 (((-3 $ "failed") $ $) 19)) (-3743 (($ $) 73)) (-3970 (($ $) 90)) (-3929 (($ $) 75)) (-3984 (($ $) 89)) (-3945 (($ $) 76)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 69)) (-3490 (((-501) $) 68)) (-2174 (((-3 $ "failed") $) 34)) (-3074 (($ |#1| |#1|) 66)) (-2164 (((-107) $) 60)) (-2003 (($) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 72)) (-4067 (((-107) $) 59)) (-4111 (($ $ $) 107)) (-1323 (($ $ $) 106)) (-1635 (($ $) 98)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-2392 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-375 (-501))) 64)) (-1277 ((|#1| $) 63)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3694 (((-3 $ "failed") $ $) 42)) (-1989 (($ $) 99)) (-3991 (($ $) 88)) (-3949 (($ $) 77)) (-3981 (($ $) 87)) (-3940 (($ $) 78)) (-3975 (($ $) 86)) (-3933 (($ $) 79)) (-3684 (((-107) $ |#1|) 58)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-501)) 70)) (-3965 (((-701)) 29)) (-4003 (($ $) 97)) (-3958 (($ $) 85)) (-2442 (((-107) $ $) 39)) (-3995 (($ $) 96)) (-3952 (($ $) 84)) (-4013 (($ $) 95)) (-3964 (($ $) 83)) (-3550 (($ $) 94)) (-3967 (($ $) 82)) (-4008 (($ $) 93)) (-3961 (($ $) 81)) (-3999 (($ $) 92)) (-3955 (($ $) 80)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 104)) (-3768 (((-107) $ $) 103)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 105)) (-3762 (((-107) $ $) 102)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ $) 100) (($ $ (-375 (-501))) 71)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-506 |#1|) (-1180) (-13 (-372) (-1090))) (T -506))
-((-2392 (*1 *1 *2 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-3074 (*1 *1 *2 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-2392 (*1 *1 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-2392 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))))) (-1277 (*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-1783 (*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))) (-3684 (*1 *2 *1 *3) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))))
-(-13 (-419) (-777) (-1090) (-916) (-950 (-501)) (-10 -8 (-6 -2391) (-15 -2392 ($ |t#1| |t#1|)) (-15 -3074 ($ |t#1| |t#1|)) (-15 -2392 ($ |t#1|)) (-15 -2392 ($ (-375 (-501)))) (-15 -1277 (|t#1| $)) (-15 -3405 (|t#1| $)) (-15 -1783 (|t#1| $)) (-15 -2164 ((-107) $)) (-15 -4067 ((-107) $)) (-15 -3684 ((-107) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-254) . T) ((-260) . T) ((-419) . T) ((-456) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-777) . T) ((-916) . T) ((-950 (-501)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) . T) ((-1093) . T))
-((-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 9)) (-2865 (($ $) 11)) (-1639 (((-107) $) 18)) (-2174 (((-3 $ "failed") $) 16)) (-2442 (((-107) $ $) 20)))
-(((-507 |#1|) (-10 -8 (-15 -1639 ((-107) |#1|)) (-15 -2442 ((-107) |#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|))) (-508)) (T -507))
-NIL
-(-10 -8 (-15 -1639 ((-107) |#1|)) (-15 -2442 ((-107) |#1| |#1|)) (-15 -2865 (|#1| |#1|)) (-15 -1516 ((-2 (|:| -1738 |#1|) (|:| -4154 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 42)) (-2865 (($ $) 41)) (-1639 (((-107) $) 39)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 43)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 44)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 40)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-508) (-1180)) (T -508))
-((-3694 (*1 *1 *1 *1) (|partial| -4 *1 (-508))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1738 *1) (|:| -4154 *1) (|:| |associate| *1))) (-4 *1 (-508)))) (-2865 (*1 *1 *1) (-4 *1 (-508))) (-2442 (*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-107)))) (-1639 (*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-107)))))
-(-13 (-156) (-37 $) (-260) (-10 -8 (-15 -3694 ((-3 $ "failed") $ $)) (-15 -1516 ((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $)) (-15 -2865 ($ $)) (-15 -2442 ((-107) $ $)) (-15 -1639 ((-107) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-1875 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1070) (-578 |#2|)) 35)) (-1791 (((-530 |#2|) |#2| (-1070)) 58)) (-3707 (((-3 |#2| "failed") |#2| (-1070)) 148)) (-2433 (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) (-553 |#2|) (-578 (-553 |#2|))) 151)) (-1733 (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) |#2|) 38)))
-(((-509 |#1| |#2|) (-10 -7 (-15 -1733 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) |#2|)) (-15 -1875 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1070) (-578 |#2|))) (-15 -3707 ((-3 |#2| "failed") |#2| (-1070))) (-15 -1791 ((-530 |#2|) |#2| (-1070))) (-15 -2433 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) (-553 |#2|) (-578 (-553 |#2|))))) (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -509))
-((-2433 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1070)) (-5 *6 (-578 (-553 *3))) (-5 *5 (-553 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-509 *7 *3)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-509 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3707 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-509 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-1875 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-509 *6 *3)))) (-1733 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-509 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))))
-(-10 -7 (-15 -1733 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) |#2|)) (-15 -1875 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1070) (-578 |#2|))) (-15 -3707 ((-3 |#2| "failed") |#2| (-1070))) (-15 -1791 ((-530 |#2|) |#2| (-1070))) (-15 -2433 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1070) (-553 |#2|) (-578 (-553 |#2|)))))
-((-1559 (((-373 |#1|) |#1|) 18)) (-3739 (((-373 |#1|) |#1|) 33)) (-3354 (((-3 |#1| "failed") |#1|) 44)) (-3369 (((-373 |#1|) |#1|) 51)))
-(((-510 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3369 ((-373 |#1|) |#1|)) (-15 -3354 ((-3 |#1| "failed") |#1|))) (-500)) (T -510))
-((-3354 (*1 *2 *2) (|partial| -12 (-5 *1 (-510 *2)) (-4 *2 (-500)))) (-3369 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))) (-1559 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))))
-(-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3369 ((-373 |#1|) |#1|)) (-15 -3354 ((-3 |#1| "failed") |#1|)))
-((-3060 (($) 9)) (-4129 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-1500 (((-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-4114 (($ (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2372 (($ (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-2922 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-4137 (((-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-3682 (((-1154)) 12)))
-(((-511) (-10 -8 (-15 -3060 ($)) (-15 -3682 ((-1154))) (-15 -1500 ((-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2372 ($ (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4114 ($ (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4129 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4137 ((-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2922 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -511))
-((-2922 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-511)))) (-4137 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-511)))) (-4129 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-511)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-511)))) (-2372 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-511)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-511)))) (-3682 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-511)))) (-3060 (*1 *1) (-5 *1 (-511))))
-(-10 -8 (-15 -3060 ($)) (-15 -3682 ((-1154))) (-15 -1500 ((-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2372 ($ (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -4114 ($ (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4129 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -4137 ((-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2922 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-3728 (((-1064 (-375 (-1064 |#2|))) |#2| (-553 |#2|) (-553 |#2|) (-1064 |#2|)) 28)) (-3649 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) |#2| (-1064 |#2|)) 106)) (-2286 (((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))) 78) (((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|)) 50)) (-1891 (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| (-553 |#2|) |#2| (-375 (-1064 |#2|))) 85) (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| |#2| (-1064 |#2|)) 105)) (-2650 (((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) (-553 |#2|) |#2| (-375 (-1064 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) |#2| (-1064 |#2|)) 107)) (-2272 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-3794 ((|#2| (-1064 (-375 (-1064 |#2|))) (-553 |#2|) |#2|) 48)) (-1316 (((-1064 (-375 (-1064 |#2|))) (-1064 |#2|) (-553 |#2|)) 27)))
-(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -2286 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|))) (-15 -2286 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -1891 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| |#2| (-1064 |#2|))) (-15 -1891 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -3649 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) |#2| (-1064 |#2|))) (-15 -3649 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -2650 ((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) |#2| (-1064 |#2|))) (-15 -2650 ((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -3728 ((-1064 (-375 (-1064 |#2|))) |#2| (-553 |#2|) (-553 |#2|) (-1064 |#2|))) (-15 -3794 (|#2| (-1064 (-375 (-1064 |#2|))) (-553 |#2|) |#2|)) (-15 -1316 ((-1064 (-375 (-1064 |#2|))) (-1064 |#2|) (-553 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|))) (-15 -2272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))))) |noBranch|)) (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501))) (-13 (-389 |#1|) (-27) (-1090)) (-1001)) (T -512))
-((-2272 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-375 (-1064 *4))) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-512 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))) (-2272 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-1064 *4)) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-512 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))) (-1316 (*1 *2 *3 *4) (-12 (-5 *4 (-553 *6)) (-4 *6 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-1064 (-375 (-1064 *6)))) (-5 *1 (-512 *5 *6 *7)) (-5 *3 (-1064 *6)) (-4 *7 (-1001)))) (-3794 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1064 (-375 (-1064 *2)))) (-5 *4 (-553 *2)) (-4 *2 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *5 *2 *6)) (-4 *6 (-1001)))) (-3728 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-1064 (-375 (-1064 *3)))) (-5 *1 (-512 *6 *3 *7)) (-5 *5 (-1064 *3)) (-4 *7 (-1001)))) (-2650 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-5 *5 (-375 (-1064 *2))) (-4 *2 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *6 *2 *7)) (-4 *7 (-1001)))) (-2650 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-5 *5 (-1064 *2)) (-4 *2 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *6 *2 *7)) (-4 *7 (-1001)))) (-3649 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-5 *6 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *7 *3 *8)) (-4 *8 (-1001)))) (-3649 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-5 *6 (-1064 *3)) (-4 *3 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *7 *3 *8)) (-4 *8 (-1001)))) (-1891 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) (-1891 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-1064 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) (-2286 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) (-2286 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-1064 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))))
-(-10 -7 (-15 -2286 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|))) (-15 -2286 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -1891 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| |#2| (-1064 |#2|))) (-15 -1891 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2| (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -3649 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) |#2| (-1064 |#2|))) (-15 -3649 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -2650 ((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) |#2| (-1064 |#2|))) (-15 -2650 ((-3 |#2| "failed") |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)) (-553 |#2|) |#2| (-375 (-1064 |#2|)))) (-15 -3728 ((-1064 (-375 (-1064 |#2|))) |#2| (-553 |#2|) (-553 |#2|) (-1064 |#2|))) (-15 -3794 (|#2| (-1064 (-375 (-1064 |#2|))) (-553 |#2|) |#2|)) (-15 -1316 ((-1064 (-375 (-1064 |#2|))) (-1064 |#2|) (-553 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) |#2| (-1064 |#2|))) (-15 -2272 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-553 |#2|) |#2| (-375 (-1064 |#2|))))) |noBranch|))
-((-2558 (((-501) (-501) (-701)) 65)) (-3561 (((-501) (-501)) 64)) (-1978 (((-501) (-501)) 63)) (-1867 (((-501) (-501)) 68)) (-3228 (((-501) (-501) (-501)) 48)) (-1334 (((-501) (-501) (-501)) 45)) (-1610 (((-375 (-501)) (-501)) 20)) (-3378 (((-501) (-501)) 21)) (-3988 (((-501) (-501)) 57)) (-2955 (((-501) (-501)) 32)) (-1919 (((-578 (-501)) (-501)) 62)) (-3716 (((-501) (-501) (-501) (-501) (-501)) 43)) (-2652 (((-375 (-501)) (-501)) 41)))
-(((-513) (-10 -7 (-15 -2652 ((-375 (-501)) (-501))) (-15 -3716 ((-501) (-501) (-501) (-501) (-501))) (-15 -1919 ((-578 (-501)) (-501))) (-15 -2955 ((-501) (-501))) (-15 -3988 ((-501) (-501))) (-15 -3378 ((-501) (-501))) (-15 -1610 ((-375 (-501)) (-501))) (-15 -1334 ((-501) (-501) (-501))) (-15 -3228 ((-501) (-501) (-501))) (-15 -1867 ((-501) (-501))) (-15 -1978 ((-501) (-501))) (-15 -3561 ((-501) (-501))) (-15 -2558 ((-501) (-501) (-701))))) (T -513))
-((-2558 (*1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-701)) (-5 *1 (-513)))) (-3561 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-3228 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1334 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1610 (*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-513)) (-5 *3 (-501)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-3988 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-2955 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-1919 (*1 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-513)) (-5 *3 (-501)))) (-3716 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) (-2652 (*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-513)) (-5 *3 (-501)))))
-(-10 -7 (-15 -2652 ((-375 (-501)) (-501))) (-15 -3716 ((-501) (-501) (-501) (-501) (-501))) (-15 -1919 ((-578 (-501)) (-501))) (-15 -2955 ((-501) (-501))) (-15 -3988 ((-501) (-501))) (-15 -3378 ((-501) (-501))) (-15 -1610 ((-375 (-501)) (-501))) (-15 -1334 ((-501) (-501) (-501))) (-15 -3228 ((-501) (-501) (-501))) (-15 -1867 ((-501) (-501))) (-15 -1978 ((-501) (-501))) (-15 -3561 ((-501) (-501))) (-15 -2558 ((-501) (-501) (-701))))
-((-2721 (((-2 (|:| |answer| |#4|) (|:| -3540 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-514 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2721 ((-2 (|:| |answer| |#4|) (|:| -3540 |#4|)) |#4| (-1 |#2| |#2|)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -514))
-((-2721 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3540 *3))) (-5 *1 (-514 *5 *6 *7 *3)) (-4 *3 (-310 *5 *6 *7)))))
-(-10 -7 (-15 -2721 ((-2 (|:| |answer| |#4|) (|:| -3540 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2721 (((-2 (|:| |answer| (-375 |#2|)) (|:| -3540 (-375 |#2|)) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|)) 18)))
-(((-515 |#1| |#2|) (-10 -7 (-15 -2721 ((-2 (|:| |answer| (-375 |#2|)) (|:| -3540 (-375 |#2|)) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|)))) (-331) (-1125 |#1|)) (T -515))
-((-2721 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |answer| (-375 *6)) (|:| -3540 (-375 *6)) (|:| |specpart| (-375 *6)) (|:| |polypart| *6))) (-5 *1 (-515 *5 *6)) (-5 *3 (-375 *6)))))
-(-10 -7 (-15 -2721 ((-2 (|:| |answer| (-375 |#2|)) (|:| -3540 (-375 |#2|)) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|))))
-((-3492 (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699) (-970)) 103) (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699)) 105)) (-3188 (((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1070)) 168) (((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1053)) 167) (((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346) (-970)) 173) (((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346)) 174) (((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346)) 175) (((-948) (-282 (-346)) (-578 (-991 (-769 (-346))))) 176) (((-948) (-282 (-346)) (-991 (-769 (-346)))) 163) (((-948) (-282 (-346)) (-991 (-769 (-346))) (-346)) 162) (((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346)) 158) (((-948) (-699)) 150) (((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346) (-970)) 157)))
-(((-516) (-10 -7 (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346) (-970))) (-15 -3188 ((-948) (-699))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346) (-970))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699) (-970))) (-15 -3188 ((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1053))) (-15 -3188 ((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1070))))) (T -516))
-((-3188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-282 (-346))) (-5 *4 (-993 (-769 (-346)))) (-5 *5 (-1070)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-282 (-346))) (-5 *4 (-993 (-769 (-346)))) (-5 *5 (-1053)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-699)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *1 (-516)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-699)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *6 (-970)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-699)) (-5 *2 (-948)) (-5 *1 (-516)))) (-3188 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *6 (-970)) (-5 *2 (-948)) (-5 *1 (-516)))))
-(-10 -7 (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346) (-970))) (-15 -3188 ((-948) (-699))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-991 (-769 (-346))))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346))) (-15 -3188 ((-948) (-282 (-346)) (-578 (-991 (-769 (-346)))) (-346) (-346) (-970))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948))) (-699) (-970))) (-15 -3188 ((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1053))) (-15 -3188 ((-3 (-948) "failed") (-282 (-346)) (-993 (-769 (-346))) (-1070))))
-((-2733 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|)) 180)) (-3522 (((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|)) 98)) (-1843 (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2|) 176)) (-4070 (((-3 |#2| "failed") |#2| |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070))) 185)) (-1848 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-1070)) 193 (|has| |#3| (-593 |#2|)))))
-(((-517 |#1| |#2| |#3|) (-10 -7 (-15 -3522 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|))) (-15 -1843 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2|)) (-15 -2733 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|))) (-15 -4070 ((-3 |#2| "failed") |#2| |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)))) (IF (|has| |#3| (-593 |#2|)) (-15 -1848 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-1070))) |noBranch|)) (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501))) (-13 (-389 |#1|) (-27) (-1090)) (-1001)) (T -517))
-((-1848 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-1070)) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))) (-4070 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-4 *2 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1001)))) (-2733 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1001)))) (-1843 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1001)))) (-3522 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1001)))))
-(-10 -7 (-15 -3522 ((-530 |#2|) |#2| (-553 |#2|) (-553 |#2|))) (-15 -1843 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-553 |#2|) (-553 |#2|) |#2|)) (-15 -2733 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-553 |#2|) (-553 |#2|) (-578 |#2|))) (-15 -4070 ((-3 |#2| "failed") |#2| |#2| |#2| (-553 |#2|) (-553 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1070)))) (IF (|has| |#3| (-593 |#2|)) (-15 -1848 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4119 (-578 |#2|))) |#3| |#2| (-553 |#2|) (-553 |#2|) (-1070))) |noBranch|))
-((-3299 (((-2 (|:| -1711 |#2|) (|:| |nconst| |#2|)) |#2| (-1070)) 62)) (-4130 (((-3 |#2| "failed") |#2| (-1070) (-769 |#2|) (-769 |#2|)) 159 (-12 (|has| |#2| (-1034)) (|has| |#1| (-556 (-810 (-501)))) (|has| |#1| (-806 (-501))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)) 133 (-12 (|has| |#2| (-568)) (|has| |#1| (-556 (-810 (-501)))) (|has| |#1| (-806 (-501)))))) (-2527 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)) 142 (-12 (|has| |#2| (-568)) (|has| |#1| (-556 (-810 (-501)))) (|has| |#1| (-806 (-501)))))))
-(((-518 |#1| |#2|) (-10 -7 (-15 -3299 ((-2 (|:| -1711 |#2|) (|:| |nconst| |#2|)) |#2| (-1070))) (IF (|has| |#1| (-556 (-810 (-501)))) (IF (|has| |#1| (-806 (-501))) (PROGN (IF (|has| |#2| (-568)) (PROGN (-15 -2527 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070))) (-15 -4130 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)))) |noBranch|) (IF (|has| |#2| (-1034)) (-15 -4130 ((-3 |#2| "failed") |#2| (-1070) (-769 |#2|) (-769 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) (-13 (-777) (-950 (-501)) (-419) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -518))
-((-4130 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1070)) (-5 *4 (-769 *2)) (-4 *2 (-1034)) (-4 *2 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *1 (-518 *5 *2)))) (-4130 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-2527 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-3299 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| -1711 *3) (|:| |nconst| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))))
-(-10 -7 (-15 -3299 ((-2 (|:| -1711 |#2|) (|:| |nconst| |#2|)) |#2| (-1070))) (IF (|has| |#1| (-556 (-810 (-501)))) (IF (|has| |#1| (-806 (-501))) (PROGN (IF (|has| |#2| (-568)) (PROGN (-15 -2527 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070))) (-15 -4130 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)))) |noBranch|) (IF (|has| |#2| (-1034)) (-15 -4130 ((-3 |#2| "failed") |#2| (-1070) (-769 |#2|) (-769 |#2|))) |noBranch|)) |noBranch|) |noBranch|))
-((-3798 (((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-578 (-375 |#2|))) 39)) (-3188 (((-530 (-375 |#2|)) (-375 |#2|)) 27)) (-2685 (((-3 (-375 |#2|) "failed") (-375 |#2|)) 16)) (-3537 (((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-375 |#2|)) 46)))
-(((-519 |#1| |#2|) (-10 -7 (-15 -3188 ((-530 (-375 |#2|)) (-375 |#2|))) (-15 -2685 ((-3 (-375 |#2|) "failed") (-375 |#2|))) (-15 -3537 ((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-375 |#2|))) (-15 -3798 ((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-578 (-375 |#2|))))) (-13 (-331) (-134) (-950 (-501))) (-1125 |#1|)) (T -519))
-((-3798 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-578 (-375 *6))) (-5 *3 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *5 *6)))) (-3537 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3071 (-375 *5)) (|:| |coeff| (-375 *5)))) (-5 *1 (-519 *4 *5)) (-5 *3 (-375 *5)))) (-2685 (*1 *2 *2) (|partial| -12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134) (-950 (-501)))) (-5 *1 (-519 *3 *4)))) (-3188 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-530 (-375 *5))) (-5 *1 (-519 *4 *5)) (-5 *3 (-375 *5)))))
-(-10 -7 (-15 -3188 ((-530 (-375 |#2|)) (-375 |#2|))) (-15 -2685 ((-3 (-375 |#2|) "failed") (-375 |#2|))) (-15 -3537 ((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-375 |#2|))) (-15 -3798 ((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-578 (-375 |#2|)))))
-((-1491 (((-3 (-501) "failed") |#1|) 14)) (-1680 (((-107) |#1|) 13)) (-2004 (((-501) |#1|) 9)))
-(((-520 |#1|) (-10 -7 (-15 -2004 ((-501) |#1|)) (-15 -1680 ((-107) |#1|)) (-15 -1491 ((-3 (-501) "failed") |#1|))) (-950 (-501))) (T -520))
-((-1491 (*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-520 *3)) (-4 *3 (-950 *2)))) (-1680 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-520 *3)) (-4 *3 (-950 (-501))))) (-2004 (*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-520 *3)) (-4 *3 (-950 *2)))))
-(-10 -7 (-15 -2004 ((-501) |#1|)) (-15 -1680 ((-107) |#1|)) (-15 -1491 ((-3 (-501) "failed") |#1|)))
-((-1376 (((-3 (-2 (|:| |mainpart| (-375 (-866 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 (-866 |#1|))) (|:| |logand| (-375 (-866 |#1|))))))) "failed") (-375 (-866 |#1|)) (-1070) (-578 (-375 (-866 |#1|)))) 43)) (-3009 (((-530 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-1070)) 25)) (-1494 (((-3 (-375 (-866 |#1|)) "failed") (-375 (-866 |#1|)) (-1070)) 20)) (-4040 (((-3 (-2 (|:| -3071 (-375 (-866 |#1|))) (|:| |coeff| (-375 (-866 |#1|)))) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|))) 32)))
-(((-521 |#1|) (-10 -7 (-15 -3009 ((-530 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -1494 ((-3 (-375 (-866 |#1|)) "failed") (-375 (-866 |#1|)) (-1070))) (-15 -1376 ((-3 (-2 (|:| |mainpart| (-375 (-866 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 (-866 |#1|))) (|:| |logand| (-375 (-866 |#1|))))))) "failed") (-375 (-866 |#1|)) (-1070) (-578 (-375 (-866 |#1|))))) (-15 -4040 ((-3 (-2 (|:| -3071 (-375 (-866 |#1|))) (|:| |coeff| (-375 (-866 |#1|)))) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|))))) (-13 (-508) (-950 (-501)) (-134))) (T -521))
-((-4040 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-2 (|:| -3071 (-375 (-866 *5))) (|:| |coeff| (-375 (-866 *5))))) (-5 *1 (-521 *5)) (-5 *3 (-375 (-866 *5))))) (-1376 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 (-375 (-866 *6)))) (-5 *3 (-375 (-866 *6))) (-4 *6 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *6)))) (-1494 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-375 (-866 *4))) (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-950 (-501)) (-134))) (-5 *1 (-521 *4)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-530 (-375 (-866 *5)))) (-5 *1 (-521 *5)) (-5 *3 (-375 (-866 *5))))))
-(-10 -7 (-15 -3009 ((-530 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -1494 ((-3 (-375 (-866 |#1|)) "failed") (-375 (-866 |#1|)) (-1070))) (-15 -1376 ((-3 (-2 (|:| |mainpart| (-375 (-866 |#1|))) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 (-866 |#1|))) (|:| |logand| (-375 (-866 |#1|))))))) "failed") (-375 (-866 |#1|)) (-1070) (-578 (-375 (-866 |#1|))))) (-15 -4040 ((-3 (-2 (|:| -3071 (-375 (-866 |#1|))) (|:| |coeff| (-375 (-866 |#1|)))) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)))))
-((-3736 (((-107) $ $) 59)) (-3292 (((-107) $) 36)) (-1783 ((|#1| $) 30)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) 63)) (-3978 (($ $) 123)) (-3937 (($ $) 103)) (-3405 ((|#1| $) 28)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL)) (-3970 (($ $) 125)) (-3929 (($ $) 99)) (-3984 (($ $) 127)) (-3945 (($ $) 107)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) 78)) (-3490 (((-501) $) 80)) (-2174 (((-3 $ "failed") $) 62)) (-3074 (($ |#1| |#1|) 26)) (-2164 (((-107) $) 33)) (-2003 (($) 89)) (-1355 (((-107) $) 43)) (-1342 (($ $ (-501)) NIL)) (-4067 (((-107) $) 34)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1635 (($ $) 91)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-2392 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-375 (-501))) 77)) (-1277 ((|#1| $) 27)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) 65) (($ (-578 $)) NIL)) (-3694 (((-3 $ "failed") $ $) 64)) (-1989 (($ $) 93)) (-3991 (($ $) 131)) (-3949 (($ $) 105)) (-3981 (($ $) 133)) (-3940 (($ $) 109)) (-3975 (($ $) 129)) (-3933 (($ $) 101)) (-3684 (((-107) $ |#1|) 31)) (-3691 (((-786) $) 85) (($ (-501)) 67) (($ $) NIL) (($ (-501)) 67)) (-3965 (((-701)) 87)) (-4003 (($ $) 145)) (-3958 (($ $) 115)) (-2442 (((-107) $ $) NIL)) (-3995 (($ $) 143)) (-3952 (($ $) 111)) (-4013 (($ $) 141)) (-3964 (($ $) 121)) (-3550 (($ $) 139)) (-3967 (($ $) 119)) (-4008 (($ $) 137)) (-3961 (($ $) 117)) (-3999 (($ $) 135)) (-3955 (($ $) 113)) (-3948 (($ $ (-839)) 55) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 10 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 37)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 35)) (-3797 (($ $) 41) (($ $ $) 42)) (-3790 (($ $ $) 40)) (** (($ $ (-839)) 54) (($ $ (-701)) NIL) (($ $ $) 95) (($ $ (-375 (-501))) 147)) (* (($ (-839) $) 51) (($ (-701) $) NIL) (($ (-501) $) 50) (($ $ $) 48)))
-(((-522 |#1|) (-506 |#1|) (-13 (-372) (-1090))) (T -522))
-NIL
-(-506 |#1|)
-((-4002 (((-3 (-578 (-1064 (-501))) "failed") (-578 (-1064 (-501))) (-1064 (-501))) 24)))
-(((-523) (-10 -7 (-15 -4002 ((-3 (-578 (-1064 (-501))) "failed") (-578 (-1064 (-501))) (-1064 (-501)))))) (T -523))
-((-4002 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 (-501)))) (-5 *3 (-1064 (-501))) (-5 *1 (-523)))))
-(-10 -7 (-15 -4002 ((-3 (-578 (-1064 (-501))) "failed") (-578 (-1064 (-501))) (-1064 (-501)))))
-((-3387 (((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-1070)) 18)) (-2104 (((-578 (-553 |#2|)) (-578 |#2|) (-1070)) 23)) (-1442 (((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-578 (-553 |#2|))) 10)) (-1921 ((|#2| |#2| (-1070)) 51 (|has| |#1| (-508)))) (-1579 ((|#2| |#2| (-1070)) 76 (-12 (|has| |#2| (-254)) (|has| |#1| (-419))))) (-2116 (((-553 |#2|) (-553 |#2|) (-578 (-553 |#2|)) (-1070)) 25)) (-1339 (((-553 |#2|) (-578 (-553 |#2|))) 24)) (-1182 (((-530 |#2|) |#2| (-1070) (-1 (-530 |#2|) |#2| (-1070)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070))) 100 (-12 (|has| |#2| (-254)) (|has| |#2| (-568)) (|has| |#2| (-950 (-1070))) (|has| |#1| (-556 (-810 (-501)))) (|has| |#1| (-419)) (|has| |#1| (-806 (-501)))))))
-(((-524 |#1| |#2|) (-10 -7 (-15 -3387 ((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-1070))) (-15 -1339 ((-553 |#2|) (-578 (-553 |#2|)))) (-15 -2116 ((-553 |#2|) (-553 |#2|) (-578 (-553 |#2|)) (-1070))) (-15 -1442 ((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-578 (-553 |#2|)))) (-15 -2104 ((-578 (-553 |#2|)) (-578 |#2|) (-1070))) (IF (|has| |#1| (-508)) (-15 -1921 (|#2| |#2| (-1070))) |noBranch|) (IF (|has| |#1| (-419)) (IF (|has| |#2| (-254)) (PROGN (-15 -1579 (|#2| |#2| (-1070))) (IF (|has| |#1| (-556 (-810 (-501)))) (IF (|has| |#1| (-806 (-501))) (IF (|has| |#2| (-568)) (IF (|has| |#2| (-950 (-1070))) (-15 -1182 ((-530 |#2|) |#2| (-1070) (-1 (-530 |#2|) |#2| (-1070)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) (-777) (-389 |#1|)) (T -524))
-((-1182 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-530 *3) *3 (-1070))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1070))) (-4 *3 (-254)) (-4 *3 (-568)) (-4 *3 (-950 *4)) (-4 *3 (-389 *7)) (-5 *4 (-1070)) (-4 *7 (-556 (-810 (-501)))) (-4 *7 (-419)) (-4 *7 (-806 (-501))) (-4 *7 (-777)) (-5 *2 (-530 *3)) (-5 *1 (-524 *7 *3)))) (-1579 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-419)) (-4 *4 (-777)) (-5 *1 (-524 *4 *2)) (-4 *2 (-254)) (-4 *2 (-389 *4)))) (-1921 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-508)) (-4 *4 (-777)) (-5 *1 (-524 *4 *2)) (-4 *2 (-389 *4)))) (-2104 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-1070)) (-4 *6 (-389 *5)) (-4 *5 (-777)) (-5 *2 (-578 (-553 *6))) (-5 *1 (-524 *5 *6)))) (-1442 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-553 *4))) (-4 *4 (-389 *3)) (-4 *3 (-777)) (-5 *1 (-524 *3 *4)))) (-2116 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-553 *6))) (-5 *4 (-1070)) (-5 *2 (-553 *6)) (-4 *6 (-389 *5)) (-4 *5 (-777)) (-5 *1 (-524 *5 *6)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-578 (-553 *5))) (-4 *4 (-777)) (-5 *2 (-553 *5)) (-5 *1 (-524 *4 *5)) (-4 *5 (-389 *4)))) (-3387 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-553 *5))) (-5 *3 (-1070)) (-4 *5 (-389 *4)) (-4 *4 (-777)) (-5 *1 (-524 *4 *5)))))
-(-10 -7 (-15 -3387 ((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-1070))) (-15 -1339 ((-553 |#2|) (-578 (-553 |#2|)))) (-15 -2116 ((-553 |#2|) (-553 |#2|) (-578 (-553 |#2|)) (-1070))) (-15 -1442 ((-578 (-553 |#2|)) (-578 (-553 |#2|)) (-578 (-553 |#2|)))) (-15 -2104 ((-578 (-553 |#2|)) (-578 |#2|) (-1070))) (IF (|has| |#1| (-508)) (-15 -1921 (|#2| |#2| (-1070))) |noBranch|) (IF (|has| |#1| (-419)) (IF (|has| |#2| (-254)) (PROGN (-15 -1579 (|#2| |#2| (-1070))) (IF (|has| |#1| (-556 (-810 (-501)))) (IF (|has| |#1| (-806 (-501))) (IF (|has| |#2| (-568)) (IF (|has| |#2| (-950 (-1070))) (-15 -1182 ((-530 |#2|) |#2| (-1070) (-1 (-530 |#2|) |#2| (-1070)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1070)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|))
-((-3069 (((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) "failed") (-501) |#1| |#1|)) 167)) (-2775 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-578 (-375 |#2|))) 143)) (-3810 (((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-578 (-375 |#2|))) 140)) (-1298 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 129)) (-2331 (((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 153)) (-2986 (((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-375 |#2|)) 170)) (-3080 (((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-375 |#2|)) 173)) (-2088 (((-2 (|:| |ir| (-530 (-375 |#2|))) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|)) 81)) (-2782 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 88)) (-1261 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-578 (-375 |#2|))) 147)) (-1548 (((-3 (-562 |#1| |#2|) "failed") (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|)) 133)) (-2016 (((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|)) 157)) (-2223 (((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-375 |#2|)) 178)))
-(((-525 |#1| |#2|) (-10 -7 (-15 -2331 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2016 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|))) (-15 -3069 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) "failed") (-501) |#1| |#1|))) (-15 -3080 ((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-375 |#2|))) (-15 -2223 ((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-375 |#2|))) (-15 -2775 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-578 (-375 |#2|)))) (-15 -1261 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-578 (-375 |#2|)))) (-15 -2986 ((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-375 |#2|))) (-15 -3810 ((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-578 (-375 |#2|)))) (-15 -1298 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1548 ((-3 (-562 |#1| |#2|) "failed") (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|))) (-15 -2088 ((-2 (|:| |ir| (-530 (-375 |#2|))) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|))) (-15 -2782 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-331) (-1125 |#1|)) (T -525))
-((-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-525 *5 *3)))) (-2088 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |ir| (-530 (-375 *6))) (|:| |specpart| (-375 *6)) (|:| |polypart| *6))) (-5 *1 (-525 *5 *6)) (-5 *3 (-375 *6)))) (-1548 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1320 *4) (|:| |sol?| (-107))) (-501) *4)) (-4 *4 (-331)) (-4 *5 (-1125 *4)) (-5 *1 (-525 *4 *5)))) (-1298 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-331)) (-5 *1 (-525 *4 *2)) (-4 *2 (-1125 *4)))) (-3810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-578 (-375 *7))) (-4 *7 (-1125 *6)) (-5 *3 (-375 *7)) (-4 *6 (-331)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6 *7)))) (-2986 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -3071 (-375 *6)) (|:| |coeff| (-375 *6)))) (-5 *1 (-525 *5 *6)) (-5 *3 (-375 *6)))) (-1261 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1320 *7) (|:| |sol?| (-107))) (-501) *7)) (-5 *6 (-578 (-375 *8))) (-4 *7 (-331)) (-4 *8 (-1125 *7)) (-5 *3 (-375 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))) (-2775 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-578 (-375 *8))) (-4 *7 (-331)) (-4 *8 (-1125 *7)) (-5 *3 (-375 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))) (-2223 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1320 *6) (|:| |sol?| (-107))) (-501) *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-375 *7)) (|:| |a0| *6)) (-2 (|:| -3071 (-375 *7)) (|:| |coeff| (-375 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))) (-3080 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-375 *7)) (|:| |a0| *6)) (-2 (|:| -3071 (-375 *7)) (|:| |coeff| (-375 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))) (-3069 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-578 *6) "failed") (-501) *6 *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))) (-2016 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1320 *6) (|:| |sol?| (-107))) (-501) *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))) (-2331 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))))
-(-10 -7 (-15 -2331 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2016 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|))) (-15 -3069 ((-2 (|:| |answer| (-530 (-375 |#2|))) (|:| |a0| |#1|)) (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-578 |#1|) "failed") (-501) |#1| |#1|))) (-15 -3080 ((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-375 |#2|))) (-15 -2223 ((-3 (-2 (|:| |answer| (-375 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-375 |#2|))) (-15 -2775 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-578 (-375 |#2|)))) (-15 -1261 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|))))))) (|:| |a0| |#1|)) "failed") (-375 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|) (-578 (-375 |#2|)))) (-15 -2986 ((-3 (-2 (|:| -3071 (-375 |#2|)) (|:| |coeff| (-375 |#2|))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-375 |#2|))) (-15 -3810 ((-3 (-2 (|:| |mainpart| (-375 |#2|)) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| (-375 |#2|)) (|:| |logand| (-375 |#2|)))))) "failed") (-375 |#2|) (-1 |#2| |#2|) (-578 (-375 |#2|)))) (-15 -1298 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1548 ((-3 (-562 |#1| |#2|) "failed") (-562 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1320 |#1|) (|:| |sol?| (-107))) (-501) |#1|))) (-15 -2088 ((-2 (|:| |ir| (-530 (-375 |#2|))) (|:| |specpart| (-375 |#2|)) (|:| |polypart| |#2|)) (-375 |#2|) (-1 |#2| |#2|))) (-15 -2782 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1194 (((-3 |#2| "failed") |#2| (-1070) (-1070)) 10)))
-(((-526 |#1| |#2|) (-10 -7 (-15 -1194 ((-3 |#2| "failed") |#2| (-1070) (-1070)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-879) (-1034) (-29 |#1|))) (T -526))
-((-1194 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-526 *4 *2)) (-4 *2 (-13 (-1090) (-879) (-1034) (-29 *4))))))
-(-10 -7 (-15 -1194 ((-3 |#2| "failed") |#2| (-1070) (-1070))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ (-501)) 65)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2833 (($ (-1064 (-501)) (-501)) 71)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) 57)) (-1529 (($ $) 33)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-3169 (((-701) $) 15)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 (((-501)) 27)) (-2443 (((-501) $) 31)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3718 (($ $ (-501)) 21)) (-3694 (((-3 $ "failed") $ $) 58)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) 16)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 60)) (-3960 (((-1048 (-501)) $) 18)) (-1267 (($ $) 23)) (-3691 (((-786) $) 85) (($ (-501)) 51) (($ $) NIL)) (-3965 (((-701)) 14)) (-2442 (((-107) $ $) NIL)) (-2391 (((-501) $ (-501)) 35)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 34 T CONST)) (-1925 (($) 19 T CONST)) (-3751 (((-107) $ $) 38)) (-3797 (($ $) 50) (($ $ $) 36)) (-3790 (($ $ $) 49)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 53) (($ $ $) 54)))
-(((-527 |#1| |#2|) (-792 |#1|) (-501) (-107)) (T -527))
-NIL
-(-792 |#1|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 18)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (($ $ (-839)) NIL (|has| $ (-336))) (($ $) NIL)) (-3431 (((-1077 (-839) (-701)) (-501)) 47)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 $ "failed") $) 75)) (-3490 (($ $) 74)) (-3142 (($ (-1148 $)) 73)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) 30)) (-2890 (($) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) 49)) (-3521 (((-107) $) NIL)) (-3067 (($ $) NIL) (($ $ (-701)) NIL)) (-1628 (((-107) $) NIL)) (-3169 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-1355 (((-107) $) NIL)) (-4065 (($) 35 (|has| $ (-336)))) (-1928 (((-107) $) NIL (|has| $ (-336)))) (-2626 (($ $ (-839)) NIL (|has| $ (-336))) (($ $) NIL)) (-3493 (((-3 $ "failed") $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 $) $ (-839)) NIL (|has| $ (-336))) (((-1064 $) $) 83)) (-3104 (((-839) $) 55)) (-3721 (((-1064 $) $) NIL (|has| $ (-336)))) (-1806 (((-3 (-1064 $) "failed") $ $) NIL (|has| $ (-336))) (((-1064 $) $) NIL (|has| $ (-336)))) (-2468 (($ $ (-1064 $)) NIL (|has| $ (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL T CONST)) (-3506 (($ (-839)) 48)) (-2255 (((-107) $) 67)) (-3708 (((-1018) $) NIL)) (-3987 (($) 16 (|has| $ (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 40)) (-3739 (((-373 $) $) NIL)) (-2906 (((-839)) 66) (((-762 (-839))) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-3 (-701) "failed") $ $) NIL) (((-701) $) NIL)) (-3613 (((-125)) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-1201 (((-839) $) 65) (((-762 (-839)) $) NIL)) (-2264 (((-1064 $)) 82)) (-1349 (($) 54)) (-3481 (($) 36 (|has| $ (-336)))) (-2085 (((-621 $) (-1148 $)) NIL) (((-1148 $) $) 71)) (-1248 (((-501) $) 26)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) 28) (($ $) NIL) (($ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3965 (((-701)) 37)) (-4119 (((-1148 $) (-839)) 77) (((-1148 $)) 76)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 19 T CONST)) (-1925 (($) 15 T CONST)) (-3184 (($ $ (-701)) NIL (|has| $ (-336))) (($ $) NIL (|has| $ (-336)))) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 24)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 61) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL)))
-(((-528 |#1|) (-13 (-318) (-297 $) (-556 (-501))) (-839)) (T -528))
-NIL
-(-13 (-318) (-297 $) (-556 (-501)))
-((-3395 (((-1154) (-1053)) 10)))
-(((-529) (-10 -7 (-15 -3395 ((-1154) (-1053))))) (T -529))
-((-3395 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-529)))))
-(-10 -7 (-15 -3395 ((-1154) (-1053))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 68)) (-3490 ((|#1| $) NIL)) (-3071 ((|#1| $) 24)) (-2415 (((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-2428 (($ |#1| (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3540 (((-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) $) 25)) (-3460 (((-1053) $) NIL)) (-3028 (($ |#1| |#1|) 32) (($ |#1| (-1070)) 43 (|has| |#1| (-950 (-1070))))) (-3708 (((-1018) $) NIL)) (-3962 (((-107) $) 28)) (-2596 ((|#1| $ (-1 |#1| |#1|)) 80) ((|#1| $ (-1070)) 81 (|has| |#1| (-820 (-1070))))) (-3691 (((-786) $) 95) (($ |#1|) 23)) (-1850 (($) 16 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) 15) (($ $ $) NIL)) (-3790 (($ $ $) 77)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 14) (($ (-375 (-501)) $) 35) (($ $ (-375 (-501))) NIL)))
-(((-530 |#1|) (-13 (-648 (-375 (-501))) (-950 |#1|) (-10 -8 (-15 -2428 ($ |#1| (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3071 (|#1| $)) (-15 -3540 ((-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) $)) (-15 -2415 ((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3962 ((-107) $)) (-15 -3028 ($ |#1| |#1|)) (-15 -2596 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-820 (-1070))) (-15 -2596 (|#1| $ (-1070))) |noBranch|) (IF (|has| |#1| (-950 (-1070))) (-15 -3028 ($ |#1| (-1070))) |noBranch|))) (-331)) (T -530))
-((-2428 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 *2)) (|:| |logand| (-1064 *2))))) (-5 *4 (-578 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-331)) (-5 *1 (-530 *2)))) (-3071 (*1 *2 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-331)))) (-3540 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 *3)) (|:| |logand| (-1064 *3))))) (-5 *1 (-530 *3)) (-4 *3 (-331)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-331)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-530 *3)) (-4 *3 (-331)))) (-3028 (*1 *1 *2 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-331)))) (-2596 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-530 *2)) (-4 *2 (-331)))) (-2596 (*1 *2 *1 *3) (-12 (-4 *2 (-331)) (-4 *2 (-820 *3)) (-5 *1 (-530 *2)) (-5 *3 (-1070)))) (-3028 (*1 *1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *1 (-530 *2)) (-4 *2 (-950 *3)) (-4 *2 (-331)))))
-(-13 (-648 (-375 (-501))) (-950 |#1|) (-10 -8 (-15 -2428 ($ |#1| (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) (-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3071 (|#1| $)) (-15 -3540 ((-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 |#1|)) (|:| |logand| (-1064 |#1|)))) $)) (-15 -2415 ((-578 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3962 ((-107) $)) (-15 -3028 ($ |#1| |#1|)) (-15 -2596 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-820 (-1070))) (-15 -2596 (|#1| $ (-1070))) |noBranch|) (IF (|has| |#1| (-950 (-1070))) (-15 -3028 ($ |#1| (-1070))) |noBranch|)))
-((-1212 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|)) 26)))
-(((-531 |#1| |#2|) (-10 -7 (-15 -1212 ((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|))) (-15 -1212 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1212 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1212 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-331) (-331)) (T -531))
-((-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-531 *5 *6)))) (-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-331)) (-4 *2 (-331)) (-5 *1 (-531 *5 *2)))) (-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3071 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-2 (|:| -3071 *6) (|:| |coeff| *6))) (-5 *1 (-531 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-530 *5)) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-530 *6)) (-5 *1 (-531 *5 *6)))))
-(-10 -7 (-15 -1212 ((-530 |#2|) (-1 |#2| |#1|) (-530 |#1|))) (-15 -1212 ((-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3071 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1212 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1212 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-3205 (((-530 |#2|) (-530 |#2|)) 37)) (-1967 (((-578 |#2|) (-530 |#2|)) 39)) (-1605 ((|#2| (-530 |#2|)) 46)))
-(((-532 |#1| |#2|) (-10 -7 (-15 -3205 ((-530 |#2|) (-530 |#2|))) (-15 -1967 ((-578 |#2|) (-530 |#2|))) (-15 -1605 (|#2| (-530 |#2|)))) (-13 (-419) (-950 (-501)) (-777) (-577 (-501))) (-13 (-29 |#1|) (-1090))) (T -532))
-((-1605 (*1 *2 *3) (-12 (-5 *3 (-530 *2)) (-4 *2 (-13 (-29 *4) (-1090))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-530 *5)) (-4 *5 (-13 (-29 *4) (-1090))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-578 *5)) (-5 *1 (-532 *4 *5)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-530 *4)) (-4 *4 (-13 (-29 *3) (-1090))) (-4 *3 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *1 (-532 *3 *4)))))
-(-10 -7 (-15 -3205 ((-530 |#2|) (-530 |#2|))) (-15 -1967 ((-578 |#2|) (-530 |#2|))) (-15 -1605 (|#2| (-530 |#2|))))
-((-3848 (((-107) |#1|) 16)) (-2325 (((-3 |#1| "failed") |#1|) 14)) (-3137 (((-2 (|:| -1965 |#1|) (|:| -3027 (-701))) |#1|) 30) (((-3 |#1| "failed") |#1| (-701)) 18)) (-2916 (((-107) |#1| (-701)) 19)) (-1495 ((|#1| |#1|) 31)) (-2395 ((|#1| |#1| (-701)) 33)))
-(((-533 |#1|) (-10 -7 (-15 -2916 ((-107) |#1| (-701))) (-15 -3137 ((-3 |#1| "failed") |#1| (-701))) (-15 -3137 ((-2 (|:| -1965 |#1|) (|:| -3027 (-701))) |#1|)) (-15 -2395 (|#1| |#1| (-701))) (-15 -3848 ((-107) |#1|)) (-15 -2325 ((-3 |#1| "failed") |#1|)) (-15 -1495 (|#1| |#1|))) (-500)) (T -533))
-((-1495 (*1 *2 *2) (-12 (-5 *1 (-533 *2)) (-4 *2 (-500)))) (-2325 (*1 *2 *2) (|partial| -12 (-5 *1 (-533 *2)) (-4 *2 (-500)))) (-3848 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-533 *3)) (-4 *3 (-500)))) (-2395 (*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-533 *2)) (-4 *2 (-500)))) (-3137 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1965 *3) (|:| -3027 (-701)))) (-5 *1 (-533 *3)) (-4 *3 (-500)))) (-3137 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-5 *1 (-533 *2)) (-4 *2 (-500)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-107)) (-5 *1 (-533 *3)) (-4 *3 (-500)))))
-(-10 -7 (-15 -2916 ((-107) |#1| (-701))) (-15 -3137 ((-3 |#1| "failed") |#1| (-701))) (-15 -3137 ((-2 (|:| -1965 |#1|) (|:| -3027 (-701))) |#1|)) (-15 -2395 (|#1| |#1| (-701))) (-15 -3848 ((-107) |#1|)) (-15 -2325 ((-3 |#1| "failed") |#1|)) (-15 -1495 (|#1| |#1|)))
-((-1215 (((-1064 |#1|) (-839)) 26)))
-(((-534 |#1|) (-10 -7 (-15 -1215 ((-1064 |#1|) (-839)))) (-318)) (T -534))
-((-1215 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-534 *4)) (-4 *4 (-318)))))
-(-10 -7 (-15 -1215 ((-1064 |#1|) (-839))))
-((-3205 (((-530 (-375 (-866 |#1|))) (-530 (-375 (-866 |#1|)))) 26)) (-3188 (((-3 (-282 |#1|) (-578 (-282 |#1|))) (-375 (-866 |#1|)) (-1070)) 32 (|has| |#1| (-134)))) (-1967 (((-578 (-282 |#1|)) (-530 (-375 (-866 |#1|)))) 18)) (-3279 (((-282 |#1|) (-375 (-866 |#1|)) (-1070)) 30 (|has| |#1| (-134)))) (-1605 (((-282 |#1|) (-530 (-375 (-866 |#1|)))) 20)))
-(((-535 |#1|) (-10 -7 (-15 -3205 ((-530 (-375 (-866 |#1|))) (-530 (-375 (-866 |#1|))))) (-15 -1967 ((-578 (-282 |#1|)) (-530 (-375 (-866 |#1|))))) (-15 -1605 ((-282 |#1|) (-530 (-375 (-866 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3188 ((-3 (-282 |#1|) (-578 (-282 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -3279 ((-282 |#1|) (-375 (-866 |#1|)) (-1070)))) |noBranch|)) (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (T -535))
-((-3279 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-134)) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-282 *5)) (-5 *1 (-535 *5)))) (-3188 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-134)) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-3 (-282 *5) (-578 (-282 *5)))) (-5 *1 (-535 *5)))) (-1605 (*1 *2 *3) (-12 (-5 *3 (-530 (-375 (-866 *4)))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-535 *4)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-530 (-375 (-866 *4)))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-578 (-282 *4))) (-5 *1 (-535 *4)))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-530 (-375 (-866 *3)))) (-4 *3 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *1 (-535 *3)))))
-(-10 -7 (-15 -3205 ((-530 (-375 (-866 |#1|))) (-530 (-375 (-866 |#1|))))) (-15 -1967 ((-578 (-282 |#1|)) (-530 (-375 (-866 |#1|))))) (-15 -1605 ((-282 |#1|) (-530 (-375 (-866 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -3188 ((-3 (-282 |#1|) (-578 (-282 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -3279 ((-282 |#1|) (-375 (-866 |#1|)) (-1070)))) |noBranch|))
-((-3015 (((-578 (-621 (-501))) (-578 (-501)) (-578 (-822 (-501)))) 45) (((-578 (-621 (-501))) (-578 (-501))) 46) (((-621 (-501)) (-578 (-501)) (-822 (-501))) 41)) (-1804 (((-701) (-578 (-501))) 39)))
-(((-536) (-10 -7 (-15 -1804 ((-701) (-578 (-501)))) (-15 -3015 ((-621 (-501)) (-578 (-501)) (-822 (-501)))) (-15 -3015 ((-578 (-621 (-501))) (-578 (-501)))) (-15 -3015 ((-578 (-621 (-501))) (-578 (-501)) (-578 (-822 (-501))))))) (T -536))
-((-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-501))) (-5 *4 (-578 (-822 (-501)))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-536)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-536)))) (-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-501))) (-5 *4 (-822 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-536)))) (-1804 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-701)) (-5 *1 (-536)))))
-(-10 -7 (-15 -1804 ((-701) (-578 (-501)))) (-15 -3015 ((-621 (-501)) (-578 (-501)) (-822 (-501)))) (-15 -3015 ((-578 (-621 (-501))) (-578 (-501)))) (-15 -3015 ((-578 (-621 (-501))) (-578 (-501)) (-578 (-822 (-501))))))
-((-2078 (((-578 |#5|) |#5| (-107)) 72)) (-2103 (((-107) |#5| (-578 |#5|)) 30)))
-(((-537 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2078 ((-578 |#5|) |#5| (-107))) (-15 -2103 ((-107) |#5| (-578 |#5|)))) (-13 (-276) (-134)) (-723) (-777) (-972 |#1| |#2| |#3|) (-1009 |#1| |#2| |#3| |#4|)) (T -537))
-((-2103 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1009 *5 *6 *7 *8)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-537 *5 *6 *7 *8 *3)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-578 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3)) (-4 *3 (-1009 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2078 ((-578 |#5|) |#5| (-107))) (-15 -2103 ((-107) |#5| (-578 |#5|))))
-((-3736 (((-107) $ $) NIL (|has| (-131) (-1001)))) (-3449 (($ $) 34)) (-3612 (($ $) NIL)) (-2474 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-4042 (((-107) $ $) 51)) (-4032 (((-107) $ $ (-501)) 46)) (-3205 (((-578 $) $ (-131)) 59) (((-578 $) $ (-128)) 60)) (-2045 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-777)))) (-3441 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-131) (-777))))) (-2861 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-131) $ (-501) (-131)) 45 (|has| $ (-6 -4168))) (((-131) $ (-1116 (-501)) (-131)) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-4089 (($ $ (-131)) 63) (($ $ (-128)) 64)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-3834 (($ $ (-1116 (-501)) $) 44)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1526 (($ (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2156 (((-131) $ (-501) (-131)) NIL (|has| $ (-6 -4168)))) (-1905 (((-131) $ (-501)) NIL)) (-4056 (((-107) $ $) 70)) (-1934 (((-501) (-1 (-107) (-131)) $) NIL) (((-501) (-131) $) NIL (|has| (-131) (-1001))) (((-501) (-131) $ (-501)) 48 (|has| (-131) (-1001))) (((-501) $ $ (-501)) 47) (((-501) (-128) $ (-501)) 50)) (-2732 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) (-131)) 9)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 28 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| (-131) (-777)))) (-3216 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1522 (((-501) $) 42 (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-131) (-777)))) (-3990 (((-107) $ $ (-131)) 71)) (-3921 (((-701) $ $ (-131)) 69)) (-2519 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-1666 (($ $) 37)) (-2874 (($ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-4082 (($ $ (-131)) 61) (($ $ (-128)) 62)) (-3460 (((-1053) $) 38 (|has| (-131) (-1001)))) (-1473 (($ (-131) $ (-501)) NIL) (($ $ $ (-501)) 23)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-501) $) 68) (((-1018) $) NIL (|has| (-131) (-1001)))) (-1190 (((-131) $) NIL (|has| (-501) (-777)))) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-3084 (($ $ (-131)) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-131)))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-131)) (-578 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-4137 (((-578 (-131)) $) NIL)) (-1407 (((-107) $) 12)) (-3122 (($) 10)) (-2007 (((-131) $ (-501) (-131)) NIL) (((-131) $ (-501)) 52) (($ $ (-1116 (-501))) 21) (($ $ $) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167))) (((-701) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-2355 (($ $ $ (-501)) 65 (|has| $ (-6 -4168)))) (-3764 (($ $) 17)) (-1248 (((-490) $) NIL (|has| (-131) (-556 (-490))))) (-3699 (($ (-578 (-131))) NIL)) (-3934 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-578 $)) 66)) (-3691 (($ (-131)) NIL) (((-786) $) 27 (|has| (-131) (-1001)))) (-1200 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3751 (((-107) $ $) 14 (|has| (-131) (-1001)))) (-3773 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3762 (((-107) $ $) 15 (|has| (-131) (-777)))) (-3581 (((-701) $) 13 (|has| $ (-6 -4167)))))
-(((-538 |#1|) (-13 (-1039) (-10 -8 (-15 -3708 ((-501) $)))) (-501)) (T -538))
-((-3708 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-538 *3)) (-14 *3 *2))))
-(-13 (-1039) (-10 -8 (-15 -3708 ((-501) $))))
-((-4063 (((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2| (-991 |#4|)) 32)))
-(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4063 ((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2| (-991 |#4|))) (-15 -4063 ((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2|))) (-723) (-777) (-508) (-870 |#3| |#1| |#2|)) (T -539))
-((-4063 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-501)))) (-5 *1 (-539 *5 *4 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) (-4063 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-991 *3)) (-4 *3 (-870 *7 *6 *4)) (-4 *6 (-723)) (-4 *4 (-777)) (-4 *7 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-501)))) (-5 *1 (-539 *6 *4 *7 *3)))))
-(-10 -7 (-15 -4063 ((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2| (-991 |#4|))) (-15 -4063 ((-2 (|:| |num| |#4|) (|:| |den| (-501))) |#4| |#2|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 63)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-501)) 54) (($ $ (-501) (-501)) 55)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 60)) (-3359 (($ $) 99)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3061 (((-786) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) (-939 (-769 (-501))) (-1070) |#1| (-375 (-501))) 214)) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 34)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3331 (((-107) $) NIL)) (-3169 (((-501) $) 58) (((-501) $ (-501)) 59)) (-1355 (((-107) $) NIL)) (-2917 (($ $ (-839)) 76)) (-3608 (($ (-1 |#1| (-501)) $) 73)) (-2706 (((-107) $) 25)) (-3787 (($ |#1| (-501)) 22) (($ $ (-986) (-501)) NIL) (($ $ (-578 (-986)) (-578 (-501))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 67)) (-1238 (($ (-939 (-769 (-501))) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 11)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3188 (($ $) 111 (|has| |#1| (-37 (-375 (-501)))))) (-2573 (((-3 $ "failed") $ $ (-107)) 98)) (-2790 (($ $ $) 107)) (-3708 (((-1018) $) NIL)) (-1826 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 13)) (-3256 (((-939 (-769 (-501))) $) 12)) (-3718 (($ $ (-501)) 45)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-501)))))) (-2007 ((|#1| $ (-501)) 57) (($ $ $) NIL (|has| (-501) (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-501) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (-1201 (((-501) $) NIL)) (-1267 (($ $) 46)) (-3691 (((-786) $) NIL) (($ (-501)) 28) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) 27 (|has| |#1| (-156)))) (-2495 ((|#1| $ (-501)) 56)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 37)) (-2896 ((|#1| $) NIL)) (-3181 (($ $) 179 (|has| |#1| (-37 (-375 (-501)))))) (-3663 (($ $) 155 (|has| |#1| (-37 (-375 (-501)))))) (-3685 (($ $) 176 (|has| |#1| (-37 (-375 (-501)))))) (-3397 (($ $) 152 (|has| |#1| (-37 (-375 (-501)))))) (-2571 (($ $) 181 (|has| |#1| (-37 (-375 (-501)))))) (-3130 (($ $) 158 (|has| |#1| (-37 (-375 (-501)))))) (-1690 (($ $ (-375 (-501))) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3194 (($ $ |#1|) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3777 (($ $) 149 (|has| |#1| (-37 (-375 (-501)))))) (-1475 (($ $) 147 (|has| |#1| (-37 (-375 (-501)))))) (-2720 (($ $) 182 (|has| |#1| (-37 (-375 (-501)))))) (-3106 (($ $) 159 (|has| |#1| (-37 (-375 (-501)))))) (-1797 (($ $) 180 (|has| |#1| (-37 (-375 (-501)))))) (-2214 (($ $) 157 (|has| |#1| (-37 (-375 (-501)))))) (-3019 (($ $) 177 (|has| |#1| (-37 (-375 (-501)))))) (-3556 (($ $) 153 (|has| |#1| (-37 (-375 (-501)))))) (-2089 (($ $) 187 (|has| |#1| (-37 (-375 (-501)))))) (-2440 (($ $) 167 (|has| |#1| (-37 (-375 (-501)))))) (-3404 (($ $) 184 (|has| |#1| (-37 (-375 (-501)))))) (-2769 (($ $) 162 (|has| |#1| (-37 (-375 (-501)))))) (-3365 (($ $) 191 (|has| |#1| (-37 (-375 (-501)))))) (-2991 (($ $) 171 (|has| |#1| (-37 (-375 (-501)))))) (-2629 (($ $) 193 (|has| |#1| (-37 (-375 (-501)))))) (-3668 (($ $) 173 (|has| |#1| (-37 (-375 (-501)))))) (-2236 (($ $) 189 (|has| |#1| (-37 (-375 (-501)))))) (-3330 (($ $) 169 (|has| |#1| (-37 (-375 (-501)))))) (-3037 (($ $) 186 (|has| |#1| (-37 (-375 (-501)))))) (-1235 (($ $) 165 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-2391 ((|#1| $ (-501)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 29 T CONST)) (-1925 (($) 38 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-501) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (-3751 (((-107) $ $) 65)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) 84) (($ $ $) 64)) (-3790 (($ $ $) 81)) (** (($ $ (-839)) NIL) (($ $ (-701)) 102)) (* (($ (-839) $) 89) (($ (-701) $) 87) (($ (-501) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-540 |#1|) (-13 (-1128 |#1| (-501)) (-10 -8 (-15 -1238 ($ (-939 (-769 (-501))) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))))) (-15 -3256 ((-939 (-769 (-501))) $)) (-15 -1826 ((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $)) (-15 -2973 ($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))))) (-15 -2706 ((-107) $)) (-15 -3608 ($ (-1 |#1| (-501)) $)) (-15 -2573 ((-3 $ "failed") $ $ (-107))) (-15 -3359 ($ $)) (-15 -2790 ($ $ $)) (-15 -3061 ((-786) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) (-939 (-769 (-501))) (-1070) |#1| (-375 (-501)))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (-15 -3194 ($ $ |#1|)) (-15 -1690 ($ $ (-375 (-501)))) (-15 -1475 ($ $)) (-15 -3777 ($ $)) (-15 -3397 ($ $)) (-15 -3556 ($ $)) (-15 -3663 ($ $)) (-15 -2214 ($ $)) (-15 -3130 ($ $)) (-15 -3106 ($ $)) (-15 -2769 ($ $)) (-15 -1235 ($ $)) (-15 -2440 ($ $)) (-15 -3330 ($ $)) (-15 -2991 ($ $)) (-15 -3668 ($ $)) (-15 -3685 ($ $)) (-15 -3019 ($ $)) (-15 -3181 ($ $)) (-15 -1797 ($ $)) (-15 -2571 ($ $)) (-15 -2720 ($ $)) (-15 -3404 ($ $)) (-15 -3037 ($ $)) (-15 -2089 ($ $)) (-15 -2236 ($ $)) (-15 -3365 ($ $)) (-15 -2629 ($ $))) |noBranch|))) (-959)) (T -540))
-((-2706 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-540 *3)) (-4 *3 (-959)))) (-1238 (*1 *1 *2 *3) (-12 (-5 *2 (-939 (-769 (-501)))) (-5 *3 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *4)))) (-4 *4 (-959)) (-5 *1 (-540 *4)))) (-3256 (*1 *2 *1) (-12 (-5 *2 (-939 (-769 (-501)))) (-5 *1 (-540 *3)) (-4 *3 (-959)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-5 *1 (-540 *3)) (-4 *3 (-959)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-4 *3 (-959)) (-5 *1 (-540 *3)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *3 (-959)) (-5 *1 (-540 *3)))) (-2573 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-540 *3)) (-4 *3 (-959)))) (-3359 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-959)))) (-2790 (*1 *1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-959)))) (-3061 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *6)))) (-5 *4 (-939 (-769 (-501)))) (-5 *5 (-1070)) (-5 *7 (-375 (-501))) (-4 *6 (-959)) (-5 *2 (-786)) (-5 *1 (-540 *6)))) (-3188 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3194 (*1 *1 *1 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-1690 (*1 *1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-540 *3)) (-4 *3 (-37 *2)) (-4 *3 (-959)))) (-1475 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3777 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3556 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3663 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2214 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3130 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3106 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2769 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-1235 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2440 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3330 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2991 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3668 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3685 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3019 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3181 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-1797 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2571 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2720 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3404 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3037 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2089 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2236 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-3365 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) (-2629 (*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(-13 (-1128 |#1| (-501)) (-10 -8 (-15 -1238 ($ (-939 (-769 (-501))) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))))) (-15 -3256 ((-939 (-769 (-501))) $)) (-15 -1826 ((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $)) (-15 -2973 ($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))))) (-15 -2706 ((-107) $)) (-15 -3608 ($ (-1 |#1| (-501)) $)) (-15 -2573 ((-3 $ "failed") $ $ (-107))) (-15 -3359 ($ $)) (-15 -2790 ($ $ $)) (-15 -3061 ((-786) (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) (-939 (-769 (-501))) (-1070) |#1| (-375 (-501)))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (-15 -3194 ($ $ |#1|)) (-15 -1690 ($ $ (-375 (-501)))) (-15 -1475 ($ $)) (-15 -3777 ($ $)) (-15 -3397 ($ $)) (-15 -3556 ($ $)) (-15 -3663 ($ $)) (-15 -2214 ($ $)) (-15 -3130 ($ $)) (-15 -3106 ($ $)) (-15 -2769 ($ $)) (-15 -1235 ($ $)) (-15 -2440 ($ $)) (-15 -3330 ($ $)) (-15 -2991 ($ $)) (-15 -3668 ($ $)) (-15 -3685 ($ $)) (-15 -3019 ($ $)) (-15 -3181 ($ $)) (-15 -1797 ($ $)) (-15 -2571 ($ $)) (-15 -2720 ($ $)) (-15 -3404 ($ $)) (-15 -3037 ($ $)) (-15 -2089 ($ $)) (-15 -2236 ($ $)) (-15 -3365 ($ $)) (-15 -2629 ($ $))) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2973 (($ (-1048 |#1|)) 9)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) 42)) (-3331 (((-107) $) 52)) (-3169 (((-701) $) 55) (((-701) $ (-701)) 54)) (-1355 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ $) 44 (|has| |#1| (-508)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-1048 |#1|) $) 23)) (-3965 (((-701)) 51)) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 10 T CONST)) (-1925 (($) 14 T CONST)) (-3751 (((-107) $ $) 22)) (-3797 (($ $) 30) (($ $ $) 16)) (-3790 (($ $ $) 25)) (** (($ $ (-839)) NIL) (($ $ (-701)) 49)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-501)) 36)))
-(((-541 |#1|) (-13 (-959) (-10 -8 (-15 -1303 ((-1048 |#1|) $)) (-15 -2973 ($ (-1048 |#1|))) (-15 -3331 ((-107) $)) (-15 -3169 ((-701) $)) (-15 -3169 ((-701) $ (-701))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-501))) (IF (|has| |#1| (-508)) (-6 (-508)) |noBranch|))) (-959)) (T -541))
-((-1303 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-541 *3)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) (-3169 (*1 *2 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-541 *2)) (-4 *2 (-959)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-959)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-541 *3)) (-4 *3 (-959)))))
-(-13 (-959) (-10 -8 (-15 -1303 ((-1048 |#1|) $)) (-15 -2973 ($ (-1048 |#1|))) (-15 -3331 ((-107) $)) (-15 -3169 ((-701) $)) (-15 -3169 ((-701) $ (-701))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-501))) (IF (|has| |#1| (-508)) (-6 (-508)) |noBranch|)))
-((-1212 (((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|)) 15)))
-(((-542 |#1| |#2|) (-10 -7 (-15 -1212 ((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|)))) (-1104) (-1104)) (T -542))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-545 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-545 *6)) (-5 *1 (-542 *5 *6)))))
-(-10 -7 (-15 -1212 ((-545 |#2|) (-1 |#2| |#1|) (-545 |#1|))))
-((-1212 (((-1048 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-1048 |#2|)) 20) (((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-545 |#2|)) 19) (((-545 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-545 |#2|)) 18)))
-(((-543 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-545 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-545 |#2|))) (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-545 |#2|))) (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-1048 |#2|)))) (-1104) (-1104) (-1104)) (T -543))
-((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-545 *6)) (-5 *5 (-1048 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-543 *6 *7 *8)))) (-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1048 *6)) (-5 *5 (-545 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-543 *6 *7 *8)))) (-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-545 *6)) (-5 *5 (-545 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-545 *8)) (-5 *1 (-543 *6 *7 *8)))))
-(-10 -7 (-15 -1212 ((-545 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-545 |#2|))) (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-545 |#2|))) (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-545 |#1|) (-1048 |#2|))))
-((-4096 ((|#3| |#3| (-578 (-553 |#3|)) (-578 (-1070))) 55)) (-2711 (((-152 |#2|) |#3|) 116)) (-3956 ((|#3| (-152 |#2|)) 43)) (-3391 ((|#2| |#3|) 19)) (-3731 ((|#3| |#2|) 32)))
-(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -3956 (|#3| (-152 |#2|))) (-15 -3391 (|#2| |#3|)) (-15 -3731 (|#3| |#2|)) (-15 -2711 ((-152 |#2|) |#3|)) (-15 -4096 (|#3| |#3| (-578 (-553 |#3|)) (-578 (-1070))))) (-13 (-508) (-777)) (-13 (-389 |#1|) (-916) (-1090)) (-13 (-389 (-152 |#1|)) (-916) (-1090))) (T -544))
-((-4096 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-553 *2))) (-5 *4 (-578 (-1070))) (-4 *2 (-13 (-389 (-152 *5)) (-916) (-1090))) (-4 *5 (-13 (-508) (-777))) (-5 *1 (-544 *5 *6 *2)) (-4 *6 (-13 (-389 *5) (-916) (-1090))))) (-2711 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-5 *2 (-152 *5)) (-5 *1 (-544 *4 *5 *3)) (-4 *5 (-13 (-389 *4) (-916) (-1090))) (-4 *3 (-13 (-389 (-152 *4)) (-916) (-1090))))) (-3731 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 (-152 *4)) (-916) (-1090))) (-5 *1 (-544 *4 *3 *2)) (-4 *3 (-13 (-389 *4) (-916) (-1090))))) (-3391 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 *4) (-916) (-1090))) (-5 *1 (-544 *4 *2 *3)) (-4 *3 (-13 (-389 (-152 *4)) (-916) (-1090))))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-152 *5)) (-4 *5 (-13 (-389 *4) (-916) (-1090))) (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 (-152 *4)) (-916) (-1090))) (-5 *1 (-544 *4 *5 *2)))))
-(-10 -7 (-15 -3956 (|#3| (-152 |#2|))) (-15 -3391 (|#2| |#3|)) (-15 -3731 (|#3| |#2|)) (-15 -2711 ((-152 |#2|) |#3|)) (-15 -4096 (|#3| |#3| (-578 (-553 |#3|)) (-578 (-1070)))))
-((-1987 (($ (-1 (-107) |#1|) $) 16)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1949 (($ (-1 |#1| |#1|) |#1|) 9)) (-1974 (($ (-1 (-107) |#1|) $) 12)) (-1981 (($ (-1 (-107) |#1|) $) 14)) (-3699 (((-1048 |#1|) $) 17)) (-3691 (((-786) $) NIL)))
-(((-545 |#1|) (-13 (-555 (-786)) (-10 -8 (-15 -1212 ($ (-1 |#1| |#1|) $)) (-15 -1974 ($ (-1 (-107) |#1|) $)) (-15 -1981 ($ (-1 (-107) |#1|) $)) (-15 -1987 ($ (-1 (-107) |#1|) $)) (-15 -1949 ($ (-1 |#1| |#1|) |#1|)) (-15 -3699 ((-1048 |#1|) $)))) (-1104)) (T -545))
-((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-1981 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-1987 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-1949 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-545 *3)) (-4 *3 (-1104)))))
-(-13 (-555 (-786)) (-10 -8 (-15 -1212 ($ (-1 |#1| |#1|) $)) (-15 -1974 ($ (-1 (-107) |#1|) $)) (-15 -1981 ($ (-1 (-107) |#1|) $)) (-15 -1987 ($ (-1 (-107) |#1|) $)) (-15 -1949 ($ (-1 |#1| |#1|) |#1|)) (-15 -3699 ((-1048 |#1|) $))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701)) NIL (|has| |#1| (-23)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) NIL (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3203 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3155 (((-107) $ (-701)) NIL)) (-4139 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1293 ((|#1| $ $) NIL (|has| |#1| (-959)))) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-2220 (($ $ $) NIL (|has| |#1| (-959)))) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3790 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-501) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-657))) (($ $ |#1|) NIL (|has| |#1| (-657)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-546 |#1| |#2|) (-1147 |#1|) (-1104) (-501)) (T -546))
-NIL
-(-1147 |#1|)
-((-1991 (((-1154) $ |#2| |#2|) 36)) (-3627 ((|#2| $) 23)) (-1522 ((|#2| $) 21)) (-2519 (($ (-1 |#3| |#3|) $) 32)) (-1212 (($ (-1 |#3| |#3|) $) 30)) (-1190 ((|#3| $) 26)) (-3084 (($ $ |#3|) 33)) (-2845 (((-107) |#3| $) 17)) (-4137 (((-578 |#3|) $) 15)) (-2007 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-547 |#1| |#2| |#3|) (-10 -8 (-15 -1991 ((-1154) |#1| |#2| |#2|)) (-15 -3084 (|#1| |#1| |#3|)) (-15 -1190 (|#3| |#1|)) (-15 -3627 (|#2| |#1|)) (-15 -1522 (|#2| |#1|)) (-15 -2845 ((-107) |#3| |#1|)) (-15 -4137 ((-578 |#3|) |#1|)) (-15 -2007 (|#3| |#1| |#2|)) (-15 -2007 (|#3| |#1| |#2| |#3|)) (-15 -2519 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1212 (|#1| (-1 |#3| |#3|) |#1|))) (-548 |#2| |#3|) (-1001) (-1104)) (T -547))
-NIL
-(-10 -8 (-15 -1991 ((-1154) |#1| |#2| |#2|)) (-15 -3084 (|#1| |#1| |#3|)) (-15 -1190 (|#3| |#1|)) (-15 -3627 (|#2| |#1|)) (-15 -1522 (|#2| |#1|)) (-15 -2845 ((-107) |#3| |#1|)) (-15 -4137 ((-578 |#3|) |#1|)) (-15 -2007 (|#3| |#1| |#2|)) (-15 -2007 (|#3| |#1| |#2| |#3|)) (-15 -2519 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1212 (|#1| (-1 |#3| |#3|) |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#2| (-1001)))) (-1991 (((-1154) $ |#1| |#1|) 40 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-2156 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) 51)) (-2732 (((-578 |#2|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3627 ((|#1| $) 43 (|has| |#1| (-777)))) (-3380 (((-578 |#2|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-1522 ((|#1| $) 44 (|has| |#1| (-777)))) (-2519 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#2| (-1001)))) (-2658 (((-578 |#1|) $) 46)) (-2852 (((-107) |#1| $) 47)) (-3708 (((-1018) $) 21 (|has| |#2| (-1001)))) (-1190 ((|#2| $) 42 (|has| |#1| (-777)))) (-3084 (($ $ |#2|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) 26 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 25 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 23 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3713 (((-701) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4167))) (((-701) |#2| $) 28 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#2| (-1001)))) (-1200 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#2| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-548 |#1| |#2|) (-1180) (-1001) (-1104)) (T -548))
-((-4137 (*1 *2 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-578 *4)))) (-2852 (*1 *2 *3 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-107)))) (-2658 (*1 *2 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-578 *3)))) (-2845 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-548 *4 *3)) (-4 *4 (-1001)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-548 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1001)) (-4 *2 (-777)))) (-3627 (*1 *2 *1) (-12 (-4 *1 (-548 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1001)) (-4 *2 (-777)))) (-1190 (*1 *2 *1) (-12 (-4 *1 (-548 *3 *2)) (-4 *3 (-1001)) (-4 *3 (-777)) (-4 *2 (-1104)))) (-3084 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-548 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) (-1991 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-1154)))))
-(-13 (-454 |t#2|) (-258 |t#1| |t#2|) (-10 -8 (-15 -4137 ((-578 |t#2|) $)) (-15 -2852 ((-107) |t#1| $)) (-15 -2658 ((-578 |t#1|) $)) (IF (|has| |t#2| (-1001)) (IF (|has| $ (-6 -4167)) (-15 -2845 ((-107) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (-777)) (PROGN (-15 -1522 (|t#1| $)) (-15 -3627 (|t#1| $)) (-15 -1190 (|t#2| $))) |noBranch|) (IF (|has| $ (-6 -4168)) (PROGN (-15 -3084 ($ $ |t#2|)) (-15 -1991 ((-1154) $ |t#1| |t#1|))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#2| (-1001)) ((-555 (-786)) |has| |#2| (-1001)) ((-256 |#1| |#2|) . T) ((-258 |#1| |#2|) . T) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-454 |#2|) . T) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-1001) |has| |#2| (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 |#1|))) NIL (|has| |#2| (-386 |#1|))) (((-1148 (-621 |#1|)) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1674 (((-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2540 (($) NIL T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1956 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2311 (((-621 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1909 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-3867 (((-621 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1887 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3665 (((-1064 (-866 |#1|))) NIL (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-331))))) (-2911 (($ $ (-839)) NIL)) (-3925 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-2292 (((-1064 |#1|) $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2398 ((|#1|) NIL (|has| |#2| (-386 |#1|))) ((|#1| (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-3333 (((-1064 |#1|) $) NIL (|has| |#2| (-335 |#1|)))) (-3656 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3142 (($ (-1148 |#1|)) NIL (|has| |#2| (-386 |#1|))) (($ (-1148 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2174 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3689 (((-839)) NIL (|has| |#2| (-335 |#1|)))) (-3168 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3554 (($ $ (-839)) NIL)) (-3930 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2838 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3874 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2653 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-4146 (((-621 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-3821 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-1472 (((-621 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1992 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2582 (((-1064 (-866 |#1|))) NIL (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-331))))) (-3381 (($ $ (-839)) NIL)) (-3784 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-3474 (((-1064 |#1|) $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1600 ((|#1|) NIL (|has| |#2| (-386 |#1|))) ((|#1| (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2270 (((-1064 |#1|) $) NIL (|has| |#2| (-335 |#1|)))) (-2172 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2417 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2794 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3708 (((-1018) $) NIL)) (-2780 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2007 ((|#1| $ (-501)) NIL (|has| |#2| (-386 |#1|)))) (-2085 (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-386 |#1|))) (((-1148 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $) (-1148 $)) NIL (|has| |#2| (-335 |#1|))) (((-1148 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1248 (($ (-1148 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-1148 |#1|) $) NIL (|has| |#2| (-386 |#1|)))) (-3056 (((-578 (-866 |#1|))) NIL (|has| |#2| (-386 |#1|))) (((-578 (-866 |#1|)) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2144 (($ $ $) NIL)) (-1977 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3691 (((-786) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4119 (((-1148 $)) NIL (|has| |#2| (-386 |#1|)))) (-4102 (((-578 (-1148 |#1|))) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1183 (($ (-621 |#1|) $) NIL (|has| |#2| (-386 |#1|)))) (-2033 (($ $ $) NIL)) (-2625 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3675 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3258 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) 24)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-549 |#1| |#2|) (-13 (-675 |#1|) (-555 |#2|) (-10 -8 (-15 -3691 ($ |#2|)) (IF (|has| |#2| (-386 |#1|)) (-6 (-386 |#1|)) |noBranch|) (IF (|has| |#2| (-335 |#1|)) (-6 (-335 |#1|)) |noBranch|))) (-156) (-675 |#1|)) (T -549))
-((-3691 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-549 *3 *2)) (-4 *2 (-675 *3)))))
-(-13 (-675 |#1|) (-555 |#2|) (-10 -8 (-15 -3691 ($ |#2|)) (IF (|has| |#2| (-386 |#1|)) (-6 (-386 |#1|)) |noBranch|) (IF (|has| |#2| (-335 |#1|)) (-6 (-335 |#1|)) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-2186 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) 32)) (-3621 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL) (($) NIL)) (-1991 (((-1154) $ (-1053) (-1053)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-1053) |#1|) 42)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#1| "failed") (-1053) $) 45)) (-2540 (($) NIL T CONST)) (-1998 (($ $ (-1053)) 24)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-2256 (((-3 |#1| "failed") (-1053) $) 46) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (|has| $ (-6 -4167)))) (-1526 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-3547 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-3505 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) 31)) (-2156 ((|#1| $ (-1053) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-1053)) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3114 (($ $) 47)) (-2342 (($ (-356)) 22) (($ (-356) (-1053)) 21)) (-3986 (((-356) $) 33)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1053) $) NIL (|has| (-1053) (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167))) (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (((-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-1522 (((-1053) $) NIL (|has| (-1053) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1500 (((-578 (-1053)) $) 38)) (-3576 (((-107) (-1053) $) NIL)) (-3947 (((-1053) $) 34)) (-1328 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-2658 (((-578 (-1053)) $) NIL)) (-2852 (((-107) (-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 ((|#1| $) NIL (|has| (-1053) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) "failed") (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-578 (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 36)) (-2007 ((|#1| $ (-1053) |#1|) NIL) ((|#1| $ (-1053)) 41)) (-3013 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL) (($) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (((-701) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (((-701) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-3691 (((-786) $) 20)) (-3371 (($ $) 25)) (-2866 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19)) (-3581 (((-701) $) 40 (|has| $ (-6 -4167)))))
-(((-550 |#1|) (-13 (-333 (-356) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) (-1081 (-1053) |#1|) (-10 -8 (-6 -4167) (-15 -3114 ($ $)))) (-1001)) (T -550))
-((-3114 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-1001)))))
-(-13 (-333 (-356) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) (-1081 (-1053) |#1|) (-10 -8 (-6 -4167) (-15 -3114 ($ $))))
-((-2211 (((-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 15)) (-1500 (((-578 |#2|) $) 19)) (-3576 (((-107) |#2| $) 12)))
-(((-551 |#1| |#2| |#3|) (-10 -8 (-15 -1500 ((-578 |#2|) |#1|)) (-15 -3576 ((-107) |#2| |#1|)) (-15 -2211 ((-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|))) (-552 |#2| |#3|) (-1001) (-1001)) (T -551))
-NIL
-(-10 -8 (-15 -1500 ((-578 |#2|) |#1|)) (-15 -3576 ((-107) |#2| |#1|)) (-15 -2211 ((-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)))
-((-3736 (((-107) $ $) 18 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 55 (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) 61)) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 46 (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 62)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 54 (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 56 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 53 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-1500 (((-578 |#1|) $) 63)) (-3576 (((-107) |#1| $) 64)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 39)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 40)) (-3708 (((-1018) $) 21 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 51)) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 41)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) 26 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 25 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 24 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 23 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3013 (($) 49) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 48)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 31 (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 50)) (-3691 (((-786) $) 20 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 42)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-552 |#1| |#2|) (-1180) (-1001) (-1001)) (T -552))
-((-3576 (*1 *2 *3 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-107)))) (-1500 (*1 *2 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-578 *3)))) (-2256 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-4019 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))))
-(-13 (-202 (-2 (|:| -3626 |t#1|) (|:| -2922 |t#2|))) (-10 -8 (-15 -3576 ((-107) |t#1| $)) (-15 -1500 ((-578 |t#1|) $)) (-15 -2256 ((-3 |t#2| "failed") |t#1| $)) (-15 -4019 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-102 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-97) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) ((-555 (-786)) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) ((-138 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-556 (-490)) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))) ((-202 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-208 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-454 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-476 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-1001) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-1340 (((-3 (-1070) "failed") $) 36)) (-3782 (((-1154) $ (-701)) 26)) (-1934 (((-701) $) 25)) (-1853 (((-108) $) 12)) (-3986 (((-1070) $) 20)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3136 (($ (-108) (-578 |#1|) (-701)) 30) (($ (-1070)) 31)) (-3109 (((-107) $ (-108)) 18) (((-107) $ (-1070)) 16)) (-2696 (((-701) $) 22)) (-3708 (((-1018) $) NIL)) (-1248 (((-810 (-501)) $) 69 (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) 75 (|has| |#1| (-556 (-810 (-346))))) (((-490) $) 62 (|has| |#1| (-556 (-490))))) (-3691 (((-786) $) 51)) (-2992 (((-578 |#1|) $) 24)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 39)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 40)))
-(((-553 |#1|) (-13 (-124) (-804 |#1|) (-10 -8 (-15 -3986 ((-1070) $)) (-15 -1853 ((-108) $)) (-15 -2992 ((-578 |#1|) $)) (-15 -2696 ((-701) $)) (-15 -3136 ($ (-108) (-578 |#1|) (-701))) (-15 -3136 ($ (-1070))) (-15 -1340 ((-3 (-1070) "failed") $)) (-15 -3109 ((-107) $ (-108))) (-15 -3109 ((-107) $ (-1070))) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|))) (-777)) (T -553))
-((-3986 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-2992 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-3136 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-108)) (-5 *3 (-578 *5)) (-5 *4 (-701)) (-4 *5 (-777)) (-5 *1 (-553 *5)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-1340 (*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-108)) (-5 *2 (-107)) (-5 *1 (-553 *4)) (-4 *4 (-777)))) (-3109 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-107)) (-5 *1 (-553 *4)) (-4 *4 (-777)))))
-(-13 (-124) (-804 |#1|) (-10 -8 (-15 -3986 ((-1070) $)) (-15 -1853 ((-108) $)) (-15 -2992 ((-578 |#1|) $)) (-15 -2696 ((-701) $)) (-15 -3136 ($ (-108) (-578 |#1|) (-701))) (-15 -3136 ($ (-1070))) (-15 -1340 ((-3 (-1070) "failed") $)) (-15 -3109 ((-107) $ (-108))) (-15 -3109 ((-107) $ (-1070))) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|)))
-((-2405 (((-553 |#2|) |#1|) 15)) (-3788 (((-3 |#1| "failed") (-553 |#2|)) 19)))
-(((-554 |#1| |#2|) (-10 -7 (-15 -2405 ((-553 |#2|) |#1|)) (-15 -3788 ((-3 |#1| "failed") (-553 |#2|)))) (-777) (-777)) (T -554))
-((-3788 (*1 *2 *3) (|partial| -12 (-5 *3 (-553 *4)) (-4 *4 (-777)) (-4 *2 (-777)) (-5 *1 (-554 *2 *4)))) (-2405 (*1 *2 *3) (-12 (-5 *2 (-553 *4)) (-5 *1 (-554 *3 *4)) (-4 *3 (-777)) (-4 *4 (-777)))))
-(-10 -7 (-15 -2405 ((-553 |#2|) |#1|)) (-15 -3788 ((-3 |#1| "failed") (-553 |#2|))))
-((-3691 ((|#1| $) 6)))
-(((-555 |#1|) (-1180) (-1104)) (T -555))
-((-3691 (*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1104)))))
-(-13 (-10 -8 (-15 -3691 (|t#1| $))))
-((-1248 ((|#1| $) 6)))
-(((-556 |#1|) (-1180) (-1104)) (T -556))
-((-1248 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1104)))))
-(-13 (-10 -8 (-15 -1248 (|t#1| $))))
-((-2510 (((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 (-373 |#2|) |#2|)) 13) (((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|)) 14)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -2510 ((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|))) (-15 -2510 ((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 (-373 |#2|) |#2|)))) (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|)) (T -557))
-((-2510 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-1064 (-375 *6))) (-5 *1 (-557 *5 *6)) (-5 *3 (-375 *6)))) (-2510 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-1064 (-375 *5))) (-5 *1 (-557 *4 *5)) (-5 *3 (-375 *5)))))
-(-10 -7 (-15 -2510 ((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|))) (-15 -2510 ((-3 (-1064 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 (-373 |#2|) |#2|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1417 (((-501) $) NIL (|has| |#1| (-775)))) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-2164 (((-107) $) NIL (|has| |#1| (-775)))) (-1355 (((-107) $) NIL)) (-2946 ((|#1| $) 13)) (-4067 (((-107) $) NIL (|has| |#1| (-775)))) (-4111 (($ $ $) NIL (|has| |#1| (-775)))) (-1323 (($ $ $) NIL (|has| |#1| (-775)))) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2949 ((|#3| $) 15)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL)) (-3965 (((-701)) 20)) (-1720 (($ $) NIL (|has| |#1| (-775)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) 12 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3803 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-558 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (-15 -3803 ($ $ |#3|)) (-15 -3803 ($ |#1| |#3|)) (-15 -2946 (|#1| $)) (-15 -2949 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-657) |#2|)) (T -558))
-((-3803 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-657) *4)))) (-3803 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-657) *4)))) (-2946 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-657) *3)))) (-2949 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-657) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (-15 -3803 ($ $ |#3|)) (-15 -3803 ($ |#1| |#3|)) (-15 -2946 (|#1| $)) (-15 -2949 (|#3| $))))
-((-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) 10)))
-(((-559 |#1| |#2|) (-10 -8 (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-560 |#2|) (-959)) (T -559))
-NIL
-(-10 -8 (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 36)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-560 |#1|) (-1180) (-959)) (T -560))
-((-3691 (*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-959)))))
-(-13 (-959) (-583 |t#1|) (-10 -8 (-15 -3691 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3455 ((|#2| |#2| (-1070) (-1070)) 18)))
-(((-561 |#1| |#2|) (-10 -7 (-15 -3455 (|#2| |#2| (-1070) (-1070)))) (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-879) (-29 |#1|))) (T -561))
-((-3455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1090) (-879) (-29 *4))))))
-(-10 -7 (-15 -3455 (|#2| |#2| (-1070) (-1070))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 52)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-4035 ((|#1| $) 49)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-1337 (((-2 (|:| -3499 $) (|:| -3677 (-375 |#2|))) (-375 |#2|)) 95 (|has| |#1| (-331)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 83) (((-3 |#2| "failed") $) 80)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) 24)) (-2174 (((-3 $ "failed") $) 74)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-3169 (((-501) $) 19)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) 36)) (-3787 (($ |#1| (-501)) 21)) (-3850 ((|#1| $) 51)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) 85 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 98 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ $) 78)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1864 (((-701) $) 97 (|has| |#1| (-331)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 96 (|has| |#1| (-331)))) (-2596 (($ $ (-1 |#2| |#2|)) 65) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-1201 (((-501) $) 34)) (-1248 (((-375 |#2|) $) 42)) (-3691 (((-786) $) 61) (($ (-501)) 32) (($ $) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 31) (($ |#2|) 22)) (-2495 ((|#1| $ (-501)) 62)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 9 T CONST)) (-1925 (($) 12 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-3751 (((-107) $ $) 17)) (-3797 (($ $) 46) (($ $ $) NIL)) (-3790 (($ $ $) 75)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 26) (($ $ $) 44)))
-(((-562 |#1| |#2|) (-13 (-204 |#2|) (-508) (-556 (-375 |#2|)) (-380 |#1|) (-950 |#2|) (-10 -8 (-15 -2706 ((-107) $)) (-15 -1201 ((-501) $)) (-15 -3169 ((-501) $)) (-15 -3858 ($ $)) (-15 -3850 (|#1| $)) (-15 -4035 (|#1| $)) (-15 -2495 (|#1| $ (-501))) (-15 -3787 ($ |#1| (-501))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-6 (-276)) (-15 -1337 ((-2 (|:| -3499 $) (|:| -3677 (-375 |#2|))) (-375 |#2|)))) |noBranch|))) (-508) (-1125 |#1|)) (T -562))
-((-2706 (*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-107)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) (-1201 (*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-501)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) (-3169 (*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-501)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) (-3858 (*1 *1 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) (-3850 (*1 *2 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) (-4035 (*1 *2 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-508)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1125 *2)))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-4 *2 (-508)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1125 *2)))) (-1337 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *4 (-508)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3499 (-562 *4 *5)) (|:| -3677 (-375 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-375 *5)))))
-(-13 (-204 |#2|) (-508) (-556 (-375 |#2|)) (-380 |#1|) (-950 |#2|) (-10 -8 (-15 -2706 ((-107) $)) (-15 -1201 ((-501) $)) (-15 -3169 ((-501) $)) (-15 -3858 ($ $)) (-15 -3850 (|#1| $)) (-15 -4035 (|#1| $)) (-15 -2495 (|#1| $ (-501))) (-15 -3787 ($ |#1| (-501))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-6 (-276)) (-15 -1337 ((-2 (|:| -3499 $) (|:| -3677 (-375 |#2|))) (-375 |#2|)))) |noBranch|)))
-((-2073 (((-578 |#6|) (-578 |#4|) (-107)) 46)) (-4076 ((|#6| |#6|) 39)))
-(((-563 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4076 (|#6| |#6|)) (-15 -2073 ((-578 |#6|) (-578 |#4|) (-107)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|) (-1009 |#1| |#2| |#3| |#4|)) (T -563))
-((-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *10 (-1009 *5 *6 *7 *8)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *2 (-1009 *3 *4 *5 *6)))))
-(-10 -7 (-15 -4076 (|#6| |#6|)) (-15 -2073 ((-578 |#6|) (-578 |#4|) (-107))))
-((-2357 (((-107) |#3| (-701) (-578 |#3|)) 22)) (-3374 (((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1064 |#3|)))) "failed") |#3| (-578 (-1064 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1575 (-578 (-2 (|:| |irr| |#4|) (|:| -3257 (-501)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|)) 51)))
-(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2357 ((-107) |#3| (-701) (-578 |#3|))) (-15 -3374 ((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1064 |#3|)))) "failed") |#3| (-578 (-1064 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1575 (-578 (-2 (|:| |irr| |#4|) (|:| -3257 (-501)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|)))) (-777) (-723) (-276) (-870 |#3| |#2| |#1|)) (T -564))
-((-3374 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1575 (-578 (-2 (|:| |irr| *10) (|:| -3257 (-501))))))) (-5 *6 (-578 *3)) (-5 *7 (-578 *8)) (-4 *8 (-777)) (-4 *3 (-276)) (-4 *10 (-870 *3 *9 *8)) (-4 *9 (-723)) (-5 *2 (-2 (|:| |polfac| (-578 *10)) (|:| |correct| *3) (|:| |corrfact| (-578 (-1064 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-578 (-1064 *3))))) (-2357 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-701)) (-5 *5 (-578 *3)) (-4 *3 (-276)) (-4 *6 (-777)) (-4 *7 (-723)) (-5 *2 (-107)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-870 *3 *7 *6)))))
-(-10 -7 (-15 -2357 ((-107) |#3| (-701) (-578 |#3|))) (-15 -3374 ((-3 (-2 (|:| |polfac| (-578 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-578 (-1064 |#3|)))) "failed") |#3| (-578 (-1064 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1575 (-578 (-2 (|:| |irr| |#4|) (|:| -3257 (-501)))))) (-578 |#3|) (-578 |#1|) (-578 |#3|))))
-((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3660 (($ $) 67)) (-1635 (((-599 |#1| |#2|) $) 52)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 70)) (-4127 (((-578 (-262 |#2|)) $ $) 33)) (-3708 (((-1018) $) NIL)) (-1989 (($ (-599 |#1| |#2|)) 48)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 58) (((-1162 |#1| |#2|) $) NIL) (((-1167 |#1| |#2|) $) 66)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 53 T CONST)) (-1912 (((-578 (-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|))) $) 31)) (-3001 (((-578 (-599 |#1| |#2|)) (-578 |#1|)) 65)) (-1914 (((-578 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $) 36)) (-3751 (((-107) $ $) 54)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ $ $) 44)))
-(((-565 |#1| |#2| |#3|) (-13 (-440) (-10 -8 (-15 -1989 ($ (-599 |#1| |#2|))) (-15 -1635 ((-599 |#1| |#2|) $)) (-15 -1914 ((-578 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $)) (-15 -3691 ((-1162 |#1| |#2|) $)) (-15 -3691 ((-1167 |#1| |#2|) $)) (-15 -3660 ($ $)) (-15 -3514 ((-578 |#1|) $)) (-15 -3001 ((-578 (-599 |#1| |#2|)) (-578 |#1|))) (-15 -1912 ((-578 (-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|))) $)) (-15 -4127 ((-578 (-262 |#2|)) $ $)))) (-777) (-13 (-156) (-648 (-375 (-501)))) (-839)) (T -565))
-((-1989 (*1 *1 *2) (-12 (-5 *2 (-599 *3 *4)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-5 *1 (-565 *3 *4 *5)) (-14 *5 (-839)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-599 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-813 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-565 *2 *3 *4)) (-4 *2 (-777)) (-4 *3 (-13 (-156) (-648 (-375 (-501))))) (-14 *4 (-839)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-777)) (-5 *2 (-578 (-599 *4 *5))) (-5 *1 (-565 *4 *5 *6)) (-4 *5 (-13 (-156) (-648 (-375 (-501))))) (-14 *6 (-839)))) (-1912 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-606 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) (-4127 (*1 *2 *1 *1) (-12 (-5 *2 (-578 (-262 *4))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))))
-(-13 (-440) (-10 -8 (-15 -1989 ($ (-599 |#1| |#2|))) (-15 -1635 ((-599 |#1| |#2|) $)) (-15 -1914 ((-578 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $)) (-15 -3691 ((-1162 |#1| |#2|) $)) (-15 -3691 ((-1167 |#1| |#2|) $)) (-15 -3660 ($ $)) (-15 -3514 ((-578 |#1|) $)) (-15 -3001 ((-578 (-599 |#1| |#2|)) (-578 |#1|))) (-15 -1912 ((-578 (-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|))) $)) (-15 -4127 ((-578 (-262 |#2|)) $ $))))
-((-2073 (((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107)) 70) (((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107)) 56)) (-1551 (((-107) (-578 (-710 |#1| (-787 |#2|)))) 22)) (-2728 (((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107)) 69)) (-2741 (((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107)) 55)) (-3727 (((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|)))) 26)) (-1872 (((-3 (-578 (-710 |#1| (-787 |#2|))) "failed") (-578 (-710 |#1| (-787 |#2|)))) 25)))
-(((-566 |#1| |#2|) (-10 -7 (-15 -1551 ((-107) (-578 (-710 |#1| (-787 |#2|))))) (-15 -1872 ((-3 (-578 (-710 |#1| (-787 |#2|))) "failed") (-578 (-710 |#1| (-787 |#2|))))) (-15 -3727 ((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))))) (-15 -2741 ((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2728 ((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2073 ((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2073 ((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107)))) (-419) (-578 (-1070))) (T -566))
-((-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-1041 *5 (-487 (-787 *6)) (-787 *6) (-710 *5 (-787 *6))))) (-5 *1 (-566 *5 *6)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-566 *5 *6)))) (-2728 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-1041 *5 (-487 (-787 *6)) (-787 *6) (-710 *5 (-787 *6))))) (-5 *1 (-566 *5 *6)))) (-2741 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-566 *5 *6)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-578 (-710 *3 (-787 *4)))) (-4 *3 (-419)) (-14 *4 (-578 (-1070))) (-5 *1 (-566 *3 *4)))) (-1872 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-710 *3 (-787 *4)))) (-4 *3 (-419)) (-14 *4 (-578 (-1070))) (-5 *1 (-566 *3 *4)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-578 (-710 *4 (-787 *5)))) (-4 *4 (-419)) (-14 *5 (-578 (-1070))) (-5 *2 (-107)) (-5 *1 (-566 *4 *5)))))
-(-10 -7 (-15 -1551 ((-107) (-578 (-710 |#1| (-787 |#2|))))) (-15 -1872 ((-3 (-578 (-710 |#1| (-787 |#2|))) "failed") (-578 (-710 |#1| (-787 |#2|))))) (-15 -3727 ((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))))) (-15 -2741 ((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2728 ((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2073 ((-578 (-956 |#1| |#2|)) (-578 (-710 |#1| (-787 |#2|))) (-107))) (-15 -2073 ((-578 (-1041 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|)))) (-578 (-710 |#1| (-787 |#2|))) (-107))))
-((-1853 (((-108) (-108)) 83)) (-2586 ((|#2| |#2|) 30)) (-3028 ((|#2| |#2| (-993 |#2|)) 79) ((|#2| |#2| (-1070)) 52)) (-3908 ((|#2| |#2|) 29)) (-3924 ((|#2| |#2|) 31)) (-3811 (((-107) (-108)) 34)) (-2909 ((|#2| |#2|) 26)) (-3878 ((|#2| |#2|) 28)) (-2043 ((|#2| |#2|) 27)))
-(((-567 |#1| |#2|) (-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -3878 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3028 (|#2| |#2| (-1070))) (-15 -3028 (|#2| |#2| (-993 |#2|)))) (-13 (-777) (-508)) (-13 (-389 |#1|) (-916) (-1090))) (T -567))
-((-3028 (*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-13 (-389 *4) (-916) (-1090))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-567 *4 *2)))) (-3028 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-389 *4) (-916) (-1090))))) (-3924 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-2586 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-2043 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-2909 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-3878 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *4)) (-4 *4 (-13 (-389 *3) (-916) (-1090))))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-567 *4 *5)) (-4 *5 (-13 (-389 *4) (-916) (-1090))))))
-(-10 -7 (-15 -3811 ((-107) (-108))) (-15 -1853 ((-108) (-108))) (-15 -3878 (|#2| |#2|)) (-15 -2909 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -2586 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3924 (|#2| |#2|)) (-15 -3028 (|#2| |#2| (-1070))) (-15 -3028 (|#2| |#2| (-993 |#2|))))
-((-3978 (($ $) 38)) (-3937 (($ $) 21)) (-3970 (($ $) 37)) (-3929 (($ $) 22)) (-3984 (($ $) 36)) (-3945 (($ $) 23)) (-2003 (($) 48)) (-1635 (($ $) 45)) (-2586 (($ $) 17)) (-3028 (($ $ (-993 $)) 7) (($ $ (-1070)) 6)) (-1989 (($ $) 46)) (-3908 (($ $) 15)) (-3924 (($ $) 16)) (-3991 (($ $) 35)) (-3949 (($ $) 24)) (-3981 (($ $) 34)) (-3940 (($ $) 25)) (-3975 (($ $) 33)) (-3933 (($ $) 26)) (-4003 (($ $) 44)) (-3958 (($ $) 32)) (-3995 (($ $) 43)) (-3952 (($ $) 31)) (-4013 (($ $) 42)) (-3964 (($ $) 30)) (-3550 (($ $) 41)) (-3967 (($ $) 29)) (-4008 (($ $) 40)) (-3961 (($ $) 28)) (-3999 (($ $) 39)) (-3955 (($ $) 27)) (-2909 (($ $) 19)) (-3878 (($ $) 20)) (-2043 (($ $) 18)) (** (($ $ $) 47)))
-(((-568) (-1180)) (T -568))
-((-3878 (*1 *1 *1) (-4 *1 (-568))) (-2909 (*1 *1 *1) (-4 *1 (-568))) (-2043 (*1 *1 *1) (-4 *1 (-568))) (-2586 (*1 *1 *1) (-4 *1 (-568))) (-3924 (*1 *1 *1) (-4 *1 (-568))) (-3908 (*1 *1 *1) (-4 *1 (-568))))
-(-13 (-879) (-1090) (-10 -8 (-15 -3878 ($ $)) (-15 -2909 ($ $)) (-15 -2043 ($ $)) (-15 -2586 ($ $)) (-15 -3924 ($ $)) (-15 -3908 ($ $))))
-(((-34) . T) ((-91) . T) ((-254) . T) ((-456) . T) ((-879) . T) ((-1090) . T) ((-1093) . T))
-((-3893 (((-447 |#1| |#2|) (-220 |#1| |#2|)) 52)) (-3347 (((-578 (-220 |#1| |#2|)) (-578 (-447 |#1| |#2|))) 67)) (-2677 (((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-787 |#1|)) 69) (((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)) (-787 |#1|)) 68)) (-2322 (((-2 (|:| |gblist| (-578 (-220 |#1| |#2|))) (|:| |gvlist| (-578 (-501)))) (-578 (-447 |#1| |#2|))) 105)) (-3856 (((-578 (-447 |#1| |#2|)) (-787 |#1|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|))) 82)) (-3361 (((-2 (|:| |glbase| (-578 (-220 |#1| |#2|))) (|:| |glval| (-578 (-501)))) (-578 (-220 |#1| |#2|))) 116)) (-2761 (((-1148 |#2|) (-447 |#1| |#2|) (-578 (-447 |#1| |#2|))) 57)) (-1592 (((-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|))) 39)) (-2902 (((-220 |#1| |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|))) 49)) (-2886 (((-220 |#1| |#2|) (-578 |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|))) 89)))
-(((-569 |#1| |#2|) (-10 -7 (-15 -2322 ((-2 (|:| |gblist| (-578 (-220 |#1| |#2|))) (|:| |gvlist| (-578 (-501)))) (-578 (-447 |#1| |#2|)))) (-15 -3361 ((-2 (|:| |glbase| (-578 (-220 |#1| |#2|))) (|:| |glval| (-578 (-501)))) (-578 (-220 |#1| |#2|)))) (-15 -3347 ((-578 (-220 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2677 ((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)) (-787 |#1|))) (-15 -2677 ((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-787 |#1|))) (-15 -1592 ((-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2761 ((-1148 |#2|) (-447 |#1| |#2|) (-578 (-447 |#1| |#2|)))) (-15 -2886 ((-220 |#1| |#2|) (-578 |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|)))) (-15 -3856 ((-578 (-447 |#1| |#2|)) (-787 |#1|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2902 ((-220 |#1| |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|)))) (-15 -3893 ((-447 |#1| |#2|) (-220 |#1| |#2|)))) (-578 (-1070)) (-419)) (T -569))
-((-3893 (*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-447 *4 *5)) (-5 *1 (-569 *4 *5)))) (-2902 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-220 *4 *5))) (-5 *2 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-569 *4 *5)))) (-3856 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-578 (-447 *4 *5))) (-5 *3 (-787 *4)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-569 *4 *5)))) (-2886 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-220 *5 *6))) (-4 *6 (-419)) (-5 *2 (-220 *5 *6)) (-14 *5 (-578 (-1070))) (-5 *1 (-569 *5 *6)))) (-2761 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-447 *5 *6))) (-5 *3 (-447 *5 *6)) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-1148 *6)) (-5 *1 (-569 *5 *6)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-578 (-447 *3 *4))) (-14 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-569 *3 *4)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-447 *5 *6))) (-5 *4 (-787 *5)) (-14 *5 (-578 (-1070))) (-5 *2 (-447 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-419)))) (-2677 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-447 *5 *6))) (-5 *4 (-787 *5)) (-14 *5 (-578 (-1070))) (-5 *2 (-447 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-419)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-578 (-447 *4 *5))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-578 (-220 *4 *5))) (-5 *1 (-569 *4 *5)))) (-3361 (*1 *2 *3) (-12 (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-2 (|:| |glbase| (-578 (-220 *4 *5))) (|:| |glval| (-578 (-501))))) (-5 *1 (-569 *4 *5)) (-5 *3 (-578 (-220 *4 *5))))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-578 (-447 *4 *5))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-2 (|:| |gblist| (-578 (-220 *4 *5))) (|:| |gvlist| (-578 (-501))))) (-5 *1 (-569 *4 *5)))))
-(-10 -7 (-15 -2322 ((-2 (|:| |gblist| (-578 (-220 |#1| |#2|))) (|:| |gvlist| (-578 (-501)))) (-578 (-447 |#1| |#2|)))) (-15 -3361 ((-2 (|:| |glbase| (-578 (-220 |#1| |#2|))) (|:| |glval| (-578 (-501)))) (-578 (-220 |#1| |#2|)))) (-15 -3347 ((-578 (-220 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2677 ((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)) (-787 |#1|))) (-15 -2677 ((-447 |#1| |#2|) (-578 (-447 |#1| |#2|)) (-787 |#1|))) (-15 -1592 ((-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2761 ((-1148 |#2|) (-447 |#1| |#2|) (-578 (-447 |#1| |#2|)))) (-15 -2886 ((-220 |#1| |#2|) (-578 |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|)))) (-15 -3856 ((-578 (-447 |#1| |#2|)) (-787 |#1|) (-578 (-447 |#1| |#2|)) (-578 (-447 |#1| |#2|)))) (-15 -2902 ((-220 |#1| |#2|) (-220 |#1| |#2|) (-578 (-220 |#1| |#2|)))) (-15 -3893 ((-447 |#1| |#2|) (-220 |#1| |#2|))))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL)) (-1991 (((-1154) $ (-1053) (-1053)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-50) $ (-1053) (-50)) 16) (((-50) $ (-1070) (-50)) 17)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 (-50) "failed") (-1053) $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-2256 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-3 (-50) "failed") (-1053) $) NIL)) (-1526 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-2156 (((-50) $ (-1053) (-50)) NIL (|has| $ (-6 -4168)))) (-1905 (((-50) $ (-1053)) NIL)) (-2732 (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-3114 (($ $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1053) $) NIL (|has| (-1053) (-777)))) (-3380 (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-1522 (((-1053) $) NIL (|has| (-1053) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-2162 (($ (-356)) 9)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-1500 (((-578 (-1053)) $) NIL)) (-3576 (((-107) (-1053) $) NIL)) (-1328 (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL)) (-2658 (((-578 (-1053)) $) NIL)) (-2852 (((-107) (-1053) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-1190 (((-50) $) NIL (|has| (-1053) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) "failed") (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL)) (-3084 (($ $ (-50)) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ $ (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-50)) (-578 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-262 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-578 (-262 (-50)))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-4137 (((-578 (-50)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (((-50) $ (-1053)) 14) (((-50) $ (-1053) (-50)) NIL) (((-50) $ (-1070)) 15)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001)))) (((-701) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001)))) (((-701) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 (-50))) (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-570) (-13 (-1081 (-1053) (-50)) (-10 -8 (-15 -2162 ($ (-356))) (-15 -3114 ($ $)) (-15 -2007 ((-50) $ (-1070))) (-15 -3754 ((-50) $ (-1070) (-50)))))) (T -570))
-((-2162 (*1 *1 *2) (-12 (-5 *2 (-356)) (-5 *1 (-570)))) (-3114 (*1 *1 *1) (-5 *1 (-570))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-50)) (-5 *1 (-570)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1070)) (-5 *1 (-570)))))
-(-13 (-1081 (-1053) (-50)) (-10 -8 (-15 -2162 ($ (-356))) (-15 -3114 ($ $)) (-15 -2007 ((-50) $ (-1070))) (-15 -3754 ((-50) $ (-1070) (-50)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 |#1|))) NIL (|has| |#2| (-386 |#1|))) (((-1148 (-621 |#1|)) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1674 (((-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2540 (($) NIL T CONST)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1956 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2311 (((-621 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1909 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-3867 (((-621 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1887 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3665 (((-1064 (-866 |#1|))) NIL (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-331))))) (-2911 (($ $ (-839)) NIL)) (-3925 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-2292 (((-1064 |#1|) $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2398 ((|#1|) NIL (|has| |#2| (-386 |#1|))) ((|#1| (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-3333 (((-1064 |#1|) $) NIL (|has| |#2| (-335 |#1|)))) (-3656 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3142 (($ (-1148 |#1|)) NIL (|has| |#2| (-386 |#1|))) (($ (-1148 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2174 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-3689 (((-839)) NIL (|has| |#2| (-335 |#1|)))) (-3168 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3554 (($ $ (-839)) NIL)) (-3930 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2838 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3874 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2653 (((-3 $ "failed")) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-4146 (((-621 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-3821 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-1472 (((-621 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1992 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-2582 (((-1064 (-866 |#1|))) NIL (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-331))))) (-3381 (($ $ (-839)) NIL)) (-3784 ((|#1| $) NIL (|has| |#2| (-335 |#1|)))) (-3474 (((-1064 |#1|) $) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1600 ((|#1|) NIL (|has| |#2| (-386 |#1|))) ((|#1| (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2270 (((-1064 |#1|) $) NIL (|has| |#2| (-335 |#1|)))) (-2172 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2417 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2794 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3708 (((-1018) $) NIL)) (-2780 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-2007 ((|#1| $ (-501)) NIL (|has| |#2| (-386 |#1|)))) (-2085 (((-621 |#1|) (-1148 $)) NIL (|has| |#2| (-386 |#1|))) (((-1148 |#1|) $) NIL (|has| |#2| (-386 |#1|))) (((-621 |#1|) (-1148 $) (-1148 $)) NIL (|has| |#2| (-335 |#1|))) (((-1148 |#1|) $ (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-1248 (($ (-1148 |#1|)) NIL (|has| |#2| (-386 |#1|))) (((-1148 |#1|) $) NIL (|has| |#2| (-386 |#1|)))) (-3056 (((-578 (-866 |#1|))) NIL (|has| |#2| (-386 |#1|))) (((-578 (-866 |#1|)) (-1148 $)) NIL (|has| |#2| (-335 |#1|)))) (-2144 (($ $ $) NIL)) (-1977 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3691 (((-786) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4119 (((-1148 $)) NIL (|has| |#2| (-386 |#1|)))) (-4102 (((-578 (-1148 |#1|))) NIL (-1405 (-12 (|has| |#2| (-335 |#1|)) (|has| |#1| (-508))) (-12 (|has| |#2| (-386 |#1|)) (|has| |#1| (-508)))))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1183 (($ (-621 |#1|) $) NIL (|has| |#2| (-386 |#1|)))) (-2033 (($ $ $) NIL)) (-2625 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3675 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-3258 (((-107)) NIL (|has| |#2| (-335 |#1|)))) (-1850 (($) 15 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) 17)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-571 |#1| |#2|) (-13 (-675 |#1|) (-555 |#2|) (-10 -8 (-15 -3691 ($ |#2|)) (IF (|has| |#2| (-386 |#1|)) (-6 (-386 |#1|)) |noBranch|) (IF (|has| |#2| (-335 |#1|)) (-6 (-335 |#1|)) |noBranch|))) (-156) (-675 |#1|)) (T -571))
-((-3691 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-571 *3 *2)) (-4 *2 (-675 *3)))))
-(-13 (-675 |#1|) (-555 |#2|) (-10 -8 (-15 -3691 ($ |#2|)) (IF (|has| |#2| (-386 |#1|)) (-6 (-386 |#1|)) |noBranch|) (IF (|has| |#2| (-335 |#1|)) (-6 (-335 |#1|)) |noBranch|)))
-((-3803 (($ $ |#2|) 10)))
-(((-572 |#1| |#2|) (-10 -8 (-15 -3803 (|#1| |#1| |#2|))) (-573 |#2|) (-156)) (T -572))
-NIL
-(-10 -8 (-15 -3803 (|#1| |#1| |#2|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3699 (($ $ $) 29)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 28 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-573 |#1|) (-1180) (-156)) (T -573))
-((-3699 (*1 *1 *1 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-156)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-156)) (-4 *2 (-331)))))
-(-13 (-648 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3699 ($ $ $)) (IF (|has| |t#1| (-331)) (-15 -3803 ($ $ |t#1|)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-964 |#1|) . T) ((-1001) . T))
-((-2121 (((-3 (-769 |#2|) "failed") |#2| (-262 |#2|) (-1053)) 77) (((-3 (-769 |#2|) (-2 (|:| |leftHandLimit| (-3 (-769 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-769 |#2|) "failed"))) "failed") |#2| (-262 (-769 |#2|))) 99)) (-1979 (((-3 (-762 |#2|) "failed") |#2| (-262 (-762 |#2|))) 104)))
-(((-574 |#1| |#2|) (-10 -7 (-15 -2121 ((-3 (-769 |#2|) (-2 (|:| |leftHandLimit| (-3 (-769 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-769 |#2|) "failed"))) "failed") |#2| (-262 (-769 |#2|)))) (-15 -1979 ((-3 (-762 |#2|) "failed") |#2| (-262 (-762 |#2|)))) (-15 -2121 ((-3 (-769 |#2|) "failed") |#2| (-262 |#2|) (-1053)))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -574))
-((-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-262 *3)) (-5 *5 (-1053)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-769 *3)) (-5 *1 (-574 *6 *3)))) (-1979 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-262 (-762 *3))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-762 *3)) (-5 *1 (-574 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-769 *3))) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (-769 *3) (-2 (|:| |leftHandLimit| (-3 (-769 *3) "failed")) (|:| |rightHandLimit| (-3 (-769 *3) "failed"))) "failed")) (-5 *1 (-574 *5 *3)))))
-(-10 -7 (-15 -2121 ((-3 (-769 |#2|) (-2 (|:| |leftHandLimit| (-3 (-769 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-769 |#2|) "failed"))) "failed") |#2| (-262 (-769 |#2|)))) (-15 -1979 ((-3 (-762 |#2|) "failed") |#2| (-262 (-762 |#2|)))) (-15 -2121 ((-3 (-769 |#2|) "failed") |#2| (-262 |#2|) (-1053))))
-((-2121 (((-3 (-769 (-375 (-866 |#1|))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))) (-1053)) 79) (((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|)))) 18) (((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-769 (-866 |#1|)))) 34)) (-1979 (((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|)))) 21) (((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-762 (-866 |#1|)))) 42)))
-(((-575 |#1|) (-10 -7 (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-769 (-866 |#1|))))) (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -1979 ((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-762 (-866 |#1|))))) (-15 -1979 ((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))) (-1053)))) (-419)) (T -575))
-((-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-262 (-375 (-866 *6)))) (-5 *5 (-1053)) (-5 *3 (-375 (-866 *6))) (-4 *6 (-419)) (-5 *2 (-769 *3)) (-5 *1 (-575 *6)))) (-1979 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-419)) (-5 *2 (-762 *3)) (-5 *1 (-575 *5)))) (-1979 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-762 (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-762 (-375 (-866 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-375 (-866 *5))))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-419)) (-5 *2 (-3 (-769 *3) (-2 (|:| |leftHandLimit| (-3 (-769 *3) "failed")) (|:| |rightHandLimit| (-3 (-769 *3) "failed"))) "failed")) (-5 *1 (-575 *5)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-262 (-769 (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-3 (-769 (-375 (-866 *5))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 *5))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 *5))) "failed"))) "failed")) (-5 *1 (-575 *5)) (-5 *3 (-375 (-866 *5))))))
-(-10 -7 (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-769 (-866 |#1|))))) (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 |#1|))) "failed"))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -1979 ((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-762 (-866 |#1|))))) (-15 -1979 ((-762 (-375 (-866 |#1|))) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -2121 ((-3 (-769 (-375 (-866 |#1|))) "failed") (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))) (-1053))))
-((-3501 (((-3 (-1148 (-375 |#1|)) "failed") (-1148 |#2|) |#2|) 57 (-3031 (|has| |#1| (-331)))) (((-3 (-1148 |#1|) "failed") (-1148 |#2|) |#2|) 42 (|has| |#1| (-331)))) (-3123 (((-107) (-1148 |#2|)) 30)) (-1364 (((-3 (-1148 |#1|) "failed") (-1148 |#2|)) 33)))
-(((-576 |#1| |#2|) (-10 -7 (-15 -3123 ((-107) (-1148 |#2|))) (-15 -1364 ((-3 (-1148 |#1|) "failed") (-1148 |#2|))) (IF (|has| |#1| (-331)) (-15 -3501 ((-3 (-1148 |#1|) "failed") (-1148 |#2|) |#2|)) (-15 -3501 ((-3 (-1148 (-375 |#1|)) "failed") (-1148 |#2|) |#2|)))) (-508) (-577 |#1|)) (T -576))
-((-3501 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 *5)) (-3031 (-4 *5 (-331))) (-4 *5 (-508)) (-5 *2 (-1148 (-375 *5))) (-5 *1 (-576 *5 *4)))) (-3501 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 *5)) (-4 *5 (-331)) (-4 *5 (-508)) (-5 *2 (-1148 *5)) (-5 *1 (-576 *5 *4)))) (-1364 (*1 *2 *3) (|partial| -12 (-5 *3 (-1148 *5)) (-4 *5 (-577 *4)) (-4 *4 (-508)) (-5 *2 (-1148 *4)) (-5 *1 (-576 *4 *5)))) (-3123 (*1 *2 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-577 *4)) (-4 *4 (-508)) (-5 *2 (-107)) (-5 *1 (-576 *4 *5)))))
-(-10 -7 (-15 -3123 ((-107) (-1148 |#2|))) (-15 -1364 ((-3 (-1148 |#1|) "failed") (-1148 |#2|))) (IF (|has| |#1| (-331)) (-15 -3501 ((-3 (-1148 |#1|) "failed") (-1148 |#2|) |#2|)) (-15 -3501 ((-3 (-1148 (-375 |#1|)) "failed") (-1148 |#2|) |#2|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3868 (((-621 |#1|) (-621 $)) 36) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 35)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-577 |#1|) (-1180) (-959)) (T -577))
-((-3868 (*1 *2 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-577 *4)) (-4 *4 (-959)) (-5 *2 (-621 *4)))) (-3868 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *1)) (-5 *4 (-1148 *1)) (-4 *1 (-577 *5)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -2978 (-621 *5)) (|:| |vec| (-1148 *5)))))))
-(-13 (-959) (-10 -8 (-15 -3868 ((-621 |t#1|) (-621 $))) (-15 -3868 ((-2 (|:| -2978 (-621 |t#1|)) (|:| |vec| (-1148 |t#1|))) (-621 $) (-1148 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2786 ((|#1| $) NIL)) (-1511 (($ $) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) $) NIL (|has| |#1| (-777))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-3441 (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-2861 (($ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) NIL (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "rest" $) NIL (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2692 (($ $ $) 31 (|has| |#1| (-1001)))) (-2683 (($ $ $) 33 (|has| |#1| (-1001)))) (-2678 (($ $ $) 36 (|has| |#1| (-1001)))) (-1221 (($ (-1 (-107) |#1|) $) NIL)) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1564 ((|#1| $) NIL)) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-1199 (($ $) NIL) (($ $ (-701)) NIL)) (-2921 (($ $) NIL (|has| |#1| (-1001)))) (-2673 (($ $) 30 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) NIL (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) NIL)) (-1526 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-1934 (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001))) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) (-1 (-107) |#1|) $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-1971 (((-107) $) 9)) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2951 (($) 7)) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2213 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3216 (($ $ $) NIL (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 32 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3143 (($ |#1|) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1383 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-4114 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-3654 (((-107) $) NIL)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1116 (-501))) NIL) ((|#1| $ (-501)) 35) ((|#1| $ (-501) |#1|) NIL)) (-1932 (((-501) $ $) NIL)) (-1386 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-2622 (((-107) $) NIL)) (-1455 (($ $) NIL)) (-3873 (($ $) NIL (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 44 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3198 (($ |#1| $) 10)) (-1186 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3934 (($ $ $) 29) (($ |#1| $) NIL) (($ (-578 $)) NIL) (($ $ |#1|) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1675 (($ $ $) 11)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3671 (((-1053) $) 25 (|has| |#1| (-751))) (((-1053) $ (-107)) 26 (|has| |#1| (-751))) (((-1154) (-753) $) 27 (|has| |#1| (-751))) (((-1154) (-753) $ (-107)) 28 (|has| |#1| (-751)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-578 |#1|) (-13 (-601 |#1|) (-10 -8 (-15 -2951 ($)) (-15 -1971 ((-107) $)) (-15 -3198 ($ |#1| $)) (-15 -1675 ($ $ $)) (IF (|has| |#1| (-1001)) (PROGN (-15 -2692 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2678 ($ $ $))) |noBranch|) (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|))) (-1104)) (T -578))
-((-2951 (*1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-578 *3)) (-4 *3 (-1104)))) (-3198 (*1 *1 *2 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))) (-1675 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))) (-2692 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)))) (-2683 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)))) (-2678 (*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)))))
-(-13 (-601 |#1|) (-10 -8 (-15 -2951 ($)) (-15 -1971 ((-107) $)) (-15 -3198 ($ |#1| $)) (-15 -1675 ($ $ $)) (IF (|has| |#1| (-1001)) (PROGN (-15 -2692 ($ $ $)) (-15 -2683 ($ $ $)) (-15 -2678 ($ $ $))) |noBranch|) (IF (|has| |#1| (-751)) (-6 (-751)) |noBranch|)))
-((-3162 (((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|) 16)) (-3547 ((|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|) 18)) (-1212 (((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|)) 13)))
-(((-579 |#1| |#2|) (-10 -7 (-15 -3162 ((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -1212 ((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|)))) (-1104) (-1104)) (T -579))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-578 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-578 *6)) (-5 *1 (-579 *5 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-578 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-579 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-578 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-578 *5)) (-5 *1 (-579 *6 *5)))))
-(-10 -7 (-15 -3162 ((-578 |#2|) (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-578 |#1|) |#2|)) (-15 -1212 ((-578 |#2|) (-1 |#2| |#1|) (-578 |#1|))))
-((-3921 ((|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|) 17) ((|#2| (-578 |#1|) (-578 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|)) 12)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|))) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1|)) (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|)) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|)) (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|))) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|)))) (-1001) (-1104)) (T -580))
-((-3921 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) (-3921 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *1 (-580 *5 *6)))) (-3921 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) (-3921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 *5)) (-4 *6 (-1001)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-3921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))))
-(-10 -7 (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|))) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1|)) (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) |#2|)) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1| |#2|)) (-15 -3921 ((-1 |#2| |#1|) (-578 |#1|) (-578 |#2|) (-1 |#2| |#1|))) (-15 -3921 (|#2| (-578 |#1|) (-578 |#2|) |#1| (-1 |#2| |#1|))))
-((-1212 (((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|)) 13)))
-(((-581 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|)))) (-1104) (-1104) (-1104)) (T -581))
-((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-578 *6)) (-5 *5 (-578 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-578 *8)) (-5 *1 (-581 *6 *7 *8)))))
-(-10 -7 (-15 -1212 ((-578 |#3|) (-1 |#3| |#1| |#2|) (-578 |#1|) (-578 |#2|))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2698 (($ |#1| |#1| $) 43)) (-2997 (((-107) $ (-701)) NIL)) (-1221 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2921 (($ $) 45)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) 51 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 53 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 9 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 37)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) 46)) (-4114 (($ |#1| $) 26) (($ |#1| $ (-701)) 42)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1251 ((|#1| $) 48)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 21)) (-3122 (($) 25)) (-1429 (((-107) $) 49)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 60)) (-3013 (($) 23) (($ (-578 |#1|)) 18)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) 57 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 19)) (-1248 (((-490) $) 34 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3691 (((-786) $) 14 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 22)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 62 (|has| |#1| (-1001)))) (-3581 (((-701) $) 16 (|has| $ (-6 -4167)))))
-(((-582 |#1|) (-13 (-626 |#1|) (-10 -8 (-6 -4167) (-15 -1429 ((-107) $)) (-15 -2698 ($ |#1| |#1| $)))) (-1001)) (T -582))
-((-1429 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-582 *3)) (-4 *3 (-1001)))) (-2698 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1001)))))
-(-13 (-626 |#1|) (-10 -8 (-6 -4167) (-15 -1429 ((-107) $)) (-15 -2698 ($ |#1| |#1| $))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 23)))
-(((-583 |#1|) (-1180) (-965)) (T -583))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-965)))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 57 (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) 55 (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) 23 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 21 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4181))) (($ $ "rest" $) 24 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-4020 (($ $) 28 (|has| $ (-6 -4181)))) (-3093 (($ $) 29)) (-1660 (($ $) 18) (($ $ (-703)) 32)) (-3483 (($ $) 53 (|has| |#1| (-1003)))) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1536 (((-583 |#1|) $) 27 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 31 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 56)) (-3237 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 51 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1529 (($ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) 50 (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) 13) (($ $ (-703)) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 12)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) 17)) (-1746 (($) 16)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) NIL) ((|#1| $ (-517) |#1|) NIL)) (-2459 (((-517) $ $) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-2655 (((-107) $) 33)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) 35)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) 34)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 26)) (-2568 (($ $ $) 52) (($ $ |#1|) NIL)) (-2452 (($ $ $) NIL) (($ |#1| $) 10) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2256 (((-787) $) 45 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 47 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 9 (|has| $ (-6 -4180)))))
+(((-483 |#1| |#2|) (-603 |#1|) (-1108) (-517)) (T -483))
+NIL
+(-603 |#1|)
+((-2468 ((|#4| |#4|) 26)) (-2261 (((-703) |#4|) 31)) (-1948 (((-703) |#4|) 32)) (-3706 (((-583 |#3|) |#4|) 37 (|has| |#3| (-6 -4181)))) (-2104 (((-3 |#4| "failed") |#4|) 47)) (-1431 ((|#4| |#4|) 40)) (-3057 ((|#1| |#4|) 39)))
+(((-484 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2468 (|#4| |#4|)) (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (IF (|has| |#3| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|) (-15 -3057 (|#1| |#4|)) (-15 -1431 (|#4| |#4|)) (-15 -2104 ((-3 |#4| "failed") |#4|))) (-333) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -484))
+((-2104 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1431 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3057 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-3706 (*1 *2 *3) (-12 (|has| *6 (-6 -4181)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2261 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -2468 (|#4| |#4|)) (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (IF (|has| |#3| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|) (-15 -3057 (|#1| |#4|)) (-15 -1431 (|#4| |#4|)) (-15 -2104 ((-3 |#4| "failed") |#4|)))
+((-2468 ((|#8| |#4|) 20)) (-3706 (((-583 |#3|) |#4|) 29 (|has| |#7| (-6 -4181)))) (-2104 (((-3 |#8| "failed") |#4|) 23)))
+(((-485 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2468 (|#8| |#4|)) (-15 -2104 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|)) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-909 |#1|) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -485))
+((-3706 (*1 *2 *3) (-12 (|has| *9 (-6 -4181)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) (-2104 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) (-2468 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))))
+(-10 -7 (-15 -2468 (|#8| |#4|)) (-15 -2104 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4181)) (-15 -3706 ((-583 |#3|) |#4|)) |noBranch|))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) NIL)) (-1231 (($ $ $) NIL)) (-2033 (($ (-548 |#1| |#3|)) NIL) (($ $) NIL)) (-2818 (((-107) $) NIL)) (-3666 (($ $ (-517) (-517)) 12)) (-2778 (($ $ (-517) (-517)) NIL)) (-3671 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4008 (($ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3565 (($ $ (-517) (-517) $) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-4087 (($ $ (-517) (-548 |#1| |#3|)) NIL)) (-3739 (($ $ (-517) (-548 |#1| |#2|)) NIL)) (-3487 (($ (-703) |#1|) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 19 (|has| |#1| (-278)))) (-1939 (((-548 |#1| |#3|) $ (-517)) NIL)) (-2261 (((-703) $) 22 (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) NIL)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1948 (((-703) $) 24 (|has| |#1| (-509)))) (-3706 (((-583 (-548 |#1| |#2|)) $) 27 (|has| |#1| (-509)))) (-1477 (((-703) $) NIL)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#1| $) 17 (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) 10)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) 11)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#1|))) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3035 (((-583 (-583 |#1|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) 31 (|has| |#1| (-333)))) (-2520 (($ $ $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-1879 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL)) (-1516 (((-107) $) NIL)) (-3057 ((|#1| $) 15 (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3728 (((-548 |#1| |#2|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-548 |#1| |#2|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-548 |#1| |#2|) $ (-548 |#1| |#2|)) NIL) (((-548 |#1| |#3|) (-548 |#1| |#3|) $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-486 |#1| |#2| |#3|) (-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|)) (-961) (-517) (-517)) (T -486))
+NIL
+(-621 |#1| (-548 |#1| |#3|) (-548 |#1| |#2|))
+((-1992 (((-1069 |#1|) (-703)) 74)) (-1472 (((-1153 |#1|) (-1153 |#1|) (-843)) 67)) (-4052 (((-1158) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) |#1|) 82)) (-3313 (((-1153 |#1|) (-1153 |#1|) (-703)) 36)) (-3209 (((-1153 |#1|) (-843)) 69)) (-3122 (((-1153 |#1|) (-1153 |#1|) (-517)) 24)) (-1913 (((-1069 |#1|) (-1153 |#1|)) 75)) (-2453 (((-1153 |#1|) (-843)) 93)) (-2434 (((-107) (-1153 |#1|)) 78)) (-1506 (((-1153 |#1|) (-1153 |#1|) (-843)) 59)) (-3777 (((-1069 |#1|) (-1153 |#1|)) 87)) (-1549 (((-843) (-1153 |#1|)) 56)) (-4118 (((-1153 |#1|) (-1153 |#1|)) 30)) (-3448 (((-1153 |#1|) (-843) (-843)) 95)) (-2583 (((-1153 |#1|) (-1153 |#1|) (-1021) (-1021)) 23)) (-3844 (((-1153 |#1|) (-1153 |#1|) (-703) (-1021)) 37)) (-1753 (((-1153 (-1153 |#1|)) (-843)) 92)) (-1667 (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 79)) (** (((-1153 |#1|) (-1153 |#1|) (-517)) 43)) (* (((-1153 |#1|) (-1153 |#1|) (-1153 |#1|)) 25)))
+(((-487 |#1|) (-10 -7 (-15 -4052 ((-1158) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) |#1|)) (-15 -3209 ((-1153 |#1|) (-843))) (-15 -3448 ((-1153 |#1|) (-843) (-843))) (-15 -1913 ((-1069 |#1|) (-1153 |#1|))) (-15 -1992 ((-1069 |#1|) (-703))) (-15 -3844 ((-1153 |#1|) (-1153 |#1|) (-703) (-1021))) (-15 -3313 ((-1153 |#1|) (-1153 |#1|) (-703))) (-15 -2583 ((-1153 |#1|) (-1153 |#1|) (-1021) (-1021))) (-15 -3122 ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1667 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1506 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -1472 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -4118 ((-1153 |#1|) (-1153 |#1|))) (-15 -1549 ((-843) (-1153 |#1|))) (-15 -2434 ((-107) (-1153 |#1|))) (-15 -1753 ((-1153 (-1153 |#1|)) (-843))) (-15 -2453 ((-1153 |#1|) (-843))) (-15 -3777 ((-1069 |#1|) (-1153 |#1|)))) (-319)) (T -487))
+((-3777 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-2434 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (-1472 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1506 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-1667 (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3122 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-2583 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3313 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) (-3844 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1153 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))) (-3448 (*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1158)) (-5 *1 (-487 *4)))))
+(-10 -7 (-15 -4052 ((-1158) (-1153 (-583 (-2 (|:| -3199 |#1|) (|:| -3448 (-1021))))) |#1|)) (-15 -3209 ((-1153 |#1|) (-843))) (-15 -3448 ((-1153 |#1|) (-843) (-843))) (-15 -1913 ((-1069 |#1|) (-1153 |#1|))) (-15 -1992 ((-1069 |#1|) (-703))) (-15 -3844 ((-1153 |#1|) (-1153 |#1|) (-703) (-1021))) (-15 -3313 ((-1153 |#1|) (-1153 |#1|) (-703))) (-15 -2583 ((-1153 |#1|) (-1153 |#1|) (-1021) (-1021))) (-15 -3122 ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 ** ((-1153 |#1|) (-1153 |#1|) (-517))) (-15 * ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1667 ((-1153 |#1|) (-1153 |#1|) (-1153 |#1|))) (-15 -1506 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -1472 ((-1153 |#1|) (-1153 |#1|) (-843))) (-15 -4118 ((-1153 |#1|) (-1153 |#1|))) (-15 -1549 ((-843) (-1153 |#1|))) (-15 -2434 ((-107) (-1153 |#1|))) (-15 -1753 ((-1153 (-1153 |#1|)) (-843))) (-15 -2453 ((-1153 |#1|) (-843))) (-15 -3777 ((-1069 |#1|) (-1153 |#1|))))
+((-3488 (((-1 |#1| |#1|) |#1|) 11)) (-1383 (((-1 |#1| |#1|)) 10)))
+(((-488 |#1|) (-10 -7 (-15 -1383 ((-1 |#1| |#1|))) (-15 -3488 ((-1 |#1| |#1|) |#1|))) (-13 (-659) (-25))) (T -488))
+((-3488 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))) (-1383 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(-10 -7 (-15 -1383 ((-1 |#1| |#1|))) (-15 -3488 ((-1 |#1| |#1|) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1640 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-1339 (($ (-703) |#1|) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 (-703) (-703)) $) NIL)) (-1968 ((|#1| $) NIL)) (-1191 (((-703) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 20)) (-2396 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL)))
+(((-489 |#1|) (-13 (-725) (-473 (-703) |#1|)) (-779)) (T -489))
+NIL
+(-13 (-725) (-473 (-703) |#1|))
+((-1657 (((-583 |#2|) (-1069 |#1|) |#3|) 83)) (-1252 (((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1069 |#1|)) (-1069 |#1|))) 99)) (-4084 (((-1069 |#1|) (-623 |#1|)) 95)))
+(((-490 |#1| |#2| |#3|) (-10 -7 (-15 -4084 ((-1069 |#1|) (-623 |#1|))) (-15 -1657 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -1252 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1069 |#1|)) (-1069 |#1|))))) (-333) (-333) (-13 (-333) (-777))) (T -490))
+((-1252 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1069 *6)) (-1069 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))) (-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-4084 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1069 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(-10 -7 (-15 -4084 ((-1069 |#1|) (-623 |#1|))) (-15 -1657 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -1252 ((-583 (-2 (|:| |outval| |#2|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#2|))))) (-623 |#1|) |#3| (-1 (-388 (-1069 |#1|)) (-1069 |#1|)))))
+((-2699 (((-772 (-517))) 11)) (-2722 (((-772 (-517))) 13)) (-2676 (((-765 (-517))) 8)))
+(((-491) (-10 -7 (-15 -2676 ((-765 (-517)))) (-15 -2699 ((-772 (-517)))) (-15 -2722 ((-772 (-517)))))) (T -491))
+((-2722 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2699 (*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) (-2676 (*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))))
+(-10 -7 (-15 -2676 ((-765 (-517)))) (-15 -2699 ((-772 (-517)))) (-15 -2722 ((-772 (-517)))))
+((-3537 (((-493) (-1073)) 15)) (-2659 ((|#1| (-493)) 20)))
+(((-492 |#1|) (-10 -7 (-15 -3537 ((-493) (-1073))) (-15 -2659 (|#1| (-493)))) (-1108)) (T -492))
+((-2659 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1108)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1108)))))
+(-10 -7 (-15 -3537 ((-493) (-1073))) (-15 -2659 (|#1| (-493))))
+((-2750 (((-107) $ $) NIL)) (-3970 (((-1056) $) 46)) (-2710 (((-107) $) 43)) (-3881 (((-1073) $) 44)) (-2347 (((-107) $) 41)) (-3890 (((-1056) $) 42)) (-1533 (((-107) $) NIL)) (-2636 (((-107) $) NIL)) (-3567 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-1411 (($ $ (-583 (-1073))) 20)) (-2659 (((-51) $) 22)) (-1973 (((-107) $) NIL)) (-3912 (((-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1234 (($ $ (-583 (-1073)) (-1073)) 58)) (-2056 (((-107) $) NIL)) (-4005 (((-199) $) NIL)) (-2219 (($ $) 38)) (-1556 (((-787) $) NIL)) (-2131 (((-107) $ $) NIL)) (-1449 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3814 (((-583 $) $) 28)) (-1970 (((-1073) (-583 $)) 47)) (-3645 (($ (-583 $)) 51) (($ (-1056)) NIL) (($ (-1073)) 18) (($ (-517)) 8) (($ (-199)) 25) (($ (-787)) NIL) (((-1007) $) 11) (($ (-1007)) 12)) (-3628 (((-1073) (-1073) (-583 $)) 50)) (-2256 (((-787) $) NIL)) (-2705 (($ $) 49)) (-2694 (($ $) 48)) (-4146 (($ $ (-583 $)) 55)) (-1491 (((-107) $) 27)) (-2396 (($) 9 T CONST)) (-2409 (($) 10 T CONST)) (-1547 (((-107) $ $) 59)) (-1667 (($ $ $) 64)) (-1642 (($ $ $) 60)) (** (($ $ (-703)) 63) (($ $ (-517)) 62)) (* (($ $ $) 61)) (-2296 (((-517) $) NIL)))
+(((-493) (-13 (-1006 (-1056) (-1073) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2659 ((-51) $)) (-15 -3645 ($ (-1007))) (-15 -4146 ($ $ (-583 $))) (-15 -1234 ($ $ (-583 (-1073)) (-1073))) (-15 -1411 ($ $ (-583 (-1073)))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 0 ($) -1619) (-15 1 ($) -1619) (-15 -2219 ($ $)) (-15 -3970 ((-1056) $)) (-15 -1970 ((-1073) (-583 $))) (-15 -3628 ((-1073) (-1073) (-583 $)))))) (T -493))
+((-2659 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) (-4146 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))) (-1234 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1073)) (-5 *1 (-493)))) (-1411 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-493)))) (-1642 (*1 *1 *1 *1) (-5 *1 (-493))) (* (*1 *1 *1 *1) (-5 *1 (-493))) (-1667 (*1 *1 *1 *1) (-5 *1 (-493))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) (-2396 (*1 *1) (-5 *1 (-493))) (-2409 (*1 *1) (-5 *1 (-493))) (-2219 (*1 *1 *1) (-5 *1 (-493))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-493)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1073)) (-5 *1 (-493)))) (-3628 (*1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
+(-13 (-1006 (-1056) (-1073) (-517) (-199) (-787)) (-558 (-1007)) (-10 -8 (-15 -2659 ((-51) $)) (-15 -3645 ($ (-1007))) (-15 -4146 ($ $ (-583 $))) (-15 -1234 ($ $ (-583 (-1073)) (-1073))) (-15 -1411 ($ $ (-583 (-1073)))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ (-517))) (-15 (-2396) ($) -1619) (-15 (-2409) ($) -1619) (-15 -2219 ($ $)) (-15 -3970 ((-1056) $)) (-15 -1970 ((-1073) (-583 $))) (-15 -3628 ((-1073) (-1073) (-583 $)))))
+((-4076 ((|#2| |#2|) 17)) (-3599 ((|#2| |#2|) 13)) (-2667 ((|#2| |#2| (-517) (-517)) 20)) (-2825 ((|#2| |#2|) 15)))
+(((-494 |#1| |#2|) (-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517)))) (-13 (-509) (-134)) (-1145 |#1|)) (T -494))
+((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1145 *4)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))))
+(-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517))))
+((-3344 (((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1073))) 32)) (-2730 (((-583 |#2|) (-874 |#1|) |#3|) 53) (((-583 |#2|) (-1069 |#1|) |#3|) 52)) (-3429 (((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)) |#3|) 87)))
+(((-495 |#1| |#2| |#3|) (-10 -7 (-15 -2730 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -2730 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -3429 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)) |#3|)) (-15 -3344 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1073))))) (-421) (-333) (-13 (-333) (-777))) (T -495))
+((-3344 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1073))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))) (-3429 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -2730 ((-583 |#2|) (-1069 |#1|) |#3|)) (-15 -2730 ((-583 |#2|) (-874 |#1|) |#3|)) (-15 -3429 ((-583 (-583 |#2|)) (-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)) |#3|)) (-15 -3344 ((-583 (-265 (-874 |#2|))) (-583 |#2|) (-583 (-1073)))))
+((-3271 ((|#2| |#2| |#1|) 17)) (-3903 ((|#2| (-583 |#2|)) 26)) (-3845 ((|#2| (-583 |#2|)) 45)))
+(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3903 (|#2| (-583 |#2|))) (-15 -3845 (|#2| (-583 |#2|))) (-15 -3271 (|#2| |#2| |#1|))) (-278) (-1130 |#1|) |#1| (-1 |#1| |#1| (-703))) (T -496))
+((-3271 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1130 *3)))) (-3845 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(-10 -7 (-15 -3903 (|#2| (-583 |#2|))) (-15 -3845 (|#2| (-583 |#2|))) (-15 -3271 (|#2| |#2| |#1|)))
+((-3755 (((-388 (-1069 |#4|)) (-1069 |#4|) (-1 (-388 (-1069 |#3|)) (-1069 |#3|))) 79) (((-388 |#4|) |#4| (-1 (-388 (-1069 |#3|)) (-1069 |#3|))) 164)))
+(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 (-1069 |#3|)) (-1069 |#3|)))) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|) (-1 (-388 (-1069 |#3|)) (-1069 |#3|))))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -497))
+((-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1069 *8)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5)))))
+(-10 -7 (-15 -3755 ((-388 |#4|) |#4| (-1 (-388 (-1069 |#3|)) (-1069 |#3|)))) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|) (-1 (-388 (-1069 |#3|)) (-1069 |#3|)))))
+((-4076 ((|#4| |#4|) 73)) (-3599 ((|#4| |#4|) 69)) (-2667 ((|#4| |#4| (-517) (-517)) 75)) (-2825 ((|#4| |#4|) 71)))
+(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3599 (|#4| |#4|)) (-15 -2825 (|#4| |#4|)) (-15 -4076 (|#4| |#4|)) (-15 -2667 (|#4| |#4| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1130 |#1|) (-657 |#1| |#2|) (-1145 |#3|)) (T -498))
+((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1130 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1145 *6)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))))
+(-10 -7 (-15 -3599 (|#4| |#4|)) (-15 -2825 (|#4| |#4|)) (-15 -4076 (|#4| |#4|)) (-15 -2667 (|#4| |#4| (-517) (-517))))
+((-4076 ((|#2| |#2|) 27)) (-3599 ((|#2| |#2|) 23)) (-2667 ((|#2| |#2| (-517) (-517)) 29)) (-2825 ((|#2| |#2|) 25)))
+(((-499 |#1| |#2|) (-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517)))) (-13 (-333) (-338) (-558 (-517))) (-1145 |#1|)) (T -499))
+((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1145 *4)))) (-4076 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) (-2825 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))))
+(-10 -7 (-15 -3599 (|#2| |#2|)) (-15 -2825 (|#2| |#2|)) (-15 -4076 (|#2| |#2|)) (-15 -2667 (|#2| |#2| (-517) (-517))))
+((-2134 (((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)) 14) (((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|)) 13) (((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|)) 26)))
+(((-500 |#1| |#2|) (-10 -7 (-15 -2134 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|)))) (-961) (-1130 |#1|)) (T -500))
+((-2134 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))) (-2134 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))) (-2134 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1130 *5)))))
+(-10 -7 (-15 -2134 ((-3 (-517) "failed") |#2| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-517) (-1 (-3 (-517) "failed") |#1|))) (-15 -2134 ((-3 (-517) "failed") |#2| |#1| (-1 (-3 (-517) "failed") |#1|))))
+((-2635 (($ $ $) 78)) (-2759 (((-388 $) $) 46)) (-1772 (((-3 (-517) "failed") $) 58)) (-3189 (((-517) $) 36)) (-1256 (((-3 (-377 (-517)) "failed") $) 73)) (-1355 (((-107) $) 23)) (-3364 (((-377 (-517)) $) 71)) (-3849 (((-107) $) 49)) (-4113 (($ $ $ $) 85)) (-3556 (((-107) $) 15)) (-3647 (($ $ $) 56)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 68)) (-1319 (((-3 $ "failed") $) 63)) (-1522 (($ $) 22)) (-1997 (($ $ $) 83)) (-2836 (($) 59)) (-3663 (($ $) 52)) (-3755 (((-388 $) $) 44)) (-3998 (((-107) $) 13)) (-3146 (((-703) $) 27)) (-3127 (($ $ (-703)) NIL) (($ $) 10)) (-2433 (($ $) 16)) (-3645 (((-517) $) NIL) (((-493) $) 35) (((-814 (-517)) $) 39) (((-349) $) 30) (((-199) $) 32)) (-2961 (((-703)) 8)) (-2746 (((-107) $ $) 19)) (-1270 (($ $ $) 54)))
+(((-501 |#1|) (-10 -8 (-15 -1997 (|#1| |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -2746 ((-107) |#1| |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1270 (|#1| |#1| |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3645 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3556 ((-107) |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2961 ((-703)))) (-502)) (T -501))
+((-2961 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))))
+(-10 -8 (-15 -1997 (|#1| |#1| |#1|)) (-15 -4113 (|#1| |#1| |#1| |#1|)) (-15 -1522 (|#1| |#1|)) (-15 -2433 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -2635 (|#1| |#1| |#1|)) (-15 -2746 ((-107) |#1| |#1|)) (-15 -3998 ((-107) |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3647 (|#1| |#1| |#1|)) (-15 -3663 (|#1| |#1|)) (-15 -1270 (|#1| |#1| |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3645 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3556 ((-107) |#1|)) (-15 -3146 ((-703) |#1|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -3849 ((-107) |#1|)) (-15 -2961 ((-703))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-2635 (($ $ $) 85)) (-4038 (((-3 $ "failed") $ $) 19)) (-3548 (($ $ $ $) 73)) (-2535 (($ $) 51)) (-2759 (((-388 $) $) 52)) (-1707 (((-107) $ $) 125)) (-3709 (((-517) $) 114)) (-1363 (($ $ $) 88)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 106)) (-3189 (((-517) $) 105)) (-2518 (($ $ $) 129)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 104) (((-623 (-517)) (-623 $)) 103)) (-3621 (((-3 $ "failed") $) 34)) (-1256 (((-3 (-377 (-517)) "failed") $) 82)) (-1355 (((-107) $) 84)) (-3364 (((-377 (-517)) $) 83)) (-3209 (($) 81) (($ $) 80)) (-2497 (($ $ $) 128)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 123)) (-3849 (((-107) $) 53)) (-4113 (($ $ $ $) 71)) (-1756 (($ $ $) 86)) (-3556 (((-107) $) 116)) (-3647 (($ $ $) 97)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 100)) (-3848 (((-107) $) 31)) (-1769 (((-107) $) 92)) (-1319 (((-3 $ "failed") $) 94)) (-2475 (((-107) $) 115)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 132)) (-1813 (($ $ $ $) 72)) (-2967 (($ $ $) 117)) (-3099 (($ $ $) 118)) (-1522 (($ $) 75)) (-2195 (($ $) 89)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-1997 (($ $ $) 70)) (-2836 (($) 93 T CONST)) (-3251 (($ $) 77)) (-3206 (((-1021) $) 10) (($ $) 79)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3663 (($ $) 98)) (-3755 (((-388 $) $) 50)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 130)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 124)) (-3998 (((-107) $) 91)) (-3146 (((-703) $) 126)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 127)) (-3127 (($ $ (-703)) 111) (($ $) 109)) (-2789 (($ $) 76)) (-2433 (($ $) 78)) (-3645 (((-517) $) 108) (((-493) $) 102) (((-814 (-517)) $) 101) (((-349) $) 96) (((-199) $) 95)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 107)) (-2961 (((-703)) 29)) (-2746 (((-107) $ $) 87)) (-1270 (($ $ $) 99)) (-2372 (($) 90)) (-3329 (((-107) $ $) 39)) (-1917 (($ $ $ $) 74)) (-3710 (($ $) 113)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-703)) 112) (($ $) 110)) (-1606 (((-107) $ $) 120)) (-1583 (((-107) $ $) 121)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 119)) (-1572 (((-107) $ $) 122)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-502) (-1184)) (T -502))
+((-1769 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3998 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-2372 (*1 *1) (-4 *1 (-502))) (-2195 (*1 *1 *1) (-4 *1 (-502))) (-1363 (*1 *1 *1 *1) (-4 *1 (-502))) (-2746 (*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-1756 (*1 *1 *1 *1) (-4 *1 (-502))) (-2635 (*1 *1 *1 *1) (-4 *1 (-502))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) (-3209 (*1 *1) (-4 *1 (-502))) (-3209 (*1 *1 *1) (-4 *1 (-502))) (-3206 (*1 *1 *1) (-4 *1 (-502))) (-2433 (*1 *1 *1) (-4 *1 (-502))) (-3251 (*1 *1 *1) (-4 *1 (-502))) (-2789 (*1 *1 *1) (-4 *1 (-502))) (-1522 (*1 *1 *1) (-4 *1 (-502))) (-1917 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-3548 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1813 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-4113 (*1 *1 *1 *1 *1) (-4 *1 (-502))) (-1997 (*1 *1 *1 *1) (-4 *1 (-502))))
+(-13 (-1112) (-278) (-752) (-207) (-558 (-517)) (-952 (-517)) (-579 (-517)) (-558 (-493)) (-558 (-814 (-517))) (-808 (-517)) (-130) (-937) (-134) (-1049) (-10 -8 (-15 -1769 ((-107) $)) (-15 -3998 ((-107) $)) (-6 -4179) (-15 -2372 ($)) (-15 -2195 ($ $)) (-15 -1363 ($ $ $)) (-15 -2746 ((-107) $ $)) (-15 -1756 ($ $ $)) (-15 -2635 ($ $ $)) (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $)) (-15 -3209 ($)) (-15 -3209 ($ $)) (-15 -3206 ($ $)) (-15 -2433 ($ $)) (-15 -3251 ($ $)) (-15 -2789 ($ $)) (-15 -1522 ($ $)) (-15 -1917 ($ $ $ $)) (-15 -3548 ($ $ $ $)) (-15 -1813 ($ $ $ $)) (-15 -4113 ($ $ $ $)) (-15 -1997 ($ $ $)) (-6 -4178)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-130) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-493)) . T) ((-558 (-517)) . T) ((-558 (-814 (-517))) . T) ((-207) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-579 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-752) . T) ((-777) . T) ((-779) . T) ((-808 (-517)) . T) ((-842) . T) ((-937) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) . T) ((-1112) . T))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-503 |#1| |#2| |#3|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))) (T -503))
+NIL
+(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))
+((-1864 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1069 |#2|) (-1069 |#2|))) 49)))
+(((-504 |#1| |#2|) (-10 -7 (-15 -1864 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1069 |#2|) (-1069 |#2|))))) (-13 (-779) (-509)) (-13 (-27) (-400 |#1|))) (T -504))
+((-1864 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1069 *3) (-1069 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
+(-10 -7 (-15 -1864 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-1 (-1069 |#2|) (-1069 |#2|)))))
+((-3546 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 195)) (-2342 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 191)) (-2724 (((-534 |#5|) |#5| (-1 |#3| |#3|)) 198)))
+(((-505 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2724 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3546 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2342 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-779) (-509) (-952 (-517))) (-13 (-27) (-400 |#1|)) (-1130 |#2|) (-1130 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -505))
+((-2342 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1130 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))) (-3546 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))) (-2724 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
+(-10 -7 (-15 -2724 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3546 ((-534 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2342 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-3949 (((-107) (-517) (-517)) 10)) (-2120 (((-517) (-517)) 7)) (-3470 (((-517) (-517) (-517)) 8)))
+(((-506) (-10 -7 (-15 -2120 ((-517) (-517))) (-15 -3470 ((-517) (-517) (-517))) (-15 -3949 ((-107) (-517) (-517))))) (T -506))
+((-3949 (*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))) (-3470 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(-10 -7 (-15 -2120 ((-517) (-517))) (-15 -3470 ((-517) (-517) (-517))) (-15 -3949 ((-107) (-517) (-517))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2095 ((|#1| $) 61)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1865 (($ $) 91)) (-1721 (($ $) 74)) (-1640 ((|#1| $) 62)) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $) 73)) (-1839 (($ $) 90)) (-1701 (($ $) 75)) (-1887 (($ $) 89)) (-1743 (($ $) 76)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 69)) (-3189 (((-517) $) 68)) (-3621 (((-3 $ "failed") $) 34)) (-2458 (($ |#1| |#1|) 66)) (-3556 (((-107) $) 60)) (-2645 (($) 101)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 72)) (-2475 (((-107) $) 59)) (-2967 (($ $ $) 107)) (-3099 (($ $ $) 106)) (-1867 (($ $) 98)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4015 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-377 (-517))) 64)) (-1933 ((|#1| $) 63)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2476 (((-3 $ "failed") $ $) 42)) (-2624 (($ $) 99)) (-1898 (($ $) 88)) (-1754 (($ $) 77)) (-1876 (($ $) 87)) (-1732 (($ $) 78)) (-1853 (($ $) 86)) (-1711 (($ $) 79)) (-2613 (((-107) $ |#1|) 58)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-517)) 70)) (-2961 (((-703)) 29)) (-3707 (($ $) 97)) (-1788 (($ $) 85)) (-3329 (((-107) $ $) 39)) (-3683 (($ $) 96)) (-1765 (($ $) 84)) (-3731 (($ $) 95)) (-1814 (($ $) 83)) (-1492 (($ $) 94)) (-1827 (($ $) 82)) (-3719 (($ $) 93)) (-1802 (($ $) 81)) (-3695 (($ $) 92)) (-1777 (($ $) 80)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 104)) (-1583 (((-107) $ $) 103)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 105)) (-1572 (((-107) $ $) 102)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 100) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-507 |#1|) (-1184) (-13 (-374) (-1094))) (T -507))
+((-4015 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-2458 (*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-4015 (*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-4015 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))))) (-1933 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-2095 (*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) (-2613 (*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))))
+(-13 (-421) (-779) (-1094) (-918) (-952 (-517)) (-10 -8 (-6 -3383) (-15 -4015 ($ |t#1| |t#1|)) (-15 -2458 ($ |t#1| |t#1|)) (-15 -4015 ($ |t#1|)) (-15 -4015 ($ (-377 (-517)))) (-15 -1933 (|t#1| $)) (-15 -1640 (|t#1| $)) (-15 -2095 (|t#1| $)) (-15 -3556 ((-107) $)) (-15 -2475 ((-107) $)) (-15 -2613 ((-107) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-256) . T) ((-262) . T) ((-421) . T) ((-458) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-779) . T) ((-918) . T) ((-952 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) . T) ((-1097) . T))
+((-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 9)) (-1213 (($ $) 11)) (-2454 (((-107) $) 18)) (-3621 (((-3 $ "failed") $) 16)) (-3329 (((-107) $ $) 20)))
+(((-508 |#1|) (-10 -8 (-15 -2454 ((-107) |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|))) (-509)) (T -508))
+NIL
+(-10 -8 (-15 -2454 ((-107) |#1|)) (-15 -3329 ((-107) |#1| |#1|)) (-15 -1213 (|#1| |#1|)) (-15 -2942 ((-2 (|:| -3295 |#1|) (|:| -4167 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-509) (-1184)) (T -509))
+((-2476 (*1 *1 *1 *1) (|partial| -4 *1 (-509))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3295 *1) (|:| -4167 *1) (|:| |associate| *1))) (-4 *1 (-509)))) (-1213 (*1 *1 *1) (-4 *1 (-509))) (-3329 (*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(-13 (-156) (-37 $) (-262) (-10 -8 (-15 -2476 ((-3 $ "failed") $ $)) (-15 -2942 ((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $)) (-15 -1213 ($ $)) (-15 -3329 ((-107) $ $)) (-15 -2454 ((-107) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2081 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1073) (-583 |#2|)) 35)) (-3767 (((-534 |#2|) |#2| (-1073)) 58)) (-1585 (((-3 |#2| "failed") |#2| (-1073)) 148)) (-1447 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) (-556 |#2|) (-583 (-556 |#2|))) 151)) (-3257 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) |#2|) 38)))
+(((-510 |#1| |#2|) (-10 -7 (-15 -3257 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) |#2|)) (-15 -2081 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1073) (-583 |#2|))) (-15 -1585 ((-3 |#2| "failed") |#2| (-1073))) (-15 -3767 ((-534 |#2|) |#2| (-1073))) (-15 -1447 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) (-556 |#2|) (-583 (-556 |#2|))))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -510))
+((-1447 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1073)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))) (-3767 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-1585 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2081 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))) (-3257 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
+(-10 -7 (-15 -3257 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) |#2|)) (-15 -2081 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1073) (-583 |#2|))) (-15 -1585 ((-3 |#2| "failed") |#2| (-1073))) (-15 -3767 ((-534 |#2|) |#2| (-1073))) (-15 -1447 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1073) (-556 |#2|) (-583 (-556 |#2|)))))
+((-2759 (((-388 |#1|) |#1|) 18)) (-3755 (((-388 |#1|) |#1|) 33)) (-2281 (((-3 |#1| "failed") |#1|) 44)) (-2439 (((-388 |#1|) |#1|) 51)))
+(((-511 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2439 ((-388 |#1|) |#1|)) (-15 -2281 ((-3 |#1| "failed") |#1|))) (-502)) (T -511))
+((-2281 (*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))) (-2439 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-2759 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2439 ((-388 |#1|) |#1|)) (-15 -2281 ((-3 |#1| "failed") |#1|)))
+((-2320 (($) 9)) (-2513 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 29)) (-2274 (((-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 26)) (-1710 (($ (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 23)) (-2071 (($ (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 21)) (-1257 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 33)) (-1941 (((-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 31)) (-2601 (((-1158)) 12)))
+(((-512) (-10 -8 (-15 -2320 ($)) (-15 -2601 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2071 ($ (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2513 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1941 ((-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1257 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -512))
+((-1257 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-2513 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) (-2071 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) (-2601 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-512)))) (-2320 (*1 *1) (-5 *1 (-512))))
+(-10 -8 (-15 -2320 ($)) (-15 -2601 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2071 ($ (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2513 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1941 ((-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1257 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-2352 (((-1069 (-377 (-1069 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1069 |#2|)) 28)) (-2289 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 96) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1069 |#2|)) 106)) (-2357 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 78) (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|)) 50)) (-2177 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1069 |#2|))) 85) (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1069 |#2|)) 105)) (-1758 (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 101) (((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) |#2| (-1069 |#2|)) 107)) (-2211 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))) 124 (|has| |#3| (-593 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|)) 123 (|has| |#3| (-593 |#2|)))) (-1350 ((|#2| (-1069 (-377 (-1069 |#2|))) (-556 |#2|) |#2|) 48)) (-3216 (((-1069 (-377 (-1069 |#2|))) (-1069 |#2|) (-556 |#2|)) 27)))
+(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1069 |#2|))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1069 |#2|))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) |#2| (-1069 |#2|))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2352 ((-1069 (-377 (-1069 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1069 |#2|))) (-15 -1350 (|#2| (-1069 (-377 (-1069 |#2|))) (-556 |#2|) |#2|)) (-15 -3216 ((-1069 (-377 (-1069 |#2|))) (-1069 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1094)) (-1003)) (T -513))
+((-2211 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1069 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-2211 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1069 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1069 *6)) (-4 *7 (-1003)))) (-1350 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1069 (-377 (-1069 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) (-2352 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1069 *3)) (-4 *7 (-1003)))) (-1758 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-377 (-1069 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-1758 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-1069 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) (-2289 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-2289 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1069 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) (-2177 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2177 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2357 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) (-2357 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
+(-10 -7 (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2357 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| |#2| (-1069 |#2|))) (-15 -2177 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2| (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) |#2| (-1069 |#2|))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) |#2| (-1069 |#2|))) (-15 -1758 ((-3 |#2| "failed") |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)) (-556 |#2|) |#2| (-377 (-1069 |#2|)))) (-15 -2352 ((-1069 (-377 (-1069 |#2|))) |#2| (-556 |#2|) (-556 |#2|) (-1069 |#2|))) (-15 -1350 (|#2| (-1069 (-377 (-1069 |#2|))) (-556 |#2|) |#2|)) (-15 -3216 ((-1069 (-377 (-1069 |#2|))) (-1069 |#2|) (-556 |#2|))) (IF (|has| |#3| (-593 |#2|)) (PROGN (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) |#2| (-1069 |#2|))) (-15 -2211 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-556 |#2|) |#2| (-377 (-1069 |#2|))))) |noBranch|))
+((-3234 (((-517) (-517) (-703)) 65)) (-3799 (((-517) (-517)) 64)) (-1574 (((-517) (-517)) 63)) (-3163 (((-517) (-517)) 68)) (-3357 (((-517) (-517) (-517)) 48)) (-2283 (((-517) (-517) (-517)) 45)) (-2065 (((-377 (-517)) (-517)) 20)) (-2539 (((-517) (-517)) 21)) (-3097 (((-517) (-517)) 57)) (-3747 (((-517) (-517)) 32)) (-2369 (((-583 (-517)) (-517)) 62)) (-1659 (((-517) (-517) (-517) (-517) (-517)) 43)) (-1781 (((-377 (-517)) (-517)) 41)))
+(((-514) (-10 -7 (-15 -1781 ((-377 (-517)) (-517))) (-15 -1659 ((-517) (-517) (-517) (-517) (-517))) (-15 -2369 ((-583 (-517)) (-517))) (-15 -3747 ((-517) (-517))) (-15 -3097 ((-517) (-517))) (-15 -2539 ((-517) (-517))) (-15 -2065 ((-377 (-517)) (-517))) (-15 -2283 ((-517) (-517) (-517))) (-15 -3357 ((-517) (-517) (-517))) (-15 -3163 ((-517) (-517))) (-15 -1574 ((-517) (-517))) (-15 -3799 ((-517) (-517))) (-15 -3234 ((-517) (-517) (-703))))) (T -514))
+((-3234 (*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))) (-3799 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1574 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3357 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2283 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2065 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-2539 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-3747 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-2369 (*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) (-1659 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) (-1781 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(-10 -7 (-15 -1781 ((-377 (-517)) (-517))) (-15 -1659 ((-517) (-517) (-517) (-517) (-517))) (-15 -2369 ((-583 (-517)) (-517))) (-15 -3747 ((-517) (-517))) (-15 -3097 ((-517) (-517))) (-15 -2539 ((-517) (-517))) (-15 -2065 ((-377 (-517)) (-517))) (-15 -2283 ((-517) (-517) (-517))) (-15 -3357 ((-517) (-517) (-517))) (-15 -3163 ((-517) (-517))) (-15 -1574 ((-517) (-517))) (-15 -3799 ((-517) (-517))) (-15 -3234 ((-517) (-517) (-703))))
+((-1208 (((-2 (|:| |answer| |#4|) (|:| -3591 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1208 ((-2 (|:| |answer| |#4|) (|:| -3591 |#4|)) |#4| (-1 |#2| |#2|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -515))
+((-1208 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3591 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))))
+(-10 -7 (-15 -1208 ((-2 (|:| |answer| |#4|) (|:| -3591 |#4|)) |#4| (-1 |#2| |#2|))))
+((-1208 (((-2 (|:| |answer| (-377 |#2|)) (|:| -3591 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 18)))
+(((-516 |#1| |#2|) (-10 -7 (-15 -1208 ((-2 (|:| |answer| (-377 |#2|)) (|:| -3591 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1130 |#1|)) (T -516))
+((-1208 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -3591 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -1208 ((-2 (|:| |answer| (-377 |#2|)) (|:| -3591 (-377 |#2|)) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 25)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 86)) (-1213 (($ $) 87)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) 42)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) 80)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL)) (-3189 (((-517) $) NIL)) (-2518 (($ $ $) 79)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 60) (((-623 (-517)) (-623 $)) 57)) (-3621 (((-3 $ "failed") $) 83)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($) 62) (($ $) 63)) (-2497 (($ $ $) 78)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) 54)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) 26)) (-1769 (((-107) $) 73)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) 34)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) 43)) (-2967 (($ $ $) 75)) (-3099 (($ $ $) 74)) (-1522 (($ $) NIL)) (-2195 (($ $) 40)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) 53)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) 31)) (-3206 (((-1021) $) NIL) (($ $) 33)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 117)) (-1401 (($ $ $) 84) (($ (-583 $)) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) 103)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) 82)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 77)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-2789 (($ $) 32)) (-2433 (($ $) 30)) (-3645 (((-517) $) 39) (((-493) $) 51) (((-814 (-517)) $) NIL) (((-349) $) 46) (((-199) $) 48) (((-1056) $) 52)) (-2256 (((-787) $) 37) (($ (-517)) 38) (($ $) NIL) (($ (-517)) 38)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) 29)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) 41)) (-3710 (($ $) 61)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 27 T CONST)) (-2409 (($) 28 T CONST)) (-2482 (((-1056) $) 20) (((-1056) $ (-107)) 22) (((-1158) (-754) $) 23) (((-1158) (-754) $ (-107)) 24)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 64)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 65)) (-1654 (($ $) 66) (($ $ $) 68)) (-1642 (($ $ $) 67)) (** (($ $ (-843)) NIL) (($ $ (-703)) 72)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 70) (($ $ $) 69)))
+(((-517) (-13 (-502) (-558 (-1056)) (-760) (-10 -8 (-15 -3209 ($ $)) (-6 -4167) (-6 -4172) (-6 -4168) (-6 -4162)))) (T -517))
+((-3209 (*1 *1 *1) (-5 *1 (-517))))
+(-13 (-502) (-558 (-1056)) (-760) (-10 -8 (-15 -3209 ($ $)) (-6 -4167) (-6 -4172) (-6 -4168) (-6 -4162)))
+((-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701) (-973)) 103) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701)) 105)) (-4151 (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1073)) 168) (((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1056)) 167) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973)) 173) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349)) 174) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349)) 175) (((-950) (-286 (-349)) (-583 (-998 (-772 (-349))))) 176) (((-950) (-286 (-349)) (-998 (-772 (-349)))) 163) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349)) 162) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349)) 158) (((-950) (-701)) 150) (((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973)) 157)))
+(((-518) (-10 -7 (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -4151 ((-950) (-701))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701) (-973))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1056))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1073))))) (T -518))
+((-4151 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1073)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1056)) (-5 *2 (-950)) (-5 *1 (-518)))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) (-4151 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))))
+(-10 -7 (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349) (-973))) (-15 -4151 ((-950) (-701))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-998 (-772 (-349))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349))) (-15 -4151 ((-950) (-286 (-349)) (-583 (-998 (-772 (-349)))) (-349) (-349) (-973))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950))) (-701) (-973))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1056))) (-15 -4151 ((-3 (-950) "failed") (-286 (-349)) (-996 (-772 (-349))) (-1073))))
+((-1325 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|)) 180)) (-3400 (((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|)) 98)) (-2997 (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|) 176)) (-2506 (((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073))) 185)) (-3039 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1073)) 193 (|has| |#3| (-593 |#2|)))))
+(((-519 |#1| |#2| |#3|) (-10 -7 (-15 -3400 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2997 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2506 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3039 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1073))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517))) (-13 (-400 |#1|) (-27) (-1094)) (-1003)) (T -519))
+((-3039 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) (-2506 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003)))) (-1325 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003)))) (-2997 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))) (-3400 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
+(-10 -7 (-15 -3400 ((-534 |#2|) |#2| (-556 |#2|) (-556 |#2|))) (-15 -2997 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-556 |#2|) (-556 |#2|) |#2|)) (-15 -1325 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-556 |#2|) (-556 |#2|) (-583 |#2|))) (-15 -2506 ((-3 |#2| "failed") |#2| |#2| |#2| (-556 |#2|) (-556 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1073)))) (IF (|has| |#3| (-593 |#2|)) (-15 -3039 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1753 (-583 |#2|))) |#3| |#2| (-556 |#2|) (-556 |#2|) (-1073))) |noBranch|))
+((-2880 (((-2 (|:| -3618 |#2|) (|:| |nconst| |#2|)) |#2| (-1073)) 62)) (-1875 (((-3 |#2| "failed") |#2| (-1073) (-772 |#2|) (-772 |#2|)) 160 (-12 (|has| |#2| (-1037)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)) 142 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517)))))) (-2956 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)) 143 (-12 (|has| |#2| (-569)) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-808 (-517)))))))
+(((-520 |#1| |#2|) (-10 -7 (-15 -2880 ((-2 (|:| -3618 |#2|) (|:| |nconst| |#2|)) |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2956 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073))) (-15 -1875 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) (IF (|has| |#2| (-1037)) (-15 -1875 ((-3 |#2| "failed") |#2| (-1073) (-772 |#2|) (-772 |#2|))) |noBranch|)) |noBranch|) |noBranch|)) (-13 (-779) (-952 (-517)) (-421) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -520))
+((-1875 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1073)) (-5 *4 (-772 *2)) (-4 *2 (-1037)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))) (-1875 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2956 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-2880 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -3618 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
+(-10 -7 (-15 -2880 ((-2 (|:| -3618 |#2|) (|:| |nconst| |#2|)) |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (PROGN (IF (|has| |#2| (-569)) (PROGN (-15 -2956 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073))) (-15 -1875 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) (IF (|has| |#2| (-1037)) (-15 -1875 ((-3 |#2| "failed") |#2| (-1073) (-772 |#2|) (-772 |#2|))) |noBranch|)) |noBranch|) |noBranch|))
+((-3979 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))) 39)) (-4151 (((-534 (-377 |#2|)) (-377 |#2|)) 27)) (-2083 (((-3 (-377 |#2|) "failed") (-377 |#2|)) 16)) (-3562 (((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|)) 46)))
+(((-521 |#1| |#2|) (-10 -7 (-15 -4151 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2083 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -3562 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -3979 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517))) (-1130 |#1|)) (T -521))
+((-3979 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))) (-3562 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -2422 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) (-2083 (*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4)))) (-4151 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
+(-10 -7 (-15 -4151 ((-534 (-377 |#2|)) (-377 |#2|))) (-15 -2083 ((-3 (-377 |#2|) "failed") (-377 |#2|))) (-15 -3562 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-377 |#2|))) (-15 -3979 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-583 (-377 |#2|)))))
+((-1899 (((-3 (-517) "failed") |#1|) 14)) (-1973 (((-107) |#1|) 13)) (-3912 (((-517) |#1|) 9)))
+(((-522 |#1|) (-10 -7 (-15 -3912 ((-517) |#1|)) (-15 -1973 ((-107) |#1|)) (-15 -1899 ((-3 (-517) "failed") |#1|))) (-952 (-517))) (T -522))
+((-1899 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))) (-1973 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) (-3912 (*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))))
+(-10 -7 (-15 -3912 ((-517) |#1|)) (-15 -1973 ((-107) |#1|)) (-15 -1899 ((-3 (-517) "failed") |#1|)))
+((-4027 (((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1073) (-583 (-377 (-874 |#1|)))) 43)) (-3050 (((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1073)) 25)) (-1934 (((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1073)) 20)) (-2307 (((-3 (-2 (|:| -2422 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))) 32)))
+(((-523 |#1|) (-10 -7 (-15 -3050 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -1934 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1073))) (-15 -4027 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1073) (-583 (-377 (-874 |#1|))))) (-15 -2307 ((-3 (-2 (|:| -2422 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))))) (-13 (-509) (-952 (-517)) (-134))) (T -523))
+((-2307 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -2422 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))) (-4027 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))) (-1934 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
+(-10 -7 (-15 -3050 ((-534 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -1934 ((-3 (-377 (-874 |#1|)) "failed") (-377 (-874 |#1|)) (-1073))) (-15 -4027 ((-3 (-2 (|:| |mainpart| (-377 (-874 |#1|))) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 (-874 |#1|))) (|:| |logand| (-377 (-874 |#1|))))))) "failed") (-377 (-874 |#1|)) (-1073) (-583 (-377 (-874 |#1|))))) (-15 -2307 ((-3 (-2 (|:| -2422 (-377 (-874 |#1|))) (|:| |coeff| (-377 (-874 |#1|)))) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)))))
+((-2750 (((-107) $ $) 59)) (-2814 (((-107) $) 36)) (-2095 ((|#1| $) 30)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) 63)) (-1865 (($ $) 123)) (-1721 (($ $) 103)) (-1640 ((|#1| $) 28)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL)) (-1839 (($ $) 125)) (-1701 (($ $) 99)) (-1887 (($ $) 127)) (-1743 (($ $) 107)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) 78)) (-3189 (((-517) $) 80)) (-3621 (((-3 $ "failed") $) 62)) (-2458 (($ |#1| |#1|) 26)) (-3556 (((-107) $) 33)) (-2645 (($) 89)) (-3848 (((-107) $) 43)) (-3824 (($ $ (-517)) NIL)) (-2475 (((-107) $) 34)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1867 (($ $) 91)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4015 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-377 (-517))) 77)) (-1933 ((|#1| $) 27)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) 65) (($ (-583 $)) NIL)) (-2476 (((-3 $ "failed") $ $) 64)) (-2624 (($ $) 93)) (-1898 (($ $) 131)) (-1754 (($ $) 105)) (-1876 (($ $) 133)) (-1732 (($ $) 109)) (-1853 (($ $) 129)) (-1711 (($ $) 101)) (-2613 (((-107) $ |#1|) 31)) (-2256 (((-787) $) 85) (($ (-517)) 67) (($ $) NIL) (($ (-517)) 67)) (-2961 (((-703)) 87)) (-3707 (($ $) 145)) (-1788 (($ $) 115)) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) 143)) (-1765 (($ $) 111)) (-3731 (($ $) 141)) (-1814 (($ $) 121)) (-1492 (($ $) 139)) (-1827 (($ $) 119)) (-3719 (($ $) 137)) (-1802 (($ $) 117)) (-3695 (($ $) 135)) (-1777 (($ $) 113)) (-2207 (($ $ (-843)) 55) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 10 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 37)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 35)) (-1654 (($ $) 41) (($ $ $) 42)) (-1642 (($ $ $) 40)) (** (($ $ (-843)) 54) (($ $ (-703)) NIL) (($ $ $) 95) (($ $ (-377 (-517))) 147)) (* (($ (-843) $) 51) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 48)))
+(((-524 |#1|) (-507 |#1|) (-13 (-374) (-1094))) (T -524))
+NIL
+(-507 |#1|)
+((-3179 (((-3 (-583 (-1069 (-517))) "failed") (-583 (-1069 (-517))) (-1069 (-517))) 24)))
+(((-525) (-10 -7 (-15 -3179 ((-3 (-583 (-1069 (-517))) "failed") (-583 (-1069 (-517))) (-1069 (-517)))))) (T -525))
+((-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 (-517)))) (-5 *3 (-1069 (-517))) (-5 *1 (-525)))))
+(-10 -7 (-15 -3179 ((-3 (-583 (-1069 (-517))) "failed") (-583 (-1069 (-517))) (-1069 (-517)))))
+((-2627 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1073)) 18)) (-1291 (((-583 (-556 |#2|)) (-583 |#2|) (-1073)) 23)) (-1413 (((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|))) 10)) (-2379 ((|#2| |#2| (-1073)) 51 (|has| |#1| (-509)))) (-2922 ((|#2| |#2| (-1073)) 76 (-12 (|has| |#2| (-256)) (|has| |#1| (-421))))) (-1391 (((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1073)) 25)) (-3796 (((-556 |#2|) (-583 (-556 |#2|))) 24)) (-3434 (((-534 |#2|) |#2| (-1073) (-1 (-534 |#2|) |#2| (-1073)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073))) 100 (-12 (|has| |#2| (-256)) (|has| |#2| (-569)) (|has| |#2| (-952 (-1073))) (|has| |#1| (-558 (-814 (-517)))) (|has| |#1| (-421)) (|has| |#1| (-808 (-517)))))))
+(((-526 |#1| |#2|) (-10 -7 (-15 -2627 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1073))) (-15 -3796 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -1391 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1073))) (-15 -1413 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1291 ((-583 (-556 |#2|)) (-583 |#2|) (-1073))) (IF (|has| |#1| (-509)) (-15 -2379 (|#2| |#2| (-1073))) |noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2922 (|#2| |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1073))) (-15 -3434 ((-534 |#2|) |#2| (-1073) (-1 (-534 |#2|) |#2| (-1073)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|)) (-779) (-400 |#1|)) (T -526))
+((-3434 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1073))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1073))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1073)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))) (-2922 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))) (-2379 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))) (-1291 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1073)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))) (-1413 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) (-1391 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1073)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))) (-2627 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1073)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
+(-10 -7 (-15 -2627 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-1073))) (-15 -3796 ((-556 |#2|) (-583 (-556 |#2|)))) (-15 -1391 ((-556 |#2|) (-556 |#2|) (-583 (-556 |#2|)) (-1073))) (-15 -1413 ((-583 (-556 |#2|)) (-583 (-556 |#2|)) (-583 (-556 |#2|)))) (-15 -1291 ((-583 (-556 |#2|)) (-583 |#2|) (-1073))) (IF (|has| |#1| (-509)) (-15 -2379 (|#2| |#2| (-1073))) |noBranch|) (IF (|has| |#1| (-421)) (IF (|has| |#2| (-256)) (PROGN (-15 -2922 (|#2| |#2| (-1073))) (IF (|has| |#1| (-558 (-814 (-517)))) (IF (|has| |#1| (-808 (-517))) (IF (|has| |#2| (-569)) (IF (|has| |#2| (-952 (-1073))) (-15 -3434 ((-534 |#2|) |#2| (-1073) (-1 (-534 |#2|) |#2| (-1073)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1073)))) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) |noBranch|) |noBranch|))
+((-2399 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|)) 167)) (-1650 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|))) 143)) (-4066 (((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|))) 140)) (-1260 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 129)) (-1652 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 153)) (-2864 (((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|)) 170)) (-2521 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|)) 173)) (-4149 (((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|)) 81)) (-1717 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 88)) (-3783 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|))) 147)) (-3929 (((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 133)) (-1830 (((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|)) 157)) (-2892 (((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|)) 178)))
+(((-527 |#1| |#2|) (-10 -7 (-15 -1652 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1830 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2399 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -2521 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2892 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1650 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3783 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2864 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -4066 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -1260 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3929 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -4149 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1717 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-333) (-1130 |#1|)) (T -527))
+((-1717 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3929 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *1 (-527 *4 *5)))) (-1260 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1130 *4)))) (-4066 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1130 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))) (-2864 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2422 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))) (-3783 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3652 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-1650 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))) (-2892 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2521 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-2399 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1830 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))) (-1652 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(-10 -7 (-15 -1652 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1830 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -2399 ((-2 (|:| |answer| (-534 (-377 |#2|))) (|:| |a0| |#1|)) (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-583 |#1|) "failed") (-517) |#1| |#1|))) (-15 -2521 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-377 |#2|))) (-15 -2892 ((-3 (-2 (|:| |answer| (-377 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-377 |#2|))) (-15 -1650 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-583 (-377 |#2|)))) (-15 -3783 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|))))))) (|:| |a0| |#1|)) "failed") (-377 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|) (-583 (-377 |#2|)))) (-15 -2864 ((-3 (-2 (|:| -2422 (-377 |#2|)) (|:| |coeff| (-377 |#2|))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-377 |#2|))) (-15 -4066 ((-3 (-2 (|:| |mainpart| (-377 |#2|)) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| (-377 |#2|)) (|:| |logand| (-377 |#2|)))))) "failed") (-377 |#2|) (-1 |#2| |#2|) (-583 (-377 |#2|)))) (-15 -1260 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3929 ((-3 (-564 |#1| |#2|) "failed") (-564 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3652 |#1|) (|:| |sol?| (-107))) (-517) |#1|))) (-15 -4149 ((-2 (|:| |ir| (-534 (-377 |#2|))) (|:| |specpart| (-377 |#2|)) (|:| |polypart| |#2|)) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1717 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-3629 (((-3 |#2| "failed") |#2| (-1073) (-1073)) 10)))
+(((-528 |#1| |#2|) (-10 -7 (-15 -3629 ((-3 |#2| "failed") |#2| (-1073) (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-1037) (-29 |#1|))) (T -528))
+((-3629 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-1037) (-29 *4))))))
+(-10 -7 (-15 -3629 ((-3 |#2| "failed") |#2| (-1073) (-1073))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $ (-517)) 65)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3959 (($ (-1069 (-517)) (-517)) 71)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 57)) (-3531 (($ $) 33)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3972 (((-703) $) 15)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 (((-517)) 27)) (-3340 (((-517) $) 31)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1672 (($ $ (-517)) 21)) (-2476 (((-3 $ "failed") $ $) 58)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) 16)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 60)) (-2930 (((-1054 (-517)) $) 18)) (-1545 (($ $) 23)) (-2256 (((-787) $) 85) (($ (-517)) 51) (($ $) NIL)) (-2961 (((-703)) 14)) (-3329 (((-107) $ $) NIL)) (-3383 (((-517) $ (-517)) 35)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 34 T CONST)) (-2409 (($) 19 T CONST)) (-1547 (((-107) $ $) 38)) (-1654 (($ $) 50) (($ $ $) 36)) (-1642 (($ $ $) 49)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 53) (($ $ $) 54)))
+(((-529 |#1| |#2|) (-793 |#1|) (-517) (-107)) (T -529))
+NIL
+(-793 |#1|)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 18)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) 47)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 $ "failed") $) 75)) (-3189 (($ $) 74)) (-1967 (($ (-1153 $)) 73)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 42)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 30)) (-3209 (($) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) 49)) (-3391 (((-107) $) NIL)) (-2378 (($ $) NIL) (($ $ (-703)) NIL)) (-3849 (((-107) $) NIL)) (-3972 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-3848 (((-107) $) NIL)) (-2453 (($) 35 (|has| $ (-338)))) (-2434 (((-107) $) NIL (|has| $ (-338)))) (-1506 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 $) $ (-843)) NIL (|has| $ (-338))) (((-1069 $) $) 83)) (-1549 (((-843) $) 55)) (-1704 (((-1069 $) $) NIL (|has| $ (-338)))) (-2729 (((-3 (-1069 $) "failed") $ $) NIL (|has| $ (-338))) (((-1069 $) $) NIL (|has| $ (-338)))) (-3600 (($ $ (-1069 $)) NIL (|has| $ (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL T CONST)) (-3448 (($ (-843)) 48)) (-3202 (((-107) $) 67)) (-3206 (((-1021) $) NIL)) (-3220 (($) 16 (|has| $ (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 40)) (-3755 (((-388 $) $) NIL)) (-3327 (((-843)) 66) (((-765 (-843))) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-3141 (((-125)) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-3688 (((-843) $) 65) (((-765 (-843)) $) NIL)) (-2135 (((-1069 $)) 82)) (-1766 (($) 54)) (-1224 (($) 36 (|has| $ (-338)))) (-4114 (((-623 $) (-1153 $)) NIL) (((-1153 $) $) 71)) (-3645 (((-517) $) 26)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) 28) (($ $) NIL) (($ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2961 (((-703)) 37)) (-1753 (((-1153 $) (-843)) 77) (((-1153 $)) 76)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 19 T CONST)) (-2409 (($) 15 T CONST)) (-4103 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 61) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-530 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-843)) (T -530))
+NIL
+(-13 (-319) (-299 $) (-558 (-517)))
+((-1520 (((-1158) (-1056)) 10)))
+(((-531) (-10 -7 (-15 -1520 ((-1158) (-1056))))) (T -531))
+((-1520 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-531)))))
+(-10 -7 (-15 -1520 ((-1158) (-1056))))
+((-1313 (((-534 |#2|) (-534 |#2|)) 37)) (-3502 (((-583 |#2|) (-534 |#2|)) 39)) (-2029 ((|#2| (-534 |#2|)) 46)))
+(((-532 |#1| |#2|) (-10 -7 (-15 -1313 ((-534 |#2|) (-534 |#2|))) (-15 -3502 ((-583 |#2|) (-534 |#2|))) (-15 -2029 (|#2| (-534 |#2|)))) (-13 (-421) (-952 (-517)) (-779) (-579 (-517))) (-13 (-29 |#1|) (-1094))) (T -532))
+((-2029 (*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1094))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1094))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) (-1313 (*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1094))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))))
+(-10 -7 (-15 -1313 ((-534 |#2|) (-534 |#2|))) (-15 -3502 ((-583 |#2|) (-534 |#2|))) (-15 -2029 (|#2| (-534 |#2|))))
+((-1893 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 38) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed")) 31) (((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|)) 26)))
+(((-533 |#1| |#2|) (-10 -7 (-15 -1893 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1893 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1893 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1893 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-333) (-333)) (T -533))
+((-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2422 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2422 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))))
+(-10 -7 (-15 -1893 ((-534 |#2|) (-1 |#2| |#1|) (-534 |#1|))) (-15 -1893 ((-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2422 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1893 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1893 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 68)) (-3189 ((|#1| $) NIL)) (-2422 ((|#1| $) 24)) (-1267 (((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 26)) (-1399 (($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 22)) (-3591 (((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) $) 25)) (-3985 (((-1056) $) NIL)) (-2082 (($ |#1| |#1|) 32) (($ |#1| (-1073)) 43 (|has| |#1| (-952 (-1073))))) (-3206 (((-1021) $) NIL)) (-2941 (((-107) $) 28)) (-3127 ((|#1| $ (-1 |#1| |#1|)) 80) ((|#1| $ (-1073)) 81 (|has| |#1| (-822 (-1073))))) (-2256 (((-787) $) 95) (($ |#1|) 23)) (-2396 (($) 16 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) 15) (($ $ $) NIL)) (-1642 (($ $ $) 77)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 14) (($ (-377 (-517)) $) 35) (($ $ (-377 (-517))) NIL)))
+(((-534 |#1|) (-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -1399 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2422 (|#1| $)) (-15 -3591 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) $)) (-15 -1267 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2941 ((-107) $)) (-15 -2082 ($ |#1| |#1|)) (-15 -3127 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1073))) (-15 -3127 (|#1| $ (-1073))) |noBranch|) (IF (|has| |#1| (-952 (-1073))) (-15 -2082 ($ |#1| (-1073))) |noBranch|))) (-333)) (T -534))
+((-1399 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *2)) (|:| |logand| (-1069 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))) (-2422 (*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *3)) (|:| |logand| (-1069 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-1267 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))) (-2082 (*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3127 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) (-3127 (*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1073)))) (-2082 (*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333)))))
+(-13 (-650 (-377 (-517))) (-952 |#1|) (-10 -8 (-15 -1399 ($ |#1| (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) (-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2422 (|#1| $)) (-15 -3591 ((-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 |#1|)) (|:| |logand| (-1069 |#1|)))) $)) (-15 -1267 ((-583 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2941 ((-107) $)) (-15 -2082 ($ |#1| |#1|)) (-15 -3127 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-822 (-1073))) (-15 -3127 (|#1| $ (-1073))) |noBranch|) (IF (|has| |#1| (-952 (-1073))) (-15 -2082 ($ |#1| (-1073))) |noBranch|)))
+((-1404 (((-107) |#1|) 16)) (-1580 (((-3 |#1| "failed") |#1|) 14)) (-1910 (((-2 (|:| -2372 |#1|) (|:| -2077 (-703))) |#1|) 30) (((-3 |#1| "failed") |#1| (-703)) 18)) (-3417 (((-107) |#1| (-703)) 19)) (-1944 ((|#1| |#1|) 31)) (-4043 ((|#1| |#1| (-703)) 33)))
+(((-535 |#1|) (-10 -7 (-15 -3417 ((-107) |#1| (-703))) (-15 -1910 ((-3 |#1| "failed") |#1| (-703))) (-15 -1910 ((-2 (|:| -2372 |#1|) (|:| -2077 (-703))) |#1|)) (-15 -4043 (|#1| |#1| (-703))) (-15 -1404 ((-107) |#1|)) (-15 -1580 ((-3 |#1| "failed") |#1|)) (-15 -1944 (|#1| |#1|))) (-502)) (T -535))
+((-1944 (*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1580 (*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-4043 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-1910 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2372 *3) (|:| -2077 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))) (-1910 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -3417 ((-107) |#1| (-703))) (-15 -1910 ((-3 |#1| "failed") |#1| (-703))) (-15 -1910 ((-2 (|:| -2372 |#1|) (|:| -2077 (-703))) |#1|)) (-15 -4043 (|#1| |#1| (-703))) (-15 -1404 ((-107) |#1|)) (-15 -1580 ((-3 |#1| "failed") |#1|)) (-15 -1944 (|#1| |#1|)))
+((-3335 (((-1069 |#1|) (-843)) 26)))
+(((-536 |#1|) (-10 -7 (-15 -3335 ((-1069 |#1|) (-843)))) (-319)) (T -536))
+((-3335 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
+(-10 -7 (-15 -3335 ((-1069 |#1|) (-843))))
+((-1313 (((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|)))) 26)) (-4151 (((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1073)) 33 (|has| |#1| (-134)))) (-3502 (((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|)))) 18)) (-2701 (((-286 |#1|) (-377 (-874 |#1|)) (-1073)) 31 (|has| |#1| (-134)))) (-2029 (((-286 |#1|) (-534 (-377 (-874 |#1|)))) 20)))
+(((-537 |#1|) (-10 -7 (-15 -1313 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3502 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2029 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -4151 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2701 ((-286 |#1|) (-377 (-874 |#1|)) (-1073)))) |noBranch|)) (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (T -537))
+((-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) (-2029 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) (-1313 (*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))))
+(-10 -7 (-15 -1313 ((-534 (-377 (-874 |#1|))) (-534 (-377 (-874 |#1|))))) (-15 -3502 ((-583 (-286 |#1|)) (-534 (-377 (-874 |#1|))))) (-15 -2029 ((-286 |#1|) (-534 (-377 (-874 |#1|))))) (IF (|has| |#1| (-134)) (PROGN (-15 -4151 ((-3 (-286 |#1|) (-583 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2701 ((-286 |#1|) (-377 (-874 |#1|)) (-1073)))) |noBranch|))
+((-3110 (((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517)))) 45) (((-583 (-623 (-517))) (-583 (-517))) 46) (((-623 (-517)) (-583 (-517)) (-827 (-517))) 41)) (-2717 (((-703) (-583 (-517))) 39)))
+(((-538) (-10 -7 (-15 -2717 ((-703) (-583 (-517)))) (-15 -3110 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517))))))) (T -538))
+((-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) (-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
+(-10 -7 (-15 -2717 ((-703) (-583 (-517)))) (-15 -3110 ((-623 (-517)) (-583 (-517)) (-827 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3110 ((-583 (-623 (-517))) (-583 (-517)) (-583 (-827 (-517))))))
+((-4064 (((-583 |#5|) |#5| (-107)) 72)) (-1279 (((-107) |#5| (-583 |#5|)) 30)))
+(((-539 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4064 ((-583 |#5|) |#5| (-107))) (-15 -1279 ((-107) |#5| (-583 |#5|)))) (-13 (-278) (-134)) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -539))
+((-1279 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4064 ((-583 |#5|) |#5| (-107))) (-15 -1279 ((-107) |#5| (-583 |#5|))))
+((-2750 (((-107) $ $) NIL (|has| (-131) (-1003)))) (-3880 (($ $) 34)) (-3132 (($ $) NIL)) (-3672 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) 51)) (-1414 (((-107) $ $ (-517)) 46)) (-1313 (((-583 $) $ (-131)) 59) (((-583 $) $ (-128)) 60)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-131) (-779))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-131) $ (-517) (-131)) 45 (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3346 (($ $ (-131)) 63) (($ $ (-128)) 64)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3610 (($ $ (-1121 (-517)) $) 44)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-2052 (($ (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) NIL)) (-1459 (((-107) $ $) 70)) (-2607 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 48 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 47) (((-517) (-128) $ (-517)) 50)) (-1536 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) 9)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 28 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3482 (((-517) $) 42 (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) 71)) (-2237 (((-703) $ $ (-131)) 69)) (-1433 (($ (-1 (-131) (-131)) $) 33 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3006 (($ $) 37)) (-1285 (($ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3359 (($ $ (-131)) 61) (($ $ (-128)) 62)) (-3985 (((-1056) $) 38 (|has| (-131) (-1003)))) (-2620 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) 23)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-517) $) 68) (((-1021) $) NIL (|has| (-131) (-1003)))) (-1647 (((-131) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2565 (($ $ (-131)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) NIL)) (-3619 (((-107) $) 12)) (-1746 (($) 10)) (-1449 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) 52) (($ $ (-1121 (-517))) 21) (($ $ $) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1906 (($ $ $ (-517)) 65 (|has| $ (-6 -4181)))) (-2433 (($ $) 17)) (-3645 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) NIL)) (-2452 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) 16) (($ (-583 $)) 66)) (-2256 (($ (-131)) NIL) (((-787) $) 27 (|has| (-131) (-557 (-787))))) (-3675 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1547 (((-107) $ $) 14 (|has| (-131) (-1003)))) (-1595 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) 15 (|has| (-131) (-779)))) (-2296 (((-703) $) 13 (|has| $ (-6 -4180)))))
+(((-540 |#1|) (-13 (-1042) (-10 -8 (-15 -3206 ((-517) $)))) (-517)) (T -540))
+((-3206 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))))
+(-13 (-1042) (-10 -8 (-15 -3206 ((-517) $))))
+((-2541 (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|)) 32)))
+(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|)) (T -541))
+((-2541 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-2541 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))))
+(-10 -7 (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2| (-998 |#4|))) (-15 -2541 ((-2 (|:| |num| |#4|) (|:| |den| (-517))) |#4| |#2|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 63)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 54) (($ $ (-517) (-517)) 55)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 60)) (-2339 (($ $) 99)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2330 (((-787) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1073) |#1| (-377 (-517))) 223)) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 34)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3201 (((-107) $) NIL)) (-3972 (((-517) $) 58) (((-517) $ (-517)) 59)) (-3848 (((-107) $) NIL)) (-3430 (($ $ (-843)) 76)) (-3103 (($ (-1 |#1| (-517)) $) 73)) (-4031 (((-107) $) 25)) (-1339 (($ |#1| (-517)) 22) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 67)) (-2413 (($ (-941 (-772 (-517))) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 11)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-2217 (((-3 $ "failed") $ $ (-107)) 98)) (-1797 (($ $ $) 107)) (-3206 (((-1021) $) NIL)) (-2875 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 13)) (-3620 (((-941 (-772 (-517))) $) 12)) (-1672 (($ $ (-517)) 45)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-1449 ((|#1| $ (-517)) 57) (($ $ $) NIL (|has| (-517) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3688 (((-517) $) NIL)) (-1545 (($ $) 46)) (-2256 (((-787) $) NIL) (($ (-517)) 28) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 27 (|has| |#1| (-156)))) (-2720 ((|#1| $ (-517)) 56)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 37)) (-2986 ((|#1| $) NIL)) (-4071 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-2425 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-2623 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1543 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-2198 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1844 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-2153 (($ $ (-377 (-517))) 165 (|has| |#1| (-37 (-377 (-517)))))) (-1219 (($ $ |#1|) 145 (|has| |#1| (-37 (-377 (-517)))))) (-2078 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-3936 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-1198 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1575 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-2661 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-2805 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3147 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-3749 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-1187 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-3308 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1627 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1579 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-2392 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-2907 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-1539 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-2447 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-3022 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-3192 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-2127 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-2387 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3383 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 29 T CONST)) (-2409 (($) 38 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1547 (((-107) $ $) 65)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) 84) (($ $ $) 64)) (-1642 (($ $ $) 81)) (** (($ $ (-843)) NIL) (($ $ (-703)) 102)) (* (($ (-843) $) 89) (($ (-703) $) 87) (($ (-517) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 114) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-542 |#1|) (-13 (-1132 |#1| (-517)) (-10 -8 (-15 -2413 ($ (-941 (-772 (-517))) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3620 ((-941 (-772 (-517))) $)) (-15 -2875 ((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -2925 ($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -4031 ((-107) $)) (-15 -3103 ($ (-1 |#1| (-517)) $)) (-15 -2217 ((-3 $ "failed") $ $ (-107))) (-15 -2339 ($ $)) (-15 -1797 ($ $ $)) (-15 -2330 ((-787) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1073) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (-15 -1219 ($ $ |#1|)) (-15 -2153 ($ $ (-377 (-517)))) (-15 -3936 ($ $)) (-15 -2078 ($ $)) (-15 -1543 ($ $)) (-15 -3749 ($ $)) (-15 -2425 ($ $)) (-15 -2805 ($ $)) (-15 -1844 ($ $)) (-15 -1575 ($ $)) (-15 -1579 ($ $)) (-15 -2387 ($ $)) (-15 -3308 ($ $)) (-15 -3192 ($ $)) (-15 -2907 ($ $)) (-15 -2447 ($ $)) (-15 -2623 ($ $)) (-15 -3147 ($ $)) (-15 -4071 ($ $)) (-15 -2661 ($ $)) (-15 -2198 ($ $)) (-15 -1198 ($ $)) (-15 -1627 ($ $)) (-15 -2127 ($ $)) (-15 -1187 ($ $)) (-15 -3022 ($ $)) (-15 -2392 ($ $)) (-15 -1539 ($ $))) |noBranch|))) (-961)) (T -542))
+((-4031 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2413 (*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) (-2217 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) (-2339 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-1797 (*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))) (-2330 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1073)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6)))) (-4151 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1219 (*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2153 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961)))) (-3936 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2078 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1543 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3749 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2805 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1844 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1579 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3308 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3192 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2907 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2447 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2623 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3147 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-4071 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2661 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2198 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1198 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1627 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2127 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1187 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-3022 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-2392 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) (-1539 (*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(-13 (-1132 |#1| (-517)) (-10 -8 (-15 -2413 ($ (-941 (-772 (-517))) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -3620 ((-941 (-772 (-517))) $)) (-15 -2875 ((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $)) (-15 -2925 ($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))))) (-15 -4031 ((-107) $)) (-15 -3103 ($ (-1 |#1| (-517)) $)) (-15 -2217 ((-3 $ "failed") $ $ (-107))) (-15 -2339 ($ $)) (-15 -1797 ($ $ $)) (-15 -2330 ((-787) (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) (-941 (-772 (-517))) (-1073) |#1| (-377 (-517)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (-15 -1219 ($ $ |#1|)) (-15 -2153 ($ $ (-377 (-517)))) (-15 -3936 ($ $)) (-15 -2078 ($ $)) (-15 -1543 ($ $)) (-15 -3749 ($ $)) (-15 -2425 ($ $)) (-15 -2805 ($ $)) (-15 -1844 ($ $)) (-15 -1575 ($ $)) (-15 -1579 ($ $)) (-15 -2387 ($ $)) (-15 -3308 ($ $)) (-15 -3192 ($ $)) (-15 -2907 ($ $)) (-15 -2447 ($ $)) (-15 -2623 ($ $)) (-15 -3147 ($ $)) (-15 -4071 ($ $)) (-15 -2661 ($ $)) (-15 -2198 ($ $)) (-15 -1198 ($ $)) (-15 -1627 ($ $)) (-15 -2127 ($ $)) (-15 -1187 ($ $)) (-15 -3022 ($ $)) (-15 -2392 ($ $)) (-15 -1539 ($ $))) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2925 (($ (-1054 |#1|)) 9)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) 42)) (-3201 (((-107) $) 52)) (-3972 (((-703) $) 55) (((-703) $ (-703)) 54)) (-3848 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ $) 44 (|has| |#1| (-509)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-1054 |#1|) $) 23)) (-2961 (((-703)) 51)) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 10 T CONST)) (-2409 (($) 14 T CONST)) (-1547 (((-107) $ $) 22)) (-1654 (($ $) 30) (($ $ $) 16)) (-1642 (($ $ $) 25)) (** (($ $ (-843)) NIL) (($ $ (-703)) 49)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-517)) 36)))
+(((-543 |#1|) (-13 (-961) (-10 -8 (-15 -1311 ((-1054 |#1|) $)) (-15 -2925 ($ (-1054 |#1|))) (-15 -3201 ((-107) $)) (-15 -3972 ((-703) $)) (-15 -3972 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |noBranch|))) (-961)) (T -543))
+((-1311 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (-3972 (*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961)))))
+(-13 (-961) (-10 -8 (-15 -1311 ((-1054 |#1|) $)) (-15 -2925 ($ (-1054 |#1|))) (-15 -3201 ((-107) $)) (-15 -3972 ((-703) $)) (-15 -3972 ((-703) $ (-703))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-517))) (IF (|has| |#1| (-509)) (-6 (-509)) |noBranch|)))
+((-1893 (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 15)))
+(((-544 |#1| |#2|) (-10 -7 (-15 -1893 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)))) (-1108) (-1108)) (T -544))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))))
+(-10 -7 (-15 -1893 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))))
+((-1893 (((-1054 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1054 |#2|)) 20) (((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-547 |#2|)) 19) (((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|)) 18)))
+(((-545 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1054 |#2|)))) (-1108) (-1108) (-1108)) (T -545))
+((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) (-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))))
+(-10 -7 (-15 -1893 ((-547 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-547 |#2|))) (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-547 |#1|) (-1054 |#2|))))
+((-2716 ((|#3| |#3| (-583 (-556 |#3|)) (-583 (-1073))) 55)) (-4072 (((-153 |#2|) |#3|) 116)) (-2894 ((|#3| (-153 |#2|)) 43)) (-1484 ((|#2| |#3|) 19)) (-1794 ((|#3| |#2|) 32)))
+(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -2894 (|#3| (-153 |#2|))) (-15 -1484 (|#2| |#3|)) (-15 -1794 (|#3| |#2|)) (-15 -4072 ((-153 |#2|) |#3|)) (-15 -2716 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1073))))) (-13 (-509) (-779)) (-13 (-400 |#1|) (-918) (-1094)) (-13 (-400 (-153 |#1|)) (-918) (-1094))) (T -546))
+((-2716 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1073))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1094))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1094))))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))) (-1794 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1094))))) (-1484 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *5 *2)))))
+(-10 -7 (-15 -2894 (|#3| (-153 |#2|))) (-15 -1484 (|#2| |#3|)) (-15 -1794 (|#3| |#2|)) (-15 -4072 ((-153 |#2|) |#3|)) (-15 -2716 (|#3| |#3| (-583 (-556 |#3|)) (-583 (-1073)))))
+((-3536 (($ (-1 (-107) |#1|) $) 16)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3464 (($ (-1 |#1| |#1|) |#1|) 9)) (-3513 (($ (-1 (-107) |#1|) $) 12)) (-3525 (($ (-1 (-107) |#1|) $) 14)) (-2276 (((-1054 |#1|) $) 17)) (-2256 (((-787) $) NIL)))
+(((-547 |#1|) (-13 (-557 (-787)) (-10 -8 (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)) (-15 -3536 ($ (-1 (-107) |#1|) $)) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -2276 ((-1054 |#1|) $)))) (-1108)) (T -547))
+((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-3464 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) (-2276 (*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1108)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)) (-15 -3536 ($ (-1 (-107) |#1|) $)) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -2276 ((-1054 |#1|) $))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703)) NIL (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1292 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3847 (((-107) $ (-703)) NIL)) (-2195 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3501 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-961)))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1642 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-548 |#1| |#2|) (-1151 |#1|) (-1108) (-517)) (T -548))
+NIL
+(-1151 |#1|)
+((-1668 (((-1158) $ |#2| |#2|) 36)) (-3243 ((|#2| $) 23)) (-3482 ((|#2| $) 21)) (-1433 (($ (-1 |#3| |#3|) $) 32)) (-1893 (($ (-1 |#3| |#3|) $) 30)) (-1647 ((|#3| $) 26)) (-2565 (($ $ |#3|) 33)) (-4042 (((-107) |#3| $) 17)) (-1941 (((-583 |#3|) $) 15)) (-1449 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-549 |#1| |#2| |#3|) (-10 -8 (-15 -1668 ((-1158) |#1| |#2| |#2|)) (-15 -2565 (|#1| |#1| |#3|)) (-15 -1647 (|#3| |#1|)) (-15 -3243 (|#2| |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -4042 ((-107) |#3| |#1|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|))) (-550 |#2| |#3|) (-1003) (-1108)) (T -549))
+NIL
+(-10 -8 (-15 -1668 ((-1158) |#1| |#2| |#2|)) (-15 -2565 (|#1| |#1| |#3|)) (-15 -1647 (|#3| |#1|)) (-15 -3243 (|#2| |#1|)) (-15 -3482 (|#2| |#1|)) (-15 -4042 ((-107) |#3| |#1|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#2| (-1003)))) (-1668 (((-1158) $ |#1| |#1|) 40 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-1445 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 51)) (-1536 (((-583 |#2|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-3243 ((|#1| $) 43 (|has| |#1| (-779)))) (-2560 (((-583 |#2|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) 27 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-3482 ((|#1| $) 44 (|has| |#1| (-779)))) (-1433 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#2| (-1003)))) (-1857 (((-583 |#1|) $) 46)) (-4088 (((-107) |#1| $) 47)) (-3206 (((-1021) $) 21 (|has| |#2| (-1003)))) (-1647 ((|#2| $) 42 (|has| |#1| (-779)))) (-2565 (($ $ |#2|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) 26 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 25 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 23 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3217 (((-703) (-1 (-107) |#2|) $) 31 (|has| $ (-6 -4180))) (((-703) |#2| $) 28 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#2| (-1003)))) (-3675 (((-107) (-1 (-107) |#2|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#2| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-550 |#1| |#2|) (-1184) (-1003) (-1108)) (T -550))
+((-1941 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *4)))) (-4088 (*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *3)))) (-4042 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1108)))) (-2565 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) (-1668 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-1158)))))
+(-13 (-456 |t#2|) (-260 |t#1| |t#2|) (-10 -8 (-15 -1941 ((-583 |t#2|) $)) (-15 -4088 ((-107) |t#1| $)) (-15 -1857 ((-583 |t#1|) $)) (IF (|has| |t#2| (-1003)) (IF (|has| $ (-6 -4180)) (-15 -4042 ((-107) |t#2| $)) |noBranch|) |noBranch|) (IF (|has| |t#1| (-779)) (PROGN (-15 -3482 (|t#1| $)) (-15 -3243 (|t#1| $)) (-15 -1647 (|t#2| $))) |noBranch|) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2565 ($ $ |t#2|)) (-15 -1668 ((-1158) $ |t#1| |t#1|))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#2| (-1003)) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787)))) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-1003) |has| |#2| (-1003)) ((-1108) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1153 (-623 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3456 (((-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1450 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2619 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2299 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3343 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2158 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2436 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2417 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4069 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2085 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2362 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1967 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1153 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2261 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-3962 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3983 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3414 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1793 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2010 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1188 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3914 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1680 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2300 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4121 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1988 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2190 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3606 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1286 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1848 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1449 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-4114 (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $) (-1153 $)) NIL (|has| |#2| (-337 |#1|))) (((-1153 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3645 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2278 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2256 (((-787) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1753 (((-1153 $)) NIL (|has| |#2| (-387 |#1|)))) (-1582 (((-583 (-1153 |#1|))) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1587 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2524 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3642 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) 24)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-551 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) (-156) (-677 |#1|)) (T -551))
+((-2256 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))))
+(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-3733 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) 32)) (-3422 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL) (($) NIL)) (-1668 (((-1158) $ (-1056) (-1056)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-1056) |#1|) 42)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#1| "failed") (-1056) $) 45)) (-3092 (($) NIL T CONST)) (-1723 (($ $ (-1056)) 24)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3212 (((-3 |#1| "failed") (-1056) $) 46) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (|has| $ (-6 -4180)))) (-2052 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3225 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-1457 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) 31)) (-1445 ((|#1| $ (-1056) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-1056)) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-1669 (($ $) 47)) (-1513 (($ (-358)) 22) (($ (-358) (-1056)) 21)) (-1207 (((-358) $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1056) $) NIL (|has| (-1056) (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180))) (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (((-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3482 (((-1056) $) NIL (|has| (-1056) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2274 (((-583 (-1056)) $) 38)) (-2793 (((-107) (-1056) $) NIL)) (-2845 (((-1056) $) 34)) (-3309 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1857 (((-583 (-1056)) $) NIL)) (-4088 (((-107) (-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 ((|#1| $) NIL (|has| (-1056) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) "failed") (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-583 (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 36)) (-1449 ((|#1| $ (-1056) |#1|) NIL) ((|#1| $ (-1056)) 41)) (-3089 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL) (($) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (((-703) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-703) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-2256 (((-787) $) 20)) (-2463 (($ $) 25)) (-1222 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-2296 (((-703) $) 40 (|has| $ (-6 -4180)))))
+(((-552 |#1|) (-13 (-334 (-358) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-1085 (-1056) |#1|) (-10 -8 (-6 -4180) (-15 -1669 ($ $)))) (-1003)) (T -552))
+((-1669 (*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003)))))
+(-13 (-334 (-358) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-1085 (-1056) |#1|) (-10 -8 (-6 -4180) (-15 -1669 ($ $))))
+((-2787 (((-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 15)) (-2274 (((-583 |#2|) $) 19)) (-2793 (((-107) |#2| $) 12)))
+(((-553 |#1| |#2| |#3|) (-10 -8 (-15 -2274 ((-583 |#2|) |#1|)) (-15 -2793 ((-107) |#2| |#1|)) (-15 -2787 ((-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|))) (-554 |#2| |#3|) (-1003) (-1003)) (T -553))
+NIL
+(-10 -8 (-15 -2274 ((-583 |#2|) |#1|)) (-15 -2793 ((-107) |#2| |#1|)) (-15 -2787 ((-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)))
+((-2750 (((-107) $ $) 18 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 55 (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 61)) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 46 (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 62)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 54 (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 56 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 53 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2274 (((-583 |#1|) $) 63)) (-2793 (((-107) |#1| $) 64)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 39)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 40)) (-3206 (((-1021) $) 21 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 51)) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 41)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 26 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 25 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 24 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 23 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3089 (($) 49) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 48)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 31 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 50)) (-2256 (((-787) $) 20 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 42)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-554 |#1| |#2|) (-1184) (-1003) (-1003)) (T -554))
+((-2793 (*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-107)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) (-3212 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3254 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(-13 (-203 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|))) (-10 -8 (-15 -2793 ((-107) |t#1| $)) (-15 -2274 ((-583 |t#1|) $)) (-15 -3212 ((-3 |t#2| "failed") |t#1| $)) (-15 -3254 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-102 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-97) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) ((-557 (-787)) -3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-209 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-456 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-478 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-1003) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) ((-1108) . T))
+((-4134 (((-556 |#2|) |#1|) 15)) (-3937 (((-3 |#1| "failed") (-556 |#2|)) 19)))
+(((-555 |#1| |#2|) (-10 -7 (-15 -4134 ((-556 |#2|) |#1|)) (-15 -3937 ((-3 |#1| "failed") (-556 |#2|)))) (-779) (-779)) (T -555))
+((-3937 (*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))) (-4134 (*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
+(-10 -7 (-15 -4134 ((-556 |#2|) |#1|)) (-15 -3937 ((-3 |#1| "failed") (-556 |#2|))))
+((-2750 (((-107) $ $) NIL)) (-3805 (((-3 (-1073) "failed") $) 36)) (-3892 (((-1158) $ (-703)) 26)) (-2607 (((-703) $) 25)) (-3072 (((-109) $) 12)) (-1207 (((-1073) $) 20)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-1851 (($ (-109) (-583 |#1|) (-703)) 30) (($ (-1073)) 31)) (-1609 (((-107) $ (-109)) 18) (((-107) $ (-1073)) 16)) (-1881 (((-703) $) 22)) (-3206 (((-1021) $) NIL)) (-3645 (((-814 (-517)) $) 69 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 75 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 62 (|has| |#1| (-558 (-493))))) (-2256 (((-787) $) 51)) (-2921 (((-583 |#1|) $) 24)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 39)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 40)))
+(((-556 |#1|) (-13 (-124) (-806 |#1|) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -3072 ((-109) $)) (-15 -2921 ((-583 |#1|) $)) (-15 -1881 ((-703) $)) (-15 -1851 ($ (-109) (-583 |#1|) (-703))) (-15 -1851 ($ (-1073))) (-15 -3805 ((-3 (-1073) "failed") $)) (-15 -1609 ((-107) $ (-109))) (-15 -1609 ((-107) $ (-1073))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) (-779)) (T -556))
+((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1851 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))) (-1851 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-3805 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) (-1609 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))))
+(-13 (-124) (-806 |#1|) (-10 -8 (-15 -1207 ((-1073) $)) (-15 -3072 ((-109) $)) (-15 -2921 ((-583 |#1|) $)) (-15 -1881 ((-703) $)) (-15 -1851 ($ (-109) (-583 |#1|) (-703))) (-15 -1851 ($ (-1073))) (-15 -3805 ((-3 (-1073) "failed") $)) (-15 -1609 ((-107) $ (-109))) (-15 -1609 ((-107) $ (-1073))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|)))
+((-2256 ((|#1| $) 6)))
+(((-557 |#1|) (-1184) (-1108)) (T -557))
+((-2256 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1108)))))
+(-13 (-10 -8 (-15 -2256 (|t#1| $))))
+((-3645 ((|#1| $) 6)))
+(((-558 |#1|) (-1184) (-1108)) (T -558))
+((-3645 (*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1108)))))
+(-13 (-10 -8 (-15 -3645 (|t#1| $))))
+((-2819 (((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)) 13) (((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 14)))
+(((-559 |#1| |#2|) (-10 -7 (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|)))) (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -559))
+((-2819 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1069 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))) (-2819 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-1069 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))))
+(-10 -7 (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))) (-15 -2819 ((-3 (-1069 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 (-388 |#2|) |#2|))))
+((-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10)))
+(((-560 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-561 |#2|) (-961)) (T -560))
+NIL
+(-10 -8 (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 36)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-561 |#1|) (-1184) (-961)) (T -561))
+((-2256 (*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-585 |t#1|) (-10 -8 (-15 -2256 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3709 (((-517) $) NIL (|has| |#1| (-777)))) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3556 (((-107) $) NIL (|has| |#1| (-777)))) (-3848 (((-107) $) NIL)) (-1787 ((|#1| $) 13)) (-2475 (((-107) $) NIL (|has| |#1| (-777)))) (-2967 (($ $ $) NIL (|has| |#1| (-777)))) (-3099 (($ $ $) NIL (|has| |#1| (-777)))) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1800 ((|#3| $) 15)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL)) (-2961 (((-703)) 20)) (-3710 (($ $) NIL (|has| |#1| (-777)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) 12 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1667 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-562 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $)))) (-37 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -562))
+((-1667 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1667 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1800 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $))))
+((-3941 ((|#2| |#2| (-1073) (-1073)) 18)))
+(((-563 |#1| |#2|) (-10 -7 (-15 -3941 (|#2| |#2| (-1073) (-1073)))) (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-880) (-29 |#1|))) (T -563))
+((-3941 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-29 *4))))))
+(-10 -7 (-15 -3941 (|#2| |#2| (-1073) (-1073))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 52)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2255 ((|#1| $) 49)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2316 (((-2 (|:| -1388 $) (|:| -2544 (-377 |#2|))) (-377 |#2|)) 95 (|has| |#1| (-333)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 83) (((-3 |#2| "failed") $) 80)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 24)) (-3621 (((-3 $ "failed") $) 74)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3972 (((-517) $) 19)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) 36)) (-1339 (($ |#1| (-517)) 21)) (-1191 ((|#1| $) 51)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) 85 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 98 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ $) 78)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3146 (((-703) $) 97 (|has| |#1| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 96 (|has| |#1| (-333)))) (-3127 (($ $ (-1 |#2| |#2|)) 65) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-3688 (((-517) $) 34)) (-3645 (((-377 |#2|) $) 42)) (-2256 (((-787) $) 61) (($ (-517)) 32) (($ $) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 31) (($ |#2|) 22)) (-2720 ((|#1| $ (-517)) 62)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 9 T CONST)) (-2409 (($) 12 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1547 (((-107) $ $) 17)) (-1654 (($ $) 46) (($ $ $) NIL)) (-1642 (($ $ $) 75)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 26) (($ $ $) 44)))
+(((-564 |#1| |#2|) (-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -4031 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -3972 ((-517) $)) (-15 -1212 ($ $)) (-15 -1191 (|#1| $)) (-15 -2255 (|#1| $)) (-15 -2720 (|#1| $ (-517))) (-15 -1339 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -2316 ((-2 (|:| -1388 $) (|:| -2544 (-377 |#2|))) (-377 |#2|)))) |noBranch|))) (-509) (-1130 |#1|)) (T -564))
+((-4031 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) (-3972 (*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) (-1212 (*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) (-1191 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) (-2255 (*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) (-2316 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1388 (-564 *4 *5)) (|:| -2544 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))))
+(-13 (-205 |#2|) (-509) (-558 (-377 |#2|)) (-381 |#1|) (-952 |#2|) (-10 -8 (-15 -4031 ((-107) $)) (-15 -3688 ((-517) $)) (-15 -3972 ((-517) $)) (-15 -1212 ($ $)) (-15 -1191 (|#1| $)) (-15 -2255 (|#1| $)) (-15 -2720 (|#1| $ (-517))) (-15 -1339 ($ |#1| (-517))) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-6 (-278)) (-15 -2316 ((-2 (|:| -1388 $) (|:| -2544 (-377 |#2|))) (-377 |#2|)))) |noBranch|)))
+((-4029 (((-583 |#6|) (-583 |#4|) (-107)) 46)) (-2562 ((|#6| |#6|) 39)))
+(((-565 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2562 (|#6| |#6|)) (-15 -4029 ((-583 |#6|) (-583 |#4|) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|) (-1012 |#1| |#2| |#3| |#4|)) (T -565))
+((-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) (-2562 (*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2562 (|#6| |#6|)) (-15 -4029 ((-583 |#6|) (-583 |#4|) (-107))))
+((-1928 (((-107) |#3| (-703) (-583 |#3|)) 22)) (-2494 (((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1069 |#3|)))) "failed") |#3| (-583 (-1069 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2879 (-583 (-2 (|:| |irr| |#4|) (|:| -3631 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)) 51)))
+(((-566 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1928 ((-107) |#3| (-703) (-583 |#3|))) (-15 -2494 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1069 |#3|)))) "failed") |#3| (-583 (-1069 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2879 (-583 (-2 (|:| |irr| |#4|) (|:| -3631 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|)))) (-779) (-725) (-278) (-871 |#3| |#2| |#1|)) (T -566))
+((-2494 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2879 (-583 (-2 (|:| |irr| *10) (|:| -3631 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1069 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1069 *3))))) (-1928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6)))))
+(-10 -7 (-15 -1928 ((-107) |#3| (-703) (-583 |#3|))) (-15 -2494 ((-3 (-2 (|:| |polfac| (-583 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-583 (-1069 |#3|)))) "failed") |#3| (-583 (-1069 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2879 (-583 (-2 (|:| |irr| |#4|) (|:| -3631 (-517)))))) (-583 |#3|) (-583 |#1|) (-583 |#3|))))
+((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2402 (($ $) 67)) (-1867 (((-601 |#1| |#2|) $) 52)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 70)) (-1852 (((-583 (-265 |#2|)) $ $) 33)) (-3206 (((-1021) $) NIL)) (-2624 (($ (-601 |#1| |#2|)) 48)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 58) (((-1166 |#1| |#2|) $) NIL) (((-1171 |#1| |#2|) $) 66)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 53 T CONST)) (-2321 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) 31)) (-2984 (((-583 (-601 |#1| |#2|)) (-583 |#1|)) 65)) (-2332 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) 36)) (-1547 (((-107) $ $) 54)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 44)))
+(((-567 |#1| |#2| |#3|) (-13 (-442) (-10 -8 (-15 -2624 ($ (-601 |#1| |#2|))) (-15 -1867 ((-601 |#1| |#2|) $)) (-15 -2332 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1171 |#1| |#2|) $)) (-15 -2402 ($ $)) (-15 -3463 ((-583 |#1|) $)) (-15 -2984 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2321 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -1852 ((-583 (-265 |#2|)) $ $)))) (-779) (-13 (-156) (-650 (-377 (-517)))) (-843)) (T -567))
+((-2624 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-2984 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843)))) (-2321 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) (-1852 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
+(-13 (-442) (-10 -8 (-15 -2624 ($ (-601 |#1| |#2|))) (-15 -1867 ((-601 |#1| |#2|) $)) (-15 -2332 ((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $)) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1171 |#1| |#2|) $)) (-15 -2402 ($ $)) (-15 -3463 ((-583 |#1|) $)) (-15 -2984 ((-583 (-601 |#1| |#2|)) (-583 |#1|))) (-15 -2321 ((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $)) (-15 -1852 ((-583 (-265 |#2|)) $ $))))
+((-4029 (((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 70) (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 56)) (-3958 (((-107) (-583 (-712 |#1| (-789 |#2|)))) 22)) (-1281 (((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)) 69)) (-1420 (((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107)) 55)) (-1759 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) 26)) (-2066 (((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|)))) 25)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -3958 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2066 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1759 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1420 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1281 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107)))) (-421) (-583 (-1073))) (T -568))
+((-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1281 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))) (-2066 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1073))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
+(-10 -7 (-15 -3958 ((-107) (-583 (-712 |#1| (-789 |#2|))))) (-15 -2066 ((-3 (-583 (-712 |#1| (-789 |#2|))) "failed") (-583 (-712 |#1| (-789 |#2|))))) (-15 -1759 ((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))))) (-15 -1420 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -1281 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-958 |#1| |#2|)) (-583 (-712 |#1| (-789 |#2|))) (-107))) (-15 -4029 ((-583 (-1044 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|)))) (-583 (-712 |#1| (-789 |#2|))) (-107))))
+((-1865 (($ $) 38)) (-1721 (($ $) 21)) (-1839 (($ $) 37)) (-1701 (($ $) 22)) (-1887 (($ $) 36)) (-1743 (($ $) 23)) (-2645 (($) 48)) (-1867 (($ $) 45)) (-3139 (($ $) 17)) (-2082 (($ $ (-996 $)) 7) (($ $ (-1073)) 6)) (-2624 (($ $) 46)) (-1655 (($ $) 15)) (-1689 (($ $) 16)) (-1898 (($ $) 35)) (-1754 (($ $) 24)) (-1876 (($ $) 34)) (-1732 (($ $) 25)) (-1853 (($ $) 33)) (-1711 (($ $) 26)) (-3707 (($ $) 44)) (-1788 (($ $) 32)) (-3683 (($ $) 43)) (-1765 (($ $) 31)) (-3731 (($ $) 42)) (-1814 (($ $) 30)) (-1492 (($ $) 41)) (-1827 (($ $) 29)) (-3719 (($ $) 40)) (-1802 (($ $) 28)) (-3695 (($ $) 39)) (-1777 (($ $) 27)) (-3362 (($ $) 19)) (-3452 (($ $) 20)) (-2037 (($ $) 18)) (** (($ $ $) 47)))
+(((-569) (-1184)) (T -569))
+((-3452 (*1 *1 *1) (-4 *1 (-569))) (-3362 (*1 *1 *1) (-4 *1 (-569))) (-2037 (*1 *1 *1) (-4 *1 (-569))) (-3139 (*1 *1 *1) (-4 *1 (-569))) (-1689 (*1 *1 *1) (-4 *1 (-569))) (-1655 (*1 *1 *1) (-4 *1 (-569))))
+(-13 (-880) (-1094) (-10 -8 (-15 -3452 ($ $)) (-15 -3362 ($ $)) (-15 -2037 ($ $)) (-15 -3139 ($ $)) (-15 -1689 ($ $)) (-15 -1655 ($ $))))
+(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-880) . T) ((-1094) . T) ((-1097) . T))
+((-3072 (((-109) (-109)) 83)) (-3139 ((|#2| |#2|) 30)) (-2082 ((|#2| |#2| (-996 |#2|)) 79) ((|#2| |#2| (-1073)) 52)) (-1655 ((|#2| |#2|) 29)) (-1689 ((|#2| |#2|) 31)) (-4074 (((-107) (-109)) 34)) (-3362 ((|#2| |#2|) 26)) (-3452 ((|#2| |#2|) 28)) (-2037 ((|#2| |#2|) 27)))
+(((-570 |#1| |#2|) (-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3452 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2082 (|#2| |#2| (-1073))) (-15 -2082 (|#2| |#2| (-996 |#2|)))) (-13 (-779) (-509)) (-13 (-400 |#1|) (-918) (-1094))) (T -570))
+((-2082 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) (-2082 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-1655 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3139 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-2037 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3362 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1094))))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))))))
+(-10 -7 (-15 -4074 ((-107) (-109))) (-15 -3072 ((-109) (-109))) (-15 -3452 (|#2| |#2|)) (-15 -3362 (|#2| |#2|)) (-15 -2037 (|#2| |#2|)) (-15 -3139 (|#2| |#2|)) (-15 -1655 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -2082 (|#2| |#2| (-1073))) (-15 -2082 (|#2| |#2| (-996 |#2|))))
+((-3611 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 52)) (-2212 (((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 67)) (-2040 (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 69) (((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|)) 68)) (-1544 (((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|))) 105)) (-1465 (((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 82)) (-2358 (((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|))) 116)) (-1499 (((-1153 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|))) 57)) (-3871 (((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|))) 39)) (-3296 (((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 49)) (-3195 (((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|))) 89)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -1544 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2358 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2212 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -3871 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1499 ((-1153 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -3195 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1465 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3296 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3611 ((-449 |#1| |#2|) (-221 |#1| |#2|)))) (-583 (-1073)) (-421)) (T -571))
+((-3611 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))) (-3296 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-1465 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))) (-3195 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1073))) (-5 *1 (-571 *5 *6)))) (-1499 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-1153 *6)) (-5 *1 (-571 *5 *6)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))) (-2040 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2040 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))) (-2358 (*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
+(-10 -7 (-15 -1544 ((-2 (|:| |gblist| (-583 (-221 |#1| |#2|))) (|:| |gvlist| (-583 (-517)))) (-583 (-449 |#1| |#2|)))) (-15 -2358 ((-2 (|:| |glbase| (-583 (-221 |#1| |#2|))) (|:| |glval| (-583 (-517)))) (-583 (-221 |#1| |#2|)))) (-15 -2212 ((-583 (-221 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -2040 ((-449 |#1| |#2|) (-583 (-449 |#1| |#2|)) (-789 |#1|))) (-15 -3871 ((-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -1499 ((-1153 |#2|) (-449 |#1| |#2|) (-583 (-449 |#1| |#2|)))) (-15 -3195 ((-221 |#1| |#2|) (-583 |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -1465 ((-583 (-449 |#1| |#2|)) (-789 |#1|) (-583 (-449 |#1| |#2|)) (-583 (-449 |#1| |#2|)))) (-15 -3296 ((-221 |#1| |#2|) (-221 |#1| |#2|) (-583 (-221 |#1| |#2|)))) (-15 -3611 ((-449 |#1| |#2|) (-221 |#1| |#2|))))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-1668 (((-1158) $ (-1056) (-1056)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-51) $ (-1056) (-51)) 16) (((-51) $ (-1073) (-51)) 17)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 (-51) "failed") (-1056) $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-3 (-51) "failed") (-1056) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-51) $ (-1056) (-51)) NIL (|has| $ (-6 -4181)))) (-1377 (((-51) $ (-1056)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-1669 (($ $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1056) $) NIL (|has| (-1056) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-3482 (((-1056) $) NIL (|has| (-1056) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-1299 (($ (-358)) 9)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-2274 (((-583 (-1056)) $) NIL)) (-2793 (((-107) (-1056) $) NIL)) (-3309 (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL)) (-1857 (((-583 (-1056)) $) NIL)) (-4088 (((-107) (-1056) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-1647 (((-51) $) NIL (|has| (-1056) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) "failed") (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL)) (-2565 (($ $ (-51)) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-1941 (((-583 (-51)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-51) $ (-1056)) 14) (((-51) $ (-1056) (-51)) NIL) (((-51) $ (-1073)) 15)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 (-51))) (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-572) (-13 (-1085 (-1056) (-51)) (-10 -8 (-15 -1299 ($ (-358))) (-15 -1669 ($ $)) (-15 -1449 ((-51) $ (-1073))) (-15 -2411 ((-51) $ (-1073) (-51)))))) (T -572))
+((-1299 (*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))) (-1669 (*1 *1 *1) (-5 *1 (-572))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-572)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1073)) (-5 *1 (-572)))))
+(-13 (-1085 (-1056) (-51)) (-10 -8 (-15 -1299 ($ (-358))) (-15 -1669 ($ $)) (-15 -1449 ((-51) $ (-1073))) (-15 -2411 ((-51) $ (-1073) (-51)))))
+((-1667 (($ $ |#2|) 10)))
+(((-573 |#1| |#2|) (-10 -8 (-15 -1667 (|#1| |#1| |#2|))) (-574 |#2|) (-156)) (T -573))
+NIL
+(-10 -8 (-15 -1667 (|#1| |#1| |#2|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2276 (($ $ $) 29)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 28 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-574 |#1|) (-1184) (-156)) (T -574))
+((-2276 (*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(-13 (-650 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2276 ($ $ $)) (IF (|has| |t#1| (-333)) (-15 -1667 ($ $ |t#1|)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-1153 (-623 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3456 (((-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3092 (($) NIL T CONST)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1450 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2619 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2299 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3343 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2158 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2436 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-2417 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-4069 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2085 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-2362 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1967 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (($ (-1153 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2261 (((-843)) NIL (|has| |#2| (-337 |#1|)))) (-3962 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3730 (($ $ (-843)) NIL)) (-2754 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3983 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3414 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1793 (((-3 $ "failed")) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2010 (((-623 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1188 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-3914 (((-623 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-1680 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-2300 (((-1069 (-874 |#1|))) NIL (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-333))))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#1| $) NIL (|has| |#2| (-337 |#1|)))) (-4121 (((-1069 |#1|) $) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-1988 ((|#1|) NIL (|has| |#2| (-387 |#1|))) ((|#1| (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-2190 (((-1069 |#1|) $) NIL (|has| |#2| (-337 |#1|)))) (-3606 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1286 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1848 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1449 ((|#1| $ (-517)) NIL (|has| |#2| (-387 |#1|)))) (-4114 (((-623 |#1|) (-1153 $)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|))) (((-623 |#1|) (-1153 $) (-1153 $)) NIL (|has| |#2| (-337 |#1|))) (((-1153 |#1|) $ (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3645 (($ (-1153 |#1|)) NIL (|has| |#2| (-387 |#1|))) (((-1153 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-2278 (((-583 (-874 |#1|))) NIL (|has| |#2| (-387 |#1|))) (((-583 (-874 |#1|)) (-1153 $)) NIL (|has| |#2| (-337 |#1|)))) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2256 (((-787) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1753 (((-1153 $)) NIL (|has| |#2| (-387 |#1|)))) (-1582 (((-583 (-1153 |#1|))) NIL (-3807 (-12 (|has| |#2| (-337 |#1|)) (|has| |#1| (-509))) (-12 (|has| |#2| (-387 |#1|)) (|has| |#1| (-509)))))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-1587 (($ (-623 |#1|) $) NIL (|has| |#2| (-387 |#1|)))) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2524 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-3642 (((-107)) NIL (|has| |#2| (-337 |#1|)))) (-2396 (($) 15 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) 17)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-575 |#1| |#2|) (-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|))) (-156) (-677 |#1|)) (T -575))
+((-2256 (*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))))
+(-13 (-677 |#1|) (-557 |#2|) (-10 -8 (-15 -2256 ($ |#2|)) (IF (|has| |#2| (-387 |#1|)) (-6 (-387 |#1|)) |noBranch|) (IF (|has| |#2| (-337 |#1|)) (-6 (-337 |#1|)) |noBranch|)))
+((-3236 (((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1056)) 77) (((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|))) 99)) (-1586 (((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|))) 104)))
+(((-576 |#1| |#2|) (-10 -7 (-15 -3236 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -1586 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -3236 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1056)))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -576))
+((-3236 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1056)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) (-1586 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))))
+(-10 -7 (-15 -3236 ((-3 (-772 |#2|) (-2 (|:| |leftHandLimit| (-3 (-772 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-772 |#2|) "failed"))) "failed") |#2| (-265 (-772 |#2|)))) (-15 -1586 ((-3 (-765 |#2|) "failed") |#2| (-265 (-765 |#2|)))) (-15 -3236 ((-3 (-772 |#2|) "failed") |#2| (-265 |#2|) (-1056))))
+((-3236 (((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1056)) 79) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 18) (((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|)))) 34)) (-1586 (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 21) (((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|)))) 42)))
+(((-577 |#1|) (-10 -7 (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1056)))) (-421)) (T -577))
+((-3236 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))) (-1586 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))) (-1586 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) (-3236 (*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))))
+(-10 -7 (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-772 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 |#1|))) "failed"))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-765 (-874 |#1|))))) (-15 -1586 ((-765 (-377 (-874 |#1|))) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -3236 ((-3 (-772 (-377 (-874 |#1|))) "failed") (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))) (-1056))))
+((-1412 (((-3 (-1153 (-377 |#1|)) "failed") (-1153 |#2|) |#2|) 57 (-2630 (|has| |#1| (-333)))) (((-3 (-1153 |#1|) "failed") (-1153 |#2|) |#2|) 42 (|has| |#1| (-333)))) (-1757 (((-107) (-1153 |#2|)) 30)) (-3927 (((-3 (-1153 |#1|) "failed") (-1153 |#2|)) 33)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -1757 ((-107) (-1153 |#2|))) (-15 -3927 ((-3 (-1153 |#1|) "failed") (-1153 |#2|))) (IF (|has| |#1| (-333)) (-15 -1412 ((-3 (-1153 |#1|) "failed") (-1153 |#2|) |#2|)) (-15 -1412 ((-3 (-1153 (-377 |#1|)) "failed") (-1153 |#2|) |#2|)))) (-509) (-579 |#1|)) (T -578))
+((-1412 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-2630 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1153 (-377 *5))) (-5 *1 (-578 *5 *4)))) (-1412 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1153 *5)) (-5 *1 (-578 *5 *4)))) (-3927 (*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1153 *4)) (-5 *1 (-578 *4 *5)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
+(-10 -7 (-15 -1757 ((-107) (-1153 |#2|))) (-15 -3927 ((-3 (-1153 |#1|) "failed") (-1153 |#2|))) (IF (|has| |#1| (-333)) (-15 -1412 ((-3 (-1153 |#1|) "failed") (-1153 |#2|) |#2|)) (-15 -1412 ((-3 (-1153 (-377 |#1|)) "failed") (-1153 |#2|) |#2|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3355 (((-623 |#1|) (-623 $)) 36) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 35)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-579 |#1|) (-1184) (-961)) (T -579))
+((-3355 (*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4)))) (-3355 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1153 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 *5)))))))
+(-13 (-961) (-10 -8 (-15 -3355 ((-623 |t#1|) (-623 $))) (-15 -3355 ((-2 (|:| -2790 (-623 |t#1|)) (|:| |vec| (-1153 |t#1|))) (-623 $) (-1153 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2237 ((|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|) 17) ((|#2| (-583 |#1|) (-583 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|)) 12)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|)))) (-1003) (-1108)) (T -580))
+((-2237 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) (-2237 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-580 *5 *6)))) (-2237 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) (-2237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) (-2237 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) (-2237 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))))
+(-10 -7 (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) |#2|)) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| |#2|)) (-15 -2237 ((-1 |#2| |#1|) (-583 |#1|) (-583 |#2|) (-1 |#2| |#1|))) (-15 -2237 (|#2| (-583 |#1|) (-583 |#2|) |#1| (-1 |#2| |#1|))))
+((-3905 (((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 16)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|) 18)) (-1893 (((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)) 13)))
+(((-581 |#1| |#2|) (-10 -7 (-15 -3905 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|)))) (-1108) (-1108)) (T -581))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-581 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))))
+(-10 -7 (-15 -3905 ((-583 |#2|) (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-583 |#1|) |#2|)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-583 |#1|))))
+((-1893 (((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)) 13)))
+(((-582 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|)))) (-1108) (-1108) (-1108)) (T -582))
+((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))))
+(-10 -7 (-15 -1893 ((-583 |#3|) (-1 |#3| |#1| |#2|) (-583 |#1|) (-583 |#2|))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) $) NIL (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) NIL)) (-2034 (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779)))) (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-3166 (($ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "rest" $) NIL (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-1576 (($ $ $) 31 (|has| |#1| (-1003)))) (-1562 (($ $ $) 33 (|has| |#1| (-1003)))) (-1550 (($ $ $) 36 (|has| |#1| (-1003)))) (-2337 (($ (-1 (-107) |#1|) $) NIL)) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1660 (($ $) NIL) (($ $ (-703)) NIL)) (-3483 (($ $) NIL (|has| |#1| (-1003)))) (-1679 (($ $) 30 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) NIL (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) NIL)) (-2052 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-2607 (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003))) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2650 (((-107) $) 9)) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3353 (($) 7)) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2797 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-3237 (($ $ $) NIL (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 32 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1529 (($ |#1|) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-1710 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2348 (((-107) $) NIL)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) 35) ((|#1| $ (-517) |#1|) NIL)) (-2459 (((-517) $ $) NIL)) (-2154 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-2655 (((-107) $) NIL)) (-2552 (($ $) NIL)) (-3406 (($ $) NIL (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 44 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-1540 (($ |#1| $) 10)) (-2568 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2452 (($ $ $) 29) (($ |#1| $) NIL) (($ (-583 $)) NIL) (($ $ |#1|) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3741 (($ $ $) 11)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2482 (((-1056) $) 25 (|has| |#1| (-760))) (((-1056) $ (-107)) 26 (|has| |#1| (-760))) (((-1158) (-754) $) 27 (|has| |#1| (-760))) (((-1158) (-754) $ (-107)) 28 (|has| |#1| (-760)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-583 |#1|) (-13 (-603 |#1|) (-10 -8 (-15 -3353 ($)) (-15 -2650 ((-107) $)) (-15 -1540 ($ |#1| $)) (-15 -3741 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1576 ($ $ $)) (-15 -1562 ($ $ $)) (-15 -1550 ($ $ $))) |noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|))) (-1108)) (T -583))
+((-3353 (*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) (-2650 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1108)))) (-1540 (*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) (-3741 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) (-1576 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))) (-1562 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))) (-1550 (*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))))
+(-13 (-603 |#1|) (-10 -8 (-15 -3353 ($)) (-15 -2650 ((-107) $)) (-15 -1540 ($ |#1| $)) (-15 -3741 ($ $ $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -1576 ($ $ $)) (-15 -1562 ($ $ $)) (-15 -1550 ($ $ $))) |noBranch|) (IF (|has| |#1| (-760)) (-6 (-760)) |noBranch|)))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1670 (($ |#1| |#1| $) 43)) (-2953 (((-107) $ (-703)) NIL)) (-2337 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3483 (($ $) 45)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) 51 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 53 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 9 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 37)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 46)) (-1710 (($ |#1| $) 26) (($ |#1| $ (-703)) 42)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4006 ((|#1| $) 48)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 21)) (-1746 (($) 25)) (-2605 (((-107) $) 49)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 60)) (-3089 (($) 23) (($ (-583 |#1|)) 18)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) 57 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 19)) (-3645 (((-493) $) 34 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2256 (((-787) $) 14 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 22)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 62 (|has| |#1| (-1003)))) (-2296 (((-703) $) 16 (|has| $ (-6 -4180)))))
+(((-584 |#1|) (-13 (-628 |#1|) (-10 -8 (-6 -4180) (-15 -2605 ((-107) $)) (-15 -1670 ($ |#1| |#1| $)))) (-1003)) (T -584))
+((-2605 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))) (-1670 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003)))))
+(-13 (-628 |#1|) (-10 -8 (-6 -4180) (-15 -2605 ((-107) $)) (-15 -1670 ($ |#1| |#1| $))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23)))
+(((-585 |#1|) (-1184) (-968)) (T -585))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-968)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3796 (((-701) $) 15)) (-1367 (($ $ |#1|) 55)) (-1375 (($ $) 32)) (-3785 (($ $) 31)) (-3765 (((-3 |#1| "failed") $) 47)) (-3490 ((|#1| $) NIL)) (-2543 (($ |#1| |#2| $) 60) (($ $ $) 61)) (-3317 (((-786) $ (-1 (-786) (-786) (-786)) (-1 (-786) (-786) (-786)) (-501)) 45)) (-2153 ((|#1| $ (-501)) 30)) (-3159 ((|#2| $ (-501)) 29)) (-2451 (($ (-1 |#1| |#1|) $) 34)) (-1620 (($ (-1 |#2| |#2|) $) 38)) (-3293 (($) 10)) (-2768 (($ |#1| |#2|) 22)) (-3920 (($ (-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|)))) 23)) (-3885 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $) 13)) (-3196 (($ |#1| $) 56)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1502 (((-107) $ $) 58)) (-3691 (((-786) $) 19) (($ |#1|) 16)) (-3751 (((-107) $ $) 25)))
-(((-584 |#1| |#2| |#3|) (-13 (-1001) (-950 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-1 (-786) (-786) (-786)) (-1 (-786) (-786) (-786)) (-501))) (-15 -3885 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $)) (-15 -2768 ($ |#1| |#2|)) (-15 -3920 ($ (-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))))) (-15 -3159 (|#2| $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -3785 ($ $)) (-15 -1375 ($ $)) (-15 -3796 ((-701) $)) (-15 -3293 ($)) (-15 -1367 ($ $ |#1|)) (-15 -3196 ($ |#1| $)) (-15 -2543 ($ |#1| |#2| $)) (-15 -2543 ($ $ $)) (-15 -1502 ((-107) $ $)) (-15 -1620 ($ (-1 |#2| |#2|) $)) (-15 -2451 ($ (-1 |#1| |#1|) $)))) (-1001) (-23) |#2|) (T -584))
-((-3317 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-786) (-786) (-786))) (-5 *4 (-501)) (-5 *2 (-786)) (-5 *1 (-584 *5 *6 *7)) (-4 *5 (-1001)) (-4 *6 (-23)) (-14 *7 *6))) (-3885 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))) (-2768 (*1 *1 *2 *3) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-3920 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-584 *3 *4 *5)))) (-3159 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-23)) (-5 *1 (-584 *4 *2 *5)) (-4 *4 (-1001)) (-14 *5 *2))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-1001)) (-5 *1 (-584 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3785 (*1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-1375 (*1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))) (-3293 (*1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-1367 (*1 *1 *1 *2) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-3196 (*1 *1 *2 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-2543 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-2543 (*1 *1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) (-1502 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))) (-1620 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)))) (-2451 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-584 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1001) (-950 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-1 (-786) (-786) (-786)) (-1 (-786) (-786) (-786)) (-501))) (-15 -3885 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))) $)) (-15 -2768 ($ |#1| |#2|)) (-15 -3920 ($ (-578 (-2 (|:| |gen| |#1|) (|:| -1989 |#2|))))) (-15 -3159 (|#2| $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -3785 ($ $)) (-15 -1375 ($ $)) (-15 -3796 ((-701) $)) (-15 -3293 ($)) (-15 -1367 ($ $ |#1|)) (-15 -3196 ($ |#1| $)) (-15 -2543 ($ |#1| |#2| $)) (-15 -2543 ($ $ $)) (-15 -1502 ((-107) $ $)) (-15 -1620 ($ (-1 |#2| |#2|) $)) (-15 -2451 ($ (-1 |#1| |#1|) $))))
-((-1522 (((-501) $) 23)) (-1473 (($ |#2| $ (-501)) 21) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) 12)) (-2852 (((-107) (-501) $) 14)) (-3934 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-578 $)) NIL)))
-(((-585 |#1| |#2|) (-10 -8 (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -1522 ((-501) |#1|)) (-15 -2658 ((-578 (-501)) |#1|)) (-15 -2852 ((-107) (-501) |#1|))) (-586 |#2|) (-1104)) (T -585))
-NIL
-(-10 -8 (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -3934 (|#1| (-578 |#1|))) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -1522 ((-501) |#1|)) (-15 -2658 ((-578 (-501)) |#1|)) (-15 -2852 ((-107) (-501) |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-586 |#1|) (-1180) (-1104)) (T -586))
-((-3634 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-3934 (*1 *1 *1 *2) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) (-3934 (*1 *1 *2 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) (-3934 (*1 *1 *1 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) (-3934 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-1212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-1468 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-1468 (*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-1473 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-586 *2)) (-4 *2 (-1104)))) (-1473 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1116 (-501))) (|has| *1 (-6 -4168)) (-4 *1 (-586 *2)) (-4 *2 (-1104)))))
-(-13 (-548 (-501) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3634 ($ (-701) |t#1|)) (-15 -3934 ($ $ |t#1|)) (-15 -3934 ($ |t#1| $)) (-15 -3934 ($ $ $)) (-15 -3934 ($ (-578 $))) (-15 -1212 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2007 ($ $ (-1116 (-501)))) (-15 -1468 ($ $ (-501))) (-15 -1468 ($ $ (-1116 (-501)))) (-15 -1473 ($ |t#1| $ (-501))) (-15 -1473 ($ $ $ (-501))) (IF (|has| $ (-6 -4168)) (-15 -3754 (|t#1| $ (-1116 (-501)) |t#1|)) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 15)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2946 ((|#1| $) 21)) (-4111 (($ $ $) NIL (|has| |#1| (-721)))) (-1323 (($ $ $) NIL (|has| |#1| (-721)))) (-3460 (((-1053) $) 46)) (-3708 (((-1018) $) NIL)) (-2949 ((|#3| $) 22)) (-3691 (((-786) $) 42)) (-1850 (($) 10 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-721)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-721)))) (-3751 (((-107) $ $) 20)) (-3773 (((-107) $ $) NIL (|has| |#1| (-721)))) (-3762 (((-107) $ $) 24 (|has| |#1| (-721)))) (-3803 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-3797 (($ $) 17) (($ $ $) NIL)) (-3790 (($ $ $) 27)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-587 |#1| |#2| |#3|) (-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-721)) (-6 (-721)) |noBranch|) (-15 -3803 ($ $ |#3|)) (-15 -3803 ($ |#1| |#3|)) (-15 -2946 (|#1| $)) (-15 -2949 (|#3| $)))) (-648 |#2|) (-156) (|SubsetCategory| (-657) |#2|)) (T -587))
-((-3803 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-587 *3 *4 *2)) (-4 *3 (-648 *4)) (-4 *2 (|SubsetCategory| (-657) *4)))) (-3803 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-587 *2 *4 *3)) (-4 *2 (-648 *4)) (-4 *3 (|SubsetCategory| (-657) *4)))) (-2946 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-648 *3)) (-5 *1 (-587 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-657) *3)))) (-2949 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-657) *4)) (-5 *1 (-587 *3 *4 *2)) (-4 *3 (-648 *4)))))
-(-13 (-648 |#2|) (-10 -8 (IF (|has| |#1| (-721)) (-6 (-721)) |noBranch|) (-15 -3803 ($ $ |#3|)) (-15 -3803 ($ |#1| |#3|)) (-15 -2946 (|#1| $)) (-15 -2949 (|#3| $))))
-((-2778 (((-3 |#2| "failed") |#3| |#2| (-1070) |#2| (-578 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) "failed") |#3| |#2| (-1070)) 43)))
-(((-588 |#1| |#2| |#3|) (-10 -7 (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) "failed") |#3| |#2| (-1070))) (-15 -2778 ((-3 |#2| "failed") |#3| |#2| (-1070) |#2| (-578 |#2|)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879)) (-593 |#2|)) (T -588))
-((-2778 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-588 *6 *2 *3)) (-4 *3 (-593 *2)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-4 *4 (-13 (-29 *6) (-1090) (-879))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4119 (-578 *4)))) (-5 *1 (-588 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) "failed") |#3| |#2| (-1070))) (-15 -2778 ((-3 |#2| "failed") |#3| |#2| (-1070) |#2| (-578 |#2|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1305 (($ $) NIL (|has| |#1| (-331)))) (-1764 (($ $ $) 28 (|has| |#1| (-331)))) (-3607 (($ $ (-701)) 31 (|has| |#1| (-331)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-331)))) (-2160 (($ $ $) NIL (|has| |#1| (-331)))) (-1535 (($ $ $) NIL (|has| |#1| (-331)))) (-3912 (($ $ $) NIL (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-1355 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#1| (-331)))) (-2530 (($ $ $) NIL (|has| |#1| (-331)))) (-3641 (($ $ $) NIL (|has| |#1| (-331)))) (-2753 (($ $ $) NIL (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2007 ((|#1| $ |#1|) 24)) (-3409 (($ $ $) 33 (|has| |#1| (-331)))) (-1201 (((-701) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) 20) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#1| $ |#1| |#1|) 23)) (-3774 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 8 T CONST)) (-3584 (($) NIL)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-589 |#1| |#2|) (-593 |#1|) (-959) (-1 |#1| |#1|)) (T -589))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-1611 (((-703) $) 15)) (-3953 (($ $ |#1|) 55)) (-4020 (($ $) 32)) (-3093 (($ $) 31)) (-1772 (((-3 |#1| "failed") $) 47)) (-3189 ((|#1| $) NIL)) (-2662 (($ |#1| |#2| $) 60) (($ $ $) 61)) (-3078 (((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517)) 45)) (-3466 ((|#1| $ (-517)) 30)) (-3882 ((|#2| $ (-517)) 29)) (-3420 (($ (-1 |#1| |#1|) $) 34)) (-2125 (($ (-1 |#2| |#2|) $) 38)) (-2824 (($) 10)) (-1568 (($ |#1| |#2|) 22)) (-3840 (($ (-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|)))) 23)) (-3539 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $) 13)) (-1227 (($ |#1| $) 56)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2344 (((-107) $ $) 58)) (-2256 (((-787) $) 19) (($ |#1|) 16)) (-1547 (((-107) $ $) 25)))
+(((-586 |#1| |#2| |#3|) (-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -3539 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $)) (-15 -1568 ($ |#1| |#2|)) (-15 -3840 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))))) (-15 -3882 (|#2| $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -3093 ($ $)) (-15 -4020 ($ $)) (-15 -1611 ((-703) $)) (-15 -2824 ($)) (-15 -3953 ($ $ |#1|)) (-15 -1227 ($ |#1| $)) (-15 -2662 ($ |#1| |#2| $)) (-15 -2662 ($ $ $)) (-15 -2344 ((-107) $ $)) (-15 -2125 ($ (-1 |#2| |#2|) $)) (-15 -3420 ($ (-1 |#1| |#1|) $)))) (-1003) (-23) |#2|) (T -586))
+((-3078 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-1568 (*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3093 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-4020 (*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2824 (*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-3953 (*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-1227 (*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2662 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) (-2344 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) (-2125 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))) (-3420 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1003) (-952 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-1 (-787) (-787) (-787)) (-1 (-787) (-787) (-787)) (-517))) (-15 -3539 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))) $)) (-15 -1568 ($ |#1| |#2|)) (-15 -3840 ($ (-583 (-2 (|:| |gen| |#1|) (|:| -2624 |#2|))))) (-15 -3882 (|#2| $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -3093 ($ $)) (-15 -4020 ($ $)) (-15 -1611 ((-703) $)) (-15 -2824 ($)) (-15 -3953 ($ $ |#1|)) (-15 -1227 ($ |#1| $)) (-15 -2662 ($ |#1| |#2| $)) (-15 -2662 ($ $ $)) (-15 -2344 ((-107) $ $)) (-15 -2125 ($ (-1 |#2| |#2|) $)) (-15 -3420 ($ (-1 |#1| |#1|) $))))
+((-3482 (((-517) $) 23)) (-2620 (($ |#2| $ (-517)) 21) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) 12)) (-4088 (((-107) (-517) $) 14)) (-2452 (($ $ |#2|) 18) (($ |#2| $) 19) (($ $ $) NIL) (($ (-583 $)) NIL)))
+(((-587 |#1| |#2|) (-10 -8 (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -3482 ((-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -4088 ((-107) (-517) |#1|))) (-588 |#2|) (-1108)) (T -587))
+NIL
+(-10 -8 (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2452 (|#1| (-583 |#1|))) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -3482 ((-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -4088 ((-107) (-517) |#1|)))
+((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-588 |#1|) (-1184) (-1108)) (T -588))
+((-3462 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-2452 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-2620 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))) (-2620 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1121 (-517))) (|has| *1 (-6 -4181)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))))
+(-13 (-550 (-517) |t#1|) (-138 |t#1|) (-10 -8 (-15 -3462 ($ (-703) |t#1|)) (-15 -2452 ($ $ |t#1|)) (-15 -2452 ($ |t#1| $)) (-15 -2452 ($ $ $)) (-15 -2452 ($ (-583 $))) (-15 -1893 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1449 ($ $ (-1121 (-517)))) (-15 -3750 ($ $ (-517))) (-15 -3750 ($ $ (-1121 (-517)))) (-15 -2620 ($ |t#1| $ (-517))) (-15 -2620 ($ $ $ (-517))) (IF (|has| $ (-6 -4181)) (-15 -2411 (|t#1| $ (-1121 (-517)) |t#1|)) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-1674 (((-3 |#2| "failed") |#3| |#2| (-1073) |#2| (-583 |#2|)) 159) (((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) "failed") |#3| |#2| (-1073)) 43)))
+(((-589 |#1| |#2| |#3|) (-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) "failed") |#3| |#2| (-1073))) (-15 -1674 ((-3 |#2| "failed") |#3| |#2| (-1073) |#2| (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880)) (-593 |#2|)) (T -589))
+((-1674 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) "failed") |#3| |#2| (-1073))) (-15 -1674 ((-3 |#2| "failed") |#3| |#2| (-1073) |#2| (-583 |#2|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1334 (($ $) NIL (|has| |#1| (-333)))) (-3541 (($ $ $) NIL (|has| |#1| (-333)))) (-3091 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) NIL)) (-1686 (($ $ $) NIL (|has| |#1| (-333)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) NIL)) (-2061 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($) NIL)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-590 |#1|) (-593 |#1|) (-207)) (T -590))
NIL
(-593 |#1|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1305 (($ $) NIL (|has| |#1| (-331)))) (-1764 (($ $ $) NIL (|has| |#1| (-331)))) (-3607 (($ $ (-701)) NIL (|has| |#1| (-331)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-331)))) (-2160 (($ $ $) NIL (|has| |#1| (-331)))) (-1535 (($ $ $) NIL (|has| |#1| (-331)))) (-3912 (($ $ $) NIL (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-1355 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#1| (-331)))) (-2530 (($ $ $) NIL (|has| |#1| (-331)))) (-3641 (($ $ $) NIL (|has| |#1| (-331)))) (-2753 (($ $ $) NIL (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2007 ((|#1| $ |#1|) NIL)) (-3409 (($ $ $) NIL (|has| |#1| (-331)))) (-1201 (((-701) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#1| $ |#1| |#1|) NIL)) (-3774 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($) NIL)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-590 |#1|) (-593 |#1|) (-206)) (T -590))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1334 (($ $) NIL (|has| |#1| (-333)))) (-3541 (($ $ $) NIL (|has| |#1| (-333)))) (-3091 (($ $ (-703)) NIL (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1686 (($ $ $) NIL (|has| |#1| (-333)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) NIL)) (-2061 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($) NIL)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-591 |#1| |#2|) (-13 (-593 |#1|) (-258 |#2| |#2|)) (-207) (-13 (-585 |#1|) (-10 -8 (-15 -3127 ($ $))))) (T -591))
+NIL
+(-13 (-593 |#1|) (-258 |#2| |#2|))
+((-1334 (($ $) 26)) (-2061 (($ $) 24)) (-2731 (($) 12)))
+(((-592 |#1| |#2|) (-10 -8 (-15 -1334 (|#1| |#1|)) (-15 -2061 (|#1| |#1|)) (-15 -2731 (|#1|))) (-593 |#2|) (-961)) (T -592))
+NIL
+(-10 -8 (-15 -1334 (|#1| |#1|)) (-15 -2061 (|#1| |#1|)) (-15 -2731 (|#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1334 (($ $) 82 (|has| |#1| (-333)))) (-3541 (($ $ $) 84 (|has| |#1| (-333)))) (-3091 (($ $ (-703)) 83 (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3311 (($ $ $) 45 (|has| |#1| (-333)))) (-3527 (($ $ $) 46 (|has| |#1| (-333)))) (-2626 (($ $ $) 48 (|has| |#1| (-333)))) (-3784 (($ $ $) 43 (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 42 (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 47 (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3189 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1212 (($ $) 64)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 55 (|has| |#1| (-421)))) (-3848 (((-107) $) 31)) (-1339 (($ |#1| (-703)) 62)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 58 (|has| |#1| (-509)))) (-2349 (((-703) $) 66)) (-4102 (($ $ $) 52 (|has| |#1| (-333)))) (-2985 (($ $ $) 53 (|has| |#1| (-333)))) (-2218 (($ $ $) 41 (|has| |#1| (-333)))) (-1423 (($ $ $) 50 (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 49 (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 54 (|has| |#1| (-333)))) (-1191 ((|#1| $) 65)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) 87)) (-1686 (($ $ $) 81 (|has| |#1| (-333)))) (-3688 (((-703) $) 67)) (-3266 ((|#1| $) 56 (|has| |#1| (-421)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-1311 (((-583 |#1|) $) 61)) (-2720 ((|#1| $ (-703)) 63)) (-2961 (((-703)) 29)) (-1587 ((|#1| $ |#1| |#1|) 60)) (-2061 (($ $) 85)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($) 86)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-593 |#1|) (-1184) (-961)) (T -593))
+((-2731 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-2061 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) (-3541 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3091 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) (-1334 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1686 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(-13 (-781 |t#1|) (-258 |t#1| |t#1|) (-10 -8 (-15 -2731 ($)) (-15 -2061 ($ $)) (IF (|has| |t#1| (-333)) (PROGN (-15 -3541 ($ $ $)) (-15 -3091 ($ $ (-703))) (-15 -1334 ($ $)) (-15 -1686 ($ $ $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-258 |#1| |#1|) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-781 |#1|) . T))
+((-1902 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 72 (|has| |#1| (-27)))) (-3755 (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))) 71 (|has| |#1| (-27))) (((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 15)))
+(((-594 |#1| |#2|) (-10 -7 (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1902 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -594))
+((-1902 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))))
+(-10 -7 (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3755 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|)))) (-15 -1902 ((-583 (-590 (-377 |#2|))) (-590 (-377 |#2|))))) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1334 (($ $) NIL (|has| |#1| (-333)))) (-3541 (($ $ $) 28 (|has| |#1| (-333)))) (-3091 (($ $ (-703)) 31 (|has| |#1| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-1449 ((|#1| $ |#1|) 24)) (-1686 (($ $ $) 33 (|has| |#1| (-333)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) 20) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) 23)) (-2061 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 8 T CONST)) (-2731 (($) NIL)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-595 |#1| |#2|) (-593 |#1|) (-961) (-1 |#1| |#1|)) (T -595))
NIL
(-593 |#1|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1305 (($ $) NIL (|has| |#1| (-331)))) (-1764 (($ $ $) NIL (|has| |#1| (-331)))) (-3607 (($ $ (-701)) NIL (|has| |#1| (-331)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-331)))) (-2160 (($ $ $) NIL (|has| |#1| (-331)))) (-1535 (($ $ $) NIL (|has| |#1| (-331)))) (-3912 (($ $ $) NIL (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-1355 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#1| (-331)))) (-2530 (($ $ $) NIL (|has| |#1| (-331)))) (-3641 (($ $ $) NIL (|has| |#1| (-331)))) (-2753 (($ $ $) NIL (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2007 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3409 (($ $ $) NIL (|has| |#1| (-331)))) (-1201 (((-701) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#1| $ |#1| |#1|) NIL)) (-3774 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($) NIL)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-591 |#1| |#2|) (-13 (-593 |#1|) (-256 |#2| |#2|)) (-206) (-13 (-583 |#1|) (-10 -8 (-15 -2596 ($ $))))) (T -591))
-NIL
-(-13 (-593 |#1|) (-256 |#2| |#2|))
-((-1305 (($ $) 26)) (-3774 (($ $) 24)) (-3584 (($) 12)))
-(((-592 |#1| |#2|) (-10 -8 (-15 -1305 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3584 (|#1|))) (-593 |#2|) (-959)) (T -592))
-NIL
-(-10 -8 (-15 -1305 (|#1| |#1|)) (-15 -3774 (|#1| |#1|)) (-15 -3584 (|#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1305 (($ $) 84 (|has| |#1| (-331)))) (-1764 (($ $ $) 86 (|has| |#1| (-331)))) (-3607 (($ $ (-701)) 85 (|has| |#1| (-331)))) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3224 (($ $ $) 47 (|has| |#1| (-331)))) (-2160 (($ $ $) 48 (|has| |#1| (-331)))) (-1535 (($ $ $) 50 (|has| |#1| (-331)))) (-3912 (($ $ $) 45 (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 44 (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) 46 (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 49 (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) 76 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 74 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 71)) (-3490 (((-501) $) 77 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 75 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 70)) (-3858 (($ $) 66)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 57 (|has| |#1| (-419)))) (-1355 (((-107) $) 31)) (-3787 (($ |#1| (-701)) 64)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 59 (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 60 (|has| |#1| (-508)))) (-2285 (((-701) $) 68)) (-2084 (($ $ $) 54 (|has| |#1| (-331)))) (-2530 (($ $ $) 55 (|has| |#1| (-331)))) (-3641 (($ $ $) 43 (|has| |#1| (-331)))) (-2753 (($ $ $) 52 (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 51 (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 56 (|has| |#1| (-331)))) (-3850 ((|#1| $) 67)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ |#1|) 61 (|has| |#1| (-508)))) (-2007 ((|#1| $ |#1|) 89)) (-3409 (($ $ $) 83 (|has| |#1| (-331)))) (-1201 (((-701) $) 69)) (-1734 ((|#1| $) 58 (|has| |#1| (-419)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 73 (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 72)) (-1303 (((-578 |#1|) $) 63)) (-2495 ((|#1| $ (-701)) 65)) (-3965 (((-701)) 29)) (-1183 ((|#1| $ |#1| |#1|) 62)) (-3774 (($ $) 87)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($) 88)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 79) (($ |#1| $) 78)))
-(((-593 |#1|) (-1180) (-959)) (T -593))
-((-3584 (*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)))) (-1764 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3607 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-593 *3)) (-4 *3 (-959)) (-4 *3 (-331)))) (-1305 (*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3409 (*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(-13 (-779 |t#1|) (-256 |t#1| |t#1|) (-10 -8 (-15 -3584 ($)) (-15 -3774 ($ $)) (IF (|has| |t#1| (-331)) (PROGN (-15 -1764 ($ $ $)) (-15 -3607 ($ $ (-701))) (-15 -1305 ($ $)) (-15 -3409 ($ $ $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-256 |#1| |#1|) . T) ((-380 |#1|) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) |has| |#1| (-156)) ((-657) . T) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-779 |#1|) . T))
-((-3744 (((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|))) 72 (|has| |#1| (-27)))) (-3739 (((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|))) 71 (|has| |#1| (-27))) (((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|)) 15)))
-(((-594 |#1| |#2|) (-10 -7 (-15 -3739 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3739 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)))) (-15 -3744 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|))))) |noBranch|)) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|)) (T -594))
-((-3744 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-590 (-375 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-375 *5))))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-590 (-375 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-375 *5))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-590 (-375 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-375 *6))))))
-(-10 -7 (-15 -3739 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3739 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|)))) (-15 -3744 ((-578 (-590 (-375 |#2|))) (-590 (-375 |#2|))))) |noBranch|))
-((-1764 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)) (-3607 ((|#2| |#2| (-701) (-1 |#1| |#1|)) 42)) (-3409 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 63)))
-(((-595 |#1| |#2|) (-10 -7 (-15 -1764 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3607 (|#2| |#2| (-701) (-1 |#1| |#1|))) (-15 -3409 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-331) (-593 |#1|)) (T -595))
-((-3409 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-331)) (-5 *1 (-595 *4 *2)) (-4 *2 (-593 *4)))) (-3607 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-5 *1 (-595 *5 *2)) (-4 *2 (-593 *5)))) (-1764 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-331)) (-5 *1 (-595 *4 *2)) (-4 *2 (-593 *4)))))
-(-10 -7 (-15 -1764 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3607 (|#2| |#2| (-701) (-1 |#1| |#1|))) (-15 -3409 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-3099 (($ $ $) 9)))
-(((-596 |#1|) (-10 -8 (-15 -3099 (|#1| |#1| |#1|))) (-597)) (T -596))
-NIL
-(-10 -8 (-15 -3099 (|#1| |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-2308 (($ $) 10)) (-3099 (($ $ $) 8)) (-3751 (((-107) $ $) 6)) (-3092 (($ $ $) 9)))
-(((-597) (-1180)) (T -597))
-((-2308 (*1 *1 *1) (-4 *1 (-597))) (-3092 (*1 *1 *1 *1) (-4 *1 (-597))) (-3099 (*1 *1 *1 *1) (-4 *1 (-597))))
-(-13 (-97) (-10 -8 (-15 -2308 ($ $)) (-15 -3092 ($ $ $)) (-15 -3099 ($ $ $))))
+((-3541 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)) (-3091 ((|#2| |#2| (-703) (-1 |#1| |#1|)) 42)) (-1686 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 63)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -3541 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3091 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -1686 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -596))
+((-1686 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))) (-3091 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))) (-3541 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
+(-10 -7 (-15 -3541 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -3091 (|#2| |#2| (-703) (-1 |#1| |#1|))) (-15 -1686 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2391 (($ $ $) 9)))
+(((-597 |#1|) (-10 -8 (-15 -2391 (|#1| |#1| |#1|))) (-598)) (T -597))
+NIL
+(-10 -8 (-15 -2391 (|#1| |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-1460 (($ $) 10)) (-2391 (($ $ $) 8)) (-1547 (((-107) $ $) 6)) (-2382 (($ $ $) 9)))
+(((-598) (-1184)) (T -598))
+((-1460 (*1 *1 *1) (-4 *1 (-598))) (-2382 (*1 *1 *1 *1) (-4 *1 (-598))) (-2391 (*1 *1 *1 *1) (-4 *1 (-598))))
+(-13 (-97) (-10 -8 (-15 -1460 ($ $)) (-15 -2382 ($ $ $)) (-15 -2391 ($ $ $))))
(((-97) . T))
-((-3433 (((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|)) 33)))
-(((-598 |#1|) (-10 -7 (-15 -3433 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|)))) (-830)) (T -598))
-((-3433 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *4))) (-5 *3 (-1064 *4)) (-4 *4 (-830)) (-5 *1 (-598 *4)))))
-(-10 -7 (-15 -3433 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 |#1|) $) 82)) (-2055 (($ $ (-701)) 90)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2194 (((-1171 |#1| |#2|) (-1171 |#1| |#2|) $) 48)) (-3765 (((-3 (-606 |#1|) "failed") $) NIL)) (-3490 (((-606 |#1|) $) NIL)) (-3858 (($ $) 89)) (-3706 (((-701) $) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-606 |#1|) |#2|) 68)) (-3660 (($ $) 86)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3049 (((-1171 |#1| |#2|) (-1171 |#1| |#2|) $) 47)) (-3950 (((-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3845 (((-606 |#1|) $) NIL)) (-3850 ((|#2| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3195 (($ $ |#1| $) 30) (($ $ (-578 |#1|) (-578 $)) 32)) (-1201 (((-701) $) 88)) (-3699 (($ $ $) 20) (($ (-606 |#1|) (-606 |#1|)) 77) (($ (-606 |#1|) $) 75) (($ $ (-606 |#1|)) 76)) (-3691 (((-786) $) NIL) (($ |#1|) 74) (((-1162 |#1| |#2|) $) 58) (((-1171 |#1| |#2|) $) 41) (($ (-606 |#1|)) 25)) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-606 |#1|)) NIL)) (-3189 ((|#2| (-1171 |#1| |#2|) $) 43)) (-1850 (($) 23 T CONST)) (-1914 (((-578 (-2 (|:| |k| (-606 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1832 (((-3 $ "failed") (-1162 |#1| |#2|)) 60)) (-3116 (($ (-606 |#1|)) 14)) (-3751 (((-107) $ $) 44)) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) 66) (($ $ $) NIL)) (-3790 (($ $ $) 29)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-606 |#1|)) NIL)))
-(((-599 |#1| |#2|) (-13 (-342 |#1| |#2|) (-352 |#2| (-606 |#1|)) (-10 -8 (-15 -1832 ((-3 $ "failed") (-1162 |#1| |#2|))) (-15 -3699 ($ (-606 |#1|) (-606 |#1|))) (-15 -3699 ($ (-606 |#1|) $)) (-15 -3699 ($ $ (-606 |#1|))))) (-777) (-156)) (T -599))
-((-1832 (*1 *1 *2) (|partial| -12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *1 (-599 *3 *4)))) (-3699 (*1 *1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) (-3699 (*1 *1 *2 *1) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) (-3699 (*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))))
-(-13 (-342 |#1| |#2|) (-352 |#2| (-606 |#1|)) (-10 -8 (-15 -1832 ((-3 $ "failed") (-1162 |#1| |#2|))) (-15 -3699 ($ (-606 |#1|) (-606 |#1|))) (-15 -3699 ($ (-606 |#1|) $)) (-15 -3699 ($ $ (-606 |#1|)))))
-((-2045 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 49)) (-3441 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-1221 (($ (-1 (-107) |#2|) $) 27)) (-1375 (($ $) 55)) (-2921 (($ $) 62)) (-2256 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 36)) (-3547 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-1934 (((-501) |#2| $ (-501)) 60) (((-501) |#2| $) NIL) (((-501) (-1 (-107) |#2|) $) 46)) (-3634 (($ (-701) |#2|) 53)) (-2213 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 29)) (-3216 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-1212 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-3143 (($ |#2|) 14)) (-4114 (($ $ $ (-501)) 35) (($ |#2| $ (-501)) 33)) (-2520 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 45)) (-1386 (($ $ (-1116 (-501))) 43) (($ $ (-501)) 37)) (-2355 (($ $ $ (-501)) 59)) (-3764 (($ $) 57)) (-3762 (((-107) $ $) 64)))
-(((-600 |#1| |#2|) (-10 -8 (-15 -3143 (|#1| |#2|)) (-15 -1386 (|#1| |#1| (-501))) (-15 -1386 (|#1| |#1| (-1116 (-501)))) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -4114 (|#1| |#2| |#1| (-501))) (-15 -4114 (|#1| |#1| |#1| (-501))) (-15 -2213 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1221 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -2213 (|#1| |#1| |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -3216 (|#1| |#1| |#1|)) (-15 -2045 ((-107) |#1|)) (-15 -2355 (|#1| |#1| |#1| (-501))) (-15 -1375 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3634 (|#1| (-701) |#2|)) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1|))) (-601 |#2|) (-1104)) (T -600))
-NIL
-(-10 -8 (-15 -3143 (|#1| |#2|)) (-15 -1386 (|#1| |#1| (-501))) (-15 -1386 (|#1| |#1| (-1116 (-501)))) (-15 -2256 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -4114 (|#1| |#2| |#1| (-501))) (-15 -4114 (|#1| |#1| |#1| (-501))) (-15 -2213 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -1221 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -2256 (|#1| |#2| |#1|)) (-15 -2921 (|#1| |#1|)) (-15 -2213 (|#1| |#1| |#1|)) (-15 -3216 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2045 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -1934 ((-501) (-1 (-107) |#2|) |#1|)) (-15 -1934 ((-501) |#2| |#1|)) (-15 -1934 ((-501) |#2| |#1| (-501))) (-15 -3216 (|#1| |#1| |#1|)) (-15 -2045 ((-107) |#1|)) (-15 -2355 (|#1| |#1| |#1| (-501))) (-15 -1375 (|#1| |#1|)) (-15 -3441 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3547 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2520 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3634 (|#1| (-701) |#2|)) (-15 -1212 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3764 (|#1| |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2786 ((|#1| $) 65)) (-1511 (($ $) 67)) (-1991 (((-1154) $ (-501) (-501)) 97 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 52 (|has| $ (-6 -4168)))) (-2045 (((-107) $) 142 (|has| |#1| (-777))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-3441 (($ $) 146 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4168)))) (-2861 (($ $) 141 (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 56 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 58 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4168))) (($ $ "rest" $) 55 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 117 (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) 86 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-1221 (($ (-1 (-107) |#1|) $) 129)) (-1987 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4167)))) (-1564 ((|#1| $) 66)) (-2540 (($) 7 T CONST)) (-1375 (($ $) 144 (|has| $ (-6 -4168)))) (-3785 (($ $) 134)) (-1199 (($ $) 73) (($ $ (-701)) 71)) (-2921 (($ $) 131 (|has| |#1| (-1001)))) (-2673 (($ $) 99 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 130 (|has| |#1| (-1001))) (($ (-1 (-107) |#1|) $) 125)) (-1526 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4167))) (($ |#1| $) 100 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2156 ((|#1| $ (-501) |#1|) 85 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 87)) (-3275 (((-107) $) 83)) (-1934 (((-501) |#1| $ (-501)) 139 (|has| |#1| (-1001))) (((-501) |#1| $) 138 (|has| |#1| (-1001))) (((-501) (-1 (-107) |#1|) $) 137)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) 108)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 95 (|has| (-501) (-777)))) (-4111 (($ $ $) 147 (|has| |#1| (-777)))) (-2213 (($ $ $) 132 (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-3216 (($ $ $) 140 (|has| |#1| (-777))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 94 (|has| (-501) (-777)))) (-1323 (($ $ $) 148 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3143 (($ |#1|) 122)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 70) (($ $ (-701)) 68)) (-4114 (($ $ $ (-501)) 127) (($ |#1| $ (-501)) 126)) (-1473 (($ $ $ (-501)) 116) (($ |#1| $ (-501)) 115)) (-2658 (((-578 (-501)) $) 92)) (-2852 (((-107) (-501) $) 91)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 76) (($ $ (-701)) 74)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-3084 (($ $ |#1|) 96 (|has| $ (-6 -4168)))) (-3654 (((-107) $) 84)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 90)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1116 (-501))) 112) ((|#1| $ (-501)) 89) ((|#1| $ (-501) |#1|) 88)) (-1932 (((-501) $ $) 44)) (-1386 (($ $ (-1116 (-501))) 124) (($ $ (-501)) 123)) (-1468 (($ $ (-1116 (-501))) 114) (($ $ (-501)) 113)) (-2622 (((-107) $) 46)) (-1455 (($ $) 62)) (-3873 (($ $) 59 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 63)) (-2787 (($ $) 64)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 143 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 98 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 107)) (-1186 (($ $ $) 61) (($ $ |#1|) 60)) (-3934 (($ $ $) 78) (($ |#1| $) 77) (($ (-578 $)) 110) (($ $ |#1|) 109)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 150 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 151 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 149 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 152 (|has| |#1| (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-601 |#1|) (-1180) (-1104)) (T -601))
-((-3143 (*1 *1 *2) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1104)))))
-(-13 (-1044 |t#1|) (-340 |t#1|) (-252 |t#1|) (-10 -8 (-15 -3143 ($ |t#1|))))
-(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-252 |#1|) . T) ((-340 |#1|) . T) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-777) |has| |#1| (-777)) ((-924 |#1|) . T) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1044 |#1|) . T) ((-1104) . T) ((-1138 |#1|) . T))
-((-2778 (((-578 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|)))) |#4| (-578 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|) 45)) (-3689 (((-701) |#4| |#3|) 17)) (-1541 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1587 (((-107) |#4| |#3|) 13)))
-(((-602 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2778 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|)) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|)))) |#4| (-578 |#3|))) (-15 -1541 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1587 ((-107) |#4| |#3|)) (-15 -3689 ((-701) |#4| |#3|))) (-331) (-13 (-340 |#1|) (-10 -7 (-6 -4168))) (-13 (-340 |#1|) (-10 -7 (-6 -4168))) (-618 |#1| |#2| |#3|)) (T -602))
-((-3689 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-701)) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) (-1587 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-107)) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) (-1541 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-331)) (-4 *5 (-13 (-340 *4) (-10 -7 (-6 -4168)))) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))) (-5 *1 (-602 *4 *5 *2 *3)) (-4 *3 (-618 *4 *5 *2)))) (-2778 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *7 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-578 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4119 (-578 *7))))) (-5 *1 (-602 *5 *6 *7 *3)) (-5 *4 (-578 *7)) (-4 *3 (-618 *5 *6 *7)))) (-2778 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))))
-(-10 -7 (-15 -2778 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|)) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|)))) |#4| (-578 |#3|))) (-15 -1541 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1587 ((-107) |#4| |#3|)) (-15 -3689 ((-701) |#4| |#3|)))
-((-2778 (((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-578 (-578 |#1|)) (-578 (-1148 |#1|))) 21) (((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-621 |#1|) (-578 (-1148 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-578 (-578 |#1|)) (-1148 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|)) 13)) (-3689 (((-701) (-621 |#1|) (-1148 |#1|)) 29)) (-1541 (((-3 (-1148 |#1|) "failed") (-621 |#1|) (-1148 |#1|)) 23)) (-1587 (((-107) (-621 |#1|) (-1148 |#1|)) 26)))
-(((-603 |#1|) (-10 -7 (-15 -2778 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|))) (-15 -2778 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-578 (-578 |#1|)) (-1148 |#1|))) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-621 |#1|) (-578 (-1148 |#1|)))) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-578 (-578 |#1|)) (-578 (-1148 |#1|)))) (-15 -1541 ((-3 (-1148 |#1|) "failed") (-621 |#1|) (-1148 |#1|))) (-15 -1587 ((-107) (-621 |#1|) (-1148 |#1|))) (-15 -3689 ((-701) (-621 |#1|) (-1148 |#1|)))) (-331)) (T -603))
-((-3689 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-5 *2 (-701)) (-5 *1 (-603 *5)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-5 *2 (-107)) (-5 *1 (-603 *5)))) (-1541 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1148 *4)) (-5 *3 (-621 *4)) (-4 *4 (-331)) (-5 *1 (-603 *4)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5)))))) (-5 *1 (-603 *5)) (-5 *4 (-578 (-1148 *5))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5)))))) (-5 *1 (-603 *5)) (-5 *4 (-578 (-1148 *5))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-331)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5))))) (-5 *1 (-603 *5)) (-5 *4 (-1148 *5)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5))))) (-5 *1 (-603 *5)) (-5 *4 (-1148 *5)))))
-(-10 -7 (-15 -2778 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|))) (-15 -2778 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-578 (-578 |#1|)) (-1148 |#1|))) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-621 |#1|) (-578 (-1148 |#1|)))) (-15 -2778 ((-578 (-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|))))) (-578 (-578 |#1|)) (-578 (-1148 |#1|)))) (-15 -1541 ((-3 (-1148 |#1|) "failed") (-621 |#1|) (-1148 |#1|))) (-15 -1587 ((-107) (-621 |#1|) (-1148 |#1|))) (-15 -3689 ((-701) (-621 |#1|) (-1148 |#1|))))
-((-2316 (((-2 (|:| |particular| (-3 (-1148 (-375 |#4|)) "failed")) (|:| -4119 (-578 (-1148 (-375 |#4|))))) (-578 |#4|) (-578 |#3|)) 44)))
-(((-604 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2316 ((-2 (|:| |particular| (-3 (-1148 (-375 |#4|)) "failed")) (|:| -4119 (-578 (-1148 (-375 |#4|))))) (-578 |#4|) (-578 |#3|)))) (-508) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -604))
-((-2316 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *7)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 (-375 *8)) "failed")) (|:| -4119 (-578 (-1148 (-375 *8)))))) (-5 *1 (-604 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2316 ((-2 (|:| |particular| (-3 (-1148 (-375 |#4|)) "failed")) (|:| -4119 (-578 (-1148 (-375 |#4|))))) (-578 |#4|) (-578 |#3|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1738 (((-3 $ "failed")) NIL (|has| |#2| (-508)))) (-2225 ((|#2| $) NIL)) (-2981 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1763 (((-1148 (-621 |#2|))) NIL) (((-1148 (-621 |#2|)) (-1148 $)) NIL)) (-4007 (((-107) $) NIL)) (-1674 (((-1148 $)) 37)) (-2997 (((-107) $ (-701)) NIL)) (-1292 (($ |#2|) NIL)) (-2540 (($) NIL T CONST)) (-1933 (($ $) NIL (|has| |#2| (-276)))) (-2358 (((-212 |#1| |#2|) $ (-501)) NIL)) (-3054 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (|has| |#2| (-508)))) (-1956 (((-3 $ "failed")) NIL (|has| |#2| (-508)))) (-2311 (((-621 |#2|)) NIL) (((-621 |#2|) (-1148 $)) NIL)) (-1909 ((|#2| $) NIL)) (-3867 (((-621 |#2|) $) NIL) (((-621 |#2|) $ (-1148 $)) NIL)) (-1887 (((-3 $ "failed") $) NIL (|has| |#2| (-508)))) (-3665 (((-1064 (-866 |#2|))) NIL (|has| |#2| (-331)))) (-2911 (($ $ (-839)) NIL)) (-3925 ((|#2| $) NIL)) (-2292 (((-1064 |#2|) $) NIL (|has| |#2| (-508)))) (-2398 ((|#2|) NIL) ((|#2| (-1148 $)) NIL)) (-3333 (((-1064 |#2|) $) NIL)) (-3656 (((-107)) NIL)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 |#2| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) ((|#2| $) NIL)) (-3142 (($ (-1148 |#2|)) NIL) (($ (-1148 |#2|) (-1148 $)) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3689 (((-701) $) NIL (|has| |#2| (-508))) (((-839)) 38)) (-1905 ((|#2| $ (-501) (-501)) NIL)) (-3168 (((-107)) NIL)) (-3554 (($ $ (-839)) NIL)) (-2732 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL)) (-3752 (((-701) $) NIL (|has| |#2| (-508)))) (-3552 (((-578 (-212 |#1| |#2|)) $) NIL (|has| |#2| (-508)))) (-1648 (((-701) $) NIL)) (-3930 (((-107)) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3572 ((|#2| $) NIL (|has| |#2| (-6 (-4169 "*"))))) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2630 (($ (-578 (-578 |#2|))) NIL)) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2237 (((-578 (-578 |#2|)) $) NIL)) (-2838 (((-107)) NIL)) (-3874 (((-107)) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1765 (((-3 (-2 (|:| |particular| $) (|:| -4119 (-578 $))) "failed")) NIL (|has| |#2| (-508)))) (-2653 (((-3 $ "failed")) NIL (|has| |#2| (-508)))) (-4146 (((-621 |#2|)) NIL) (((-621 |#2|) (-1148 $)) NIL)) (-3821 ((|#2| $) NIL)) (-1472 (((-621 |#2|) $) NIL) (((-621 |#2|) $ (-1148 $)) NIL)) (-1992 (((-3 $ "failed") $) NIL (|has| |#2| (-508)))) (-2582 (((-1064 (-866 |#2|))) NIL (|has| |#2| (-331)))) (-3381 (($ $ (-839)) NIL)) (-3784 ((|#2| $) NIL)) (-3474 (((-1064 |#2|) $) NIL (|has| |#2| (-508)))) (-1600 ((|#2|) NIL) ((|#2| (-1148 $)) NIL)) (-2270 (((-1064 |#2|) $) NIL)) (-2172 (((-107)) NIL)) (-3460 (((-1053) $) NIL)) (-3808 (((-107)) NIL)) (-2417 (((-107)) NIL)) (-2794 (((-107)) NIL)) (-1616 (((-3 $ "failed") $) NIL (|has| |#2| (-331)))) (-3708 (((-1018) $) NIL)) (-2780 (((-107)) NIL)) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508)))) (-2369 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) (-501) |#2|) NIL) ((|#2| $ (-501) (-501)) 22) ((|#2| $ (-501)) NIL)) (-2596 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-1651 ((|#2| $) NIL)) (-3133 (($ (-578 |#2|)) NIL)) (-3697 (((-107) $) NIL)) (-1566 (((-212 |#1| |#2|) $) NIL)) (-3315 ((|#2| $) NIL (|has| |#2| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-2085 (((-621 |#2|) (-1148 $)) NIL) (((-1148 |#2|) $) NIL) (((-621 |#2|) (-1148 $) (-1148 $)) NIL) (((-1148 |#2|) $ (-1148 $)) 25)) (-1248 (($ (-1148 |#2|)) NIL) (((-1148 |#2|) $) NIL)) (-3056 (((-578 (-866 |#2|))) NIL) (((-578 (-866 |#2|)) (-1148 $)) NIL)) (-2144 (($ $ $) NIL)) (-1977 (((-107)) NIL)) (-2952 (((-212 |#1| |#2|) $ (-501)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#2| (-950 (-375 (-501))))) (($ |#2|) NIL) (((-621 |#2|) $) NIL)) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) 36)) (-4102 (((-578 (-1148 |#2|))) NIL (|has| |#2| (-508)))) (-1363 (($ $ $ $) NIL)) (-1273 (((-107)) NIL)) (-1183 (($ (-621 |#2|) $) NIL)) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-2033 (($ $ $) NIL)) (-2625 (((-107)) NIL)) (-3675 (((-107)) NIL)) (-3258 (((-107)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#2| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-212 |#1| |#2|) $ (-212 |#1| |#2|)) NIL) (((-212 |#1| |#2|) (-212 |#1| |#2|) $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-605 |#1| |#2|) (-13 (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-555 (-621 |#2|)) (-386 |#2|)) (-839) (-156)) (T -605))
-NIL
-(-13 (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-555 (-621 |#2|)) (-386 |#2|))
-((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) NIL)) (-1320 (($ $) 50)) (-3998 (((-107) $) NIL)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3294 (((-3 $ "failed") (-749 |#1|)) 22)) (-1901 (((-107) (-749 |#1|)) 14)) (-3280 (($ (-749 |#1|)) 23)) (-3989 (((-107) $ $) 28)) (-4139 (((-839) $) 35)) (-1313 (($ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3739 (((-578 $) (-749 |#1|)) 16)) (-3691 (((-786) $) 41) (($ |#1|) 32) (((-749 |#1|) $) 37) (((-610 |#1|) $) 42)) (-1419 (((-56 (-578 $)) (-578 |#1|) (-839)) 55)) (-1935 (((-578 $) (-578 |#1|) (-839)) 57)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 51)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 36)))
-(((-606 |#1|) (-13 (-777) (-950 |#1|) (-10 -8 (-15 -3998 ((-107) $)) (-15 -1313 ($ $)) (-15 -1320 ($ $)) (-15 -4139 ((-839) $)) (-15 -3989 ((-107) $ $)) (-15 -3691 ((-749 |#1|) $)) (-15 -3691 ((-610 |#1|) $)) (-15 -3739 ((-578 $) (-749 |#1|))) (-15 -1901 ((-107) (-749 |#1|))) (-15 -3280 ($ (-749 |#1|))) (-15 -3294 ((-3 $ "failed") (-749 |#1|))) (-15 -3514 ((-578 |#1|) $)) (-15 -1419 ((-56 (-578 $)) (-578 |#1|) (-839))) (-15 -1935 ((-578 $) (-578 |#1|) (-839))))) (-777)) (T -606))
-((-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-1313 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-777)))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-777)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-3989 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-610 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-749 *4)) (-4 *4 (-777)) (-5 *2 (-578 (-606 *4))) (-5 *1 (-606 *4)))) (-1901 (*1 *2 *3) (-12 (-5 *3 (-749 *4)) (-4 *4 (-777)) (-5 *2 (-107)) (-5 *1 (-606 *4)))) (-3280 (*1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *3 (-777)) (-5 *1 (-606 *3)))) (-3294 (*1 *1 *2) (|partial| -12 (-5 *2 (-749 *3)) (-4 *3 (-777)) (-5 *1 (-606 *3)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) (-1419 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-839)) (-4 *5 (-777)) (-5 *2 (-56 (-578 (-606 *5)))) (-5 *1 (-606 *5)))) (-1935 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-839)) (-4 *5 (-777)) (-5 *2 (-578 (-606 *5))) (-5 *1 (-606 *5)))))
-(-13 (-777) (-950 |#1|) (-10 -8 (-15 -3998 ((-107) $)) (-15 -1313 ($ $)) (-15 -1320 ($ $)) (-15 -4139 ((-839) $)) (-15 -3989 ((-107) $ $)) (-15 -3691 ((-749 |#1|) $)) (-15 -3691 ((-610 |#1|) $)) (-15 -3739 ((-578 $) (-749 |#1|))) (-15 -1901 ((-107) (-749 |#1|))) (-15 -3280 ($ (-749 |#1|))) (-15 -3294 ((-3 $ "failed") (-749 |#1|))) (-15 -3514 ((-578 |#1|) $)) (-15 -1419 ((-56 (-578 $)) (-578 |#1|) (-839))) (-15 -1935 ((-578 $) (-578 |#1|) (-839)))))
-((-2150 ((|#2| $) 76)) (-1511 (($ $) 96)) (-2997 (((-107) $ (-701)) 26)) (-1199 (($ $) 85) (($ $ (-701)) 88)) (-3275 (((-107) $) 97)) (-3604 (((-578 $) $) 72)) (-3201 (((-107) $ $) 71)) (-3379 (((-107) $ (-701)) 24)) (-3627 (((-501) $) 46)) (-1522 (((-501) $) 45)) (-3155 (((-107) $ (-701)) 22)) (-2341 (((-107) $) 74)) (-1383 ((|#2| $) 89) (($ $ (-701)) 92)) (-1473 (($ $ $ (-501)) 62) (($ |#2| $ (-501)) 61)) (-2658 (((-578 (-501)) $) 44)) (-2852 (((-107) (-501) $) 42)) (-1190 ((|#2| $) NIL) (($ $ (-701)) 84)) (-3718 (($ $ (-501)) 99)) (-3654 (((-107) $) 98)) (-2369 (((-107) (-1 (-107) |#2|) $) 32)) (-4137 (((-578 |#2|) $) 33)) (-2007 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1116 (-501))) 58) ((|#2| $ (-501)) 40) ((|#2| $ (-501) |#2|) 41)) (-1932 (((-501) $ $) 70)) (-1468 (($ $ (-1116 (-501))) 57) (($ $ (-501)) 51)) (-2622 (((-107) $) 66)) (-1455 (($ $) 81)) (-3278 (((-701) $) 80)) (-2787 (($ $) 79)) (-3699 (($ (-578 |#2|)) 37)) (-1267 (($ $) 100)) (-1961 (((-578 $) $) 69)) (-2970 (((-107) $ $) 68)) (-1200 (((-107) (-1 (-107) |#2|) $) 31)) (-3751 (((-107) $ $) 18)) (-3581 (((-701) $) 29)))
-(((-607 |#1| |#2|) (-10 -8 (-15 -1267 (|#1| |#1|)) (-15 -3718 (|#1| |#1| (-501))) (-15 -3275 ((-107) |#1|)) (-15 -3654 ((-107) |#1|)) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -4137 ((-578 |#2|) |#1|)) (-15 -2852 ((-107) (-501) |#1|)) (-15 -2658 ((-578 (-501)) |#1|)) (-15 -1522 ((-501) |#1|)) (-15 -3627 ((-501) |#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1455 (|#1| |#1|)) (-15 -3278 ((-701) |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1383 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "last")) (-15 -1383 (|#2| |#1|)) (-15 -1199 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| "rest")) (-15 -1199 (|#1| |#1|)) (-15 -1190 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "first")) (-15 -1190 (|#2| |#1|)) (-15 -3201 ((-107) |#1| |#1|)) (-15 -2970 ((-107) |#1| |#1|)) (-15 -1932 ((-501) |#1| |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701)))) (-608 |#2|) (-1104)) (T -607))
-NIL
-(-10 -8 (-15 -1267 (|#1| |#1|)) (-15 -3718 (|#1| |#1| (-501))) (-15 -3275 ((-107) |#1|)) (-15 -3654 ((-107) |#1|)) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -4137 ((-578 |#2|) |#1|)) (-15 -2852 ((-107) (-501) |#1|)) (-15 -2658 ((-578 (-501)) |#1|)) (-15 -1522 ((-501) |#1|)) (-15 -3627 ((-501) |#1|)) (-15 -3699 (|#1| (-578 |#2|))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -1468 (|#1| |#1| (-501))) (-15 -1468 (|#1| |#1| (-1116 (-501)))) (-15 -1473 (|#1| |#2| |#1| (-501))) (-15 -1473 (|#1| |#1| |#1| (-501))) (-15 -1455 (|#1| |#1|)) (-15 -3278 ((-701) |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1383 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "last")) (-15 -1383 (|#2| |#1|)) (-15 -1199 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| "rest")) (-15 -1199 (|#1| |#1|)) (-15 -1190 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "first")) (-15 -1190 (|#2| |#1|)) (-15 -3201 ((-107) |#1| |#1|)) (-15 -2970 ((-107) |#1| |#1|)) (-15 -1932 ((-501) |#1| |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -2369 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2786 ((|#1| $) 65)) (-1511 (($ $) 67)) (-1991 (((-1154) $ (-501) (-501)) 97 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 52 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 56 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 58 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4168))) (($ $ "rest" $) 55 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 117 (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) 86 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 102)) (-1564 ((|#1| $) 66)) (-2540 (($) 7 T CONST)) (-1591 (($ $) 124)) (-1199 (($ $) 73) (($ $ (-701)) 71)) (-2673 (($ $) 99 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 100 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 103)) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2156 ((|#1| $ (-501) |#1|) 85 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 87)) (-3275 (((-107) $) 83)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-2853 (((-701) $) 123)) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) 108)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 95 (|has| (-501) (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 94 (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-2898 (($ $) 126)) (-3346 (((-107) $) 127)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 70) (($ $ (-701)) 68)) (-1473 (($ $ $ (-501)) 116) (($ |#1| $ (-501)) 115)) (-2658 (((-578 (-501)) $) 92)) (-2852 (((-107) (-501) $) 91)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3648 ((|#1| $) 125)) (-1190 ((|#1| $) 76) (($ $ (-701)) 74)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-3084 (($ $ |#1|) 96 (|has| $ (-6 -4168)))) (-3718 (($ $ (-501)) 122)) (-3654 (((-107) $) 84)) (-3170 (((-107) $) 128)) (-3546 (((-107) $) 129)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 90)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1116 (-501))) 112) ((|#1| $ (-501)) 89) ((|#1| $ (-501) |#1|) 88)) (-1932 (((-501) $ $) 44)) (-1468 (($ $ (-1116 (-501))) 114) (($ $ (-501)) 113)) (-2622 (((-107) $) 46)) (-1455 (($ $) 62)) (-3873 (($ $) 59 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 63)) (-2787 (($ $) 64)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 98 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 107)) (-1186 (($ $ $) 61 (|has| $ (-6 -4168))) (($ $ |#1|) 60 (|has| $ (-6 -4168)))) (-3934 (($ $ $) 78) (($ |#1| $) 77) (($ (-578 $)) 110) (($ $ |#1|) 109)) (-1267 (($ $) 121)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-608 |#1|) (-1180) (-1104)) (T -608))
-((-1526 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) (-1987 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) (-3546 (*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-2898 (*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))) (-1591 (*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))) (-2853 (*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) (-1267 (*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))))
-(-13 (-1044 |t#1|) (-10 -8 (-15 -1526 ($ (-1 (-107) |t#1|) $)) (-15 -1987 ($ (-1 (-107) |t#1|) $)) (-15 -3546 ((-107) $)) (-15 -3170 ((-107) $)) (-15 -3346 ((-107) $)) (-15 -2898 ($ $)) (-15 -3648 (|t#1| $)) (-15 -1591 ($ $)) (-15 -2853 ((-701) $)) (-15 -3718 ($ $ (-501))) (-15 -1267 ($ $))))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1044 |#1|) . T) ((-1104) . T) ((-1138 |#1|) . T))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2457 (($ (-701) (-701) (-701)) 32 (|has| |#1| (-959)))) (-2997 (((-107) $ (-701)) NIL)) (-1204 ((|#1| $ (-701) (-701) (-701) |#1|) 27)) (-2540 (($) NIL T CONST)) (-2543 (($ $ $) 36 (|has| |#1| (-959)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3507 (((-1148 (-701)) $) 8)) (-2913 (($ (-1070) $ $) 22)) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1629 (($ (-701)) 34 (|has| |#1| (-959)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-701) (-701) (-701)) 25)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3699 (($ (-578 (-578 (-578 |#1|)))) 43)) (-3691 (((-786) $) NIL (|has| |#1| (-1001))) (($ (-877 (-877 (-877 |#1|)))) 15) (((-877 (-877 (-877 |#1|))) $) 12)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-609 |#1|) (-13 (-454 |#1|) (-10 -8 (IF (|has| |#1| (-959)) (PROGN (-15 -2457 ($ (-701) (-701) (-701))) (-15 -1629 ($ (-701))) (-15 -2543 ($ $ $))) |noBranch|) (-15 -3699 ($ (-578 (-578 (-578 |#1|))))) (-15 -2007 (|#1| $ (-701) (-701) (-701))) (-15 -1204 (|#1| $ (-701) (-701) (-701) |#1|)) (-15 -3691 ($ (-877 (-877 (-877 |#1|))))) (-15 -3691 ((-877 (-877 (-877 |#1|))) $)) (-15 -2913 ($ (-1070) $ $)) (-15 -3507 ((-1148 (-701)) $)))) (-1001)) (T -609))
-((-2457 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-609 *3)) (-4 *3 (-959)) (-4 *3 (-1001)))) (-1629 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-609 *3)) (-4 *3 (-959)) (-4 *3 (-1001)))) (-2543 (*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-959)) (-4 *2 (-1001)))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-578 *3)))) (-4 *3 (-1001)) (-5 *1 (-609 *3)))) (-2007 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-701)) (-5 *1 (-609 *2)) (-4 *2 (-1001)))) (-1204 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-609 *2)) (-4 *2 (-1001)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-877 (-877 (-877 *3)))) (-4 *3 (-1001)) (-5 *1 (-609 *3)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-877 (-877 (-877 *3)))) (-5 *1 (-609 *3)) (-4 *3 (-1001)))) (-2913 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-609 *3)) (-4 *3 (-1001)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-1148 (-701))) (-5 *1 (-609 *3)) (-4 *3 (-1001)))))
-(-13 (-454 |#1|) (-10 -8 (IF (|has| |#1| (-959)) (PROGN (-15 -2457 ($ (-701) (-701) (-701))) (-15 -1629 ($ (-701))) (-15 -2543 ($ $ $))) |noBranch|) (-15 -3699 ($ (-578 (-578 (-578 |#1|))))) (-15 -2007 (|#1| $ (-701) (-701) (-701))) (-15 -1204 (|#1| $ (-701) (-701) (-701) |#1|)) (-15 -3691 ($ (-877 (-877 (-877 |#1|))))) (-15 -3691 ((-877 (-877 (-877 |#1|))) $)) (-15 -2913 ($ (-1070) $ $)) (-15 -3507 ((-1148 (-701)) $))))
-((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) 14)) (-1320 (($ $) 18)) (-3998 (((-107) $) 19)) (-3765 (((-3 |#1| "failed") $) 22)) (-3490 ((|#1| $) 20)) (-1199 (($ $) 36)) (-3660 (($ $) 24)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3989 (((-107) $ $) 41)) (-4139 (((-839) $) 38)) (-1313 (($ $) 17)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 ((|#1| $) 35)) (-3691 (((-786) $) 31) (($ |#1|) 23) (((-749 |#1|) $) 27)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 12)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 40)) (* (($ $ $) 34)))
-(((-610 |#1|) (-13 (-777) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3691 ((-749 |#1|) $)) (-15 -1190 (|#1| $)) (-15 -1313 ($ $)) (-15 -4139 ((-839) $)) (-15 -3989 ((-107) $ $)) (-15 -3660 ($ $)) (-15 -1199 ($ $)) (-15 -3998 ((-107) $)) (-15 -1320 ($ $)) (-15 -3514 ((-578 |#1|) $)))) (-777)) (T -610))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) (-1190 (*1 *2 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-1313 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) (-3989 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-1199 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) (-1320 (*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-610 *3)) (-4 *3 (-777)))))
-(-13 (-777) (-950 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3691 ((-749 |#1|) $)) (-15 -1190 (|#1| $)) (-15 -1313 ($ $)) (-15 -4139 ((-839) $)) (-15 -3989 ((-107) $ $)) (-15 -3660 ($ $)) (-15 -1199 ($ $)) (-15 -3998 ((-107) $)) (-15 -1320 ($ $)) (-15 -3514 ((-578 |#1|) $))))
-((-3072 ((|#1| (-1 |#1| (-701) |#1|) (-701) |#1|) 11)) (-2517 ((|#1| (-1 |#1| |#1|) (-701) |#1|) 9)))
-(((-611 |#1|) (-10 -7 (-15 -2517 (|#1| (-1 |#1| |#1|) (-701) |#1|)) (-15 -3072 (|#1| (-1 |#1| (-701) |#1|) (-701) |#1|))) (-1001)) (T -611))
-((-3072 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-701) *2)) (-5 *4 (-701)) (-4 *2 (-1001)) (-5 *1 (-611 *2)))) (-2517 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-701)) (-4 *2 (-1001)) (-5 *1 (-611 *2)))))
-(-10 -7 (-15 -2517 (|#1| (-1 |#1| |#1|) (-701) |#1|)) (-15 -3072 (|#1| (-1 |#1| (-701) |#1|) (-701) |#1|)))
-((-2938 ((|#2| |#1| |#2|) 9)) (-2935 ((|#1| |#1| |#2|) 8)))
-(((-612 |#1| |#2|) (-10 -7 (-15 -2935 (|#1| |#1| |#2|)) (-15 -2938 (|#2| |#1| |#2|))) (-1001) (-1001)) (T -612))
-((-2938 (*1 *2 *3 *2) (-12 (-5 *1 (-612 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-2935 (*1 *2 *2 *3) (-12 (-5 *1 (-612 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))))
-(-10 -7 (-15 -2935 (|#1| |#1| |#2|)) (-15 -2938 (|#2| |#1| |#2|)))
-((-3815 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -3815 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1001) (-1001) (-1001)) (T -613))
-((-3815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)) (-5 *1 (-613 *5 *6 *2)))))
-(-10 -7 (-15 -3815 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-3072 (((-1 |#1| (-701) |#1|) (-1 |#1| (-701) |#1|)) 23)) (-3896 (((-1 |#1|) |#1|) 8)) (-3611 ((|#1| |#1|) 16)) (-2884 (((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-501)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-3691 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-701)) 20)))
-(((-614 |#1|) (-10 -7 (-15 -3896 ((-1 |#1|) |#1|)) (-15 -3691 ((-1 |#1|) |#1|)) (-15 -2884 (|#1| (-1 |#1| |#1|))) (-15 -2884 ((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-501))) (-15 -3611 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-701))) (-15 -3072 ((-1 |#1| (-701) |#1|) (-1 |#1| (-701) |#1|)))) (-1001)) (T -614))
-((-3072 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-701) *3)) (-4 *3 (-1001)) (-5 *1 (-614 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *4 (-1001)) (-5 *1 (-614 *4)))) (-3611 (*1 *2 *2) (-12 (-5 *1 (-614 *2)) (-4 *2 (-1001)))) (-2884 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 *5) (-578 *5))) (-5 *4 (-501)) (-5 *2 (-578 *5)) (-5 *1 (-614 *5)) (-4 *5 (-1001)))) (-2884 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-614 *2)) (-4 *2 (-1001)))) (-3691 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1001)))) (-3896 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1001)))))
-(-10 -7 (-15 -3896 ((-1 |#1|) |#1|)) (-15 -3691 ((-1 |#1|) |#1|)) (-15 -2884 (|#1| (-1 |#1| |#1|))) (-15 -2884 ((-578 |#1|) (-1 (-578 |#1|) (-578 |#1|)) (-501))) (-15 -3611 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-701))) (-15 -3072 ((-1 |#1| (-701) |#1|) (-1 |#1| (-701) |#1|))))
-((-3917 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2099 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3897 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1711 (((-1 |#2| |#1|) |#2|) 11)))
-(((-615 |#1| |#2|) (-10 -7 (-15 -1711 ((-1 |#2| |#1|) |#2|)) (-15 -2099 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3897 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3917 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1001) (-1001)) (T -615))
-((-3917 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-5 *2 (-1 *5 *4)) (-5 *1 (-615 *4 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1001)) (-5 *2 (-1 *5 *4)) (-5 *1 (-615 *4 *5)) (-4 *4 (-1001)))) (-2099 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-5 *2 (-1 *5)) (-5 *1 (-615 *4 *5)))) (-1711 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-615 *4 *3)) (-4 *4 (-1001)) (-4 *3 (-1001)))))
-(-10 -7 (-15 -1711 ((-1 |#2| |#1|) |#2|)) (-15 -2099 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3897 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3917 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-1450 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1239 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-2441 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2470 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-4073 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-616 |#1| |#2| |#3|) (-10 -7 (-15 -1239 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2441 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2470 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4073 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1450 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1001) (-1001) (-1001)) (T -616))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-1 *7 *5)) (-5 *1 (-616 *5 *6 *7)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-616 *4 *5 *6)))) (-4073 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-616 *4 *5 *6)) (-4 *4 (-1001)))) (-2470 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-616 *4 *5 *6)) (-4 *5 (-1001)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *4 *5 *6)))) (-1239 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1001)) (-4 *4 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *4 *6)))))
-(-10 -7 (-15 -1239 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2441 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2470 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -4073 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1450 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2563 (($ (-701) (-701)) 31)) (-2412 (($ $ $) 54)) (-2676 (($ |#3|) 50) (($ $) 51)) (-2981 (((-107) $) 26)) (-1198 (($ $ (-501) (-501)) 56)) (-3935 (($ $ (-501) (-501)) 57)) (-3548 (($ $ (-501) (-501) (-501) (-501)) 61)) (-3173 (($ $) 52)) (-4007 (((-107) $) 14)) (-3251 (($ $ (-501) (-501) $) 62)) (-3754 ((|#2| $ (-501) (-501) |#2|) NIL) (($ $ (-578 (-501)) (-578 (-501)) $) 60)) (-1292 (($ (-701) |#2|) 36)) (-2630 (($ (-578 (-578 |#2|))) 34)) (-2237 (((-578 (-578 |#2|)) $) 55)) (-1452 (($ $ $) 53)) (-3694 (((-3 $ "failed") $ |#2|) 89)) (-2007 ((|#2| $ (-501) (-501)) NIL) ((|#2| $ (-501) (-501) |#2|) NIL) (($ $ (-578 (-501)) (-578 (-501))) 59)) (-3133 (($ (-578 |#2|)) 38) (($ (-578 $)) 40)) (-3697 (((-107) $) 23)) (-3691 (((-786) $) NIL) (($ |#4|) 45)) (-3719 (((-107) $) 28)) (-3803 (($ $ |#2|) 91)) (-3797 (($ $ $) 66) (($ $) 69)) (-3790 (($ $ $) 64)) (** (($ $ (-701)) 78) (($ $ (-501)) 94)) (* (($ $ $) 75) (($ |#2| $) 71) (($ $ |#2|) 72) (($ (-501) $) 74) ((|#4| $ |#4|) 82) ((|#3| |#3| $) 86)))
-(((-617 |#1| |#2| |#3| |#4|) (-10 -8 (-15 ** (|#1| |#1| (-501))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-701))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3251 (|#1| |#1| (-501) (-501) |#1|)) (-15 -3548 (|#1| |#1| (-501) (-501) (-501) (-501))) (-15 -3935 (|#1| |#1| (-501) (-501))) (-15 -1198 (|#1| |#1| (-501) (-501))) (-15 -3754 (|#1| |#1| (-578 (-501)) (-578 (-501)) |#1|)) (-15 -2007 (|#1| |#1| (-578 (-501)) (-578 (-501)))) (-15 -2237 ((-578 (-578 |#2|)) |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -1452 (|#1| |#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -2676 (|#1| |#3|)) (-15 -3691 (|#1| |#4|)) (-15 -3133 (|#1| (-578 |#1|))) (-15 -3133 (|#1| (-578 |#2|))) (-15 -1292 (|#1| (-701) |#2|)) (-15 -2630 (|#1| (-578 (-578 |#2|)))) (-15 -2563 (|#1| (-701) (-701))) (-15 -3719 ((-107) |#1|)) (-15 -2981 ((-107) |#1|)) (-15 -3697 ((-107) |#1|)) (-15 -4007 ((-107) |#1|)) (-15 -3754 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501))) (-15 -3691 ((-786) |#1|))) (-618 |#2| |#3| |#4|) (-959) (-340 |#2|) (-340 |#2|)) (T -617))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-501))) (-15 -3803 (|#1| |#1| |#2|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-701))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3251 (|#1| |#1| (-501) (-501) |#1|)) (-15 -3548 (|#1| |#1| (-501) (-501) (-501) (-501))) (-15 -3935 (|#1| |#1| (-501) (-501))) (-15 -1198 (|#1| |#1| (-501) (-501))) (-15 -3754 (|#1| |#1| (-578 (-501)) (-578 (-501)) |#1|)) (-15 -2007 (|#1| |#1| (-578 (-501)) (-578 (-501)))) (-15 -2237 ((-578 (-578 |#2|)) |#1|)) (-15 -2412 (|#1| |#1| |#1|)) (-15 -1452 (|#1| |#1| |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -2676 (|#1| |#1|)) (-15 -2676 (|#1| |#3|)) (-15 -3691 (|#1| |#4|)) (-15 -3133 (|#1| (-578 |#1|))) (-15 -3133 (|#1| (-578 |#2|))) (-15 -1292 (|#1| (-701) |#2|)) (-15 -2630 (|#1| (-578 (-578 |#2|)))) (-15 -2563 (|#1| (-701) (-701))) (-15 -3719 ((-107) |#1|)) (-15 -2981 ((-107) |#1|)) (-15 -3697 ((-107) |#1|)) (-15 -4007 ((-107) |#1|)) (-15 -3754 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) (-501))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2563 (($ (-701) (-701)) 97)) (-2412 (($ $ $) 87)) (-2676 (($ |#2|) 91) (($ $) 90)) (-2981 (((-107) $) 99)) (-1198 (($ $ (-501) (-501)) 83)) (-3935 (($ $ (-501) (-501)) 82)) (-3548 (($ $ (-501) (-501) (-501) (-501)) 81)) (-3173 (($ $) 89)) (-4007 (((-107) $) 101)) (-2997 (((-107) $ (-701)) 8)) (-3251 (($ $ (-501) (-501) $) 80)) (-3754 ((|#1| $ (-501) (-501) |#1|) 44) (($ $ (-578 (-501)) (-578 (-501)) $) 84)) (-2400 (($ $ (-501) |#2|) 42)) (-2480 (($ $ (-501) |#3|) 41)) (-1292 (($ (-701) |#1|) 95)) (-2540 (($) 7 T CONST)) (-1933 (($ $) 67 (|has| |#1| (-276)))) (-2358 ((|#2| $ (-501)) 46)) (-3689 (((-701) $) 66 (|has| |#1| (-508)))) (-2156 ((|#1| $ (-501) (-501) |#1|) 43)) (-1905 ((|#1| $ (-501) (-501)) 48)) (-2732 (((-578 |#1|) $) 30)) (-3752 (((-701) $) 65 (|has| |#1| (-508)))) (-3552 (((-578 |#3|) $) 64 (|has| |#1| (-508)))) (-1648 (((-701) $) 51)) (-3634 (($ (-701) (-701) |#1|) 57)) (-3248 (((-701) $) 50)) (-3379 (((-107) $ (-701)) 9)) (-3572 ((|#1| $) 62 (|has| |#1| (-6 (-4169 "*"))))) (-1567 (((-501) $) 55)) (-2734 (((-501) $) 53)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2969 (((-501) $) 54)) (-3491 (((-501) $) 52)) (-2630 (($ (-578 (-578 |#1|))) 96)) (-2519 (($ (-1 |#1| |#1|) $) 34)) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2237 (((-578 (-578 |#1|)) $) 86)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1616 (((-3 $ "failed") $) 61 (|has| |#1| (-331)))) (-1452 (($ $ $) 88)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) 56)) (-3694 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-508)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) (-501)) 49) ((|#1| $ (-501) (-501) |#1|) 47) (($ $ (-578 (-501)) (-578 (-501))) 85)) (-3133 (($ (-578 |#1|)) 94) (($ (-578 $)) 93)) (-3697 (((-107) $) 100)) (-3315 ((|#1| $) 63 (|has| |#1| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-2952 ((|#3| $ (-501)) 45)) (-3691 (((-786) $) 20 (|has| |#1| (-1001))) (($ |#3|) 92)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3719 (((-107) $) 98)) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3803 (($ $ |#1|) 68 (|has| |#1| (-331)))) (-3797 (($ $ $) 78) (($ $) 77)) (-3790 (($ $ $) 79)) (** (($ $ (-701)) 70) (($ $ (-501)) 60 (|has| |#1| (-331)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-501) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-618 |#1| |#2| |#3|) (-1180) (-959) (-340 |t#1|) (-340 |t#1|)) (T -618))
-((-4007 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) (-2563 (*1 *1 *2 *2) (-12 (-5 *2 (-701)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-2630 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-1292 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *2)) (-4 *4 (-340 *3)) (-4 *2 (-340 *3)))) (-2676 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-618 *3 *2 *4)) (-4 *2 (-340 *3)) (-4 *4 (-340 *3)))) (-2676 (*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-1452 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-2412 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-578 (-578 *3))))) (-2007 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3754 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-1198 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3935 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3548 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3251 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-618 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *2 (-340 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-618 *3 *2 *4)) (-4 *3 (-959)) (-4 *2 (-340 *3)) (-4 *4 (-340 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-508)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-331)))) (-1933 (*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-276)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-701)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-701)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-578 *5)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) (-1616 (*1 *1 *1) (|partial| -12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-331)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-331)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4168) (-6 -4167) (-15 -4007 ((-107) $)) (-15 -3697 ((-107) $)) (-15 -2981 ((-107) $)) (-15 -3719 ((-107) $)) (-15 -2563 ($ (-701) (-701))) (-15 -2630 ($ (-578 (-578 |t#1|)))) (-15 -1292 ($ (-701) |t#1|)) (-15 -3133 ($ (-578 |t#1|))) (-15 -3133 ($ (-578 $))) (-15 -3691 ($ |t#3|)) (-15 -2676 ($ |t#2|)) (-15 -2676 ($ $)) (-15 -3173 ($ $)) (-15 -1452 ($ $ $)) (-15 -2412 ($ $ $)) (-15 -2237 ((-578 (-578 |t#1|)) $)) (-15 -2007 ($ $ (-578 (-501)) (-578 (-501)))) (-15 -3754 ($ $ (-578 (-501)) (-578 (-501)) $)) (-15 -1198 ($ $ (-501) (-501))) (-15 -3935 ($ $ (-501) (-501))) (-15 -3548 ($ $ (-501) (-501) (-501) (-501))) (-15 -3251 ($ $ (-501) (-501) $)) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3797 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-501) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-701))) (IF (|has| |t#1| (-508)) (-15 -3694 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-331)) (-15 -3803 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-276)) (-15 -1933 ($ $)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -3689 ((-701) $)) (-15 -3752 ((-701) $)) (-15 -3552 ((-578 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-6 (-4169 "*"))) (PROGN (-15 -3315 (|t#1| $)) (-15 -3572 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-331)) (PROGN (-15 -1616 ((-3 $ "failed") $)) (-15 ** ($ $ (-501)))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-55 |#1| |#2| |#3|) . T) ((-1104) . T))
-((-3547 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1212 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1212 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1212 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3547 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-959) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|) (-959) (-340 |#5|) (-340 |#5|) (-618 |#5| |#6| |#7|)) (T -619))
-((-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-959)) (-4 *2 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *8 (-340 *2)) (-4 *9 (-340 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-618 *5 *6 *7)) (-4 *10 (-618 *2 *8 *9)))) (-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *2 (-618 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-618 *5 *6 *7)) (-4 *9 (-340 *8)) (-4 *10 (-340 *8)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *2 (-618 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-618 *5 *6 *7)) (-4 *9 (-340 *8)) (-4 *10 (-340 *8)))))
-(-10 -7 (-15 -1212 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1212 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3547 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-1933 ((|#4| |#4|) 67 (|has| |#1| (-276)))) (-3689 (((-701) |#4|) 69 (|has| |#1| (-508)))) (-3752 (((-701) |#4|) 71 (|has| |#1| (-508)))) (-3552 (((-578 |#3|) |#4|) 78 (|has| |#1| (-508)))) (-3496 (((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|) 95 (|has| |#1| (-276)))) (-3572 ((|#1| |#4|) 33)) (-3281 (((-3 |#4| "failed") |#4|) 61 (|has| |#1| (-508)))) (-1616 (((-3 |#4| "failed") |#4|) 75 (|has| |#1| (-331)))) (-3100 ((|#4| |#4|) 54 (|has| |#1| (-508)))) (-1631 ((|#4| |#4| |#1| (-501) (-501)) 41)) (-1359 ((|#4| |#4| (-501) (-501)) 36)) (-2966 ((|#4| |#4| |#1| (-501) (-501)) 46)) (-3315 ((|#1| |#4|) 73)) (-3774 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 57 (|has| |#1| (-508)))))
-(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3315 (|#1| |#4|)) (-15 -3572 (|#1| |#4|)) (-15 -1359 (|#4| |#4| (-501) (-501))) (-15 -1631 (|#4| |#4| |#1| (-501) (-501))) (-15 -2966 (|#4| |#4| |#1| (-501) (-501))) (IF (|has| |#1| (-508)) (PROGN (-15 -3689 ((-701) |#4|)) (-15 -3752 ((-701) |#4|)) (-15 -3552 ((-578 |#3|) |#4|)) (-15 -3100 (|#4| |#4|)) (-15 -3281 ((-3 |#4| "failed") |#4|)) (-15 -3774 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-276)) (PROGN (-15 -1933 (|#4| |#4|)) (-15 -3496 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-331)) (-15 -1616 ((-3 |#4| "failed") |#4|)) |noBranch|)) (-156) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|)) (T -620))
-((-1616 (*1 *2 *2) (|partial| -12 (-4 *3 (-331)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3496 (*1 *2 *3 *3) (-12 (-4 *3 (-276)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-620 *3 *4 *5 *6)) (-4 *6 (-618 *3 *4 *5)))) (-1933 (*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3774 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3281 (*1 *2 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3100 (*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3552 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-578 *6)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3752 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-2966 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-501)) (-4 *3 (-156)) (-4 *5 (-340 *3)) (-4 *6 (-340 *3)) (-5 *1 (-620 *3 *5 *6 *2)) (-4 *2 (-618 *3 *5 *6)))) (-1631 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-501)) (-4 *3 (-156)) (-4 *5 (-340 *3)) (-4 *6 (-340 *3)) (-5 *1 (-620 *3 *5 *6 *2)) (-4 *2 (-618 *3 *5 *6)))) (-1359 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *1 (-620 *4 *5 *6 *2)) (-4 *2 (-618 *4 *5 *6)))) (-3572 (*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-156)) (-5 *1 (-620 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) (-3315 (*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-156)) (-5 *1 (-620 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))))
-(-10 -7 (-15 -3315 (|#1| |#4|)) (-15 -3572 (|#1| |#4|)) (-15 -1359 (|#4| |#4| (-501) (-501))) (-15 -1631 (|#4| |#4| |#1| (-501) (-501))) (-15 -2966 (|#4| |#4| |#1| (-501) (-501))) (IF (|has| |#1| (-508)) (PROGN (-15 -3689 ((-701) |#4|)) (-15 -3752 ((-701) |#4|)) (-15 -3552 ((-578 |#3|) |#4|)) (-15 -3100 (|#4| |#4|)) (-15 -3281 ((-3 |#4| "failed") |#4|)) (-15 -3774 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-276)) (PROGN (-15 -1933 (|#4| |#4|)) (-15 -3496 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-331)) (-15 -1616 ((-3 |#4| "failed") |#4|)) |noBranch|))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701) (-701)) 45)) (-2412 (($ $ $) NIL)) (-2676 (($ (-1148 |#1|)) NIL) (($ $) NIL)) (-2981 (((-107) $) NIL)) (-1198 (($ $ (-501) (-501)) 12)) (-3935 (($ $ (-501) (-501)) NIL)) (-3548 (($ $ (-501) (-501) (-501) (-501)) NIL)) (-3173 (($ $) NIL)) (-4007 (((-107) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-3251 (($ $ (-501) (-501) $) NIL)) (-3754 ((|#1| $ (-501) (-501) |#1|) NIL) (($ $ (-578 (-501)) (-578 (-501)) $) NIL)) (-2400 (($ $ (-501) (-1148 |#1|)) NIL)) (-2480 (($ $ (-501) (-1148 |#1|)) NIL)) (-1292 (($ (-701) |#1|) 22)) (-2540 (($) NIL T CONST)) (-1933 (($ $) 30 (|has| |#1| (-276)))) (-2358 (((-1148 |#1|) $ (-501)) NIL)) (-3689 (((-701) $) 32 (|has| |#1| (-508)))) (-2156 ((|#1| $ (-501) (-501) |#1|) 50)) (-1905 ((|#1| $ (-501) (-501)) NIL)) (-2732 (((-578 |#1|) $) NIL)) (-3752 (((-701) $) 34 (|has| |#1| (-508)))) (-3552 (((-578 (-1148 |#1|)) $) 37 (|has| |#1| (-508)))) (-1648 (((-701) $) 20)) (-3634 (($ (-701) (-701) |#1|) NIL)) (-3248 (((-701) $) 21)) (-3379 (((-107) $ (-701)) NIL)) (-3572 ((|#1| $) 28 (|has| |#1| (-6 (-4169 "*"))))) (-1567 (((-501) $) 9)) (-2734 (((-501) $) 10)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2969 (((-501) $) 11)) (-3491 (((-501) $) 46)) (-2630 (($ (-578 (-578 |#1|))) NIL)) (-2519 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2237 (((-578 (-578 |#1|)) $) 58)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1616 (((-3 $ "failed") $) 41 (|has| |#1| (-331)))) (-1452 (($ $ $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3084 (($ $ |#1|) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) (-501)) NIL) ((|#1| $ (-501) (-501) |#1|) NIL) (($ $ (-578 (-501)) (-578 (-501))) NIL)) (-3133 (($ (-578 |#1|)) NIL) (($ (-578 $)) NIL) (($ (-1148 |#1|)) 51)) (-3697 (((-107) $) NIL)) (-3315 ((|#1| $) 26 (|has| |#1| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 62 (|has| |#1| (-556 (-490))))) (-2952 (((-1148 |#1|) $ (-501)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001))) (($ (-1148 |#1|)) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $ $) NIL) (($ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) 23) (($ $ (-501)) 44 (|has| |#1| (-331)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-501) $) NIL) (((-1148 |#1|) $ (-1148 |#1|)) NIL) (((-1148 |#1|) (-1148 |#1|) $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-621 |#1|) (-13 (-618 |#1| (-1148 |#1|) (-1148 |#1|)) (-10 -8 (-15 -3133 ($ (-1148 |#1|))) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |#1| (-331)) (-15 -1616 ((-3 $ "failed") $)) |noBranch|))) (-959)) (T -621))
-((-1616 (*1 *1 *1) (|partial| -12 (-5 *1 (-621 *2)) (-4 *2 (-331)) (-4 *2 (-959)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-959)) (-5 *1 (-621 *3)))))
-(-13 (-618 |#1| (-1148 |#1|) (-1148 |#1|)) (-10 -8 (-15 -3133 ($ (-1148 |#1|))) (IF (|has| |#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |#1| (-331)) (-15 -1616 ((-3 $ "failed") $)) |noBranch|)))
-((-2888 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|)) 25)) (-3413 (((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|) 21)) (-2346 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-701)) 26)) (-2644 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|)) 14)) (-3881 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|)) 18) (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 16)) (-3812 (((-621 |#1|) (-621 |#1|) |#1| (-621 |#1|)) 20)) (-2856 (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 12)) (** (((-621 |#1|) (-621 |#1|) (-701)) 30)))
-(((-622 |#1|) (-10 -7 (-15 -2856 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -2644 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3881 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3881 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3812 ((-621 |#1|) (-621 |#1|) |#1| (-621 |#1|))) (-15 -3413 ((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|)) (-15 -2888 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -2346 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-701))) (-15 ** ((-621 |#1|) (-621 |#1|) (-701)))) (-959)) (T -622))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-622 *4)))) (-2346 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-622 *4)))) (-2888 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-3413 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-3812 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-3881 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-3881 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-2644 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) (-2856 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))))
-(-10 -7 (-15 -2856 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -2644 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3881 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3881 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3812 ((-621 |#1|) (-621 |#1|) |#1| (-621 |#1|))) (-15 -3413 ((-621 |#1|) (-621 |#1|) (-621 |#1|) |#1|)) (-15 -2888 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -2346 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-621 |#1|) (-701))) (-15 ** ((-621 |#1|) (-621 |#1|) (-701))))
-((-1232 ((|#2| |#2| |#4|) 25)) (-2424 (((-621 |#2|) |#3| |#4|) 31)) (-3166 (((-621 |#2|) |#2| |#4|) 30)) (-2095 (((-1148 |#2|) |#2| |#4|) 16)) (-2552 ((|#2| |#3| |#4|) 24)) (-3272 (((-621 |#2|) |#3| |#4| (-701) (-701)) 38)) (-3579 (((-621 |#2|) |#2| |#4| (-701)) 37)))
-(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2095 ((-1148 |#2|) |#2| |#4|)) (-15 -2552 (|#2| |#3| |#4|)) (-15 -1232 (|#2| |#2| |#4|)) (-15 -3166 ((-621 |#2|) |#2| |#4|)) (-15 -3579 ((-621 |#2|) |#2| |#4| (-701))) (-15 -2424 ((-621 |#2|) |#3| |#4|)) (-15 -3272 ((-621 |#2|) |#3| |#4| (-701) (-701)))) (-1001) (-820 |#1|) (-340 |#2|) (-13 (-340 |#1|) (-10 -7 (-6 -4167)))) (T -623))
-((-3272 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-701)) (-4 *6 (-1001)) (-4 *7 (-820 *6)) (-5 *2 (-621 *7)) (-5 *1 (-623 *6 *7 *3 *4)) (-4 *3 (-340 *7)) (-4 *4 (-13 (-340 *6) (-10 -7 (-6 -4167)))))) (-2424 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *6 (-820 *5)) (-5 *2 (-621 *6)) (-5 *1 (-623 *5 *6 *3 *4)) (-4 *3 (-340 *6)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))) (-3579 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-1001)) (-4 *3 (-820 *6)) (-5 *2 (-621 *3)) (-5 *1 (-623 *6 *3 *7 *4)) (-4 *7 (-340 *3)) (-4 *4 (-13 (-340 *6) (-10 -7 (-6 -4167)))))) (-3166 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *3 (-820 *5)) (-5 *2 (-621 *3)) (-5 *1 (-623 *5 *3 *6 *4)) (-4 *6 (-340 *3)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))) (-1232 (*1 *2 *2 *3) (-12 (-4 *4 (-1001)) (-4 *2 (-820 *4)) (-5 *1 (-623 *4 *2 *5 *3)) (-4 *5 (-340 *2)) (-4 *3 (-13 (-340 *4) (-10 -7 (-6 -4167)))))) (-2552 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *2 (-820 *5)) (-5 *1 (-623 *5 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))) (-2095 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *3 (-820 *5)) (-5 *2 (-1148 *3)) (-5 *1 (-623 *5 *3 *6 *4)) (-4 *6 (-340 *3)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))))
-(-10 -7 (-15 -2095 ((-1148 |#2|) |#2| |#4|)) (-15 -2552 (|#2| |#3| |#4|)) (-15 -1232 (|#2| |#2| |#4|)) (-15 -3166 ((-621 |#2|) |#2| |#4|)) (-15 -3579 ((-621 |#2|) |#2| |#4| (-701))) (-15 -2424 ((-621 |#2|) |#3| |#4|)) (-15 -3272 ((-621 |#2|) |#3| |#4| (-701) (-701))))
-((-3473 (((-2 (|:| |num| (-621 |#1|)) (|:| |den| |#1|)) (-621 |#2|)) 18)) (-1644 ((|#1| (-621 |#2|)) 9)) (-4132 (((-621 |#1|) (-621 |#2|)) 16)))
-(((-624 |#1| |#2|) (-10 -7 (-15 -1644 (|#1| (-621 |#2|))) (-15 -4132 ((-621 |#1|) (-621 |#2|))) (-15 -3473 ((-2 (|:| |num| (-621 |#1|)) (|:| |den| |#1|)) (-621 |#2|)))) (-508) (-906 |#1|)) (T -624))
-((-3473 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-906 *4)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |num| (-621 *4)) (|:| |den| *4))) (-5 *1 (-624 *4 *5)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-906 *4)) (-4 *4 (-508)) (-5 *2 (-621 *4)) (-5 *1 (-624 *4 *5)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-624 *2 *4)))))
-(-10 -7 (-15 -1644 (|#1| (-621 |#2|))) (-15 -4132 ((-621 |#1|) (-621 |#2|))) (-15 -3473 ((-2 (|:| |num| (-621 |#1|)) (|:| |den| |#1|)) (-621 |#2|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2239 (((-621 (-630))) NIL) (((-621 (-630)) (-1148 $)) NIL)) (-2225 (((-630) $) NIL)) (-3978 (($ $) NIL (|has| (-630) (-1090)))) (-3937 (($ $) NIL (|has| (-630) (-1090)))) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-630) (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-630) (-276)) (|has| (-630) (-830))))) (-3676 (($ $) NIL (-1405 (-12 (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-331))))) (-1559 (((-373 $) $) NIL (-1405 (-12 (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-331))))) (-3743 (($ $) NIL (-12 (|has| (-630) (-916)) (|has| (-630) (-1090))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-630) (-276)) (|has| (-630) (-830))))) (-2781 (((-107) $ $) NIL (|has| (-630) (-276)))) (-3796 (((-701)) NIL (|has| (-630) (-336)))) (-3970 (($ $) NIL (|has| (-630) (-1090)))) (-3929 (($ $) NIL (|has| (-630) (-1090)))) (-3984 (($ $) NIL (|has| (-630) (-1090)))) (-3945 (($ $) NIL (|has| (-630) (-1090)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-630) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-630) (-950 (-375 (-501)))))) (-3490 (((-501) $) NIL) (((-630) $) NIL) (((-375 (-501)) $) NIL (|has| (-630) (-950 (-375 (-501)))))) (-3142 (($ (-1148 (-630))) NIL) (($ (-1148 (-630)) (-1148 $)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-630) (-318)))) (-3023 (($ $ $) NIL (|has| (-630) (-276)))) (-3070 (((-621 (-630)) $) NIL) (((-621 (-630)) $ (-1148 $)) NIL)) (-3868 (((-621 (-630)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-630))) (|:| |vec| (-1148 (-630)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-630) (-577 (-501)))) (((-621 (-501)) (-621 $)) NIL (|has| (-630) (-577 (-501))))) (-3547 (((-3 $ "failed") (-375 (-1064 (-630)))) NIL (|has| (-630) (-331))) (($ (-1064 (-630))) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3749 (((-630) $) 29)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL (|has| (-630) (-500)))) (-1696 (((-107) $) NIL (|has| (-630) (-500)))) (-3518 (((-375 (-501)) $) NIL (|has| (-630) (-500)))) (-3689 (((-839)) NIL)) (-2890 (($) NIL (|has| (-630) (-336)))) (-3034 (($ $ $) NIL (|has| (-630) (-276)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| (-630) (-276)))) (-1317 (($) NIL (|has| (-630) (-318)))) (-3521 (((-107) $) NIL (|has| (-630) (-318)))) (-3067 (($ $) NIL (|has| (-630) (-318))) (($ $ (-701)) NIL (|has| (-630) (-318)))) (-1628 (((-107) $) NIL (-1405 (-12 (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-331))))) (-4090 (((-2 (|:| |r| (-630)) (|:| |phi| (-630))) $) NIL (-12 (|has| (-630) (-967)) (|has| (-630) (-1090))))) (-2003 (($) NIL (|has| (-630) (-1090)))) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-630) (-806 (-346)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-630) (-806 (-501))))) (-3169 (((-762 (-839)) $) NIL (|has| (-630) (-318))) (((-839) $) NIL (|has| (-630) (-318)))) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (-12 (|has| (-630) (-916)) (|has| (-630) (-1090))))) (-2626 (((-630) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-630) (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-630) (-276)))) (-1792 (((-1064 (-630)) $) NIL (|has| (-630) (-331)))) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1212 (($ (-1 (-630) (-630)) $) NIL)) (-3104 (((-839) $) NIL (|has| (-630) (-336)))) (-1635 (($ $) NIL (|has| (-630) (-1090)))) (-1316 (((-1064 (-630)) $) NIL)) (-1697 (($ (-578 $)) NIL (|has| (-630) (-276))) (($ $ $) NIL (|has| (-630) (-276)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| (-630) (-331)))) (-3746 (($) NIL (|has| (-630) (-318)) CONST)) (-3506 (($ (-839)) NIL (|has| (-630) (-336)))) (-2574 (($) NIL)) (-3755 (((-630) $) 31)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| (-630) (-276)))) (-3664 (($ (-578 $)) NIL (|has| (-630) (-276))) (($ $ $) NIL (|has| (-630) (-276)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-630) (-318)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-630) (-276)) (|has| (-630) (-830))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-630) (-276)) (|has| (-630) (-830))))) (-3739 (((-373 $) $) NIL (-1405 (-12 (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-331))))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-630) (-276))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| (-630) (-276)))) (-3694 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-630)) NIL (|has| (-630) (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-630) (-276)))) (-1989 (($ $) NIL (|has| (-630) (-1090)))) (-3195 (($ $ (-1070) (-630)) NIL (|has| (-630) (-476 (-1070) (-630)))) (($ $ (-578 (-1070)) (-578 (-630))) NIL (|has| (-630) (-476 (-1070) (-630)))) (($ $ (-578 (-262 (-630)))) NIL (|has| (-630) (-278 (-630)))) (($ $ (-262 (-630))) NIL (|has| (-630) (-278 (-630)))) (($ $ (-630) (-630)) NIL (|has| (-630) (-278 (-630)))) (($ $ (-578 (-630)) (-578 (-630))) NIL (|has| (-630) (-278 (-630))))) (-1864 (((-701) $) NIL (|has| (-630) (-276)))) (-2007 (($ $ (-630)) NIL (|has| (-630) (-256 (-630) (-630))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| (-630) (-276)))) (-2532 (((-630)) NIL) (((-630) (-1148 $)) NIL)) (-1984 (((-3 (-701) "failed") $ $) NIL (|has| (-630) (-318))) (((-701) $) NIL (|has| (-630) (-318)))) (-2596 (($ $ (-1 (-630) (-630))) NIL) (($ $ (-1 (-630) (-630)) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-1070)) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-701)) NIL (|has| (-630) (-206))) (($ $) NIL (|has| (-630) (-206)))) (-2231 (((-621 (-630)) (-1148 $) (-1 (-630) (-630))) NIL (|has| (-630) (-331)))) (-2264 (((-1064 (-630))) NIL)) (-3991 (($ $) NIL (|has| (-630) (-1090)))) (-3949 (($ $) NIL (|has| (-630) (-1090)))) (-1349 (($) NIL (|has| (-630) (-318)))) (-3981 (($ $) NIL (|has| (-630) (-1090)))) (-3940 (($ $) NIL (|has| (-630) (-1090)))) (-3975 (($ $) NIL (|has| (-630) (-1090)))) (-3933 (($ $) NIL (|has| (-630) (-1090)))) (-2085 (((-621 (-630)) (-1148 $)) NIL) (((-1148 (-630)) $) NIL) (((-621 (-630)) (-1148 $) (-1148 $)) NIL) (((-1148 (-630)) $ (-1148 $)) NIL)) (-1248 (((-490) $) NIL (|has| (-630) (-556 (-490)))) (((-152 (-199)) $) NIL (|has| (-630) (-933))) (((-152 (-346)) $) NIL (|has| (-630) (-933))) (((-810 (-346)) $) NIL (|has| (-630) (-556 (-810 (-346))))) (((-810 (-501)) $) NIL (|has| (-630) (-556 (-810 (-501))))) (($ (-1064 (-630))) NIL) (((-1064 (-630)) $) NIL) (($ (-1148 (-630))) NIL) (((-1148 (-630)) $) NIL)) (-3097 (($ $) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-318))))) (-1976 (($ (-630) (-630)) 12)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-501)) NIL) (($ (-630)) NIL) (($ (-152 (-346))) 13) (($ (-152 (-501))) 19) (($ (-152 (-630))) 28) (($ (-152 (-632))) 25) (((-152 (-346)) $) 33) (($ (-375 (-501))) NIL (-1405 (|has| (-630) (-331)) (|has| (-630) (-950 (-375 (-501))))))) (-1274 (($ $) NIL (|has| (-630) (-318))) (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-630) (-276)) (|has| (-630) (-830))) (|has| (-630) (-132))))) (-2942 (((-1064 (-630)) $) NIL)) (-3965 (((-701)) NIL)) (-4119 (((-1148 $)) NIL)) (-4003 (($ $) NIL (|has| (-630) (-1090)))) (-3958 (($ $) NIL (|has| (-630) (-1090)))) (-2442 (((-107) $ $) NIL)) (-3995 (($ $) NIL (|has| (-630) (-1090)))) (-3952 (($ $) NIL (|has| (-630) (-1090)))) (-4013 (($ $) NIL (|has| (-630) (-1090)))) (-3964 (($ $) NIL (|has| (-630) (-1090)))) (-2992 (((-630) $) NIL (|has| (-630) (-1090)))) (-3550 (($ $) NIL (|has| (-630) (-1090)))) (-3967 (($ $) NIL (|has| (-630) (-1090)))) (-4008 (($ $) NIL (|has| (-630) (-1090)))) (-3961 (($ $) NIL (|has| (-630) (-1090)))) (-3999 (($ $) NIL (|has| (-630) (-1090)))) (-3955 (($ $) NIL (|has| (-630) (-1090)))) (-1720 (($ $) NIL (|has| (-630) (-967)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-630) (-331)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1 (-630) (-630))) NIL) (($ $ (-1 (-630) (-630)) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-1070)) NIL (|has| (-630) (-820 (-1070)))) (($ $ (-701)) NIL (|has| (-630) (-206))) (($ $) NIL (|has| (-630) (-206)))) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL (|has| (-630) (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ $) NIL (|has| (-630) (-1090))) (($ $ (-375 (-501))) NIL (-12 (|has| (-630) (-916)) (|has| (-630) (-1090)))) (($ $ (-501)) NIL (|has| (-630) (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ (-630) $) NIL) (($ $ (-630)) NIL) (($ (-375 (-501)) $) NIL (|has| (-630) (-331))) (($ $ (-375 (-501))) NIL (|has| (-630) (-331)))))
-(((-625) (-13 (-355) (-150 (-630)) (-10 -8 (-15 -3691 ($ (-152 (-346)))) (-15 -3691 ($ (-152 (-501)))) (-15 -3691 ($ (-152 (-630)))) (-15 -3691 ($ (-152 (-632)))) (-15 -3691 ((-152 (-346)) $))))) (T -625))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-625)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-152 (-501))) (-5 *1 (-625)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-152 (-630))) (-5 *1 (-625)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-152 (-632))) (-5 *1 (-625)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-625)))))
-(-13 (-355) (-150 (-630)) (-10 -8 (-15 -3691 ($ (-152 (-346)))) (-15 -3691 ($ (-152 (-501)))) (-15 -3691 ($ (-152 (-630)))) (-15 -3691 ($ (-152 (-632)))) (-15 -3691 ((-152 (-346)) $))))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2921 (($ $) 62)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40) (($ |#1| $ (-701)) 63)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 61)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-626 |#1|) (-1180) (-1001)) (T -626))
-((-4114 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-626 *2)) (-4 *2 (-1001)))) (-2921 (*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1001)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1001)) (-5 *2 (-578 (-2 (|:| -2922 *3) (|:| -3713 (-701))))))))
-(-13 (-208 |t#1|) (-10 -8 (-15 -4114 ($ |t#1| $ (-701))) (-15 -2921 ($ $)) (-15 -2908 ((-578 (-2 (|:| -2922 |t#1|) (|:| -3713 (-701)))) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-1371 (((-578 |#1|) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) (-501)) 46)) (-3191 ((|#1| |#1| (-501)) 45)) (-3664 ((|#1| |#1| |#1| (-501)) 35)) (-3739 (((-578 |#1|) |#1| (-501)) 38)) (-2434 ((|#1| |#1| (-501) |#1| (-501)) 32)) (-2730 (((-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) |#1| (-501)) 44)))
-(((-627 |#1|) (-10 -7 (-15 -3664 (|#1| |#1| |#1| (-501))) (-15 -3191 (|#1| |#1| (-501))) (-15 -3739 ((-578 |#1|) |#1| (-501))) (-15 -2730 ((-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) |#1| (-501))) (-15 -1371 ((-578 |#1|) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) (-501))) (-15 -2434 (|#1| |#1| (-501) |#1| (-501)))) (-1125 (-501))) (T -627))
-((-2434 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3)))) (-1371 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| -3739 *5) (|:| -1201 (-501))))) (-5 *4 (-501)) (-4 *5 (-1125 *4)) (-5 *2 (-578 *5)) (-5 *1 (-627 *5)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-578 (-2 (|:| -3739 *3) (|:| -1201 *4)))) (-5 *1 (-627 *3)) (-4 *3 (-1125 *4)))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-578 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1125 *4)))) (-3191 (*1 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3)))) (-3664 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3)))))
-(-10 -7 (-15 -3664 (|#1| |#1| |#1| (-501))) (-15 -3191 (|#1| |#1| (-501))) (-15 -3739 ((-578 |#1|) |#1| (-501))) (-15 -2730 ((-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) |#1| (-501))) (-15 -1371 ((-578 |#1|) (-578 (-2 (|:| -3739 |#1|) (|:| -1201 (-501)))) (-501))) (-15 -2434 (|#1| |#1| (-501) |#1| (-501))))
-((-1188 (((-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2598 (((-1031 (-199)) (-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232))) 38) (((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232))) 40) (((-1031 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232))) 42)) (-2993 (((-1031 (-199)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-578 (-232))) NIL)) (-1844 (((-1031 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232))) 43)))
-(((-628) (-10 -7 (-15 -2598 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2598 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2598 ((-1031 (-199)) (-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -1844 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2993 ((-1031 (-199)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-578 (-232)))) (-15 -1188 ((-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -628))
-((-1188 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-863 (-199)) (-199) (-199))) (-5 *1 (-628)))) (-2993 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) (-1844 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) (-2598 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-199))) (-5 *5 (-578 (-232))) (-5 *1 (-628)))) (-2598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-199))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) (-2598 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))))
-(-10 -7 (-15 -2598 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2598 ((-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2598 ((-1031 (-199)) (-1031 (-199)) (-1 (-863 (-199)) (-199) (-199)) (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -1844 ((-1031 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-991 (-199)) (-991 (-199)) (-578 (-232)))) (-15 -2993 ((-1031 (-199)) (-282 (-501)) (-282 (-501)) (-282 (-501)) (-1 (-199) (-199)) (-991 (-199)) (-578 (-232)))) (-15 -1188 ((-1 (-863 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
-((-3739 (((-373 (-1064 |#4|)) (-1064 |#4|)) 73) (((-373 |#4|) |#4|) 215)))
-(((-629 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4|)) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|)))) (-777) (-723) (-318) (-870 |#3| |#2| |#1|)) (T -629))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-318)) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-629 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4)))))
-(-10 -7 (-15 -3739 ((-373 |#4|) |#4|)) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 84)) (-2197 (((-501) $) 30)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2805 (($ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-2540 (($) NIL T CONST)) (-1453 (($ $) NIL)) (-3765 (((-3 (-501) "failed") $) 73) (((-3 (-375 (-501)) "failed") $) 26) (((-3 (-346) "failed") $) 70)) (-3490 (((-501) $) 75) (((-375 (-501)) $) 67) (((-346) $) 68)) (-3023 (($ $ $) 96)) (-2174 (((-3 $ "failed") $) 87)) (-3034 (($ $ $) 95)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3943 (((-839)) 77) (((-839) (-839)) 76)) (-2164 (((-107) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL)) (-3169 (((-501) $) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL)) (-2626 (($ $) NIL)) (-4067 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3973 (((-501) (-501)) 81) (((-501)) 82)) (-4111 (($ $ $) NIL) (($) NIL (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-2382 (((-501) (-501)) 79) (((-501)) 80)) (-1323 (($ $ $) NIL) (($) NIL (-12 (-3031 (|has| $ (-6 -4150))) (-3031 (|has| $ (-6 -4158)))))) (-1828 (((-501) $) 16)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 91)) (-3039 (((-839) (-501)) NIL (|has| $ (-6 -4158)))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL)) (-3383 (($ $) NIL)) (-2017 (($ (-501) (-501)) NIL) (($ (-501) (-501) (-839)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) 92)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3027 (((-501) $) 22)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 94)) (-3960 (((-839)) NIL) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-1537 (((-839) (-501)) NIL (|has| $ (-6 -4158)))) (-1248 (((-346) $) NIL) (((-199) $) NIL) (((-810 (-346)) $) NIL)) (-3691 (((-786) $) 52) (($ (-501)) 63) (($ $) NIL) (($ (-375 (-501))) 66) (($ (-501)) 63) (($ (-375 (-501))) 66) (($ (-346)) 60) (((-346) $) 50) (($ (-632)) 55)) (-3965 (((-701)) 103)) (-1821 (($ (-501) (-501) (-839)) 44)) (-2803 (($ $) NIL)) (-2751 (((-839)) NIL) (((-839) (-839)) NIL (|has| $ (-6 -4158)))) (-1965 (((-839)) 35) (((-839) (-839)) 78)) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 32 T CONST)) (-1925 (($) 17 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 83)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 101)) (-3803 (($ $ $) 65)) (-3797 (($ $) 99) (($ $ $) 100)) (-3790 (($ $ $) 98)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL) (($ $ (-375 (-501))) 90)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 97) (($ $ $) 88) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL)))
-(((-630) (-13 (-372) (-355) (-331) (-950 (-346)) (-950 (-375 (-501))) (-134) (-10 -8 (-15 -3943 ((-839) (-839))) (-15 -3943 ((-839))) (-15 -1965 ((-839) (-839))) (-15 -1965 ((-839))) (-15 -2382 ((-501) (-501))) (-15 -2382 ((-501))) (-15 -3973 ((-501) (-501))) (-15 -3973 ((-501))) (-15 -3691 ((-346) $)) (-15 -3691 ($ (-632))) (-15 -1828 ((-501) $)) (-15 -3027 ((-501) $)) (-15 -1821 ($ (-501) (-501) (-839)))))) (T -630))
-((-1965 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-3943 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) (-3943 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) (-1965 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-2382 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-3973 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-3973 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-346)) (-5 *1 (-630)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-632)) (-5 *1 (-630)))) (-1821 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-839)) (-5 *1 (-630)))))
-(-13 (-372) (-355) (-331) (-950 (-346)) (-950 (-375 (-501))) (-134) (-10 -8 (-15 -3943 ((-839) (-839))) (-15 -3943 ((-839))) (-15 -1965 ((-839) (-839))) (-15 -1965 ((-839))) (-15 -2382 ((-501) (-501))) (-15 -2382 ((-501))) (-15 -3973 ((-501) (-501))) (-15 -3973 ((-501))) (-15 -3691 ((-346) $)) (-15 -3691 ($ (-632))) (-15 -1828 ((-501) $)) (-15 -3027 ((-501) $)) (-15 -1821 ($ (-501) (-501) (-839)))))
-((-1683 (((-621 |#1|) (-621 |#1|) |#1| |#1|) 66)) (-1933 (((-621 |#1|) (-621 |#1|) |#1|) 49)) (-3578 (((-621 |#1|) (-621 |#1|) |#1|) 67)) (-2587 (((-621 |#1|) (-621 |#1|)) 50)) (-3496 (((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|) 65)))
-(((-631 |#1|) (-10 -7 (-15 -2587 ((-621 |#1|) (-621 |#1|))) (-15 -1933 ((-621 |#1|) (-621 |#1|) |#1|)) (-15 -3578 ((-621 |#1|) (-621 |#1|) |#1|)) (-15 -1683 ((-621 |#1|) (-621 |#1|) |#1| |#1|)) (-15 -3496 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|))) (-276)) (T -631))
-((-3496 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-631 *3)) (-4 *3 (-276)))) (-1683 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))) (-3578 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))) (-1933 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))) (-2587 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))))
-(-10 -7 (-15 -2587 ((-621 |#1|) (-621 |#1|))) (-15 -1933 ((-621 |#1|) (-621 |#1|) |#1|)) (-15 -3578 ((-621 |#1|) (-621 |#1|) |#1|)) (-15 -1683 ((-621 |#1|) (-621 |#1|) |#1| |#1|)) (-15 -3496 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2619 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-1525 (($ $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) 27)) (-3490 (((-501) $) 25)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL)) (-1696 (((-107) $) NIL)) (-3518 (((-375 (-501)) $) NIL)) (-2890 (($ $) NIL) (($) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3185 (($ $ $ $) NIL)) (-2002 (($ $ $) NIL)) (-2164 (((-107) $) NIL)) (-2940 (($ $ $) NIL)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL)) (-1355 (((-107) $) NIL)) (-3729 (((-107) $) NIL)) (-3493 (((-3 $ "failed") $) NIL)) (-4067 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4124 (($ $ $ $) NIL)) (-4111 (($ $ $) NIL)) (-3816 (((-839) (-839)) 10) (((-839)) 9)) (-1323 (($ $ $) NIL)) (-4100 (($ $) NIL)) (-4139 (($ $) NIL)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3437 (($ $ $) NIL)) (-3746 (($) NIL T CONST)) (-2170 (($ $) NIL)) (-3708 (((-1018) $) NIL) (($ $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3260 (($ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL) (($ $ (-701)) NIL)) (-2565 (($ $) NIL)) (-3764 (($ $) NIL)) (-1248 (((-199) $) NIL) (((-346) $) NIL) (((-810 (-501)) $) NIL) (((-490) $) NIL) (((-501) $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) 24) (($ $) NIL) (($ (-501)) 24) (((-282 $) (-282 (-501))) 18)) (-3965 (((-701)) NIL)) (-1808 (((-107) $ $) NIL)) (-1299 (($ $ $) NIL)) (-1965 (($) NIL)) (-2442 (((-107) $ $) NIL)) (-3429 (($ $ $ $) NIL)) (-1720 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL) (($ $ (-701)) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL)))
-(((-632) (-13 (-355) (-500) (-10 -8 (-15 -3816 ((-839) (-839))) (-15 -3816 ((-839))) (-15 -3691 ((-282 $) (-282 (-501))))))) (T -632))
-((-3816 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-632)))) (-3816 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-632)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-282 (-501))) (-5 *2 (-282 (-632))) (-5 *1 (-632)))))
-(-13 (-355) (-500) (-10 -8 (-15 -3816 ((-839) (-839))) (-15 -3816 ((-839))) (-15 -3691 ((-282 $) (-282 (-501))))))
-((-1746 (((-1 |#4| |#2| |#3|) |#1| (-1070) (-1070)) 19)) (-2196 (((-1 |#4| |#2| |#3|) (-1070)) 12)))
-(((-633 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2196 ((-1 |#4| |#2| |#3|) (-1070))) (-15 -1746 ((-1 |#4| |#2| |#3|) |#1| (-1070) (-1070)))) (-556 (-490)) (-1104) (-1104) (-1104)) (T -633))
-((-1746 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-633 *3 *5 *6 *7)) (-4 *3 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-633 *4 *5 *6 *7)) (-4 *4 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))))
-(-10 -7 (-15 -2196 ((-1 |#4| |#2| |#3|) (-1070))) (-15 -1746 ((-1 |#4| |#2| |#3|) |#1| (-1070) (-1070))))
-((-3736 (((-107) $ $) NIL)) (-3782 (((-1154) $ (-701)) 14)) (-1934 (((-701) $) 12)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 25)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 24)))
-(((-634 |#1|) (-13 (-124) (-555 |#1|) (-10 -8 (-15 -3691 ($ |#1|)))) (-1001)) (T -634))
-((-3691 (*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1001)))))
-(-13 (-124) (-555 |#1|) (-10 -8 (-15 -3691 ($ |#1|))))
-((-1915 (((-1 (-199) (-199) (-199)) |#1| (-1070) (-1070)) 33) (((-1 (-199) (-199)) |#1| (-1070)) 38)))
-(((-635 |#1|) (-10 -7 (-15 -1915 ((-1 (-199) (-199)) |#1| (-1070))) (-15 -1915 ((-1 (-199) (-199) (-199)) |#1| (-1070) (-1070)))) (-556 (-490))) (T -635))
-((-1915 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-635 *3)) (-4 *3 (-556 (-490))))) (-1915 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-635 *3)) (-4 *3 (-556 (-490))))))
-(-10 -7 (-15 -1915 ((-1 (-199) (-199)) |#1| (-1070))) (-15 -1915 ((-1 (-199) (-199) (-199)) |#1| (-1070) (-1070))))
-((-1684 (((-1070) |#1| (-1070) (-578 (-1070))) 9) (((-1070) |#1| (-1070) (-1070) (-1070)) 12) (((-1070) |#1| (-1070) (-1070)) 11) (((-1070) |#1| (-1070)) 10)))
-(((-636 |#1|) (-10 -7 (-15 -1684 ((-1070) |#1| (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-1070) (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-578 (-1070))))) (-556 (-490))) (T -636))
-((-1684 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) (-1684 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) (-1684 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) (-1684 (*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))))
-(-10 -7 (-15 -1684 ((-1070) |#1| (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-1070) (-1070))) (-15 -1684 ((-1070) |#1| (-1070) (-578 (-1070)))))
-((-2024 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-637 |#1| |#2|) (-10 -7 (-15 -2024 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1104) (-1104)) (T -637))
-((-2024 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-637 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))))
-(-10 -7 (-15 -2024 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-1947 (((-1 |#3| |#2|) (-1070)) 11)) (-1746 (((-1 |#3| |#2|) |#1| (-1070)) 21)))
-(((-638 |#1| |#2| |#3|) (-10 -7 (-15 -1947 ((-1 |#3| |#2|) (-1070))) (-15 -1746 ((-1 |#3| |#2|) |#1| (-1070)))) (-556 (-490)) (-1104) (-1104)) (T -638))
-((-1746 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *3 *5 *6)) (-4 *3 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)))) (-1947 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *4 *5 *6)) (-4 *4 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)))))
-(-10 -7 (-15 -1947 ((-1 |#3| |#2|) (-1070))) (-15 -1746 ((-1 |#3| |#2|) |#1| (-1070))))
-((-3711 (((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#4|)))) (-578 (-701)) (-1148 (-578 (-1064 |#3|))) |#3|) 58)) (-3603 (((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-701)) |#3|) 71)) (-2242 (((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-701)) (-578 (-1064 |#4|)) (-1148 (-578 (-1064 |#3|))) |#3|) 32)))
-(((-639 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2242 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-701)) (-578 (-1064 |#4|)) (-1148 (-578 (-1064 |#3|))) |#3|)) (-15 -3603 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-701)) |#3|)) (-15 -3711 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#4|)))) (-578 (-701)) (-1148 (-578 (-1064 |#3|))) |#3|))) (-723) (-777) (-276) (-870 |#3| |#1| |#2|)) (T -639))
-((-3711 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-578 (-1064 *13))) (-5 *3 (-1064 *13)) (-5 *4 (-578 *12)) (-5 *5 (-578 *10)) (-5 *6 (-578 *13)) (-5 *7 (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| *13))))) (-5 *8 (-578 (-701))) (-5 *9 (-1148 (-578 (-1064 *10)))) (-4 *12 (-777)) (-4 *10 (-276)) (-4 *13 (-870 *10 *11 *12)) (-4 *11 (-723)) (-5 *1 (-639 *11 *12 *10 *13)))) (-3603 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-578 *11)) (-5 *5 (-578 (-1064 *9))) (-5 *6 (-578 *9)) (-5 *7 (-578 *12)) (-5 *8 (-578 (-701))) (-4 *11 (-777)) (-4 *9 (-276)) (-4 *12 (-870 *9 *10 *11)) (-4 *10 (-723)) (-5 *2 (-578 (-1064 *12))) (-5 *1 (-639 *10 *11 *9 *12)) (-5 *3 (-1064 *12)))) (-2242 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-578 (-1064 *11))) (-5 *3 (-1064 *11)) (-5 *4 (-578 *10)) (-5 *5 (-578 *8)) (-5 *6 (-578 (-701))) (-5 *7 (-1148 (-578 (-1064 *8)))) (-4 *10 (-777)) (-4 *8 (-276)) (-4 *11 (-870 *8 *9 *10)) (-4 *9 (-723)) (-5 *1 (-639 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2242 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 |#3|) (-578 (-701)) (-578 (-1064 |#4|)) (-1148 (-578 (-1064 |#3|))) |#3|)) (-15 -3603 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#3|)) (-578 |#3|) (-578 |#4|) (-578 (-701)) |#3|)) (-15 -3711 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-578 |#2|) (-578 (-1064 |#4|)) (-578 |#3|) (-578 |#4|) (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#4|)))) (-578 (-701)) (-1148 (-578 (-1064 |#3|))) |#3|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3858 (($ $) 43)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3787 (($ |#1| (-701)) 41)) (-2285 (((-701) $) 45)) (-3850 ((|#1| $) 44)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1201 (((-701) $) 46)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 40 (|has| |#1| (-156)))) (-2495 ((|#1| $ (-701)) 42)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 48) (($ |#1| $) 47)))
-(((-640 |#1|) (-1180) (-959)) (T -640))
-((-1201 (*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-959)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-959)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-640 *2)) (-4 *2 (-959)))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-640 *2)) (-4 *2 (-959)))))
-(-13 (-959) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (-15 -1201 ((-701) $)) (-15 -2285 ((-701) $)) (-15 -3850 (|t#1| $)) (-15 -3858 ($ $)) (-15 -2495 (|t#1| $ (-701))) (-15 -3787 ($ |t#1| (-701)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) |has| |#1| (-156)) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-1212 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-641 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1212 (|#6| (-1 |#4| |#1|) |#3|))) (-508) (-1125 |#1|) (-1125 (-375 |#2|)) (-508) (-1125 |#4|) (-1125 (-375 |#5|))) (T -641))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-508)) (-4 *7 (-508)) (-4 *6 (-1125 *5)) (-4 *2 (-1125 (-375 *8))) (-5 *1 (-641 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1125 (-375 *6))) (-4 *8 (-1125 *7)))))
-(-10 -7 (-15 -1212 (|#6| (-1 |#4| |#1|) |#3|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL)) (-3547 (($ |#1| |#2|) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 ((|#2| $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1626 (((-3 $ "failed") $ $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) ((|#1| $) NIL)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL)))
-(((-642 |#1| |#2| |#3| |#4| |#5|) (-13 (-331) (-10 -8 (-15 -3121 (|#2| $)) (-15 -3691 (|#1| $)) (-15 -3547 ($ |#1| |#2|)) (-15 -1626 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -642))
-((-3121 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-642 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3691 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3547 (*1 *1 *2 *3) (-12 (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1626 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-331) (-10 -8 (-15 -3121 (|#2| $)) (-15 -3691 (|#1| $)) (-15 -3547 ($ |#1| |#2|)) (-15 -1626 ((-3 $ "failed") $ $))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 30)) (-3077 (((-1148 |#1|) $ (-701)) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3081 (($ (-1064 |#1|)) NIL)) (-3728 (((-1064 $) $ (-986)) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1855 (($ $ $) NIL (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3796 (((-701)) 46 (|has| |#1| (-336)))) (-3643 (($ $ (-701)) NIL)) (-2222 (($ $ (-701)) NIL)) (-3466 ((|#2| |#2|) 43)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-419)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-986) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-986) $) NIL)) (-1749 (($ $ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) 33)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-3547 (($ |#2|) 41)) (-2174 (((-3 $ "failed") $) 84)) (-2890 (($) 50 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-4094 (($ $ $) NIL)) (-3470 (($ $ $) NIL (|has| |#1| (-508)))) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3257 (((-877 $)) 78)) (-3503 (($ $ |#1| (-701) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ $) NIL (|has| |#1| (-508)))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-1046)))) (-3794 (($ (-1064 |#1|) (-986)) NIL) (($ (-1064 $) (-986)) NIL)) (-2917 (($ $ (-701)) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) 76) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) NIL) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3121 ((|#2|) 44)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1704 (((-1064 |#1|) $) NIL)) (-2752 (((-3 (-986) "failed") $) NIL)) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-1316 ((|#2| $) 40)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) 28)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (|has| |#1| (-1046)) CONST)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3407 (($ $) 77 (|has| |#1| (-318)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#1|) NIL) (($ $ (-578 (-986)) (-578 |#1|)) NIL) (($ $ (-986) $) NIL) (($ $ (-578 (-986)) (-578 $)) NIL)) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-375 $) (-375 $) (-375 $)) NIL (|has| |#1| (-508))) ((|#1| (-375 $) |#1|) NIL (|has| |#1| (-331))) (((-375 $) $ (-375 $)) NIL (|has| |#1| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 85 (|has| |#1| (-331)))) (-2532 (($ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1201 (((-701) $) 31) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-1447 (((-877 $)) 35)) (-3913 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508))) (((-3 (-375 $) "failed") (-375 $) $) NIL (|has| |#1| (-508)))) (-3691 (((-786) $) 60) (($ (-501)) NIL) (($ |#1|) 57) (($ (-986)) NIL) (($ |#2|) 67) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) 62) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 20 T CONST)) (-3008 (((-1148 |#1|) $) 74)) (-3238 (($ (-1148 |#1|)) 49)) (-1925 (($) 8 T CONST)) (-3584 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1392 (((-1148 |#1|) $) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 68)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) 71) (($ $ $) NIL)) (-3790 (($ $ $) 32)) (** (($ $ (-839)) NIL) (($ $ (-701)) 79)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 56) (($ $ $) 73) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
-(((-643 |#1| |#2|) (-13 (-1125 |#1|) (-10 -8 (-15 -3466 (|#2| |#2|)) (-15 -3121 (|#2|)) (-15 -3547 ($ |#2|)) (-15 -1316 (|#2| $)) (-15 -3691 ($ |#2|)) (-15 -3008 ((-1148 |#1|) $)) (-15 -3238 ($ (-1148 |#1|))) (-15 -1392 ((-1148 |#1|) $)) (-15 -3257 ((-877 $))) (-15 -1447 ((-877 $))) (IF (|has| |#1| (-318)) (-15 -3407 ($ $)) |noBranch|) (IF (|has| |#1| (-336)) (-6 (-336)) |noBranch|))) (-959) (-1125 |#1|)) (T -643))
-((-3466 (*1 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) (-3121 (*1 *2) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-643 *3 *2)) (-4 *3 (-959)))) (-3547 (*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) (-1316 (*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-643 *3 *2)) (-4 *3 (-959)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) (-3008 (*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-1148 *3)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-959)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-1392 (*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-1148 *3)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-3257 (*1 *2) (-12 (-4 *3 (-959)) (-5 *2 (-877 (-643 *3 *4))) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-1447 (*1 *2) (-12 (-4 *3 (-959)) (-5 *2 (-877 (-643 *3 *4))) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))) (-3407 (*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *2 (-959)) (-5 *1 (-643 *2 *3)) (-4 *3 (-1125 *2)))))
-(-13 (-1125 |#1|) (-10 -8 (-15 -3466 (|#2| |#2|)) (-15 -3121 (|#2|)) (-15 -3547 ($ |#2|)) (-15 -1316 (|#2| $)) (-15 -3691 ($ |#2|)) (-15 -3008 ((-1148 |#1|) $)) (-15 -3238 ($ (-1148 |#1|))) (-15 -1392 ((-1148 |#1|) $)) (-15 -3257 ((-877 $))) (-15 -1447 ((-877 $))) (IF (|has| |#1| (-318)) (-15 -3407 ($ $)) |noBranch|) (IF (|has| |#1| (-336)) (-6 (-336)) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3506 ((|#1| $) 13)) (-3708 (((-1018) $) NIL)) (-3027 ((|#2| $) 12)) (-3699 (($ |#1| |#2|) 16)) (-3691 (((-786) $) NIL) (($ (-2 (|:| -3506 |#1|) (|:| -3027 |#2|))) 15) (((-2 (|:| -3506 |#1|) (|:| -3027 |#2|)) $) 14)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 11)))
-(((-644 |#1| |#2| |#3|) (-13 (-777) (-10 -8 (-15 -3027 (|#2| $)) (-15 -3506 (|#1| $)) (-15 -3691 ($ (-2 (|:| -3506 |#1|) (|:| -3027 |#2|)))) (-15 -3691 ((-2 (|:| -3506 |#1|) (|:| -3027 |#2|)) $)) (-15 -3699 ($ |#1| |#2|)))) (-777) (-1001) (-1 (-107) (-2 (|:| -3506 |#1|) (|:| -3027 |#2|)) (-2 (|:| -3506 |#1|) (|:| -3027 |#2|)))) (T -644))
-((-3027 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-644 *3 *2 *4)) (-4 *3 (-777)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *3) (|:| -3027 *2)) (-2 (|:| -3506 *3) (|:| -3027 *2)))))) (-3506 (*1 *2 *1) (-12 (-4 *2 (-777)) (-5 *1 (-644 *2 *3 *4)) (-4 *3 (-1001)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *3)) (-2 (|:| -3506 *2) (|:| -3027 *3)))))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3506 *3) (|:| -3027 *4))) (-4 *3 (-777)) (-4 *4 (-1001)) (-5 *1 (-644 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3506 *3) (|:| -3027 *4))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-1001)) (-14 *5 (-1 (-107) *2 *2)))) (-3699 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-777)) (-4 *3 (-1001)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *3)) (-2 (|:| -3506 *2) (|:| -3027 *3)))))))
-(-13 (-777) (-10 -8 (-15 -3027 (|#2| $)) (-15 -3506 (|#1| $)) (-15 -3691 ($ (-2 (|:| -3506 |#1|) (|:| -3027 |#2|)))) (-15 -3691 ((-2 (|:| -3506 |#1|) (|:| -3027 |#2|)) $)) (-15 -3699 ($ |#1| |#2|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 59)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 89) (((-3 (-108) "failed") $) 95)) (-3490 ((|#1| $) NIL) (((-108) $) 39)) (-2174 (((-3 $ "failed") $) 90)) (-1289 ((|#2| (-108) |#2|) 82)) (-1355 (((-107) $) NIL)) (-2100 (($ |#1| (-329 (-108))) 13)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1310 (($ $ (-1 |#2| |#2|)) 58)) (-3508 (($ $ (-1 |#2| |#2|)) 44)) (-2007 ((|#2| $ |#2|) 32)) (-2454 ((|#1| |#1|) 100 (|has| |#1| (-156)))) (-3691 (((-786) $) 66) (($ (-501)) 17) (($ |#1|) 16) (($ (-108)) 23)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 36)) (-3774 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 20 T CONST)) (-1925 (($) 9 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) 48) (($ $ $) NIL)) (-3790 (($ $ $) 73)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ (-108) (-501)) NIL) (($ $ (-501)) 57)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156)))))
-(((-645 |#1| |#2|) (-13 (-959) (-950 |#1|) (-950 (-108)) (-256 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3774 ($ $)) (-15 -3774 ($ $ $)) (-15 -2454 (|#1| |#1|))) |noBranch|) (-15 -3508 ($ $ (-1 |#2| |#2|))) (-15 -1310 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-108) (-501))) (-15 ** ($ $ (-501))) (-15 -1289 (|#2| (-108) |#2|)) (-15 -2100 ($ |#1| (-329 (-108)))))) (-959) (-583 |#1|)) (T -645))
-((-3774 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) (-3774 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) (-2454 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-583 *3)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)))) (-1310 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-583 *3)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-645 *4 *5)) (-4 *5 (-583 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)) (-4 *4 (-583 *3)))) (-1289 (*1 *2 *3 *2) (-12 (-5 *3 (-108)) (-4 *4 (-959)) (-5 *1 (-645 *4 *2)) (-4 *2 (-583 *4)))) (-2100 (*1 *1 *2 *3) (-12 (-5 *3 (-329 (-108))) (-4 *2 (-959)) (-5 *1 (-645 *2 *4)) (-4 *4 (-583 *2)))))
-(-13 (-959) (-950 |#1|) (-950 (-108)) (-256 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3774 ($ $)) (-15 -3774 ($ $ $)) (-15 -2454 (|#1| |#1|))) |noBranch|) (-15 -3508 ($ $ (-1 |#2| |#2|))) (-15 -1310 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-108) (-501))) (-15 ** ($ $ (-501))) (-15 -1289 (|#2| (-108) |#2|)) (-15 -2100 ($ |#1| (-329 (-108))))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 33)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3547 (($ |#1| |#2|) 25)) (-2174 (((-3 $ "failed") $) 47)) (-1355 (((-107) $) 35)) (-3121 ((|#2| $) 12)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 48)) (-3708 (((-1018) $) NIL)) (-1626 (((-3 $ "failed") $ $) 46)) (-3691 (((-786) $) 24) (($ (-501)) 19) ((|#1| $) 13)) (-3965 (((-701)) 28)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 16 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 38)) (-3797 (($ $) 43) (($ $ $) 37)) (-3790 (($ $ $) 40)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 21) (($ $ $) 20)))
-(((-646 |#1| |#2| |#3| |#4| |#5|) (-13 (-959) (-10 -8 (-15 -3121 (|#2| $)) (-15 -3691 (|#1| $)) (-15 -3547 ($ |#1| |#2|)) (-15 -1626 ((-3 $ "failed") $ $)) (-15 -2174 ((-3 $ "failed") $)) (-15 -3833 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -646))
-((-2174 (*1 *1 *1) (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3121 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-646 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3691 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3547 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1626 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-959) (-10 -8 (-15 -3121 (|#2| $)) (-15 -3691 (|#1| $)) (-15 -3547 ($ |#1| |#2|)) (-15 -1626 ((-3 $ "failed") $ $)) (-15 -2174 ((-3 $ "failed") $)) (-15 -3833 ($ $))))
-((* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-647 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-648 |#2|) (-156)) (T -647))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 24) (($ $ |#1|) 27)))
-(((-648 |#1|) (-1180) (-156)) (T -648))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 15)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1787 ((|#1| $) 21)) (-2967 (($ $ $) NIL (|has| |#1| (-723)))) (-3099 (($ $ $) NIL (|has| |#1| (-723)))) (-3985 (((-1056) $) 46)) (-3206 (((-1021) $) NIL)) (-1800 ((|#3| $) 22)) (-2256 (((-787) $) 42)) (-2396 (($) 10 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1547 (((-107) $ $) 20)) (-1595 (((-107) $ $) NIL (|has| |#1| (-723)))) (-1572 (((-107) $ $) 24 (|has| |#1| (-723)))) (-1667 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1654 (($ $) 17) (($ $ $) NIL)) (-1642 (($ $ $) 27)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-599 |#1| |#2| |#3|) (-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $)))) (-650 |#2|) (-156) (|SubsetCategory| (-659) |#2|)) (T -599))
+((-1667 (*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) (-1667 (*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) (-1800 (*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))))
+(-13 (-650 |#2|) (-10 -8 (IF (|has| |#1| (-723)) (-6 (-723)) |noBranch|) (-15 -1667 ($ $ |#3|)) (-15 -1667 ($ |#1| |#3|)) (-15 -1787 (|#1| $)) (-15 -1800 (|#3| $))))
+((-1950 (((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|)) 33)))
+(((-600 |#1|) (-10 -7 (-15 -1950 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|)))) (-831)) (T -600))
+((-1950 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *4))) (-5 *3 (-1069 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4)))))
+(-10 -7 (-15 -1950 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 82)) (-3883 (($ $ (-703)) 90)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3791 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 48)) (-1772 (((-3 (-608 |#1|) "failed") $) NIL)) (-3189 (((-608 |#1|) $) NIL)) (-1212 (($ $) 89)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-608 |#1|) |#2|) 68)) (-2402 (($ $) 86)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-2208 (((-1175 |#1| |#2|) (-1175 |#1| |#2|) $) 47)) (-2854 (((-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4152 (((-608 |#1|) $) NIL)) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2051 (($ $ |#1| $) 30) (($ $ (-583 |#1|) (-583 $)) 32)) (-3688 (((-703) $) 88)) (-2276 (($ $ $) 20) (($ (-608 |#1|) (-608 |#1|)) 77) (($ (-608 |#1|) $) 75) (($ $ (-608 |#1|)) 76)) (-2256 (((-787) $) NIL) (($ |#1|) 74) (((-1166 |#1| |#2|) $) 58) (((-1175 |#1| |#2|) $) 41) (($ (-608 |#1|)) 25)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-608 |#1|)) NIL)) (-1931 ((|#2| (-1175 |#1| |#2|) $) 43)) (-2396 (($) 23 T CONST)) (-2332 (((-583 (-2 (|:| |k| (-608 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2908 (((-3 $ "failed") (-1166 |#1| |#2|)) 60)) (-1691 (($ (-608 |#1|)) 14)) (-1547 (((-107) $ $) 44)) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) 66) (($ $ $) NIL)) (-1642 (($ $ $) 29)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-608 |#1|)) NIL)))
+(((-601 |#1| |#2|) (-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -2908 ((-3 $ "failed") (-1166 |#1| |#2|))) (-15 -2276 ($ (-608 |#1|) (-608 |#1|))) (-15 -2276 ($ (-608 |#1|) $)) (-15 -2276 ($ $ (-608 |#1|))))) (-779) (-156)) (T -601))
+((-2908 (*1 *1 *2) (|partial| -12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) (-2276 (*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2276 (*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) (-2276 (*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))))
+(-13 (-344 |#1| |#2|) (-352 |#2| (-608 |#1|)) (-10 -8 (-15 -2908 ((-3 $ "failed") (-1166 |#1| |#2|))) (-15 -2276 ($ (-608 |#1|) (-608 |#1|))) (-15 -2276 ($ (-608 |#1|) $)) (-15 -2276 ($ $ (-608 |#1|)))))
+((-2044 (((-107) $) NIL) (((-107) (-1 (-107) |#2| |#2|) $) 49)) (-2034 (($ $) NIL) (($ (-1 (-107) |#2| |#2|) $) 11)) (-2337 (($ (-1 (-107) |#2|) $) 27)) (-4020 (($ $) 55)) (-3483 (($ $) 62)) (-3212 (($ |#2| $) NIL) (($ (-1 (-107) |#2|) $) 36)) (-3225 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52)) (-2607 (((-517) |#2| $ (-517)) 60) (((-517) |#2| $) NIL) (((-517) (-1 (-107) |#2|) $) 46)) (-3462 (($ (-703) |#2|) 53)) (-2797 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 29)) (-3237 (($ $ $) NIL) (($ (-1 (-107) |#2| |#2|) $ $) 24)) (-1893 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 54)) (-1529 (($ |#2|) 14)) (-1710 (($ $ $ (-517)) 35) (($ |#2| $ (-517)) 33)) (-2887 (((-3 |#2| "failed") (-1 (-107) |#2|) $) 45)) (-2154 (($ $ (-1121 (-517))) 43) (($ $ (-517)) 37)) (-1906 (($ $ $ (-517)) 59)) (-2433 (($ $) 57)) (-1572 (((-107) $ $) 64)))
+(((-602 |#1| |#2|) (-10 -8 (-15 -1529 (|#1| |#2|)) (-15 -2154 (|#1| |#1| (-517))) (-15 -2154 (|#1| |#1| (-1121 (-517)))) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1710 (|#1| |#2| |#1| (-517))) (-15 -1710 (|#1| |#1| |#1| (-517))) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -4020 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3462 (|#1| (-703) |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|))) (-603 |#2|) (-1108)) (T -602))
+NIL
+(-10 -8 (-15 -1529 (|#1| |#2|)) (-15 -2154 (|#1| |#1| (-517))) (-15 -2154 (|#1| |#1| (-1121 (-517)))) (-15 -3212 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -1710 (|#1| |#2| |#1| (-517))) (-15 -1710 (|#1| |#1| |#1| (-517))) (-15 -2797 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2337 (|#1| (-1 (-107) |#2|) |#1|)) (-15 -3212 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1|)) (-15 -2797 (|#1| |#1| |#1|)) (-15 -3237 (|#1| (-1 (-107) |#2| |#2|) |#1| |#1|)) (-15 -2044 ((-107) (-1 (-107) |#2| |#2|) |#1|)) (-15 -2607 ((-517) (-1 (-107) |#2|) |#1|)) (-15 -2607 ((-517) |#2| |#1|)) (-15 -2607 ((-517) |#2| |#1| (-517))) (-15 -3237 (|#1| |#1| |#1|)) (-15 -2044 ((-107) |#1|)) (-15 -1906 (|#1| |#1| |#1| (-517))) (-15 -4020 (|#1| |#1|)) (-15 -2034 (|#1| (-1 (-107) |#2| |#2|) |#1|)) (-15 -2034 (|#1| |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3225 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2887 ((-3 |#2| "failed") (-1 (-107) |#2|) |#1|)) (-15 -3462 (|#1| (-703) |#2|)) (-15 -1893 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2433 (|#1| |#1|)))
+((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1668 (((-1158) $ (-517) (-517)) 97 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2044 (((-107) $) 142 (|has| |#1| (-779))) (((-107) (-1 (-107) |#1| |#1|) $) 136)) (-2034 (($ $) 146 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181)))) (($ (-1 (-107) |#1| |#1|) $) 145 (|has| $ (-6 -4181)))) (-3166 (($ $) 141 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $) 135)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 117 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-2337 (($ (-1 (-107) |#1|) $) 129)) (-3536 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4180)))) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-4020 (($ $) 144 (|has| $ (-6 -4181)))) (-3093 (($ $) 134)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-3483 (($ $) 131 (|has| |#1| (-1003)))) (-1679 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 130 (|has| |#1| (-1003))) (($ (-1 (-107) |#1|) $) 125)) (-2052 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4180))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1445 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 87)) (-3811 (((-107) $) 83)) (-2607 (((-517) |#1| $ (-517)) 139 (|has| |#1| (-1003))) (((-517) |#1| $) 138 (|has| |#1| (-1003))) (((-517) (-1 (-107) |#1|) $) 137)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) 108)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 95 (|has| (-517) (-779)))) (-2967 (($ $ $) 147 (|has| |#1| (-779)))) (-2797 (($ $ $) 132 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 128)) (-3237 (($ $ $) 140 (|has| |#1| (-779))) (($ (-1 (-107) |#1| |#1|) $ $) 133)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 94 (|has| (-517) (-779)))) (-3099 (($ $ $) 148 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1529 (($ |#1|) 122)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-1710 (($ $ $ (-517)) 127) (($ |#1| $ (-517)) 126)) (-2620 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1857 (((-583 (-517)) $) 92)) (-4088 (((-107) (-517) $) 91)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2565 (($ $ |#1|) 96 (|has| $ (-6 -4181)))) (-2348 (((-107) $) 84)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 90)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1121 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2459 (((-517) $ $) 44)) (-2154 (($ $ (-1121 (-517))) 124) (($ $ (-517)) 123)) (-3750 (($ $ (-1121 (-517))) 114) (($ $ (-517)) 113)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 143 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 107)) (-2568 (($ $ $) 61) (($ $ |#1|) 60)) (-2452 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 150 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 151 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 149 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 152 (|has| |#1| (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-603 |#1|) (-1184) (-1108)) (T -603))
+((-1529 (*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1108)))))
+(-13 (-1047 |t#1|) (-343 |t#1|) (-254 |t#1|) (-10 -8 (-15 -1529 ($ |t#1|))))
+(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-254 |#1|) . T) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-779) |has| |#1| (-779)) ((-926 |#1|) . T) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1047 |#1|) . T) ((-1108) . T) ((-1142 |#1|) . T))
+((-1674 (((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-583 (-583 |#1|)) (-583 (-1153 |#1|))) 21) (((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-623 |#1|) (-583 (-1153 |#1|))) 20) (((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-583 (-583 |#1|)) (-1153 |#1|)) 16) (((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)) 13)) (-2261 (((-703) (-623 |#1|) (-1153 |#1|)) 29)) (-2679 (((-3 (-1153 |#1|) "failed") (-623 |#1|) (-1153 |#1|)) 23)) (-3836 (((-107) (-623 |#1|) (-1153 |#1|)) 26)))
+(((-604 |#1|) (-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|))) (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-583 (-583 |#1|)) (-1153 |#1|))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-623 |#1|) (-583 (-1153 |#1|)))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-583 (-583 |#1|)) (-583 (-1153 |#1|)))) (-15 -2679 ((-3 (-1153 |#1|) "failed") (-623 |#1|) (-1153 |#1|))) (-15 -3836 ((-107) (-623 |#1|) (-1153 |#1|))) (-15 -2261 ((-703) (-623 |#1|) (-1153 |#1|)))) (-333)) (T -604))
+((-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) (-3836 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) (-2679 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1153 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))))
+(-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|))) (-15 -1674 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-583 (-583 |#1|)) (-1153 |#1|))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-623 |#1|) (-583 (-1153 |#1|)))) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|))))) (-583 (-583 |#1|)) (-583 (-1153 |#1|)))) (-15 -2679 ((-3 (-1153 |#1|) "failed") (-623 |#1|) (-1153 |#1|))) (-15 -3836 ((-107) (-623 |#1|) (-1153 |#1|))) (-15 -2261 ((-703) (-623 |#1|) (-1153 |#1|))))
+((-1674 (((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|)))) |#4| (-583 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|) 45)) (-2261 (((-703) |#4| |#3|) 17)) (-2679 (((-3 |#3| "failed") |#4| |#3|) 20)) (-3836 (((-107) |#4| |#3|) 13)))
+(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|)) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2679 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3836 ((-107) |#4| |#3|)) (-15 -2261 ((-703) |#4| |#3|))) (-333) (-13 (-343 |#1|) (-10 -7 (-6 -4181))) (-13 (-343 |#1|) (-10 -7 (-6 -4181))) (-621 |#1| |#2| |#3|)) (T -605))
+((-2261 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-3836 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2679 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) (-1674 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1753 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) (-1674 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(-10 -7 (-15 -1674 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|)) (-15 -1674 ((-583 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|)))) |#4| (-583 |#3|))) (-15 -2679 ((-3 |#3| "failed") |#4| |#3|)) (-15 -3836 ((-107) |#4| |#3|)) (-15 -2261 ((-703) |#4| |#3|)))
+((-1485 (((-2 (|:| |particular| (-3 (-1153 (-377 |#4|)) "failed")) (|:| -1753 (-583 (-1153 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)) 44)))
+(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1485 ((-2 (|:| |particular| (-3 (-1153 (-377 |#4|)) "failed")) (|:| -1753 (-583 (-1153 (-377 |#4|))))) (-583 |#4|) (-583 |#3|)))) (-509) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -606))
+((-1485 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 (-377 *8)) "failed")) (|:| -1753 (-583 (-1153 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1485 ((-2 (|:| |particular| (-3 (-1153 (-377 |#4|)) "failed")) (|:| -1753 (-583 (-1153 (-377 |#4|))))) (-583 |#4|) (-583 |#3|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3295 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-1472 ((|#2| $) NIL)) (-2818 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3533 (((-1153 (-623 |#2|))) NIL) (((-1153 (-623 |#2|)) (-1153 $)) NIL)) (-3213 (((-107) $) NIL)) (-3456 (((-1153 $)) 37)) (-2953 (((-107) $ (-703)) NIL)) (-3487 (($ |#2|) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) NIL (|has| |#2| (-278)))) (-1939 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2257 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1450 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2619 (((-623 |#2|)) NIL) (((-623 |#2|) (-1153 $)) NIL)) (-2299 ((|#2| $) NIL)) (-3343 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1153 $)) NIL)) (-2158 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-2436 (((-1069 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-3380 (($ $ (-843)) NIL)) (-3866 ((|#2| $) NIL)) (-2417 (((-1069 |#2|) $) NIL (|has| |#2| (-509)))) (-4069 ((|#2|) NIL) ((|#2| (-1153 $)) NIL)) (-2085 (((-1069 |#2|) $) NIL)) (-2362 (((-107)) NIL)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-1967 (($ (-1153 |#2|)) NIL) (($ (-1153 |#2|) (-1153 $)) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2261 (((-703) $) NIL (|has| |#2| (-509))) (((-843)) 38)) (-1377 ((|#2| $ (-517) (-517)) NIL)) (-3962 (((-107)) NIL)) (-3730 (($ $ (-843)) NIL)) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL)) (-1948 (((-703) $) NIL (|has| |#2| (-509)))) (-3706 (((-583 (-214 |#1| |#2|)) $) NIL (|has| |#2| (-509)))) (-1477 (((-703) $) NIL)) (-2754 (((-107)) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#2| $) NIL (|has| |#2| (-6 (-4182 "*"))))) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#2|))) NIL)) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3035 (((-583 (-583 |#2|)) $) NIL)) (-3983 (((-107)) NIL)) (-3414 (((-107)) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3550 (((-3 (-2 (|:| |particular| $) (|:| -1753 (-583 $))) "failed")) NIL (|has| |#2| (-509)))) (-1793 (((-3 $ "failed")) NIL (|has| |#2| (-509)))) (-2010 (((-623 |#2|)) NIL) (((-623 |#2|) (-1153 $)) NIL)) (-1188 ((|#2| $) NIL)) (-3914 (((-623 |#2|) $) NIL) (((-623 |#2|) $ (-1153 $)) NIL)) (-1680 (((-3 $ "failed") $) NIL (|has| |#2| (-509)))) (-2300 (((-1069 (-874 |#2|))) NIL (|has| |#2| (-333)))) (-2572 (($ $ (-843)) NIL)) (-3913 ((|#2| $) NIL)) (-4121 (((-1069 |#2|) $) NIL (|has| |#2| (-509)))) (-1988 ((|#2|) NIL) ((|#2| (-1153 $)) NIL)) (-2190 (((-1069 |#2|) $) NIL)) (-3606 (((-107)) NIL)) (-3985 (((-1056) $) NIL)) (-4045 (((-107)) NIL)) (-1286 (((-107)) NIL)) (-1848 (((-107)) NIL)) (-2104 (((-3 $ "failed") $) NIL (|has| |#2| (-333)))) (-3206 (((-1021) $) NIL)) (-1697 (((-107)) NIL)) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) 22) ((|#2| $ (-517)) NIL)) (-3127 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2671 ((|#2| $) NIL)) (-1879 (($ (-583 |#2|)) NIL)) (-1516 (((-107) $) NIL)) (-2803 (((-214 |#1| |#2|) $) NIL)) (-3057 ((|#2| $) NIL (|has| |#2| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-4114 (((-623 |#2|) (-1153 $)) NIL) (((-1153 |#2|) $) NIL) (((-623 |#2|) (-1153 $) (-1153 $)) NIL) (((-1153 |#2|) $ (-1153 $)) 25)) (-3645 (($ (-1153 |#2|)) NIL) (((-1153 |#2|) $) NIL)) (-2278 (((-583 (-874 |#2|))) NIL) (((-583 (-874 |#2|)) (-1153 $)) NIL)) (-3394 (($ $ $) NIL)) (-1561 (((-107)) NIL)) (-3728 (((-214 |#1| |#2|) $ (-517)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) 36)) (-1582 (((-583 (-1153 |#2|))) NIL (|has| |#2| (-509)))) (-3917 (($ $ $ $) NIL)) (-1316 (((-107)) NIL)) (-1587 (($ (-623 |#2|) $) NIL)) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1956 (($ $ $) NIL)) (-2687 (((-107)) NIL)) (-2524 (((-107)) NIL)) (-3642 (((-107)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) NIL) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-607 |#1| |#2|) (-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|)) (-843) (-156)) (T -607))
+NIL
+(-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-387 |#2|))
+((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) NIL)) (-3652 (($ $) 50)) (-3153 (((-107) $) NIL)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2833 (((-3 $ "failed") (-751 |#1|)) 22)) (-2247 (((-107) (-751 |#1|)) 14)) (-2714 (($ (-751 |#1|)) 23)) (-3109 (((-107) $ $) 28)) (-2195 (((-843) $) 35)) (-3639 (($ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3755 (((-583 $) (-751 |#1|)) 16)) (-2256 (((-787) $) 41) (($ |#1|) 32) (((-751 |#1|) $) 37) (((-612 |#1|) $) 42)) (-2514 (((-57 (-583 $)) (-583 |#1|) (-843)) 55)) (-2479 (((-583 $) (-583 |#1|) (-843)) 57)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 51)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 36)))
+(((-608 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 -3153 ((-107) $)) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ((-612 |#1|) $)) (-15 -3755 ((-583 $) (-751 |#1|))) (-15 -2247 ((-107) (-751 |#1|))) (-15 -2714 ($ (-751 |#1|))) (-15 -2833 ((-3 $ "failed") (-751 |#1|))) (-15 -3463 ((-583 |#1|) $)) (-15 -2514 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -2479 ((-583 $) (-583 |#1|) (-843))))) (-779)) (T -608))
+((-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3639 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-3652 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3109 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-2833 (*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) (-2514 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
+(-13 (-779) (-952 |#1|) (-10 -8 (-15 -3153 ((-107) $)) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ((-612 |#1|) $)) (-15 -3755 ((-583 $) (-751 |#1|))) (-15 -2247 ((-107) (-751 |#1|))) (-15 -2714 ($ (-751 |#1|))) (-15 -2833 ((-3 $ "failed") (-751 |#1|))) (-15 -3463 ((-583 |#1|) $)) (-15 -2514 ((-57 (-583 $)) (-583 |#1|) (-843))) (-15 -2479 ((-583 $) (-583 |#1|) (-843)))))
+((-3199 ((|#2| $) 76)) (-2779 (($ $) 96)) (-2953 (((-107) $ (-703)) 26)) (-1660 (($ $) 85) (($ $ (-703)) 88)) (-3811 (((-107) $) 97)) (-3063 (((-583 $) $) 72)) (-1272 (((-107) $ $) 71)) (-2550 (((-107) $ (-703)) 24)) (-3243 (((-517) $) 46)) (-3482 (((-517) $) 45)) (-3847 (((-107) $ (-703)) 22)) (-1763 (((-107) $) 74)) (-2068 ((|#2| $) 89) (($ $ (-703)) 92)) (-2620 (($ $ $ (-517)) 62) (($ |#2| $ (-517)) 61)) (-1857 (((-583 (-517)) $) 44)) (-4088 (((-107) (-517) $) 42)) (-1647 ((|#2| $) NIL) (($ $ (-703)) 84)) (-1672 (($ $ (-517)) 99)) (-2348 (((-107) $) 98)) (-2048 (((-107) (-1 (-107) |#2|) $) 32)) (-1941 (((-583 |#2|) $) 33)) (-1449 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1121 (-517))) 58) ((|#2| $ (-517)) 40) ((|#2| $ (-517) |#2|) 41)) (-2459 (((-517) $ $) 70)) (-3750 (($ $ (-1121 (-517))) 57) (($ $ (-517)) 51)) (-2655 (((-107) $) 66)) (-2552 (($ $) 81)) (-2691 (((-703) $) 80)) (-1761 (($ $) 79)) (-2276 (($ (-583 |#2|)) 37)) (-1545 (($ $) 100)) (-1479 (((-583 $) $) 69)) (-2732 (((-107) $ $) 68)) (-3675 (((-107) (-1 (-107) |#2|) $) 31)) (-1547 (((-107) $ $) 18)) (-2296 (((-703) $) 29)))
+(((-609 |#1| |#2|) (-10 -8 (-15 -1545 (|#1| |#1|)) (-15 -1672 (|#1| |#1| (-517))) (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1941 ((-583 |#2|) |#1|)) (-15 -4088 ((-107) (-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -3482 ((-517) |#1|)) (-15 -3243 ((-517) |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -2459 ((-517) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703)))) (-610 |#2|) (-1108)) (T -609))
+NIL
+(-10 -8 (-15 -1545 (|#1| |#1|)) (-15 -1672 (|#1| |#1| (-517))) (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -1941 ((-583 |#2|) |#1|)) (-15 -4088 ((-107) (-517) |#1|)) (-15 -1857 ((-583 (-517)) |#1|)) (-15 -3482 ((-517) |#1|)) (-15 -3243 ((-517) |#1|)) (-15 -2276 (|#1| (-583 |#2|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -3750 (|#1| |#1| (-517))) (-15 -3750 (|#1| |#1| (-1121 (-517)))) (-15 -2620 (|#1| |#2| |#1| (-517))) (-15 -2620 (|#1| |#1| |#1| (-517))) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -2459 ((-517) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2048 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#2|) |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1668 (((-1158) $ (-517) (-517)) 97 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 117 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 102)) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-3861 (($ $) 124)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-1679 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 103)) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1445 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 87)) (-3811 (((-107) $) 83)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-4097 (((-703) $) 123)) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) 108)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 95 (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 94 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3258 (($ $) 126)) (-2202 (((-107) $) 127)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-2620 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1857 (((-583 (-517)) $) 92)) (-4088 (((-107) (-517) $) 91)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2279 ((|#1| $) 125)) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2565 (($ $ |#1|) 96 (|has| $ (-6 -4181)))) (-1672 (($ $ (-517)) 122)) (-2348 (((-107) $) 84)) (-3980 (((-107) $) 128)) (-3660 (((-107) $) 129)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 90)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1121 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2459 (((-517) $ $) 44)) (-3750 (($ $ (-1121 (-517))) 114) (($ $ (-517)) 113)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 107)) (-2568 (($ $ $) 61 (|has| $ (-6 -4181))) (($ $ |#1|) 60 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-1545 (($ $) 121)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-610 |#1|) (-1184) (-1108)) (T -610))
+((-2052 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) (-3536 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3980 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-2202 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3258 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) (-3861 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))))
+(-13 (-1047 |t#1|) (-10 -8 (-15 -2052 ($ (-1 (-107) |t#1|) $)) (-15 -3536 ($ (-1 (-107) |t#1|) $)) (-15 -3660 ((-107) $)) (-15 -3980 ((-107) $)) (-15 -2202 ((-107) $)) (-15 -3258 ($ $)) (-15 -2279 (|t#1| $)) (-15 -3861 ($ $)) (-15 -4097 ((-703) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1047 |#1|) . T) ((-1108) . T) ((-1142 |#1|) . T))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3486 (($ (-703) (-703) (-703)) 33 (|has| |#1| (-961)))) (-2953 (((-107) $ (-703)) NIL)) (-3724 ((|#1| $ (-703) (-703) (-703) |#1|) 27)) (-3092 (($) NIL T CONST)) (-2662 (($ $ $) 37 (|has| |#1| (-961)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3260 (((-1153 (-703)) $) 8)) (-3398 (($ (-1073) $ $) 22)) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3857 (($ (-703)) 35 (|has| |#1| (-961)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-703) (-703) (-703)) 25)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2276 (($ (-583 (-583 (-583 |#1|)))) 44)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-879 (-879 (-879 |#1|)))) 15) (((-879 (-879 (-879 |#1|))) $) 12)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-611 |#1|) (-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -3486 ($ (-703) (-703) (-703))) (-15 -3857 ($ (-703))) (-15 -2662 ($ $ $))) |noBranch|) (-15 -2276 ($ (-583 (-583 (-583 |#1|))))) (-15 -1449 (|#1| $ (-703) (-703) (-703))) (-15 -3724 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2256 ($ (-879 (-879 (-879 |#1|))))) (-15 -2256 ((-879 (-879 (-879 |#1|))) $)) (-15 -3398 ($ (-1073) $ $)) (-15 -3260 ((-1153 (-703)) $)))) (-1003)) (T -611))
+((-3486 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-3857 (*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))) (-2662 (*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-1449 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-3724 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-3398 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-1153 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
+(-13 (-456 |#1|) (-10 -8 (IF (|has| |#1| (-961)) (PROGN (-15 -3486 ($ (-703) (-703) (-703))) (-15 -3857 ($ (-703))) (-15 -2662 ($ $ $))) |noBranch|) (-15 -2276 ($ (-583 (-583 (-583 |#1|))))) (-15 -1449 (|#1| $ (-703) (-703) (-703))) (-15 -3724 (|#1| $ (-703) (-703) (-703) |#1|)) (-15 -2256 ($ (-879 (-879 (-879 |#1|))))) (-15 -2256 ((-879 (-879 (-879 |#1|))) $)) (-15 -3398 ($ (-1073) $ $)) (-15 -3260 ((-1153 (-703)) $))))
+((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) 14)) (-3652 (($ $) 18)) (-3153 (((-107) $) 19)) (-1772 (((-3 |#1| "failed") $) 22)) (-3189 ((|#1| $) 20)) (-1660 (($ $) 36)) (-2402 (($ $) 24)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3109 (((-107) $ $) 41)) (-2195 (((-843) $) 38)) (-3639 (($ $) 17)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 ((|#1| $) 35)) (-2256 (((-787) $) 31) (($ |#1|) 23) (((-751 |#1|) $) 27)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 12)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 40)) (* (($ $ $) 34)))
+(((-612 |#1|) (-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -1647 (|#1| $)) (-15 -3639 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2402 ($ $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3652 ($ $)) (-15 -3463 ((-583 |#1|) $)))) (-779)) (T -612))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-1647 (*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3639 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3109 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) (-3652 (*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-952 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2256 ((-751 |#1|) $)) (-15 -1647 (|#1| $)) (-15 -3639 ($ $)) (-15 -2195 ((-843) $)) (-15 -3109 ((-107) $ $)) (-15 -2402 ($ $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3652 ($ $)) (-15 -3463 ((-583 |#1|) $))))
+((-2435 ((|#1| (-1 |#1| (-703) |#1|) (-703) |#1|) 11)) (-2141 ((|#1| (-1 |#1| |#1|) (-703) |#1|) 9)))
+(((-613 |#1|) (-10 -7 (-15 -2141 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2435 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|))) (-1003)) (T -613))
+((-2435 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))) (-2141 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))))
+(-10 -7 (-15 -2141 (|#1| (-1 |#1| |#1|) (-703) |#1|)) (-15 -2435 (|#1| (-1 |#1| (-703) |#1|) (-703) |#1|)))
+((-2205 ((|#2| |#1| |#2|) 9)) (-2194 ((|#1| |#1| |#2|) 8)))
+(((-614 |#1| |#2|) (-10 -7 (-15 -2194 (|#1| |#1| |#2|)) (-15 -2205 (|#2| |#1| |#2|))) (-1003) (-1003)) (T -614))
+((-2205 (*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-2194 (*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -2194 (|#1| |#1| |#2|)) (-15 -2205 (|#2| |#1| |#2|)))
+((-1955 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -1955 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1003) (-1003) (-1003)) (T -615))
+((-1955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-615 *5 *6 *2)))))
+(-10 -7 (-15 -1955 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2435 (((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)) 23)) (-3644 (((-1 |#1|) |#1|) 8)) (-3402 ((|#1| |#1|) 16)) (-1366 (((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2256 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-703)) 20)))
+(((-616 |#1|) (-10 -7 (-15 -3644 ((-1 |#1|) |#1|)) (-15 -2256 ((-1 |#1|) |#1|)) (-15 -1366 (|#1| (-1 |#1| |#1|))) (-15 -1366 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3402 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2435 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|)))) (-1003)) (T -616))
+((-2435 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1003)) (-5 *1 (-616 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) (-3402 (*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-1366 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003)))) (-1366 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) (-3644 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -3644 ((-1 |#1|) |#1|)) (-15 -2256 ((-1 |#1|) |#1|)) (-15 -1366 (|#1| (-1 |#1| |#1|))) (-15 -1366 ((-583 |#1|) (-1 (-583 |#1|) (-583 |#1|)) (-517))) (-15 -3402 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-703))) (-15 -2435 ((-1 |#1| (-703) |#1|) (-1 |#1| (-703) |#1|))))
+((-3822 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1250 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1619 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3618 (((-1 |#2| |#1|) |#2|) 11)))
+(((-617 |#1| |#2|) (-10 -7 (-15 -3618 ((-1 |#2| |#1|) |#2|)) (-15 -1250 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1619 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3822 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1003) (-1003)) (T -617))
+((-3822 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) (-1250 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))) (-3618 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -3618 ((-1 |#2| |#1|) |#2|)) (-15 -1250 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1619 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3822 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2498 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2423 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3319 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3626 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2530 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-618 |#1| |#2| |#3|) (-10 -7 (-15 -2423 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3319 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3626 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2530 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2498 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1003) (-1003) (-1003)) (T -618))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))) (-2530 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))) (-2423 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
+(-10 -7 (-15 -2423 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3319 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3626 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2530 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2498 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3225 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1893 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-619 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1893 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3225 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-961) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|) (-961) (-343 |#5|) (-343 |#5|) (-621 |#5| |#6| |#7|)) (T -619))
+((-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) (-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))))
+(-10 -7 (-15 -1893 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1893 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3225 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-3526 (($ (-703) (-703)) 31)) (-1231 (($ $ $) 54)) (-2033 (($ |#3|) 50) (($ $) 51)) (-2818 (((-107) $) 26)) (-3666 (($ $ (-517) (-517)) 56)) (-2778 (($ $ (-517) (-517)) 57)) (-3671 (($ $ (-517) (-517) (-517) (-517)) 61)) (-4008 (($ $) 52)) (-3213 (((-107) $) 14)) (-3565 (($ $ (-517) (-517) $) 62)) (-2411 ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) 60)) (-3487 (($ (-703) |#2|) 36)) (-1840 (($ (-583 (-583 |#2|))) 34)) (-3035 (((-583 (-583 |#2|)) $) 55)) (-2520 (($ $ $) 53)) (-2476 (((-3 $ "failed") $ |#2|) 89)) (-1449 ((|#2| $ (-517) (-517)) NIL) ((|#2| $ (-517) (-517) |#2|) NIL) (($ $ (-583 (-517)) (-583 (-517))) 59)) (-1879 (($ (-583 |#2|)) 38) (($ (-583 $)) 40)) (-1516 (((-107) $) 23)) (-2256 (((-787) $) NIL) (($ |#4|) 45)) (-1683 (((-107) $) 28)) (-1667 (($ $ |#2|) 91)) (-1654 (($ $ $) 66) (($ $) 69)) (-1642 (($ $ $) 64)) (** (($ $ (-703)) 78) (($ $ (-517)) 94)) (* (($ $ $) 75) (($ |#2| $) 71) (($ $ |#2|) 72) (($ (-517) $) 74) ((|#4| $ |#4|) 82) ((|#3| |#3| $) 86)))
+(((-620 |#1| |#2| |#3| |#4|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#2|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3671 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -2778 (|#1| |#1| (-517) (-517))) (-15 -3666 (|#1| |#1| (-517) (-517))) (-15 -2411 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1449 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3035 ((-583 (-583 |#2|)) |#1|)) (-15 -1231 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2033 (|#1| |#3|)) (-15 -2256 (|#1| |#4|)) (-15 -1879 (|#1| (-583 |#1|))) (-15 -1879 (|#1| (-583 |#2|))) (-15 -3487 (|#1| (-703) |#2|)) (-15 -1840 (|#1| (-583 (-583 |#2|)))) (-15 -3526 (|#1| (-703) (-703))) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2256 ((-787) |#1|))) (-621 |#2| |#3| |#4|) (-961) (-343 |#2|) (-343 |#2|)) (T -620))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -1667 (|#1| |#1| |#2|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-703))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -3565 (|#1| |#1| (-517) (-517) |#1|)) (-15 -3671 (|#1| |#1| (-517) (-517) (-517) (-517))) (-15 -2778 (|#1| |#1| (-517) (-517))) (-15 -3666 (|#1| |#1| (-517) (-517))) (-15 -2411 (|#1| |#1| (-583 (-517)) (-583 (-517)) |#1|)) (-15 -1449 (|#1| |#1| (-583 (-517)) (-583 (-517)))) (-15 -3035 ((-583 (-583 |#2|)) |#1|)) (-15 -1231 (|#1| |#1| |#1|)) (-15 -2520 (|#1| |#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -2033 (|#1| |#1|)) (-15 -2033 (|#1| |#3|)) (-15 -2256 (|#1| |#4|)) (-15 -1879 (|#1| (-583 |#1|))) (-15 -1879 (|#1| (-583 |#2|))) (-15 -3487 (|#1| (-703) |#2|)) (-15 -1840 (|#1| (-583 (-583 |#2|)))) (-15 -3526 (|#1| (-703) (-703))) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) (-517))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) 97)) (-1231 (($ $ $) 87)) (-2033 (($ |#2|) 91) (($ $) 90)) (-2818 (((-107) $) 99)) (-3666 (($ $ (-517) (-517)) 83)) (-2778 (($ $ (-517) (-517)) 82)) (-3671 (($ $ (-517) (-517) (-517) (-517)) 81)) (-4008 (($ $) 89)) (-3213 (((-107) $) 101)) (-2953 (((-107) $ (-703)) 8)) (-3565 (($ $ (-517) (-517) $) 80)) (-2411 ((|#1| $ (-517) (-517) |#1|) 44) (($ $ (-583 (-517)) (-583 (-517)) $) 84)) (-4087 (($ $ (-517) |#2|) 42)) (-3739 (($ $ (-517) |#3|) 41)) (-3487 (($ (-703) |#1|) 95)) (-3092 (($) 7 T CONST)) (-2468 (($ $) 67 (|has| |#1| (-278)))) (-1939 ((|#2| $ (-517)) 46)) (-2261 (((-703) $) 66 (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) 43)) (-1377 ((|#1| $ (-517) (-517)) 48)) (-1536 (((-583 |#1|) $) 30)) (-1948 (((-703) $) 65 (|has| |#1| (-509)))) (-3706 (((-583 |#3|) $) 64 (|has| |#1| (-509)))) (-1477 (((-703) $) 51)) (-3462 (($ (-703) (-703) |#1|) 57)) (-1486 (((-703) $) 50)) (-2550 (((-107) $ (-703)) 9)) (-2757 ((|#1| $) 62 (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) 55)) (-1338 (((-517) $) 53)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 54)) (-1307 (((-517) $) 52)) (-1840 (($ (-583 (-583 |#1|))) 96)) (-1433 (($ (-1 |#1| |#1|) $) 34)) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3035 (((-583 (-583 |#1|)) $) 86)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) 61 (|has| |#1| (-333)))) (-2520 (($ $ $) 88)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) 56)) (-2476 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) (-517)) 49) ((|#1| $ (-517) (-517) |#1|) 47) (($ $ (-583 (-517)) (-583 (-517))) 85)) (-1879 (($ (-583 |#1|)) 94) (($ (-583 $)) 93)) (-1516 (((-107) $) 100)) (-3057 ((|#1| $) 63 (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3728 ((|#3| $ (-517)) 45)) (-2256 (((-787) $) 20 (|has| |#1| (-1003))) (($ |#3|) 92)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1683 (((-107) $) 98)) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) 68 (|has| |#1| (-333)))) (-1654 (($ $ $) 78) (($ $) 77)) (-1642 (($ $ $) 79)) (** (($ $ (-703)) 70) (($ $ (-517)) 60 (|has| |#1| (-333)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-517) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-621 |#1| |#2| |#3|) (-1184) (-961) (-343 |t#1|) (-343 |t#1|)) (T -621))
+((-3213 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) (-3526 (*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3487 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (-2033 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (-2033 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-4008 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1231 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) (-1449 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2411 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3666 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2778 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3671 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-3565 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1654 (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2104 (*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4181) (-6 -4180) (-15 -3213 ((-107) $)) (-15 -1516 ((-107) $)) (-15 -2818 ((-107) $)) (-15 -1683 ((-107) $)) (-15 -3526 ($ (-703) (-703))) (-15 -1840 ($ (-583 (-583 |t#1|)))) (-15 -3487 ($ (-703) |t#1|)) (-15 -1879 ($ (-583 |t#1|))) (-15 -1879 ($ (-583 $))) (-15 -2256 ($ |t#3|)) (-15 -2033 ($ |t#2|)) (-15 -2033 ($ $)) (-15 -4008 ($ $)) (-15 -2520 ($ $ $)) (-15 -1231 ($ $ $)) (-15 -3035 ((-583 (-583 |t#1|)) $)) (-15 -1449 ($ $ (-583 (-517)) (-583 (-517)))) (-15 -2411 ($ $ (-583 (-517)) (-583 (-517)) $)) (-15 -3666 ($ $ (-517) (-517))) (-15 -2778 ($ $ (-517) (-517))) (-15 -3671 ($ $ (-517) (-517) (-517) (-517))) (-15 -3565 ($ $ (-517) (-517) $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -1654 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-517) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-703))) (IF (|has| |t#1| (-509)) (-15 -2476 ((-3 $ "failed") $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-333)) (-15 -1667 ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-278)) (-15 -2468 ($ $)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2261 ((-703) $)) (-15 -1948 ((-703) $)) (-15 -3706 ((-583 |t#3|) $))) |noBranch|) (IF (|has| |t#1| (-6 (-4182 "*"))) (PROGN (-15 -3057 (|t#1| $)) (-15 -2757 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2104 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-55 |#1| |#2| |#3|) . T) ((-1108) . T))
+((-2468 ((|#4| |#4|) 69 (|has| |#1| (-278)))) (-2261 (((-703) |#4|) 93 (|has| |#1| (-509)))) (-1948 (((-703) |#4|) 73 (|has| |#1| (-509)))) (-3706 (((-583 |#3|) |#4|) 80 (|has| |#1| (-509)))) (-1352 (((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|) 105 (|has| |#1| (-278)))) (-2757 ((|#1| |#4|) 33)) (-2726 (((-3 |#4| "failed") |#4|) 61 (|has| |#1| (-509)))) (-2104 (((-3 |#4| "failed") |#4|) 77 (|has| |#1| (-333)))) (-1503 ((|#4| |#4|) 65 (|has| |#1| (-509)))) (-3876 ((|#4| |#4| |#1| (-517) (-517)) 41)) (-3874 ((|#4| |#4| (-517) (-517)) 36)) (-2696 ((|#4| |#4| |#1| (-517) (-517)) 46)) (-3057 ((|#1| |#4|) 75)) (-2061 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 66 (|has| |#1| (-509)))))
+(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 (|#1| |#4|)) (-15 -2757 (|#1| |#4|)) (-15 -3874 (|#4| |#4| (-517) (-517))) (-15 -3876 (|#4| |#4| |#1| (-517) (-517))) (-15 -2696 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (-15 -3706 ((-583 |#3|) |#4|)) (-15 -1503 (|#4| |#4|)) (-15 -2726 ((-3 |#4| "failed") |#4|)) (-15 -2061 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -2468 (|#4| |#4|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 |#4| "failed") |#4|)) |noBranch|)) (-156) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -622))
+((-2104 (*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1352 (*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2726 (*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-1948 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2261 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-2696 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-3876 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))) (-3874 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))) (-2757 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) (-3057 (*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))))
+(-10 -7 (-15 -3057 (|#1| |#4|)) (-15 -2757 (|#1| |#4|)) (-15 -3874 (|#4| |#4| (-517) (-517))) (-15 -3876 (|#4| |#4| |#1| (-517) (-517))) (-15 -2696 (|#4| |#4| |#1| (-517) (-517))) (IF (|has| |#1| (-509)) (PROGN (-15 -2261 ((-703) |#4|)) (-15 -1948 ((-703) |#4|)) (-15 -3706 ((-583 |#3|) |#4|)) (-15 -1503 (|#4| |#4|)) (-15 -2726 ((-3 |#4| "failed") |#4|)) (-15 -2061 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |noBranch|) (IF (|has| |#1| (-278)) (PROGN (-15 -2468 (|#4| |#4|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 |#4| "failed") |#4|)) |noBranch|))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703) (-703)) 46)) (-1231 (($ $ $) NIL)) (-2033 (($ (-1153 |#1|)) NIL) (($ $) NIL)) (-2818 (((-107) $) NIL)) (-3666 (($ $ (-517) (-517)) 12)) (-2778 (($ $ (-517) (-517)) NIL)) (-3671 (($ $ (-517) (-517) (-517) (-517)) NIL)) (-4008 (($ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3565 (($ $ (-517) (-517) $) NIL)) (-2411 ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517)) $) NIL)) (-4087 (($ $ (-517) (-1153 |#1|)) NIL)) (-3739 (($ $ (-517) (-1153 |#1|)) NIL)) (-3487 (($ (-703) |#1|) 22)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 30 (|has| |#1| (-278)))) (-1939 (((-1153 |#1|) $ (-517)) NIL)) (-2261 (((-703) $) 32 (|has| |#1| (-509)))) (-1445 ((|#1| $ (-517) (-517) |#1|) 51)) (-1377 ((|#1| $ (-517) (-517)) NIL)) (-1536 (((-583 |#1|) $) NIL)) (-1948 (((-703) $) 34 (|has| |#1| (-509)))) (-3706 (((-583 (-1153 |#1|)) $) 37 (|has| |#1| (-509)))) (-1477 (((-703) $) 20)) (-3462 (($ (-703) (-703) |#1|) NIL)) (-1486 (((-703) $) 21)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#1| $) 28 (|has| |#1| (-6 (-4182 "*"))))) (-2813 (((-517) $) 9)) (-1338 (((-517) $) 10)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2718 (((-517) $) 11)) (-1307 (((-517) $) 47)) (-1840 (($ (-583 (-583 |#1|))) NIL)) (-1433 (($ (-1 |#1| |#1|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3035 (((-583 (-583 |#1|)) $) 59)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2104 (((-3 $ "failed") $) 44 (|has| |#1| (-333)))) (-2520 (($ $ $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2565 (($ $ |#1|) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) (-517)) NIL) ((|#1| $ (-517) (-517) |#1|) NIL) (($ $ (-583 (-517)) (-583 (-517))) NIL)) (-1879 (($ (-583 |#1|)) NIL) (($ (-583 $)) NIL) (($ (-1153 |#1|)) 52)) (-1516 (((-107) $) NIL)) (-3057 ((|#1| $) 26 (|has| |#1| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-3728 (((-1153 |#1|) $ (-517)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003))) (($ (-1153 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $ $) NIL) (($ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) 23) (($ $ (-517)) 45 (|has| |#1| (-333)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-517) $) NIL) (((-1153 |#1|) $ (-1153 |#1|)) NIL) (((-1153 |#1|) (-1153 |#1|) $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-623 |#1|) (-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 -1879 ($ (-1153 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 $ "failed") $)) |noBranch|))) (-961)) (T -623))
+((-2104 (*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3)))))
+(-13 (-621 |#1| (-1153 |#1|) (-1153 |#1|)) (-10 -8 (-15 -1879 ($ (-1153 |#1|))) (IF (|has| |#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |#1| (-333)) (-15 -2104 ((-3 $ "failed") $)) |noBranch|)))
+((-3205 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 25)) (-1729 (((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|) 21)) (-1811 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703)) 26)) (-1705 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 14)) (-3492 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|)) 18) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 16)) (-4085 (((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|)) 20)) (-4119 (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 12)) (** (((-623 |#1|) (-623 |#1|) (-703)) 30)))
+(((-624 |#1|) (-10 -7 (-15 -4119 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1705 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -4085 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -1729 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3205 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1811 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703)))) (-961)) (T -624))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-1811 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) (-3205 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-1729 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-4085 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3492 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-3492 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-1705 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) (-4119 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(-10 -7 (-15 -4119 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1705 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3492 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -4085 ((-623 |#1|) (-623 |#1|) |#1| (-623 |#1|))) (-15 -1729 ((-623 |#1|) (-623 |#1|) (-623 |#1|) |#1|)) (-15 -3205 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -1811 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-623 |#1|) (-703))) (-15 ** ((-623 |#1|) (-623 |#1|) (-703))))
+((-3248 ((|#2| |#2| |#4|) 25)) (-1367 (((-623 |#2|) |#3| |#4|) 31)) (-3943 (((-623 |#2|) |#2| |#4|) 30)) (-1228 (((-1153 |#2|) |#2| |#4|) 16)) (-3182 ((|#2| |#3| |#4|) 24)) (-3780 (((-623 |#2|) |#3| |#4| (-703) (-703)) 38)) (-2820 (((-623 |#2|) |#2| |#4| (-703)) 37)))
+(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1228 ((-1153 |#2|) |#2| |#4|)) (-15 -3182 (|#2| |#3| |#4|)) (-15 -3248 (|#2| |#2| |#4|)) (-15 -3943 ((-623 |#2|) |#2| |#4|)) (-15 -2820 ((-623 |#2|) |#2| |#4| (-703))) (-15 -1367 ((-623 |#2|) |#3| |#4|)) (-15 -3780 ((-623 |#2|) |#3| |#4| (-703) (-703)))) (-1003) (-822 |#1|) (-343 |#2|) (-13 (-343 |#1|) (-10 -7 (-6 -4180)))) (T -625))
+((-3780 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))) (-1367 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))) (-2820 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))) (-3943 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))) (-3248 (*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4180)))))) (-3182 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))) (-1228 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1153 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
+(-10 -7 (-15 -1228 ((-1153 |#2|) |#2| |#4|)) (-15 -3182 (|#2| |#3| |#4|)) (-15 -3248 (|#2| |#2| |#4|)) (-15 -3943 ((-623 |#2|) |#2| |#4|)) (-15 -2820 ((-623 |#2|) |#2| |#4| (-703))) (-15 -1367 ((-623 |#2|) |#3| |#4|)) (-15 -3780 ((-623 |#2|) |#3| |#4| (-703) (-703))))
+((-4112 (((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)) 18)) (-3484 ((|#1| (-623 |#2|)) 9)) (-1897 (((-623 |#1|) (-623 |#2|)) 16)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -3484 (|#1| (-623 |#2|))) (-15 -1897 ((-623 |#1|) (-623 |#2|))) (-15 -4112 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|)))) (-509) (-909 |#1|)) (T -626))
+((-4112 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) (-1897 (*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))))
+(-10 -7 (-15 -3484 (|#1| (-623 |#2|))) (-15 -1897 ((-623 |#1|) (-623 |#2|))) (-15 -4112 ((-2 (|:| |num| (-623 |#1|)) (|:| |den| |#1|)) (-623 |#2|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-3055 (((-623 (-632))) NIL) (((-623 (-632)) (-1153 $)) NIL)) (-1472 (((-632) $) NIL)) (-1865 (($ $) NIL (|has| (-632) (-1094)))) (-1721 (($ $) NIL (|has| (-632) (-1094)))) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-632) (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-2535 (($ $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2759 (((-388 $) $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-3766 (($ $) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1094))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-1707 (((-107) $ $) NIL (|has| (-632) (-278)))) (-1611 (((-703)) NIL (|has| (-632) (-338)))) (-1839 (($ $) NIL (|has| (-632) (-1094)))) (-1701 (($ $) NIL (|has| (-632) (-1094)))) (-1887 (($ $) NIL (|has| (-632) (-1094)))) (-1743 (($ $) NIL (|has| (-632) (-1094)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-632) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-3189 (((-517) $) NIL) (((-632) $) NIL) (((-377 (-517)) $) NIL (|has| (-632) (-952 (-377 (-517)))))) (-1967 (($ (-1153 (-632))) NIL) (($ (-1153 (-632)) (-1153 $)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-632) (-319)))) (-2518 (($ $ $) NIL (|has| (-632) (-278)))) (-2410 (((-623 (-632)) $) NIL) (((-623 (-632)) $ (-1153 $)) NIL)) (-3355 (((-623 (-632)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-632))) (|:| |vec| (-1153 (-632)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-632) (-579 (-517)))) (((-623 (-517)) (-623 $)) NIL (|has| (-632) (-579 (-517))))) (-3225 (((-3 $ "failed") (-377 (-1069 (-632)))) NIL (|has| (-632) (-333))) (($ (-1069 (-632))) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3775 (((-632) $) 29)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-632) (-502)))) (-1355 (((-107) $) NIL (|has| (-632) (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| (-632) (-502)))) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| (-632) (-338)))) (-2497 (($ $ $) NIL (|has| (-632) (-278)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| (-632) (-278)))) (-3442 (($) NIL (|has| (-632) (-319)))) (-3391 (((-107) $) NIL (|has| (-632) (-319)))) (-2378 (($ $) NIL (|has| (-632) (-319))) (($ $ (-703)) NIL (|has| (-632) (-319)))) (-3849 (((-107) $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2658 (((-2 (|:| |r| (-632)) (|:| |phi| (-632))) $) NIL (-12 (|has| (-632) (-970)) (|has| (-632) (-1094))))) (-2645 (($) NIL (|has| (-632) (-1094)))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-632) (-808 (-349)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-632) (-808 (-517))))) (-3972 (((-765 (-843)) $) NIL (|has| (-632) (-319))) (((-843) $) NIL (|has| (-632) (-319)))) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1094))))) (-1506 (((-632) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-632) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-3777 (((-1069 (-632)) $) NIL (|has| (-632) (-333)))) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1893 (($ (-1 (-632) (-632)) $) NIL)) (-1549 (((-843) $) NIL (|has| (-632) (-338)))) (-1867 (($ $) NIL (|has| (-632) (-1094)))) (-3216 (((-1069 (-632)) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| (-632) (-333)))) (-2836 (($) NIL (|has| (-632) (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| (-632) (-338)))) (-2228 (($) NIL)) (-3785 (((-632) $) 31)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| (-632) (-278)))) (-1401 (($ (-583 $)) NIL (|has| (-632) (-278))) (($ $ $) NIL (|has| (-632) (-278)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-632) (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-632) (-278)) (|has| (-632) (-831))))) (-3755 (((-388 $) $) NIL (-3807 (-12 (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-333))))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-632) (-278))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| (-632) (-278)))) (-2476 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-632)) NIL (|has| (-632) (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-632) (-278)))) (-2624 (($ $) NIL (|has| (-632) (-1094)))) (-2051 (($ $ (-1073) (-632)) NIL (|has| (-632) (-478 (-1073) (-632)))) (($ $ (-583 (-1073)) (-583 (-632))) NIL (|has| (-632) (-478 (-1073) (-632)))) (($ $ (-583 (-265 (-632)))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-265 (-632))) NIL (|has| (-632) (-280 (-632)))) (($ $ (-632) (-632)) NIL (|has| (-632) (-280 (-632)))) (($ $ (-583 (-632)) (-583 (-632))) NIL (|has| (-632) (-280 (-632))))) (-3146 (((-703) $) NIL (|has| (-632) (-278)))) (-1449 (($ $ (-632)) NIL (|has| (-632) (-258 (-632) (-632))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| (-632) (-278)))) (-3010 (((-632)) NIL) (((-632) (-1153 $)) NIL)) (-1620 (((-3 (-703) "failed") $ $) NIL (|has| (-632) (-319))) (((-703) $) NIL (|has| (-632) (-319)))) (-3127 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-2970 (((-623 (-632)) (-1153 $) (-1 (-632) (-632))) NIL (|has| (-632) (-333)))) (-2135 (((-1069 (-632))) NIL)) (-1898 (($ $) NIL (|has| (-632) (-1094)))) (-1754 (($ $) NIL (|has| (-632) (-1094)))) (-1766 (($) NIL (|has| (-632) (-319)))) (-1876 (($ $) NIL (|has| (-632) (-1094)))) (-1732 (($ $) NIL (|has| (-632) (-1094)))) (-1853 (($ $) NIL (|has| (-632) (-1094)))) (-1711 (($ $) NIL (|has| (-632) (-1094)))) (-4114 (((-623 (-632)) (-1153 $)) NIL) (((-1153 (-632)) $) NIL) (((-623 (-632)) (-1153 $) (-1153 $)) NIL) (((-1153 (-632)) $ (-1153 $)) NIL)) (-3645 (((-493) $) NIL (|has| (-632) (-558 (-493)))) (((-153 (-199)) $) NIL (|has| (-632) (-937))) (((-153 (-349)) $) NIL (|has| (-632) (-937))) (((-814 (-349)) $) NIL (|has| (-632) (-558 (-814 (-349))))) (((-814 (-517)) $) NIL (|has| (-632) (-558 (-814 (-517))))) (($ (-1069 (-632))) NIL) (((-1069 (-632)) $) NIL) (($ (-1153 (-632))) NIL) (((-1153 (-632)) $) NIL)) (-1487 (($ $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-319))))) (-3392 (($ (-632) (-632)) 12)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-517)) NIL) (($ (-632)) NIL) (($ (-153 (-349))) 13) (($ (-153 (-517))) 19) (($ (-153 (-632))) 28) (($ (-153 (-634))) 25) (((-153 (-349)) $) 33) (($ (-377 (-517))) NIL (-3807 (|has| (-632) (-952 (-377 (-517)))) (|has| (-632) (-333))))) (-1328 (($ $) NIL (|has| (-632) (-319))) (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-632) (-278)) (|has| (-632) (-831))) (|has| (-632) (-132))))) (-3669 (((-1069 (-632)) $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $)) NIL)) (-3707 (($ $) NIL (|has| (-632) (-1094)))) (-1788 (($ $) NIL (|has| (-632) (-1094)))) (-3329 (((-107) $ $) NIL)) (-3683 (($ $) NIL (|has| (-632) (-1094)))) (-1765 (($ $) NIL (|has| (-632) (-1094)))) (-3731 (($ $) NIL (|has| (-632) (-1094)))) (-1814 (($ $) NIL (|has| (-632) (-1094)))) (-2921 (((-632) $) NIL (|has| (-632) (-1094)))) (-1492 (($ $) NIL (|has| (-632) (-1094)))) (-1827 (($ $) NIL (|has| (-632) (-1094)))) (-3719 (($ $) NIL (|has| (-632) (-1094)))) (-1802 (($ $) NIL (|has| (-632) (-1094)))) (-3695 (($ $) NIL (|has| (-632) (-1094)))) (-1777 (($ $) NIL (|has| (-632) (-1094)))) (-3710 (($ $) NIL (|has| (-632) (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-632) (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1 (-632) (-632))) NIL) (($ $ (-1 (-632) (-632)) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-1073)) NIL (|has| (-632) (-822 (-1073)))) (($ $ (-703)) NIL (|has| (-632) (-207))) (($ $) NIL (|has| (-632) (-207)))) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL (|has| (-632) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| (-632) (-1094))) (($ $ (-377 (-517))) NIL (-12 (|has| (-632) (-918)) (|has| (-632) (-1094)))) (($ $ (-517)) NIL (|has| (-632) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ (-632) $) NIL) (($ $ (-632)) NIL) (($ (-377 (-517)) $) NIL (|has| (-632) (-333))) (($ $ (-377 (-517))) NIL (|has| (-632) (-333)))))
+(((-627) (-13 (-357) (-150 (-632)) (-10 -8 (-15 -2256 ($ (-153 (-349)))) (-15 -2256 ($ (-153 (-517)))) (-15 -2256 ($ (-153 (-632)))) (-15 -2256 ($ (-153 (-634)))) (-15 -2256 ((-153 (-349)) $))))) (T -627))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))))
+(-13 (-357) (-150 (-632)) (-10 -8 (-15 -2256 ($ (-153 (-349)))) (-15 -2256 ($ (-153 (-517)))) (-15 -2256 ($ (-153 (-632)))) (-15 -2256 ($ (-153 (-634)))) (-15 -2256 ((-153 (-349)) $))))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 62)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 61)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-628 |#1|) (-1184) (-1003)) (T -628))
+((-1710 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-3483 (*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003)))) (-3350 (*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1257 *3) (|:| -3217 (-703))))))))
+(-13 (-209 |t#1|) (-10 -8 (-15 -1710 ($ |t#1| $ (-703))) (-15 -3483 ($ $)) (-15 -3350 ((-583 (-2 (|:| -1257 |t#1|) (|:| -3217 (-703)))) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-3988 (((-583 |#1|) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) (-517)) 46)) (-1196 ((|#1| |#1| (-517)) 45)) (-1401 ((|#1| |#1| |#1| (-517)) 35)) (-3755 (((-583 |#1|) |#1| (-517)) 38)) (-1458 ((|#1| |#1| (-517) |#1| (-517)) 32)) (-1300 (((-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) |#1| (-517)) 44)))
+(((-629 |#1|) (-10 -7 (-15 -1401 (|#1| |#1| |#1| (-517))) (-15 -1196 (|#1| |#1| (-517))) (-15 -3755 ((-583 |#1|) |#1| (-517))) (-15 -1300 ((-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) |#1| (-517))) (-15 -3988 ((-583 |#1|) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) (-517))) (-15 -1458 (|#1| |#1| (-517) |#1| (-517)))) (-1130 (-517))) (T -629))
+((-1458 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3755 *5) (|:| -3688 (-517))))) (-5 *4 (-517)) (-4 *5 (-1130 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))) (-1300 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -3688 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))) (-1196 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))) (-1401 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))))
+(-10 -7 (-15 -1401 (|#1| |#1| |#1| (-517))) (-15 -1196 (|#1| |#1| (-517))) (-15 -3755 ((-583 |#1|) |#1| (-517))) (-15 -1300 ((-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) |#1| (-517))) (-15 -3988 ((-583 |#1|) (-583 (-2 (|:| -3755 |#1|) (|:| -3688 (-517)))) (-517))) (-15 -1458 (|#1| |#1| (-517) |#1| (-517))))
+((-2592 (((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199))) 17)) (-2426 (((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 38) (((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236))) 40) (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 42)) (-2933 (((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236))) NIL)) (-3008 (((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236))) 43)))
+(((-630) (-10 -7 (-15 -2426 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3008 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2933 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2592 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))) (T -630))
+((-2592 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630)))) (-2933 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-3008 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-2426 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))) (-2426 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) (-2426 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
+(-10 -7 (-15 -2426 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2426 ((-1034 (-199)) (-1034 (-199)) (-1 (-865 (-199)) (-199) (-199)) (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -3008 ((-1034 (-199)) (-1 (-199) (-199) (-199)) (-3 (-1 (-199) (-199) (-199) (-199)) "undefined") (-998 (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2933 ((-1034 (-199)) (-286 (-517)) (-286 (-517)) (-286 (-517)) (-1 (-199) (-199)) (-998 (-199)) (-583 (-236)))) (-15 -2592 ((-1 (-865 (-199)) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199)) (-1 (-199) (-199) (-199) (-199)))))
+((-3755 (((-388 (-1069 |#4|)) (-1069 |#4|)) 73) (((-388 |#4|) |#4|) 215)))
+(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|)))) (-779) (-725) (-319) (-871 |#3| |#2| |#1|)) (T -631))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
+(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 84)) (-2668 (((-517) $) 30)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-1974 (($ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-3092 (($) NIL T CONST)) (-2531 (($ $) NIL)) (-1772 (((-3 (-517) "failed") $) 73) (((-3 (-377 (-517)) "failed") $) 26) (((-3 (-349) "failed") $) 70)) (-3189 (((-517) $) 75) (((-377 (-517)) $) 67) (((-349) $) 68)) (-2518 (($ $ $) 96)) (-3621 (((-3 $ "failed") $) 87)) (-2497 (($ $ $) 95)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3554 (((-843)) 77) (((-843) (-843)) 76)) (-3556 (((-107) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL)) (-3972 (((-517) $) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-1506 (($ $) NIL)) (-2475 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3004 (((-517) (-517)) 81) (((-517)) 82)) (-2967 (($ $ $) NIL) (($) NIL (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3942 (((-517) (-517)) 79) (((-517)) 80)) (-3099 (($ $ $) NIL) (($) NIL (-12 (-2630 (|has| $ (-6 -4163))) (-2630 (|has| $ (-6 -4171)))))) (-3371 (((-517) $) 16)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 91)) (-2138 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL)) (-2597 (($ $) NIL)) (-4005 (($ (-517) (-517)) NIL) (($ (-517) (-517) (-843)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) 92)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2077 (((-517) $) 22)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 94)) (-2930 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-2646 (((-843) (-517)) NIL (|has| $ (-6 -4171)))) (-3645 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) NIL)) (-2256 (((-787) $) 52) (($ (-517)) 63) (($ $) NIL) (($ (-377 (-517))) 66) (($ (-517)) 63) (($ (-377 (-517))) 66) (($ (-349)) 60) (((-349) $) 50) (($ (-634)) 55)) (-2961 (((-703)) 103)) (-2838 (($ (-517) (-517) (-843)) 44)) (-1949 (($ $) NIL)) (-1398 (((-843)) NIL) (((-843) (-843)) NIL (|has| $ (-6 -4171)))) (-2372 (((-843)) 35) (((-843) (-843)) 78)) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 32 T CONST)) (-2409 (($) 17 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 83)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 101)) (-1667 (($ $ $) 65)) (-1654 (($ $) 99) (($ $ $) 100)) (-1642 (($ $ $) 98)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 90)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 97) (($ $ $) 88) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-632) (-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -3554 ((-843) (-843))) (-15 -3554 ((-843))) (-15 -2372 ((-843) (-843))) (-15 -2372 ((-843))) (-15 -3942 ((-517) (-517))) (-15 -3942 ((-517))) (-15 -3004 ((-517) (-517))) (-15 -3004 ((-517))) (-15 -2256 ((-349) $)) (-15 -2256 ($ (-634))) (-15 -3371 ((-517) $)) (-15 -2077 ((-517) $)) (-15 -2838 ($ (-517) (-517) (-843)))))) (T -632))
+((-2372 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-2077 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3554 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-3554 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-2372 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3942 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-3004 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) (-2838 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632)))))
+(-13 (-374) (-357) (-333) (-952 (-349)) (-952 (-377 (-517))) (-134) (-10 -8 (-15 -3554 ((-843) (-843))) (-15 -3554 ((-843))) (-15 -2372 ((-843) (-843))) (-15 -2372 ((-843))) (-15 -3942 ((-517) (-517))) (-15 -3942 ((-517))) (-15 -3004 ((-517) (-517))) (-15 -3004 ((-517))) (-15 -2256 ((-349) $)) (-15 -2256 ($ (-634))) (-15 -3371 ((-517) $)) (-15 -2077 ((-517) $)) (-15 -2838 ($ (-517) (-517) (-843)))))
+((-1995 (((-623 |#1|) (-623 |#1|) |#1| |#1|) 66)) (-2468 (((-623 |#1|) (-623 |#1|) |#1|) 49)) (-2811 (((-623 |#1|) (-623 |#1|) |#1|) 67)) (-2331 (((-623 |#1|) (-623 |#1|)) 50)) (-1352 (((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|) 65)))
+(((-633 |#1|) (-10 -7 (-15 -2331 ((-623 |#1|) (-623 |#1|))) (-15 -2468 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2811 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -1995 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|))) (-278)) (T -633))
+((-1352 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))) (-1995 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2811 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2468 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) (-2331 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(-10 -7 (-15 -2331 ((-623 |#1|) (-623 |#1|))) (-15 -2468 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -2811 ((-623 |#1|) (-623 |#1|) |#1|)) (-15 -1995 ((-623 |#1|) (-623 |#1|) |#1| |#1|)) (-15 -1352 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) 27)) (-3189 (((-517) $) 25)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($ $) NIL) (($) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) NIL)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) NIL)) (-2967 (($ $ $) NIL)) (-4115 (((-843) (-843)) 10) (((-843)) 9)) (-3099 (($ $ $) NIL)) (-1522 (($ $) NIL)) (-2195 (($ $) NIL)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) NIL)) (-3206 (((-1021) $) NIL) (($ $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL) (($ $ (-703)) NIL)) (-2789 (($ $) NIL)) (-2433 (($ $) NIL)) (-3645 (((-199) $) NIL) (((-349) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (((-517) $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) 24) (($ $) NIL) (($ (-517)) 24) (((-286 $) (-286 (-517))) 18)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) NIL)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL) (($ $ (-703)) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-634) (-13 (-357) (-502) (-10 -8 (-15 -4115 ((-843) (-843))) (-15 -4115 ((-843))) (-15 -2256 ((-286 $) (-286 (-517))))))) (T -634))
+((-4115 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-4115 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))))
+(-13 (-357) (-502) (-10 -8 (-15 -4115 ((-843) (-843))) (-15 -4115 ((-843))) (-15 -2256 ((-286 $) (-286 (-517))))))
+((-3372 (((-1 |#4| |#2| |#3|) |#1| (-1073) (-1073)) 19)) (-3810 (((-1 |#4| |#2| |#3|) (-1073)) 12)))
+(((-635 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3810 ((-1 |#4| |#2| |#3|) (-1073))) (-15 -3372 ((-1 |#4| |#2| |#3|) |#1| (-1073) (-1073)))) (-558 (-493)) (-1108) (-1108) (-1108)) (T -635))
+((-3372 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))))
+(-10 -7 (-15 -3810 ((-1 |#4| |#2| |#3|) (-1073))) (-15 -3372 ((-1 |#4| |#2| |#3|) |#1| (-1073) (-1073))))
+((-2750 (((-107) $ $) NIL)) (-3892 (((-1158) $ (-703)) 14)) (-2607 (((-703) $) 12)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 25)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 24)))
+(((-636 |#1|) (-13 (-124) (-557 |#1|) (-10 -8 (-15 -2256 ($ |#1|)))) (-1003)) (T -636))
+((-2256 (*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003)))))
+(-13 (-124) (-557 |#1|) (-10 -8 (-15 -2256 ($ |#1|))))
+((-2345 (((-1 (-199) (-199) (-199)) |#1| (-1073) (-1073)) 33) (((-1 (-199) (-199)) |#1| (-1073)) 38)))
+(((-637 |#1|) (-10 -7 (-15 -2345 ((-1 (-199) (-199)) |#1| (-1073))) (-15 -2345 ((-1 (-199) (-199) (-199)) |#1| (-1073) (-1073)))) (-558 (-493))) (T -637))
+((-2345 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) (-2345 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -2345 ((-1 (-199) (-199)) |#1| (-1073))) (-15 -2345 ((-1 (-199) (-199) (-199)) |#1| (-1073) (-1073))))
+((-1234 (((-1073) |#1| (-1073) (-583 (-1073))) 9) (((-1073) |#1| (-1073) (-1073) (-1073)) 12) (((-1073) |#1| (-1073) (-1073)) 11) (((-1073) |#1| (-1073)) 10)))
+(((-638 |#1|) (-10 -7 (-15 -1234 ((-1073) |#1| (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-583 (-1073))))) (-558 (-493))) (T -638))
+((-1234 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1234 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1234 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) (-1234 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -1234 ((-1073) |#1| (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-1073) (-1073))) (-15 -1234 ((-1073) |#1| (-1073) (-583 (-1073)))))
+((-3594 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -3594 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1108) (-1108)) (T -639))
+((-3594 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))))
+(-10 -7 (-15 -3594 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2577 (((-1 |#3| |#2|) (-1073)) 11)) (-3372 (((-1 |#3| |#2|) |#1| (-1073)) 21)))
+(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2577 ((-1 |#3| |#2|) (-1073))) (-15 -3372 ((-1 |#3| |#2|) |#1| (-1073)))) (-558 (-493)) (-1108) (-1108)) (T -640))
+((-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)))))
+(-10 -7 (-15 -2577 ((-1 |#3| |#2|) (-1073))) (-15 -3372 ((-1 |#3| |#2|) |#1| (-1073))))
+((-1608 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1153 (-583 (-1069 |#3|))) |#3|) 58)) (-3053 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|) 71)) (-3085 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1069 |#4|)) (-1153 (-583 (-1069 |#3|))) |#3|) 32)))
+(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3085 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1069 |#4|)) (-1153 (-583 (-1069 |#3|))) |#3|)) (-15 -3053 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1608 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1153 (-583 (-1069 |#3|))) |#3|))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -641))
+((-1608 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1069 *13))) (-5 *3 (-1069 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1153 (-583 (-1069 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))) (-3053 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1069 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1069 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1069 *12)))) (-3085 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1069 *11))) (-5 *3 (-1069 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1153 (-583 (-1069 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3085 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 |#3|) (-583 (-703)) (-583 (-1069 |#4|)) (-1153 (-583 (-1069 |#3|))) |#3|)) (-15 -3053 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#3|)) (-583 |#3|) (-583 |#4|) (-583 (-703)) |#3|)) (-15 -1608 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-583 |#2|) (-583 (-1069 |#4|)) (-583 |#3|) (-583 |#4|) (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#4|)))) (-583 (-703)) (-1153 (-583 (-1069 |#3|))) |#3|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 41)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-1339 (($ |#1| (-703)) 39)) (-2349 (((-703) $) 43)) (-1191 ((|#1| $) 42)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 (((-703) $) 44)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38 (|has| |#1| (-156)))) (-2720 ((|#1| $ (-703)) 40)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-642 |#1|) (-1184) (-961)) (T -642))
+((-3688 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (-15 -3688 ((-703) $)) (-15 -2349 ((-703) $)) (-15 -1191 (|t#1| $)) (-15 -1212 ($ $)) (-15 -2720 (|t#1| $ (-703))) (-15 -1339 ($ |t#1| (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1893 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1893 (|#6| (-1 |#4| |#1|) |#3|))) (-509) (-1130 |#1|) (-1130 (-377 |#2|)) (-509) (-1130 |#4|) (-1130 (-377 |#5|))) (T -643))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1130 *5)) (-4 *2 (-1130 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1130 (-377 *6))) (-4 *8 (-1130 *7)))))
+(-10 -7 (-15 -1893 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-3225 (($ |#1| |#2|) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 ((|#2| $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3841 (((-3 $ "failed") $ $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) ((|#1| $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-644 |#1| |#2| |#3| |#4| |#5|) (-13 (-333) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -644))
+((-1734 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3225 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3841 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-333) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 30)) (-2490 (((-1153 |#1|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#1|)) NIL)) (-2352 (((-1069 $) $ (-989)) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) NIL (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1611 (((-703)) 46 (|has| |#1| (-338)))) (-2241 (($ $ (-703)) NIL)) (-2882 (($ $ (-703)) NIL)) (-4044 ((|#2| |#2|) 43)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) NIL (|has| |#1| (-156)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 33)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3225 (($ |#2|) 41)) (-3621 (((-3 $ "failed") $) 84)) (-3209 (($) 50 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-2704 (($ $ $) NIL)) (-4080 (($ $ $) NIL (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-3631 (((-879 $)) 78)) (-1436 (($ $ |#1| (-703) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) NIL) (($ (-1069 $) (-989)) NIL)) (-3430 (($ $ (-703)) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 76) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1734 ((|#2|) 44)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (((-1069 |#1|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-3216 ((|#2| $) 40)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) 28)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1664 (($ $) 77 (|has| |#1| (-319)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 85 (|has| |#1| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3688 (((-703) $) 31) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2478 (((-879 $)) 35)) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2256 (((-787) $) 60) (($ (-517)) NIL) (($ |#1|) 57) (($ (-989)) NIL) (($ |#2|) 67) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) 62) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 20 T CONST)) (-3040 (((-1153 |#1|) $) 74)) (-3450 (($ (-1153 |#1|)) 49)) (-2409 (($) 8 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2191 (((-1153 |#1|) $) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 68)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) 71) (($ $ $) NIL)) (-1642 (($ $ $) 32)) (** (($ $ (-843)) NIL) (($ $ (-703)) 79)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 56) (($ $ $) 73) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 54) (($ $ |#1|) NIL)))
+(((-645 |#1| |#2|) (-13 (-1130 |#1|) (-10 -8 (-15 -4044 (|#2| |#2|)) (-15 -1734 (|#2|)) (-15 -3225 ($ |#2|)) (-15 -3216 (|#2| $)) (-15 -2256 ($ |#2|)) (-15 -3040 ((-1153 |#1|) $)) (-15 -3450 ($ (-1153 |#1|))) (-15 -2191 ((-1153 |#1|) $)) (-15 -3631 ((-879 $))) (-15 -2478 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -1664 ($ $)) |noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |noBranch|))) (-961) (-1130 |#1|)) (T -645))
+((-4044 (*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) (-1734 (*1 *2) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-3225 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) (-3040 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-3450 (*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-2191 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-3631 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-2478 (*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))) (-1664 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1130 *2)))))
+(-13 (-1130 |#1|) (-10 -8 (-15 -4044 (|#2| |#2|)) (-15 -1734 (|#2|)) (-15 -3225 ($ |#2|)) (-15 -3216 (|#2| $)) (-15 -2256 ($ |#2|)) (-15 -3040 ((-1153 |#1|) $)) (-15 -3450 ($ (-1153 |#1|))) (-15 -2191 ((-1153 |#1|) $)) (-15 -3631 ((-879 $))) (-15 -2478 ((-879 $))) (IF (|has| |#1| (-319)) (-15 -1664 ($ $)) |noBranch|) (IF (|has| |#1| (-338)) (-6 (-338)) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3448 ((|#1| $) 13)) (-3206 (((-1021) $) NIL)) (-2077 ((|#2| $) 12)) (-2276 (($ |#1| |#2|) 16)) (-2256 (((-787) $) NIL) (($ (-2 (|:| -3448 |#1|) (|:| -2077 |#2|))) 15) (((-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) $) 14)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 11)))
+(((-646 |#1| |#2| |#3|) (-13 (-779) (-10 -8 (-15 -2077 (|#2| $)) (-15 -3448 (|#1| $)) (-15 -2256 ($ (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)))) (-15 -2256 ((-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) $)) (-15 -2276 ($ |#1| |#2|)))) (-779) (-1003) (-1 (-107) (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)))) (T -646))
+((-2077 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *2)) (-2 (|:| -3448 *3) (|:| -2077 *2)))))) (-3448 (*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) (-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))))
+(-13 (-779) (-10 -8 (-15 -2077 (|#2| $)) (-15 -3448 (|#1| $)) (-15 -2256 ($ (-2 (|:| -3448 |#1|) (|:| -2077 |#2|)))) (-15 -2256 ((-2 (|:| -3448 |#1|) (|:| -2077 |#2|)) $)) (-15 -2276 ($ |#1| |#2|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 59)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 89) (((-3 (-109) "failed") $) 95)) (-3189 ((|#1| $) NIL) (((-109) $) 39)) (-3621 (((-3 $ "failed") $) 90)) (-3447 ((|#2| (-109) |#2|) 82)) (-3848 (((-107) $) NIL)) (-1261 (($ |#1| (-331 (-109))) 13)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1392 (($ $ (-1 |#2| |#2|)) 58)) (-3269 (($ $ (-1 |#2| |#2|)) 44)) (-1449 ((|#2| $ |#2|) 32)) (-3445 ((|#1| |#1|) 105 (|has| |#1| (-156)))) (-2256 (((-787) $) 66) (($ (-517)) 17) (($ |#1|) 16) (($ (-109)) 23)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 36)) (-2061 (($ $) 99 (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-156)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 20 T CONST)) (-2409 (($) 9 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) 48) (($ $ $) NIL)) (-1642 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-156))) (($ $ |#1|) 97 (|has| |#1| (-156)))))
+(((-647 |#1| |#2|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#2| |#2|))) (-15 -1392 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#2| (-109) |#2|)) (-15 -1261 ($ |#1| (-331 (-109)))))) (-961) (-585 |#1|)) (T -647))
+((-2061 (*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-2061 (*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3445 (*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (-1392 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) (-3447 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) (-1261 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))))
+(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#2| |#2|))) (-15 -1392 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#2| (-109) |#2|)) (-15 -1261 ($ |#1| (-331 (-109))))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 33)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ |#1| |#2|) 25)) (-3621 (((-3 $ "failed") $) 47)) (-3848 (((-107) $) 35)) (-1734 ((|#2| $) 12)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 48)) (-3206 (((-1021) $) NIL)) (-3841 (((-3 $ "failed") $ $) 46)) (-2256 (((-787) $) 24) (($ (-517)) 19) ((|#1| $) 13)) (-2961 (((-703)) 28)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 16 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 38)) (-1654 (($ $) 43) (($ $ $) 37)) (-1642 (($ $ $) 40)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 21) (($ $ $) 20)))
+(((-648 |#1| |#2| |#3| |#4| |#5|) (-13 (-961) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $)))) (-156) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -648))
+((-3621 (*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1734 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3225 (*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3841 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4118 (*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-961) (-10 -8 (-15 -1734 (|#2| $)) (-15 -2256 (|#1| $)) (-15 -3225 ($ |#1| |#2|)) (-15 -3841 ((-3 $ "failed") $ $)) (-15 -3621 ((-3 $ "failed") $)) (-15 -4118 ($ $))))
+((* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-649 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-650 |#2|) (-156)) (T -649))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-650 |#1|) (-1184) (-156)) (T -650))
NIL
(-13 (-106 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-964 |#1|) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-1525 (($ |#1|) 17) (($ $ |#1|) 20)) (-3487 (($ |#1|) 18) (($ $ |#1|) 21)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1355 (((-107) $) NIL)) (-3309 (($ |#1| |#1| |#1| |#1|) 8)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 16)) (-3708 (((-1018) $) NIL)) (-3195 ((|#1| $ |#1|) 24) (((-762 |#1|) $ (-762 |#1|)) 32)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3691 (((-786) $) 39)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 9 T CONST)) (-3751 (((-107) $ $) 44)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ $ $) 14)))
-(((-649 |#1|) (-13 (-440) (-10 -8 (-15 -3309 ($ |#1| |#1| |#1| |#1|)) (-15 -1525 ($ |#1|)) (-15 -3487 ($ |#1|)) (-15 -2174 ($)) (-15 -1525 ($ $ |#1|)) (-15 -3487 ($ $ |#1|)) (-15 -2174 ($ $)) (-15 -3195 (|#1| $ |#1|)) (-15 -3195 ((-762 |#1|) $ (-762 |#1|))))) (-331)) (T -649))
-((-3309 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-1525 (*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-3487 (*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-2174 (*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-3487 (*1 *1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-2174 (*1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-3195 (*1 *2 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) (-3195 (*1 *2 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *3 (-331)) (-5 *1 (-649 *3)))))
-(-13 (-440) (-10 -8 (-15 -3309 ($ |#1| |#1| |#1| |#1|)) (-15 -1525 ($ |#1|)) (-15 -3487 ($ |#1|)) (-15 -2174 ($)) (-15 -1525 ($ $ |#1|)) (-15 -3487 ($ $ |#1|)) (-15 -2174 ($ $)) (-15 -3195 (|#1| $ |#1|)) (-15 -3195 ((-762 |#1|) $ (-762 |#1|)))))
-((-2911 (($ $ (-839)) 12)) (-3381 (($ $ (-839)) 13)) (** (($ $ (-839)) 10)))
-(((-650 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-839))) (-15 -3381 (|#1| |#1| (-839))) (-15 -2911 (|#1| |#1| (-839)))) (-651)) (T -650))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-839))) (-15 -3381 (|#1| |#1| (-839))) (-15 -2911 (|#1| |#1| (-839))))
-((-3736 (((-107) $ $) 7)) (-2911 (($ $ (-839)) 15)) (-3381 (($ $ (-839)) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)) (** (($ $ (-839)) 13)) (* (($ $ $) 16)))
-(((-651) (-1180)) (T -651))
-((* (*1 *1 *1 *1) (-4 *1 (-651))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) (-3381 (*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))))
-(-13 (-1001) (-10 -8 (-15 * ($ $ $)) (-15 -2911 ($ $ (-839))) (-15 -3381 ($ $ (-839))) (-15 ** ($ $ (-839)))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-2911 (($ $ (-839)) NIL) (($ $ (-701)) 17)) (-1355 (((-107) $) 10)) (-3381 (($ $ (-839)) NIL) (($ $ (-701)) 18)) (** (($ $ (-839)) NIL) (($ $ (-701)) 15)))
-(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-701))) (-15 -3381 (|#1| |#1| (-701))) (-15 -2911 (|#1| |#1| (-701))) (-15 -1355 ((-107) |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 -3381 (|#1| |#1| (-839))) (-15 -2911 (|#1| |#1| (-839)))) (-653)) (T -652))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-701))) (-15 -3381 (|#1| |#1| (-701))) (-15 -2911 (|#1| |#1| (-701))) (-15 -1355 ((-107) |#1|)) (-15 ** (|#1| |#1| (-839))) (-15 -3381 (|#1| |#1| (-839))) (-15 -2911 (|#1| |#1| (-839))))
-((-3736 (((-107) $ $) 7)) (-1887 (((-3 $ "failed") $) 17)) (-2911 (($ $ (-839)) 15) (($ $ (-701)) 22)) (-2174 (((-3 $ "failed") $) 19)) (-1355 (((-107) $) 23)) (-1992 (((-3 $ "failed") $) 18)) (-3381 (($ $ (-839)) 14) (($ $ (-701)) 21)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1925 (($) 24 T CONST)) (-3751 (((-107) $ $) 6)) (** (($ $ (-839)) 13) (($ $ (-701)) 20)) (* (($ $ $) 16)))
-(((-653) (-1180)) (T -653))
-((-1925 (*1 *1) (-4 *1 (-653))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-653)) (-5 *2 (-107)))) (-2911 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))) (-3381 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))) (-2174 (*1 *1 *1) (|partial| -4 *1 (-653))) (-1992 (*1 *1 *1) (|partial| -4 *1 (-653))) (-1887 (*1 *1 *1) (|partial| -4 *1 (-653))))
-(-13 (-651) (-10 -8 (-15 (-1925) ($) -3897) (-15 -1355 ((-107) $)) (-15 -2911 ($ $ (-701))) (-15 -3381 ($ $ (-701))) (-15 ** ($ $ (-701))) (-15 -2174 ((-3 $ "failed") $)) (-15 -1992 ((-3 $ "failed") $)) (-15 -1887 ((-3 $ "failed") $))))
-(((-97) . T) ((-555 (-786)) . T) ((-651) . T) ((-1001) . T))
-((-3796 (((-701)) 35)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#2| $) 22)) (-3547 (($ |#3|) NIL) (((-3 $ "failed") (-375 |#3|)) 45)) (-2174 (((-3 $ "failed") $) 65)) (-2890 (($) 39)) (-2626 ((|#2| $) 20)) (-3987 (($) 17)) (-2596 (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-2231 (((-621 |#2|) (-1148 $) (-1 |#2| |#2|)) 60)) (-1248 (((-1148 |#2|) $) NIL) (($ (-1148 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2942 ((|#3| $) 32)) (-4119 (((-1148 $)) 29)))
-(((-654 |#1| |#2| |#3|) (-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2890 (|#1|)) (-15 -3796 ((-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2231 ((-621 |#2|) (-1148 |#1|) (-1 |#2| |#2|))) (-15 -3547 ((-3 |#1| "failed") (-375 |#3|))) (-15 -1248 (|#1| |#3|)) (-15 -3547 (|#1| |#3|)) (-15 -3987 (|#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 (|#3| |#1|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -4119 ((-1148 |#1|))) (-15 -2942 (|#3| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|))) (-655 |#2| |#3|) (-156) (-1125 |#2|)) (T -654))
-((-3796 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-701)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-655 *4 *5)))))
-(-10 -8 (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2890 (|#1|)) (-15 -3796 ((-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2231 ((-621 |#2|) (-1148 |#1|) (-1 |#2| |#2|))) (-15 -3547 ((-3 |#1| "failed") (-375 |#3|))) (-15 -1248 (|#1| |#3|)) (-15 -3547 (|#1| |#3|)) (-15 -3987 (|#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -1248 (|#3| |#1|)) (-15 -1248 (|#1| (-1148 |#2|))) (-15 -1248 ((-1148 |#2|) |#1|)) (-15 -4119 ((-1148 |#1|))) (-15 -2942 (|#3| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -2174 ((-3 |#1| "failed") |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 93 (|has| |#1| (-331)))) (-2865 (($ $) 94 (|has| |#1| (-331)))) (-1639 (((-107) $) 96 (|has| |#1| (-331)))) (-2239 (((-621 |#1|) (-1148 $)) 46) (((-621 |#1|)) 61)) (-2225 ((|#1| $) 52)) (-3431 (((-1077 (-839) (-701)) (-501)) 147 (|has| |#1| (-318)))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 113 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 114 (|has| |#1| (-331)))) (-2781 (((-107) $ $) 104 (|has| |#1| (-331)))) (-3796 (((-701)) 87 (|has| |#1| (-336)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 169 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 167 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 166)) (-3490 (((-501) $) 170 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 168 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 165)) (-3142 (($ (-1148 |#1|) (-1148 $)) 48) (($ (-1148 |#1|)) 64)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-318)))) (-3023 (($ $ $) 108 (|has| |#1| (-331)))) (-3070 (((-621 |#1|) $ (-1148 $)) 53) (((-621 |#1|) $) 59)) (-3868 (((-621 (-501)) (-621 $)) 164 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 163 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 162) (((-621 |#1|) (-621 $)) 161)) (-3547 (($ |#2|) 158) (((-3 $ "failed") (-375 |#2|)) 155 (|has| |#1| (-331)))) (-2174 (((-3 $ "failed") $) 34)) (-3689 (((-839)) 54)) (-2890 (($) 90 (|has| |#1| (-336)))) (-3034 (($ $ $) 107 (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 102 (|has| |#1| (-331)))) (-1317 (($) 149 (|has| |#1| (-318)))) (-3521 (((-107) $) 150 (|has| |#1| (-318)))) (-3067 (($ $ (-701)) 141 (|has| |#1| (-318))) (($ $) 140 (|has| |#1| (-318)))) (-1628 (((-107) $) 115 (|has| |#1| (-331)))) (-3169 (((-839) $) 152 (|has| |#1| (-318))) (((-762 (-839)) $) 138 (|has| |#1| (-318)))) (-1355 (((-107) $) 31)) (-2626 ((|#1| $) 51)) (-3493 (((-3 $ "failed") $) 142 (|has| |#1| (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 111 (|has| |#1| (-331)))) (-1792 ((|#2| $) 44 (|has| |#1| (-331)))) (-3104 (((-839) $) 89 (|has| |#1| (-336)))) (-1316 ((|#2| $) 156)) (-1697 (($ (-578 $)) 100 (|has| |#1| (-331))) (($ $ $) 99 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 116 (|has| |#1| (-331)))) (-3746 (($) 143 (|has| |#1| (-318)) CONST)) (-3506 (($ (-839)) 88 (|has| |#1| (-336)))) (-3708 (((-1018) $) 10)) (-3987 (($) 160)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 101 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 98 (|has| |#1| (-331))) (($ $ $) 97 (|has| |#1| (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) 146 (|has| |#1| (-318)))) (-3739 (((-373 $) $) 112 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 109 (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ $) 92 (|has| |#1| (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 103 (|has| |#1| (-331)))) (-1864 (((-701) $) 105 (|has| |#1| (-331)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 106 (|has| |#1| (-331)))) (-2532 ((|#1| (-1148 $)) 47) ((|#1|) 60)) (-1984 (((-701) $) 151 (|has| |#1| (-318))) (((-3 (-701) "failed") $ $) 139 (|has| |#1| (-318)))) (-2596 (($ $) 137 (-1405 (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-701)) 135 (-1405 (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-1070)) 133 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-578 (-1070))) 132 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-1070) (-701)) 131 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 (-701))) 130 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-1 |#1| |#1|) (-701)) 123 (|has| |#1| (-331))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-331)))) (-2231 (((-621 |#1|) (-1148 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-331)))) (-2264 ((|#2|) 159)) (-1349 (($) 148 (|has| |#1| (-318)))) (-2085 (((-1148 |#1|) $ (-1148 $)) 50) (((-621 |#1|) (-1148 $) (-1148 $)) 49) (((-1148 |#1|) $) 66) (((-621 |#1|) (-1148 $)) 65)) (-1248 (((-1148 |#1|) $) 63) (($ (-1148 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 145 (|has| |#1| (-318)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-331))) (($ (-375 (-501))) 86 (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (($ $) 144 (|has| |#1| (-318))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-2942 ((|#2| $) 45)) (-3965 (((-701)) 29)) (-4119 (((-1148 $)) 67)) (-2442 (((-107) $ $) 95 (|has| |#1| (-331)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 117 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $) 136 (-1405 (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-701)) 134 (-1405 (-1280 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-1070)) 129 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-578 (-1070))) 128 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-1070) (-701)) 127 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 (-701))) 126 (-1280 (|has| |#1| (-820 (-1070))) (|has| |#1| (-331)))) (($ $ (-1 |#1| |#1|) (-701)) 125 (|has| |#1| (-331))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-331)))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 121 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 118 (|has| |#1| (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-375 (-501)) $) 120 (|has| |#1| (-331))) (($ $ (-375 (-501))) 119 (|has| |#1| (-331)))))
-(((-655 |#1| |#2|) (-1180) (-156) (-1125 |t#1|)) (T -655))
-((-3987 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-655 *2 *3)) (-4 *3 (-1125 *2)))) (-2264 (*1 *2) (-12 (-4 *1 (-655 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) (-3547 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-655 *3 *2)) (-4 *2 (-1125 *3)))) (-1248 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-655 *3 *2)) (-4 *2 (-1125 *3)))) (-1316 (*1 *2 *1) (-12 (-4 *1 (-655 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) (-3547 (*1 *1 *2) (|partial| -12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-331)) (-4 *3 (-156)) (-4 *1 (-655 *3 *4)))) (-2231 (*1 *2 *3 *4) (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-4 *1 (-655 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1125 *5)) (-5 *2 (-621 *5)))))
-(-13 (-378 |t#1| |t#2|) (-156) (-556 |t#2|) (-380 |t#1|) (-345 |t#1|) (-10 -8 (-15 -3987 ($)) (-15 -2264 (|t#2|)) (-15 -3547 ($ |t#2|)) (-15 -1248 ($ |t#2|)) (-15 -1316 (|t#2| $)) (IF (|has| |t#1| (-336)) (-6 (-336)) |noBranch|) (IF (|has| |t#1| (-331)) (PROGN (-6 (-331)) (-6 (-204 |t#1|)) (-15 -3547 ((-3 $ "failed") (-375 |t#2|))) (-15 -2231 ((-621 |t#1|) (-1148 $) (-1 |t#1| |t#1|)))) |noBranch|) (IF (|has| |t#1| (-318)) (-6 (-318)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-37 |#1|) . T) ((-37 $) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| |#1| (-318)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 |#2|) . T) ((-204 |#1|) |has| |#1| (-331)) ((-206) -1405 (|has| |#1| (-318)) (-12 (|has| |#1| (-206)) (|has| |#1| (-331)))) ((-216) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-260) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-276) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-331) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-370) |has| |#1| (-318)) ((-336) -1405 (|has| |#1| (-336)) (|has| |#1| (-318))) ((-318) |has| |#1| (-318)) ((-338 |#1| |#2|) . T) ((-378 |#1| |#2|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-508) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-648 |#1|) . T) ((-648 $) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070)))) ((-841) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 (-375 (-501))) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-318)) ((-1108) -1405 (|has| |#1| (-318)) (|has| |#1| (-331))))
-((-2540 (($) 14)) (-2174 (((-3 $ "failed") $) 16)) (-1355 (((-107) $) 13)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) 9)) (** (($ $ (-839)) NIL) (($ $ (-701)) 20)))
-(((-656 |#1|) (-10 -8 (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -3948 (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-701))) (-15 -1355 ((-107) |#1|)) (-15 -2540 (|#1|)) (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839)))) (-657)) (T -656))
-NIL
-(-10 -8 (-15 -2174 ((-3 |#1| "failed") |#1|)) (-15 -3948 (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-701))) (-15 -1355 ((-107) |#1|)) (-15 -2540 (|#1|)) (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839))))
-((-3736 (((-107) $ $) 7)) (-2540 (($) 20 T CONST)) (-2174 (((-3 $ "failed") $) 16)) (-1355 (((-107) $) 19)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 13) (($ $ (-701)) 17)) (-1925 (($) 21 T CONST)) (-3751 (((-107) $ $) 6)) (** (($ $ (-839)) 14) (($ $ (-701)) 18)) (* (($ $ $) 15)))
-(((-657) (-1180)) (T -657))
-((-1925 (*1 *1) (-4 *1 (-657))) (-2540 (*1 *1) (-4 *1 (-657))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-657)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-701)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-701)))) (-2174 (*1 *1 *1) (|partial| -4 *1 (-657))))
-(-13 (-1012) (-10 -8 (-15 (-1925) ($) -3897) (-15 -2540 ($) -3897) (-15 -1355 ((-107) $)) (-15 ** ($ $ (-701))) (-15 -3948 ($ $ (-701))) (-15 -2174 ((-3 $ "failed") $))))
-(((-97) . T) ((-555 (-786)) . T) ((-1012) . T) ((-1001) . T))
-((-3538 (((-2 (|:| -2091 (-373 |#2|)) (|:| |special| (-373 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-3205 (((-2 (|:| -2091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2359 ((|#2| (-375 |#2|) (-1 |#2| |#2|)) 13)) (-1688 (((-2 (|:| |poly| |#2|) (|:| -2091 (-375 |#2|)) (|:| |special| (-375 |#2|))) (-375 |#2|) (-1 |#2| |#2|)) 47)))
-(((-658 |#1| |#2|) (-10 -7 (-15 -3205 ((-2 (|:| -2091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3538 ((-2 (|:| -2091 (-373 |#2|)) (|:| |special| (-373 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2359 (|#2| (-375 |#2|) (-1 |#2| |#2|))) (-15 -1688 ((-2 (|:| |poly| |#2|) (|:| -2091 (-375 |#2|)) (|:| |special| (-375 |#2|))) (-375 |#2|) (-1 |#2| |#2|)))) (-331) (-1125 |#1|)) (T -658))
-((-1688 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2091 (-375 *6)) (|:| |special| (-375 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-375 *6)))) (-2359 (*1 *2 *3 *4) (-12 (-5 *3 (-375 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-658 *5 *2)) (-4 *5 (-331)))) (-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -2091 (-373 *3)) (|:| |special| (-373 *3)))) (-5 *1 (-658 *5 *3)))) (-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -2091 *3) (|:| |special| *3))) (-5 *1 (-658 *5 *3)))))
-(-10 -7 (-15 -3205 ((-2 (|:| -2091 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3538 ((-2 (|:| -2091 (-373 |#2|)) (|:| |special| (-373 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2359 (|#2| (-375 |#2|) (-1 |#2| |#2|))) (-15 -1688 ((-2 (|:| |poly| |#2|) (|:| -2091 (-375 |#2|)) (|:| |special| (-375 |#2|))) (-375 |#2|) (-1 |#2| |#2|))))
-((-1205 ((|#7| (-578 |#5|) |#6|) NIL)) (-1212 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-659 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1212 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1205 (|#7| (-578 |#5|) |#6|))) (-777) (-723) (-723) (-959) (-959) (-870 |#4| |#2| |#1|) (-870 |#5| |#3| |#1|)) (T -659))
-((-1205 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *9)) (-4 *9 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *8 (-959)) (-4 *2 (-870 *9 *7 *5)) (-5 *1 (-659 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-723)) (-4 *4 (-870 *8 *6 *5)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-959)) (-4 *9 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *2 (-870 *9 *7 *5)) (-5 *1 (-659 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-723)) (-4 *4 (-870 *8 *6 *5)))))
-(-10 -7 (-15 -1212 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1205 (|#7| (-578 |#5|) |#6|)))
-((-1212 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-660 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1212 (|#7| (-1 |#2| |#1|) |#6|))) (-777) (-777) (-723) (-723) (-959) (-870 |#5| |#3| |#1|) (-870 |#5| |#4| |#2|)) (T -660))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-777)) (-4 *6 (-777)) (-4 *7 (-723)) (-4 *9 (-959)) (-4 *2 (-870 *9 *8 *6)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-723)) (-4 *4 (-870 *9 *7 *5)))))
-(-10 -7 (-15 -1212 (|#7| (-1 |#2| |#1|) |#6|)))
-((-3739 (((-373 |#4|) |#4|) 39)))
-(((-661 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4|))) (-723) (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070))))) (-276) (-870 (-866 |#3|) |#1| |#2|)) (T -661))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-661 *4 *5 *6 *3)) (-4 *3 (-870 (-866 *6) *4 *5)))))
-(-10 -7 (-15 -3739 ((-373 |#4|) |#4|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-787 |#1|)) $) NIL)) (-3728 (((-1064 $) $ (-787 |#1|)) NIL) (((-1064 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-787 |#1|))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-787 |#1|) "failed") $) NIL)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-787 |#1|) $) NIL)) (-1749 (($ $ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| (-487 (-787 |#1|)) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-787 |#1|) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#2|) (-787 |#1|)) NIL) (($ (-1064 $) (-787 |#1|)) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#2| (-487 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-787 |#1|)) NIL)) (-2285 (((-487 (-787 |#1|)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 (-487 (-787 |#1|)) (-487 (-787 |#1|))) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-2752 (((-3 (-787 |#1|) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-787 |#1|)) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#2| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-787 |#1|) |#2|) NIL) (($ $ (-578 (-787 |#1|)) (-578 |#2|)) NIL) (($ $ (-787 |#1|) $) NIL) (($ $ (-578 (-787 |#1|)) (-578 $)) NIL)) (-2532 (($ $ (-787 |#1|)) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1201 (((-487 (-787 |#1|)) $) NIL) (((-701) $ (-787 |#1|)) NIL) (((-578 (-701)) $ (-578 (-787 |#1|))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-787 |#1|) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-787 |#1|) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) NIL (|has| |#2| (-419))) (($ $ (-787 |#1|)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-787 |#1|)) NIL) (($ $) NIL (|has| |#2| (-508))) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501))))))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-487 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-787 |#1|)) NIL) (($ $ (-578 (-787 |#1|))) NIL) (($ $ (-787 |#1|) (-701)) NIL) (($ $ (-578 (-787 |#1|)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-662 |#1| |#2|) (-870 |#2| (-487 (-787 |#1|)) (-787 |#1|)) (-578 (-1070)) (-959)) (T -662))
-NIL
-(-870 |#2| (-487 (-787 |#1|)) (-787 |#1|))
-((-3539 (((-2 (|:| -3405 (-866 |#3|)) (|:| -1277 (-866 |#3|))) |#4|) 13)) (-1512 ((|#4| |#4| |#2|) 30)) (-3528 ((|#4| (-375 (-866 |#3|)) |#2|) 63)) (-2333 ((|#4| (-1064 (-866 |#3|)) |#2|) 76)) (-2647 ((|#4| (-1064 |#4|) |#2|) 49)) (-1827 ((|#4| |#4| |#2|) 52)) (-3739 (((-373 |#4|) |#4|) 38)))
-(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3539 ((-2 (|:| -3405 (-866 |#3|)) (|:| -1277 (-866 |#3|))) |#4|)) (-15 -1827 (|#4| |#4| |#2|)) (-15 -2647 (|#4| (-1064 |#4|) |#2|)) (-15 -1512 (|#4| |#4| |#2|)) (-15 -2333 (|#4| (-1064 (-866 |#3|)) |#2|)) (-15 -3528 (|#4| (-375 (-866 |#3|)) |#2|)) (-15 -3739 ((-373 |#4|) |#4|))) (-723) (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)))) (-508) (-870 (-375 (-866 |#3|)) |#1| |#2|)) (T -663))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-870 (-375 (-866 *6)) *4 *5)))) (-3528 (*1 *2 *3 *4) (-12 (-4 *6 (-508)) (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-5 *3 (-375 (-866 *6))) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))))) (-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 (-866 *6))) (-4 *6 (-508)) (-4 *2 (-870 (-375 (-866 *6)) *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))))) (-1512 (*1 *2 *2 *3) (-12 (-4 *4 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *5 (-508)) (-5 *1 (-663 *4 *3 *5 *2)) (-4 *2 (-870 (-375 (-866 *5)) *4 *3)))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-870 (-375 (-866 *6)) *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)))) (-1827 (*1 *2 *2 *3) (-12 (-4 *4 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *5 (-508)) (-5 *1 (-663 *4 *3 *5 *2)) (-4 *2 (-870 (-375 (-866 *5)) *4 *3)))) (-3539 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)) (-5 *2 (-2 (|:| -3405 (-866 *6)) (|:| -1277 (-866 *6)))) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-870 (-375 (-866 *6)) *4 *5)))))
-(-10 -7 (-15 -3539 ((-2 (|:| -3405 (-866 |#3|)) (|:| -1277 (-866 |#3|))) |#4|)) (-15 -1827 (|#4| |#4| |#2|)) (-15 -2647 (|#4| (-1064 |#4|) |#2|)) (-15 -1512 (|#4| |#4| |#2|)) (-15 -2333 (|#4| (-1064 (-866 |#3|)) |#2|)) (-15 -3528 (|#4| (-375 (-866 |#3|)) |#2|)) (-15 -3739 ((-373 |#4|) |#4|)))
-((-3739 (((-373 |#4|) |#4|) 51)))
-(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4|))) (-723) (-777) (-13 (-276) (-134)) (-870 (-375 |#3|) |#1| |#2|)) (T -664))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-870 (-375 *6) *4 *5)))))
-(-10 -7 (-15 -3739 ((-373 |#4|) |#4|)))
-((-1212 (((-666 |#2| |#3|) (-1 |#2| |#1|) (-666 |#1| |#3|)) 18)))
-(((-665 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-666 |#2| |#3|) (-1 |#2| |#1|) (-666 |#1| |#3|)))) (-959) (-959) (-657)) (T -665))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-666 *5 *7)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *7 (-657)) (-5 *2 (-666 *6 *7)) (-5 *1 (-665 *5 *6 *7)))))
-(-10 -7 (-15 -1212 ((-666 |#2| |#3|) (-1 |#2| |#1|) (-666 |#1| |#3|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 26)) (-1395 (((-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))) $) 27)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701)) 20 (-12 (|has| |#2| (-336)) (|has| |#1| (-336))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 55) (((-3 |#1| "failed") $) 58)) (-3490 ((|#2| $) NIL) ((|#1| $) NIL)) (-3858 (($ $) 75 (|has| |#2| (-777)))) (-2174 (((-3 $ "failed") $) 62)) (-2890 (($) 33 (-12 (|has| |#2| (-336)) (|has| |#1| (-336))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) 53)) (-2713 (((-578 $) $) 37)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| |#2|) 16)) (-1212 (($ (-1 |#1| |#1|) $) 52)) (-3104 (((-839) $) 30 (-12 (|has| |#2| (-336)) (|has| |#1| (-336))))) (-3845 ((|#2| $) 74 (|has| |#2| (-777)))) (-3850 ((|#1| $) 73 (|has| |#2| (-777)))) (-3460 (((-1053) $) NIL)) (-3506 (($ (-839)) 25 (-12 (|has| |#2| (-336)) (|has| |#1| (-336))))) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 72) (($ (-501)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|)))) 11)) (-1303 (((-578 |#1|) $) 39)) (-2495 ((|#1| $ |#2|) 83)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 12 T CONST)) (-1925 (($) 31 T CONST)) (-3751 (((-107) $ $) 76)) (-3797 (($ $) 46) (($ $ $) NIL)) (-3790 (($ $ $) 24)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-666 |#1| |#2|) (-13 (-959) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -3787 ($ |#1| |#2|)) (-15 -2495 (|#1| $ |#2|)) (-15 -3691 ($ (-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))))) (-15 -1395 ((-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))) $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (-15 -2706 ((-107) $)) (-15 -1303 ((-578 |#1|) $)) (-15 -2713 ((-578 $) $)) (-15 -3706 ((-701) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-336)) (IF (|has| |#2| (-336)) (-6 (-336)) |noBranch|) |noBranch|) (IF (|has| |#2| (-777)) (PROGN (-15 -3845 (|#2| $)) (-15 -3850 (|#1| $)) (-15 -3858 ($ $))) |noBranch|))) (-959) (-657)) (T -666))
-((-3787 (*1 *1 *2 *3) (-12 (-5 *1 (-666 *2 *3)) (-4 *2 (-959)) (-4 *3 (-657)))) (-2495 (*1 *2 *1 *3) (-12 (-4 *2 (-959)) (-5 *1 (-666 *2 *3)) (-4 *3 (-657)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3189 *3) (|:| -2607 *4)))) (-4 *3 (-959)) (-4 *4 (-657)) (-5 *1 (-666 *3 *4)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3189 *3) (|:| -2607 *4)))) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-666 *3 *4)) (-4 *4 (-657)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-2713 (*1 *2 *1) (-12 (-5 *2 (-578 (-666 *3 *4))) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) (-3845 (*1 *2 *1) (-12 (-4 *2 (-657)) (-4 *2 (-777)) (-5 *1 (-666 *3 *2)) (-4 *3 (-959)))) (-3850 (*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-666 *2 *3)) (-4 *3 (-777)) (-4 *3 (-657)))) (-3858 (*1 *1 *1) (-12 (-5 *1 (-666 *2 *3)) (-4 *3 (-777)) (-4 *2 (-959)) (-4 *3 (-657)))))
-(-13 (-959) (-950 |#2|) (-950 |#1|) (-10 -8 (-15 -3787 ($ |#1| |#2|)) (-15 -2495 (|#1| $ |#2|)) (-15 -3691 ($ (-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))))) (-15 -1395 ((-578 (-2 (|:| -3189 |#1|) (|:| -2607 |#2|))) $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (-15 -2706 ((-107) $)) (-15 -1303 ((-578 |#1|) $)) (-15 -2713 ((-578 $) $)) (-15 -3706 ((-701) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-336)) (IF (|has| |#2| (-336)) (-6 (-336)) |noBranch|) |noBranch|) (IF (|has| |#2| (-777)) (PROGN (-15 -3845 (|#2| $)) (-15 -3850 (|#1| $)) (-15 -3858 ($ $))) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-1442 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (-3217 (($ $ $) 80)) (-3599 (((-107) $ $) 83)) (-2997 (((-107) $ (-701)) NIL)) (-2198 (($ (-578 |#1|)) 24) (($) 15)) (-1221 (($ (-1 (-107) |#1|) $) 71 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2921 (($ $) 72)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) 61 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4167))) (($ |#1| $ (-501)) 62) (($ (-1 (-107) |#1|) $ (-501)) 65)) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (($ |#1| $ (-501)) 67) (($ (-1 (-107) |#1|) $ (-501)) 68)) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 32 (|has| $ (-6 -4167)))) (-1431 (($) 13) (($ |#1|) 26) (($ (-578 |#1|)) 21)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) 38)) (-2211 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) 75 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 76)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-3420 (($ $ $) 78)) (-1328 ((|#1| $) 54)) (-4114 (($ |#1| $) 55) (($ |#1| $ (-701)) 73)) (-3708 (((-1018) $) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1251 ((|#1| $) 53)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 49)) (-3122 (($) 12)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 47)) (-3327 (($ $ |#1|) NIL) (($ $ $) 79)) (-3013 (($) 14) (($ (-578 |#1|)) 23)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) 60 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 66)) (-1248 (((-490) $) 36 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 20)) (-3691 (((-786) $) 44)) (-3910 (($ (-578 |#1|)) 25) (($) 16)) (-2866 (($ (-578 |#1|)) 22)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 81)) (-3762 (((-107) $ $) 82)) (-3581 (((-701) $) 59 (|has| $ (-6 -4167)))))
-(((-667 |#1|) (-13 (-668 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -1431 ($)) (-15 -1431 ($ |#1|)) (-15 -1431 ($ (-578 |#1|))) (-15 -3380 ((-578 |#1|) $)) (-15 -1526 ($ |#1| $ (-501))) (-15 -1526 ($ (-1 (-107) |#1|) $ (-501))) (-15 -2256 ($ |#1| $ (-501))) (-15 -2256 ($ (-1 (-107) |#1|) $ (-501))))) (-1001)) (T -667))
-((-1431 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1001)))) (-1431 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1001)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-667 *3)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-667 *3)) (-4 *3 (-1001)))) (-1526 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-667 *2)) (-4 *2 (-1001)))) (-1526 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-501)) (-4 *4 (-1001)) (-5 *1 (-667 *4)))) (-2256 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-667 *2)) (-4 *2 (-1001)))) (-2256 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-501)) (-4 *4 (-1001)) (-5 *1 (-667 *4)))))
-(-13 (-668 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -1431 ($)) (-15 -1431 ($ |#1|)) (-15 -1431 ($ (-578 |#1|))) (-15 -3380 ((-578 |#1|) $)) (-15 -1526 ($ |#1| $ (-501))) (-15 -1526 ($ (-1 (-107) |#1|) $ (-501))) (-15 -2256 ($ |#1| $ (-501))) (-15 -2256 ($ (-1 (-107) |#1|) $ (-501)))))
-((-3736 (((-107) $ $) 18)) (-1442 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3217 (($ $ $) 72)) (-3599 (((-107) $ $) 73)) (-2997 (((-107) $ (-701)) 8)) (-2198 (($ (-578 |#1|)) 68) (($) 67)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2921 (($ $) 62)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22)) (-3420 (($ $ $) 69)) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40) (($ |#1| $ (-701)) 63)) (-3708 (((-1018) $) 21)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 61)) (-3327 (($ $ |#1|) 71) (($ $ $) 70)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20)) (-3910 (($ (-578 |#1|)) 66) (($) 65)) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19)) (-3762 (((-107) $ $) 64)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-668 |#1|) (-1180) (-1001)) (T -668))
-NIL
-(-13 (-626 |t#1|) (-999 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-626 |#1|) . T) ((-999 |#1|) . T) ((-1001) . T) ((-1104) . T))
-((-2923 (((-1154) (-1053)) 8)))
-(((-669) (-10 -7 (-15 -2923 ((-1154) (-1053))))) (T -669))
-((-2923 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-669)))))
-(-10 -7 (-15 -2923 ((-1154) (-1053))))
-((-2610 (((-578 |#1|) (-578 |#1|) (-578 |#1|)) 10)))
-(((-670 |#1|) (-10 -7 (-15 -2610 ((-578 |#1|) (-578 |#1|) (-578 |#1|)))) (-777)) (T -670))
-((-2610 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-670 *3)))))
-(-10 -7 (-15 -2610 ((-578 |#1|) (-578 |#1|) (-578 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 |#2|) $) 143)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 136 (|has| |#1| (-508)))) (-2865 (($ $) 135 (|has| |#1| (-508)))) (-1639 (((-107) $) 133 (|has| |#1| (-508)))) (-3978 (($ $) 92 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 75 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3743 (($ $) 74 (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) 91 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 76 (|has| |#1| (-37 (-375 (-501)))))) (-3984 (($ $) 90 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 77 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3858 (($ $) 127)) (-2174 (((-3 $ "failed") $) 34)) (-3430 (((-866 |#1|) $ (-701)) 105) (((-866 |#1|) $ (-701) (-701)) 104)) (-3331 (((-107) $) 144)) (-2003 (($) 102 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $ |#2|) 107) (((-701) $ |#2| (-701)) 106)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 73 (|has| |#1| (-37 (-375 (-501)))))) (-2706 (((-107) $) 125)) (-3787 (($ $ (-578 |#2|) (-578 (-487 |#2|))) 142) (($ $ |#2| (-487 |#2|)) 141) (($ |#1| (-487 |#2|)) 126) (($ $ |#2| (-701)) 109) (($ $ (-578 |#2|) (-578 (-701))) 108)) (-1212 (($ (-1 |#1| |#1|) $) 124)) (-1635 (($ $) 99 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 122)) (-3850 ((|#1| $) 121)) (-3460 (((-1053) $) 9)) (-3188 (($ $ |#2|) 103 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) 10)) (-3718 (($ $ (-701)) 110)) (-3694 (((-3 $ "failed") $ $) 137 (|has| |#1| (-508)))) (-1989 (($ $) 100 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (($ $ |#2| $) 118) (($ $ (-578 |#2|) (-578 $)) 117) (($ $ (-578 (-262 $))) 116) (($ $ (-262 $)) 115) (($ $ $ $) 114) (($ $ (-578 $) (-578 $)) 113)) (-2596 (($ $ |#2|) 42) (($ $ (-578 |#2|)) 41) (($ $ |#2| (-701)) 40) (($ $ (-578 |#2|) (-578 (-701))) 39)) (-1201 (((-487 |#2|) $) 123)) (-3991 (($ $) 89 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 78 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 88 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 79 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 87 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 80 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 145)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 140 (|has| |#1| (-156))) (($ $) 138 (|has| |#1| (-508))) (($ (-375 (-501))) 130 (|has| |#1| (-37 (-375 (-501)))))) (-2495 ((|#1| $ (-487 |#2|)) 128) (($ $ |#2| (-701)) 112) (($ $ (-578 |#2|) (-578 (-701))) 111)) (-1274 (((-3 $ "failed") $) 139 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-4003 (($ $) 98 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 86 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 134 (|has| |#1| (-508)))) (-3995 (($ $) 97 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 85 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 96 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 84 (|has| |#1| (-37 (-375 (-501)))))) (-3550 (($ $) 95 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 83 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 94 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 82 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 93 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 81 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ |#2|) 38) (($ $ (-578 |#2|)) 37) (($ $ |#2| (-701)) 36) (($ $ (-578 |#2|) (-578 (-701))) 35)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 129 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ $) 101 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 72 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 132 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 131 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 120) (($ $ |#1|) 119)))
-(((-671 |#1| |#2|) (-1180) (-959) (-777)) (T -671))
-((-2495 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *2)) (-4 *4 (-959)) (-4 *2 (-777)))) (-2495 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-701))) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-671 *3 *4)) (-4 *3 (-959)) (-4 *4 (-777)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *2)) (-4 *4 (-959)) (-4 *2 (-777)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-701))) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)))) (-3169 (*1 *2 *1 *3) (-12 (-4 *1 (-671 *4 *3)) (-4 *4 (-959)) (-4 *3 (-777)) (-5 *2 (-701)))) (-3169 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-701)) (-4 *1 (-671 *4 *3)) (-4 *4 (-959)) (-4 *3 (-777)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)) (-5 *2 (-866 *4)))) (-3430 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)) (-5 *2 (-866 *4)))) (-3188 (*1 *1 *1 *2) (-12 (-4 *1 (-671 *3 *2)) (-4 *3 (-959)) (-4 *2 (-777)) (-4 *3 (-37 (-375 (-501)))))))
-(-13 (-820 |t#2|) (-888 |t#1| (-487 |t#2|) |t#2|) (-476 |t#2| $) (-278 $) (-10 -8 (-15 -2495 ($ $ |t#2| (-701))) (-15 -2495 ($ $ (-578 |t#2|) (-578 (-701)))) (-15 -3718 ($ $ (-701))) (-15 -3787 ($ $ |t#2| (-701))) (-15 -3787 ($ $ (-578 |t#2|) (-578 (-701)))) (-15 -3169 ((-701) $ |t#2|)) (-15 -3169 ((-701) $ |t#2| (-701))) (-15 -3430 ((-866 |t#1|) $ (-701))) (-15 -3430 ((-866 |t#1|) $ (-701) (-701))) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ |t#2|)) (-6 (-916)) (-6 (-1090))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-487 |#2|)) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-260) |has| |#1| (-508)) ((-278 $) . T) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-476 |#2| $) . T) ((-476 $ $) . T) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-820 |#2|) . T) ((-888 |#1| (-487 |#2|) |#2|) . T) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))))
-((-3739 (((-373 (-1064 |#4|)) (-1064 |#4|)) 28) (((-373 |#4|) |#4|) 24)))
-(((-672 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 |#4|) |#4|)) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|)))) (-777) (-723) (-13 (-276) (-134)) (-870 |#3| |#2| |#1|)) (T -672))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4)))))
-(-10 -7 (-15 -3739 ((-373 |#4|) |#4|)) (-15 -3739 ((-373 (-1064 |#4|)) (-1064 |#4|))))
-((-1918 (((-373 |#4|) |#4| |#2|) 116)) (-3247 (((-373 |#4|) |#4|) NIL)) (-1559 (((-373 (-1064 |#4|)) (-1064 |#4|)) 107) (((-373 |#4|) |#4|) 38)) (-3206 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 |#4|)) (|:| -3027 (-501)))))) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|))) 65)) (-2071 (((-1064 |#3|) (-1064 |#3|) (-501)) 133)) (-1466 (((-578 (-701)) (-1064 |#4|) (-578 |#2|) (-701)) 58)) (-1316 (((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-1064 |#3|) (-1064 |#3|) |#4| (-578 |#2|) (-578 (-701)) (-578 |#3|)) 62)) (-1454 (((-2 (|:| |upol| (-1064 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) (|:| |ctpol| |#3|)) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|))) 22)) (-3264 (((-2 (|:| -2663 (-1064 |#4|)) (|:| |polval| (-1064 |#3|))) (-1064 |#4|) (-1064 |#3|) (-501)) 54)) (-1185 (((-501) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) 130)) (-2112 ((|#4| (-501) (-373 |#4|)) 55)) (-1266 (((-107) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) NIL)))
-(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1559 ((-373 |#4|) |#4|)) (-15 -1559 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -3247 ((-373 |#4|) |#4|)) (-15 -1185 ((-501) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))))) (-15 -1918 ((-373 |#4|) |#4| |#2|)) (-15 -3264 ((-2 (|:| -2663 (-1064 |#4|)) (|:| |polval| (-1064 |#3|))) (-1064 |#4|) (-1064 |#3|) (-501))) (-15 -3206 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 |#4|)) (|:| -3027 (-501)))))) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -1454 ((-2 (|:| |upol| (-1064 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) (|:| |ctpol| |#3|)) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -2112 (|#4| (-501) (-373 |#4|))) (-15 -1266 ((-107) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))))) (-15 -1316 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-1064 |#3|) (-1064 |#3|) |#4| (-578 |#2|) (-578 (-701)) (-578 |#3|))) (-15 -1466 ((-578 (-701)) (-1064 |#4|) (-578 |#2|) (-701))) (-15 -2071 ((-1064 |#3|) (-1064 |#3|) (-501)))) (-723) (-777) (-276) (-870 |#3| |#1| |#2|)) (T -673))
-((-2071 (*1 *2 *2 *3) (-12 (-5 *2 (-1064 *6)) (-5 *3 (-501)) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-1466 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-4 *7 (-777)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-4 *8 (-276)) (-5 *2 (-578 (-701))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *5 (-701)))) (-1316 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1064 *11)) (-5 *6 (-578 *10)) (-5 *7 (-578 (-701))) (-5 *8 (-578 *11)) (-4 *10 (-777)) (-4 *11 (-276)) (-4 *9 (-723)) (-4 *5 (-870 *11 *9 *10)) (-5 *2 (-578 (-1064 *5))) (-5 *1 (-673 *9 *10 *11 *5)) (-5 *3 (-1064 *5)))) (-1266 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 (-1064 *6)) (|:| -3027 (-501))))) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-373 *2)) (-4 *2 (-870 *7 *5 *6)) (-5 *1 (-673 *5 *6 *7 *2)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-276)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-5 *2 (-2 (|:| |upol| (-1064 *8)) (|:| |Lval| (-578 *8)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 *8)) (|:| -3027 (-501))))) (|:| |ctpol| *8))) (-5 *1 (-673 *6 *7 *8 *9)))) (-3206 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *6 (-723)) (-4 *9 (-870 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 *9)) (|:| -3027 (-501))))))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *3 (-1064 *9)))) (-3264 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-501)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *9 (-870 *8 *6 *7)) (-5 *2 (-2 (|:| -2663 (-1064 *9)) (|:| |polval| (-1064 *8)))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *3 (-1064 *9)) (-5 *4 (-1064 *8)))) (-1918 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *5 *4 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) (-1185 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 (-1064 *6)) (|:| -3027 (-501))))) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-501)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-3247 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-870 *6 *4 *5)))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-673 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-870 *6 *4 *5)))))
-(-10 -7 (-15 -1559 ((-373 |#4|) |#4|)) (-15 -1559 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -3247 ((-373 |#4|) |#4|)) (-15 -1185 ((-501) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))))) (-15 -1918 ((-373 |#4|) |#4| |#2|)) (-15 -3264 ((-2 (|:| -2663 (-1064 |#4|)) (|:| |polval| (-1064 |#3|))) (-1064 |#4|) (-1064 |#3|) (-501))) (-15 -3206 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 |#4|)) (|:| -3027 (-501)))))) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -1454 ((-2 (|:| |upol| (-1064 |#3|)) (|:| |Lval| (-578 |#3|)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501))))) (|:| |ctpol| |#3|)) (-1064 |#4|) (-578 |#2|) (-578 (-578 |#3|)))) (-15 -2112 (|#4| (-501) (-373 |#4|))) (-15 -1266 ((-107) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))) (-578 (-2 (|:| -3739 (-1064 |#3|)) (|:| -3027 (-501)))))) (-15 -1316 ((-3 (-578 (-1064 |#4|)) "failed") (-1064 |#4|) (-1064 |#3|) (-1064 |#3|) |#4| (-578 |#2|) (-578 (-701)) (-578 |#3|))) (-15 -1466 ((-578 (-701)) (-1064 |#4|) (-578 |#2|) (-701))) (-15 -2071 ((-1064 |#3|) (-1064 |#3|) (-501))))
-((-3554 (($ $ (-839)) 12)))
-(((-674 |#1| |#2|) (-10 -8 (-15 -3554 (|#1| |#1| (-839)))) (-675 |#2|) (-156)) (T -674))
-NIL
-(-10 -8 (-15 -3554 (|#1| |#1| (-839))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2911 (($ $ (-839)) 28)) (-3554 (($ $ (-839)) 33)) (-3381 (($ $ (-839)) 29)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2144 (($ $ $) 25)) (-3691 (((-786) $) 11)) (-1363 (($ $ $ $) 26)) (-2033 (($ $ $) 24)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-675 |#1|) (-1180) (-156)) (T -675))
-((-3554 (*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-675 *3)) (-4 *3 (-156)))))
-(-13 (-692) (-648 |t#1|) (-10 -8 (-15 -3554 ($ $ (-839)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-651) . T) ((-692) . T) ((-964 |#1|) . T) ((-1001) . T))
-((-1377 (((-948) (-621 (-199)) (-501) (-107) (-501)) 24)) (-1373 (((-948) (-621 (-199)) (-501) (-107) (-501)) 23)))
-(((-676) (-10 -7 (-15 -1373 ((-948) (-621 (-199)) (-501) (-107) (-501))) (-15 -1377 ((-948) (-621 (-199)) (-501) (-107) (-501))))) (T -676))
-((-1377 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-676)))) (-1373 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-676)))))
-(-10 -7 (-15 -1373 ((-948) (-621 (-199)) (-501) (-107) (-501))) (-15 -1377 ((-948) (-621 (-199)) (-501) (-107) (-501))))
-((-1404 (((-948) (-501) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN)))) 43)) (-1396 (((-948) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN)))) 39)) (-1388 (((-948) (-199) (-199) (-199) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 32)))
-(((-677) (-10 -7 (-15 -1388 ((-948) (-199) (-199) (-199) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1396 ((-948) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN))))) (-15 -1404 ((-948) (-501) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN))))))) (T -677))
-((-1404 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN)))) (-5 *2 (-948)) (-5 *1 (-677)))) (-1396 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN)))) (-5 *2 (-948)) (-5 *1 (-677)))) (-1388 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-677)))))
-(-10 -7 (-15 -1388 ((-948) (-199) (-199) (-199) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1396 ((-948) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN))))) (-15 -1404 ((-948) (-501) (-501) (-501) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN))))))
-((-1496 (((-948) (-501) (-501) (-621 (-199)) (-501)) 33)) (-1489 (((-948) (-501) (-501) (-621 (-199)) (-501)) 32)) (-1478 (((-948) (-501) (-621 (-199)) (-501)) 31)) (-1470 (((-948) (-501) (-621 (-199)) (-501)) 30)) (-1463 (((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 29)) (-1456 (((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 28)) (-1448 (((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501)) 27)) (-1438 (((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501)) 26)) (-1432 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 23)) (-1424 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501)) 22)) (-1420 (((-948) (-501) (-621 (-199)) (-501)) 21)) (-1412 (((-948) (-501) (-621 (-199)) (-501)) 20)))
-(((-678) (-10 -7 (-15 -1412 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1420 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1424 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1432 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1438 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1448 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1456 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1463 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1470 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1478 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1489 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1496 ((-948) (-501) (-501) (-621 (-199)) (-501))))) (T -678))
-((-1496 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1489 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1478 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1470 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1463 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1456 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1448 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1438 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1432 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1424 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1420 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))) (-1412 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(-10 -7 (-15 -1412 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1420 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1424 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1432 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1438 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1448 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1456 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1463 ((-948) (-501) (-501) (-1053) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1470 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1478 ((-948) (-501) (-621 (-199)) (-501))) (-15 -1489 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1496 ((-948) (-501) (-501) (-621 (-199)) (-501))))
-((-1589 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) 52)) (-1580 (((-948) (-621 (-199)) (-621 (-199)) (-501) (-501)) 51)) (-1573 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) 50)) (-1565 (((-948) (-199) (-199) (-501) (-501) (-501) (-501)) 46)) (-1561 (((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) 45)) (-1553 (((-948) (-199) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) 44)) (-1539 (((-948) (-199) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) 43)) (-1533 (((-948) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) 42)) (-1523 (((-948) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 38)) (-1519 (((-948) (-199) (-199) (-501) (-621 (-199)) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 37)) (-1508 (((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 33)) (-1503 (((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) 32)))
-(((-679) (-10 -7 (-15 -1503 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1508 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1519 ((-948) (-199) (-199) (-501) (-621 (-199)) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1523 ((-948) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1533 ((-948) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1539 ((-948) (-199) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1553 ((-948) (-199) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1561 ((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1565 ((-948) (-199) (-199) (-501) (-501) (-501) (-501))) (-15 -1573 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN))))) (-15 -1580 ((-948) (-621 (-199)) (-621 (-199)) (-501) (-501))) (-15 -1589 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN))))))) (T -679))
-((-1589 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1580 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-679)))) (-1573 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1565 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-679)))) (-1561 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1553 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1539 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1533 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1523 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1519 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-679)))) (-1508 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679)))) (-1503 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(-10 -7 (-15 -1503 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1508 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1519 ((-948) (-199) (-199) (-501) (-621 (-199)) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1523 ((-948) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958))))) (-15 -1533 ((-948) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1539 ((-948) (-199) (-199) (-199) (-199) (-501) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1553 ((-948) (-199) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1561 ((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G))))) (-15 -1565 ((-948) (-199) (-199) (-501) (-501) (-501) (-501))) (-15 -1573 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN))))) (-15 -1580 ((-948) (-621 (-199)) (-621 (-199)) (-501) (-501))) (-15 -1589 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-199) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN))))))
-((-1650 (((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP)))) 76)) (-1643 (((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))) (-356) (-356)) 69) (((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) 68)) (-1636 (((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG)))) 57)) (-1627 (((-948) (-621 (-199)) (-621 (-199)) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) 50)) (-1619 (((-948) (-199) (-501) (-501) (-1053) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) 49)) (-1611 (((-948) (-199) (-501) (-501) (-199) (-1053) (-199) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) 45)) (-1603 (((-948) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) 42)) (-1593 (((-948) (-199) (-501) (-501) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) 38)))
-(((-680) (-10 -7 (-15 -1593 ((-948) (-199) (-501) (-501) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1603 ((-948) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))))) (-15 -1611 ((-948) (-199) (-501) (-501) (-199) (-1053) (-199) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1619 ((-948) (-199) (-501) (-501) (-1053) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1627 ((-948) (-621 (-199)) (-621 (-199)) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))))) (-15 -1636 ((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG))))) (-15 -1643 ((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))))) (-15 -1643 ((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))) (-356) (-356))) (-15 -1650 ((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP))))))) (T -680))
-((-1650 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1643 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-356)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1643 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-948)) (-5 *1 (-680)))) (-1636 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1627 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *2 (-948)) (-5 *1 (-680)))) (-1619 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1611 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1603 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))) (-1593 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))))
-(-10 -7 (-15 -1593 ((-948) (-199) (-501) (-501) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1603 ((-948) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))))) (-15 -1611 ((-948) (-199) (-501) (-501) (-199) (-1053) (-199) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1619 ((-948) (-199) (-501) (-501) (-1053) (-501) (-199) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT))))) (-15 -1627 ((-948) (-621 (-199)) (-621 (-199)) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN))))) (-15 -1636 ((-948) (-199) (-199) (-501) (-199) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG))))) (-15 -1643 ((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))))) (-15 -1643 ((-948) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL))) (-356) (-356))) (-15 -1650 ((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP))))))
-((-1669 (((-948) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-609 (-199)) (-501)) 45)) (-1661 (((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-1053) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY)))) 41)) (-1656 (((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 23)))
-(((-681) (-10 -7 (-15 -1656 ((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1661 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-1053) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY))))) (-15 -1669 ((-948) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-609 (-199)) (-501))))) (T -681))
-((-1669 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-609 (-199))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-681)))) (-1661 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-948)) (-5 *1 (-681)))) (-1656 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-681)))))
-(-10 -7 (-15 -1656 ((-948) (-501) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1661 ((-948) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-1053) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF))) (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY))))) (-15 -1669 ((-948) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-609 (-199)) (-501))))
-((-1742 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-621 (-199)) (-199) (-199) (-501)) 35)) (-1736 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-199) (-199) (-501)) 34)) (-1728 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-621 (-199)) (-199) (-199) (-501)) 33)) (-1721 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 29)) (-1714 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 28)) (-1708 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501)) 27)) (-1698 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501)) 23)) (-1692 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501)) 22)) (-1685 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501)) 21)) (-1679 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501)) 20)))
-(((-682) (-10 -7 (-15 -1679 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))) (-15 -1685 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1692 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -1698 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -1708 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501))) (-15 -1714 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1721 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1728 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-621 (-199)) (-199) (-199) (-501))) (-15 -1736 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-199) (-199) (-501))) (-15 -1742 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-621 (-199)) (-199) (-199) (-501))))) (T -682))
-((-1742 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682)))) (-1736 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682)))) (-1728 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *6 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-682)))) (-1721 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1714 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1708 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682)))) (-1698 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1692 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1685 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))) (-1679 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))))
-(-10 -7 (-15 -1679 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))) (-15 -1685 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1692 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -1698 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -1708 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-199) (-501))) (-15 -1714 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1721 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1728 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-621 (-199)) (-199) (-199) (-501))) (-15 -1736 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-199) (-199) (-501))) (-15 -1742 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-621 (-199)) (-199) (-199) (-501))))
-((-1840 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501)) 45)) (-1836 (((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-501)) 44)) (-1830 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501)) 43)) (-1823 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 42)) (-1819 (((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501)) 41)) (-1815 (((-948) (-1053) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501)) 40)) (-1810 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501) (-501) (-501) (-199) (-621 (-199)) (-501)) 39)) (-1805 (((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501))) 38)) (-1799 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-501)) 35)) (-1793 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501)) 34)) (-1788 (((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501)) 33)) (-1779 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 32)) (-1775 (((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501)) 31)) (-1770 (((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-501)) 30)) (-1760 (((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-501) (-501) (-501)) 29)) (-1756 (((-948) (-501) (-501) (-501) (-199) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-501)) (-501) (-501) (-501)) 28)) (-1748 (((-948) (-501) (-621 (-199)) (-199) (-501)) 24)) (-1744 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 20)))
-(((-683) (-10 -7 (-15 -1744 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1748 ((-948) (-501) (-621 (-199)) (-199) (-501))) (-15 -1756 ((-948) (-501) (-501) (-501) (-199) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-501)) (-501) (-501) (-501))) (-15 -1760 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-501) (-501) (-501))) (-15 -1770 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-501))) (-15 -1775 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501))) (-15 -1779 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1788 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501))) (-15 -1793 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501))) (-15 -1799 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1805 ((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)))) (-15 -1810 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501) (-501) (-501) (-199) (-621 (-199)) (-501))) (-15 -1815 ((-948) (-1053) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501))) (-15 -1819 ((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1823 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1830 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))) (-15 -1836 ((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1840 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))))) (T -683))
-((-1840 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1836 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1830 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1823 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1819 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1815 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1810 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *6 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1805 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1799 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1793 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1788 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1779 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))) (-1775 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1770 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1760 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1756 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1748 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))) (-1744 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))))
-(-10 -7 (-15 -1744 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1748 ((-948) (-501) (-621 (-199)) (-199) (-501))) (-15 -1756 ((-948) (-501) (-501) (-501) (-199) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-501)) (-501) (-501) (-501))) (-15 -1760 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-501) (-501) (-501))) (-15 -1770 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501) (-501) (-501))) (-15 -1775 ((-948) (-501) (-199) (-199) (-621 (-199)) (-501) (-501) (-199) (-501))) (-15 -1779 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1788 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501))) (-15 -1793 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501))) (-15 -1799 ((-948) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1805 ((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)))) (-15 -1810 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501) (-501) (-501) (-199) (-621 (-199)) (-501))) (-15 -1815 ((-948) (-1053) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501))) (-15 -1819 ((-948) (-1053) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1823 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1830 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))) (-15 -1836 ((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1840 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501) (-621 (-199)) (-621 (-199)) (-501) (-501) (-501))))
-((-1873 (((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-501) (-621 (-199)) (-501)) 63)) (-1869 (((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-107) (-199) (-501) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-501) (-501) (-501) (-501) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) 62)) (-1865 (((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-107) (-107) (-501) (-501) (-621 (-199)) (-621 (-501)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS)))) 58)) (-1861 (((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-501) (-501) (-621 (-199)) (-501)) 51)) (-1857 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1854 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2)))) 46)) (-1849 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1845 (((-948) (-501) (-199) (-199) (-501) (-199) (-107) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) 38)))
-(((-684) (-10 -7 (-15 -1845 ((-948) (-501) (-199) (-199) (-501) (-199) (-107) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN))))) (-15 -1849 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1))))) (-15 -1854 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2))))) (-15 -1857 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1))))) (-15 -1861 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-501) (-501) (-621 (-199)) (-501))) (-15 -1865 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-107) (-107) (-501) (-501) (-621 (-199)) (-621 (-501)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS))))) (-15 -1869 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-107) (-199) (-501) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-501) (-501) (-501) (-501) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN))))) (-15 -1873 ((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-501) (-621 (-199)) (-501))))) (T -684))
-((-1873 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684)))) (-1869 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-684)))) (-1865 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-621 (-199))) (-5 *6 (-107)) (-5 *7 (-621 (-501))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684)))) (-1861 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-684)))) (-1857 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-948)) (-5 *1 (-684)))) (-1854 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-948)) (-5 *1 (-684)))) (-1849 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-948)) (-5 *1 (-684)))) (-1845 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-501)) (-5 *5 (-107)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684)))))
-(-10 -7 (-15 -1845 ((-948) (-501) (-199) (-199) (-501) (-199) (-107) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN))))) (-15 -1849 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1))))) (-15 -1854 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2))))) (-15 -1857 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1))))) (-15 -1861 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-501) (-501) (-621 (-199)) (-501))) (-15 -1865 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-199) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-107) (-107) (-107) (-501) (-501) (-621 (-199)) (-621 (-501)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS))))) (-15 -1869 ((-948) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-501) (-107) (-199) (-501) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-501) (-501) (-501) (-501) (-501) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-501) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN))))) (-15 -1873 ((-948) (-501) (-501) (-501) (-199) (-621 (-199)) (-501) (-621 (-199)) (-501))))
-((-1916 (((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501)) 46)) (-1911 (((-948) (-1053) (-1053) (-501) (-501) (-621 (-152 (-199))) (-501) (-621 (-152 (-199))) (-501) (-501) (-621 (-152 (-199))) (-501)) 45)) (-1907 (((-948) (-501) (-501) (-501) (-621 (-152 (-199))) (-501)) 44)) (-1903 (((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 40)) (-1899 (((-948) (-1053) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-621 (-199)) (-501)) 39)) (-1895 (((-948) (-501) (-501) (-501) (-621 (-199)) (-501)) 36)) (-1890 (((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501)) 35)) (-1885 (((-948) (-501) (-501) (-501) (-501) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-199) (-199) (-501)) 34)) (-1881 (((-948) (-501) (-501) (-501) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-107) (-199) (-107) (-621 (-501)) (-621 (-199)) (-501)) 33)) (-1877 (((-948) (-501) (-501) (-501) (-501) (-199) (-107) (-107) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-501)) 32)))
-(((-685) (-10 -7 (-15 -1877 ((-948) (-501) (-501) (-501) (-501) (-199) (-107) (-107) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-501))) (-15 -1881 ((-948) (-501) (-501) (-501) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-107) (-199) (-107) (-621 (-501)) (-621 (-199)) (-501))) (-15 -1885 ((-948) (-501) (-501) (-501) (-501) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-199) (-199) (-501))) (-15 -1890 ((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501))) (-15 -1895 ((-948) (-501) (-501) (-501) (-621 (-199)) (-501))) (-15 -1899 ((-948) (-1053) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-621 (-199)) (-501))) (-15 -1903 ((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1907 ((-948) (-501) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -1911 ((-948) (-1053) (-1053) (-501) (-501) (-621 (-152 (-199))) (-501) (-621 (-152 (-199))) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -1916 ((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501))))) (T -685))
-((-1916 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1911 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1907 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1903 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1899 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1895 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685)))) (-1890 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-685)))) (-1885 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-578 (-107))) (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *7 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-685)))) (-1881 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-621 (-501))) (-5 *5 (-107)) (-5 *7 (-621 (-199))) (-5 *3 (-501)) (-5 *6 (-199)) (-5 *2 (-948)) (-5 *1 (-685)))) (-1877 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-578 (-107))) (-5 *7 (-621 (-199))) (-5 *8 (-621 (-501))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-685)))))
-(-10 -7 (-15 -1877 ((-948) (-501) (-501) (-501) (-501) (-199) (-107) (-107) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-501))) (-15 -1881 ((-948) (-501) (-501) (-501) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-621 (-501)) (-107) (-199) (-107) (-621 (-501)) (-621 (-199)) (-501))) (-15 -1885 ((-948) (-501) (-501) (-501) (-501) (-578 (-107)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-199) (-199) (-501))) (-15 -1890 ((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501))) (-15 -1895 ((-948) (-501) (-501) (-501) (-621 (-199)) (-501))) (-15 -1899 ((-948) (-1053) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-621 (-199)) (-501))) (-15 -1903 ((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1907 ((-948) (-501) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -1911 ((-948) (-1053) (-1053) (-501) (-501) (-621 (-152 (-199))) (-501) (-621 (-152 (-199))) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -1916 ((-948) (-1053) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501))))
-((-1993 (((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501)) 64)) (-1986 (((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501)) 60)) (-1980 (((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))) (-356)) 56) (((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) 55)) (-1973 (((-948) (-501) (-501) (-501) (-199) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501)) 37)) (-1962 (((-948) (-501) (-501) (-199) (-199) (-501) (-501) (-621 (-199)) (-501)) 33)) (-1958 (((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501) (-501)) 29)) (-1952 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 28)) (-1948 (((-948) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 27)) (-1944 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 26)) (-1939 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501)) 25)) (-1938 (((-948) (-501) (-501) (-621 (-199)) (-501)) 24)) (-1931 (((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 23)) (-1929 (((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501)) 22)) (-1924 (((-948) (-621 (-199)) (-501) (-501) (-501) (-501)) 21)) (-1920 (((-948) (-501) (-501) (-621 (-199)) (-501)) 20)))
-(((-686) (-10 -7 (-15 -1920 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1924 ((-948) (-621 (-199)) (-501) (-501) (-501) (-501))) (-15 -1929 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1931 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1938 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1939 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501))) (-15 -1944 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1948 ((-948) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1952 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1958 ((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501) (-501))) (-15 -1962 ((-948) (-501) (-501) (-199) (-199) (-501) (-501) (-621 (-199)) (-501))) (-15 -1973 ((-948) (-501) (-501) (-501) (-199) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1980 ((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))))) (-15 -1980 ((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))) (-356))) (-15 -1986 ((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1993 ((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501))))) (T -686))
-((-1993 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-107)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1986 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-107)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1980 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-356)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1980 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1973 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-501)) (-5 *5 (-107)) (-5 *6 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1962 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1958 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1952 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1948 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1944 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1939 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1938 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1931 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1929 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))) (-1924 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-686)))) (-1920 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(-10 -7 (-15 -1920 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1924 ((-948) (-621 (-199)) (-501) (-501) (-501) (-501))) (-15 -1929 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1931 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1938 ((-948) (-501) (-501) (-621 (-199)) (-501))) (-15 -1939 ((-948) (-501) (-501) (-501) (-501) (-621 (-199)) (-501))) (-15 -1944 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1948 ((-948) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1952 ((-948) (-501) (-501) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1958 ((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501) (-501))) (-15 -1962 ((-948) (-501) (-501) (-199) (-199) (-501) (-501) (-621 (-199)) (-501))) (-15 -1973 ((-948) (-501) (-501) (-501) (-199) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1980 ((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))))) (-15 -1980 ((-948) (-501) (-501) (-199) (-501) (-501) (-501) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE))) (-356))) (-15 -1986 ((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -1993 ((-948) (-501) (-501) (-501) (-501) (-501) (-107) (-501) (-107) (-501) (-621 (-152 (-199))) (-621 (-152 (-199))) (-501))))
-((-2060 (((-948) (-501) (-501) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD)))) 60)) (-2054 (((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501)) 56)) (-2048 (((-948) (-501) (-621 (-199)) (-107) (-199) (-501) (-501) (-501) (-501) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE)))) 55)) (-2044 (((-948) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501)) 36)) (-2037 (((-948) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-501)) 35)) (-2030 (((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501)) 31)) (-2026 (((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199))) 30)) (-2021 (((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501)) 26)) (-2013 (((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501)) 25)) (-2005 (((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501)) 24)) (-1999 (((-948) (-501) (-621 (-152 (-199))) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-501)) 20)))
-(((-687) (-10 -7 (-15 -1999 ((-948) (-501) (-621 (-152 (-199))) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -2005 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -2013 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -2021 ((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501))) (-15 -2026 ((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)))) (-15 -2030 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -2037 ((-948) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -2044 ((-948) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501))) (-15 -2048 ((-948) (-501) (-621 (-199)) (-107) (-199) (-501) (-501) (-501) (-501) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE))))) (-15 -2054 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501))) (-15 -2060 ((-948) (-501) (-501) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD))))))) (T -687))
-((-2060 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2054 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2048 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-948)) (-5 *1 (-687)))) (-2044 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2037 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2030 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687)))) (-2026 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2021 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))) (-2013 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687)))) (-2005 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687)))) (-1999 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-687)))))
-(-10 -7 (-15 -1999 ((-948) (-501) (-621 (-152 (-199))) (-501) (-501) (-501) (-501) (-621 (-152 (-199))) (-501))) (-15 -2005 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -2013 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-501))) (-15 -2021 ((-948) (-621 (-199)) (-501) (-621 (-199)) (-501) (-501) (-501))) (-15 -2026 ((-948) (-501) (-621 (-199)) (-501) (-621 (-501)) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)))) (-15 -2030 ((-948) (-501) (-501) (-621 (-199)) (-621 (-199)) (-621 (-199)) (-501))) (-15 -2037 ((-948) (-501) (-501) (-501) (-199) (-501) (-621 (-199)) (-621 (-199)) (-501))) (-15 -2044 ((-948) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-501)) (-621 (-199)) (-621 (-501)) (-621 (-501)) (-621 (-199)) (-621 (-199)) (-621 (-501)) (-501))) (-15 -2048 ((-948) (-501) (-621 (-199)) (-107) (-199) (-501) (-501) (-501) (-501) (-199) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE))))) (-15 -2054 ((-948) (-501) (-621 (-199)) (-501) (-621 (-199)) (-621 (-501)) (-501) (-621 (-199)) (-501) (-501) (-501) (-501))) (-15 -2060 ((-948) (-501) (-501) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-621 (-199)) (-501) (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD))))))
-((-2079 (((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-501) (-621 (-199))) 28)) (-2075 (((-948) (-1053) (-501) (-501) (-621 (-199))) 27)) (-2070 (((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-199))) 26)) (-2062 (((-948) (-501) (-501) (-501) (-621 (-199))) 20)))
-(((-688) (-10 -7 (-15 -2062 ((-948) (-501) (-501) (-501) (-621 (-199)))) (-15 -2070 ((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-199)))) (-15 -2075 ((-948) (-1053) (-501) (-501) (-621 (-199)))) (-15 -2079 ((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-501) (-621 (-199)))))) (T -688))
-((-2079 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688)))) (-2075 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688)))) (-2070 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-688)))) (-2062 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688)))))
-(-10 -7 (-15 -2062 ((-948) (-501) (-501) (-501) (-621 (-199)))) (-15 -2070 ((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-621 (-501)) (-501) (-621 (-199)))) (-15 -2075 ((-948) (-1053) (-501) (-501) (-621 (-199)))) (-15 -2079 ((-948) (-1053) (-501) (-501) (-621 (-199)) (-501) (-501) (-621 (-199)))))
-((-2887 (((-948) (-199) (-199) (-199) (-199) (-501)) 62)) (-2883 (((-948) (-199) (-199) (-199) (-501)) 61)) (-2879 (((-948) (-199) (-199) (-199) (-501)) 60)) (-2875 (((-948) (-199) (-199) (-501)) 59)) (-2871 (((-948) (-199) (-501)) 58)) (-2867 (((-948) (-199) (-501)) 57)) (-2863 (((-948) (-199) (-501)) 56)) (-2858 (((-948) (-199) (-501)) 55)) (-2854 (((-948) (-199) (-501)) 54)) (-2850 (((-948) (-199) (-501)) 53)) (-2846 (((-948) (-199) (-152 (-199)) (-501) (-1053) (-501)) 52)) (-2841 (((-948) (-199) (-152 (-199)) (-501) (-1053) (-501)) 51)) (-2835 (((-948) (-199) (-501)) 50)) (-2830 (((-948) (-199) (-501)) 49)) (-2825 (((-948) (-199) (-501)) 48)) (-2820 (((-948) (-199) (-501)) 47)) (-2815 (((-948) (-501) (-199) (-152 (-199)) (-501) (-1053) (-501)) 46)) (-2191 (((-948) (-1053) (-152 (-199)) (-1053) (-501)) 45)) (-2187 (((-948) (-1053) (-152 (-199)) (-1053) (-501)) 44)) (-2178 (((-948) (-199) (-152 (-199)) (-501) (-1053) (-501)) 43)) (-2173 (((-948) (-199) (-152 (-199)) (-501) (-1053) (-501)) 42)) (-2171 (((-948) (-199) (-501)) 39)) (-2165 (((-948) (-199) (-501)) 38)) (-2157 (((-948) (-199) (-501)) 37)) (-2152 (((-948) (-199) (-501)) 36)) (-2148 (((-948) (-199) (-501)) 35)) (-2143 (((-948) (-199) (-501)) 34)) (-2139 (((-948) (-199) (-501)) 33)) (-2133 (((-948) (-199) (-501)) 32)) (-2129 (((-948) (-199) (-501)) 31)) (-2122 (((-948) (-199) (-501)) 30)) (-2118 (((-948) (-199) (-199) (-199) (-501)) 29)) (-2113 (((-948) (-199) (-501)) 28)) (-2106 (((-948) (-199) (-501)) 27)) (-2101 (((-948) (-199) (-501)) 26)) (-2097 (((-948) (-199) (-501)) 25)) (-2090 (((-948) (-199) (-501)) 24)) (-2082 (((-948) (-152 (-199)) (-501)) 20)))
-(((-689) (-10 -7 (-15 -2082 ((-948) (-152 (-199)) (-501))) (-15 -2090 ((-948) (-199) (-501))) (-15 -2097 ((-948) (-199) (-501))) (-15 -2101 ((-948) (-199) (-501))) (-15 -2106 ((-948) (-199) (-501))) (-15 -2113 ((-948) (-199) (-501))) (-15 -2118 ((-948) (-199) (-199) (-199) (-501))) (-15 -2122 ((-948) (-199) (-501))) (-15 -2129 ((-948) (-199) (-501))) (-15 -2133 ((-948) (-199) (-501))) (-15 -2139 ((-948) (-199) (-501))) (-15 -2143 ((-948) (-199) (-501))) (-15 -2148 ((-948) (-199) (-501))) (-15 -2152 ((-948) (-199) (-501))) (-15 -2157 ((-948) (-199) (-501))) (-15 -2165 ((-948) (-199) (-501))) (-15 -2171 ((-948) (-199) (-501))) (-15 -2173 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2178 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2187 ((-948) (-1053) (-152 (-199)) (-1053) (-501))) (-15 -2191 ((-948) (-1053) (-152 (-199)) (-1053) (-501))) (-15 -2815 ((-948) (-501) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2820 ((-948) (-199) (-501))) (-15 -2825 ((-948) (-199) (-501))) (-15 -2830 ((-948) (-199) (-501))) (-15 -2835 ((-948) (-199) (-501))) (-15 -2841 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2846 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2850 ((-948) (-199) (-501))) (-15 -2854 ((-948) (-199) (-501))) (-15 -2858 ((-948) (-199) (-501))) (-15 -2863 ((-948) (-199) (-501))) (-15 -2867 ((-948) (-199) (-501))) (-15 -2871 ((-948) (-199) (-501))) (-15 -2875 ((-948) (-199) (-199) (-501))) (-15 -2879 ((-948) (-199) (-199) (-199) (-501))) (-15 -2883 ((-948) (-199) (-199) (-199) (-501))) (-15 -2887 ((-948) (-199) (-199) (-199) (-199) (-501))))) (T -689))
-((-2887 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2883 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2879 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2875 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2871 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2867 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2846 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2841 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2830 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2815 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-501)) (-5 *5 (-152 (-199))) (-5 *6 (-1053)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2191 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2187 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2178 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2173 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2165 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2152 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2148 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2143 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2139 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2133 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2129 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2122 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2118 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2106 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2097 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2090 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))) (-2082 (*1 *2 *3 *4) (-12 (-5 *3 (-152 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(-10 -7 (-15 -2082 ((-948) (-152 (-199)) (-501))) (-15 -2090 ((-948) (-199) (-501))) (-15 -2097 ((-948) (-199) (-501))) (-15 -2101 ((-948) (-199) (-501))) (-15 -2106 ((-948) (-199) (-501))) (-15 -2113 ((-948) (-199) (-501))) (-15 -2118 ((-948) (-199) (-199) (-199) (-501))) (-15 -2122 ((-948) (-199) (-501))) (-15 -2129 ((-948) (-199) (-501))) (-15 -2133 ((-948) (-199) (-501))) (-15 -2139 ((-948) (-199) (-501))) (-15 -2143 ((-948) (-199) (-501))) (-15 -2148 ((-948) (-199) (-501))) (-15 -2152 ((-948) (-199) (-501))) (-15 -2157 ((-948) (-199) (-501))) (-15 -2165 ((-948) (-199) (-501))) (-15 -2171 ((-948) (-199) (-501))) (-15 -2173 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2178 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2187 ((-948) (-1053) (-152 (-199)) (-1053) (-501))) (-15 -2191 ((-948) (-1053) (-152 (-199)) (-1053) (-501))) (-15 -2815 ((-948) (-501) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2820 ((-948) (-199) (-501))) (-15 -2825 ((-948) (-199) (-501))) (-15 -2830 ((-948) (-199) (-501))) (-15 -2835 ((-948) (-199) (-501))) (-15 -2841 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2846 ((-948) (-199) (-152 (-199)) (-501) (-1053) (-501))) (-15 -2850 ((-948) (-199) (-501))) (-15 -2854 ((-948) (-199) (-501))) (-15 -2858 ((-948) (-199) (-501))) (-15 -2863 ((-948) (-199) (-501))) (-15 -2867 ((-948) (-199) (-501))) (-15 -2871 ((-948) (-199) (-501))) (-15 -2875 ((-948) (-199) (-199) (-501))) (-15 -2879 ((-948) (-199) (-199) (-199) (-501))) (-15 -2883 ((-948) (-199) (-199) (-199) (-501))) (-15 -2887 ((-948) (-199) (-199) (-199) (-199) (-501))))
-((-3447 (((-1154)) 18)) (-2716 (((-1053)) 22)) (-1308 (((-1053)) 21)) (-2261 (((-1003) (-1070) (-621 (-501))) 35) (((-1003) (-1070) (-621 (-199))) 31)) (-1389 (((-107)) 16)) (-2317 (((-1053) (-1053)) 25)))
-(((-690) (-10 -7 (-15 -1308 ((-1053))) (-15 -2716 ((-1053))) (-15 -2317 ((-1053) (-1053))) (-15 -2261 ((-1003) (-1070) (-621 (-199)))) (-15 -2261 ((-1003) (-1070) (-621 (-501)))) (-15 -1389 ((-107))) (-15 -3447 ((-1154))))) (T -690))
-((-3447 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-690)))) (-1389 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-690)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-621 (-501))) (-5 *2 (-1003)) (-5 *1 (-690)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-621 (-199))) (-5 *2 (-1003)) (-5 *1 (-690)))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690)))) (-2716 (*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690)))) (-1308 (*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690)))))
-(-10 -7 (-15 -1308 ((-1053))) (-15 -2716 ((-1053))) (-15 -2317 ((-1053) (-1053))) (-15 -2261 ((-1003) (-1070) (-621 (-199)))) (-15 -2261 ((-1003) (-1070) (-621 (-501)))) (-15 -1389 ((-107))) (-15 -3447 ((-1154))))
-((-2144 (($ $ $) 10)) (-1363 (($ $ $ $) 9)) (-2033 (($ $ $) 12)))
-(((-691 |#1|) (-10 -8 (-15 -2033 (|#1| |#1| |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1| |#1| |#1|))) (-692)) (T -691))
-NIL
-(-10 -8 (-15 -2033 (|#1| |#1| |#1|)) (-15 -2144 (|#1| |#1| |#1|)) (-15 -1363 (|#1| |#1| |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2911 (($ $ (-839)) 28)) (-3381 (($ $ (-839)) 29)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2144 (($ $ $) 25)) (-3691 (((-786) $) 11)) (-1363 (($ $ $ $) 26)) (-2033 (($ $ $) 24)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27)))
-(((-692) (-1180)) (T -692))
-((-1363 (*1 *1 *1 *1 *1) (-4 *1 (-692))) (-2144 (*1 *1 *1 *1) (-4 *1 (-692))) (-2033 (*1 *1 *1 *1) (-4 *1 (-692))))
-(-13 (-21) (-651) (-10 -8 (-15 -1363 ($ $ $ $)) (-15 -2144 ($ $ $)) (-15 -2033 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-651) . T) ((-1001) . T))
-((-3691 (((-786) $) NIL) (($ (-501)) 10)))
-(((-693 |#1|) (-10 -8 (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-694)) (T -693))
-NIL
-(-10 -8 (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-1887 (((-3 $ "failed") $) 40)) (-2911 (($ $ (-839)) 28) (($ $ (-701)) 35)) (-2174 (((-3 $ "failed") $) 38)) (-1355 (((-107) $) 34)) (-1992 (((-3 $ "failed") $) 39)) (-3381 (($ $ (-839)) 29) (($ $ (-701)) 36)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2144 (($ $ $) 25)) (-3691 (((-786) $) 11) (($ (-501)) 31)) (-3965 (((-701)) 32)) (-1363 (($ $ $ $) 26)) (-2033 (($ $ $) 24)) (-1850 (($) 18 T CONST)) (-1925 (($) 33 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 30) (($ $ (-701)) 37)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 27)))
-(((-694) (-1180)) (T -694))
-((-3965 (*1 *2) (-12 (-4 *1 (-694)) (-5 *2 (-701)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-694)))))
-(-13 (-692) (-653) (-10 -8 (-15 -3965 ((-701))) (-15 -3691 ($ (-501)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-651) . T) ((-653) . T) ((-692) . T) ((-1001) . T))
-((-1422 (((-578 (-2 (|:| |outval| (-152 |#1|)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 |#1|)))))) (-621 (-152 (-375 (-501)))) |#1|) 27)) (-3820 (((-578 (-152 |#1|)) (-621 (-152 (-375 (-501)))) |#1|) 19)) (-2942 (((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))) (-1070)) 16) (((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501))))) 15)))
-(((-695 |#1|) (-10 -7 (-15 -2942 ((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))))) (-15 -2942 ((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))) (-1070))) (-15 -3820 ((-578 (-152 |#1|)) (-621 (-152 (-375 (-501)))) |#1|)) (-15 -1422 ((-578 (-2 (|:| |outval| (-152 |#1|)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 |#1|)))))) (-621 (-152 (-375 (-501)))) |#1|))) (-13 (-331) (-775))) (T -695))
-((-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |outval| (-152 *4)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 *4))))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775))))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775))))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *4 (-1070)) (-5 *2 (-866 (-152 (-375 (-501))))) (-5 *1 (-695 *5)) (-4 *5 (-13 (-331) (-775))))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-866 (-152 (-375 (-501))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775))))))
-(-10 -7 (-15 -2942 ((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))))) (-15 -2942 ((-866 (-152 (-375 (-501)))) (-621 (-152 (-375 (-501)))) (-1070))) (-15 -3820 ((-578 (-152 |#1|)) (-621 (-152 (-375 (-501)))) |#1|)) (-15 -1422 ((-578 (-2 (|:| |outval| (-152 |#1|)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 |#1|)))))) (-621 (-152 (-375 (-501)))) |#1|)))
-((-2672 (((-157 (-501)) |#1|) 25)))
-(((-696 |#1|) (-10 -7 (-15 -2672 ((-157 (-501)) |#1|))) (-372)) (T -696))
-((-2672 (*1 *2 *3) (-12 (-5 *2 (-157 (-501))) (-5 *1 (-696 *3)) (-4 *3 (-372)))))
-(-10 -7 (-15 -2672 ((-157 (-501)) |#1|)))
-((-2084 ((|#1| |#1| |#1|) 24)) (-2530 ((|#1| |#1| |#1|) 23)) (-3641 ((|#1| |#1| |#1|) 31)) (-2753 ((|#1| |#1| |#1|) 27)) (-3756 (((-3 |#1| "failed") |#1| |#1|) 26)) (-1838 (((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|) 22)))
-(((-697 |#1| |#2|) (-10 -7 (-15 -1838 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1| |#1|)) (-15 -3756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -3641 (|#1| |#1| |#1|))) (-640 |#2|) (-331)) (T -697))
-((-3641 (*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-2753 (*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-3756 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-2084 (*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-2530 (*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) (-1838 (*1 *2 *3 *3) (-12 (-4 *4 (-331)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-697 *3 *4)) (-4 *3 (-640 *4)))))
-(-10 -7 (-15 -1838 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -2084 (|#1| |#1| |#1|)) (-15 -3756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -3641 (|#1| |#1| |#1|)))
-((-3819 (((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))) (-501)) 58)) (-1897 (((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501))))) 56)) (-2532 (((-501)) 68)))
-(((-698 |#1| |#2|) (-10 -7 (-15 -2532 ((-501))) (-15 -1897 ((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))))) (-15 -3819 ((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))) (-501)))) (-1125 (-501)) (-378 (-501) |#1|)) (T -698))
-((-3819 (*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-698 *4 *5)) (-4 *5 (-378 *3 *4)))) (-1897 (*1 *2) (-12 (-4 *3 (-1125 (-501))) (-5 *2 (-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501))))) (-5 *1 (-698 *3 *4)) (-4 *4 (-378 (-501) *3)))) (-2532 (*1 *2) (-12 (-4 *3 (-1125 *2)) (-5 *2 (-501)) (-5 *1 (-698 *3 *4)) (-4 *4 (-378 *2 *3)))))
-(-10 -7 (-15 -2532 ((-501))) (-15 -1897 ((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))))) (-15 -3819 ((-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501)))) (-501))))
-((-3736 (((-107) $ $) NIL)) (-3490 (((-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 14) (($ (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-3751 (((-107) $ $) NIL)))
-(((-699) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ($ (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -699))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-699)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-699)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-699)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-699)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-699)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ($ (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))
-((-3766 (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|))) 14) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070))) 13)) (-2778 (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|))) 16) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070))) 15)))
-(((-700 |#1|) (-10 -7 (-15 -3766 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -3766 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|))))) (-508)) (T -700))
-((-2778 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-700 *4)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-700 *5)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-700 *4)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-700 *5)))))
-(-10 -7 (-15 -3766 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -3766 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-866 |#1|)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3405 (($ $ $) 6)) (-3177 (((-3 $ "failed") $ $) 9)) (-1525 (($ $ (-501)) 7)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($ $) NIL)) (-3034 (($ $ $) NIL)) (-1355 (((-107) $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3664 (($ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3691 (((-786) $) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-701) $) NIL) (($ (-839) $) NIL) (($ $ $) NIL)))
-(((-701) (-13 (-723) (-657) (-10 -8 (-15 -3034 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -2419 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3694 ((-3 $ "failed") $ $)) (-15 -1525 ($ $ (-501))) (-15 -2890 ($ $)) (-6 (-4169 "*"))))) (T -701))
-((-3034 (*1 *1 *1 *1) (-5 *1 (-701))) (-3023 (*1 *1 *1 *1) (-5 *1 (-701))) (-3664 (*1 *1 *1 *1) (-5 *1 (-701))) (-2419 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3236 (-701)) (|:| -1852 (-701)))) (-5 *1 (-701)))) (-3694 (*1 *1 *1 *1) (|partial| -5 *1 (-701))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-701)))) (-2890 (*1 *1 *1) (-5 *1 (-701))))
-(-13 (-723) (-657) (-10 -8 (-15 -3034 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3664 ($ $ $)) (-15 -2419 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3694 ((-3 $ "failed") $ $)) (-15 -1525 ($ $ (-501))) (-15 -2890 ($ $)) (-6 (-4169 "*"))))
-((-2778 (((-3 |#2| "failed") |#2| |#2| (-108) (-1070)) 35)))
-(((-702 |#1| |#2|) (-10 -7 (-15 -2778 ((-3 |#2| "failed") |#2| |#2| (-108) (-1070)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879))) (T -702))
-((-2778 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-702 *5 *2)) (-4 *2 (-13 (-29 *5) (-1090) (-879))))))
-(-10 -7 (-15 -2778 ((-3 |#2| "failed") |#2| |#2| (-108) (-1070))))
-((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 7)) (-3751 (((-107) $ $) 9)))
-(((-703) (-1001)) (T -703))
-NIL
-(-1001)
-((-3691 (((-703) |#1|) 8)))
-(((-704 |#1|) (-10 -7 (-15 -3691 ((-703) |#1|))) (-1104)) (T -704))
-((-3691 (*1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-704 *3)) (-4 *3 (-1104)))))
-(-10 -7 (-15 -3691 ((-703) |#1|)))
-((-2626 ((|#2| |#4|) 35)))
-(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2626 (|#2| |#4|))) (-419) (-1125 |#1|) (-655 |#1| |#2|) (-1125 |#3|)) (T -705))
-((-2626 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-655 *4 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-705 *4 *2 *5 *3)) (-4 *3 (-1125 *5)))))
-(-10 -7 (-15 -2626 (|#2| |#4|)))
-((-2174 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-2844 (((-1154) (-1053) (-1053) |#4| |#5|) 33)) (-3164 ((|#4| |#4| |#5|) 72)) (-3373 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|) 76)) (-4084 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 15)))
-(((-706 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2174 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3164 (|#4| |#4| |#5|)) (-15 -3373 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2844 ((-1154) (-1053) (-1053) |#4| |#5|)) (-15 -4084 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -706))
-((-4084 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2844 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1053)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *4 (-972 *6 *7 *8)) (-5 *2 (-1154)) (-5 *1 (-706 *6 *7 *8 *4 *5)) (-4 *5 (-977 *6 *7 *8 *4)))) (-3373 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3164 (*1 *2 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *2 (-972 *4 *5 *6)) (-5 *1 (-706 *4 *5 *6 *2 *3)) (-4 *3 (-977 *4 *5 *6 *2)))) (-2174 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(-10 -7 (-15 -2174 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3164 (|#4| |#4| |#5|)) (-15 -3373 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2844 ((-1154) (-1053) (-1053) |#4| |#5|)) (-15 -4084 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)))
-((-3765 (((-3 (-1064 (-1064 |#1|)) "failed") |#4|) 43)) (-3289 (((-578 |#4|) |#4|) 15)) (-3184 ((|#4| |#4|) 11)))
-(((-707 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3289 ((-578 |#4|) |#4|)) (-15 -3765 ((-3 (-1064 (-1064 |#1|)) "failed") |#4|)) (-15 -3184 (|#4| |#4|))) (-318) (-297 |#1|) (-1125 |#2|) (-1125 |#3|) (-839)) (T -707))
-((-3184 (*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-297 *3)) (-4 *5 (-1125 *4)) (-5 *1 (-707 *3 *4 *5 *2 *6)) (-4 *2 (-1125 *5)) (-14 *6 (-839)))) (-3765 (*1 *2 *3) (|partial| -12 (-4 *4 (-318)) (-4 *5 (-297 *4)) (-4 *6 (-1125 *5)) (-5 *2 (-1064 (-1064 *4))) (-5 *1 (-707 *4 *5 *6 *3 *7)) (-4 *3 (-1125 *6)) (-14 *7 (-839)))) (-3289 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-297 *4)) (-4 *6 (-1125 *5)) (-5 *2 (-578 *3)) (-5 *1 (-707 *4 *5 *6 *3 *7)) (-4 *3 (-1125 *6)) (-14 *7 (-839)))))
-(-10 -7 (-15 -3289 ((-578 |#4|) |#4|)) (-15 -3765 ((-3 (-1064 (-1064 |#1|)) "failed") |#4|)) (-15 -3184 (|#4| |#4|)))
-((-2707 (((-2 (|:| |deter| (-578 (-1064 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1064 |#5|) (-578 |#1|) (-578 |#5|)) 51)) (-1366 (((-578 (-701)) |#1|) 12)))
-(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2707 ((-2 (|:| |deter| (-578 (-1064 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1064 |#5|) (-578 |#1|) (-578 |#5|))) (-15 -1366 ((-578 (-701)) |#1|))) (-1125 |#4|) (-723) (-777) (-276) (-870 |#4| |#2| |#3|)) (T -708))
-((-1366 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-578 (-701))) (-5 *1 (-708 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *6)) (-4 *7 (-870 *6 *4 *5)))) (-2707 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1125 *9)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-276)) (-4 *10 (-870 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-578 (-1064 *10))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| *10))))) (|:| |nfacts| (-578 *6)) (|:| |nlead| (-578 *10)))) (-5 *1 (-708 *6 *7 *8 *9 *10)) (-5 *3 (-1064 *10)) (-5 *4 (-578 *6)) (-5 *5 (-578 *10)))))
-(-10 -7 (-15 -2707 ((-2 (|:| |deter| (-578 (-1064 |#5|))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-578 |#1|)) (|:| |nlead| (-578 |#5|))) (-1064 |#5|) (-578 |#1|) (-578 |#5|))) (-15 -1366 ((-578 (-701)) |#1|)))
-((-2266 (((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#1|))))) (-621 (-375 (-501))) |#1|) 27)) (-1192 (((-578 |#1|) (-621 (-375 (-501))) |#1|) 19)) (-2942 (((-866 (-375 (-501))) (-621 (-375 (-501))) (-1070)) 16) (((-866 (-375 (-501))) (-621 (-375 (-501)))) 15)))
-(((-709 |#1|) (-10 -7 (-15 -2942 ((-866 (-375 (-501))) (-621 (-375 (-501))))) (-15 -2942 ((-866 (-375 (-501))) (-621 (-375 (-501))) (-1070))) (-15 -1192 ((-578 |#1|) (-621 (-375 (-501))) |#1|)) (-15 -2266 ((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#1|))))) (-621 (-375 (-501))) |#1|))) (-13 (-331) (-775))) (T -709))
-((-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-578 (-2 (|:| |outval| *4) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 *4)))))) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775))))) (-1192 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-578 *4)) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775))))) (-2942 (*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *4 (-1070)) (-5 *2 (-866 (-375 (-501)))) (-5 *1 (-709 *5)) (-4 *5 (-13 (-331) (-775))))) (-2942 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-866 (-375 (-501)))) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775))))))
-(-10 -7 (-15 -2942 ((-866 (-375 (-501))) (-621 (-375 (-501))))) (-15 -2942 ((-866 (-375 (-501))) (-621 (-375 (-501))) (-1070))) (-15 -1192 ((-578 |#1|) (-621 (-375 (-501))) |#1|)) (-15 -2266 ((-578 (-2 (|:| |outval| |#1|) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 |#1|))))) (-621 (-375 (-501))) |#1|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 34)) (-3800 (((-578 |#2|) $) NIL)) (-3728 (((-1064 $) $ |#2|) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 |#2|)) NIL)) (-1511 (($ $) 28)) (-1441 (((-107) $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1855 (($ $ $) 92 (|has| |#1| (-508)))) (-3936 (((-578 $) $ $) 105 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-866 (-375 (-501)))) NIL (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))))) (((-3 $ "failed") (-866 (-501))) NIL (-1405 (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501)))))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070)))))) (((-3 $ "failed") (-866 |#1|)) NIL (-1405 (-12 (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-37 (-501))))) (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-500)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-906 (-501))))))) (((-3 (-1023 |#1| |#2|) "failed") $) 18)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) ((|#2| $) NIL) (($ (-866 (-375 (-501)))) NIL (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))))) (($ (-866 (-501))) NIL (-1405 (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501)))))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070)))))) (($ (-866 |#1|)) NIL (-1405 (-12 (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-37 (-501))))) (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-500)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-906 (-501))))))) (((-1023 |#1| |#2|) $) NIL)) (-1749 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-508)))) (-3858 (($ $) NIL) (($ $ |#2|) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2130 (((-107) $ $) NIL) (((-107) $ (-578 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3132 (((-107) $) NIL)) (-2352 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 69)) (-3182 (($ $) 118 (|has| |#1| (-419)))) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ |#2|) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-2611 (($ $) NIL (|has| |#1| (-508)))) (-3855 (($ $) NIL (|has| |#1| (-508)))) (-3090 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-1936 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-3503 (($ $ |#1| (-487 |#2|) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| |#1| (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| |#1| (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-1964 (((-107) $ $) NIL) (((-107) $ (-578 $)) NIL)) (-4014 (($ $ $ $ $) 89 (|has| |#1| (-508)))) (-2361 ((|#2| $) 19)) (-3794 (($ (-1064 |#1|) |#2|) NIL) (($ (-1064 $) |#2|) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 |#2|)) NIL) (($ $ |#2| (-701)) 36) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1955 (($ $ $) 60)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#2|) NIL)) (-1257 (((-107) $) NIL)) (-2285 (((-487 |#2|) $) NIL) (((-701) $ |#2|) NIL) (((-578 (-701)) $ (-578 |#2|)) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-2595 (((-701) $) 20)) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 |#2|) (-487 |#2|)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2752 (((-3 |#2| "failed") $) NIL)) (-2538 (($ $) NIL (|has| |#1| (-419)))) (-1493 (($ $) NIL (|has| |#1| (-419)))) (-3723 (((-578 $) $) NIL)) (-2682 (($ $) 37)) (-3894 (($ $) NIL (|has| |#1| (-419)))) (-2274 (((-578 $) $) 41)) (-3154 (($ $) 39)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2939 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2735 (-701))) $ $) 81)) (-3276 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $) 66) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $ |#2|) NIL)) (-2226 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $) NIL) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $ |#2|) NIL)) (-1782 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-3303 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3460 (((-1053) $) NIL)) (-2019 (($ $ $) 107 (|has| |#1| (-508)))) (-2329 (((-578 $) $) 30)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-701))) "failed") $) NIL)) (-1590 (((-107) $ $) NIL) (((-107) $ (-578 $)) NIL)) (-1762 (($ $ $) NIL)) (-3746 (($ $) 21)) (-3523 (((-107) $ $) NIL)) (-2667 (((-107) $ $) NIL) (((-107) $ (-578 $)) NIL)) (-3618 (($ $ $) NIL)) (-1657 (($ $) 23)) (-3708 (((-1018) $) NIL)) (-1784 (((-2 (|:| -3664 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-508)))) (-1729 (((-2 (|:| -3664 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-508)))) (-3837 (((-107) $) 52)) (-3841 ((|#1| $) 55)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 ((|#1| |#1| $) 115 (|has| |#1| (-419))) (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3095 (((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-508)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-508)))) (-1785 (($ $ |#1|) 111 (|has| |#1| (-508))) (($ $ $) NIL (|has| |#1| (-508)))) (-3982 (($ $ |#1|) 110 (|has| |#1| (-508))) (($ $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-578 |#2|) (-578 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-578 |#2|) (-578 $)) NIL)) (-2532 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2596 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1201 (((-487 |#2|) $) NIL) (((-701) $ |#2|) 43) (((-578 (-701)) $ (-578 |#2|)) NIL)) (-2295 (($ $) NIL)) (-1673 (($ $) 33)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| |#1| (-556 (-490))) (|has| |#2| (-556 (-490))))) (($ (-866 (-375 (-501)))) NIL (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070))))) (($ (-866 (-501))) NIL (-1405 (-12 (|has| |#1| (-37 (-501))) (|has| |#2| (-556 (-1070))) (-3031 (|has| |#1| (-37 (-375 (-501)))))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#2| (-556 (-1070)))))) (($ (-866 |#1|)) NIL (|has| |#2| (-556 (-1070)))) (((-1053) $) NIL (-12 (|has| |#1| (-950 (-501))) (|has| |#2| (-556 (-1070))))) (((-866 |#1|) $) NIL (|has| |#2| (-556 (-1070))))) (-1734 ((|#1| $) 114 (|has| |#1| (-419))) (($ $ |#2|) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-866 |#1|) $) NIL (|has| |#2| (-556 (-1070)))) (((-1023 |#1| |#2|) $) 15) (($ (-1023 |#1| |#2|)) 16) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 |#2|)) NIL) (($ $ |#2| (-701)) 44) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 13 T CONST)) (-1814 (((-3 (-107) "failed") $ $) NIL)) (-1925 (($) 35 T CONST)) (-3158 (($ $ $ $ (-701)) 87 (|has| |#1| (-508)))) (-1851 (($ $ $ (-701)) 86 (|has| |#1| (-508)))) (-3584 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 54)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) 63)) (-3790 (($ $ $) 73)) (** (($ $ (-839)) NIL) (($ $ (-701)) 61)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 59) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-710 |#1| |#2|) (-13 (-972 |#1| (-487 |#2|) |#2|) (-555 (-1023 |#1| |#2|)) (-950 (-1023 |#1| |#2|))) (-959) (-777)) (T -710))
-NIL
-(-13 (-972 |#1| (-487 |#2|) |#2|) (-555 (-1023 |#1| |#2|)) (-950 (-1023 |#1| |#2|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 12)) (-3077 (((-1148 |#1|) $ (-701)) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3081 (($ (-1064 |#1|)) NIL)) (-3728 (((-1064 $) $ (-986)) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2624 (((-578 $) $ $) 39 (|has| |#1| (-508)))) (-1855 (($ $ $) 35 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3643 (($ $ (-701)) NIL)) (-2222 (($ $ (-701)) NIL)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-419)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-986) "failed") $) NIL) (((-3 (-1064 |#1|) "failed") $) 10)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-986) $) NIL) (((-1064 |#1|) $) NIL)) (-1749 (($ $ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-4094 (($ $ $) NIL)) (-3470 (($ $ $) 71 (|has| |#1| (-508)))) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 $) (|:| -1852 $)) $ $) 70 (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-701) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ $) NIL (|has| |#1| (-508)))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-1046)))) (-3794 (($ (-1064 |#1|) (-986)) NIL) (($ (-1064 $) (-986)) NIL)) (-2917 (($ $ (-701)) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1955 (($ $ $) 20)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) NIL) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1704 (((-1064 |#1|) $) NIL)) (-2752 (((-3 (-986) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2939 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2735 (-701))) $ $) 26)) (-2961 (($ $ $) 29)) (-1624 (($ $ $) 32)) (-3276 (((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $) 31)) (-3460 (((-1053) $) NIL)) (-2019 (($ $ $) 41 (|has| |#1| (-508)))) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-1784 (((-2 (|:| -3664 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-508)))) (-1729 (((-2 (|:| -3664 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-508)))) (-3318 (((-2 (|:| -1749 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-508)))) (-4083 (((-2 (|:| -1749 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-508)))) (-3837 (((-107) $) 13)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-4138 (($ $ (-701) |#1| $) 19)) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3095 (((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-508)))) (-1694 (((-2 (|:| -1749 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-508)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#1|) NIL) (($ $ (-578 (-986)) (-578 |#1|)) NIL) (($ $ (-986) $) NIL) (($ $ (-578 (-986)) (-578 $)) NIL)) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-375 $) (-375 $) (-375 $)) NIL (|has| |#1| (-508))) ((|#1| (-375 $) |#1|) NIL (|has| |#1| (-331))) (((-375 $) $ (-375 $)) NIL (|has| |#1| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2532 (($ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1201 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3913 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508))) (((-3 (-375 $) "failed") (-375 $) $) NIL (|has| |#1| (-508)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-986)) NIL) (((-1064 |#1|) $) 7) (($ (-1064 |#1|)) 8) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 24 T CONST)) (-3584 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) 28) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-711 |#1|) (-13 (-1125 |#1|) (-555 (-1064 |#1|)) (-950 (-1064 |#1|)) (-10 -8 (-15 -4138 ($ $ (-701) |#1| $)) (-15 -1955 ($ $ $)) (-15 -2939 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2735 (-701))) $ $)) (-15 -2961 ($ $ $)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -1624 ($ $ $)) (IF (|has| |#1| (-508)) (PROGN (-15 -2624 ((-578 $) $ $)) (-15 -2019 ($ $ $)) (-15 -3095 ((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1729 ((-2 (|:| -3664 $) (|:| |coef1| $)) $ $)) (-15 -1784 ((-2 (|:| -3664 $) (|:| |coef2| $)) $ $)) (-15 -1694 ((-2 (|:| -1749 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4083 ((-2 (|:| -1749 |#1|) (|:| |coef1| $)) $ $)) (-15 -3318 ((-2 (|:| -1749 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) (-959)) (T -711))
-((-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-711 *3)) (-4 *3 (-959)))) (-1955 (*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))) (-2939 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-711 *3)) (|:| |polden| *3) (|:| -2735 (-701)))) (-5 *1 (-711 *3)) (-4 *3 (-959)))) (-2961 (*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))) (-3276 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3189 *3) (|:| |gap| (-701)) (|:| -3236 (-711 *3)) (|:| -1852 (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-959)))) (-1624 (*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))) (-2624 (*1 *2 *1 *1) (-12 (-5 *2 (-578 (-711 *3))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-2019 (*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-508)) (-4 *2 (-959)))) (-3095 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef1| (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-1729 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef1| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-1784 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-1694 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef1| (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-4083 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef1| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) (-3318 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))))
-(-13 (-1125 |#1|) (-555 (-1064 |#1|)) (-950 (-1064 |#1|)) (-10 -8 (-15 -4138 ($ $ (-701) |#1| $)) (-15 -1955 ($ $ $)) (-15 -2939 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -2735 (-701))) $ $)) (-15 -2961 ($ $ $)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -1624 ($ $ $)) (IF (|has| |#1| (-508)) (PROGN (-15 -2624 ((-578 $) $ $)) (-15 -2019 ($ $ $)) (-15 -3095 ((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1729 ((-2 (|:| -3664 $) (|:| |coef1| $)) $ $)) (-15 -1784 ((-2 (|:| -3664 $) (|:| |coef2| $)) $ $)) (-15 -1694 ((-2 (|:| -1749 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4083 ((-2 (|:| -1749 |#1|) (|:| |coef1| $)) $ $)) (-15 -3318 ((-2 (|:| -1749 |#1|) (|:| |coef2| $)) $ $))) |noBranch|)))
-((-1212 (((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)) 13)))
-(((-712 |#1| |#2|) (-10 -7 (-15 -1212 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)))) (-959) (-959)) (T -712))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-711 *6)) (-5 *1 (-712 *5 *6)))))
-(-10 -7 (-15 -1212 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|))))
-((-2566 ((|#1| (-701) |#1|) 32 (|has| |#1| (-37 (-375 (-501)))))) (-3573 ((|#1| (-701) |#1|) 22)) (-1584 ((|#1| (-701) |#1|) 34 (|has| |#1| (-37 (-375 (-501)))))))
-(((-713 |#1|) (-10 -7 (-15 -3573 (|#1| (-701) |#1|)) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -1584 (|#1| (-701) |#1|)) (-15 -2566 (|#1| (-701) |#1|))) |noBranch|)) (-156)) (T -713))
-((-2566 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156)))) (-1584 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156)))) (-3573 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-156)))))
-(-10 -7 (-15 -3573 (|#1| (-701) |#1|)) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -1584 (|#1| (-701) |#1|)) (-15 -2566 (|#1| (-701) |#1|))) |noBranch|))
-((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86) (((-578 $) (-578 |#4|) (-107)) 111)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-3180 (((-107) |#4| $) 136)) (-1209 (((-107) |#4| $) 133)) (-1972 (((-107) |#4| $) 137) (((-107) $) 134)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) 128)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 127)) (-1383 (((-3 |#4| "failed") $) 83)) (-1618 (((-578 $) |#4| $) 129)) (-2217 (((-3 (-107) (-578 $)) |#4| $) 132)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3420 (((-578 $) |#4| $) 125) (((-578 $) (-578 |#4|) $) 124) (((-578 $) (-578 |#4|) (-578 $)) 123) (((-578 $) |#4| (-578 $)) 122)) (-2297 (($ |#4| $) 117) (($ (-578 |#4|) $) 116)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77) (((-578 $) |#4| $) 115) (((-578 $) |#4| (-578 $)) 114) (((-578 $) (-578 |#4|) $) 113) (((-578 $) (-578 |#4|) (-578 $)) 112)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1709 (((-578 $) |#4| $) 121) (((-578 $) |#4| (-578 $)) 120) (((-578 $) (-578 |#4|) $) 119) (((-578 $) (-578 |#4|) (-578 $)) 118)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-3036 (((-107) |#4| $) 135)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167)))))
-(((-714 |#1| |#2| |#3| |#4|) (-1180) (-419) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -714))
-NIL
-(-13 (-977 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-891 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1104) . T))
-((-2812 (((-3 (-346) "failed") (-282 |#1|) (-839)) 60 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-346) "failed") (-282 |#1|)) 52 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-346) "failed") (-375 (-866 |#1|)) (-839)) 39 (|has| |#1| (-508))) (((-3 (-346) "failed") (-375 (-866 |#1|))) 35 (|has| |#1| (-508))) (((-3 (-346) "failed") (-866 |#1|) (-839)) 30 (|has| |#1| (-959))) (((-3 (-346) "failed") (-866 |#1|)) 24 (|has| |#1| (-959)))) (-3241 (((-346) (-282 |#1|) (-839)) 92 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-346) (-282 |#1|)) 87 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-346) (-375 (-866 |#1|)) (-839)) 84 (|has| |#1| (-508))) (((-346) (-375 (-866 |#1|))) 81 (|has| |#1| (-508))) (((-346) (-866 |#1|) (-839)) 80 (|has| |#1| (-959))) (((-346) (-866 |#1|)) 77 (|has| |#1| (-959))) (((-346) |#1| (-839)) 73) (((-346) |#1|) 22)) (-2715 (((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)) (-839)) 68 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-152 (-346)) "failed") (-282 (-152 |#1|))) 58 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-152 (-346)) "failed") (-282 |#1|) (-839)) 61 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-152 (-346)) "failed") (-282 |#1|)) 59 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))) (-839)) 44 (|has| |#1| (-508))) (((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|)))) 43 (|has| |#1| (-508))) (((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)) (-839)) 38 (|has| |#1| (-508))) (((-3 (-152 (-346)) "failed") (-375 (-866 |#1|))) 37 (|has| |#1| (-508))) (((-3 (-152 (-346)) "failed") (-866 |#1|) (-839)) 28 (|has| |#1| (-959))) (((-3 (-152 (-346)) "failed") (-866 |#1|)) 26 (|has| |#1| (-959))) (((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)) (-839)) 17 (|has| |#1| (-156))) (((-3 (-152 (-346)) "failed") (-866 (-152 |#1|))) 14 (|has| |#1| (-156)))) (-3717 (((-152 (-346)) (-282 (-152 |#1|)) (-839)) 95 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-152 (-346)) (-282 (-152 |#1|))) 94 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-152 (-346)) (-282 |#1|) (-839)) 93 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-152 (-346)) (-282 |#1|)) 91 (-12 (|has| |#1| (-508)) (|has| |#1| (-777)))) (((-152 (-346)) (-375 (-866 (-152 |#1|))) (-839)) 86 (|has| |#1| (-508))) (((-152 (-346)) (-375 (-866 (-152 |#1|)))) 85 (|has| |#1| (-508))) (((-152 (-346)) (-375 (-866 |#1|)) (-839)) 83 (|has| |#1| (-508))) (((-152 (-346)) (-375 (-866 |#1|))) 82 (|has| |#1| (-508))) (((-152 (-346)) (-866 |#1|) (-839)) 79 (|has| |#1| (-959))) (((-152 (-346)) (-866 |#1|)) 78 (|has| |#1| (-959))) (((-152 (-346)) (-866 (-152 |#1|)) (-839)) 75 (|has| |#1| (-156))) (((-152 (-346)) (-866 (-152 |#1|))) 74 (|has| |#1| (-156))) (((-152 (-346)) (-152 |#1|) (-839)) 16 (|has| |#1| (-156))) (((-152 (-346)) (-152 |#1|)) 12 (|has| |#1| (-156))) (((-152 (-346)) |#1| (-839)) 27) (((-152 (-346)) |#1|) 25)))
-(((-715 |#1|) (-10 -7 (-15 -3241 ((-346) |#1|)) (-15 -3241 ((-346) |#1| (-839))) (-15 -3717 ((-152 (-346)) |#1|)) (-15 -3717 ((-152 (-346)) |#1| (-839))) (IF (|has| |#1| (-156)) (PROGN (-15 -3717 ((-152 (-346)) (-152 |#1|))) (-15 -3717 ((-152 (-346)) (-152 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-866 (-152 |#1|)))) (-15 -3717 ((-152 (-346)) (-866 (-152 |#1|)) (-839)))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-15 -3241 ((-346) (-866 |#1|))) (-15 -3241 ((-346) (-866 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-866 |#1|))) (-15 -3717 ((-152 (-346)) (-866 |#1|) (-839)))) |noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3241 ((-346) (-375 (-866 |#1|)))) (-15 -3241 ((-346) (-375 (-866 |#1|)) (-839))) (-15 -3717 ((-152 (-346)) (-375 (-866 |#1|)))) (-15 -3717 ((-152 (-346)) (-375 (-866 |#1|)) (-839))) (-15 -3717 ((-152 (-346)) (-375 (-866 (-152 |#1|))))) (-15 -3717 ((-152 (-346)) (-375 (-866 (-152 |#1|))) (-839))) (IF (|has| |#1| (-777)) (PROGN (-15 -3241 ((-346) (-282 |#1|))) (-15 -3241 ((-346) (-282 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-282 |#1|))) (-15 -3717 ((-152 (-346)) (-282 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-282 (-152 |#1|)))) (-15 -3717 ((-152 (-346)) (-282 (-152 |#1|)) (-839)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)) (-839)))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-866 |#1|))) (-15 -2812 ((-3 (-346) "failed") (-866 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 |#1|))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 |#1|) (-839)))) |noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-375 (-866 |#1|)))) (-15 -2812 ((-3 (-346) "failed") (-375 (-866 |#1|)) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))) (-839))) (IF (|has| |#1| (-777)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-282 |#1|))) (-15 -2812 ((-3 (-346) "failed") (-282 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 |#1|))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)) (-839)))) |noBranch|)) |noBranch|)) (-556 (-346))) (T -715))
-((-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-152 *4))) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-2812 (*1 *2 *3) (|partial| -12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 (-152 *5)))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 (-152 *4)))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-2812 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-2812 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-2812 (*1 *2 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-2715 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-2715 (*1 *2 *3) (|partial| -12 (-5 *3 (-866 (-152 *4))) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-282 (-152 *4))) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 *5)))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 (-152 *4)))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-866 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-866 (-152 *4))) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-152 *5)) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) (-3717 (*1 *2 *3) (-12 (-5 *3 (-152 *4)) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-152 (-346))) (-5 *1 (-715 *3)) (-4 *3 (-556 (-346))))) (-3717 (*1 *2 *3) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-715 *3)) (-4 *3 (-556 (-346))))) (-3241 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-346)) (-5 *1 (-715 *3)) (-4 *3 (-556 *2)))) (-3241 (*1 *2 *3) (-12 (-5 *2 (-346)) (-5 *1 (-715 *3)) (-4 *3 (-556 *2)))))
-(-10 -7 (-15 -3241 ((-346) |#1|)) (-15 -3241 ((-346) |#1| (-839))) (-15 -3717 ((-152 (-346)) |#1|)) (-15 -3717 ((-152 (-346)) |#1| (-839))) (IF (|has| |#1| (-156)) (PROGN (-15 -3717 ((-152 (-346)) (-152 |#1|))) (-15 -3717 ((-152 (-346)) (-152 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-866 (-152 |#1|)))) (-15 -3717 ((-152 (-346)) (-866 (-152 |#1|)) (-839)))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-15 -3241 ((-346) (-866 |#1|))) (-15 -3241 ((-346) (-866 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-866 |#1|))) (-15 -3717 ((-152 (-346)) (-866 |#1|) (-839)))) |noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -3241 ((-346) (-375 (-866 |#1|)))) (-15 -3241 ((-346) (-375 (-866 |#1|)) (-839))) (-15 -3717 ((-152 (-346)) (-375 (-866 |#1|)))) (-15 -3717 ((-152 (-346)) (-375 (-866 |#1|)) (-839))) (-15 -3717 ((-152 (-346)) (-375 (-866 (-152 |#1|))))) (-15 -3717 ((-152 (-346)) (-375 (-866 (-152 |#1|))) (-839))) (IF (|has| |#1| (-777)) (PROGN (-15 -3241 ((-346) (-282 |#1|))) (-15 -3241 ((-346) (-282 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-282 |#1|))) (-15 -3717 ((-152 (-346)) (-282 |#1|) (-839))) (-15 -3717 ((-152 (-346)) (-282 (-152 |#1|)))) (-15 -3717 ((-152 (-346)) (-282 (-152 |#1|)) (-839)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 (-152 |#1|)) (-839)))) |noBranch|) (IF (|has| |#1| (-959)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-866 |#1|))) (-15 -2812 ((-3 (-346) "failed") (-866 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 |#1|))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-866 |#1|) (-839)))) |noBranch|) (IF (|has| |#1| (-508)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-375 (-866 |#1|)))) (-15 -2812 ((-3 (-346) "failed") (-375 (-866 |#1|)) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 |#1|)) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-375 (-866 (-152 |#1|))) (-839))) (IF (|has| |#1| (-777)) (PROGN (-15 -2812 ((-3 (-346) "failed") (-282 |#1|))) (-15 -2812 ((-3 (-346) "failed") (-282 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 |#1|))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 |#1|) (-839))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)))) (-15 -2715 ((-3 (-152 (-346)) "failed") (-282 (-152 |#1|)) (-839)))) |noBranch|)) |noBranch|))
-((-3779 (((-839) (-1053)) 64)) (-2353 (((-3 (-346) "failed") (-1053)) 32)) (-2135 (((-346) (-1053)) 30)) (-1997 (((-839) (-1053)) 53)) (-3565 (((-1053) (-839)) 55)) (-2343 (((-1053) (-839)) 52)))
-(((-716) (-10 -7 (-15 -2343 ((-1053) (-839))) (-15 -1997 ((-839) (-1053))) (-15 -3565 ((-1053) (-839))) (-15 -3779 ((-839) (-1053))) (-15 -2135 ((-346) (-1053))) (-15 -2353 ((-3 (-346) "failed") (-1053))))) (T -716))
-((-2353 (*1 *2 *3) (|partial| -12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-716)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-716)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-839)) (-5 *1 (-716)))) (-3565 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1053)) (-5 *1 (-716)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-839)) (-5 *1 (-716)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1053)) (-5 *1 (-716)))))
-(-10 -7 (-15 -2343 ((-1053) (-839))) (-15 -1997 ((-839) (-1053))) (-15 -3565 ((-1053) (-839))) (-15 -3779 ((-839) (-1053))) (-15 -2135 ((-346) (-1053))) (-15 -2353 ((-3 (-346) "failed") (-1053))))
-((-3736 (((-107) $ $) 7)) (-1882 (((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 15) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)) 13)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)))
-(((-717) (-1180)) (T -717))
-((-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-717)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948)))))) (-1882 (*1 *2 *3 *2) (-12 (-4 *1 (-717)) (-5 *2 (-948)) (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-717)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948)))))) (-1882 (*1 *2 *3 *2) (-12 (-4 *1 (-717)) (-5 *2 (-948)) (-5 *3 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(-13 (-1001) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1882 ((-948) (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -1882 ((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-948)))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3781 (((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346))) 44) (((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346))) 43)) (-3680 (((-1154) (-1148 (-346)) (-501) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346))) 50)) (-2937 (((-1154) (-1148 (-346)) (-501) (-346) (-346) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346))) 41)) (-4077 (((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346))) 52) (((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346))) 51)))
-(((-718) (-10 -7 (-15 -4077 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -4077 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)))) (-15 -2937 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -3781 ((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -3781 ((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)))) (-15 -3680 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))))) (T -718))
-((-3680 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-3781 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-501)) (-5 *6 (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346)))) (-5 *7 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-3781 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-501)) (-5 *6 (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346)))) (-5 *7 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-2937 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-4077 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) (-4077 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))))
-(-10 -7 (-15 -4077 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -4077 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)))) (-15 -2937 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -3781 ((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))) (-15 -3781 ((-1154) (-1148 (-346)) (-501) (-346) (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346))) (-346) (-1148 (-346)) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)) (-1148 (-346)))) (-15 -3680 ((-1154) (-1148 (-346)) (-501) (-346) (-346) (-501) (-1 (-1154) (-1148 (-346)) (-1148 (-346)) (-346)))))
-((-3570 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 53)) (-1439 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 30)) (-3780 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 52)) (-3357 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 28)) (-2799 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 51)) (-1304 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501)) 18)) (-2063 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501)) 31)) (-1681 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501)) 29)) (-4006 (((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501)) 27)))
-(((-719) (-10 -7 (-15 -4006 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -1681 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -2063 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -1304 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3357 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -1439 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -2799 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3780 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3570 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))))) (T -719))
-((-3570 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-3780 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-2799 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-1439 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-3357 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-1304 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-2063 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-1681 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))) (-4006 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(-10 -7 (-15 -4006 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -1681 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -2063 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501) (-501))) (-15 -1304 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3357 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -1439 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -2799 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3780 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))) (-15 -3570 ((-2 (|:| -2150 (-346)) (|:| -2390 (-346)) (|:| |totalpts| (-501)) (|:| |success| (-107))) (-1 (-346) (-346)) (-346) (-346) (-346) (-346) (-501) (-501))))
-((-2810 (((-1100 |#1|) |#1| (-199) (-501)) 45)))
-(((-720 |#1|) (-10 -7 (-15 -2810 ((-1100 |#1|) |#1| (-199) (-501)))) (-889)) (T -720))
-((-2810 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-501)) (-5 *2 (-1100 *3)) (-5 *1 (-720 *3)) (-4 *3 (-889)))))
-(-10 -7 (-15 -2810 ((-1100 |#1|) |#1| (-199) (-501))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-3177 (((-3 $ "failed") $ $) 26)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3797 (($ $ $) 28) (($ $) 27)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21) (($ (-501) $) 29)))
-(((-721) (-1180)) (T -721))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-1363 (($ |#1|) 17) (($ $ |#1|) 20)) (-1278 (($ |#1|) 18) (($ $ |#1|) 21)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3848 (((-107) $) NIL)) (-2990 (($ |#1| |#1| |#1| |#1|) 8)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 16)) (-3206 (((-1021) $) NIL)) (-2051 ((|#1| $ |#1|) 24) (((-765 |#1|) $ (-765 |#1|)) 32)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2256 (((-787) $) 39)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 9 T CONST)) (-1547 (((-107) $ $) 44)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 14)))
+(((-651 |#1|) (-13 (-442) (-10 -8 (-15 -2990 ($ |#1| |#1| |#1| |#1|)) (-15 -1363 ($ |#1|)) (-15 -1278 ($ |#1|)) (-15 -3621 ($)) (-15 -1363 ($ $ |#1|)) (-15 -1278 ($ $ |#1|)) (-15 -3621 ($ $)) (-15 -2051 (|#1| $ |#1|)) (-15 -2051 ((-765 |#1|) $ (-765 |#1|))))) (-333)) (T -651))
+((-2990 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1363 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1278 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3621 (*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1363 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-1278 (*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-3621 (*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2051 (*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) (-2051 (*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))))
+(-13 (-442) (-10 -8 (-15 -2990 ($ |#1| |#1| |#1| |#1|)) (-15 -1363 ($ |#1|)) (-15 -1278 ($ |#1|)) (-15 -3621 ($)) (-15 -1363 ($ $ |#1|)) (-15 -1278 ($ $ |#1|)) (-15 -3621 ($ $)) (-15 -2051 (|#1| $ |#1|)) (-15 -2051 ((-765 |#1|) $ (-765 |#1|)))))
+((-3380 (($ $ (-843)) 12)) (-2572 (($ $ (-843)) 13)) (** (($ $ (-843)) 10)))
+(((-652 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843)))) (-653)) (T -652))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843))))
+((-2750 (((-107) $ $) 7)) (-3380 (($ $ (-843)) 15)) (-2572 (($ $ (-843)) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 13)) (* (($ $ $) 16)))
+(((-653) (-1184)) (T -653))
+((* (*1 *1 *1 *1) (-4 *1 (-653))) (-3380 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (-2572 (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))))
+(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 -3380 ($ $ (-843))) (-15 -2572 ($ $ (-843))) (-15 ** ($ $ (-843)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-3380 (($ $ (-843)) NIL) (($ $ (-703)) 17)) (-3848 (((-107) $) 10)) (-2572 (($ $ (-843)) NIL) (($ $ (-703)) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15)))
+(((-654 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2572 (|#1| |#1| (-703))) (-15 -3380 (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843)))) (-655)) (T -654))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-703))) (-15 -2572 (|#1| |#1| (-703))) (-15 -3380 (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 ** (|#1| |#1| (-843))) (-15 -2572 (|#1| |#1| (-843))) (-15 -3380 (|#1| |#1| (-843))))
+((-2750 (((-107) $ $) 7)) (-2158 (((-3 $ "failed") $) 17)) (-3380 (($ $ (-843)) 15) (($ $ (-703)) 22)) (-3621 (((-3 $ "failed") $) 19)) (-3848 (((-107) $) 23)) (-1680 (((-3 $ "failed") $) 18)) (-2572 (($ $ (-843)) 14) (($ $ (-703)) 21)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2409 (($) 24 T CONST)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 13) (($ $ (-703)) 20)) (* (($ $ $) 16)))
+(((-655) (-1184)) (T -655))
+((-2409 (*1 *1) (-4 *1 (-655))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) (-3380 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-2572 (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) (-3621 (*1 *1 *1) (|partial| -4 *1 (-655))) (-1680 (*1 *1 *1) (|partial| -4 *1 (-655))) (-2158 (*1 *1 *1) (|partial| -4 *1 (-655))))
+(-13 (-653) (-10 -8 (-15 (-2409) ($) -1619) (-15 -3848 ((-107) $)) (-15 -3380 ($ $ (-703))) (-15 -2572 ($ $ (-703))) (-15 ** ($ $ (-703))) (-15 -3621 ((-3 $ "failed") $)) (-15 -1680 ((-3 $ "failed") $)) (-15 -2158 ((-3 $ "failed") $))))
+(((-97) . T) ((-557 (-787)) . T) ((-653) . T) ((-1003) . T))
+((-1611 (((-703)) 35)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 22)) (-3225 (($ |#3|) NIL) (((-3 $ "failed") (-377 |#3|)) 45)) (-3621 (((-3 $ "failed") $) 65)) (-3209 (($) 39)) (-1506 ((|#2| $) 20)) (-3220 (($) 17)) (-3127 (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2970 (((-623 |#2|) (-1153 $) (-1 |#2| |#2|)) 60)) (-3645 (((-1153 |#2|) $) NIL) (($ (-1153 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3669 ((|#3| $) 32)) (-1753 (((-1153 $)) 29)))
+(((-656 |#1| |#2| |#3|) (-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3209 (|#1|)) (-15 -1611 ((-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2970 ((-623 |#2|) (-1153 |#1|) (-1 |#2| |#2|))) (-15 -3225 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3645 (|#1| |#3|)) (-15 -3225 (|#1| |#3|)) (-15 -3220 (|#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 (|#3| |#1|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1753 ((-1153 |#1|))) (-15 -3669 (|#3| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|))) (-657 |#2| |#3|) (-156) (-1130 |#2|)) (T -656))
+((-1611 (*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))))
+(-10 -8 (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3209 (|#1|)) (-15 -1611 ((-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -2970 ((-623 |#2|) (-1153 |#1|) (-1 |#2| |#2|))) (-15 -3225 ((-3 |#1| "failed") (-377 |#3|))) (-15 -3645 (|#1| |#3|)) (-15 -3225 (|#1| |#3|)) (-15 -3220 (|#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3645 (|#3| |#1|)) (-15 -3645 (|#1| (-1153 |#2|))) (-15 -3645 ((-1153 |#2|) |#1|)) (-15 -1753 ((-1153 |#1|))) (-15 -3669 (|#3| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -3621 ((-3 |#1| "failed") |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 93 (|has| |#1| (-333)))) (-1213 (($ $) 94 (|has| |#1| (-333)))) (-2454 (((-107) $) 96 (|has| |#1| (-333)))) (-3055 (((-623 |#1|) (-1153 $)) 46) (((-623 |#1|)) 61)) (-1472 ((|#1| $) 52)) (-1926 (((-1082 (-843) (-703)) (-517)) 147 (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 113 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 114 (|has| |#1| (-333)))) (-1707 (((-107) $ $) 104 (|has| |#1| (-333)))) (-1611 (((-703)) 87 (|has| |#1| (-338)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 169 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 167 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 166)) (-3189 (((-517) $) 170 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 168 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 165)) (-1967 (($ (-1153 |#1|) (-1153 $)) 48) (($ (-1153 |#1|)) 64)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-319)))) (-2518 (($ $ $) 108 (|has| |#1| (-333)))) (-2410 (((-623 |#1|) $ (-1153 $)) 53) (((-623 |#1|) $) 59)) (-3355 (((-623 (-517)) (-623 $)) 164 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 163 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 162) (((-623 |#1|) (-623 $)) 161)) (-3225 (($ |#2|) 158) (((-3 $ "failed") (-377 |#2|)) 155 (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-843)) 54)) (-3209 (($) 90 (|has| |#1| (-338)))) (-2497 (($ $ $) 107 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 102 (|has| |#1| (-333)))) (-3442 (($) 149 (|has| |#1| (-319)))) (-3391 (((-107) $) 150 (|has| |#1| (-319)))) (-2378 (($ $ (-703)) 141 (|has| |#1| (-319))) (($ $) 140 (|has| |#1| (-319)))) (-3849 (((-107) $) 115 (|has| |#1| (-333)))) (-3972 (((-843) $) 152 (|has| |#1| (-319))) (((-765 (-843)) $) 138 (|has| |#1| (-319)))) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 51)) (-1319 (((-3 $ "failed") $) 142 (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 111 (|has| |#1| (-333)))) (-3777 ((|#2| $) 44 (|has| |#1| (-333)))) (-1549 (((-843) $) 89 (|has| |#1| (-338)))) (-3216 ((|#2| $) 156)) (-1365 (($ (-583 $)) 100 (|has| |#1| (-333))) (($ $ $) 99 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 116 (|has| |#1| (-333)))) (-2836 (($) 143 (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) 88 (|has| |#1| (-338)))) (-3206 (((-1021) $) 10)) (-3220 (($) 160)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 101 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 98 (|has| |#1| (-333))) (($ $ $) 97 (|has| |#1| (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) 146 (|has| |#1| (-319)))) (-3755 (((-388 $) $) 112 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 109 (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ $) 92 (|has| |#1| (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 103 (|has| |#1| (-333)))) (-3146 (((-703) $) 105 (|has| |#1| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106 (|has| |#1| (-333)))) (-3010 ((|#1| (-1153 $)) 47) ((|#1|) 60)) (-1620 (((-703) $) 151 (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) 139 (|has| |#1| (-319)))) (-3127 (($ $) 137 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 135 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) 133 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073))) 132 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1073) (-703)) 131 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-703))) 130 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 123 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-333)))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-333)))) (-2135 ((|#2|) 159)) (-1766 (($) 148 (|has| |#1| (-319)))) (-4114 (((-1153 |#1|) $ (-1153 $)) 50) (((-623 |#1|) (-1153 $) (-1153 $)) 49) (((-1153 |#1|) $) 66) (((-623 |#1|) (-1153 $)) 65)) (-3645 (((-1153 |#1|) $) 63) (($ (-1153 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 145 (|has| |#1| (-319)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-333))) (($ (-377 (-517))) 86 (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (($ $) 144 (|has| |#1| (-319))) (((-3 $ "failed") $) 43 (|has| |#1| (-132)))) (-3669 ((|#2| $) 45)) (-2961 (((-703)) 29)) (-1753 (((-1153 $)) 67)) (-3329 (((-107) $ $) 95 (|has| |#1| (-333)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 117 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 136 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) 134 (-3807 (-4035 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) 129 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073))) 128 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1073) (-703)) 127 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-703))) 126 (-4035 (|has| |#1| (-822 (-1073))) (|has| |#1| (-333)))) (($ $ (-1 |#1| |#1|) (-703)) 125 (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-333)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 121 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 118 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-377 (-517)) $) 120 (|has| |#1| (-333))) (($ $ (-377 (-517))) 119 (|has| |#1| (-333)))))
+(((-657 |#1| |#2|) (-1184) (-156) (-1130 |t#1|)) (T -657))
+((-3220 (*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1130 *2)))) (-2135 (*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) (-3225 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) (-3645 (*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) (-3225 (*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) (-2970 (*1 *2 *3 *4) (-12 (-5 *3 (-1153 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *5)))))
+(-13 (-379 |t#1| |t#2|) (-156) (-558 |t#2|) (-381 |t#1|) (-347 |t#1|) (-10 -8 (-15 -3220 ($)) (-15 -2135 (|t#2|)) (-15 -3225 ($ |t#2|)) (-15 -3645 ($ |t#2|)) (-15 -3216 (|t#2| $)) (IF (|has| |t#1| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-333)) (-6 (-205 |t#1|)) (-15 -3225 ((-3 $ "failed") (-377 |t#2|))) (-15 -2970 ((-623 |t#1|) (-1153 $) (-1 |t#1| |t#1|)))) |noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-37 |#1|) . T) ((-37 $) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-319)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 |#2|) . T) ((-205 |#1|) |has| |#1| (-333)) ((-207) -3807 (|has| |#1| (-319)) (-12 (|has| |#1| (-207)) (|has| |#1| (-333)))) ((-217) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-262) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-278) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-333) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-372) |has| |#1| (-319)) ((-338) -3807 (|has| |#1| (-338)) (|has| |#1| (-319))) ((-319) |has| |#1| (-319)) ((-340 |#1| |#2|) . T) ((-379 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-509) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-650 |#1|) . T) ((-650 $) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073)))) ((-842) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-319)) ((-1112) -3807 (|has| |#1| (-319)) (|has| |#1| (-333))))
+((-3092 (($) 14)) (-3621 (((-3 $ "failed") $) 16)) (-3848 (((-107) $) 13)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) 9)) (** (($ $ (-843)) NIL) (($ $ (-703)) 20)))
+(((-658 |#1|) (-10 -8 (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-659)) (T -658))
+NIL
+(-10 -8 (-15 -3621 ((-3 |#1| "failed") |#1|)) (-15 -2207 (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-703))) (-15 -3848 ((-107) |#1|)) (-15 -3092 (|#1|)) (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
+((-2750 (((-107) $ $) 7)) (-3092 (($) 20 T CONST)) (-3621 (((-3 $ "failed") $) 16)) (-3848 (((-107) $) 19)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13) (($ $ (-703)) 17)) (-2409 (($) 21 T CONST)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 14) (($ $ (-703)) 18)) (* (($ $ $) 15)))
+(((-659) (-1184)) (T -659))
+((-2409 (*1 *1) (-4 *1 (-659))) (-3092 (*1 *1) (-4 *1 (-659))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) (-3621 (*1 *1 *1) (|partial| -4 *1 (-659))))
+(-13 (-1015) (-10 -8 (-15 (-2409) ($) -1619) (-15 -3092 ($) -1619) (-15 -3848 ((-107) $)) (-15 ** ($ $ (-703))) (-15 -2207 ($ $ (-703))) (-15 -3621 ((-3 $ "failed") $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1015) . T) ((-1003) . T))
+((-3573 (((-2 (|:| -2527 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1313 (((-2 (|:| -2527 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1951 ((|#2| (-377 |#2|) (-1 |#2| |#2|)) 13)) (-2132 (((-2 (|:| |poly| |#2|) (|:| -2527 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)) 47)))
+(((-660 |#1| |#2|) (-10 -7 (-15 -1313 ((-2 (|:| -2527 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3573 ((-2 (|:| -2527 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1951 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2132 ((-2 (|:| |poly| |#2|) (|:| -2527 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|)))) (-333) (-1130 |#1|)) (T -660))
+((-2132 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2527 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) (-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))))
+(-10 -7 (-15 -1313 ((-2 (|:| -2527 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3573 ((-2 (|:| -2527 (-388 |#2|)) (|:| |special| (-388 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1951 (|#2| (-377 |#2|) (-1 |#2| |#2|))) (-15 -2132 ((-2 (|:| |poly| |#2|) (|:| -2527 (-377 |#2|)) (|:| |special| (-377 |#2|))) (-377 |#2|) (-1 |#2| |#2|))))
+((-2473 ((|#7| (-583 |#5|) |#6|) NIL)) (-1893 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-661 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1893 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2473 (|#7| (-583 |#5|) |#6|))) (-779) (-725) (-725) (-961) (-961) (-871 |#4| |#2| |#1|) (-871 |#5| |#3| |#1|)) (T -661))
+((-2473 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-961)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))))
+(-10 -7 (-15 -1893 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2473 (|#7| (-583 |#5|) |#6|)))
+((-1893 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-662 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1893 (|#7| (-1 |#2| |#1|) |#6|))) (-779) (-779) (-725) (-725) (-961) (-871 |#5| |#3| |#1|) (-871 |#5| |#4| |#2|)) (T -662))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5)))))
+(-10 -7 (-15 -1893 (|#7| (-1 |#2| |#1|) |#6|)))
+((-3755 (((-388 |#4|) |#4|) 39)))
+(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073))))) (-278) (-871 (-874 |#3|) |#1| |#2|)) (T -663))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5)))))
+(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-789 |#1|)) $) NIL)) (-2352 (((-1069 $) $ (-789 |#1|)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-789 |#1|))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-789 |#1|) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-789 |#1|) $) NIL)) (-3388 (($ $ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-489 (-789 |#1|)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-789 |#1|) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#2|) (-789 |#1|)) NIL) (($ (-1069 $) (-789 |#1|)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-789 |#1|)) NIL)) (-2349 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-489 (-789 |#1|)) (-489 (-789 |#1|))) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1409 (((-3 (-789 |#1|) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-789 |#1|)) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-789 |#1|) |#2|) NIL) (($ $ (-583 (-789 |#1|)) (-583 |#2|)) NIL) (($ $ (-789 |#1|) $) NIL) (($ $ (-583 (-789 |#1|)) (-583 $)) NIL)) (-3010 (($ $ (-789 |#1|)) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-3688 (((-489 (-789 |#1|)) $) NIL) (((-703) $ (-789 |#1|)) NIL) (((-583 (-703)) $ (-583 (-789 |#1|))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-789 |#1|) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-789 |#1|) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-789 |#1|)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-789 |#1|)) NIL) (($ $) NIL (|has| |#2| (-509))) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517))))))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-489 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-789 |#1|)) NIL) (($ $ (-583 (-789 |#1|))) NIL) (($ $ (-789 |#1|) (-703)) NIL) (($ $ (-583 (-789 |#1|)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-664 |#1| |#2|) (-871 |#2| (-489 (-789 |#1|)) (-789 |#1|)) (-583 (-1073)) (-961)) (T -664))
+NIL
+(-871 |#2| (-489 (-789 |#1|)) (-789 |#1|))
+((-3581 (((-2 (|:| -1640 (-874 |#3|)) (|:| -1933 (-874 |#3|))) |#4|) 13)) (-2906 ((|#4| |#4| |#2|) 30)) (-3474 ((|#4| (-377 (-874 |#3|)) |#2|) 63)) (-1675 ((|#4| (-1069 (-874 |#3|)) |#2|) 76)) (-1725 ((|#4| (-1069 |#4|) |#2|) 49)) (-2885 ((|#4| |#4| |#2|) 52)) (-3755 (((-388 |#4|) |#4|) 38)))
+(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3581 ((-2 (|:| -1640 (-874 |#3|)) (|:| -1933 (-874 |#3|))) |#4|)) (-15 -2885 (|#4| |#4| |#2|)) (-15 -1725 (|#4| (-1069 |#4|) |#2|)) (-15 -2906 (|#4| |#4| |#2|)) (-15 -1675 (|#4| (-1069 (-874 |#3|)) |#2|)) (-15 -3474 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -3755 ((-388 |#4|) |#4|))) (-725) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)))) (-509) (-871 (-377 (-874 |#3|)) |#1| |#2|)) (T -665))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) (-3474 (*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))) (-2906 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-1725 (*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)))) (-2885 (*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) (-3581 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -1640 (-874 *6)) (|:| -1933 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))))
+(-10 -7 (-15 -3581 ((-2 (|:| -1640 (-874 |#3|)) (|:| -1933 (-874 |#3|))) |#4|)) (-15 -2885 (|#4| |#4| |#2|)) (-15 -1725 (|#4| (-1069 |#4|) |#2|)) (-15 -2906 (|#4| |#4| |#2|)) (-15 -1675 (|#4| (-1069 (-874 |#3|)) |#2|)) (-15 -3474 (|#4| (-377 (-874 |#3|)) |#2|)) (-15 -3755 ((-388 |#4|) |#4|)))
+((-3755 (((-388 |#4|) |#4|) 51)))
+(((-666 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|))) (-725) (-779) (-13 (-278) (-134)) (-871 (-377 |#3|) |#1| |#2|)) (T -666))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5)))))
+(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)))
+((-1893 (((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)) 18)))
+(((-667 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|)))) (-961) (-961) (-659)) (T -667))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))))
+(-10 -7 (-15 -1893 ((-668 |#2| |#3|) (-1 |#2| |#1|) (-668 |#1| |#3|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 26)) (-2223 (((-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))) $) 27)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703)) 20 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 55) (((-3 |#1| "failed") $) 58)) (-3189 ((|#2| $) NIL) ((|#1| $) NIL)) (-1212 (($ $) 75 (|has| |#2| (-779)))) (-3621 (((-3 $ "failed") $) 62)) (-3209 (($) 33 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 53)) (-4094 (((-583 $) $) 37)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| |#2|) 16)) (-1893 (($ (-1 |#1| |#1|) $) 52)) (-1549 (((-843) $) 30 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-4152 ((|#2| $) 74 (|has| |#2| (-779)))) (-1191 ((|#1| $) 73 (|has| |#2| (-779)))) (-3985 (((-1056) $) NIL)) (-3448 (($ (-843)) 25 (-12 (|has| |#2| (-338)) (|has| |#1| (-338))))) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 72) (($ (-517)) 44) (($ |#2|) 40) (($ |#1|) 41) (($ (-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|)))) 11)) (-1311 (((-583 |#1|) $) 39)) (-2720 ((|#1| $ |#2|) 83)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 12 T CONST)) (-2409 (($) 31 T CONST)) (-1547 (((-107) $ $) 76)) (-1654 (($ $) 46) (($ $ $) NIL)) (-1642 (($ $ $) 24)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 50) (($ $ $) 85) (($ |#1| $) 48 (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-668 |#1| |#2|) (-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1339 ($ |#1| |#2|)) (-15 -2720 (|#1| $ |#2|)) (-15 -2256 ($ (-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))))) (-15 -2223 ((-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -4031 ((-107) $)) (-15 -1311 ((-583 |#1|) $)) (-15 -4094 ((-583 $) $)) (-15 -1577 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -4152 (|#2| $)) (-15 -1191 (|#1| $)) (-15 -1212 ($ $))) |noBranch|))) (-961) (-659)) (T -668))
+((-1339 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) (-2720 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) (-4152 (*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) (-1191 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659)))))
+(-13 (-961) (-952 |#2|) (-952 |#1|) (-10 -8 (-15 -1339 ($ |#1| |#2|)) (-15 -2720 (|#1| $ |#2|)) (-15 -2256 ($ (-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))))) (-15 -2223 ((-583 (-2 (|:| -1931 |#1|) (|:| -3419 |#2|))) $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (-15 -4031 ((-107) $)) (-15 -1311 ((-583 |#1|) $)) (-15 -4094 ((-583 $) $)) (-15 -1577 ((-703) $)) (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#2| (-779)) (PROGN (-15 -4152 (|#2| $)) (-15 -1191 (|#1| $)) (-15 -1212 ($ $))) |noBranch|)))
+((-2750 (((-107) $ $) 18)) (-1413 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3245 (($ $ $) 72)) (-3009 (((-107) $ $) 73)) (-2953 (((-107) $ (-703)) 8)) (-1362 (($ (-583 |#1|)) 68) (($) 67)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 62)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22)) (-1812 (($ $ $) 69)) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3206 (((-1021) $) 21)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 61)) (-3170 (($ $ |#1|) 71) (($ $ $) 70)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20)) (-3167 (($ (-583 |#1|)) 66) (($) 65)) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-1572 (((-107) $ $) 64)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-669 |#1|) (-1184) (-1003)) (T -669))
+NIL
+(-13 (-628 |t#1|) (-1001 |t#1|))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1108) . T))
+((-2750 (((-107) $ $) NIL)) (-1413 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 77)) (-3245 (($ $ $) 80)) (-3009 (((-107) $ $) 83)) (-2953 (((-107) $ (-703)) NIL)) (-1362 (($ (-583 |#1|)) 24) (($) 15)) (-2337 (($ (-1 (-107) |#1|) $) 71 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3483 (($ $) 72)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) 61 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 64 (|has| $ (-6 -4180))) (($ |#1| $ (-517)) 62) (($ (-1 (-107) |#1|) $ (-517)) 65)) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (($ |#1| $ (-517)) 67) (($ (-1 (-107) |#1|) $ (-517)) 68)) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 32 (|has| $ (-6 -4180)))) (-2625 (($) 13) (($ |#1|) 26) (($ (-583 |#1|)) 21)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) 38)) (-2787 (((-107) |#1| $) 57 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) 75 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 76)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 78)) (-3309 ((|#1| $) 54)) (-1710 (($ |#1| $) 55) (($ |#1| $ (-703)) 73)) (-3206 (((-1021) $) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-4006 ((|#1| $) 53)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 49)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 47)) (-3170 (($ $ |#1|) NIL) (($ $ $) 79)) (-3089 (($) 14) (($ (-583 |#1|)) 23)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) 60 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 66)) (-3645 (((-493) $) 36 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 20)) (-2256 (((-787) $) 44)) (-3167 (($ (-583 |#1|)) 25) (($) 16)) (-1222 (($ (-583 |#1|)) 22)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 81)) (-1572 (((-107) $ $) 82)) (-2296 (((-703) $) 59 (|has| $ (-6 -4180)))))
+(((-670 |#1|) (-13 (-669 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2625 ($)) (-15 -2625 ($ |#1|)) (-15 -2625 ($ (-583 |#1|))) (-15 -2560 ((-583 |#1|) $)) (-15 -2052 ($ |#1| $ (-517))) (-15 -2052 ($ (-1 (-107) |#1|) $ (-517))) (-15 -3212 ($ |#1| $ (-517))) (-15 -3212 ($ (-1 (-107) |#1|) $ (-517))))) (-1003)) (T -670))
+((-2625 (*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2625 (*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003)))) (-2052 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-2052 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) (-3212 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) (-3212 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))))
+(-13 (-669 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -2625 ($)) (-15 -2625 ($ |#1|)) (-15 -2625 ($ (-583 |#1|))) (-15 -2560 ((-583 |#1|) $)) (-15 -2052 ($ |#1| $ (-517))) (-15 -2052 ($ (-1 (-107) |#1|) $ (-517))) (-15 -3212 ($ |#1| $ (-517))) (-15 -3212 ($ (-1 (-107) |#1|) $ (-517)))))
+((-2503 (((-1158) (-1056)) 8)))
+(((-671) (-10 -7 (-15 -2503 ((-1158) (-1056))))) (T -671))
+((-2503 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-671)))))
+(-10 -7 (-15 -2503 ((-1158) (-1056))))
+((-2546 (((-583 |#1|) (-583 |#1|) (-583 |#1|)) 10)))
+(((-672 |#1|) (-10 -7 (-15 -2546 ((-583 |#1|) (-583 |#1|) (-583 |#1|)))) (-779)) (T -672))
+((-2546 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
+(-10 -7 (-15 -2546 ((-583 |#1|) (-583 |#1|) (-583 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#2|) $) 136)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 129 (|has| |#1| (-509)))) (-1213 (($ $) 128 (|has| |#1| (-509)))) (-2454 (((-107) $) 126 (|has| |#1| (-509)))) (-1865 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 68 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $) 67 (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 84 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 69 (|has| |#1| (-37 (-377 (-517)))))) (-1887 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 70 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1212 (($ $) 120)) (-3621 (((-3 $ "failed") $) 34)) (-3520 (((-874 |#1|) $ (-703)) 98) (((-874 |#1|) $ (-703) (-703)) 97)) (-3201 (((-107) $) 137)) (-2645 (($) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $ |#2|) 100) (((-703) $ |#2| (-703)) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 66 (|has| |#1| (-37 (-377 (-517)))))) (-4031 (((-107) $) 118)) (-1339 (($ $ (-583 |#2|) (-583 (-489 |#2|))) 135) (($ $ |#2| (-489 |#2|)) 134) (($ |#1| (-489 |#2|)) 119) (($ $ |#2| (-703)) 102) (($ $ (-583 |#2|) (-583 (-703))) 101)) (-1893 (($ (-1 |#1| |#1|) $) 117)) (-1867 (($ $) 92 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 115)) (-1191 ((|#1| $) 114)) (-3985 (((-1056) $) 9)) (-4151 (($ $ |#2|) 96 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) 10)) (-1672 (($ $ (-703)) 103)) (-2476 (((-3 $ "failed") $ $) 130 (|has| |#1| (-509)))) (-2624 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (($ $ |#2| $) 111) (($ $ (-583 |#2|) (-583 $)) 110) (($ $ (-583 (-265 $))) 109) (($ $ (-265 $)) 108) (($ $ $ $) 107) (($ $ (-583 $) (-583 $)) 106)) (-3127 (($ $ |#2|) 42) (($ $ (-583 |#2|)) 41) (($ $ |#2| (-703)) 40) (($ $ (-583 |#2|) (-583 (-703))) 39)) (-3688 (((-489 |#2|) $) 116)) (-1898 (($ $) 82 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 71 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 80 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 138)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 133 (|has| |#1| (-156))) (($ $) 131 (|has| |#1| (-509))) (($ (-377 (-517))) 123 (|has| |#1| (-37 (-377 (-517)))))) (-2720 ((|#1| $ (-489 |#2|)) 121) (($ $ |#2| (-703)) 105) (($ $ (-583 |#2|) (-583 (-703))) 104)) (-1328 (((-3 $ "failed") $) 132 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3707 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 127 (|has| |#1| (-509)))) (-3683 (($ $) 90 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 78 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 77 (|has| |#1| (-37 (-377 (-517)))))) (-1492 (($ $) 88 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 76 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 75 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 86 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 74 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#2|) 38) (($ $ (-583 |#2|)) 37) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) 35)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 122 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ $) 94 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 65 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 125 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 124 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+(((-673 |#1| |#2|) (-1184) (-961) (-779)) (T -673))
+((-2720 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) (-3972 (*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3972 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) (-4151 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))))
+(-13 (-822 |t#2|) (-890 |t#1| (-489 |t#2|) |t#2|) (-478 |t#2| $) (-280 $) (-10 -8 (-15 -2720 ($ $ |t#2| (-703))) (-15 -2720 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -1672 ($ $ (-703))) (-15 -1339 ($ $ |t#2| (-703))) (-15 -1339 ($ $ (-583 |t#2|) (-583 (-703)))) (-15 -3972 ((-703) $ |t#2|)) (-15 -3972 ((-703) $ |t#2| (-703))) (-15 -3520 ((-874 |t#1|) $ (-703))) (-15 -3520 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ |t#2|)) (-6 (-918)) (-6 (-1094))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-489 |#2|)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-262) |has| |#1| (-509)) ((-280 $) . T) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 |#2| $) . T) ((-478 $ $) . T) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 |#2|) . T) ((-890 |#1| (-489 |#2|) |#2|) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))))
+((-3755 (((-388 (-1069 |#4|)) (-1069 |#4|)) 28) (((-388 |#4|) |#4|) 24)))
+(((-674 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|)))) (-779) (-725) (-13 (-278) (-134)) (-871 |#3| |#2| |#1|)) (T -674))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
+(-10 -7 (-15 -3755 ((-388 |#4|) |#4|)) (-15 -3755 ((-388 (-1069 |#4|)) (-1069 |#4|))))
+((-2360 (((-388 |#4|) |#4| |#2|) 116)) (-3538 (((-388 |#4|) |#4|) NIL)) (-2759 (((-388 (-1069 |#4|)) (-1069 |#4|)) 107) (((-388 |#4|) |#4|) 38)) (-1323 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 |#4|)) (|:| -2077 (-517)))))) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 65)) (-4009 (((-1069 |#3|) (-1069 |#3|) (-517)) 133)) (-3875 (((-583 (-703)) (-1069 |#4|) (-583 |#2|) (-703)) 58)) (-3216 (((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-1069 |#3|) (-1069 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|)) 62)) (-2542 (((-2 (|:| |upol| (-1069 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) (|:| |ctpol| |#3|)) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|))) 22)) (-3698 (((-2 (|:| -1913 (-1069 |#4|)) (|:| |polval| (-1069 |#3|))) (-1069 |#4|) (-1069 |#3|) (-517)) 54)) (-2556 (((-517) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) 130)) (-1359 ((|#4| (-517) (-388 |#4|)) 55)) (-3823 (((-107) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) NIL)))
+(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2759 ((-388 |#4|) |#4|)) (-15 -2759 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3538 ((-388 |#4|) |#4|)) (-15 -2556 ((-517) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -2360 ((-388 |#4|) |#4| |#2|)) (-15 -3698 ((-2 (|:| -1913 (-1069 |#4|)) (|:| |polval| (-1069 |#3|))) (-1069 |#4|) (-1069 |#3|) (-517))) (-15 -1323 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 |#4|)) (|:| -2077 (-517)))))) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2542 ((-2 (|:| |upol| (-1069 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) (|:| |ctpol| |#3|)) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1359 (|#4| (-517) (-388 |#4|))) (-15 -3823 ((-107) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -3216 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-1069 |#3|) (-1069 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3875 ((-583 (-703)) (-1069 |#4|) (-583 |#2|) (-703))) (-15 -4009 ((-1069 |#3|) (-1069 |#3|) (-517)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -675))
+((-4009 (*1 *2 *2 *3) (-12 (-5 *2 (-1069 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3875 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))) (-3216 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1069 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1069 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1069 *5)))) (-3823 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))) (-2542 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1069 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 *8)) (|:| -2077 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))) (-1323 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 *9)) (|:| -2077 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)))) (-3698 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -1913 (-1069 *9)) (|:| |polval| (-1069 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)) (-5 *4 (-1069 *8)))) (-2360 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-3538 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))))
+(-10 -7 (-15 -2759 ((-388 |#4|) |#4|)) (-15 -2759 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3538 ((-388 |#4|) |#4|)) (-15 -2556 ((-517) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -2360 ((-388 |#4|) |#4| |#2|)) (-15 -3698 ((-2 (|:| -1913 (-1069 |#4|)) (|:| |polval| (-1069 |#3|))) (-1069 |#4|) (-1069 |#3|) (-517))) (-15 -1323 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 |#4|)) (|:| -2077 (-517)))))) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -2542 ((-2 (|:| |upol| (-1069 |#3|)) (|:| |Lval| (-583 |#3|)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517))))) (|:| |ctpol| |#3|)) (-1069 |#4|) (-583 |#2|) (-583 (-583 |#3|)))) (-15 -1359 (|#4| (-517) (-388 |#4|))) (-15 -3823 ((-107) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))) (-583 (-2 (|:| -3755 (-1069 |#3|)) (|:| -2077 (-517)))))) (-15 -3216 ((-3 (-583 (-1069 |#4|)) "failed") (-1069 |#4|) (-1069 |#3|) (-1069 |#3|) |#4| (-583 |#2|) (-583 (-703)) (-583 |#3|))) (-15 -3875 ((-583 (-703)) (-1069 |#4|) (-583 |#2|) (-703))) (-15 -4009 ((-1069 |#3|) (-1069 |#3|) (-517))))
+((-3730 (($ $ (-843)) 12)))
+(((-676 |#1| |#2|) (-10 -8 (-15 -3730 (|#1| |#1| (-843)))) (-677 |#2|) (-156)) (T -676))
+NIL
+(-10 -8 (-15 -3730 (|#1| |#1| (-843))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3380 (($ $ (-843)) 28)) (-3730 (($ $ (-843)) 33)) (-2572 (($ $ (-843)) 29)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3394 (($ $ $) 25)) (-2256 (((-787) $) 11)) (-3917 (($ $ $ $) 26)) (-1956 (($ $ $) 24)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-677 |#1|) (-1184) (-156)) (T -677))
+((-3730 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
+(-13 (-694) (-650 |t#1|) (-10 -8 (-15 -3730 ($ $ (-843)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-653) . T) ((-694) . T) ((-967 |#1|) . T) ((-1003) . T))
+((-2831 (((-950) (-623 (-199)) (-517) (-107) (-517)) 24)) (-2821 (((-950) (-623 (-199)) (-517) (-107) (-517)) 23)))
+(((-678) (-10 -7 (-15 -2821 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -2831 ((-950) (-623 (-199)) (-517) (-107) (-517))))) (T -678))
+((-2831 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))) (-2821 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
+(-10 -7 (-15 -2821 ((-950) (-623 (-199)) (-517) (-107) (-517))) (-15 -2831 ((-950) (-623 (-199)) (-517) (-107) (-517))))
+((-2860 (((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) 43)) (-2851 (((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) 39)) (-2841 (((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 32)))
+(((-679) (-10 -7 (-15 -2841 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -2851 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2860 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))) (T -679))
+((-2860 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-2851 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))) (-2841 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-679)))))
+(-10 -7 (-15 -2841 ((-950) (-199) (-199) (-199) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -2851 ((-950) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN))))) (-15 -2860 ((-950) (-517) (-517) (-517) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN))))))
+((-2988 (((-950) (-517) (-517) (-623 (-199)) (-517)) 33)) (-2977 (((-950) (-517) (-517) (-623 (-199)) (-517)) 32)) (-2968 (((-950) (-517) (-623 (-199)) (-517)) 31)) (-2957 (((-950) (-517) (-623 (-199)) (-517)) 30)) (-2947 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-2937 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-2924 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-2911 (((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-2900 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-2890 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-2878 (((-950) (-517) (-623 (-199)) (-517)) 21)) (-2868 (((-950) (-517) (-623 (-199)) (-517)) 20)))
+(((-680) (-10 -7 (-15 -2868 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2878 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2890 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2900 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2911 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2924 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2937 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2947 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2957 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2968 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2977 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2988 ((-950) (-517) (-517) (-623 (-199)) (-517))))) (T -680))
+((-2988 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2977 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2968 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2957 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2947 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2937 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2924 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2911 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2900 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2890 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2878 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))) (-2868 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(-10 -7 (-15 -2868 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2878 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2890 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2900 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2911 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2924 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2937 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2947 ((-950) (-517) (-517) (-1056) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2957 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2968 ((-950) (-517) (-623 (-199)) (-517))) (-15 -2977 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -2988 ((-950) (-517) (-517) (-623 (-199)) (-517))))
+((-1263 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 52)) (-1253 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-517)) 51)) (-1239 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3084 (((-950) (-199) (-199) (-517) (-517) (-517) (-517)) 46)) (-3075 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 45)) (-3064 (((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 44)) (-3054 (((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 43)) (-3043 (((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) 42)) (-3032 (((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 38)) (-3021 (((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 37)) (-3011 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 33)) (-3000 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) 32)))
+(((-681) (-10 -7 (-15 -3000 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3011 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3021 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3032 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3043 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3054 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3064 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3075 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3084 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -1239 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1253 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1263 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))) (T -681))
+((-1263 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-1253 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-1239 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3084 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3075 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3064 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3054 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3043 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3032 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3021 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681)))) (-3011 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))) (-3000 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(-10 -7 (-15 -3000 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3011 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3021 ((-950) (-199) (-199) (-517) (-623 (-199)) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3032 ((-950) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696))))) (-15 -3043 ((-950) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3054 ((-950) (-199) (-199) (-199) (-199) (-517) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3064 ((-950) (-199) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3075 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G))))) (-15 -3084 ((-950) (-199) (-199) (-517) (-517) (-517) (-517))) (-15 -1239 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))) (-15 -1253 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-517))) (-15 -1263 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-199) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN))))))
+((-1348 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-1336 (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358)) 69) (((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) 68)) (-1326 (((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) 57)) (-1310 (((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 50)) (-1303 (((-950) (-199) (-517) (-517) (-1056) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 49)) (-1294 (((-950) (-199) (-517) (-517) (-199) (-1056) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 45)) (-1283 (((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) 42)) (-1269 (((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-682) (-10 -7 (-15 -1269 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1283 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1294 ((-950) (-199) (-517) (-517) (-199) (-1056) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1303 ((-950) (-199) (-517) (-517) (-1056) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1310 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1326 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1348 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -682))
+((-1348 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1336 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1336 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1326 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1310 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-950)) (-5 *1 (-682)))) (-1303 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1294 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1283 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))) (-1269 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(-10 -7 (-15 -1269 ((-950) (-199) (-517) (-517) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1283 ((-950) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1294 ((-950) (-199) (-517) (-517) (-199) (-1056) (-199) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1303 ((-950) (-199) (-517) (-517) (-1056) (-517) (-199) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT))))) (-15 -1310 ((-950) (-623 (-199)) (-623 (-199)) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN))))) (-15 -1326 ((-950) (-199) (-199) (-517) (-199) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))))) (-15 -1336 ((-950) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL))) (-358) (-358))) (-15 -1348 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-1386 (((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517)) 45)) (-1375 (((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1056) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) 41)) (-1360 (((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 23)))
+(((-683) (-10 -7 (-15 -1360 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1375 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1056) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1386 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))) (T -683))
+((-1386 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))) (-1375 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683)))) (-1360 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
+(-10 -7 (-15 -1360 ((-950) (-517) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1375 ((-950) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-1056) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY))))) (-15 -1386 ((-950) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-611 (-199)) (-517))))
+((-3338 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517)) 35)) (-1481 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517)) 34)) (-1471 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517)) 33)) (-1466 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 29)) (-1453 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-1443 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517)) 27)) (-1432 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 23)) (-1421 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517)) 22)) (-1406 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 21)) (-1393 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 20)))
+(((-684) (-10 -7 (-15 -1393 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1406 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1421 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1432 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1443 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1453 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1466 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1471 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1481 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3338 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))) (T -684))
+((-3338 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1481 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1471 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1466 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1453 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1443 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))) (-1432 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1421 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1406 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))) (-1393 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(-10 -7 (-15 -1393 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1406 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1421 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1432 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -1443 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1453 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1466 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1471 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-623 (-199)) (-199) (-199) (-517))) (-15 -1481 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-199) (-199) (-517))) (-15 -3338 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-623 (-199)) (-199) (-199) (-517))))
+((-1684 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 45)) (-1673 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517)) 44)) (-1661 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517)) 43)) (-1648 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 42)) (-1635 (((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517)) 41)) (-1625 (((-950) (-1056) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 40)) (-1612 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517)) 39)) (-1600 (((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517))) 38)) (-1589 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-1578 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517)) 34)) (-1566 (((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517)) 33)) (-1554 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 32)) (-1541 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517)) 31)) (-1530 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517)) 30)) (-1518 (((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-1507 (((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517)) 28)) (-1498 (((-950) (-517) (-623 (-199)) (-199) (-517)) 24)) (-1490 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 20)))
+(((-685) (-10 -7 (-15 -1490 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1498 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1507 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1518 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1530 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1541 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1554 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1566 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1578 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1589 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1600 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1612 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1625 ((-950) (-1056) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1635 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1648 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1661 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1673 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1684 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))) (T -685))
+((-1684 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1673 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1661 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1648 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1635 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1625 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1612 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1600 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1589 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1578 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1566 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1554 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))) (-1541 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1530 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1518 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1507 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1498 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))) (-1490 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
+(-10 -7 (-15 -1490 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1498 ((-950) (-517) (-623 (-199)) (-199) (-517))) (-15 -1507 ((-950) (-517) (-517) (-517) (-199) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-517)) (-517) (-517) (-517))) (-15 -1518 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -1530 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517) (-517) (-517))) (-15 -1541 ((-950) (-517) (-199) (-199) (-623 (-199)) (-517) (-517) (-199) (-517))) (-15 -1554 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1566 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517))) (-15 -1578 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517))) (-15 -1589 ((-950) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1600 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)))) (-15 -1612 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517) (-517) (-517) (-199) (-623 (-199)) (-517))) (-15 -1625 ((-950) (-1056) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -1635 ((-950) (-1056) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1648 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1661 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))) (-15 -1673 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-517))) (-15 -1684 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517) (-623 (-199)) (-623 (-199)) (-517) (-517) (-517))))
+((-1771 (((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517)) 63)) (-1760 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1749 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) 58)) (-1738 (((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517)) 51)) (-1727 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1716 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) 46)) (-1706 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) 42)) (-1695 (((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-686) (-10 -7 (-15 -1695 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1706 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1716 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1727 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1738 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1749 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1760 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1771 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))) (T -686))
+((-1771 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1760 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1749 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1738 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-686)))) (-1727 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1716 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1706 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-950)) (-5 *1 (-686)))) (-1695 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
+(-10 -7 (-15 -1695 ((-950) (-517) (-199) (-199) (-517) (-199) (-107) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1706 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1))))) (-15 -1716 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2))))) (-15 -1727 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1))))) (-15 -1738 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-517) (-517) (-623 (-199)) (-517))) (-15 -1749 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-199) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-107) (-107) (-107) (-517) (-517) (-623 (-199)) (-623 (-517)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS))))) (-15 -1760 ((-950) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-517) (-107) (-199) (-517) (-199) (-199) (-107) (-199) (-199) (-199) (-199) (-107) (-517) (-517) (-517) (-517) (-517) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-517) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN))))) (-15 -1771 ((-950) (-517) (-517) (-517) (-199) (-623 (-199)) (-517) (-623 (-199)) (-517))))
+((-3012 (((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 46)) (-3003 (((-950) (-1056) (-1056) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517)) 45)) (-2991 (((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 44)) (-1859 (((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 40)) (-1847 (((-950) (-1056) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517)) 39)) (-1834 (((-950) (-517) (-517) (-517) (-623 (-199)) (-517)) 36)) (-1821 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517)) 35)) (-1809 (((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517)) 34)) (-1795 (((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517)) 33)) (-1782 (((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517)) 32)))
+(((-687) (-10 -7 (-15 -1782 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1795 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1809 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1821 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1834 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1847 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1859 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2991 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3003 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3012 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -687))
+((-3012 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-3003 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-2991 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1859 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1847 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1834 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))) (-1821 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1809 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1795 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-687)))) (-1782 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-687)))))
+(-10 -7 (-15 -1782 ((-950) (-517) (-517) (-517) (-517) (-199) (-107) (-107) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-517))) (-15 -1795 ((-950) (-517) (-517) (-517) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-623 (-517)) (-107) (-199) (-107) (-623 (-517)) (-623 (-199)) (-517))) (-15 -1809 ((-950) (-517) (-517) (-517) (-517) (-583 (-107)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-199) (-199) (-517))) (-15 -1821 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517))) (-15 -1834 ((-950) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -1847 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)) (-517))) (-15 -1859 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -2991 ((-950) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3003 ((-950) (-1056) (-1056) (-517) (-517) (-623 (-153 (-199))) (-517) (-623 (-153 (-199))) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3012 ((-950) (-1056) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
+((-3159 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517)) 64)) (-3152 (((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 60)) (-3142 (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358)) 56) (((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) 55)) (-3134 (((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517)) 37)) (-3124 (((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517)) 33)) (-3114 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517)) 29)) (-3107 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 28)) (-3094 (((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 27)) (-3086 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 26)) (-3076 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517)) 25)) (-3066 (((-950) (-517) (-517) (-623 (-199)) (-517)) 24)) (-3056 (((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 23)) (-3045 (((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517)) 22)) (-3034 (((-950) (-623 (-199)) (-517) (-517) (-517) (-517)) 21)) (-3023 (((-950) (-517) (-517) (-623 (-199)) (-517)) 20)))
+(((-688) (-10 -7 (-15 -3023 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3034 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3045 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3056 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3066 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3076 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3086 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3094 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3107 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3114 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3124 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3134 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3152 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3159 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))) (T -688))
+((-3159 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3152 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3142 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3142 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3134 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3124 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3114 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3107 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3094 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3086 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3076 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3066 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3056 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3045 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))) (-3034 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))) (-3023 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(-10 -7 (-15 -3023 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3034 ((-950) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3045 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3056 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3066 ((-950) (-517) (-517) (-623 (-199)) (-517))) (-15 -3076 ((-950) (-517) (-517) (-517) (-517) (-623 (-199)) (-517))) (-15 -3086 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3094 ((-950) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3107 ((-950) (-517) (-517) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3114 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517) (-517))) (-15 -3124 ((-950) (-517) (-517) (-199) (-199) (-517) (-517) (-623 (-199)) (-517))) (-15 -3134 ((-950) (-517) (-517) (-517) (-199) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))))) (-15 -3142 ((-950) (-517) (-517) (-199) (-517) (-517) (-517) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE))) (-358))) (-15 -3152 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3159 ((-950) (-517) (-517) (-517) (-517) (-517) (-107) (-517) (-107) (-517) (-623 (-153 (-199))) (-623 (-153 (-199))) (-517))))
+((-3255 (((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) 60)) (-3246 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517)) 56)) (-3238 (((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) 55)) (-3230 (((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517)) 36)) (-3221 (((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517)) 35)) (-3211 (((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517)) 31)) (-3200 (((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199))) 30)) (-3193 (((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517)) 26)) (-3184 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 25)) (-3177 (((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517)) 24)) (-3168 (((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517)) 20)))
+(((-689) (-10 -7 (-15 -3168 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3177 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3184 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3193 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3200 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3211 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3221 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3230 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3238 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3246 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3255 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))) (T -689))
+((-3255 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3246 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3238 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3230 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3221 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3211 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3200 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3193 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))) (-3184 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3177 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))) (-3168 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(-10 -7 (-15 -3168 ((-950) (-517) (-623 (-153 (-199))) (-517) (-517) (-517) (-517) (-623 (-153 (-199))) (-517))) (-15 -3177 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3184 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-517))) (-15 -3193 ((-950) (-623 (-199)) (-517) (-623 (-199)) (-517) (-517) (-517))) (-15 -3200 ((-950) (-517) (-623 (-199)) (-517) (-623 (-517)) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)))) (-15 -3211 ((-950) (-517) (-517) (-623 (-199)) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3221 ((-950) (-517) (-517) (-517) (-199) (-517) (-623 (-199)) (-623 (-199)) (-517))) (-15 -3230 ((-950) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-517)) (-623 (-199)) (-623 (-517)) (-623 (-517)) (-623 (-199)) (-623 (-199)) (-623 (-517)) (-517))) (-15 -3238 ((-950) (-517) (-623 (-199)) (-107) (-199) (-517) (-517) (-517) (-517) (-199) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE))))) (-15 -3246 ((-950) (-517) (-623 (-199)) (-517) (-623 (-199)) (-623 (-517)) (-517) (-623 (-199)) (-517) (-517) (-517) (-517))) (-15 -3255 ((-950) (-517) (-517) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-623 (-199)) (-517) (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD))))))
+((-3293 (((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199))) 28)) (-3284 (((-950) (-1056) (-517) (-517) (-623 (-199))) 27)) (-3273 (((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199))) 26)) (-3264 (((-950) (-517) (-517) (-517) (-623 (-199))) 20)))
+(((-690) (-10 -7 (-15 -3264 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3273 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3284 ((-950) (-1056) (-517) (-517) (-623 (-199)))) (-15 -3293 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))) (T -690))
+((-3293 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3284 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))) (-3273 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690)))) (-3264 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
+(-10 -7 (-15 -3264 ((-950) (-517) (-517) (-517) (-623 (-199)))) (-15 -3273 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-623 (-517)) (-517) (-623 (-199)))) (-15 -3284 ((-950) (-1056) (-517) (-517) (-623 (-199)))) (-15 -3293 ((-950) (-1056) (-517) (-517) (-623 (-199)) (-517) (-517) (-623 (-199)))))
+((-1275 (((-950) (-199) (-199) (-199) (-199) (-517)) 62)) (-1265 (((-950) (-199) (-199) (-199) (-517)) 61)) (-1255 (((-950) (-199) (-199) (-199) (-517)) 60)) (-1244 (((-950) (-199) (-199) (-517)) 59)) (-1232 (((-950) (-199) (-517)) 58)) (-1223 (((-950) (-199) (-517)) 57)) (-1214 (((-950) (-199) (-517)) 56)) (-1202 (((-950) (-199) (-517)) 55)) (-1192 (((-950) (-199) (-517)) 54)) (-4158 (((-950) (-199) (-517)) 53)) (-4143 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 52)) (-4131 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 51)) (-4120 (((-950) (-199) (-517)) 50)) (-4109 (((-950) (-199) (-517)) 49)) (-4098 (((-950) (-199) (-517)) 48)) (-3549 (((-950) (-199) (-517)) 47)) (-3540 (((-950) (-517) (-199) (-153 (-199)) (-517) (-1056) (-517)) 46)) (-3530 (((-950) (-1056) (-153 (-199)) (-1056) (-517)) 45)) (-3516 (((-950) (-1056) (-153 (-199)) (-1056) (-517)) 44)) (-3505 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 43)) (-3493 (((-950) (-199) (-153 (-199)) (-517) (-1056) (-517)) 42)) (-3480 (((-950) (-199) (-517)) 39)) (-3467 (((-950) (-199) (-517)) 38)) (-3453 (((-950) (-199) (-517)) 37)) (-3439 (((-950) (-199) (-517)) 36)) (-3426 (((-950) (-199) (-517)) 35)) (-3415 (((-950) (-199) (-517)) 34)) (-3405 (((-950) (-199) (-517)) 33)) (-3396 (((-950) (-199) (-517)) 32)) (-3387 (((-950) (-199) (-517)) 31)) (-3377 (((-950) (-199) (-517)) 30)) (-3368 (((-950) (-199) (-199) (-199) (-517)) 29)) (-3358 (((-950) (-199) (-517)) 28)) (-3345 (((-950) (-199) (-517)) 27)) (-3333 (((-950) (-199) (-517)) 26)) (-3323 (((-950) (-199) (-517)) 25)) (-3314 (((-950) (-199) (-517)) 24)) (-3302 (((-950) (-153 (-199)) (-517)) 20)))
+(((-691) (-10 -7 (-15 -3302 ((-950) (-153 (-199)) (-517))) (-15 -3314 ((-950) (-199) (-517))) (-15 -3323 ((-950) (-199) (-517))) (-15 -3333 ((-950) (-199) (-517))) (-15 -3345 ((-950) (-199) (-517))) (-15 -3358 ((-950) (-199) (-517))) (-15 -3368 ((-950) (-199) (-199) (-199) (-517))) (-15 -3377 ((-950) (-199) (-517))) (-15 -3387 ((-950) (-199) (-517))) (-15 -3396 ((-950) (-199) (-517))) (-15 -3405 ((-950) (-199) (-517))) (-15 -3415 ((-950) (-199) (-517))) (-15 -3426 ((-950) (-199) (-517))) (-15 -3439 ((-950) (-199) (-517))) (-15 -3453 ((-950) (-199) (-517))) (-15 -3467 ((-950) (-199) (-517))) (-15 -3480 ((-950) (-199) (-517))) (-15 -3493 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3505 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3516 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3530 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3540 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3549 ((-950) (-199) (-517))) (-15 -4098 ((-950) (-199) (-517))) (-15 -4109 ((-950) (-199) (-517))) (-15 -4120 ((-950) (-199) (-517))) (-15 -4131 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4143 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4158 ((-950) (-199) (-517))) (-15 -1192 ((-950) (-199) (-517))) (-15 -1202 ((-950) (-199) (-517))) (-15 -1214 ((-950) (-199) (-517))) (-15 -1223 ((-950) (-199) (-517))) (-15 -1232 ((-950) (-199) (-517))) (-15 -1244 ((-950) (-199) (-199) (-517))) (-15 -1255 ((-950) (-199) (-199) (-199) (-517))) (-15 -1265 ((-950) (-199) (-199) (-199) (-517))) (-15 -1275 ((-950) (-199) (-199) (-199) (-199) (-517))))) (T -691))
+((-1275 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1265 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1255 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1244 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1223 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1214 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1202 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-1192 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4143 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4131 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4109 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3540 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1056)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3530 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3516 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3505 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3493 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3439 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3405 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3396 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3387 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3377 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3368 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3345 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3333 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3314 (*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))) (-3302 (*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(-10 -7 (-15 -3302 ((-950) (-153 (-199)) (-517))) (-15 -3314 ((-950) (-199) (-517))) (-15 -3323 ((-950) (-199) (-517))) (-15 -3333 ((-950) (-199) (-517))) (-15 -3345 ((-950) (-199) (-517))) (-15 -3358 ((-950) (-199) (-517))) (-15 -3368 ((-950) (-199) (-199) (-199) (-517))) (-15 -3377 ((-950) (-199) (-517))) (-15 -3387 ((-950) (-199) (-517))) (-15 -3396 ((-950) (-199) (-517))) (-15 -3405 ((-950) (-199) (-517))) (-15 -3415 ((-950) (-199) (-517))) (-15 -3426 ((-950) (-199) (-517))) (-15 -3439 ((-950) (-199) (-517))) (-15 -3453 ((-950) (-199) (-517))) (-15 -3467 ((-950) (-199) (-517))) (-15 -3480 ((-950) (-199) (-517))) (-15 -3493 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3505 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3516 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3530 ((-950) (-1056) (-153 (-199)) (-1056) (-517))) (-15 -3540 ((-950) (-517) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -3549 ((-950) (-199) (-517))) (-15 -4098 ((-950) (-199) (-517))) (-15 -4109 ((-950) (-199) (-517))) (-15 -4120 ((-950) (-199) (-517))) (-15 -4131 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4143 ((-950) (-199) (-153 (-199)) (-517) (-1056) (-517))) (-15 -4158 ((-950) (-199) (-517))) (-15 -1192 ((-950) (-199) (-517))) (-15 -1202 ((-950) (-199) (-517))) (-15 -1214 ((-950) (-199) (-517))) (-15 -1223 ((-950) (-199) (-517))) (-15 -1232 ((-950) (-199) (-517))) (-15 -1244 ((-950) (-199) (-199) (-517))) (-15 -1255 ((-950) (-199) (-199) (-199) (-517))) (-15 -1265 ((-950) (-199) (-199) (-199) (-517))) (-15 -1275 ((-950) (-199) (-199) (-199) (-199) (-517))))
+((-3859 (((-1158)) 18)) (-4128 (((-1056)) 22)) (-1372 (((-1056)) 21)) (-2108 (((-1007) (-1073) (-623 (-517))) 35) (((-1007) (-1073) (-623 (-199))) 31)) (-3570 (((-107)) 16)) (-1494 (((-1056) (-1056)) 25)))
+(((-692) (-10 -7 (-15 -1372 ((-1056))) (-15 -4128 ((-1056))) (-15 -1494 ((-1056) (-1056))) (-15 -2108 ((-1007) (-1073) (-623 (-199)))) (-15 -2108 ((-1007) (-1073) (-623 (-517)))) (-15 -3570 ((-107))) (-15 -3859 ((-1158))))) (T -692))
+((-3859 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-692)))) (-3570 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-2108 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))) (-4128 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))) (-1372 (*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))))
+(-10 -7 (-15 -1372 ((-1056))) (-15 -4128 ((-1056))) (-15 -1494 ((-1056) (-1056))) (-15 -2108 ((-1007) (-1073) (-623 (-199)))) (-15 -2108 ((-1007) (-1073) (-623 (-517)))) (-15 -3570 ((-107))) (-15 -3859 ((-1158))))
+((-3394 (($ $ $) 10)) (-3917 (($ $ $ $) 9)) (-1956 (($ $ $) 12)))
+(((-693 |#1|) (-10 -8 (-15 -1956 (|#1| |#1| |#1|)) (-15 -3394 (|#1| |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1| |#1|))) (-694)) (T -693))
+NIL
+(-10 -8 (-15 -1956 (|#1| |#1| |#1|)) (-15 -3394 (|#1| |#1| |#1|)) (-15 -3917 (|#1| |#1| |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3380 (($ $ (-843)) 28)) (-2572 (($ $ (-843)) 29)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3394 (($ $ $) 25)) (-2256 (((-787) $) 11)) (-3917 (($ $ $ $) 26)) (-1956 (($ $ $) 24)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
+(((-694) (-1184)) (T -694))
+((-3917 (*1 *1 *1 *1 *1) (-4 *1 (-694))) (-3394 (*1 *1 *1 *1) (-4 *1 (-694))) (-1956 (*1 *1 *1 *1) (-4 *1 (-694))))
+(-13 (-21) (-653) (-10 -8 (-15 -3917 ($ $ $ $)) (-15 -3394 ($ $ $)) (-15 -1956 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-1003) . T))
+((-2256 (((-787) $) NIL) (($ (-517)) 10)))
+(((-695 |#1|) (-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-696)) (T -695))
+NIL
+(-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-2158 (((-3 $ "failed") $) 40)) (-3380 (($ $ (-843)) 28) (($ $ (-703)) 35)) (-3621 (((-3 $ "failed") $) 38)) (-3848 (((-107) $) 34)) (-1680 (((-3 $ "failed") $) 39)) (-2572 (($ $ (-843)) 29) (($ $ (-703)) 36)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3394 (($ $ $) 25)) (-2256 (((-787) $) 11) (($ (-517)) 31)) (-2961 (((-703)) 32)) (-3917 (($ $ $ $) 26)) (-1956 (($ $ $) 24)) (-2396 (($) 18 T CONST)) (-2409 (($) 33 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 30) (($ $ (-703)) 37)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 27)))
+(((-696) (-1184)) (T -696))
+((-2961 (*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))))
+(-13 (-694) (-655) (-10 -8 (-15 -2961 ((-703))) (-15 -2256 ($ (-517)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-653) . T) ((-655) . T) ((-694) . T) ((-1003) . T))
+((-2536 (((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|) 27)) (-4153 (((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|) 19)) (-3669 (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1073)) 16) (((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517))))) 15)))
+(((-697 |#1|) (-10 -7 (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1073))) (-15 -4153 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2536 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|))) (-13 (-333) (-777))) (T -697))
+((-2536 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1073)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))))) (-15 -3669 ((-874 (-153 (-377 (-517)))) (-623 (-153 (-377 (-517)))) (-1073))) (-15 -4153 ((-583 (-153 |#1|)) (-623 (-153 (-377 (-517)))) |#1|)) (-15 -2536 ((-583 (-2 (|:| |outval| (-153 |#1|)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 |#1|)))))) (-623 (-153 (-377 (-517)))) |#1|)))
+((-2005 (((-157 (-517)) |#1|) 25)))
+(((-698 |#1|) (-10 -7 (-15 -2005 ((-157 (-517)) |#1|))) (-374)) (T -698))
+((-2005 (*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))))
+(-10 -7 (-15 -2005 ((-157 (-517)) |#1|)))
+((-4102 ((|#1| |#1| |#1|) 24)) (-2985 ((|#1| |#1| |#1|) 23)) (-2218 ((|#1| |#1| |#1|) 31)) (-1423 ((|#1| |#1| |#1|) 27)) (-1971 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2962 (((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|) 22)))
+(((-699 |#1| |#2|) (-10 -7 (-15 -2962 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1|))) (-642 |#2|) (-333)) (T -699))
+((-2218 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1423 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-1971 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-4102 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2985 (*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) (-2962 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))))
+(-10 -7 (-15 -2962 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -2218 (|#1| |#1| |#1|)))
+((-4140 (((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)) 58)) (-2216 (((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) 56)) (-3010 (((-517)) 68)))
+(((-700 |#1| |#2|) (-10 -7 (-15 -3010 ((-517))) (-15 -2216 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -4140 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517)))) (-1130 (-517)) (-379 (-517) |#1|)) (T -700))
+((-4140 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) (-2216 (*1 *2) (-12 (-4 *3 (-1130 (-517))) (-5 *2 (-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) (-3010 (*1 *2) (-12 (-4 *3 (-1130 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))))
+(-10 -7 (-15 -3010 ((-517))) (-15 -2216 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))))) (-15 -4140 ((-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517)))) (-517))))
+((-2750 (((-107) $ $) NIL)) (-3189 (((-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $) 15)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 14) (($ (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 10) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) 12)) (-1547 (((-107) $ $) NIL)))
+(((-701) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))) (T -701))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) $))))
+((-2032 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 14) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073))) 13)) (-1674 (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))) 16) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073))) 15)))
+(((-702 |#1|) (-10 -7 (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|))))) (-509)) (T -702))
+((-1674 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) (-2032 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))))
+(-10 -7 (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -2032 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-874 |#1|)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1640 (($ $ $) 6)) (-4038 (((-3 $ "failed") $ $) 9)) (-1363 (($ $ (-517)) 7)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($ $) NIL)) (-2497 (($ $ $) NIL)) (-3848 (((-107) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1401 (($ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2256 (((-787) $) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-703) $) NIL) (($ (-843) $) NIL) (($ $ $) NIL)))
+(((-703) (-13 (-725) (-659) (-10 -8 (-15 -2497 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -1401 ($ $ $)) (-15 -1306 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2476 ((-3 $ "failed") $ $)) (-15 -1363 ($ $ (-517))) (-15 -3209 ($ $)) (-6 (-4182 "*"))))) (T -703))
+((-2497 (*1 *1 *1 *1) (-5 *1 (-703))) (-2518 (*1 *1 *1 *1) (-5 *1 (-703))) (-1401 (*1 *1 *1 *1) (-5 *1 (-703))) (-1306 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 (-703)) (|:| -3060 (-703)))) (-5 *1 (-703)))) (-2476 (*1 *1 *1 *1) (|partial| -5 *1 (-703))) (-1363 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))) (-3209 (*1 *1 *1) (-5 *1 (-703))))
+(-13 (-725) (-659) (-10 -8 (-15 -2497 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -1401 ($ $ $)) (-15 -1306 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2476 ((-3 $ "failed") $ $)) (-15 -1363 ($ $ (-517))) (-15 -3209 ($ $)) (-6 (-4182 "*"))))
+((-1674 (((-3 |#2| "failed") |#2| |#2| (-109) (-1073)) 35)))
+(((-704 |#1| |#2|) (-10 -7 (-15 -1674 ((-3 |#2| "failed") |#2| |#2| (-109) (-1073)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880))) (T -704))
+((-1674 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1094) (-880))))))
+(-10 -7 (-15 -1674 ((-3 |#2| "failed") |#2| |#2| (-109) (-1073))))
+((-2256 (((-706) |#1|) 8)))
+(((-705 |#1|) (-10 -7 (-15 -2256 ((-706) |#1|))) (-1108)) (T -705))
+((-2256 (*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1108)))))
+(-10 -7 (-15 -2256 ((-706) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 7)) (-1547 (((-107) $ $) 9)))
+(((-706) (-1003)) (T -706))
+NIL
+(-1003)
+((-1506 ((|#2| |#4|) 35)))
+(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1506 (|#2| |#4|))) (-421) (-1130 |#1|) (-657 |#1| |#2|) (-1130 |#3|)) (T -707))
+((-1506 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1130 *5)))))
+(-10 -7 (-15 -1506 (|#2| |#4|)))
+((-3621 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-4032 (((-1158) (-1056) (-1056) |#4| |#5|) 33)) (-3925 ((|#4| |#4| |#5|) 72)) (-2485 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|) 76)) (-2621 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 15)))
+(((-708 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3621 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3925 (|#4| |#4| |#5|)) (-15 -2485 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -4032 ((-1158) (-1056) (-1056) |#4| |#5|)) (-15 -2621 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -708))
+((-2621 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-4032 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1056)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1158)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4)))) (-2485 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3925 (*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2)))) (-3621 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3621 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3925 (|#4| |#4| |#5|)) (-15 -2485 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -4032 ((-1158) (-1056) (-1056) |#4| |#5|)) (-15 -2621 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)))
+((-1772 (((-3 (-1069 (-1069 |#1|)) "failed") |#4|) 43)) (-2786 (((-583 |#4|) |#4|) 15)) (-4103 ((|#4| |#4|) 11)))
+(((-709 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2786 ((-583 |#4|) |#4|)) (-15 -1772 ((-3 (-1069 (-1069 |#1|)) "failed") |#4|)) (-15 -4103 (|#4| |#4|))) (-319) (-299 |#1|) (-1130 |#2|) (-1130 |#3|) (-843)) (T -709))
+((-4103 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1130 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1130 *5)) (-14 *6 (-843)))) (-1772 (*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))) (-2786 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))))
+(-10 -7 (-15 -2786 ((-583 |#4|) |#4|)) (-15 -1772 ((-3 (-1069 (-1069 |#1|)) "failed") |#4|)) (-15 -4103 (|#4| |#4|)))
+((-4041 (((-2 (|:| |deter| (-583 (-1069 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1069 |#5|) (-583 |#1|) (-583 |#5|)) 51)) (-3944 (((-583 (-703)) |#1|) 12)))
+(((-710 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4041 ((-2 (|:| |deter| (-583 (-1069 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1069 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3944 ((-583 (-703)) |#1|))) (-1130 |#4|) (-725) (-779) (-278) (-871 |#4| |#2| |#3|)) (T -710))
+((-3944 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *6)) (-4 *7 (-871 *6 *4 *5)))) (-4041 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1130 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1069 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1069 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
+(-10 -7 (-15 -4041 ((-2 (|:| |deter| (-583 (-1069 |#5|))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-583 |#1|)) (|:| |nlead| (-583 |#5|))) (-1069 |#5|) (-583 |#1|) (-583 |#5|))) (-15 -3944 ((-583 (-703)) |#1|)))
+((-2155 (((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|) 27)) (-3609 (((-583 |#1|) (-623 (-377 (-517))) |#1|) 19)) (-3669 (((-874 (-377 (-517))) (-623 (-377 (-517))) (-1073)) 16) (((-874 (-377 (-517))) (-623 (-377 (-517)))) 15)))
+(((-711 |#1|) (-10 -7 (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1073))) (-15 -3609 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2155 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|))) (-13 (-333) (-777))) (T -711))
+((-2155 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1073)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
+(-10 -7 (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))))) (-15 -3669 ((-874 (-377 (-517))) (-623 (-377 (-517))) (-1073))) (-15 -3609 ((-583 |#1|) (-623 (-377 (-517))) |#1|)) (-15 -2155 ((-583 (-2 (|:| |outval| |#1|) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 |#1|))))) (-623 (-377 (-517))) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 34)) (-1364 (((-583 |#2|) $) NIL)) (-2352 (((-1069 $) $ |#2|) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 |#2|)) NIL)) (-2779 (($ $) 28)) (-2421 (((-107) $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) 92 (|has| |#1| (-509)))) (-2788 (((-583 $) $ $) 105 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))))) (((-3 $ "failed") (-874 (-517))) NIL (-3807 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073)))))) (((-3 $ "failed") (-874 |#1|)) NIL (-3807 (-12 (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-909 (-517))))))) (((-3 (-1026 |#1| |#2|) "failed") $) 18)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))))) (($ (-874 (-517))) NIL (-3807 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073)))))) (($ (-874 |#1|)) NIL (-3807 (-12 (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517))))) (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-502)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-909 (-517))))))) (((-1026 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-156))) (($ $ $) 103 (|has| |#1| (-509)))) (-1212 (($ $) NIL) (($ $ |#2|) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3283 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1869 (((-107) $) NIL)) (-1874 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 69)) (-4083 (($ $) 118 (|has| |#1| (-421)))) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-2557 (($ $) NIL (|has| |#1| (-509)))) (-1454 (($ $) NIL (|has| |#1| (-509)))) (-1440 (($ $ $) 64) (($ $ $ |#2|) NIL)) (-2489 (($ $ $) 67) (($ $ $ |#2|) NIL)) (-1436 (($ $ |#1| (-489 |#2|) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1497 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3239 (($ $ $ $ $) 89 (|has| |#1| (-509)))) (-1976 ((|#2| $) 19)) (-1350 (($ (-1069 |#1|) |#2|) NIL) (($ (-1069 $) |#2|) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 36) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1439 (($ $ $) 60)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#2|) NIL)) (-4156 (((-107) $) NIL)) (-2349 (((-489 |#2|) $) NIL) (((-703) $ |#2|) NIL) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-2401 (((-703) $) 20)) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1409 (((-3 |#2| "failed") $) NIL)) (-3074 (($ $) NIL (|has| |#1| (-421)))) (-1923 (($ $) NIL (|has| |#1| (-421)))) (-1726 (((-583 $) $) NIL)) (-2070 (($ $) 37)) (-3622 (($ $) NIL (|has| |#1| (-421)))) (-2235 (((-583 $) $) 41)) (-3839 (($ $) 39)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL) (($ $ |#2|) 45)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $) 81)) (-2669 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 66) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |#2|) NIL)) (-2915 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $) NIL) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |#2|) NIL)) (-3692 (($ $ $) 71) (($ $ $ |#2|) NIL)) (-2928 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3985 (((-1056) $) NIL)) (-1855 (($ $ $) 107 (|has| |#1| (-509)))) (-1628 (((-583 $) $) 30)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-703))) "failed") $) NIL)) (-3852 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3522 (($ $ $) NIL)) (-2836 (($ $) 21)) (-3411 (((-107) $ $) NIL)) (-1959 (((-107) $ $) NIL) (((-107) $ (-583 $)) NIL)) (-3183 (($ $ $) NIL)) (-3059 (($ $) 23)) (-3206 (((-1021) $) NIL)) (-3704 (((-2 (|:| -1401 $) (|:| |coef2| $)) $ $) 98 (|has| |#1| (-509)))) (-3224 (((-2 (|:| -1401 $) (|:| |coef1| $)) $ $) 95 (|has| |#1| (-509)))) (-4127 (((-107) $) 52)) (-4141 ((|#1| $) 55)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 ((|#1| |#1| $) 115 (|has| |#1| (-421))) (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-1478 (((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 101 (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 83 (|has| |#1| (-509)))) (-3716 (($ $ |#1|) 111 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-3068 (($ $ |#1|) 110 (|has| |#1| (-509))) (($ $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-583 |#2|) (-583 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-583 |#2|) (-583 $)) NIL)) (-3010 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-3127 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3688 (((-489 |#2|) $) NIL) (((-703) $ |#2|) 43) (((-583 (-703)) $ (-583 |#2|)) NIL)) (-2451 (($ $) NIL)) (-3443 (($ $) 33)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493))))) (($ (-874 (-377 (-517)))) NIL (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073))))) (($ (-874 (-517))) NIL (-3807 (-12 (|has| |#1| (-37 (-517))) (|has| |#2| (-558 (-1073))) (-2630 (|has| |#1| (-37 (-377 (-517)))))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#2| (-558 (-1073)))))) (($ (-874 |#1|)) NIL (|has| |#2| (-558 (-1073)))) (((-1056) $) NIL (-12 (|has| |#1| (-952 (-517))) (|has| |#2| (-558 (-1073))))) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1073))))) (-3266 ((|#1| $) 114 (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-874 |#1|) $) NIL (|has| |#2| (-558 (-1073)))) (((-1026 |#1| |#2|) $) 15) (($ (-1026 |#1| |#2|)) 16) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) 44) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 13 T CONST)) (-2791 (((-3 (-107) "failed") $ $) NIL)) (-2409 (($) 35 T CONST)) (-3872 (($ $ $ $ (-703)) 87 (|has| |#1| (-509)))) (-3051 (($ $ $ (-703)) 86 (|has| |#1| (-509)))) (-2731 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 54)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 63)) (-1642 (($ $ $) 73)) (** (($ $ (-843)) NIL) (($ $ (-703)) 61)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-712 |#1| |#2|) (-13 (-975 |#1| (-489 |#2|) |#2|) (-557 (-1026 |#1| |#2|)) (-952 (-1026 |#1| |#2|))) (-961) (-779)) (T -712))
+NIL
+(-13 (-975 |#1| (-489 |#2|) |#2|) (-557 (-1026 |#1| |#2|)) (-952 (-1026 |#1| |#2|)))
+((-1893 (((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)) 13)))
+(((-713 |#1| |#2|) (-10 -7 (-15 -1893 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|)))) (-961) (-961)) (T -713))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))))
+(-10 -7 (-15 -1893 ((-714 |#2|) (-1 |#2| |#1|) (-714 |#1|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 12)) (-2490 (((-1153 |#1|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#1|)) NIL)) (-2352 (((-1069 $) $ (-989)) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2674 (((-583 $) $ $) 39 (|has| |#1| (-509)))) (-3081 (($ $ $) 35 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2241 (($ $ (-703)) NIL)) (-2882 (($ $ (-703)) NIL)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL) (((-3 (-1069 |#1|) "failed") $) 10)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL) (((-1069 |#1|) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 43 (|has| |#1| (-156)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-2704 (($ $ $) NIL)) (-4080 (($ $ $) 71 (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) 70 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-703) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) NIL) (($ (-1069 $) (-989)) NIL)) (-3430 (($ $ (-703)) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1439 (($ $ $) 20)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (((-1069 |#1|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1349 (-703))) $ $) 26)) (-2641 (($ $ $) 29)) (-3037 (($ $ $) 32)) (-2669 (((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 31)) (-3985 (((-1056) $) NIL)) (-1855 (($ $ $) 41 (|has| |#1| (-509)))) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-3704 (((-2 (|:| -1401 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-509)))) (-3224 (((-2 (|:| -1401 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-509)))) (-3087 (((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-509)))) (-2610 (((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-509)))) (-4127 (((-107) $) 13)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-1953 (($ $ (-703) |#1| $) 19)) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-1478 (((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-509)))) (-1332 (((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-509)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3688 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-989)) NIL) (((-1069 |#1|) $) 7) (($ (-1069 |#1|)) 8) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 24 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) 28) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-714 |#1|) (-13 (-1130 |#1|) (-557 (-1069 |#1|)) (-952 (-1069 |#1|)) (-10 -8 (-15 -1953 ($ $ (-703) |#1| $)) (-15 -1439 ($ $ $)) (-15 -3634 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1349 (-703))) $ $)) (-15 -2641 ($ $ $)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -3037 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2674 ((-583 $) $ $)) (-15 -1855 ($ $ $)) (-15 -1478 ((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3224 ((-2 (|:| -1401 $) (|:| |coef1| $)) $ $)) (-15 -3704 ((-2 (|:| -1401 $) (|:| |coef2| $)) $ $)) (-15 -1332 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2610 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -3087 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |noBranch|))) (-961)) (T -714))
+((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-1439 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-3634 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1349 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-2641 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-2669 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1931 *3) (|:| |gap| (-703)) (|:| -3425 (-714 *3)) (|:| -3060 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) (-3037 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) (-2674 (*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-1855 (*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) (-1478 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3224 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3704 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-1332 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-2610 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) (-3087 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(-13 (-1130 |#1|) (-557 (-1069 |#1|)) (-952 (-1069 |#1|)) (-10 -8 (-15 -1953 ($ $ (-703) |#1| $)) (-15 -1439 ($ $ $)) (-15 -3634 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1349 (-703))) $ $)) (-15 -2641 ($ $ $)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -3037 ($ $ $)) (IF (|has| |#1| (-509)) (PROGN (-15 -2674 ((-583 $) $ $)) (-15 -1855 ($ $ $)) (-15 -1478 ((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3224 ((-2 (|:| -1401 $) (|:| |coef1| $)) $ $)) (-15 -3704 ((-2 (|:| -1401 $) (|:| |coef2| $)) $ $)) (-15 -1332 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2610 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -3087 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |noBranch|)))
+((-2151 ((|#1| (-703) |#1|) 32 (|has| |#1| (-37 (-377 (-517)))))) (-2765 ((|#1| (-703) |#1|) 22)) (-2969 ((|#1| (-703) |#1|) 34 (|has| |#1| (-37 (-377 (-517)))))))
+(((-715 |#1|) (-10 -7 (-15 -2765 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2969 (|#1| (-703) |#1|)) (-15 -2151 (|#1| (-703) |#1|))) |noBranch|)) (-156)) (T -715))
+((-2151 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2969 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-2765 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))))
+(-10 -7 (-15 -2765 (|#1| (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -2969 (|#1| (-703) |#1|)) (-15 -2151 (|#1| (-703) |#1|))) |noBranch|))
+((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
+(((-716 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -716))
+NIL
+(-13 (-980 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T))
+((-3806 (((-3 (-349) "failed") (-286 |#1|) (-843)) 62 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-286 |#1|)) 54 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-349) "failed") (-377 (-874 |#1|)) (-843)) 41 (|has| |#1| (-509))) (((-3 (-349) "failed") (-377 (-874 |#1|))) 40 (|has| |#1| (-509))) (((-3 (-349) "failed") (-874 |#1|) (-843)) 31 (|has| |#1| (-961))) (((-3 (-349) "failed") (-874 |#1|)) 30 (|has| |#1| (-961)))) (-3690 (((-349) (-286 |#1|) (-843)) 99 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-286 |#1|)) 94 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-349) (-377 (-874 |#1|)) (-843)) 91 (|has| |#1| (-509))) (((-349) (-377 (-874 |#1|))) 90 (|has| |#1| (-509))) (((-349) (-874 |#1|) (-843)) 86 (|has| |#1| (-961))) (((-349) (-874 |#1|)) 85 (|has| |#1| (-961))) (((-349) |#1| (-843)) 76) (((-349) |#1|) 22)) (-4116 (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)) 71 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 (-153 |#1|))) 70 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|) (-843)) 63 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-286 |#1|)) 61 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843)) 46 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|)))) 45 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843)) 39 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-377 (-874 |#1|))) 38 (|has| |#1| (-509))) (((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)) 28 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 |#1|)) 26 (|has| |#1| (-961))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)) 17 (|has| |#1| (-156))) (((-3 (-153 (-349)) "failed") (-874 (-153 |#1|))) 14 (|has| |#1| (-156)))) (-2319 (((-153 (-349)) (-286 (-153 |#1|)) (-843)) 102 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 (-153 |#1|))) 101 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|) (-843)) 100 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-286 |#1|)) 98 (-12 (|has| |#1| (-509)) (|has| |#1| (-779)))) (((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843)) 93 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 (-153 |#1|)))) 92 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|)) (-843)) 89 (|has| |#1| (-509))) (((-153 (-349)) (-377 (-874 |#1|))) 88 (|has| |#1| (-509))) (((-153 (-349)) (-874 |#1|) (-843)) 84 (|has| |#1| (-961))) (((-153 (-349)) (-874 |#1|)) 83 (|has| |#1| (-961))) (((-153 (-349)) (-874 (-153 |#1|)) (-843)) 78 (|has| |#1| (-156))) (((-153 (-349)) (-874 (-153 |#1|))) 77 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|) (-843)) 80 (|has| |#1| (-156))) (((-153 (-349)) (-153 |#1|)) 79 (|has| |#1| (-156))) (((-153 (-349)) |#1| (-843)) 27) (((-153 (-349)) |#1|) 25)))
+(((-717 |#1|) (-10 -7 (-15 -3690 ((-349) |#1|)) (-15 -3690 ((-349) |#1| (-843))) (-15 -2319 ((-153 (-349)) |#1|)) (-15 -2319 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2319 ((-153 (-349)) (-153 |#1|))) (-15 -2319 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3690 ((-349) (-874 |#1|))) (-15 -3690 ((-349) (-874 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 |#1|))) (-15 -2319 ((-153 (-349)) (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3690 ((-349) (-377 (-874 |#1|)))) (-15 -3690 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3690 ((-349) (-286 |#1|))) (-15 -3690 ((-349) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 |#1|))) (-15 -2319 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-874 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|)) (-558 (-349))) (T -717))
+((-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3806 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3806 (*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3806 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3806 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3806 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3806 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-4116 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-4116 (*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-3690 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) (-3690 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) (-2319 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-2319 (*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) (-3690 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) (-3690 (*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))))
+(-10 -7 (-15 -3690 ((-349) |#1|)) (-15 -3690 ((-349) |#1| (-843))) (-15 -2319 ((-153 (-349)) |#1|)) (-15 -2319 ((-153 (-349)) |#1| (-843))) (IF (|has| |#1| (-156)) (PROGN (-15 -2319 ((-153 (-349)) (-153 |#1|))) (-15 -2319 ((-153 (-349)) (-153 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3690 ((-349) (-874 |#1|))) (-15 -3690 ((-349) (-874 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-874 |#1|))) (-15 -2319 ((-153 (-349)) (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3690 ((-349) (-377 (-874 |#1|)))) (-15 -3690 ((-349) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)))) (-15 -2319 ((-153 (-349)) (-377 (-874 |#1|)) (-843))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))))) (-15 -2319 ((-153 (-349)) (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3690 ((-349) (-286 |#1|))) (-15 -3690 ((-349) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 |#1|))) (-15 -2319 ((-153 (-349)) (-286 |#1|) (-843))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)))) (-15 -2319 ((-153 (-349)) (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 (-153 |#1|)) (-843)))) |noBranch|) (IF (|has| |#1| (-961)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-874 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-874 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-874 |#1|) (-843)))) |noBranch|) (IF (|has| |#1| (-509)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)))) (-15 -3806 ((-3 (-349) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 |#1|)) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-377 (-874 (-153 |#1|))) (-843))) (IF (|has| |#1| (-779)) (PROGN (-15 -3806 ((-3 (-349) "failed") (-286 |#1|))) (-15 -3806 ((-3 (-349) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 |#1|) (-843))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)))) (-15 -4116 ((-3 (-153 (-349)) "failed") (-286 (-153 |#1|)) (-843)))) |noBranch|)) |noBranch|))
+((-2084 (((-843) (-1056)) 63)) (-1885 (((-3 (-349) "failed") (-1056)) 32)) (-3321 (((-349) (-1056)) 30)) (-1712 (((-843) (-1056)) 53)) (-3835 (((-1056) (-843)) 54)) (-1774 (((-1056) (-843)) 52)))
+(((-718) (-10 -7 (-15 -1774 ((-1056) (-843))) (-15 -1712 ((-843) (-1056))) (-15 -3835 ((-1056) (-843))) (-15 -2084 ((-843) (-1056))) (-15 -3321 ((-349) (-1056))) (-15 -1885 ((-3 (-349) "failed") (-1056))))) (T -718))
+((-1885 (*1 *2 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))) (-3835 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718)))) (-1712 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718)))))
+(-10 -7 (-15 -1774 ((-1056) (-843))) (-15 -1712 ((-843) (-1056))) (-15 -3835 ((-1056) (-843))) (-15 -2084 ((-843) (-1056))) (-15 -3321 ((-349) (-1056))) (-15 -1885 ((-3 (-349) "failed") (-1056))))
+((-2750 (((-107) $ $) 7)) (-2118 (((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 15) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)) 13)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 16) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
+(((-719) (-1184)) (T -719))
+((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) (-2118 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) (-2118 (*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2118 ((-950) (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2118 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) (-950)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2099 (((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349))) 44) (((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 43)) (-2579 (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 50)) (-3623 (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 41)) (-2574 (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349))) 52) (((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349))) 51)))
+(((-720) (-10 -7 (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -3623 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -2579 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))))) (T -720))
+((-2579 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2099 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2099 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-3623 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2574 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) (-2574 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
+(-10 -7 (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2574 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -3623 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))) (-15 -2099 ((-1158) (-1153 (-349)) (-517) (-349) (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349))) (-349) (-1153 (-349)) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)) (-1153 (-349)))) (-15 -2579 ((-1158) (-1153 (-349)) (-517) (-349) (-349) (-517) (-1 (-1158) (-1153 (-349)) (-1153 (-349)) (-349)))))
+((-2740 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 53)) (-2688 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 30)) (-2091 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 52)) (-2314 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 28)) (-1904 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 51)) (-1322 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517)) 18)) (-3946 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 31)) (-1984 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 29)) (-3203 (((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517)) 27)))
+(((-721) (-10 -7 (-15 -3203 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1984 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3946 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1322 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2314 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2688 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1904 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2091 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2740 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))) (T -721))
+((-2740 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2091 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1904 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2688 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-2314 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1322 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3946 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-1984 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))) (-3203 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(-10 -7 (-15 -3203 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1984 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -3946 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517) (-517))) (-15 -1322 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2314 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2688 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -1904 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2091 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))) (-15 -2740 ((-2 (|:| -3199 (-349)) (|:| -2101 (-349)) (|:| |totalpts| (-517)) (|:| |success| (-107))) (-1 (-349) (-349)) (-349) (-349) (-349) (-349) (-517) (-517))))
+((-2018 (((-1104 |#1|) |#1| (-199) (-517)) 45)))
+(((-722 |#1|) (-10 -7 (-15 -2018 ((-1104 |#1|) |#1| (-199) (-517)))) (-891)) (T -722))
+((-2018 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1104 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891)))))
+(-10 -7 (-15 -2018 ((-1104 |#1|) |#1| (-199) (-517))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1654 (($ $ $) 28) (($ $) 27)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29)))
+(((-723) (-1184)) (T -723))
NIL
(-13 (-727) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-777) . T) ((-1001) . T))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21)))
-(((-722) (-1180)) (T -722))
-NIL
-(-13 (-724) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-555 (-786)) . T) ((-724) . T) ((-777) . T) ((-1001) . T))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-3405 (($ $ $) 27)) (-3177 (((-3 $ "failed") $ $) 26)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21)))
-(((-723) (-1180)) (T -723))
-((-3405 (*1 *1 *1 *1) (-4 *1 (-723))))
-(-13 (-727) (-10 -8 (-15 -3405 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-777) . T) ((-1001) . T))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21)))
-(((-724) (-1180)) (T -724))
-NIL
-(-13 (-777) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-555 (-786)) . T) ((-777) . T) ((-1001) . T))
-((-3292 (((-107) $) 41)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#2| $) 42)) (-2870 (((-3 (-375 (-501)) "failed") $) 78)) (-1696 (((-107) $) 72)) (-3518 (((-375 (-501)) $) 76)) (-2626 ((|#2| $) 26)) (-1212 (($ (-1 |#2| |#2|) $) 23)) (-3833 (($ $) 61)) (-1248 (((-490) $) 67)) (-3097 (($ $) 21)) (-3691 (((-786) $) 56) (($ (-501)) 39) (($ |#2|) 37) (($ (-375 (-501))) NIL)) (-3965 (((-701)) 10)) (-1720 ((|#2| $) 71)) (-3751 (((-107) $ $) 29)) (-3762 (((-107) $ $) 69)) (-3797 (($ $) 31) (($ $ $) NIL)) (-3790 (($ $ $) 30)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-725 |#1| |#2|) (-10 -8 (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-726 |#2|) (-156)) (T -725))
-((-3965 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-725 *3 *4)) (-4 *3 (-726 *4)))))
-(-10 -8 (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-3796 (((-701)) 53 (|has| |#1| (-336)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 94 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 92 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 90)) (-3490 (((-501) $) 95 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 93 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 89)) (-2174 (((-3 $ "failed") $) 34)) (-3749 ((|#1| $) 79)) (-2870 (((-3 (-375 (-501)) "failed") $) 66 (|has| |#1| (-500)))) (-1696 (((-107) $) 68 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 67 (|has| |#1| (-500)))) (-2890 (($) 56 (|has| |#1| (-336)))) (-1355 (((-107) $) 31)) (-2069 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2626 ((|#1| $) 71)) (-4111 (($ $ $) 62 (|has| |#1| (-777)))) (-1323 (($ $ $) 61 (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) 81)) (-3104 (((-839) $) 55 (|has| |#1| (-336)))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 65 (|has| |#1| (-331)))) (-3506 (($ (-839)) 54 (|has| |#1| (-336)))) (-1256 ((|#1| $) 76)) (-3488 ((|#1| $) 77)) (-1870 ((|#1| $) 78)) (-3596 ((|#1| $) 72)) (-2531 ((|#1| $) 73)) (-2757 ((|#1| $) 74)) (-2155 ((|#1| $) 75)) (-3708 (((-1018) $) 10)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 87 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 85 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 84 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 83 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) 82 (|has| |#1| (-476 (-1070) |#1|)))) (-2007 (($ $ |#1|) 88 (|has| |#1| (-256 |#1| |#1|)))) (-1248 (((-490) $) 63 (|has| |#1| (-556 (-490))))) (-3097 (($ $) 80)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37) (($ (-375 (-501))) 91 (|has| |#1| (-950 (-375 (-501)))))) (-1274 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-1720 ((|#1| $) 69 (|has| |#1| (-967)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 59 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 58 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 60 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 57 (|has| |#1| (-777)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-726 |#1|) (-1180) (-156)) (T -726))
-((-3097 (*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-1256 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2155 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-2069 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) (-2870 (*1 *2 *1) (|partial| -12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) (-3833 (*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)) (-4 *2 (-331)))))
-(-13 (-37 |t#1|) (-380 |t#1|) (-306 |t#1|) (-10 -8 (-15 -3097 ($ $)) (-15 -3749 (|t#1| $)) (-15 -1870 (|t#1| $)) (-15 -3488 (|t#1| $)) (-15 -1256 (|t#1| $)) (-15 -2155 (|t#1| $)) (-15 -2757 (|t#1| $)) (-15 -2531 (|t#1| $)) (-15 -3596 (|t#1| $)) (-15 -2626 (|t#1| $)) (-15 -2069 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-336)) (-6 (-336)) |noBranch|) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-967)) (-15 -1720 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-331)) (-15 -3833 ($ $)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-336) |has| |#1| (-336)) ((-306 |#1|) . T) ((-380 |#1|) . T) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|)) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) . T) ((-657) . T) ((-777) |has| |#1| (-777)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-3177 (((-3 $ "failed") $ $) 26)) (-2540 (($) 23 T CONST)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 22 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 25) (($ (-839) $) 21)))
-(((-727) (-1180)) (T -727))
-NIL
-(-13 (-722) (-123))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-722) . T) ((-724) . T) ((-777) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-910 |#1|) "failed") $) 35) (((-3 (-501) "failed") $) NIL (-1405 (|has| (-910 |#1|) (-950 (-501))) (|has| |#1| (-950 (-501))))) (((-3 (-375 (-501)) "failed") $) NIL (-1405 (|has| (-910 |#1|) (-950 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-3490 ((|#1| $) NIL) (((-910 |#1|) $) 33) (((-501) $) NIL (-1405 (|has| (-910 |#1|) (-950 (-501))) (|has| |#1| (-950 (-501))))) (((-375 (-501)) $) NIL (-1405 (|has| (-910 |#1|) (-950 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-2174 (((-3 $ "failed") $) NIL)) (-3749 ((|#1| $) 16)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-500)))) (-1696 (((-107) $) NIL (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) NIL (|has| |#1| (-500)))) (-2890 (($) NIL (|has| |#1| (-336)))) (-1355 (((-107) $) NIL)) (-2069 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-910 |#1|) (-910 |#1|)) 29)) (-2626 ((|#1| $) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-1256 ((|#1| $) 22)) (-3488 ((|#1| $) 20)) (-1870 ((|#1| $) 18)) (-3596 ((|#1| $) 26)) (-2531 ((|#1| $) 25)) (-2757 ((|#1| $) 24)) (-2155 ((|#1| $) 23)) (-3708 (((-1018) $) NIL)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|)))) (-2007 (($ $ |#1|) NIL (|has| |#1| (-256 |#1| |#1|)))) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3097 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-910 |#1|)) 30) (($ (-375 (-501))) NIL (-1405 (|has| (-910 |#1|) (-950 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-967)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 8 T CONST)) (-1925 (($) 12 T CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-728 |#1|) (-13 (-726 |#1|) (-380 (-910 |#1|)) (-10 -8 (-15 -2069 ($ (-910 |#1|) (-910 |#1|))))) (-156)) (T -728))
-((-2069 (*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-156)) (-5 *1 (-728 *3)))))
-(-13 (-726 |#1|) (-380 (-910 |#1|)) (-10 -8 (-15 -2069 ($ (-910 |#1|) (-910 |#1|)))))
-((-1212 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|))) (-726 |#2|) (-156) (-726 |#4|) (-156)) (T -729))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-726 *6)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *4 (-726 *5)))))
-(-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-2894 (((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-3751 (((-107) $ $) 6)))
-(((-730) (-1180)) (T -730))
-((-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-730)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) (-2894 (*1 *2 *3) (-12 (-4 *1 (-730)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-948)))))
-(-13 (-1001) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2894 ((-948) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-2177 (((-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#3| |#2| (-1070)) 19)))
-(((-731 |#1| |#2| |#3|) (-10 -7 (-15 -2177 ((-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#3| |#2| (-1070)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879)) (-593 |#2|)) (T -731))
-((-2177 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-4 *4 (-13 (-29 *6) (-1090) (-879))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4119 (-578 *4)))) (-5 *1 (-731 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -2177 ((-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#3| |#2| (-1070))))
-((-2778 (((-3 |#2| "failed") |#2| (-108) (-262 |#2|) (-578 |#2|)) 26) (((-3 |#2| "failed") (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") |#2| (-108) (-1070)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") (-262 |#2|) (-108) (-1070)) 17) (((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 |#2|) (-578 (-108)) (-1070)) 22) (((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 (-262 |#2|)) (-578 (-108)) (-1070)) 24) (((-3 (-578 (-1148 |#2|)) "failed") (-621 |#2|) (-1070)) 36) (((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-621 |#2|) (-1148 |#2|) (-1070)) 34)))
-(((-732 |#1| |#2|) (-10 -7 (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-621 |#2|) (-1148 |#2|) (-1070))) (-15 -2778 ((-3 (-578 (-1148 |#2|)) "failed") (-621 |#2|) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 (-262 |#2|)) (-578 (-108)) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 |#2|) (-578 (-108)) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") (-262 |#2|) (-108) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") |#2| (-108) (-1070))) (-15 -2778 ((-3 |#2| "failed") (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|))) (-15 -2778 ((-3 |#2| "failed") |#2| (-108) (-262 |#2|) (-578 |#2|)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879))) (T -732))
-((-2778 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-262 *2)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-732 *6 *2)))) (-2778 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-262 *2)) (-5 *4 (-108)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-5 *1 (-732 *6 *2)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))))) (-2778 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4119 (-578 *3))) *3 "failed")) (-5 *1 (-732 *6 *3)) (-4 *3 (-13 (-29 *6) (-1090) (-879))))) (-2778 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-108)) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4119 (-578 *7))) *7 "failed")) (-5 *1 (-732 *6 *7)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-108))) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 (-262 *7))) (-5 *4 (-578 (-108))) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)))) (-2778 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-621 *6)) (-5 *4 (-1070)) (-4 *6 (-13 (-29 *5) (-1090) (-879))) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-1148 *6))) (-5 *1 (-732 *5 *6)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-621 *7)) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)) (-5 *4 (-1148 *7)))))
-(-10 -7 (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-621 |#2|) (-1148 |#2|) (-1070))) (-15 -2778 ((-3 (-578 (-1148 |#2|)) "failed") (-621 |#2|) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 (-262 |#2|)) (-578 (-108)) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#2|)) (|:| -4119 (-578 (-1148 |#2|)))) "failed") (-578 |#2|) (-578 (-108)) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") (-262 |#2|) (-108) (-1070))) (-15 -2778 ((-3 (-2 (|:| |particular| |#2|) (|:| -4119 (-578 |#2|))) |#2| "failed") |#2| (-108) (-1070))) (-15 -2778 ((-3 |#2| "failed") (-262 |#2|) (-108) (-262 |#2|) (-578 |#2|))) (-15 -2778 ((-3 |#2| "failed") |#2| (-108) (-262 |#2|) (-578 |#2|))))
-((-2869 (($) 9)) (-3954 (((-3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-1500 (((-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-4114 (($ (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))) 20)) (-1399 (($ (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) 18)) (-1902 (((-1154)) 12)))
-(((-733) (-10 -8 (-15 -2869 ($)) (-15 -1902 ((-1154))) (-15 -1500 ((-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1399 ($ (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))))) (-15 -4114 ($ (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) (-15 -3954 ((-3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -733))
-((-3954 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) (-5 *1 (-733)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))) (-5 *1 (-733)))) (-1399 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) (-5 *1 (-733)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-733)))) (-1902 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-733)))) (-2869 (*1 *1) (-5 *1 (-733))))
-(-10 -8 (-15 -2869 ($)) (-15 -1902 ((-1154))) (-15 -1500 ((-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -1399 ($ (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))))) (-15 -4114 ($ (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) (-15 -3954 ((-3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
-((-3089 ((|#2| |#2| (-1070)) 15)) (-1458 ((|#2| |#2| (-1070)) 47)) (-1331 (((-1 |#2| |#2|) (-1070)) 11)))
-(((-734 |#1| |#2|) (-10 -7 (-15 -3089 (|#2| |#2| (-1070))) (-15 -1458 (|#2| |#2| (-1070))) (-15 -1331 ((-1 |#2| |#2|) (-1070)))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134)) (-13 (-29 |#1|) (-1090) (-879))) (T -734))
-((-1331 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-734 *4 *5)) (-4 *5 (-13 (-29 *4) (-1090) (-879))))) (-1458 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-734 *4 *2)) (-4 *2 (-13 (-29 *4) (-1090) (-879))))) (-3089 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-734 *4 *2)) (-4 *2 (-13 (-29 *4) (-1090) (-879))))))
-(-10 -7 (-15 -3089 (|#2| |#2| (-1070))) (-15 -1458 (|#2| |#2| (-1070))) (-15 -1331 ((-1 |#2| |#2|) (-1070))))
-((-2778 (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346) (-346)) 114) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346)) 115) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-578 (-346)) (-346)) 117) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-346)) 118) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-346)) 119) (((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346))) 120) (((-948) (-738) (-970)) 105) (((-948) (-738)) 106)) (-3492 (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738) (-970)) 71) (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738)) 73)))
-(((-735) (-10 -7 (-15 -2778 ((-948) (-738))) (-15 -2778 ((-948) (-738) (-970))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346) (-346))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738) (-970))))) (T -735))
-((-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-738)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-735)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-738)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-738)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-735)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-738)) (-5 *2 (-948)) (-5 *1 (-735)))))
-(-10 -7 (-15 -2778 ((-948) (-738))) (-15 -2778 ((-948) (-738) (-970))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346))) (-15 -2778 ((-948) (-1148 (-282 (-346))) (-346) (-346) (-578 (-346)) (-282 (-346)) (-578 (-346)) (-346) (-346))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-738) (-970))))
-((-2927 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4119 (-578 |#4|))) (-590 |#4|) |#4|) 32)))
-(((-736 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2927 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4119 (-578 |#4|))) (-590 |#4|) |#4|))) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|)) (T -736))
-((-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-310 *5 *6 *7)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-736 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2927 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4119 (-578 |#4|))) (-590 |#4|) |#4|)))
-((-3473 (((-2 (|:| -2499 |#3|) (|:| |rh| (-578 (-375 |#2|)))) |#4| (-578 (-375 |#2|))) 51)) (-2842 (((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4| |#2|) 59) (((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4|) 58) (((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3| |#2|) 20) (((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3|) 21)) (-1520 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-2363 ((|#2| |#3| (-578 (-375 |#2|))) 93) (((-3 |#2| "failed") |#3| (-375 |#2|)) 90)))
-(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2363 ((-3 |#2| "failed") |#3| (-375 |#2|))) (-15 -2363 (|#2| |#3| (-578 (-375 |#2|)))) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3| |#2|)) (-15 -1520 (|#2| |#3| |#1|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4| |#2|)) (-15 -1520 (|#2| |#4| |#1|)) (-15 -3473 ((-2 (|:| -2499 |#3|) (|:| |rh| (-578 (-375 |#2|)))) |#4| (-578 (-375 |#2|))))) (-13 (-331) (-134) (-950 (-375 (-501)))) (-1125 |#1|) (-593 |#2|) (-593 (-375 |#2|))) (T -737))
-((-3473 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-2 (|:| -2499 *7) (|:| |rh| (-578 (-375 *6))))) (-5 *1 (-737 *5 *6 *7 *3)) (-5 *4 (-578 (-375 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-375 *6))))) (-1520 (*1 *2 *3 *4) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-737 *4 *2 *5 *3)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-375 *2))))) (-2842 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *4 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -2896 *4) (|:| -4022 *4)))) (-5 *1 (-737 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-375 *4))))) (-2842 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| -2896 *5) (|:| -4022 *5)))) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-375 *5))))) (-1520 (*1 *2 *3 *4) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-737 *4 *2 *3 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-375 *2))))) (-2842 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *4 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -2896 *4) (|:| -4022 *4)))) (-5 *1 (-737 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-375 *4))))) (-2842 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| -2896 *5) (|:| -4022 *5)))) (-5 *1 (-737 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-375 *5))))) (-2363 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-375 *2))) (-4 *2 (-1125 *5)) (-5 *1 (-737 *5 *2 *3 *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-375 *2))))) (-2363 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-375 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-737 *5 *2 *3 *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))))
-(-10 -7 (-15 -2363 ((-3 |#2| "failed") |#3| (-375 |#2|))) (-15 -2363 (|#2| |#3| (-578 (-375 |#2|)))) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#3| |#2|)) (-15 -1520 (|#2| |#3| |#1|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4|)) (-15 -2842 ((-578 (-2 (|:| -2896 |#2|) (|:| -4022 |#2|))) |#4| |#2|)) (-15 -1520 (|#2| |#4| |#1|)) (-15 -3473 ((-2 (|:| -2499 |#3|) (|:| |rh| (-578 (-375 |#2|)))) |#4| (-578 (-375 |#2|)))))
-((-3736 (((-107) $ $) NIL)) (-3490 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-3751 (((-107) $ $) NIL)))
-(((-738) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -738))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-738)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-738)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-738)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))
-((-2984 (((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1064 |#2|)) (-1 (-373 |#2|) |#2|)) 118)) (-3639 (((-578 (-2 (|:| |poly| |#2|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|)) 45)) (-3144 (((-578 (-2 (|:| |deg| (-701)) (|:| -2499 |#2|))) |#3|) 95)) (-3670 ((|#2| |#3|) 37)) (-3341 (((-578 (-2 (|:| -3897 |#1|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|)) 82)) (-3336 ((|#3| |#3| (-375 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3670 (|#2| |#3|)) (-15 -3144 ((-578 (-2 (|:| |deg| (-701)) (|:| -2499 |#2|))) |#3|)) (-15 -3341 ((-578 (-2 (|:| -3897 |#1|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -3639 ((-578 (-2 (|:| |poly| |#2|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -2984 ((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1064 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3336 (|#3| |#3| |#2|)) (-15 -3336 (|#3| |#3| (-375 |#2|)))) (-13 (-331) (-134) (-950 (-375 (-501)))) (-1125 |#1|) (-593 |#2|) (-593 (-375 |#2|))) (T -739))
-((-3336 (*1 *2 *2 *3) (-12 (-5 *3 (-375 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *1 (-739 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-3336 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-1125 *4)) (-5 *1 (-739 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-375 *3))))) (-2984 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-578 *7) *7 (-1064 *7))) (-5 *5 (-1 (-373 *7) *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-331) (-134) (-950 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |frac| (-375 *7)) (|:| -2499 *3)))) (-5 *1 (-739 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-375 *7))))) (-3639 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -2499 *3)))) (-5 *1 (-739 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-375 *6))))) (-3341 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -3897 *5) (|:| -2499 *3)))) (-5 *1 (-739 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-375 *6))))) (-3144 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| |deg| (-701)) (|:| -2499 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-375 *5))))) (-3670 (*1 *2 *3) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-375 *2))))))
-(-10 -7 (-15 -3670 (|#2| |#3|)) (-15 -3144 ((-578 (-2 (|:| |deg| (-701)) (|:| -2499 |#2|))) |#3|)) (-15 -3341 ((-578 (-2 (|:| -3897 |#1|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -3639 ((-578 (-2 (|:| |poly| |#2|) (|:| -2499 |#3|))) |#3| (-1 (-578 |#1|) |#2|))) (-15 -2984 ((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 |#3|))) |#3| (-1 (-578 |#2|) |#2| (-1064 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3336 (|#3| |#3| |#2|)) (-15 -3336 (|#3| |#3| (-375 |#2|))))
-((-2669 (((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-591 |#2| (-375 |#2|)) (-578 (-375 |#2|))) 117) (((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-591 |#2| (-375 |#2|)) (-375 |#2|)) 116) (((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-590 (-375 |#2|)) (-578 (-375 |#2|))) 111) (((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-590 (-375 |#2|)) (-375 |#2|)) 109)) (-2568 ((|#2| (-591 |#2| (-375 |#2|))) 77) ((|#2| (-590 (-375 |#2|))) 81)))
-(((-740 |#1| |#2|) (-10 -7 (-15 -2669 ((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-590 (-375 |#2|)) (-375 |#2|))) (-15 -2669 ((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-590 (-375 |#2|)) (-578 (-375 |#2|)))) (-15 -2669 ((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-591 |#2| (-375 |#2|)) (-375 |#2|))) (-15 -2669 ((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-591 |#2| (-375 |#2|)) (-578 (-375 |#2|)))) (-15 -2568 (|#2| (-590 (-375 |#2|)))) (-15 -2568 (|#2| (-591 |#2| (-375 |#2|))))) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|)) (T -740))
-((-2568 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-740 *4 *2)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))))) (-2568 (*1 *2 *3) (-12 (-5 *3 (-590 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-740 *4 *2)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| -4119 (-578 (-375 *6))) (|:| -2978 (-621 *5)))) (-5 *1 (-740 *5 *6)) (-5 *4 (-578 (-375 *6))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-740 *5 *6)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| -4119 (-578 (-375 *6))) (|:| -2978 (-621 *5)))) (-5 *1 (-740 *5 *6)) (-5 *4 (-578 (-375 *6))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-740 *5 *6)))))
-(-10 -7 (-15 -2669 ((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-590 (-375 |#2|)) (-375 |#2|))) (-15 -2669 ((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-590 (-375 |#2|)) (-578 (-375 |#2|)))) (-15 -2669 ((-2 (|:| |particular| (-3 (-375 |#2|) "failed")) (|:| -4119 (-578 (-375 |#2|)))) (-591 |#2| (-375 |#2|)) (-375 |#2|))) (-15 -2669 ((-2 (|:| -4119 (-578 (-375 |#2|))) (|:| -2978 (-621 |#1|))) (-591 |#2| (-375 |#2|)) (-578 (-375 |#2|)))) (-15 -2568 (|#2| (-590 (-375 |#2|)))) (-15 -2568 (|#2| (-591 |#2| (-375 |#2|)))))
-((-1892 (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) |#5| |#4|) 47)))
-(((-741 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1892 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) |#5| |#4|))) (-331) (-593 |#1|) (-1125 |#1|) (-655 |#1| |#3|) (-593 |#4|)) (T -741))
-((-1892 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *7 (-1125 *5)) (-4 *4 (-655 *5 *7)) (-5 *2 (-2 (|:| -2978 (-621 *6)) (|:| |vec| (-1148 *5)))) (-5 *1 (-741 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
-(-10 -7 (-15 -1892 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) |#5| |#4|)))
-((-2984 (((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|)) 43)) (-3093 (((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|)) 133 (|has| |#1| (-27))) (((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|))) 134 (|has| |#1| (-27))) (((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-373 |#2|) |#2|)) 135 (|has| |#1| (-27))) (((-578 (-375 |#2|)) (-590 (-375 |#2|))) 136 (|has| |#1| (-27))) (((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|)) 36) (((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|)) 37) (((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|)) 34) (((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|)) 35)) (-3639 (((-578 (-2 (|:| |poly| |#2|) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|)) 80)))
-(((-742 |#1| |#2|) (-10 -7 (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|))) (-15 -2984 ((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3639 ((-578 (-2 (|:| |poly| |#2|) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)))) (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|)))) |noBranch|)) (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501)))) (-1125 |#1|)) (T -742))
-((-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-375 *5))) (-4 *5 (-1125 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *5))) (-5 *1 (-742 *4 *5)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-590 (-375 *5))) (-4 *5 (-1125 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *5))) (-5 *1 (-742 *4 *5)))) (-3639 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -2499 (-591 *6 (-375 *6)))))) (-5 *1 (-742 *5 *6)) (-5 *3 (-591 *6 (-375 *6))))) (-2984 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |frac| (-375 *6)) (|:| -2499 (-591 *6 (-375 *6)))))) (-5 *1 (-742 *5 *6)) (-5 *3 (-591 *6 (-375 *6))))) (-3093 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-375 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-373 *7) *7)) (-4 *6 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *7 (-1125 *6)) (-5 *2 (-578 (-375 *7))) (-5 *1 (-742 *6 *7)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) (-3093 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-375 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-373 *7) *7)) (-4 *6 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *7 (-1125 *6)) (-5 *2 (-578 (-375 *7))) (-5 *1 (-742 *6 *7)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))))
-(-10 -7 (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|) (-1 (-373 |#2|) |#2|))) (-15 -2984 ((-578 (-2 (|:| |frac| (-375 |#2|)) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3639 ((-578 (-2 (|:| |poly| |#2|) (|:| -2499 (-591 |#2| (-375 |#2|))))) (-591 |#2| (-375 |#2|)) (-1 (-578 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)))) (-15 -3093 ((-578 (-375 |#2|)) (-590 (-375 |#2|)) (-1 (-373 |#2|) |#2|))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)))) (-15 -3093 ((-578 (-375 |#2|)) (-591 |#2| (-375 |#2|)) (-1 (-373 |#2|) |#2|)))) |noBranch|))
-((-4121 (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) (-621 |#2|) (-1148 |#1|)) 86) (((-2 (|:| A (-621 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)) (|:| -2499 |#2|) (|:| |rh| |#1|))))) (-621 |#1|) (-1148 |#1|)) 14)) (-3766 (((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#2|) (-1148 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4119 (-578 |#1|))) |#2| |#1|)) 92)) (-2778 (((-3 (-2 (|:| |particular| (-1148 |#1|)) (|:| -4119 (-621 |#1|))) "failed") (-621 |#1|) (-1148 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed") |#2| |#1|)) 45)))
-(((-743 |#1| |#2|) (-10 -7 (-15 -4121 ((-2 (|:| A (-621 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)) (|:| -2499 |#2|) (|:| |rh| |#1|))))) (-621 |#1|) (-1148 |#1|))) (-15 -4121 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) (-621 |#2|) (-1148 |#1|))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#1|)) (|:| -4119 (-621 |#1|))) "failed") (-621 |#1|) (-1148 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed") |#2| |#1|))) (-15 -3766 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#2|) (-1148 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4119 (-578 |#1|))) |#2| |#1|)))) (-331) (-593 |#1|)) (T -743))
-((-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4119 (-578 *6))) *7 *6)) (-4 *6 (-331)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *6) "failed")) (|:| -4119 (-578 (-1148 *6))))) (-5 *1 (-743 *6 *7)) (-5 *4 (-1148 *6)))) (-2778 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4119 (-578 *6))) "failed") *7 *6)) (-4 *6 (-331)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1148 *6)) (|:| -4119 (-621 *6)))) (-5 *1 (-743 *6 *7)) (-5 *3 (-621 *6)) (-5 *4 (-1148 *6)))) (-4121 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2978 (-621 *6)) (|:| |vec| (-1148 *5)))) (-5 *1 (-743 *5 *6)) (-5 *3 (-621 *6)) (-5 *4 (-1148 *5)))) (-4121 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-2 (|:| A (-621 *5)) (|:| |eqs| (-578 (-2 (|:| C (-621 *5)) (|:| |g| (-1148 *5)) (|:| -2499 *6) (|:| |rh| *5)))))) (-5 *1 (-743 *5 *6)) (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *6 (-593 *5)))))
-(-10 -7 (-15 -4121 ((-2 (|:| A (-621 |#1|)) (|:| |eqs| (-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)) (|:| -2499 |#2|) (|:| |rh| |#1|))))) (-621 |#1|) (-1148 |#1|))) (-15 -4121 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#1|))) (-621 |#2|) (-1148 |#1|))) (-15 -2778 ((-3 (-2 (|:| |particular| (-1148 |#1|)) (|:| -4119 (-621 |#1|))) "failed") (-621 |#1|) (-1148 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4119 (-578 |#1|))) "failed") |#2| |#1|))) (-15 -3766 ((-2 (|:| |particular| (-3 (-1148 |#1|) "failed")) (|:| -4119 (-578 (-1148 |#1|)))) (-621 |#2|) (-1148 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4119 (-578 |#1|))) |#2| |#1|))))
-((-3103 (((-621 |#1|) (-578 |#1|) (-701)) 13) (((-621 |#1|) (-578 |#1|)) 14)) (-3356 (((-3 (-1148 |#1|) "failed") |#2| |#1| (-578 |#1|)) 34)) (-1541 (((-3 |#1| "failed") |#2| |#1| (-578 |#1|) (-1 |#1| |#1|)) 42)))
-(((-744 |#1| |#2|) (-10 -7 (-15 -3103 ((-621 |#1|) (-578 |#1|))) (-15 -3103 ((-621 |#1|) (-578 |#1|) (-701))) (-15 -3356 ((-3 (-1148 |#1|) "failed") |#2| |#1| (-578 |#1|))) (-15 -1541 ((-3 |#1| "failed") |#2| |#1| (-578 |#1|) (-1 |#1| |#1|)))) (-331) (-593 |#1|)) (T -744))
-((-1541 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-578 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-331)) (-5 *1 (-744 *2 *3)) (-4 *3 (-593 *2)))) (-3356 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-578 *4)) (-4 *4 (-331)) (-5 *2 (-1148 *4)) (-5 *1 (-744 *4 *3)) (-4 *3 (-593 *4)))) (-3103 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-701)) (-4 *5 (-331)) (-5 *2 (-621 *5)) (-5 *1 (-744 *5 *6)) (-4 *6 (-593 *5)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-331)) (-5 *2 (-621 *4)) (-5 *1 (-744 *4 *5)) (-4 *5 (-593 *4)))))
-(-10 -7 (-15 -3103 ((-621 |#1|) (-578 |#1|))) (-15 -3103 ((-621 |#1|) (-578 |#1|) (-701))) (-15 -3356 ((-3 (-1148 |#1|) "failed") |#2| |#1| (-578 |#1|))) (-15 -1541 ((-3 |#1| "failed") |#2| |#1| (-578 |#1|) (-1 |#1| |#1|))))
-((-3736 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3292 (((-107) $) NIL (|has| |#2| (-123)))) (-1822 (($ (-839)) NIL (|has| |#2| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#2| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#2| (-336)))) (-1417 (((-501) $) NIL (|has| |#2| (-775)))) (-3754 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1001)))) (-3490 (((-501) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) ((|#2| $) NIL (|has| |#2| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#2| (-959)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL (|has| |#2| (-959))) (((-621 |#2|) (-621 $)) NIL (|has| |#2| (-959)))) (-2174 (((-3 $ "failed") $) NIL (|has| |#2| (-959)))) (-2890 (($) NIL (|has| |#2| (-336)))) (-2156 ((|#2| $ (-501) |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ (-501)) NIL)) (-2164 (((-107) $) NIL (|has| |#2| (-775)))) (-2732 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#2| (-959)))) (-4067 (((-107) $) NIL (|has| |#2| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#2| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#2| (-1001)))) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#2| (-336)))) (-3708 (((-1018) $) NIL (|has| |#2| (-1001)))) (-1190 ((|#2| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) |#2|) NIL) ((|#2| $ (-501)) NIL)) (-1293 ((|#2| $ $) NIL (|has| |#2| (-959)))) (-3759 (($ (-1148 |#2|)) NIL)) (-3613 (((-125)) NIL (|has| |#2| (-331)))) (-2596 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#2|) $) NIL) (((-786) $) NIL (|has| |#2| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#2| (-950 (-501))) (|has| |#2| (-1001))) (|has| |#2| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#2| (-950 (-375 (-501)))) (|has| |#2| (-1001)))) (($ |#2|) NIL (|has| |#2| (-1001)))) (-3965 (((-701)) NIL (|has| |#2| (-959)))) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#2| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (-1850 (($) NIL (|has| |#2| (-123)) CONST)) (-1925 (($) NIL (|has| |#2| (-959)) CONST)) (-3584 (($ $) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#2| (-206)) (|has| |#2| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#2| (-820 (-1070))) (|has| |#2| (-959)))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#2| (-959))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-959)))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3751 (((-107) $ $) NIL (|has| |#2| (-1001)))) (-3773 (((-107) $ $) NIL (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3762 (((-107) $ $) 11 (-1405 (|has| |#2| (-723)) (|has| |#2| (-775))))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $ $) NIL (|has| |#2| (-959))) (($ $) NIL (|has| |#2| (-959)))) (-3790 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-701)) NIL (|has| |#2| (-959))) (($ $ (-839)) NIL (|has| |#2| (-959)))) (* (($ $ $) NIL (|has| |#2| (-959))) (($ (-501) $) NIL (|has| |#2| (-959))) (($ $ |#2|) NIL (|has| |#2| (-657))) (($ |#2| $) NIL (|has| |#2| (-657))) (($ (-701) $) NIL (|has| |#2| (-123))) (($ (-839) $) NIL (|has| |#2| (-25)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-745 |#1| |#2| |#3|) (-211 |#1| |#2|) (-701) (-723) (-1 (-107) (-1148 |#2|) (-1148 |#2|))) (T -745))
-NIL
-(-211 |#1| |#2|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2456 (((-578 (-701)) $) NIL) (((-578 (-701)) $ (-1070)) NIL)) (-1506 (((-701) $) NIL) (((-701) $ (-1070)) NIL)) (-3800 (((-578 (-748 (-1070))) $) NIL)) (-3728 (((-1064 $) $ (-748 (-1070))) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-748 (-1070)))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3457 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-748 (-1070)) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL) (((-3 (-1023 |#1| (-1070)) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-748 (-1070)) $) NIL) (((-1070) $) NIL) (((-1023 |#1| (-1070)) $) NIL)) (-1749 (($ $ $ (-748 (-1070))) NIL (|has| |#1| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-748 (-1070))) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 (-748 (-1070))) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-748 (-1070)) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-748 (-1070)) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ (-1070)) NIL) (((-701) $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#1|) (-748 (-1070))) NIL) (($ (-1064 $) (-748 (-1070))) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 (-748 (-1070)))) NIL) (($ $ (-748 (-1070)) (-701)) NIL) (($ $ (-578 (-748 (-1070))) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-748 (-1070))) NIL)) (-2285 (((-487 (-748 (-1070))) $) NIL) (((-701) $ (-748 (-1070))) NIL) (((-578 (-701)) $ (-578 (-748 (-1070)))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 (-748 (-1070))) (-487 (-748 (-1070)))) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (((-1 $ (-701)) (-1070)) NIL) (((-1 $ (-701)) $) NIL (|has| |#1| (-206)))) (-2752 (((-3 (-748 (-1070)) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-2486 (((-748 (-1070)) $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3597 (((-107) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-748 (-1070))) (|:| -3027 (-701))) "failed") $) NIL)) (-2577 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-748 (-1070)) |#1|) NIL) (($ $ (-578 (-748 (-1070))) (-578 |#1|)) NIL) (($ $ (-748 (-1070)) $) NIL) (($ $ (-578 (-748 (-1070))) (-578 $)) NIL) (($ $ (-1070) $) NIL (|has| |#1| (-206))) (($ $ (-578 (-1070)) (-578 $)) NIL (|has| |#1| (-206))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-206))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-206)))) (-2532 (($ $ (-748 (-1070))) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-748 (-1070))) NIL) (($ $ (-578 (-748 (-1070)))) NIL) (($ $ (-748 (-1070)) (-701)) NIL) (($ $ (-578 (-748 (-1070))) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1490 (((-578 (-1070)) $) NIL)) (-1201 (((-487 (-748 (-1070))) $) NIL) (((-701) $ (-748 (-1070))) NIL) (((-578 (-701)) $ (-578 (-748 (-1070)))) NIL) (((-701) $ (-1070)) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-748 (-1070)) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-748 (-1070)) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-748 (-1070)) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-748 (-1070))) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-748 (-1070))) NIL) (($ (-1070)) NIL) (($ (-1023 |#1| (-1070))) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 (-748 (-1070)))) NIL) (($ $ (-748 (-1070)) (-701)) NIL) (($ $ (-578 (-748 (-1070))) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-748 (-1070))) NIL) (($ $ (-578 (-748 (-1070)))) NIL) (($ $ (-748 (-1070)) (-701)) NIL) (($ $ (-578 (-748 (-1070))) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-746 |#1|) (-13 (-224 |#1| (-1070) (-748 (-1070)) (-487 (-748 (-1070)))) (-950 (-1023 |#1| (-1070)))) (-959)) (T -746))
-NIL
-(-13 (-224 |#1| (-1070) (-748 (-1070)) (-487 (-748 (-1070)))) (-950 (-1023 |#1| (-1070))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-331)))) (-2865 (($ $) NIL (|has| |#2| (-331)))) (-1639 (((-107) $) NIL (|has| |#2| (-331)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#2| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-331)))) (-2781 (((-107) $ $) NIL (|has| |#2| (-331)))) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL (|has| |#2| (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#2| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#2| (-331)))) (-1628 (((-107) $) NIL (|has| |#2| (-331)))) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#2| (-331)))) (-1697 (($ (-578 $)) NIL (|has| |#2| (-331))) (($ $ $) NIL (|has| |#2| (-331)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 20 (|has| |#2| (-331)))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-331))) (($ $ $) NIL (|has| |#2| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#2| (-331)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#2| (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#2| (-331)))) (-1864 (((-701) $) NIL (|has| |#2| (-331)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-331)))) (-2596 (($ $ (-701)) NIL) (($ $) 13)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-375 (-501))) NIL (|has| |#2| (-331))) (($ $) NIL (|has| |#2| (-331)))) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL (|has| |#2| (-331)))) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL) (($ $ (-501)) NIL (|has| |#2| (-331)))) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) 15 (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL) (($ $ (-501)) 18 (|has| |#2| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-375 (-501)) $) NIL (|has| |#2| (-331))) (($ $ (-375 (-501))) NIL (|has| |#2| (-331)))))
-(((-747 |#1| |#2| |#3|) (-13 (-106 $ $) (-206) (-10 -8 (IF (|has| |#2| (-331)) (-6 (-331)) |noBranch|) (-15 -3691 ($ |#2|)) (-15 -3691 (|#2| $)))) (-1001) (-820 |#1|) |#1|) (T -747))
-((-3691 (*1 *1 *2) (-12 (-4 *3 (-1001)) (-14 *4 *3) (-5 *1 (-747 *3 *2 *4)) (-4 *2 (-820 *3)))) (-3691 (*1 *2 *1) (-12 (-4 *2 (-820 *3)) (-5 *1 (-747 *3 *2 *4)) (-4 *3 (-1001)) (-14 *4 *3))))
-(-13 (-106 $ $) (-206) (-10 -8 (IF (|has| |#2| (-331)) (-6 (-331)) |noBranch|) (-15 -3691 ($ |#2|)) (-15 -3691 (|#2| $))))
-((-3736 (((-107) $ $) NIL)) (-1506 (((-701) $) NIL)) (-3484 ((|#1| $) 10)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3169 (((-701) $) 11)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1435 (($ |#1| (-701)) 9)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2596 (($ $) NIL) (($ $ (-701)) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)))
-(((-748 |#1|) (-237 |#1|) (-777)) (T -748))
-NIL
-(-237 |#1|)
-((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) 29)) (-3796 (((-701) $) NIL)) (-2540 (($) NIL T CONST)) (-2194 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-1199 (($ $) 31)) (-2174 (((-3 $ "failed") $) NIL)) (-3840 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1355 (((-107) $) NIL)) (-2153 ((|#1| $ (-501)) NIL)) (-3159 (((-701) $ (-501)) NIL)) (-3660 (($ $) 35)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3049 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-3989 (((-107) $ $) 33)) (-4139 (((-701) $) 25)) (-3460 (((-1053) $) NIL)) (-1954 (($ $ $) NIL)) (-3650 (($ $ $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 ((|#1| $) 30)) (-1575 (((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $) NIL)) (-3040 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1925 (($) 14 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 34)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL) (($ |#1| (-701)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-749 |#1|) (-13 (-773) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-701))) (-15 -1190 (|#1| $)) (-15 -1199 ($ $)) (-15 -3660 ($ $)) (-15 -3989 ((-107) $ $)) (-15 -3650 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -3049 ((-3 $ "failed") $ $)) (-15 -2194 ((-3 $ "failed") $ $)) (-15 -3049 ((-3 $ "failed") $ |#1|)) (-15 -2194 ((-3 $ "failed") $ |#1|)) (-15 -3040 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3840 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3796 ((-701) $)) (-15 -3159 ((-701) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $)) (-15 -4139 ((-701) $)) (-15 -3514 ((-578 |#1|) $)))) (-777)) (T -749))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-1190 (*1 *2 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-1199 (*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3660 (*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3989 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3650 (*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-1954 (*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3049 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-2194 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3049 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-2194 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-3040 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-749 *3)) (|:| |rm| (-749 *3)))) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3840 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-749 *3)) (|:| |mm| (-749 *3)) (|:| |rm| (-749 *3)))) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3159 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701)) (-5 *1 (-749 *4)) (-4 *4 (-777)))) (-2153 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-749 *2)) (-4 *2 (-777)))) (-1575 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-701))))) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-749 *3)) (-4 *3 (-777)))))
-(-13 (-773) (-950 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-701))) (-15 -1190 (|#1| $)) (-15 -1199 ($ $)) (-15 -3660 ($ $)) (-15 -3989 ((-107) $ $)) (-15 -3650 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -3049 ((-3 $ "failed") $ $)) (-15 -2194 ((-3 $ "failed") $ $)) (-15 -3049 ((-3 $ "failed") $ |#1|)) (-15 -2194 ((-3 $ "failed") $ |#1|)) (-15 -3040 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3840 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3796 ((-701) $)) (-15 -3159 ((-701) $ (-501))) (-15 -2153 (|#1| $ (-501))) (-15 -1575 ((-578 (-2 (|:| |gen| |#1|) (|:| -1989 (-701)))) $)) (-15 -4139 ((-701) $)) (-15 -3514 ((-578 |#1|) $))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-1417 (((-501) $) 53)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-2164 (((-107) $) 51)) (-1355 (((-107) $) 31)) (-4067 (((-107) $) 52)) (-4111 (($ $ $) 50)) (-1323 (($ $ $) 49)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 42)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-1720 (($ $) 54)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 47)) (-3768 (((-107) $ $) 46)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 48)) (-3762 (((-107) $ $) 45)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-750) (-1180)) (T -750))
-NIL
-(-13 (-508) (-775))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-775) . T) ((-777) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3671 (((-1154) (-753) $ (-107)) 9) (((-1154) (-753) $) 8) (((-1053) $ (-107)) 7) (((-1053) $) 6)))
-(((-751) (-1180)) (T -751))
-((-3671 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-751)) (-5 *3 (-753)) (-5 *4 (-107)) (-5 *2 (-1154)))) (-3671 (*1 *2 *3 *1) (-12 (-4 *1 (-751)) (-5 *3 (-753)) (-5 *2 (-1154)))) (-3671 (*1 *2 *1 *3) (-12 (-4 *1 (-751)) (-5 *3 (-107)) (-5 *2 (-1053)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-751)) (-5 *2 (-1053)))))
-(-13 (-10 -8 (-15 -3671 ((-1053) $)) (-15 -3671 ((-1053) $ (-107))) (-15 -3671 ((-1154) (-753) $)) (-15 -3671 ((-1154) (-753) $ (-107)))))
-((-3033 (($ (-1018)) 7)) (-1693 (((-107) $ (-1053) (-1018)) 15)) (-3149 (((-753) $) 12)) (-2792 (((-753) $) 11)) (-1604 (((-1154) $) 9)) (-1322 (((-107) $ (-1018)) 16)))
-(((-752) (-10 -8 (-15 -3033 ($ (-1018))) (-15 -1604 ((-1154) $)) (-15 -2792 ((-753) $)) (-15 -3149 ((-753) $)) (-15 -1693 ((-107) $ (-1053) (-1018))) (-15 -1322 ((-107) $ (-1018))))) (T -752))
-((-1322 (*1 *2 *1 *3) (-12 (-5 *3 (-1018)) (-5 *2 (-107)) (-5 *1 (-752)))) (-1693 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-1018)) (-5 *2 (-107)) (-5 *1 (-752)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-752)))) (-2792 (*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-752)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-752)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-752)))))
-(-10 -8 (-15 -3033 ($ (-1018))) (-15 -1604 ((-1154) $)) (-15 -2792 ((-753) $)) (-15 -3149 ((-753) $)) (-15 -1693 ((-107) $ (-1053) (-1018))) (-15 -1322 ((-107) $ (-1018))))
-((-2497 (((-1154) $ (-754)) 12)) (-2760 (((-1154) $ (-1070)) 32)) (-3862 (((-1154) $ (-1053) (-1053)) 34)) (-4012 (((-1154) $ (-1053)) 33)) (-3976 (((-1154) $) 19)) (-1476 (((-1154) $ (-501)) 28)) (-2597 (((-1154) $ (-199)) 30)) (-1312 (((-1154) $) 18)) (-2666 (((-1154) $) 26)) (-1552 (((-1154) $) 25)) (-1809 (((-1154) $) 23)) (-2293 (((-1154) $) 24)) (-1543 (((-1154) $) 22)) (-3598 (((-1154) $) 21)) (-1324 (((-1154) $) 20)) (-1427 (((-1154) $) 16)) (-2697 (((-1154) $) 17)) (-2354 (((-1154) $) 15)) (-2941 (((-1154) $) 14)) (-1795 (((-1154) $) 13)) (-2860 (($ (-1053) (-754)) 9)) (-3311 (($ (-1053) (-1053) (-754)) 8)) (-1527 (((-1070) $) 51)) (-2127 (((-1070) $) 55)) (-3690 (((-2 (|:| |cd| (-1053)) (|:| -3986 (-1053))) $) 54)) (-2855 (((-1053) $) 52)) (-4023 (((-1154) $) 41)) (-2138 (((-501) $) 49)) (-4024 (((-199) $) 50)) (-1240 (((-1154) $) 40)) (-2182 (((-1154) $) 48)) (-1860 (((-1154) $) 47)) (-1509 (((-1154) $) 45)) (-3259 (((-1154) $) 46)) (-1664 (((-1154) $) 44)) (-1824 (((-1154) $) 43)) (-2484 (((-1154) $) 42)) (-1678 (((-1154) $) 38)) (-3870 (((-1154) $) 39)) (-2541 (((-1154) $) 37)) (-1812 (((-1154) $) 36)) (-2931 (((-1154) $) 35)) (-3600 (((-1154) $) 11)))
-(((-753) (-10 -8 (-15 -3311 ($ (-1053) (-1053) (-754))) (-15 -2860 ($ (-1053) (-754))) (-15 -3600 ((-1154) $)) (-15 -2497 ((-1154) $ (-754))) (-15 -1795 ((-1154) $)) (-15 -2941 ((-1154) $)) (-15 -2354 ((-1154) $)) (-15 -1427 ((-1154) $)) (-15 -2697 ((-1154) $)) (-15 -1312 ((-1154) $)) (-15 -3976 ((-1154) $)) (-15 -1324 ((-1154) $)) (-15 -3598 ((-1154) $)) (-15 -1543 ((-1154) $)) (-15 -1809 ((-1154) $)) (-15 -2293 ((-1154) $)) (-15 -1552 ((-1154) $)) (-15 -2666 ((-1154) $)) (-15 -1476 ((-1154) $ (-501))) (-15 -2597 ((-1154) $ (-199))) (-15 -2760 ((-1154) $ (-1070))) (-15 -4012 ((-1154) $ (-1053))) (-15 -3862 ((-1154) $ (-1053) (-1053))) (-15 -2931 ((-1154) $)) (-15 -1812 ((-1154) $)) (-15 -2541 ((-1154) $)) (-15 -1678 ((-1154) $)) (-15 -3870 ((-1154) $)) (-15 -1240 ((-1154) $)) (-15 -4023 ((-1154) $)) (-15 -2484 ((-1154) $)) (-15 -1824 ((-1154) $)) (-15 -1664 ((-1154) $)) (-15 -1509 ((-1154) $)) (-15 -3259 ((-1154) $)) (-15 -1860 ((-1154) $)) (-15 -2182 ((-1154) $)) (-15 -2138 ((-501) $)) (-15 -4024 ((-199) $)) (-15 -1527 ((-1070) $)) (-15 -2855 ((-1053) $)) (-15 -3690 ((-2 (|:| |cd| (-1053)) (|:| -3986 (-1053))) $)) (-15 -2127 ((-1070) $)))) (T -753))
-((-2127 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-753)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1053)) (|:| -3986 (-1053)))) (-5 *1 (-753)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-753)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-753)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-753)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-753)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1860 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3259 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1240 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1678 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3862 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-4012 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-2760 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-2597 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-1476 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1552 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1543 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1324 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2497 (*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1154)) (-5 *1 (-753)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))) (-2860 (*1 *1 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-754)) (-5 *1 (-753)))) (-3311 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-754)) (-5 *1 (-753)))))
-(-10 -8 (-15 -3311 ($ (-1053) (-1053) (-754))) (-15 -2860 ($ (-1053) (-754))) (-15 -3600 ((-1154) $)) (-15 -2497 ((-1154) $ (-754))) (-15 -1795 ((-1154) $)) (-15 -2941 ((-1154) $)) (-15 -2354 ((-1154) $)) (-15 -1427 ((-1154) $)) (-15 -2697 ((-1154) $)) (-15 -1312 ((-1154) $)) (-15 -3976 ((-1154) $)) (-15 -1324 ((-1154) $)) (-15 -3598 ((-1154) $)) (-15 -1543 ((-1154) $)) (-15 -1809 ((-1154) $)) (-15 -2293 ((-1154) $)) (-15 -1552 ((-1154) $)) (-15 -2666 ((-1154) $)) (-15 -1476 ((-1154) $ (-501))) (-15 -2597 ((-1154) $ (-199))) (-15 -2760 ((-1154) $ (-1070))) (-15 -4012 ((-1154) $ (-1053))) (-15 -3862 ((-1154) $ (-1053) (-1053))) (-15 -2931 ((-1154) $)) (-15 -1812 ((-1154) $)) (-15 -2541 ((-1154) $)) (-15 -1678 ((-1154) $)) (-15 -3870 ((-1154) $)) (-15 -1240 ((-1154) $)) (-15 -4023 ((-1154) $)) (-15 -2484 ((-1154) $)) (-15 -1824 ((-1154) $)) (-15 -1664 ((-1154) $)) (-15 -1509 ((-1154) $)) (-15 -3259 ((-1154) $)) (-15 -1860 ((-1154) $)) (-15 -2182 ((-1154) $)) (-15 -2138 ((-501) $)) (-15 -4024 ((-199) $)) (-15 -1527 ((-1070) $)) (-15 -2855 ((-1053) $)) (-15 -3690 ((-2 (|:| |cd| (-1053)) (|:| -3986 (-1053))) $)) (-15 -2127 ((-1070) $)))
-((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 12)) (-2703 (($) 15)) (-4052 (($) 13)) (-2818 (($) 16)) (-3225 (($) 14)) (-3751 (((-107) $ $) 8)))
-(((-754) (-13 (-1001) (-10 -8 (-15 -4052 ($)) (-15 -2703 ($)) (-15 -2818 ($)) (-15 -3225 ($))))) (T -754))
-((-4052 (*1 *1) (-5 *1 (-754))) (-2703 (*1 *1) (-5 *1 (-754))) (-2818 (*1 *1) (-5 *1 (-754))) (-3225 (*1 *1) (-5 *1 (-754))))
-(-13 (-1001) (-10 -8 (-15 -4052 ($)) (-15 -2703 ($)) (-15 -2818 ($)) (-15 -3225 ($))))
-((-3736 (((-107) $ $) NIL)) (-3994 (($ (-756) (-578 (-1070))) 24)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1966 (((-756) $) 25)) (-3079 (((-578 (-1070)) $) 26)) (-3691 (((-786) $) 23)) (-3751 (((-107) $ $) NIL)))
-(((-755) (-13 (-1001) (-10 -8 (-15 -1966 ((-756) $)) (-15 -3079 ((-578 (-1070)) $)) (-15 -3994 ($ (-756) (-578 (-1070))))))) (T -755))
-((-1966 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-755)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-755)))) (-3994 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-578 (-1070))) (-5 *1 (-755)))))
-(-13 (-1001) (-10 -8 (-15 -1966 ((-756) $)) (-15 -3079 ((-578 (-1070)) $)) (-15 -3994 ($ (-756) (-578 (-1070))))))
-((-3736 (((-107) $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 21) (($ (-1070)) 17)) (-2963 (((-107) $) 10)) (-4098 (((-107) $) 9)) (-1811 (((-107) $) 11)) (-4140 (((-107) $) 8)) (-3751 (((-107) $ $) 19)))
-(((-756) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-1070))) (-15 -4140 ((-107) $)) (-15 -4098 ((-107) $)) (-15 -2963 ((-107) $)) (-15 -1811 ((-107) $))))) (T -756))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-756)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-4098 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2963 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ($ (-1070))) (-15 -4140 ((-107) $)) (-15 -4098 ((-107) $)) (-15 -2963 ((-107) $)) (-15 -1811 ((-107) $))))
-((-3671 (((-1154) (-753) (-282 |#1|) (-107)) 22) (((-1154) (-753) (-282 |#1|)) 76) (((-1053) (-282 |#1|) (-107)) 75) (((-1053) (-282 |#1|)) 74)))
-(((-757 |#1|) (-10 -7 (-15 -3671 ((-1053) (-282 |#1|))) (-15 -3671 ((-1053) (-282 |#1|) (-107))) (-15 -3671 ((-1154) (-753) (-282 |#1|))) (-15 -3671 ((-1154) (-753) (-282 |#1|) (-107)))) (-13 (-751) (-777) (-959))) (T -757))
-((-3671 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-753)) (-5 *4 (-282 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-751) (-777) (-959))) (-5 *2 (-1154)) (-5 *1 (-757 *6)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-282 *5)) (-4 *5 (-13 (-751) (-777) (-959))) (-5 *2 (-1154)) (-5 *1 (-757 *5)))) (-3671 (*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-751) (-777) (-959))) (-5 *2 (-1053)) (-5 *1 (-757 *5)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-13 (-751) (-777) (-959))) (-5 *2 (-1053)) (-5 *1 (-757 *4)))))
-(-10 -7 (-15 -3671 ((-1053) (-282 |#1|))) (-15 -3671 ((-1053) (-282 |#1|) (-107))) (-15 -3671 ((-1154) (-753) (-282 |#1|))) (-15 -3671 ((-1154) (-753) (-282 |#1|) (-107))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2983 ((|#1| $) 10)) (-3996 (($ |#1|) 9)) (-1355 (((-107) $) NIL)) (-3787 (($ |#2| (-701)) NIL)) (-2285 (((-701) $) NIL)) (-3850 ((|#2| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2596 (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $) NIL (|has| |#1| (-206)))) (-1201 (((-701) $) NIL)) (-3691 (((-786) $) 17) (($ (-501)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-2495 ((|#2| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $) NIL (|has| |#1| (-206)))) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-758 |#1| |#2|) (-13 (-640 |#2|) (-10 -8 (IF (|has| |#1| (-206)) (-6 (-206)) |noBranch|) (-15 -3996 ($ |#1|)) (-15 -2983 (|#1| $)))) (-640 |#2|) (-959)) (T -758))
-((-3996 (*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-758 *2 *3)) (-4 *2 (-640 *3)))) (-2983 (*1 *2 *1) (-12 (-4 *2 (-640 *3)) (-5 *1 (-758 *2 *3)) (-4 *3 (-959)))))
-(-13 (-640 |#2|) (-10 -8 (IF (|has| |#1| (-206)) (-6 (-206)) |noBranch|) (-15 -3996 ($ |#1|)) (-15 -2983 (|#1| $))))
-((-1300 (((-280) (-1053) (-1053)) 12)) (-3966 (((-107) (-1053) (-1053)) 33)) (-3151 (((-107) (-1053)) 32)) (-2654 (((-50) (-1053)) 25)) (-1283 (((-50) (-1053)) 23)) (-3051 (((-50) (-753)) 17)) (-2404 (((-578 (-1053)) (-1053)) 28)) (-2576 (((-578 (-1053))) 27)))
-(((-759) (-10 -7 (-15 -3051 ((-50) (-753))) (-15 -1283 ((-50) (-1053))) (-15 -2654 ((-50) (-1053))) (-15 -2576 ((-578 (-1053)))) (-15 -2404 ((-578 (-1053)) (-1053))) (-15 -3151 ((-107) (-1053))) (-15 -3966 ((-107) (-1053) (-1053))) (-15 -1300 ((-280) (-1053) (-1053))))) (T -759))
-((-1300 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-759)))) (-3966 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-759)))) (-3151 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-759)))) (-2404 (*1 *2 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-759)) (-5 *3 (-1053)))) (-2576 (*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-759)))) (-2654 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-759)))) (-1283 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-759)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-50)) (-5 *1 (-759)))))
-(-10 -7 (-15 -3051 ((-50) (-753))) (-15 -1283 ((-50) (-1053))) (-15 -2654 ((-50) (-1053))) (-15 -2576 ((-578 (-1053)))) (-15 -2404 ((-578 (-1053)) (-1053))) (-15 -3151 ((-107) (-1053))) (-15 -3966 ((-107) (-1053) (-1053))) (-15 -1300 ((-280) (-1053) (-1053))))
-((-3736 (((-107) $ $) 18)) (-1442 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3217 (($ $ $) 72)) (-3599 (((-107) $ $) 73)) (-2997 (((-107) $ (-701)) 8)) (-2198 (($ (-578 |#1|)) 68) (($) 67)) (-1221 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-2921 (($ $) 62)) (-2673 (($ $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ |#1| $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-4111 ((|#1| $) 78)) (-2213 (($ $ $) 81)) (-3216 (($ $ $) 80)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1323 ((|#1| $) 79)) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22)) (-3420 (($ $ $) 69)) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40) (($ |#1| $ (-701)) 63)) (-3708 (((-1018) $) 21)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2908 (((-578 (-2 (|:| -2922 |#1|) (|:| -3713 (-701)))) $) 61)) (-3327 (($ $ |#1|) 71) (($ $ $) 70)) (-3013 (($) 49) (($ (-578 |#1|)) 48)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3691 (((-786) $) 20)) (-3910 (($ (-578 |#1|)) 66) (($) 65)) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19)) (-3762 (((-107) $ $) 64)) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-760 |#1|) (-1180) (-777)) (T -760))
-((-4111 (*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-777)))))
-(-13 (-668 |t#1|) (-884 |t#1|) (-10 -8 (-15 -4111 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-208 |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-626 |#1|) . T) ((-668 |#1|) . T) ((-884 |#1|) . T) ((-999 |#1|) . T) ((-1001) . T) ((-1104) . T))
-((-2111 (((-1154) (-1018) (-1018)) 47)) (-2252 (((-1154) (-752) (-50)) 44)) (-3396 (((-50) (-752)) 16)))
-(((-761) (-10 -7 (-15 -3396 ((-50) (-752))) (-15 -2252 ((-1154) (-752) (-50))) (-15 -2111 ((-1154) (-1018) (-1018))))) (T -761))
-((-2111 (*1 *2 *3 *3) (-12 (-5 *3 (-1018)) (-5 *2 (-1154)) (-5 *1 (-761)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-752)) (-5 *4 (-50)) (-5 *2 (-1154)) (-5 *1 (-761)))) (-3396 (*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-50)) (-5 *1 (-761)))))
-(-10 -7 (-15 -3396 ((-50) (-752))) (-15 -2252 ((-1154) (-752) (-50))) (-15 -2111 ((-1154) (-1018) (-1018))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL (|has| |#1| (-21)))) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1417 (((-501) $) NIL (|has| |#1| (-775)))) (-2540 (($) NIL (|has| |#1| (-21)) CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 15)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 9)) (-2174 (((-3 $ "failed") $) 40 (|has| |#1| (-775)))) (-2870 (((-3 (-375 (-501)) "failed") $) 48 (|has| |#1| (-500)))) (-1696 (((-107) $) 43 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 45 (|has| |#1| (-500)))) (-2164 (((-107) $) NIL (|has| |#1| (-775)))) (-1355 (((-107) $) NIL (|has| |#1| (-775)))) (-4067 (((-107) $) NIL (|has| |#1| (-775)))) (-4111 (($ $ $) NIL (|has| |#1| (-775)))) (-1323 (($ $ $) NIL (|has| |#1| (-775)))) (-3460 (((-1053) $) NIL)) (-2029 (($) 13)) (-1889 (((-107) $) 12)) (-3708 (((-1018) $) NIL)) (-3101 (((-107) $) 11)) (-3691 (((-786) $) 18) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 8) (($ (-501)) NIL (-1405 (|has| |#1| (-775)) (|has| |#1| (-950 (-501)))))) (-3965 (((-701)) 34 (|has| |#1| (-775)))) (-1720 (($ $) NIL (|has| |#1| (-775)))) (-3948 (($ $ (-839)) NIL (|has| |#1| (-775))) (($ $ (-701)) NIL (|has| |#1| (-775)))) (-1850 (($) 22 (|has| |#1| (-21)) CONST)) (-1925 (($) 31 (|has| |#1| (-775)) CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3751 (((-107) $ $) 20)) (-3773 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3762 (((-107) $ $) 42 (|has| |#1| (-775)))) (-3797 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-3790 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-839)) NIL (|has| |#1| (-775))) (($ $ (-701)) NIL (|has| |#1| (-775)))) (* (($ $ $) 37 (|has| |#1| (-775))) (($ (-501) $) 25 (|has| |#1| (-21))) (($ (-701) $) NIL (|has| |#1| (-21))) (($ (-839) $) NIL (|has| |#1| (-21)))))
-(((-762 |#1|) (-13 (-1001) (-380 |#1|) (-10 -8 (-15 -2029 ($)) (-15 -3101 ((-107) $)) (-15 -1889 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|))) (-1001)) (T -762))
-((-2029 (*1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1001)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-1001)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-1001)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) (-2870 (*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))))
-(-13 (-1001) (-380 |#1|) (-10 -8 (-15 -2029 ($)) (-15 -3101 ((-107) $)) (-15 -1889 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|)))
-((-1212 (((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|) (-762 |#2|)) 12) (((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|)) 13)))
-(((-763 |#1| |#2|) (-10 -7 (-15 -1212 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|))) (-15 -1212 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|) (-762 |#2|)))) (-1001) (-1001)) (T -763))
-((-1212 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-762 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *1 (-763 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-762 *6)) (-5 *1 (-763 *5 *6)))))
-(-10 -7 (-15 -1212 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|))) (-15 -1212 ((-762 |#2|) (-1 |#2| |#1|) (-762 |#1|) (-762 |#2|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-108) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-108) $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1289 ((|#1| (-108) |#1|) NIL)) (-1355 (((-107) $) NIL)) (-2100 (($ |#1| (-329 (-108))) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1310 (($ $ (-1 |#1| |#1|)) NIL)) (-3508 (($ $ (-1 |#1| |#1|)) NIL)) (-2007 ((|#1| $ |#1|) NIL)) (-2454 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-108)) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-3774 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ (-108) (-501)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-764 |#1|) (-13 (-959) (-950 |#1|) (-950 (-108)) (-256 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3774 ($ $)) (-15 -3774 ($ $ $)) (-15 -2454 (|#1| |#1|))) |noBranch|) (-15 -3508 ($ $ (-1 |#1| |#1|))) (-15 -1310 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-108) (-501))) (-15 ** ($ $ (-501))) (-15 -1289 (|#1| (-108) |#1|)) (-15 -2100 ($ |#1| (-329 (-108)))))) (-959)) (T -764))
-((-3774 (*1 *1 *1) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))) (-3774 (*1 *1 *1 *1) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))) (-2454 (*1 *2 *2) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))) (-3508 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-764 *3)))) (-1310 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-764 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-501)) (-5 *1 (-764 *4)) (-4 *4 (-959)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-764 *3)) (-4 *3 (-959)))) (-1289 (*1 *2 *3 *2) (-12 (-5 *3 (-108)) (-5 *1 (-764 *2)) (-4 *2 (-959)))) (-2100 (*1 *1 *2 *3) (-12 (-5 *3 (-329 (-108))) (-5 *1 (-764 *2)) (-4 *2 (-959)))))
-(-13 (-959) (-950 |#1|) (-950 (-108)) (-256 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -3774 ($ $)) (-15 -3774 ($ $ $)) (-15 -2454 (|#1| |#1|))) |noBranch|) (-15 -3508 ($ $ (-1 |#1| |#1|))) (-15 -1310 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-108) (-501))) (-15 ** ($ $ (-501))) (-15 -1289 (|#1| (-108) |#1|)) (-15 -2100 ($ |#1| (-329 (-108))))))
-((-3563 (((-189 (-465)) (-1053)) 8)))
-(((-765) (-10 -7 (-15 -3563 ((-189 (-465)) (-1053))))) (T -765))
-((-3563 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-189 (-465))) (-5 *1 (-765)))))
-(-10 -7 (-15 -3563 ((-189 (-465)) (-1053))))
-((-3736 (((-107) $ $) 7)) (-2491 (((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 14) (((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 13)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 16) (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 15)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)))
-(((-766) (-1180)) (T -766))
-((-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-766)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) (-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-766)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) (-2491 (*1 *2 *3) (-12 (-4 *1 (-766)) (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-948)))) (-2491 (*1 *2 *3) (-12 (-4 *1 (-766)) (-5 *3 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *2 (-948)))))
-(-13 (-1001) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -2491 ((-948) (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -2491 ((-948) (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-2180 (((-948) (-578 (-282 (-346))) (-578 (-346))) 143) (((-948) (-282 (-346)) (-578 (-346))) 141) (((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-769 (-346)))) 140) (((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-282 (-346))) (-578 (-769 (-346)))) 139) (((-948) (-768)) 112) (((-948) (-768) (-970)) 111)) (-3492 (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768) (-970)) 76) (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768)) 78)) (-3284 (((-948) (-578 (-282 (-346))) (-578 (-346))) 144) (((-948) (-768)) 128)))
-(((-767) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768) (-970))) (-15 -2180 ((-948) (-768) (-970))) (-15 -2180 ((-948) (-768))) (-15 -3284 ((-948) (-768))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-282 (-346))) (-578 (-769 (-346))))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-769 (-346))))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)))) (-15 -2180 ((-948) (-578 (-282 (-346))) (-578 (-346)))) (-15 -3284 ((-948) (-578 (-282 (-346))) (-578 (-346)))))) (T -767))
-((-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-346)))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-346)))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-346))) (-5 *5 (-578 (-769 (-346)))) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-578 (-346))) (-5 *5 (-578 (-769 (-346)))) (-5 *6 (-578 (-282 (-346)))) (-5 *3 (-282 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) (-3284 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-948)) (-5 *1 (-767)))) (-2180 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-767)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-767)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-767)))))
-(-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-768) (-970))) (-15 -2180 ((-948) (-768) (-970))) (-15 -2180 ((-948) (-768))) (-15 -3284 ((-948) (-768))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-282 (-346))) (-578 (-769 (-346))))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)) (-578 (-769 (-346))) (-578 (-769 (-346))))) (-15 -2180 ((-948) (-282 (-346)) (-578 (-346)))) (-15 -2180 ((-948) (-578 (-282 (-346))) (-578 (-346)))) (-15 -3284 ((-948) (-578 (-282 (-346))) (-578 (-346)))))
-((-3736 (((-107) $ $) NIL)) (-3490 (((-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) $) 15)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 14) (($ (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) 8) (($ (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) 12)) (-3751 (((-107) $ $) NIL)))
-(((-768) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -3691 ($ (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3691 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) $))))) (T -768))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-768)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *1 (-768)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *1 (-768)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *1 (-768)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *1 (-768)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199))))))) (-15 -3691 ($ (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) (-15 -3691 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199)))))) $))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL (|has| |#1| (-21)))) (-1469 (((-1018) $) 24)) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1417 (((-501) $) NIL (|has| |#1| (-775)))) (-2540 (($) NIL (|has| |#1| (-21)) CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 16)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 9)) (-2174 (((-3 $ "failed") $) 46 (|has| |#1| (-775)))) (-2870 (((-3 (-375 (-501)) "failed") $) 53 (|has| |#1| (-500)))) (-1696 (((-107) $) 48 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 51 (|has| |#1| (-500)))) (-2164 (((-107) $) NIL (|has| |#1| (-775)))) (-2040 (($) 13)) (-1355 (((-107) $) NIL (|has| |#1| (-775)))) (-4067 (((-107) $) NIL (|has| |#1| (-775)))) (-2051 (($) 14)) (-4111 (($ $ $) NIL (|has| |#1| (-775)))) (-1323 (($ $ $) NIL (|has| |#1| (-775)))) (-3460 (((-1053) $) NIL)) (-1889 (((-107) $) 12)) (-3708 (((-1018) $) NIL)) (-3101 (((-107) $) 11)) (-3691 (((-786) $) 22) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 8) (($ (-501)) NIL (-1405 (|has| |#1| (-775)) (|has| |#1| (-950 (-501)))))) (-3965 (((-701)) 40 (|has| |#1| (-775)))) (-1720 (($ $) NIL (|has| |#1| (-775)))) (-3948 (($ $ (-839)) NIL (|has| |#1| (-775))) (($ $ (-701)) NIL (|has| |#1| (-775)))) (-1850 (($) 28 (|has| |#1| (-21)) CONST)) (-1925 (($) 37 (|has| |#1| (-775)) CONST)) (-3778 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3751 (((-107) $ $) 26)) (-3773 (((-107) $ $) NIL (|has| |#1| (-775)))) (-3762 (((-107) $ $) 47 (|has| |#1| (-775)))) (-3797 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 33 (|has| |#1| (-21)))) (-3790 (($ $ $) 35 (|has| |#1| (-21)))) (** (($ $ (-839)) NIL (|has| |#1| (-775))) (($ $ (-701)) NIL (|has| |#1| (-775)))) (* (($ $ $) 43 (|has| |#1| (-775))) (($ (-501) $) 31 (|has| |#1| (-21))) (($ (-701) $) NIL (|has| |#1| (-21))) (($ (-839) $) NIL (|has| |#1| (-21)))))
-(((-769 |#1|) (-13 (-1001) (-380 |#1|) (-10 -8 (-15 -2040 ($)) (-15 -2051 ($)) (-15 -3101 ((-107) $)) (-15 -1889 ((-107) $)) (-15 -1469 ((-1018) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|))) (-1001)) (T -769))
-((-2040 (*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1001)))) (-2051 (*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1001)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-1001)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-1001)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-769 *3)) (-4 *3 (-1001)))) (-1696 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) (-2870 (*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))))
-(-13 (-1001) (-380 |#1|) (-10 -8 (-15 -2040 ($)) (-15 -2051 ($)) (-15 -3101 ((-107) $)) (-15 -1889 ((-107) $)) (-15 -1469 ((-1018) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-775)) |noBranch|) (IF (|has| |#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|)))
-((-1212 (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|) (-769 |#2|)) 13) (((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|)) 14)))
-(((-770 |#1| |#2|) (-10 -7 (-15 -1212 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|))) (-15 -1212 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|) (-769 |#2|)))) (-1001) (-1001)) (T -770))
-((-1212 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-769 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *1 (-770 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-769 *6)) (-5 *1 (-770 *5 *6)))))
-(-10 -7 (-15 -1212 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|))) (-15 -1212 ((-769 |#2|) (-1 |#2| |#1|) (-769 |#1|) (-769 |#2|) (-769 |#2|))))
-((-3736 (((-107) $ $) 7)) (-3796 (((-701)) 20)) (-2890 (($) 23)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3104 (((-839) $) 22)) (-3460 (((-1053) $) 9)) (-3506 (($ (-839)) 21)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)))
-(((-771) (-1180)) (T -771))
-NIL
-(-13 (-777) (-336))
-(((-97) . T) ((-555 (-786)) . T) ((-336) . T) ((-777) . T) ((-1001) . T))
-((-3946 (((-107) (-1148 |#2|) (-1148 |#2|)) 17)) (-1866 (((-107) (-1148 |#2|) (-1148 |#2|)) 18)) (-2718 (((-107) (-1148 |#2|) (-1148 |#2|)) 14)))
-(((-772 |#1| |#2|) (-10 -7 (-15 -2718 ((-107) (-1148 |#2|) (-1148 |#2|))) (-15 -3946 ((-107) (-1148 |#2|) (-1148 |#2|))) (-15 -1866 ((-107) (-1148 |#2|) (-1148 |#2|)))) (-701) (-722)) (T -772))
-((-1866 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701)))) (-3946 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701)))) (-2718 (*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701)))))
-(-10 -7 (-15 -2718 ((-107) (-1148 |#2|) (-1148 |#2|))) (-15 -3946 ((-107) (-1148 |#2|) (-1148 |#2|))) (-15 -1866 ((-107) (-1148 |#2|) (-1148 |#2|))))
-((-3736 (((-107) $ $) 7)) (-2540 (($) 24 T CONST)) (-2174 (((-3 $ "failed") $) 28)) (-1355 (((-107) $) 25)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-701)) 27) (($ $ (-839)) 22)) (-1925 (($) 23 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (** (($ $ (-701)) 26) (($ $ (-839)) 21)) (* (($ $ $) 20)))
-(((-773) (-1180)) (T -773))
-NIL
-(-13 (-777) (-657))
-(((-97) . T) ((-555 (-786)) . T) ((-657) . T) ((-777) . T) ((-1012) . T) ((-1001) . T))
-((-1417 (((-501) $) 17)) (-2164 (((-107) $) 10)) (-4067 (((-107) $) 11)) (-1720 (($ $) 19)))
-(((-774 |#1|) (-10 -8 (-15 -1720 (|#1| |#1|)) (-15 -1417 ((-501) |#1|)) (-15 -4067 ((-107) |#1|)) (-15 -2164 ((-107) |#1|))) (-775)) (T -774))
-NIL
-(-10 -8 (-15 -1720 (|#1| |#1|)) (-15 -1417 ((-501) |#1|)) (-15 -4067 ((-107) |#1|)) (-15 -2164 ((-107) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 24)) (-3177 (((-3 $ "failed") $ $) 26)) (-1417 (((-501) $) 33)) (-2540 (($) 23 T CONST)) (-2174 (((-3 $ "failed") $) 39)) (-2164 (((-107) $) 35)) (-1355 (((-107) $) 42)) (-4067 (((-107) $) 34)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 45)) (-3965 (((-701)) 44)) (-1720 (($ $) 32)) (-3948 (($ $ (-701)) 40) (($ $ (-839)) 36)) (-1850 (($) 22 T CONST)) (-1925 (($) 43 T CONST)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)) (-3797 (($ $ $) 28) (($ $) 27)) (-3790 (($ $ $) 20)) (** (($ $ (-701)) 41) (($ $ (-839)) 37)) (* (($ (-701) $) 25) (($ (-839) $) 21) (($ (-501) $) 29) (($ $ $) 38)))
-(((-775) (-1180)) (T -775))
-((-2164 (*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-107)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-107)))) (-1417 (*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-501)))) (-1720 (*1 *1 *1) (-4 *1 (-775))))
-(-13 (-721) (-959) (-657) (-10 -8 (-15 -2164 ((-107) $)) (-15 -4067 ((-107) $)) (-15 -1417 ((-501) $)) (-15 -1720 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-777) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-4111 (($ $ $) 10)) (-1323 (($ $ $) 9)) (-3778 (((-107) $ $) 12)) (-3768 (((-107) $ $) 11)) (-3773 (((-107) $ $) 13)))
-(((-776 |#1|) (-10 -8 (-15 -4111 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -3773 ((-107) |#1| |#1|)) (-15 -3778 ((-107) |#1| |#1|)) (-15 -3768 ((-107) |#1| |#1|))) (-777)) (T -776))
-NIL
-(-10 -8 (-15 -4111 (|#1| |#1| |#1|)) (-15 -1323 (|#1| |#1| |#1|)) (-15 -3773 ((-107) |#1| |#1|)) (-15 -3778 ((-107) |#1| |#1|)) (-15 -3768 ((-107) |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-4111 (($ $ $) 13)) (-1323 (($ $ $) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3778 (((-107) $ $) 16)) (-3768 (((-107) $ $) 17)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 15)) (-3762 (((-107) $ $) 18)))
-(((-777) (-1180)) (T -777))
-((-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3768 (*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3778 (*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3773 (*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-1323 (*1 *1 *1 *1) (-4 *1 (-777))) (-4111 (*1 *1 *1 *1) (-4 *1 (-777))))
-(-13 (-1001) (-10 -8 (-15 -3762 ((-107) $ $)) (-15 -3768 ((-107) $ $)) (-15 -3778 ((-107) $ $)) (-15 -3773 ((-107) $ $)) (-15 -1323 ($ $ $)) (-15 -4111 ($ $ $))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3224 (($ $ $) 45)) (-2160 (($ $ $) 44)) (-1535 (($ $ $) 42)) (-3912 (($ $ $) 51)) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 46)) (-2529 (((-3 $ "failed") $ $) 49)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3533 (($ $) 35)) (-2084 (($ $ $) 39)) (-2530 (($ $ $) 38)) (-3641 (($ $ $) 47)) (-2753 (($ $ $) 53)) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 41)) (-3756 (((-3 $ "failed") $ $) 48)) (-3694 (((-3 $ "failed") $ |#2|) 28)) (-1734 ((|#2| $) 32)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ |#2|) 12)) (-1303 (((-578 |#2|) $) 18)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-778 |#1| |#2|) (-10 -8 (-15 -3641 (|#1| |#1| |#1|)) (-15 -3900 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -3912 (|#1| |#1| |#1|)) (-15 -2529 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#1|)) (-15 -1224 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -3756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2084 (|#1| |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1303 ((-578 |#2|) |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3691 ((-786) |#1|))) (-779 |#2|) (-959)) (T -778))
-NIL
-(-10 -8 (-15 -3641 (|#1| |#1| |#1|)) (-15 -3900 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -3912 (|#1| |#1| |#1|)) (-15 -2529 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3224 (|#1| |#1| |#1|)) (-15 -2160 (|#1| |#1| |#1|)) (-15 -1535 (|#1| |#1| |#1|)) (-15 -1224 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3987 |#1|)) |#1| |#1|)) (-15 -2753 (|#1| |#1| |#1|)) (-15 -3756 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2084 (|#1| |#1| |#1|)) (-15 -2530 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3694 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1303 ((-578 |#2|) |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3224 (($ $ $) 47 (|has| |#1| (-331)))) (-2160 (($ $ $) 48 (|has| |#1| (-331)))) (-1535 (($ $ $) 50 (|has| |#1| (-331)))) (-3912 (($ $ $) 45 (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 44 (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) 46 (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 49 (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) 76 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 74 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 71)) (-3490 (((-501) $) 77 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 75 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 70)) (-3858 (($ $) 66)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 57 (|has| |#1| (-419)))) (-1355 (((-107) $) 31)) (-3787 (($ |#1| (-701)) 64)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 59 (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 60 (|has| |#1| (-508)))) (-2285 (((-701) $) 68)) (-2084 (($ $ $) 54 (|has| |#1| (-331)))) (-2530 (($ $ $) 55 (|has| |#1| (-331)))) (-3641 (($ $ $) 43 (|has| |#1| (-331)))) (-2753 (($ $ $) 52 (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 51 (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) 53 (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 56 (|has| |#1| (-331)))) (-3850 ((|#1| $) 67)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ |#1|) 61 (|has| |#1| (-508)))) (-1201 (((-701) $) 69)) (-1734 ((|#1| $) 58 (|has| |#1| (-419)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 73 (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) 72)) (-1303 (((-578 |#1|) $) 63)) (-2495 ((|#1| $ (-701)) 65)) (-3965 (((-701)) 29)) (-1183 ((|#1| $ |#1| |#1|) 62)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 79) (($ |#1| $) 78)))
-(((-779 |#1|) (-1180) (-959)) (T -779))
-((-1201 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-2285 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-3858 (*1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-3787 (*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-578 *3)))) (-1183 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) (-2985 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) (-4064 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) (-1734 (*1 *2 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-419)))) (-3533 (*1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-419)))) (-1838 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) (-2530 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-2084 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3756 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-2753 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-1224 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-779 *3)))) (-1535 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-2929 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) (-2160 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3224 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-2529 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3912 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3900 (*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-779 *3)))) (-3641 (*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(-13 (-959) (-106 |t#1| |t#1|) (-380 |t#1|) (-10 -8 (-15 -1201 ((-701) $)) (-15 -2285 ((-701) $)) (-15 -3850 (|t#1| $)) (-15 -3858 ($ $)) (-15 -2495 (|t#1| $ (-701))) (-15 -3787 ($ |t#1| (-701))) (-15 -1303 ((-578 |t#1|) $)) (-15 -1183 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -3694 ((-3 $ "failed") $ |t#1|)) (-15 -2985 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -4064 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-419)) (PROGN (-15 -1734 (|t#1| $)) (-15 -3533 ($ $))) |noBranch|) (IF (|has| |t#1| (-331)) (PROGN (-15 -1838 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -2530 ($ $ $)) (-15 -2084 ($ $ $)) (-15 -3756 ((-3 $ "failed") $ $)) (-15 -2753 ($ $ $)) (-15 -1224 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $)) (-15 -1535 ($ $ $)) (-15 -2929 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -2160 ($ $ $)) (-15 -3224 ($ $ $)) (-15 -2529 ((-3 $ "failed") $ $)) (-15 -3912 ($ $ $)) (-15 -3900 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $)) (-15 -3641 ($ $ $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-380 |#1|) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) |has| |#1| (-156)) ((-657) . T) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-2584 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-2929 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-331)))) (-4064 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-508)))) (-1838 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-331)))) (-1183 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31)))
-(((-780 |#1| |#2|) (-10 -7 (-15 -2584 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1183 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-508)) (PROGN (-15 -2985 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -4064 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -1838 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2929 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|)) (-959) (-779 |#1|)) (T -780))
-((-2929 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))) (-1838 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))) (-4064 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-508)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))) (-2985 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-508)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))) (-1183 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-959)) (-5 *1 (-780 *2 *3)) (-4 *3 (-779 *2)))) (-2584 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-959)) (-5 *1 (-780 *5 *2)) (-4 *2 (-779 *5)))))
-(-10 -7 (-15 -2584 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1183 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-508)) (PROGN (-15 -2985 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -4064 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -1838 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2929 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#1| (-331)))) (-2160 (($ $ $) NIL (|has| |#1| (-331)))) (-1535 (($ $ $) NIL (|has| |#1| (-331)))) (-3912 (($ $ $) NIL (|has| |#1| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 25 (|has| |#1| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-3317 (((-786) $ (-786)) NIL)) (-1355 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) NIL)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 21 (|has| |#1| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 19 (|has| |#1| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#1| (-331)))) (-2530 (($ $ $) NIL (|has| |#1| (-331)))) (-3641 (($ $ $) NIL (|has| |#1| (-331)))) (-2753 (($ $ $) NIL (|has| |#1| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 23 (|has| |#1| (-331)))) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-1201 (((-701) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-950 (-375 (-501))))) (($ |#1|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#1| $ |#1| |#1|) 15)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-781 |#1| |#2| |#3|) (-13 (-779 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-786))))) (-959) (-94 |#1|) (-1 |#1| |#1|)) (T -781))
-((-3317 (*1 *2 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-781 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-779 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-786)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3224 (($ $ $) NIL (|has| |#2| (-331)))) (-2160 (($ $ $) NIL (|has| |#2| (-331)))) (-1535 (($ $ $) NIL (|has| |#2| (-331)))) (-3912 (($ $ $) NIL (|has| |#2| (-331)))) (-3900 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#2| (-331)))) (-2529 (((-3 $ "failed") $ $) NIL (|has| |#2| (-331)))) (-2929 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-331)))) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 |#2| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) ((|#2| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#2| (-419)))) (-1355 (((-107) $) NIL)) (-3787 (($ |#2| (-701)) 16)) (-4064 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-508)))) (-2985 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-508)))) (-2285 (((-701) $) NIL)) (-2084 (($ $ $) NIL (|has| |#2| (-331)))) (-2530 (($ $ $) NIL (|has| |#2| (-331)))) (-3641 (($ $ $) NIL (|has| |#2| (-331)))) (-2753 (($ $ $) NIL (|has| |#2| (-331)))) (-1224 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#2| (-331)))) (-3756 (((-3 $ "failed") $ $) NIL (|has| |#2| (-331)))) (-1838 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-331)))) (-3850 ((|#2| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508)))) (-1201 (((-701) $) NIL)) (-1734 ((|#2| $) NIL (|has| |#2| (-419)))) (-3691 (((-786) $) 23) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#2| (-950 (-375 (-501))))) (($ |#2|) NIL) (($ (-1145 |#1|)) 18)) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-701)) NIL)) (-3965 (((-701)) NIL)) (-1183 ((|#2| $ |#2| |#2|) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) 13 T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-782 |#1| |#2| |#3| |#4|) (-13 (-779 |#2|) (-10 -8 (-15 -3691 ($ (-1145 |#1|))))) (-1070) (-959) (-94 |#2|) (-1 |#2| |#2|)) (T -782))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-14 *3 (-1070)) (-5 *1 (-782 *3 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-779 |#2|) (-10 -8 (-15 -3691 ($ (-1145 |#1|)))))
-((-1922 ((|#1| (-701) |#1|) 35 (|has| |#1| (-37 (-375 (-501)))))) (-3212 ((|#1| (-701) (-701) |#1|) 27) ((|#1| (-701) |#1|) 20)) (-2315 ((|#1| (-701) |#1|) 31)) (-4080 ((|#1| (-701) |#1|) 29)) (-3495 ((|#1| (-701) |#1|) 28)))
-(((-783 |#1|) (-10 -7 (-15 -3495 (|#1| (-701) |#1|)) (-15 -4080 (|#1| (-701) |#1|)) (-15 -2315 (|#1| (-701) |#1|)) (-15 -3212 (|#1| (-701) |#1|)) (-15 -3212 (|#1| (-701) (-701) |#1|)) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -1922 (|#1| (-701) |#1|)) |noBranch|)) (-156)) (T -783))
-((-1922 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156)))) (-3212 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) (-3212 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) (-2315 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) (-4080 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) (-3495 (*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))))
-(-10 -7 (-15 -3495 (|#1| (-701) |#1|)) (-15 -4080 (|#1| (-701) |#1|)) (-15 -2315 (|#1| (-701) |#1|)) (-15 -3212 (|#1| (-701) |#1|)) (-15 -3212 (|#1| (-701) (-701) |#1|)) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -1922 (|#1| (-701) |#1|)) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-2150 (((-501) $) 12)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 18) (($ (-501)) 11)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 8)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 9)))
-(((-784) (-13 (-777) (-10 -8 (-15 -3691 ($ (-501))) (-15 -2150 ((-501) $))))) (T -784))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-784)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-784)))))
-(-13 (-777) (-10 -8 (-15 -3691 ($ (-501))) (-15 -2150 ((-501) $))))
-((-4054 (((-1154) (-578 (-50))) 24)) (-2762 (((-1154) (-1053) (-786)) 14) (((-1154) (-786)) 9) (((-1154) (-1053)) 11)))
-(((-785) (-10 -7 (-15 -2762 ((-1154) (-1053))) (-15 -2762 ((-1154) (-786))) (-15 -2762 ((-1154) (-1053) (-786))) (-15 -4054 ((-1154) (-578 (-50)))))) (T -785))
-((-4054 (*1 *2 *3) (-12 (-5 *3 (-578 (-50))) (-5 *2 (-1154)) (-5 *1 (-785)))) (-2762 (*1 *2 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-786)) (-5 *2 (-1154)) (-5 *1 (-785)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-785)))) (-2762 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-785)))))
-(-10 -7 (-15 -2762 ((-1154) (-1053))) (-15 -2762 ((-1154) (-786))) (-15 -2762 ((-1154) (-1053) (-786))) (-15 -4054 ((-1154) (-578 (-50)))))
-((-3736 (((-107) $ $) NIL)) (-4134 (($ $ $) 116)) (-1783 (((-501) $) 30) (((-501)) 35)) (-3030 (($ (-501)) 44)) (-3919 (($ $ $) 45) (($ (-578 $)) 76)) (-1347 (($ $ (-578 $)) 74)) (-4017 (((-501) $) 33)) (-2132 (($ $ $) 63)) (-4063 (($ $) 129) (($ $ $) 130) (($ $ $ $) 131)) (-2049 (((-501) $) 32)) (-3606 (($ $ $) 62)) (-2011 (($ $) 105)) (-1703 (($ $ $) 120)) (-3799 (($ (-578 $)) 52)) (-4147 (($ $ (-578 $)) 69)) (-2228 (($ (-501) (-501)) 46)) (-2833 (($ $) 117) (($ $ $) 118)) (-1320 (($ $ (-501)) 40) (($ $) 43)) (-3023 (($ $ $) 89)) (-2086 (($ $ $) 123)) (-3911 (($ $) 106)) (-3034 (($ $ $) 90)) (-3215 (($ $) 132) (($ $ $) 133) (($ $ $ $) 134)) (-3802 (((-1154) $) 8)) (-1451 (($ $) 109) (($ $ (-701)) 113)) (-3062 (($ $ $) 65)) (-3411 (($ $ $) 64)) (-2995 (($ $ (-578 $)) 100)) (-2192 (($ $ $) 104)) (-2393 (($ (-578 $)) 50)) (-2446 (($ $) 60) (($ (-578 $)) 61)) (-1207 (($ $ $) 114)) (-1499 (($ $) 107)) (-2736 (($ $ $) 119)) (-3317 (($ (-501)) 20) (($ (-1070)) 22) (($ (-1053)) 29) (($ (-199)) 24)) (-4057 (($ $ $) 93)) (-3031 (($ $) 94)) (-2662 (((-1154) (-1053)) 14)) (-3535 (($ (-1053)) 13)) (-2630 (($ (-578 (-578 $))) 48)) (-1313 (($ $ (-501)) 39) (($ $) 42)) (-3460 (((-1053) $) NIL)) (-2915 (($ $ $) 122)) (-3089 (($ $) 135) (($ $ $) 136) (($ $ $ $) 137)) (-4095 (((-107) $) 98)) (-3712 (($ $ (-578 $)) 102) (($ $ $ $) 103)) (-2974 (($ (-501)) 36)) (-2696 (((-501) $) 31) (((-501)) 34)) (-2831 (($ $ $) 37) (($ (-578 $)) 75)) (-3708 (((-1018) $) NIL)) (-3694 (($ $ $) 91)) (-3122 (($) 12)) (-2007 (($ $ (-578 $)) 99)) (-1293 (($ $) 108) (($ $ (-701)) 112)) (-3040 (($ $ $) 88)) (-2596 (($ $ (-701)) 128)) (-3883 (($ (-578 $)) 51)) (-3691 (((-786) $) 18)) (-2896 (($ $ (-501)) 38) (($ $) 41)) (-3348 (($ $) 58) (($ (-578 $)) 59)) (-3910 (($ $) 56) (($ (-578 $)) 57)) (-1831 (($ $) 115)) (-1757 (($ (-578 $)) 55)) (-1299 (($ $ $) 97)) (-1278 (($ $ $) 121)) (-1280 (($ $ $) 92)) (-3775 (($ $ $) 77)) (-3686 (($ $ $) 95) (($ $) 96)) (-3778 (($ $ $) 81)) (-3768 (($ $ $) 79)) (-3751 (((-107) $ $) 15) (($ $ $) 16)) (-3773 (($ $ $) 80)) (-3762 (($ $ $) 78)) (-3803 (($ $ $) 86)) (-3797 (($ $ $) 83) (($ $) 84)) (-3790 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-786) (-13 (-1001) (-10 -8 (-15 -3802 ((-1154) $)) (-15 -3535 ($ (-1053))) (-15 -2662 ((-1154) (-1053))) (-15 -3317 ($ (-501))) (-15 -3317 ($ (-1070))) (-15 -3317 ($ (-1053))) (-15 -3317 ($ (-199))) (-15 -3122 ($)) (-15 -1783 ((-501) $)) (-15 -2696 ((-501) $)) (-15 -1783 ((-501))) (-15 -2696 ((-501))) (-15 -2049 ((-501) $)) (-15 -4017 ((-501) $)) (-15 -2974 ($ (-501))) (-15 -3030 ($ (-501))) (-15 -2228 ($ (-501) (-501))) (-15 -1313 ($ $ (-501))) (-15 -1320 ($ $ (-501))) (-15 -2896 ($ $ (-501))) (-15 -1313 ($ $)) (-15 -1320 ($ $)) (-15 -2896 ($ $)) (-15 -2831 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -2831 ($ (-578 $))) (-15 -3919 ($ (-578 $))) (-15 -2995 ($ $ (-578 $))) (-15 -3712 ($ $ (-578 $))) (-15 -3712 ($ $ $ $)) (-15 -2192 ($ $ $)) (-15 -4095 ((-107) $)) (-15 -2007 ($ $ (-578 $))) (-15 -2011 ($ $)) (-15 -2915 ($ $ $)) (-15 -1831 ($ $)) (-15 -2630 ($ (-578 (-578 $)))) (-15 -4134 ($ $ $)) (-15 -2833 ($ $)) (-15 -2833 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -1703 ($ $ $)) (-15 -1278 ($ $ $)) (-15 -2086 ($ $ $)) (-15 -2596 ($ $ (-701))) (-15 -1299 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2132 ($ $ $)) (-15 -3411 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -4147 ($ $ (-578 $))) (-15 -1347 ($ $ (-578 $))) (-15 -3911 ($ $)) (-15 -1293 ($ $)) (-15 -1293 ($ $ (-701))) (-15 -1451 ($ $)) (-15 -1451 ($ $ (-701))) (-15 -1499 ($ $)) (-15 -1207 ($ $ $)) (-15 -4063 ($ $)) (-15 -4063 ($ $ $)) (-15 -4063 ($ $ $ $)) (-15 -3215 ($ $)) (-15 -3215 ($ $ $)) (-15 -3215 ($ $ $ $)) (-15 -3089 ($ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $ $ $)) (-15 -3910 ($ $)) (-15 -3910 ($ (-578 $))) (-15 -3348 ($ $)) (-15 -3348 ($ (-578 $))) (-15 -2446 ($ $)) (-15 -2446 ($ (-578 $))) (-15 -2393 ($ (-578 $))) (-15 -3883 ($ (-578 $))) (-15 -3799 ($ (-578 $))) (-15 -1757 ($ (-578 $))) (-15 -3751 ($ $ $)) (-15 -3775 ($ $ $)) (-15 -3762 ($ $ $)) (-15 -3768 ($ $ $)) (-15 -3773 ($ $ $)) (-15 -3778 ($ $ $)) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3797 ($ $)) (-15 * ($ $ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -3694 ($ $ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -3031 ($ $)) (-15 -3686 ($ $ $)) (-15 -3686 ($ $))))) (T -786))
-((-3802 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-786)))) (-3535 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-786)))) (-2662 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-786)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-786)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-786)))) (-3317 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-786)))) (-3122 (*1 *1) (-5 *1 (-786))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-1783 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2696 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2049 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-4017 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-3030 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2228 (*1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-1313 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-1320 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-2896 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) (-1313 (*1 *1 *1) (-5 *1 (-786))) (-1320 (*1 *1 *1) (-5 *1 (-786))) (-2896 (*1 *1 *1) (-5 *1 (-786))) (-2831 (*1 *1 *1 *1) (-5 *1 (-786))) (-3919 (*1 *1 *1 *1) (-5 *1 (-786))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3919 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3712 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3712 (*1 *1 *1 *1 *1) (-5 *1 (-786))) (-2192 (*1 *1 *1 *1) (-5 *1 (-786))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-786)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-2011 (*1 *1 *1) (-5 *1 (-786))) (-2915 (*1 *1 *1 *1) (-5 *1 (-786))) (-1831 (*1 *1 *1) (-5 *1 (-786))) (-2630 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-786)))) (-5 *1 (-786)))) (-4134 (*1 *1 *1 *1) (-5 *1 (-786))) (-2833 (*1 *1 *1) (-5 *1 (-786))) (-2833 (*1 *1 *1 *1) (-5 *1 (-786))) (-2736 (*1 *1 *1 *1) (-5 *1 (-786))) (-1703 (*1 *1 *1 *1) (-5 *1 (-786))) (-1278 (*1 *1 *1 *1) (-5 *1 (-786))) (-2086 (*1 *1 *1 *1) (-5 *1 (-786))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) (-1299 (*1 *1 *1 *1) (-5 *1 (-786))) (-3606 (*1 *1 *1 *1) (-5 *1 (-786))) (-2132 (*1 *1 *1 *1) (-5 *1 (-786))) (-3411 (*1 *1 *1 *1) (-5 *1 (-786))) (-3062 (*1 *1 *1 *1) (-5 *1 (-786))) (-4147 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3911 (*1 *1 *1) (-5 *1 (-786))) (-1293 (*1 *1 *1) (-5 *1 (-786))) (-1293 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) (-1451 (*1 *1 *1) (-5 *1 (-786))) (-1451 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) (-1499 (*1 *1 *1) (-5 *1 (-786))) (-1207 (*1 *1 *1 *1) (-5 *1 (-786))) (-4063 (*1 *1 *1) (-5 *1 (-786))) (-4063 (*1 *1 *1 *1) (-5 *1 (-786))) (-4063 (*1 *1 *1 *1 *1) (-5 *1 (-786))) (-3215 (*1 *1 *1) (-5 *1 (-786))) (-3215 (*1 *1 *1 *1) (-5 *1 (-786))) (-3215 (*1 *1 *1 *1 *1) (-5 *1 (-786))) (-3089 (*1 *1 *1) (-5 *1 (-786))) (-3089 (*1 *1 *1 *1) (-5 *1 (-786))) (-3089 (*1 *1 *1 *1 *1) (-5 *1 (-786))) (-3910 (*1 *1 *1) (-5 *1 (-786))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3348 (*1 *1 *1) (-5 *1 (-786))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-2446 (*1 *1 *1) (-5 *1 (-786))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-2393 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3883 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3799 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-1757 (*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) (-3751 (*1 *1 *1 *1) (-5 *1 (-786))) (-3775 (*1 *1 *1 *1) (-5 *1 (-786))) (-3762 (*1 *1 *1 *1) (-5 *1 (-786))) (-3768 (*1 *1 *1 *1) (-5 *1 (-786))) (-3773 (*1 *1 *1 *1) (-5 *1 (-786))) (-3778 (*1 *1 *1 *1) (-5 *1 (-786))) (-3790 (*1 *1 *1 *1) (-5 *1 (-786))) (-3797 (*1 *1 *1 *1) (-5 *1 (-786))) (-3797 (*1 *1 *1) (-5 *1 (-786))) (* (*1 *1 *1 *1) (-5 *1 (-786))) (-3803 (*1 *1 *1 *1) (-5 *1 (-786))) (** (*1 *1 *1 *1) (-5 *1 (-786))) (-3040 (*1 *1 *1 *1) (-5 *1 (-786))) (-3023 (*1 *1 *1 *1) (-5 *1 (-786))) (-3034 (*1 *1 *1 *1) (-5 *1 (-786))) (-3694 (*1 *1 *1 *1) (-5 *1 (-786))) (-1280 (*1 *1 *1 *1) (-5 *1 (-786))) (-4057 (*1 *1 *1 *1) (-5 *1 (-786))) (-3031 (*1 *1 *1) (-5 *1 (-786))) (-3686 (*1 *1 *1 *1) (-5 *1 (-786))) (-3686 (*1 *1 *1) (-5 *1 (-786))))
-(-13 (-1001) (-10 -8 (-15 -3802 ((-1154) $)) (-15 -3535 ($ (-1053))) (-15 -2662 ((-1154) (-1053))) (-15 -3317 ($ (-501))) (-15 -3317 ($ (-1070))) (-15 -3317 ($ (-1053))) (-15 -3317 ($ (-199))) (-15 -3122 ($)) (-15 -1783 ((-501) $)) (-15 -2696 ((-501) $)) (-15 -1783 ((-501))) (-15 -2696 ((-501))) (-15 -2049 ((-501) $)) (-15 -4017 ((-501) $)) (-15 -2974 ($ (-501))) (-15 -3030 ($ (-501))) (-15 -2228 ($ (-501) (-501))) (-15 -1313 ($ $ (-501))) (-15 -1320 ($ $ (-501))) (-15 -2896 ($ $ (-501))) (-15 -1313 ($ $)) (-15 -1320 ($ $)) (-15 -2896 ($ $)) (-15 -2831 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -2831 ($ (-578 $))) (-15 -3919 ($ (-578 $))) (-15 -2995 ($ $ (-578 $))) (-15 -3712 ($ $ (-578 $))) (-15 -3712 ($ $ $ $)) (-15 -2192 ($ $ $)) (-15 -4095 ((-107) $)) (-15 -2007 ($ $ (-578 $))) (-15 -2011 ($ $)) (-15 -2915 ($ $ $)) (-15 -1831 ($ $)) (-15 -2630 ($ (-578 (-578 $)))) (-15 -4134 ($ $ $)) (-15 -2833 ($ $)) (-15 -2833 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -1703 ($ $ $)) (-15 -1278 ($ $ $)) (-15 -2086 ($ $ $)) (-15 -2596 ($ $ (-701))) (-15 -1299 ($ $ $)) (-15 -3606 ($ $ $)) (-15 -2132 ($ $ $)) (-15 -3411 ($ $ $)) (-15 -3062 ($ $ $)) (-15 -4147 ($ $ (-578 $))) (-15 -1347 ($ $ (-578 $))) (-15 -3911 ($ $)) (-15 -1293 ($ $)) (-15 -1293 ($ $ (-701))) (-15 -1451 ($ $)) (-15 -1451 ($ $ (-701))) (-15 -1499 ($ $)) (-15 -1207 ($ $ $)) (-15 -4063 ($ $)) (-15 -4063 ($ $ $)) (-15 -4063 ($ $ $ $)) (-15 -3215 ($ $)) (-15 -3215 ($ $ $)) (-15 -3215 ($ $ $ $)) (-15 -3089 ($ $)) (-15 -3089 ($ $ $)) (-15 -3089 ($ $ $ $)) (-15 -3910 ($ $)) (-15 -3910 ($ (-578 $))) (-15 -3348 ($ $)) (-15 -3348 ($ (-578 $))) (-15 -2446 ($ $)) (-15 -2446 ($ (-578 $))) (-15 -2393 ($ (-578 $))) (-15 -3883 ($ (-578 $))) (-15 -3799 ($ (-578 $))) (-15 -1757 ($ (-578 $))) (-15 -3751 ($ $ $)) (-15 -3775 ($ $ $)) (-15 -3762 ($ $ $)) (-15 -3768 ($ $ $)) (-15 -3773 ($ $ $)) (-15 -3778 ($ $ $)) (-15 -3790 ($ $ $)) (-15 -3797 ($ $ $)) (-15 -3797 ($ $)) (-15 * ($ $ $)) (-15 -3803 ($ $ $)) (-15 ** ($ $ $)) (-15 -3040 ($ $ $)) (-15 -3023 ($ $ $)) (-15 -3034 ($ $ $)) (-15 -3694 ($ $ $)) (-15 -1280 ($ $ $)) (-15 -4057 ($ $ $)) (-15 -3031 ($ $)) (-15 -3686 ($ $ $)) (-15 -3686 ($ $))))
-((-3736 (((-107) $ $) NIL)) (-3484 (((-3 $ "failed") (-1070)) 32)) (-3796 (((-701)) 30)) (-2890 (($) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3104 (((-839) $) 28)) (-3460 (((-1053) $) 38)) (-3506 (($ (-839)) 27)) (-3708 (((-1018) $) NIL)) (-1248 (((-1070) $) 13) (((-490) $) 19) (((-810 (-346)) $) 25) (((-810 (-501)) $) 22)) (-3691 (((-786) $) 16)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 35)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 34)))
-(((-787 |#1|) (-13 (-771) (-556 (-1070)) (-556 (-490)) (-556 (-810 (-346))) (-556 (-810 (-501))) (-10 -8 (-15 -3484 ((-3 $ "failed") (-1070))))) (-578 (-1070))) (T -787))
-((-3484 (*1 *1 *2) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-787 *3)) (-14 *3 (-578 *2)))))
-(-13 (-771) (-556 (-1070)) (-556 (-490)) (-556 (-810 (-346))) (-556 (-810 (-501))) (-10 -8 (-15 -3484 ((-3 $ "failed") (-1070)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (((-866 |#1|) $) NIL) (($ (-866 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-3965 (((-701)) NIL)) (-1333 (((-1154) (-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-788 |#1| |#2| |#3| |#4|) (-13 (-959) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -3691 ((-866 |#1|) $)) (-15 -3691 ($ (-866 |#1|))) (IF (|has| |#1| (-331)) (-15 -3803 ((-3 $ "failed") $ $)) |noBranch|) (-15 -1333 ((-1154) (-701))))) (-959) (-578 (-1070)) (-578 (-701)) (-701)) (T -788))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-866 *3)) (-5 *1 (-788 *3 *4 *5 *6)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))) (-14 *5 (-578 (-701))) (-14 *6 (-701)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-5 *1 (-788 *3 *4 *5 *6)) (-14 *4 (-578 (-1070))) (-14 *5 (-578 (-701))) (-14 *6 (-701)))) (-3803 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-788 *2 *3 *4 *5)) (-4 *2 (-331)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-701))) (-14 *5 (-701)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-788 *4 *5 *6 *7)) (-4 *4 (-959)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 *3)) (-14 *7 *3))))
-(-13 (-959) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -3691 ((-866 |#1|) $)) (-15 -3691 ($ (-866 |#1|))) (IF (|has| |#1| (-331)) (-15 -3803 ((-3 $ "failed") $ $)) |noBranch|) (-15 -1333 ((-1154) (-701)))))
-((-1752 (((-3 (-157 |#3|) "failed") (-701) (-701) |#2| |#2|) 31)) (-2797 (((-3 (-375 |#3|) "failed") (-701) (-701) |#2| |#2|) 24)))
-(((-789 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-3 (-375 |#3|) "failed") (-701) (-701) |#2| |#2|)) (-15 -1752 ((-3 (-157 |#3|) "failed") (-701) (-701) |#2| |#2|))) (-331) (-1142 |#1|) (-1125 |#1|)) (T -789))
-((-1752 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-4 *5 (-331)) (-5 *2 (-157 *6)) (-5 *1 (-789 *5 *4 *6)) (-4 *4 (-1142 *5)) (-4 *6 (-1125 *5)))) (-2797 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-4 *5 (-331)) (-5 *2 (-375 *6)) (-5 *1 (-789 *5 *4 *6)) (-4 *4 (-1142 *5)) (-4 *6 (-1125 *5)))))
-(-10 -7 (-15 -2797 ((-3 (-375 |#3|) "failed") (-701) (-701) |#2| |#2|)) (-15 -1752 ((-3 (-157 |#3|) "failed") (-701) (-701) |#2| |#2|)))
-((-2797 (((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|)) 28) (((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) 26)))
-(((-790 |#1| |#2| |#3|) (-10 -7 (-15 -2797 ((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) (-15 -2797 ((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|)))) (-331) (-1070) |#1|) (T -790))
-((-2797 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-701)) (-5 *4 (-1139 *5 *6 *7)) (-4 *5 (-331)) (-14 *6 (-1070)) (-14 *7 *5) (-5 *2 (-375 (-1118 *6 *5))) (-5 *1 (-790 *5 *6 *7)))) (-2797 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-5 *4 (-1139 *5 *6 *7)) (-4 *5 (-331)) (-14 *6 (-1070)) (-14 *7 *5) (-5 *2 (-375 (-1118 *6 *5))) (-5 *1 (-790 *5 *6 *7)))))
-(-10 -7 (-15 -2797 ((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) (-15 -2797 ((-3 (-375 (-1118 |#2| |#1|)) "failed") (-701) (-701) (-1139 |#1| |#2| |#3|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $ (-501)) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2833 (($ (-1064 (-501)) (-501)) NIL)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1529 (($ $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-3169 (((-701) $) NIL)) (-1355 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3121 (((-501)) NIL)) (-2443 (((-501) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3718 (($ $ (-501)) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3960 (((-1048 (-501)) $) NIL)) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-2391 (((-501) $ (-501)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL)))
-(((-791 |#1|) (-792 |#1|) (-501)) (T -791))
-NIL
-(-792 |#1|)
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3743 (($ $ (-501)) 62)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-2833 (($ (-1064 (-501)) (-501)) 61)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-1529 (($ $) 64)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-3169 (((-701) $) 69)) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-3121 (((-501)) 66)) (-2443 (((-501) $) 65)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3718 (($ $ (-501)) 68)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-3960 (((-1048 (-501)) $) 70)) (-1267 (($ $) 67)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-2391 (((-501) $ (-501)) 63)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-792 |#1|) (-1180) (-501)) (T -792))
-((-3960 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-1048 (-501))))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-701)))) (-3718 (*1 *1 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-1267 (*1 *1 *1) (-4 *1 (-792 *2))) (-3121 (*1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-1529 (*1 *1 *1) (-4 *1 (-792 *2))) (-2391 (*1 *2 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-3743 (*1 *1 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) (-2833 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *3 (-501)) (-4 *1 (-792 *4)))))
-(-13 (-276) (-134) (-10 -8 (-15 -3960 ((-1048 (-501)) $)) (-15 -3169 ((-701) $)) (-15 -3718 ($ $ (-501))) (-15 -1267 ($ $)) (-15 -3121 ((-501))) (-15 -2443 ((-501) $)) (-15 -1529 ($ $)) (-15 -2391 ((-501) $ (-501))) (-15 -3743 ($ $ (-501))) (-15 -2833 ($ (-1064 (-501)) (-501)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-276) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-791 |#1|) $) NIL (|has| (-791 |#1|) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-791 |#1|) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-791 |#1|) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-791 |#1|) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-791 |#1|) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| (-791 |#1|) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-791 |#1|) (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| (-791 |#1|) (-950 (-501))))) (-3490 (((-791 |#1|) $) NIL) (((-1070) $) NIL (|has| (-791 |#1|) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-791 |#1|) (-950 (-501)))) (((-501) $) NIL (|has| (-791 |#1|) (-950 (-501))))) (-1574 (($ $) NIL) (($ (-501) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-791 |#1|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-791 |#1|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-791 |#1|))) (|:| |vec| (-1148 (-791 |#1|)))) (-621 $) (-1148 $)) NIL) (((-621 (-791 |#1|)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-791 |#1|) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| (-791 |#1|) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-791 |#1|) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-791 |#1|) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-791 |#1|) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| (-791 |#1|) (-1046)))) (-4067 (((-107) $) NIL (|has| (-791 |#1|) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-791 |#1|) (-777)))) (-1323 (($ $ $) NIL (|has| (-791 |#1|) (-777)))) (-1212 (($ (-1 (-791 |#1|) (-791 |#1|)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-791 |#1|) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-791 |#1|) (-276)))) (-3383 (((-791 |#1|) $) NIL (|has| (-791 |#1|) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-791 |#1|) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-791 |#1|) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-791 |#1|)) (-578 (-791 |#1|))) NIL (|has| (-791 |#1|) (-278 (-791 |#1|)))) (($ $ (-791 |#1|) (-791 |#1|)) NIL (|has| (-791 |#1|) (-278 (-791 |#1|)))) (($ $ (-262 (-791 |#1|))) NIL (|has| (-791 |#1|) (-278 (-791 |#1|)))) (($ $ (-578 (-262 (-791 |#1|)))) NIL (|has| (-791 |#1|) (-278 (-791 |#1|)))) (($ $ (-578 (-1070)) (-578 (-791 |#1|))) NIL (|has| (-791 |#1|) (-476 (-1070) (-791 |#1|)))) (($ $ (-1070) (-791 |#1|)) NIL (|has| (-791 |#1|) (-476 (-1070) (-791 |#1|))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-791 |#1|)) NIL (|has| (-791 |#1|) (-256 (-791 |#1|) (-791 |#1|))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| (-791 |#1|) (-206))) (($ $ (-701)) NIL (|has| (-791 |#1|) (-206))) (($ $ (-1070)) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-1 (-791 |#1|) (-791 |#1|)) (-701)) NIL) (($ $ (-1 (-791 |#1|) (-791 |#1|))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-791 |#1|) $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| (-791 |#1|) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-791 |#1|) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-791 |#1|) (-556 (-490)))) (((-346) $) NIL (|has| (-791 |#1|) (-933))) (((-199) $) NIL (|has| (-791 |#1|) (-933)))) (-2672 (((-157 (-375 (-501))) $) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-791 |#1|) (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL) (($ (-791 |#1|)) NIL) (($ (-1070)) NIL (|has| (-791 |#1|) (-950 (-1070))))) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-791 |#1|) (-830))) (|has| (-791 |#1|) (-132))))) (-3965 (((-701)) NIL)) (-2803 (((-791 |#1|) $) NIL (|has| (-791 |#1|) (-500)))) (-2442 (((-107) $ $) NIL)) (-2391 (((-375 (-501)) $ (-501)) NIL)) (-1720 (($ $) NIL (|has| (-791 |#1|) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $) NIL (|has| (-791 |#1|) (-206))) (($ $ (-701)) NIL (|has| (-791 |#1|) (-206))) (($ $ (-1070)) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-791 |#1|) (-820 (-1070)))) (($ $ (-1 (-791 |#1|) (-791 |#1|)) (-701)) NIL) (($ $ (-1 (-791 |#1|) (-791 |#1|))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-791 |#1|) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-791 |#1|) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-791 |#1|) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-791 |#1|) (-777)))) (-3803 (($ $ $) NIL) (($ (-791 |#1|) (-791 |#1|)) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-791 |#1|) $) NIL) (($ $ (-791 |#1|)) NIL)))
-(((-793 |#1|) (-13 (-906 (-791 |#1|)) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)))) (-501)) (T -793))
-((-2391 (*1 *2 *1 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-793 *4)) (-14 *4 *3) (-5 *3 (-501)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-793 *3)) (-14 *3 (-501)))) (-1574 (*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-14 *2 (-501)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-793 *3)) (-14 *3 *2))))
-(-13 (-906 (-791 |#1|)) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 ((|#2| $) NIL (|has| |#2| (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| |#2| (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (|has| |#2| (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501))))) (-3490 ((|#2| $) NIL) (((-1070) $) NIL (|has| |#2| (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-501)))) (((-501) $) NIL (|has| |#2| (-950 (-501))))) (-1574 (($ $) 31) (($ (-501) $) 32)) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) 53)) (-2890 (($) NIL (|has| |#2| (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) NIL (|has| |#2| (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| |#2| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| |#2| (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 ((|#2| $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#2| (-1046)))) (-4067 (((-107) $) NIL (|has| |#2| (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 49)) (-3746 (($) NIL (|has| |#2| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| |#2| (-276)))) (-3383 ((|#2| $) NIL (|has| |#2| (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 |#2|) (-578 |#2|)) NIL (|has| |#2| (-278 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-278 |#2|))) (($ $ (-262 |#2|)) NIL (|has| |#2| (-278 |#2|))) (($ $ (-578 (-262 |#2|))) NIL (|has| |#2| (-278 |#2|))) (($ $ (-578 (-1070)) (-578 |#2|)) NIL (|has| |#2| (-476 (-1070) |#2|))) (($ $ (-1070) |#2|) NIL (|has| |#2| (-476 (-1070) |#2|)))) (-1864 (((-701) $) NIL)) (-2007 (($ $ |#2|) NIL (|has| |#2| (-256 |#2| |#2|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) NIL (|has| |#2| (-206))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3307 (($ $) NIL)) (-2949 ((|#2| $) NIL)) (-1248 (((-810 (-501)) $) NIL (|has| |#2| (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| |#2| (-556 (-810 (-346))))) (((-490) $) NIL (|has| |#2| (-556 (-490)))) (((-346) $) NIL (|has| |#2| (-933))) (((-199) $) NIL (|has| |#2| (-933)))) (-2672 (((-157 (-375 (-501))) $) 68)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3691 (((-786) $) 85) (($ (-501)) 19) (($ $) NIL) (($ (-375 (-501))) 24) (($ |#2|) 18) (($ (-1070)) NIL (|has| |#2| (-950 (-1070))))) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-2803 ((|#2| $) NIL (|has| |#2| (-500)))) (-2442 (((-107) $ $) NIL)) (-2391 (((-375 (-501)) $ (-501)) 60)) (-1720 (($ $) NIL (|has| |#2| (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 14 T CONST)) (-1925 (($) 16 T CONST)) (-3584 (($ $) NIL (|has| |#2| (-206))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) 35)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ $) 23) (($ |#2| |#2|) 54)) (-3797 (($ $) 39) (($ $ $) 41)) (-3790 (($ $ $) 37)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) 50)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 42) (($ $ $) 44) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-794 |#1| |#2|) (-13 (-906 |#2|) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)))) (-501) (-792 |#1|)) (T -794))
-((-2391 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-375 (-501))) (-5 *1 (-794 *4 *5)) (-5 *3 (-501)) (-4 *5 (-792 *4)))) (-2672 (*1 *2 *1) (-12 (-14 *3 (-501)) (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-794 *3 *4)) (-4 *4 (-792 *3)))) (-1574 (*1 *1 *1) (-12 (-14 *2 (-501)) (-5 *1 (-794 *2 *3)) (-4 *3 (-792 *2)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-14 *3 *2) (-5 *1 (-794 *3 *4)) (-4 *4 (-792 *3)))))
-(-13 (-906 |#2|) (-10 -8 (-15 -2391 ((-375 (-501)) $ (-501))) (-15 -2672 ((-157 (-375 (-501))) $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $))))
-((-3736 (((-107) $ $) NIL)) (-3052 (((-501) $) 15)) (-2580 (($ (-142)) 11)) (-3904 (($ (-142)) 12)) (-3460 (((-1053) $) NIL)) (-3531 (((-142) $) 13)) (-3708 (((-1018) $) NIL)) (-2742 (($ (-142)) 9)) (-3632 (($ (-142)) 8)) (-3691 (((-786) $) 23) (($ (-142)) 16)) (-3161 (($ (-142)) 10)) (-3751 (((-107) $ $) NIL)))
-(((-795) (-13 (-1001) (-10 -8 (-15 -3632 ($ (-142))) (-15 -2742 ($ (-142))) (-15 -3161 ($ (-142))) (-15 -2580 ($ (-142))) (-15 -3904 ($ (-142))) (-15 -3531 ((-142) $)) (-15 -3052 ((-501) $)) (-15 -3691 ($ (-142)))))) (T -795))
-((-3632 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-2742 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-3161 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-2580 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-3904 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-795)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))))
-(-13 (-1001) (-10 -8 (-15 -3632 ($ (-142))) (-15 -2742 ($ (-142))) (-15 -3161 ($ (-142))) (-15 -2580 ($ (-142))) (-15 -3904 ($ (-142))) (-15 -3531 ((-142) $)) (-15 -3052 ((-501) $)) (-15 -3691 ($ (-142)))))
-((-3691 (((-282 (-501)) (-375 (-866 (-47)))) 21) (((-282 (-501)) (-866 (-47))) 16)))
-(((-796) (-10 -7 (-15 -3691 ((-282 (-501)) (-866 (-47)))) (-15 -3691 ((-282 (-501)) (-375 (-866 (-47))))))) (T -796))
-((-3691 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 (-47)))) (-5 *2 (-282 (-501))) (-5 *1 (-796)))) (-3691 (*1 *2 *3) (-12 (-5 *3 (-866 (-47))) (-5 *2 (-282 (-501))) (-5 *1 (-796)))))
-(-10 -7 (-15 -3691 ((-282 (-501)) (-866 (-47)))) (-15 -3691 ((-282 (-501)) (-375 (-866 (-47))))))
-((-1212 (((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)) 14)))
-(((-797 |#1| |#2|) (-10 -7 (-15 -1212 ((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|)))) (-1104) (-1104)) (T -797))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-798 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-798 *6)) (-5 *1 (-797 *5 *6)))))
-(-10 -7 (-15 -1212 ((-798 |#2|) (-1 |#2| |#1|) (-798 |#1|))))
-((-1542 (($ |#1| |#1|) 8)) (-3698 ((|#1| $ (-701)) 10)))
-(((-798 |#1|) (-10 -8 (-15 -1542 ($ |#1| |#1|)) (-15 -3698 (|#1| $ (-701)))) (-1104)) (T -798))
-((-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-798 *2)) (-4 *2 (-1104)))) (-1542 (*1 *1 *2 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1104)))))
-(-10 -8 (-15 -1542 ($ |#1| |#1|)) (-15 -3698 (|#1| $ (-701))))
-((-1212 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14)))
-(((-799 |#1| |#2|) (-10 -7 (-15 -1212 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1104) (-1104)) (T -799))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))))
-(-10 -7 (-15 -1212 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))))
-((-1542 (($ |#1| |#1| |#1|) 8)) (-3698 ((|#1| $ (-701)) 10)))
-(((-800 |#1|) (-10 -8 (-15 -1542 ($ |#1| |#1| |#1|)) (-15 -3698 (|#1| $ (-701)))) (-1104)) (T -800))
-((-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-800 *2)) (-4 *2 (-1104)))) (-1542 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1104)))))
-(-10 -8 (-15 -1542 ($ |#1| |#1| |#1|)) (-15 -3698 (|#1| $ (-701))))
-((-1212 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 14)))
-(((-801 |#1| |#2|) (-10 -7 (-15 -1212 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1104) (-1104)) (T -801))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))))
-(-10 -7 (-15 -1212 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|))))
-((-2795 (($ |#1| |#1| |#1|) 8)) (-3698 ((|#1| $ (-701)) 10)))
-(((-802 |#1|) (-10 -8 (-15 -2795 ($ |#1| |#1| |#1|)) (-15 -3698 (|#1| $ (-701)))) (-1104)) (T -802))
-((-3698 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-802 *2)) (-4 *2 (-1104)))) (-2795 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1104)))))
-(-10 -8 (-15 -2795 ($ |#1| |#1| |#1|)) (-15 -3698 (|#1| $ (-701))))
-((-3941 (((-1048 (-578 (-501))) (-578 (-501)) (-1048 (-578 (-501)))) 30)) (-3415 (((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501))) 26)) (-2802 (((-1048 (-578 (-501))) (-578 (-501))) 39) (((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501))) 38)) (-3393 (((-1048 (-578 (-501))) (-501)) 40)) (-3891 (((-1048 (-578 (-501))) (-501) (-501)) 22) (((-1048 (-578 (-501))) (-501)) 16) (((-1048 (-578 (-501))) (-501) (-501) (-501)) 12)) (-3110 (((-1048 (-578 (-501))) (-1048 (-578 (-501)))) 24)) (-3097 (((-578 (-501)) (-578 (-501))) 23)))
-(((-803) (-10 -7 (-15 -3891 ((-1048 (-578 (-501))) (-501) (-501) (-501))) (-15 -3891 ((-1048 (-578 (-501))) (-501))) (-15 -3891 ((-1048 (-578 (-501))) (-501) (-501))) (-15 -3097 ((-578 (-501)) (-578 (-501)))) (-15 -3110 ((-1048 (-578 (-501))) (-1048 (-578 (-501))))) (-15 -3415 ((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501)))) (-15 -3941 ((-1048 (-578 (-501))) (-578 (-501)) (-1048 (-578 (-501))))) (-15 -2802 ((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501)))) (-15 -2802 ((-1048 (-578 (-501))) (-578 (-501)))) (-15 -3393 ((-1048 (-578 (-501))) (-501))))) (T -803))
-((-3393 (*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) (-2802 (*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))) (-2802 (*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))) (-3941 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *3 (-578 (-501))) (-5 *1 (-803)))) (-3415 (*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))) (-3110 (*1 *2 *2) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)))) (-3097 (*1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-803)))) (-3891 (*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) (-3891 (*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) (-3891 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))))
-(-10 -7 (-15 -3891 ((-1048 (-578 (-501))) (-501) (-501) (-501))) (-15 -3891 ((-1048 (-578 (-501))) (-501))) (-15 -3891 ((-1048 (-578 (-501))) (-501) (-501))) (-15 -3097 ((-578 (-501)) (-578 (-501)))) (-15 -3110 ((-1048 (-578 (-501))) (-1048 (-578 (-501))))) (-15 -3415 ((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501)))) (-15 -3941 ((-1048 (-578 (-501))) (-578 (-501)) (-1048 (-578 (-501))))) (-15 -2802 ((-1048 (-578 (-501))) (-578 (-501)) (-578 (-501)))) (-15 -2802 ((-1048 (-578 (-501))) (-578 (-501)))) (-15 -3393 ((-1048 (-578 (-501))) (-501))))
-((-1248 (((-810 (-346)) $) 9 (|has| |#1| (-556 (-810 (-346))))) (((-810 (-501)) $) 8 (|has| |#1| (-556 (-810 (-501)))))))
-(((-804 |#1|) (-1180) (-1104)) (T -804))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-556 (-810 (-501)))) (-6 (-556 (-810 (-501)))) |noBranch|) (IF (|has| |t#1| (-556 (-810 (-346)))) (-6 (-556 (-810 (-346)))) |noBranch|)))
-(((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501)))))
-((-3736 (((-107) $ $) NIL)) (-3634 (($) 14)) (-1518 (($ (-808 |#1| |#2|) (-808 |#1| |#3|)) 27)) (-2826 (((-808 |#1| |#3|) $) 16)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2526 (((-107) $) 22)) (-4142 (($) 19)) (-3691 (((-786) $) 30)) (-3905 (((-808 |#1| |#2|) $) 15)) (-3751 (((-107) $ $) 25)))
-(((-805 |#1| |#2| |#3|) (-13 (-1001) (-10 -8 (-15 -2526 ((-107) $)) (-15 -4142 ($)) (-15 -3634 ($)) (-15 -1518 ($ (-808 |#1| |#2|) (-808 |#1| |#3|))) (-15 -3905 ((-808 |#1| |#2|) $)) (-15 -2826 ((-808 |#1| |#3|) $)))) (-1001) (-1001) (-601 |#2|)) (T -805))
-((-2526 (*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4)))) (-4142 (*1 *1) (-12 (-4 *3 (-1001)) (-5 *1 (-805 *2 *3 *4)) (-4 *2 (-1001)) (-4 *4 (-601 *3)))) (-3634 (*1 *1) (-12 (-4 *3 (-1001)) (-5 *1 (-805 *2 *3 *4)) (-4 *2 (-1001)) (-4 *4 (-601 *3)))) (-1518 (*1 *1 *2 *3) (-12 (-5 *2 (-808 *4 *5)) (-5 *3 (-808 *4 *6)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-601 *5)) (-5 *1 (-805 *4 *5 *6)))) (-3905 (*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-808 *3 *4)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4)))) (-2826 (*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-808 *3 *5)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4)))))
-(-13 (-1001) (-10 -8 (-15 -2526 ((-107) $)) (-15 -4142 ($)) (-15 -3634 ($)) (-15 -1518 ($ (-808 |#1| |#2|) (-808 |#1| |#3|))) (-15 -3905 ((-808 |#1| |#2|) $)) (-15 -2826 ((-808 |#1| |#3|) $))))
-((-3736 (((-107) $ $) 7)) (-3809 (((-808 |#1| $) $ (-810 |#1|) (-808 |#1| $)) 13)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)))
-(((-806 |#1|) (-1180) (-1001)) (T -806))
-((-3809 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-808 *4 *1)) (-5 *3 (-810 *4)) (-4 *1 (-806 *4)) (-4 *4 (-1001)))))
-(-13 (-1001) (-10 -8 (-15 -3809 ((-808 |t#1| $) $ (-810 |t#1|) (-808 |t#1| $)))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3109 (((-107) (-578 |#2|) |#3|) 22) (((-107) |#2| |#3|) 17)) (-4101 (((-808 |#1| |#2|) |#2| |#3|) 42 (-12 (-3031 (|has| |#2| (-950 (-1070)))) (-3031 (|has| |#2| (-959))))) (((-578 (-262 (-866 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-959)) (-3031 (|has| |#2| (-950 (-1070)))))) (((-578 (-262 |#2|)) |#2| |#3|) 34 (|has| |#2| (-950 (-1070)))) (((-805 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|) 20)))
-(((-807 |#1| |#2| |#3|) (-10 -7 (-15 -3109 ((-107) |#2| |#3|)) (-15 -3109 ((-107) (-578 |#2|) |#3|)) (-15 -4101 ((-805 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1070))) (-15 -4101 ((-578 (-262 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-959)) (-15 -4101 ((-578 (-262 (-866 |#2|))) |#2| |#3|)) (-15 -4101 ((-808 |#1| |#2|) |#2| |#3|))))) (-1001) (-806 |#1|) (-556 (-810 |#1|))) (T -807))
-((-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-808 *5 *3)) (-5 *1 (-807 *5 *3 *4)) (-3031 (-4 *3 (-950 (-1070)))) (-3031 (-4 *3 (-959))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) (-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-578 (-262 (-866 *3)))) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-959)) (-3031 (-4 *3 (-950 (-1070)))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) (-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-578 (-262 *3))) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-950 (-1070))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) (-4101 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *6 (-806 *5)) (-5 *2 (-805 *5 *6 (-578 *6))) (-5 *1 (-807 *5 *6 *4)) (-5 *3 (-578 *6)) (-4 *4 (-556 (-810 *5))))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-4 *6 (-806 *5)) (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-807 *5 *6 *4)) (-4 *4 (-556 (-810 *5))))) (-3109 (*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))))
-(-10 -7 (-15 -3109 ((-107) |#2| |#3|)) (-15 -3109 ((-107) (-578 |#2|) |#3|)) (-15 -4101 ((-805 |#1| |#2| (-578 |#2|)) (-578 |#2|) |#3|)) (IF (|has| |#2| (-950 (-1070))) (-15 -4101 ((-578 (-262 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-959)) (-15 -4101 ((-578 (-262 (-866 |#2|))) |#2| |#3|)) (-15 -4101 ((-808 |#1| |#2|) |#2| |#3|)))))
-((-3736 (((-107) $ $) NIL)) (-1442 (($ $ $) 37)) (-2218 (((-3 (-107) "failed") $ (-810 |#1|)) 34)) (-3634 (($) 11)) (-3460 (((-1053) $) NIL)) (-3745 (($ (-810 |#1|) |#2| $) 20)) (-3708 (((-1018) $) NIL)) (-2975 (((-3 |#2| "failed") (-810 |#1|) $) 48)) (-2526 (((-107) $) 14)) (-4142 (($) 12)) (-3770 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))) $) 25)) (-3699 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|)))) 23)) (-3691 (((-786) $) 42)) (-4034 (($ (-810 |#1|) |#2| $ |#2|) 46)) (-2635 (($ (-810 |#1|) |#2| $) 45)) (-3751 (((-107) $ $) 39)))
-(((-808 |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -2526 ((-107) $)) (-15 -4142 ($)) (-15 -3634 ($)) (-15 -1442 ($ $ $)) (-15 -2975 ((-3 |#2| "failed") (-810 |#1|) $)) (-15 -2635 ($ (-810 |#1|) |#2| $)) (-15 -3745 ($ (-810 |#1|) |#2| $)) (-15 -4034 ($ (-810 |#1|) |#2| $ |#2|)) (-15 -3770 ((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))) $)) (-15 -3699 ($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))))) (-15 -2218 ((-3 (-107) "failed") $ (-810 |#1|))))) (-1001) (-1001)) (T -808))
-((-2526 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-4142 (*1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-3634 (*1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-1442 (*1 *1 *1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-2975 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-4 *2 (-1001)) (-5 *1 (-808 *4 *2)))) (-2635 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001)))) (-3745 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001)))) (-4034 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 *4)))) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 *4)))) (-4 *4 (-1001)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)))) (-2218 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-808 *4 *5)) (-4 *5 (-1001)))))
-(-13 (-1001) (-10 -8 (-15 -2526 ((-107) $)) (-15 -4142 ($)) (-15 -3634 ($)) (-15 -1442 ($ $ $)) (-15 -2975 ((-3 |#2| "failed") (-810 |#1|) $)) (-15 -2635 ($ (-810 |#1|) |#2| $)) (-15 -3745 ($ (-810 |#1|) |#2| $)) (-15 -4034 ($ (-810 |#1|) |#2| $ |#2|)) (-15 -3770 ((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))) $)) (-15 -3699 ($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 |#2|))))) (-15 -2218 ((-3 (-107) "failed") $ (-810 |#1|)))))
-((-1212 (((-808 |#1| |#3|) (-1 |#3| |#2|) (-808 |#1| |#2|)) 21)))
-(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-808 |#1| |#3|) (-1 |#3| |#2|) (-808 |#1| |#2|)))) (-1001) (-1001) (-1001)) (T -809))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-808 *5 *6)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-808 *5 *7)) (-5 *1 (-809 *5 *6 *7)))))
-(-10 -7 (-15 -1212 ((-808 |#1| |#3|) (-1 |#3| |#2|) (-808 |#1| |#2|))))
-((-3736 (((-107) $ $) NIL)) (-1960 (($ $ (-578 (-50))) 62)) (-3800 (((-578 $) $) 116)) (-4004 (((-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50))) $) 22)) (-2494 (((-107) $) 29)) (-2340 (($ $ (-578 (-1070)) (-50)) 24)) (-2623 (($ $ (-578 (-50))) 61)) (-3765 (((-3 |#1| "failed") $) 59) (((-3 (-1070) "failed") $) 138)) (-3490 ((|#1| $) 55) (((-1070) $) NIL)) (-3647 (($ $) 106)) (-3083 (((-107) $) 45)) (-3623 (((-578 (-50)) $) 43)) (-1701 (($ (-1070) (-107) (-107) (-107)) 63)) (-1908 (((-3 (-578 $) "failed") (-578 $)) 70)) (-2779 (((-107) $) 48)) (-2243 (((-107) $) 47)) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) 34)) (-2671 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 41)) (-2000 (((-3 (-2 (|:| |val| $) (|:| -3027 $)) "failed") $) 81)) (-1285 (((-3 (-578 $) "failed") $) 31)) (-1816 (((-3 (-578 $) "failed") $ (-108)) 105) (((-3 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 $))) "failed") $) 93)) (-2637 (((-3 (-578 $) "failed") $) 35)) (-2551 (((-3 (-2 (|:| |val| $) (|:| -3027 (-701))) "failed") $) 38)) (-2614 (((-107) $) 28)) (-3708 (((-1018) $) NIL)) (-1583 (((-107) $) 20)) (-3384 (((-107) $) 44)) (-1609 (((-578 (-50)) $) 109)) (-1528 (((-107) $) 46)) (-2007 (($ (-108) (-578 $)) 90)) (-3661 (((-701) $) 27)) (-3764 (($ $) 60)) (-1248 (($ (-578 $)) 57)) (-2490 (((-107) $) 25)) (-3691 (((-786) $) 50) (($ |#1|) 18) (($ (-1070)) 64)) (-2114 (($ $ (-50)) 108)) (-1850 (($) 89 T CONST)) (-1925 (($) 71 T CONST)) (-3751 (((-107) $ $) 77)) (-3803 (($ $ $) 98)) (-3790 (($ $ $) 102)) (** (($ $ (-701)) 97) (($ $ $) 51)) (* (($ $ $) 103)))
-(((-810 |#1|) (-13 (-1001) (-950 |#1|) (-950 (-1070)) (-10 -8 (-15 0 ($) -3897) (-15 1 ($) -3897) (-15 -1285 ((-3 (-578 $) "failed") $)) (-15 -2948 ((-3 (-578 $) "failed") $)) (-15 -1816 ((-3 (-578 $) "failed") $ (-108))) (-15 -1816 ((-3 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 $))) "failed") $)) (-15 -2551 ((-3 (-2 (|:| |val| $) (|:| -3027 (-701))) "failed") $)) (-15 -2671 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2637 ((-3 (-578 $) "failed") $)) (-15 -2000 ((-3 (-2 (|:| |val| $) (|:| -3027 $)) "failed") $)) (-15 -2007 ($ (-108) (-578 $))) (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701))) (-15 ** ($ $ $)) (-15 -3803 ($ $ $)) (-15 -3661 ((-701) $)) (-15 -1248 ($ (-578 $))) (-15 -3764 ($ $)) (-15 -2614 ((-107) $)) (-15 -3083 ((-107) $)) (-15 -2494 ((-107) $)) (-15 -2490 ((-107) $)) (-15 -1528 ((-107) $)) (-15 -2243 ((-107) $)) (-15 -2779 ((-107) $)) (-15 -3384 ((-107) $)) (-15 -3623 ((-578 (-50)) $)) (-15 -2623 ($ $ (-578 (-50)))) (-15 -1960 ($ $ (-578 (-50)))) (-15 -1701 ($ (-1070) (-107) (-107) (-107))) (-15 -2340 ($ $ (-578 (-1070)) (-50))) (-15 -4004 ((-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50))) $)) (-15 -1583 ((-107) $)) (-15 -3647 ($ $)) (-15 -2114 ($ $ (-50))) (-15 -1609 ((-578 (-50)) $)) (-15 -3800 ((-578 $) $)) (-15 -1908 ((-3 (-578 $) "failed") (-578 $))))) (-1001)) (T -810))
-((-1850 (*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-1925 (*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-1285 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2948 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1816 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-578 (-810 *4))) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) (-1816 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 (-810 *3))))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2551 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-810 *3)) (|:| -3027 (-701)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2671 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-810 *3)) (|:| |den| (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2637 (*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2000 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-810 *3)) (|:| -3027 (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2007 (*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 (-810 *4))) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) (-3790 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-3803 (*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3764 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-2614 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-2623 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1960 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1701 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-107)) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) (-2340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-50)) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) (-4004 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3647 (*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) (-2114 (*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1609 (*1 *2 *1) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) (-1908 (*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(-13 (-1001) (-950 |#1|) (-950 (-1070)) (-10 -8 (-15 (-1850) ($) -3897) (-15 (-1925) ($) -3897) (-15 -1285 ((-3 (-578 $) "failed") $)) (-15 -2948 ((-3 (-578 $) "failed") $)) (-15 -1816 ((-3 (-578 $) "failed") $ (-108))) (-15 -1816 ((-3 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 $))) "failed") $)) (-15 -2551 ((-3 (-2 (|:| |val| $) (|:| -3027 (-701))) "failed") $)) (-15 -2671 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2637 ((-3 (-578 $) "failed") $)) (-15 -2000 ((-3 (-2 (|:| |val| $) (|:| -3027 $)) "failed") $)) (-15 -2007 ($ (-108) (-578 $))) (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701))) (-15 ** ($ $ $)) (-15 -3803 ($ $ $)) (-15 -3661 ((-701) $)) (-15 -1248 ($ (-578 $))) (-15 -3764 ($ $)) (-15 -2614 ((-107) $)) (-15 -3083 ((-107) $)) (-15 -2494 ((-107) $)) (-15 -2490 ((-107) $)) (-15 -1528 ((-107) $)) (-15 -2243 ((-107) $)) (-15 -2779 ((-107) $)) (-15 -3384 ((-107) $)) (-15 -3623 ((-578 (-50)) $)) (-15 -2623 ($ $ (-578 (-50)))) (-15 -1960 ($ $ (-578 (-50)))) (-15 -1701 ($ (-1070) (-107) (-107) (-107))) (-15 -2340 ($ $ (-578 (-1070)) (-50))) (-15 -4004 ((-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50))) $)) (-15 -1583 ((-107) $)) (-15 -3647 ($ $)) (-15 -2114 ($ $ (-50))) (-15 -1609 ((-578 (-50)) $)) (-15 -3800 ((-578 $) $)) (-15 -1908 ((-3 (-578 $) "failed") (-578 $)))))
-((-4081 (((-810 |#1|) (-810 |#1|) (-578 (-1070)) (-1 (-107) (-578 |#2|))) 30) (((-810 |#1|) (-810 |#1|) (-578 (-1 (-107) |#2|))) 42) (((-810 |#1|) (-810 |#1|) (-1 (-107) |#2|)) 33)) (-2218 (((-107) (-578 |#2|) (-810 |#1|)) 39) (((-107) |#2| (-810 |#1|)) 35)) (-3666 (((-1 (-107) |#2|) (-810 |#1|)) 14)) (-2525 (((-578 |#2|) (-810 |#1|)) 23)) (-2114 (((-810 |#1|) (-810 |#1|) |#2|) 19)))
-(((-811 |#1| |#2|) (-10 -7 (-15 -4081 ((-810 |#1|) (-810 |#1|) (-1 (-107) |#2|))) (-15 -4081 ((-810 |#1|) (-810 |#1|) (-578 (-1 (-107) |#2|)))) (-15 -4081 ((-810 |#1|) (-810 |#1|) (-578 (-1070)) (-1 (-107) (-578 |#2|)))) (-15 -3666 ((-1 (-107) |#2|) (-810 |#1|))) (-15 -2218 ((-107) |#2| (-810 |#1|))) (-15 -2218 ((-107) (-578 |#2|) (-810 |#1|))) (-15 -2114 ((-810 |#1|) (-810 |#1|) |#2|)) (-15 -2525 ((-578 |#2|) (-810 |#1|)))) (-1001) (-1104)) (T -811))
-((-2525 (*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-578 *5)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1104)))) (-2114 (*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1104)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *2 (-107)) (-5 *1 (-811 *5 *6)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-811 *5 *3)) (-4 *3 (-1104)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1104)))) (-4081 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-810 *5)) (-5 *3 (-578 (-1070))) (-5 *4 (-1 (-107) (-578 *6))) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *1 (-811 *5 *6)))) (-4081 (*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-5 *3 (-578 (-1 (-107) *5))) (-4 *4 (-1001)) (-4 *5 (-1104)) (-5 *1 (-811 *4 *5)))) (-4081 (*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1001)) (-4 *5 (-1104)) (-5 *1 (-811 *4 *5)))))
-(-10 -7 (-15 -4081 ((-810 |#1|) (-810 |#1|) (-1 (-107) |#2|))) (-15 -4081 ((-810 |#1|) (-810 |#1|) (-578 (-1 (-107) |#2|)))) (-15 -4081 ((-810 |#1|) (-810 |#1|) (-578 (-1070)) (-1 (-107) (-578 |#2|)))) (-15 -3666 ((-1 (-107) |#2|) (-810 |#1|))) (-15 -2218 ((-107) |#2| (-810 |#1|))) (-15 -2218 ((-107) (-578 |#2|) (-810 |#1|))) (-15 -2114 ((-810 |#1|) (-810 |#1|) |#2|)) (-15 -2525 ((-578 |#2|) (-810 |#1|))))
-((-1212 (((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)) 17)))
-(((-812 |#1| |#2|) (-10 -7 (-15 -1212 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|)))) (-1001) (-1001)) (T -812))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-810 *6)) (-5 *1 (-812 *5 *6)))))
-(-10 -7 (-15 -1212 ((-810 |#2|) (-1 |#2| |#1|) (-810 |#1|))))
-((-3736 (((-107) $ $) NIL)) (-3514 (((-578 |#1|) $) 16)) (-3998 (((-107) $) 38)) (-3765 (((-3 (-606 |#1|) "failed") $) 41)) (-3490 (((-606 |#1|) $) 39)) (-1199 (($ $) 18)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-4139 (((-701) $) 45)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-606 |#1|) $) 17)) (-3691 (((-786) $) 37) (($ (-606 |#1|)) 21) (((-749 |#1|) $) 27) (($ |#1|) 20)) (-1925 (($) 8 T CONST)) (-1914 (((-578 (-606 |#1|)) $) 23)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 11)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 48)))
-(((-813 |#1|) (-13 (-777) (-950 (-606 |#1|)) (-10 -8 (-15 1 ($) -3897) (-15 -3691 ((-749 |#1|) $)) (-15 -3691 ($ |#1|)) (-15 -1190 ((-606 |#1|) $)) (-15 -4139 ((-701) $)) (-15 -1914 ((-578 (-606 |#1|)) $)) (-15 -1199 ($ $)) (-15 -3998 ((-107) $)) (-15 -3514 ((-578 |#1|) $)))) (-777)) (T -813))
-((-1925 (*1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-3691 (*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) (-1190 (*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-578 (-606 *3))) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-1199 (*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))))
-(-13 (-777) (-950 (-606 |#1|)) (-10 -8 (-15 (-1925) ($) -3897) (-15 -3691 ((-749 |#1|) $)) (-15 -3691 ($ |#1|)) (-15 -1190 ((-606 |#1|) $)) (-15 -4139 ((-701) $)) (-15 -1914 ((-578 (-606 |#1|)) $)) (-15 -1199 ($ $)) (-15 -3998 ((-107) $)) (-15 -3514 ((-578 |#1|) $))))
-((-3417 ((|#1| |#1| |#1|) 19)))
-(((-814 |#1| |#2|) (-10 -7 (-15 -3417 (|#1| |#1| |#1|))) (-1125 |#2|) (-959)) (T -814))
-((-3417 (*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-814 *2 *3)) (-4 *2 (-1125 *3)))))
-(-10 -7 (-15 -3417 (|#1| |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3492 (((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 14)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1900 (((-948) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 13)) (-3751 (((-107) $ $) 6)))
-(((-815) (-1180)) (T -815))
-((-3492 (*1 *2 *3 *4) (-12 (-4 *1 (-815)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) (-1900 (*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *3 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-948)))))
-(-13 (-1001) (-10 -7 (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| |explanations| (-1053))) (-970) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))) (-15 -1900 ((-948) (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-2166 ((|#1| |#1| (-701)) 23)) (-3836 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1688 (((-3 (-2 (|:| -1313 |#1|) (|:| -1320 |#1|)) "failed") |#1| (-701) (-701)) 26) (((-578 |#1|) |#1|) 28)))
-(((-816 |#1| |#2|) (-10 -7 (-15 -1688 ((-578 |#1|) |#1|)) (-15 -1688 ((-3 (-2 (|:| -1313 |#1|) (|:| -1320 |#1|)) "failed") |#1| (-701) (-701))) (-15 -3836 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2166 (|#1| |#1| (-701)))) (-1125 |#2|) (-331)) (T -816))
-((-2166 (*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-331)) (-5 *1 (-816 *2 *4)) (-4 *2 (-1125 *4)))) (-3836 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-331)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1125 *3)))) (-1688 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-701)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -1313 *3) (|:| -1320 *3))) (-5 *1 (-816 *3 *5)) (-4 *3 (-1125 *5)))) (-1688 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-816 *3 *4)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -1688 ((-578 |#1|) |#1|)) (-15 -1688 ((-3 (-2 (|:| -1313 |#1|) (|:| -1320 |#1|)) "failed") |#1| (-701) (-701))) (-15 -3836 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2166 (|#1| |#1| (-701))))
-((-2778 (((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053)) 92) (((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053) (-199)) 87) (((-948) (-818) (-970)) 76) (((-948) (-818)) 77)) (-3492 (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818) (-970)) 50) (((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818)) 52)))
-(((-817) (-10 -7 (-15 -2778 ((-948) (-818))) (-15 -2778 ((-948) (-818) (-970))) (-15 -2778 ((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053) (-199))) (-15 -2778 ((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818) (-970))))) (T -817))
-((-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-817)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-817)))) (-2778 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-701)) (-5 *6 (-578 (-578 (-282 *3)))) (-5 *7 (-1053)) (-5 *5 (-578 (-282 (-346)))) (-5 *3 (-346)) (-5 *2 (-948)) (-5 *1 (-817)))) (-2778 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-701)) (-5 *6 (-578 (-578 (-282 *3)))) (-5 *7 (-1053)) (-5 *8 (-199)) (-5 *5 (-578 (-282 (-346)))) (-5 *3 (-346)) (-5 *2 (-948)) (-5 *1 (-817)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-817)))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-948)) (-5 *1 (-817)))))
-(-10 -7 (-15 -2778 ((-948) (-818))) (-15 -2778 ((-948) (-818) (-970))) (-15 -2778 ((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053) (-199))) (-15 -2778 ((-948) (-346) (-346) (-346) (-346) (-701) (-701) (-578 (-282 (-346))) (-578 (-578 (-282 (-346)))) (-1053))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818))) (-15 -3492 ((-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053)))) (-818) (-970))))
-((-3736 (((-107) $ $) NIL)) (-3490 (((-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))) $) 10)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 12) (($ (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) 9)) (-3751 (((-107) $ $) NIL)))
-(((-818) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))) $))))) (T -818))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-818)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *1 (-818)))) (-3490 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *1 (-818)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ($ (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))))) (-15 -3691 ((-786) $)) (-15 -3490 ((-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199))) $))))
-((-2596 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) 10) (($ $ |#2| (-701)) 12) (($ $ (-578 |#2|) (-578 (-701))) 15)) (-3584 (($ $ |#2|) 16) (($ $ (-578 |#2|)) 18) (($ $ |#2| (-701)) 19) (($ $ (-578 |#2|) (-578 (-701))) 21)))
-(((-819 |#1| |#2|) (-10 -8 (-15 -3584 (|#1| |#1| (-578 |#2|) (-578 (-701)))) (-15 -3584 (|#1| |#1| |#2| (-701))) (-15 -3584 (|#1| |#1| (-578 |#2|))) (-15 -3584 (|#1| |#1| |#2|)) (-15 -2596 (|#1| |#1| (-578 |#2|) (-578 (-701)))) (-15 -2596 (|#1| |#1| |#2| (-701))) (-15 -2596 (|#1| |#1| (-578 |#2|))) (-15 -2596 (|#1| |#1| |#2|))) (-820 |#2|) (-1001)) (T -819))
-NIL
-(-10 -8 (-15 -3584 (|#1| |#1| (-578 |#2|) (-578 (-701)))) (-15 -3584 (|#1| |#1| |#2| (-701))) (-15 -3584 (|#1| |#1| (-578 |#2|))) (-15 -3584 (|#1| |#1| |#2|)) (-15 -2596 (|#1| |#1| (-578 |#2|) (-578 (-701)))) (-15 -2596 (|#1| |#1| |#2| (-701))) (-15 -2596 (|#1| |#1| (-578 |#2|))) (-15 -2596 (|#1| |#1| |#2|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2596 (($ $ |#1|) 42) (($ $ (-578 |#1|)) 41) (($ $ |#1| (-701)) 40) (($ $ (-578 |#1|) (-578 (-701))) 39)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ |#1|) 38) (($ $ (-578 |#1|)) 37) (($ $ |#1| (-701)) 36) (($ $ (-578 |#1|) (-578 (-701))) 35)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-820 |#1|) (-1180) (-1001)) (T -820))
-((-2596 (*1 *1 *1 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-1001)))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-820 *3)) (-4 *3 (-1001)))) (-2596 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-820 *2)) (-4 *2 (-1001)))) (-2596 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-701))) (-4 *1 (-820 *4)) (-4 *4 (-1001)))) (-3584 (*1 *1 *1 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-1001)))) (-3584 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-820 *3)) (-4 *3 (-1001)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-820 *2)) (-4 *2 (-1001)))) (-3584 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-701))) (-4 *1 (-820 *4)) (-4 *4 (-1001)))))
-(-13 (-959) (-10 -8 (-15 -2596 ($ $ |t#1|)) (-15 -2596 ($ $ (-578 |t#1|))) (-15 -2596 ($ $ |t#1| (-701))) (-15 -2596 ($ $ (-578 |t#1|) (-578 (-701)))) (-15 -3584 ($ $ |t#1|)) (-15 -3584 ($ $ (-578 |t#1|))) (-15 -3584 ($ $ |t#1| (-701))) (-15 -3584 ($ $ (-578 |t#1|) (-578 (-701))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 26)) (-2997 (((-107) $ (-701)) NIL)) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-1896 (($ $ $) NIL (|has| $ (-6 -4168)))) (-2919 (($ $ $) NIL (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) (($ $ "left" $) NIL (|has| $ (-6 -4168))) (($ $ "right" $) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-1320 (($ $) 25)) (-2744 (($ |#1|) 12) (($ $ $) 17)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-1313 (($ $) 23)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) 20)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) 29 (|has| |#1| (-1001))) (((-1091 |#1|) $) 9)) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 21 (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-821 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2744 ($ |#1|)) (-15 -2744 ($ $ $)) (-15 -3691 ((-1091 |#1|) $)))) (-1001)) (T -821))
-((-2744 (*1 *1 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1001)))) (-2744 (*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1001)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1091 *3)) (-5 *1 (-821 *3)) (-4 *3 (-1001)))))
-(-13 (-114 |#1|) (-10 -8 (-15 -2744 ($ |#1|)) (-15 -2744 ($ $ $)) (-15 -3691 ((-1091 |#1|) $))))
-((-3736 (((-107) $ $) NIL)) (-2861 (((-578 $) (-578 $)) 75)) (-1417 (((-501) $) 58)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-3169 (((-701) $) 56)) (-3329 (((-997 |#1|) $ |#1|) 47)) (-1355 (((-107) $) NIL)) (-3729 (((-107) $) 61)) (-2176 (((-701) $) 59)) (-4033 (((-997 |#1|) $) 40)) (-4111 (($ $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-1323 (($ $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-2688 (((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $) 35)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 91)) (-3708 (((-1018) $) NIL)) (-3035 (((-997 |#1|) $) 97 (|has| |#1| (-336)))) (-3172 (((-107) $) 57)) (-3195 ((|#1| $ |#1|) 45)) (-2007 ((|#1| $ |#1|) 92)) (-1201 (((-701) $) 42)) (-2823 (($ (-578 (-578 |#1|))) 83)) (-2437 (((-886) $) 51)) (-3823 (($ (-578 |#1|)) 21)) (-3097 (($ $ $) NIL)) (-2144 (($ $ $) NIL)) (-3939 (($ (-578 (-578 |#1|))) 37)) (-1440 (($ (-578 (-578 |#1|))) 86)) (-1229 (($ (-578 |#1|)) 94)) (-3691 (((-786) $) 82) (($ (-578 (-578 |#1|))) 64) (($ (-578 |#1|)) 65)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1925 (($) 16 T CONST)) (-3778 (((-107) $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-3751 (((-107) $ $) 43)) (-3773 (((-107) $ $) NIL (-1405 (|has| |#1| (-336)) (|has| |#1| (-777))))) (-3762 (((-107) $ $) 63)) (-3803 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ $ $) 22)))
-(((-822 |#1|) (-13 (-824 |#1|) (-10 -8 (-15 -2688 ((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $)) (-15 -3939 ($ (-578 (-578 |#1|)))) (-15 -3691 ($ (-578 (-578 |#1|)))) (-15 -3691 ($ (-578 |#1|))) (-15 -1440 ($ (-578 (-578 |#1|)))) (-15 -1201 ((-701) $)) (-15 -4033 ((-997 |#1|) $)) (-15 -2437 ((-886) $)) (-15 -3169 ((-701) $)) (-15 -2176 ((-701) $)) (-15 -1417 ((-501) $)) (-15 -3172 ((-107) $)) (-15 -3729 ((-107) $)) (-15 -2861 ((-578 $) (-578 $))) (IF (|has| |#1| (-336)) (-15 -3035 ((-997 |#1|) $)) |noBranch|) (IF (|has| |#1| (-500)) (-15 -1229 ($ (-578 |#1|))) (IF (|has| |#1| (-336)) (-15 -1229 ($ (-578 |#1|))) |noBranch|)))) (-1001)) (T -822))
-((-2688 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-578 *3)) (|:| |image| (-578 *3)))) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3939 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-2176 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-2861 (*1 *2 *2) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-822 *3)) (-4 *3 (-336)) (-4 *3 (-1001)))) (-1229 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-822 *3)))))
-(-13 (-824 |#1|) (-10 -8 (-15 -2688 ((-2 (|:| |preimage| (-578 |#1|)) (|:| |image| (-578 |#1|))) $)) (-15 -3939 ($ (-578 (-578 |#1|)))) (-15 -3691 ($ (-578 (-578 |#1|)))) (-15 -3691 ($ (-578 |#1|))) (-15 -1440 ($ (-578 (-578 |#1|)))) (-15 -1201 ((-701) $)) (-15 -4033 ((-997 |#1|) $)) (-15 -2437 ((-886) $)) (-15 -3169 ((-701) $)) (-15 -2176 ((-701) $)) (-15 -1417 ((-501) $)) (-15 -3172 ((-107) $)) (-15 -3729 ((-107) $)) (-15 -2861 ((-578 $) (-578 $))) (IF (|has| |#1| (-336)) (-15 -3035 ((-997 |#1|) $)) |noBranch|) (IF (|has| |#1| (-500)) (-15 -1229 ($ (-578 |#1|))) (IF (|has| |#1| (-336)) (-15 -1229 ($ (-578 |#1|))) |noBranch|))))
-((-2765 ((|#2| (-1037 |#1| |#2|)) 39)))
-(((-823 |#1| |#2|) (-10 -7 (-15 -2765 (|#2| (-1037 |#1| |#2|)))) (-839) (-13 (-959) (-10 -7 (-6 (-4169 "*"))))) (T -823))
-((-2765 (*1 *2 *3) (-12 (-5 *3 (-1037 *4 *2)) (-14 *4 (-839)) (-4 *2 (-13 (-959) (-10 -7 (-6 (-4169 "*"))))) (-5 *1 (-823 *4 *2)))))
-(-10 -7 (-15 -2765 (|#2| (-1037 |#1| |#2|))))
-((-3736 (((-107) $ $) 7)) (-2540 (($) 20 T CONST)) (-2174 (((-3 $ "failed") $) 16)) (-3329 (((-997 |#1|) $ |#1|) 35)) (-1355 (((-107) $) 19)) (-4111 (($ $ $) 33 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-1323 (($ $ $) 32 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 27)) (-3708 (((-1018) $) 10)) (-3195 ((|#1| $ |#1|) 37)) (-2007 ((|#1| $ |#1|) 36)) (-2823 (($ (-578 (-578 |#1|))) 38)) (-3823 (($ (-578 |#1|)) 39)) (-3097 (($ $ $) 23)) (-2144 (($ $ $) 22)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 13) (($ $ (-701)) 17) (($ $ (-501)) 24)) (-1925 (($) 21 T CONST)) (-3778 (((-107) $ $) 30 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-3768 (((-107) $ $) 29 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 31 (-1405 (|has| |#1| (-777)) (|has| |#1| (-336))))) (-3762 (((-107) $ $) 34)) (-3803 (($ $ $) 26)) (** (($ $ (-839)) 14) (($ $ (-701)) 18) (($ $ (-501)) 25)) (* (($ $ $) 15)))
-(((-824 |#1|) (-1180) (-1001)) (T -824))
-((-3823 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-824 *3)))) (-2823 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-4 *1 (-824 *3)))) (-3195 (*1 *2 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1001)))) (-2007 (*1 *2 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1001)))) (-3329 (*1 *2 *1 *3) (-12 (-4 *1 (-824 *3)) (-4 *3 (-1001)) (-5 *2 (-997 *3)))) (-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-824 *3)) (-4 *3 (-1001)) (-5 *2 (-107)))))
-(-13 (-440) (-10 -8 (-15 -3823 ($ (-578 |t#1|))) (-15 -2823 ($ (-578 (-578 |t#1|)))) (-15 -3195 (|t#1| $ |t#1|)) (-15 -2007 (|t#1| $ |t#1|)) (-15 -3329 ((-997 |t#1|) $ |t#1|)) (-15 -3762 ((-107) $ $)) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-336)) (-6 (-777)) |noBranch|)))
-(((-97) . T) ((-555 (-786)) . T) ((-440) . T) ((-657) . T) ((-777) -1405 (|has| |#1| (-777)) (|has| |#1| (-336))) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-1570 (((-578 (-578 (-701))) $) 106)) (-1254 (((-578 (-701)) (-822 |#1|) $) 128)) (-3847 (((-578 (-701)) (-822 |#1|) $) 129)) (-1382 (((-578 (-822 |#1|)) $) 96)) (-2890 (((-822 |#1|) $ (-501)) 101) (((-822 |#1|) $) 102)) (-2862 (($ (-578 (-822 |#1|))) 108)) (-3169 (((-701) $) 103)) (-4143 (((-997 (-997 |#1|)) $) 126)) (-3329 (((-997 |#1|) $ |#1|) 119) (((-997 (-997 |#1|)) $ (-997 |#1|)) 137) (((-997 (-578 |#1|)) $ (-578 |#1|)) 140)) (-4033 (((-997 |#1|) $) 99)) (-2211 (((-107) (-822 |#1|) $) 90)) (-3460 (((-1053) $) NIL)) (-1751 (((-1154) $) 93) (((-1154) $ (-501) (-501)) 141)) (-3708 (((-1018) $) NIL)) (-3983 (((-578 (-822 |#1|)) $) 94)) (-2007 (((-822 |#1|) $ (-701)) 97)) (-1201 (((-701) $) 104)) (-3691 (((-786) $) 117) (((-578 (-822 |#1|)) $) 22) (($ (-578 (-822 |#1|))) 107)) (-1965 (((-578 |#1|) $) 105)) (-3751 (((-107) $ $) 134)) (-3773 (((-107) $ $) 132)) (-3762 (((-107) $ $) 131)))
-(((-825 |#1|) (-13 (-1001) (-10 -8 (-15 -3691 ((-578 (-822 |#1|)) $)) (-15 -3983 ((-578 (-822 |#1|)) $)) (-15 -2007 ((-822 |#1|) $ (-701))) (-15 -2890 ((-822 |#1|) $ (-501))) (-15 -2890 ((-822 |#1|) $)) (-15 -3169 ((-701) $)) (-15 -1201 ((-701) $)) (-15 -1965 ((-578 |#1|) $)) (-15 -1382 ((-578 (-822 |#1|)) $)) (-15 -1570 ((-578 (-578 (-701))) $)) (-15 -3691 ($ (-578 (-822 |#1|)))) (-15 -2862 ($ (-578 (-822 |#1|)))) (-15 -3329 ((-997 |#1|) $ |#1|)) (-15 -4143 ((-997 (-997 |#1|)) $)) (-15 -3329 ((-997 (-997 |#1|)) $ (-997 |#1|))) (-15 -3329 ((-997 (-578 |#1|)) $ (-578 |#1|))) (-15 -2211 ((-107) (-822 |#1|) $)) (-15 -1254 ((-578 (-701)) (-822 |#1|) $)) (-15 -3847 ((-578 (-701)) (-822 |#1|) $)) (-15 -4033 ((-997 |#1|) $)) (-15 -3762 ((-107) $ $)) (-15 -3773 ((-107) $ $)) (-15 -1751 ((-1154) $)) (-15 -1751 ((-1154) $ (-501) (-501))))) (-1001)) (T -825))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3983 (*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-822 *4)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) (-2890 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-822 *4)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) (-2890 (*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1201 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1382 (*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1570 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-701)))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-578 (-822 *3))) (-4 *3 (-1001)) (-5 *1 (-825 *3)))) (-2862 (*1 *1 *2) (-12 (-5 *2 (-578 (-822 *3))) (-4 *3 (-1001)) (-5 *1 (-825 *3)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *2 (-997 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-997 (-997 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3329 (*1 *2 *1 *3) (-12 (-4 *4 (-1001)) (-5 *2 (-997 (-997 *4))) (-5 *1 (-825 *4)) (-5 *3 (-997 *4)))) (-3329 (*1 *2 *1 *3) (-12 (-4 *4 (-1001)) (-5 *2 (-997 (-578 *4))) (-5 *1 (-825 *4)) (-5 *3 (-578 *4)))) (-2211 (*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-825 *4)))) (-1254 (*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-578 (-701))) (-5 *1 (-825 *4)))) (-3847 (*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-578 (-701))) (-5 *1 (-825 *4)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3762 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-3773 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) (-1751 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ((-578 (-822 |#1|)) $)) (-15 -3983 ((-578 (-822 |#1|)) $)) (-15 -2007 ((-822 |#1|) $ (-701))) (-15 -2890 ((-822 |#1|) $ (-501))) (-15 -2890 ((-822 |#1|) $)) (-15 -3169 ((-701) $)) (-15 -1201 ((-701) $)) (-15 -1965 ((-578 |#1|) $)) (-15 -1382 ((-578 (-822 |#1|)) $)) (-15 -1570 ((-578 (-578 (-701))) $)) (-15 -3691 ($ (-578 (-822 |#1|)))) (-15 -2862 ($ (-578 (-822 |#1|)))) (-15 -3329 ((-997 |#1|) $ |#1|)) (-15 -4143 ((-997 (-997 |#1|)) $)) (-15 -3329 ((-997 (-997 |#1|)) $ (-997 |#1|))) (-15 -3329 ((-997 (-578 |#1|)) $ (-578 |#1|))) (-15 -2211 ((-107) (-822 |#1|) $)) (-15 -1254 ((-578 (-701)) (-822 |#1|) $)) (-15 -3847 ((-578 (-701)) (-822 |#1|) $)) (-15 -4033 ((-997 |#1|) $)) (-15 -3762 ((-107) $ $)) (-15 -3773 ((-107) $ $)) (-15 -1751 ((-1154) $)) (-15 -1751 ((-1154) $ (-501) (-501)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3590 (((-107) $) NIL)) (-1732 (((-701)) NIL)) (-2225 (($ $ (-839)) NIL (|has| $ (-336))) (($ $) NIL)) (-3431 (((-1077 (-839) (-701)) (-501)) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-3796 (((-701)) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 $ "failed") $) NIL)) (-3490 (($ $) NIL)) (-3142 (($ (-1148 $)) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1317 (($) NIL)) (-3521 (((-107) $) NIL)) (-3067 (($ $) NIL) (($ $ (-701)) NIL)) (-1628 (((-107) $) NIL)) (-3169 (((-762 (-839)) $) NIL) (((-839) $) NIL)) (-1355 (((-107) $) NIL)) (-4065 (($) NIL (|has| $ (-336)))) (-1928 (((-107) $) NIL (|has| $ (-336)))) (-2626 (($ $ (-839)) NIL (|has| $ (-336))) (($ $) NIL)) (-3493 (((-3 $ "failed") $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1792 (((-1064 $) $ (-839)) NIL (|has| $ (-336))) (((-1064 $) $) NIL)) (-3104 (((-839) $) NIL)) (-3721 (((-1064 $) $) NIL (|has| $ (-336)))) (-1806 (((-3 (-1064 $) "failed") $ $) NIL (|has| $ (-336))) (((-1064 $) $) NIL (|has| $ (-336)))) (-2468 (($ $ (-1064 $)) NIL (|has| $ (-336)))) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL T CONST)) (-3506 (($ (-839)) NIL)) (-2255 (((-107) $) NIL)) (-3708 (((-1018) $) NIL)) (-3987 (($) NIL (|has| $ (-336)))) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL)) (-3739 (((-373 $) $) NIL)) (-2906 (((-839)) NIL) (((-762 (-839))) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1984 (((-3 (-701) "failed") $ $) NIL) (((-701) $) NIL)) (-3613 (((-125)) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-1201 (((-839) $) NIL) (((-762 (-839)) $) NIL)) (-2264 (((-1064 $)) NIL)) (-1349 (($) NIL)) (-3481 (($) NIL (|has| $ (-336)))) (-2085 (((-621 $) (-1148 $)) NIL) (((-1148 $) $) NIL)) (-1248 (((-501) $) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3965 (((-701)) NIL)) (-4119 (((-1148 $) (-839)) NIL) (((-1148 $)) NIL)) (-2442 (((-107) $ $) NIL)) (-2659 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3184 (($ $ (-701)) NIL (|has| $ (-336))) (($ $) NIL (|has| $ (-336)))) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL)))
-(((-826 |#1|) (-13 (-318) (-297 $) (-556 (-501))) (-839)) (T -826))
-NIL
-(-13 (-318) (-297 $) (-556 (-501)))
-((-3461 (((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|)) 127)) (-3959 ((|#1|) 75)) (-1789 (((-373 (-1064 |#4|)) (-1064 |#4|)) 136)) (-3135 (((-373 (-1064 |#4|)) (-578 |#3|) (-1064 |#4|)) 67)) (-3901 (((-373 (-1064 |#4|)) (-1064 |#4|)) 146)) (-4041 (((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|) |#3|) 91)))
-(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3461 ((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|))) (-15 -3901 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -1789 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -3959 (|#1|)) (-15 -4041 ((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|) |#3|)) (-15 -3135 ((-373 (-1064 |#4|)) (-578 |#3|) (-1064 |#4|)))) (-830) (-723) (-777) (-870 |#1| |#2| |#3|)) (T -827))
-((-3135 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *7)) (-4 *7 (-777)) (-4 *5 (-830)) (-4 *6 (-723)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-373 (-1064 *8))) (-5 *1 (-827 *5 *6 *7 *8)) (-5 *4 (-1064 *8)))) (-4041 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-578 (-1064 *7))) (-5 *3 (-1064 *7)) (-4 *7 (-870 *5 *6 *4)) (-4 *5 (-830)) (-4 *6 (-723)) (-4 *4 (-777)) (-5 *1 (-827 *5 *6 *4 *7)))) (-3959 (*1 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-830)) (-5 *1 (-827 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) (-1789 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-827 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-827 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) (-3461 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *7))) (-5 *3 (-1064 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-827 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3461 ((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|))) (-15 -3901 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -1789 ((-373 (-1064 |#4|)) (-1064 |#4|))) (-15 -3959 (|#1|)) (-15 -4041 ((-3 (-578 (-1064 |#4|)) "failed") (-578 (-1064 |#4|)) (-1064 |#4|) |#3|)) (-15 -3135 ((-373 (-1064 |#4|)) (-578 |#3|) (-1064 |#4|))))
-((-3461 (((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|)) 36)) (-3959 ((|#1|) 53)) (-1789 (((-373 (-1064 |#2|)) (-1064 |#2|)) 101)) (-3135 (((-373 (-1064 |#2|)) (-1064 |#2|)) 88)) (-3901 (((-373 (-1064 |#2|)) (-1064 |#2|)) 112)))
-(((-828 |#1| |#2|) (-10 -7 (-15 -3461 ((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|))) (-15 -3901 ((-373 (-1064 |#2|)) (-1064 |#2|))) (-15 -1789 ((-373 (-1064 |#2|)) (-1064 |#2|))) (-15 -3959 (|#1|)) (-15 -3135 ((-373 (-1064 |#2|)) (-1064 |#2|)))) (-830) (-1125 |#1|)) (T -828))
-((-3135 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5)))) (-3959 (*1 *2) (-12 (-4 *2 (-830)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1125 *2)))) (-1789 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5)))) (-3461 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *5))) (-5 *3 (-1064 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-830)) (-5 *1 (-828 *4 *5)))))
-(-10 -7 (-15 -3461 ((-3 (-578 (-1064 |#2|)) "failed") (-578 (-1064 |#2|)) (-1064 |#2|))) (-15 -3901 ((-373 (-1064 |#2|)) (-1064 |#2|))) (-15 -1789 ((-373 (-1064 |#2|)) (-1064 |#2|))) (-15 -3959 (|#1|)) (-15 -3135 ((-373 (-1064 |#2|)) (-1064 |#2|))))
-((-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 39)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 18)) (-1274 (((-3 $ "failed") $) 33)))
-(((-829 |#1|) (-10 -8 (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|)))) (-830)) (T -829))
-NIL
-(-10 -8 (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 60)) (-3676 (($ $) 51)) (-1559 (((-373 $) $) 52)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 57)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1628 (((-107) $) 53)) (-1355 (((-107) $) 31)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2305 (((-373 (-1064 $)) (-1064 $)) 58)) (-2572 (((-373 (-1064 $)) (-1064 $)) 59)) (-3739 (((-373 $) $) 50)) (-3694 (((-3 $ "failed") $ $) 42)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 56 (|has| $ (-132)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-1274 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-830) (-1180)) (T -830))
-((-3424 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-830)))) (-3324 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1)))) (-2572 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1)))) (-2305 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1)))) (-4002 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *1))) (-5 *3 (-1064 *1)) (-4 *1 (-830)))) (-2375 (*1 *2 *3) (|partial| -12 (-5 *3 (-621 *1)) (-4 *1 (-132)) (-4 *1 (-830)) (-5 *2 (-1148 *1)))) (-1274 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-830)))))
-(-13 (-1108) (-10 -8 (-15 -3324 ((-373 (-1064 $)) (-1064 $))) (-15 -2572 ((-373 (-1064 $)) (-1064 $))) (-15 -2305 ((-373 (-1064 $)) (-1064 $))) (-15 -3424 ((-1064 $) (-1064 $) (-1064 $))) (-15 -4002 ((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $))) (IF (|has| $ (-132)) (PROGN (-15 -2375 ((-3 (-1148 $) "failed") (-621 $))) (-15 -1274 ((-3 $ "failed") $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T))
-((-3314 (((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#5|)) "failed") (-301 |#2| |#3| |#4| |#5|)) 76)) (-1847 (((-107) (-301 |#2| |#3| |#4| |#5|)) 16)) (-3169 (((-3 (-701) "failed") (-301 |#2| |#3| |#4| |#5|)) 14)))
-(((-831 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3169 ((-3 (-701) "failed") (-301 |#2| |#3| |#4| |#5|))) (-15 -1847 ((-107) (-301 |#2| |#3| |#4| |#5|))) (-15 -3314 ((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#5|)) "failed") (-301 |#2| |#3| |#4| |#5|)))) (-13 (-777) (-508) (-950 (-501))) (-389 |#1|) (-1125 |#2|) (-1125 (-375 |#3|)) (-310 |#2| |#3| |#4|)) (T -831))
-((-3314 (*1 *2 *3) (|partial| -12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-2 (|:| -3169 (-701)) (|:| -1684 *8))) (-5 *1 (-831 *4 *5 *6 *7 *8)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-107)) (-5 *1 (-831 *4 *5 *6 *7 *8)))) (-3169 (*1 *2 *3) (|partial| -12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-701)) (-5 *1 (-831 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3169 ((-3 (-701) "failed") (-301 |#2| |#3| |#4| |#5|))) (-15 -1847 ((-107) (-301 |#2| |#3| |#4| |#5|))) (-15 -3314 ((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#5|)) "failed") (-301 |#2| |#3| |#4| |#5|))))
-((-3314 (((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#3|)) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|)) 56)) (-1847 (((-107) (-301 (-375 (-501)) |#1| |#2| |#3|)) 13)) (-3169 (((-3 (-701) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|)) 11)))
-(((-832 |#1| |#2| |#3|) (-10 -7 (-15 -3169 ((-3 (-701) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|))) (-15 -1847 ((-107) (-301 (-375 (-501)) |#1| |#2| |#3|))) (-15 -3314 ((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#3|)) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|)))) (-1125 (-375 (-501))) (-1125 (-375 |#1|)) (-310 (-375 (-501)) |#1| |#2|)) (T -832))
-((-3314 (*1 *2 *3) (|partial| -12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-2 (|:| -3169 (-701)) (|:| -1684 *6))) (-5 *1 (-832 *4 *5 *6)))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-832 *4 *5 *6)))) (-3169 (*1 *2 *3) (|partial| -12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-701)) (-5 *1 (-832 *4 *5 *6)))))
-(-10 -7 (-15 -3169 ((-3 (-701) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|))) (-15 -1847 ((-107) (-301 (-375 (-501)) |#1| |#2| |#3|))) (-15 -3314 ((-3 (-2 (|:| -3169 (-701)) (|:| -1684 |#3|)) "failed") (-301 (-375 (-501)) |#1| |#2| |#3|))))
-((-2283 ((|#2| |#2|) 25)) (-3832 (((-501) (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))))) 15)) (-3312 (((-839) (-501)) 35)) (-1264 (((-501) |#2|) 42)) (-3434 (((-501) |#2|) 21) (((-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))) |#1|) 20)))
-(((-833 |#1| |#2|) (-10 -7 (-15 -3312 ((-839) (-501))) (-15 -3434 ((-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))) |#1|)) (-15 -3434 ((-501) |#2|)) (-15 -3832 ((-501) (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501)))))) (-15 -1264 ((-501) |#2|)) (-15 -2283 (|#2| |#2|))) (-1125 (-375 (-501))) (-1125 (-375 |#1|))) (T -833))
-((-2283 (*1 *2 *2) (-12 (-4 *3 (-1125 (-375 (-501)))) (-5 *1 (-833 *3 *2)) (-4 *2 (-1125 (-375 *3))))) (-1264 (*1 *2 *3) (-12 (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1125 (-375 *4))))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))))) (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1125 (-375 *4))))) (-3434 (*1 *2 *3) (-12 (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1125 (-375 *4))))) (-3434 (*1 *2 *3) (-12 (-4 *3 (-1125 (-375 (-501)))) (-5 *2 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501)))) (-5 *1 (-833 *3 *4)) (-4 *4 (-1125 (-375 *3))))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-1125 (-375 *3))) (-5 *2 (-839)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1125 (-375 *4))))))
-(-10 -7 (-15 -3312 ((-839) (-501))) (-15 -3434 ((-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))) |#1|)) (-15 -3434 ((-501) |#2|)) (-15 -3832 ((-501) (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501)))))) (-15 -1264 ((-501) |#2|)) (-15 -2283 (|#2| |#2|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 ((|#1| $) 80)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-3023 (($ $ $) NIL)) (-2174 (((-3 $ "failed") $) 74)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3629 (($ |#1| (-373 |#1|)) 72)) (-3720 (((-1064 |#1|) |#1| |#1|) 40)) (-3438 (($ $) 48)) (-1355 (((-107) $) NIL)) (-2027 (((-501) $) 77)) (-3160 (($ $ (-501)) 79)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-1898 ((|#1| $) 76)) (-2656 (((-373 |#1|) $) 75)) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) 73)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-1368 (($ $) 38)) (-3691 (((-786) $) 98) (($ (-501)) 53) (($ $) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 30) (((-375 |#1|) $) 58) (($ (-375 (-373 |#1|))) 66)) (-3965 (((-701)) 51)) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 23 T CONST)) (-1925 (($) 11 T CONST)) (-3751 (((-107) $ $) 67)) (-3803 (($ $ $) NIL)) (-3797 (($ $) 87) (($ $ $) NIL)) (-3790 (($ $ $) 37)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 89) (($ $ $) 36) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL)))
-(((-834 |#1|) (-13 (-331) (-37 |#1|) (-10 -8 (-15 -3691 ((-375 |#1|) $)) (-15 -3691 ($ (-375 (-373 |#1|)))) (-15 -1368 ($ $)) (-15 -2656 ((-373 |#1|) $)) (-15 -1898 (|#1| $)) (-15 -3160 ($ $ (-501))) (-15 -2027 ((-501) $)) (-15 -3720 ((-1064 |#1|) |#1| |#1|)) (-15 -3438 ($ $)) (-15 -3629 ($ |#1| (-373 |#1|))) (-15 -2197 (|#1| $)))) (-276)) (T -834))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-375 (-373 *3))) (-4 *3 (-276)) (-5 *1 (-834 *3)))) (-1368 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-373 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-1898 (*1 *2 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))) (-3160 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-3720 (*1 *2 *3 *3) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) (-3438 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))) (-3629 (*1 *1 *2 *3) (-12 (-5 *3 (-373 *2)) (-4 *2 (-276)) (-5 *1 (-834 *2)))) (-2197 (*1 *2 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))))
-(-13 (-331) (-37 |#1|) (-10 -8 (-15 -3691 ((-375 |#1|) $)) (-15 -3691 ($ (-375 (-373 |#1|)))) (-15 -1368 ($ $)) (-15 -2656 ((-373 |#1|) $)) (-15 -1898 (|#1| $)) (-15 -3160 ($ $ (-501))) (-15 -2027 ((-501) $)) (-15 -3720 ((-1064 |#1|) |#1| |#1|)) (-15 -3438 ($ $)) (-15 -3629 ($ |#1| (-373 |#1|))) (-15 -2197 (|#1| $))))
-((-3629 (((-50) (-866 |#1|) (-373 (-866 |#1|)) (-1070)) 16) (((-50) (-375 (-866 |#1|)) (-1070)) 17)))
-(((-835 |#1|) (-10 -7 (-15 -3629 ((-50) (-375 (-866 |#1|)) (-1070))) (-15 -3629 ((-50) (-866 |#1|) (-373 (-866 |#1|)) (-1070)))) (-13 (-276) (-134))) (T -835))
-((-3629 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-373 (-866 *6))) (-5 *5 (-1070)) (-5 *3 (-866 *6)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-50)) (-5 *1 (-835 *6)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-50)) (-5 *1 (-835 *5)))))
-(-10 -7 (-15 -3629 ((-50) (-375 (-866 |#1|)) (-1070))) (-15 -3629 ((-50) (-866 |#1|) (-373 (-866 |#1|)) (-1070))))
-((-2262 ((|#4| (-578 |#4|)) 118) (((-1064 |#4|) (-1064 |#4|) (-1064 |#4|)) 65) ((|#4| |#4| |#4|) 117)) (-3664 (((-1064 |#4|) (-578 (-1064 |#4|))) 111) (((-1064 |#4|) (-1064 |#4|) (-1064 |#4|)) 48) ((|#4| (-578 |#4|)) 53) ((|#4| |#4| |#4|) 82)))
-(((-836 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3664 (|#4| |#4| |#4|)) (-15 -3664 (|#4| (-578 |#4|))) (-15 -3664 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -3664 ((-1064 |#4|) (-578 (-1064 |#4|)))) (-15 -2262 (|#4| |#4| |#4|)) (-15 -2262 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -2262 (|#4| (-578 |#4|)))) (-723) (-777) (-276) (-870 |#3| |#1| |#2|)) (T -836))
-((-2262 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *6 *4 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)))) (-2262 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *6)))) (-2262 (*1 *2 *2 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-870 *5 *3 *4)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-578 (-1064 *7))) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-1064 *7)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) (-3664 (*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *6)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *6 *4 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)))) (-3664 (*1 *2 *2 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-870 *5 *3 *4)))))
-(-10 -7 (-15 -3664 (|#4| |#4| |#4|)) (-15 -3664 (|#4| (-578 |#4|))) (-15 -3664 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -3664 ((-1064 |#4|) (-578 (-1064 |#4|)))) (-15 -2262 (|#4| |#4| |#4|)) (-15 -2262 ((-1064 |#4|) (-1064 |#4|) (-1064 |#4|))) (-15 -2262 (|#4| (-578 |#4|))))
-((-1423 (((-825 (-501)) (-886)) 22) (((-825 (-501)) (-578 (-501))) 19)) (-2241 (((-825 (-501)) (-578 (-501))) 46) (((-825 (-501)) (-839)) 47)) (-1534 (((-825 (-501))) 23)) (-1233 (((-825 (-501))) 36) (((-825 (-501)) (-578 (-501))) 35)) (-1735 (((-825 (-501))) 34) (((-825 (-501)) (-578 (-501))) 33)) (-1750 (((-825 (-501))) 32) (((-825 (-501)) (-578 (-501))) 31)) (-1597 (((-825 (-501))) 30) (((-825 (-501)) (-578 (-501))) 29)) (-3747 (((-825 (-501))) 28) (((-825 (-501)) (-578 (-501))) 27)) (-3906 (((-825 (-501))) 38) (((-825 (-501)) (-578 (-501))) 37)) (-4071 (((-825 (-501)) (-578 (-501))) 50) (((-825 (-501)) (-839)) 51)) (-2284 (((-825 (-501)) (-578 (-501))) 48) (((-825 (-501)) (-839)) 49)) (-1346 (((-825 (-501)) (-578 (-501))) 43) (((-825 (-501)) (-839)) 45)) (-2149 (((-825 (-501)) (-578 (-839))) 40)))
-(((-837) (-10 -7 (-15 -2241 ((-825 (-501)) (-839))) (-15 -2241 ((-825 (-501)) (-578 (-501)))) (-15 -1346 ((-825 (-501)) (-839))) (-15 -1346 ((-825 (-501)) (-578 (-501)))) (-15 -2149 ((-825 (-501)) (-578 (-839)))) (-15 -2284 ((-825 (-501)) (-839))) (-15 -2284 ((-825 (-501)) (-578 (-501)))) (-15 -4071 ((-825 (-501)) (-839))) (-15 -4071 ((-825 (-501)) (-578 (-501)))) (-15 -3747 ((-825 (-501)) (-578 (-501)))) (-15 -3747 ((-825 (-501)))) (-15 -1597 ((-825 (-501)) (-578 (-501)))) (-15 -1597 ((-825 (-501)))) (-15 -1750 ((-825 (-501)) (-578 (-501)))) (-15 -1750 ((-825 (-501)))) (-15 -1735 ((-825 (-501)) (-578 (-501)))) (-15 -1735 ((-825 (-501)))) (-15 -1233 ((-825 (-501)) (-578 (-501)))) (-15 -1233 ((-825 (-501)))) (-15 -3906 ((-825 (-501)) (-578 (-501)))) (-15 -3906 ((-825 (-501)))) (-15 -1534 ((-825 (-501)))) (-15 -1423 ((-825 (-501)) (-578 (-501)))) (-15 -1423 ((-825 (-501)) (-886))))) (T -837))
-((-1423 (*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1423 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1534 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-3906 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1233 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1233 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1735 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1735 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1750 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1597 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-3747 (*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-3747 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-4071 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-578 (-839))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) (-2241 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(-10 -7 (-15 -2241 ((-825 (-501)) (-839))) (-15 -2241 ((-825 (-501)) (-578 (-501)))) (-15 -1346 ((-825 (-501)) (-839))) (-15 -1346 ((-825 (-501)) (-578 (-501)))) (-15 -2149 ((-825 (-501)) (-578 (-839)))) (-15 -2284 ((-825 (-501)) (-839))) (-15 -2284 ((-825 (-501)) (-578 (-501)))) (-15 -4071 ((-825 (-501)) (-839))) (-15 -4071 ((-825 (-501)) (-578 (-501)))) (-15 -3747 ((-825 (-501)) (-578 (-501)))) (-15 -3747 ((-825 (-501)))) (-15 -1597 ((-825 (-501)) (-578 (-501)))) (-15 -1597 ((-825 (-501)))) (-15 -1750 ((-825 (-501)) (-578 (-501)))) (-15 -1750 ((-825 (-501)))) (-15 -1735 ((-825 (-501)) (-578 (-501)))) (-15 -1735 ((-825 (-501)))) (-15 -1233 ((-825 (-501)) (-578 (-501)))) (-15 -1233 ((-825 (-501)))) (-15 -3906 ((-825 (-501)) (-578 (-501)))) (-15 -3906 ((-825 (-501)))) (-15 -1534 ((-825 (-501)))) (-15 -1423 ((-825 (-501)) (-578 (-501)))) (-15 -1423 ((-825 (-501)) (-886))))
-((-1343 (((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070))) 10)) (-4000 (((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070))) 9)))
-(((-838 |#1|) (-10 -7 (-15 -4000 ((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -1343 ((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070))))) (-419)) (T -838))
-((-1343 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-866 *4))) (-5 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-838 *4)))) (-4000 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-866 *4))) (-5 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-838 *4)))))
-(-10 -7 (-15 -4000 ((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -1343 ((-578 (-866 |#1|)) (-578 (-866 |#1|)) (-578 (-1070)))))
-((-3736 (((-107) $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3664 (($ $ $) NIL)) (-3691 (((-786) $) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1925 (($) NIL T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ $ $) NIL)))
-(((-839) (-13 (-25) (-777) (-657) (-10 -8 (-15 -3664 ($ $ $)) (-6 (-4169 "*"))))) (T -839))
-((-3664 (*1 *1 *1 *1) (-5 *1 (-839))))
-(-13 (-25) (-777) (-657) (-10 -8 (-15 -3664 ($ $ $)) (-6 (-4169 "*"))))
-((-3691 (((-282 |#1|) (-444)) 15)))
-(((-840 |#1|) (-10 -7 (-15 -3691 ((-282 |#1|) (-444)))) (-13 (-777) (-508))) (T -840))
-((-3691 (*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-282 *4)) (-5 *1 (-840 *4)) (-4 *4 (-13 (-777) (-508))))))
-(-10 -7 (-15 -3691 ((-282 |#1|) (-444))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1355 (((-107) $) 31)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-841) (-1180)) (T -841))
-((-3730 (*1 *2 *3) (-12 (-4 *1 (-841)) (-5 *2 (-2 (|:| -3189 (-578 *1)) (|:| -3987 *1))) (-5 *3 (-578 *1)))) (-2648 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-841)))))
-(-13 (-419) (-10 -8 (-15 -3730 ((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $))) (-15 -2648 ((-3 (-578 $) "failed") (-578 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-1676 (((-1064 |#2|) (-578 |#2|) (-578 |#2|)) 17) (((-1118 |#1| |#2|) (-1118 |#1| |#2|) (-578 |#2|) (-578 |#2|)) 13)))
-(((-842 |#1| |#2|) (-10 -7 (-15 -1676 ((-1118 |#1| |#2|) (-1118 |#1| |#2|) (-578 |#2|) (-578 |#2|))) (-15 -1676 ((-1064 |#2|) (-578 |#2|) (-578 |#2|)))) (-1070) (-331)) (T -842))
-((-1676 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-331)) (-5 *2 (-1064 *5)) (-5 *1 (-842 *4 *5)) (-14 *4 (-1070)))) (-1676 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1118 *4 *5)) (-5 *3 (-578 *5)) (-14 *4 (-1070)) (-4 *5 (-331)) (-5 *1 (-842 *4 *5)))))
-(-10 -7 (-15 -1676 ((-1118 |#1| |#2|) (-1118 |#1| |#2|) (-578 |#2|) (-578 |#2|))) (-15 -1676 ((-1064 |#2|) (-578 |#2|) (-578 |#2|))))
-((-2081 ((|#2| (-578 |#1|) (-578 |#1|)) 22)))
-(((-843 |#1| |#2|) (-10 -7 (-15 -2081 (|#2| (-578 |#1|) (-578 |#1|)))) (-331) (-1125 |#1|)) (T -843))
-((-2081 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-331)) (-4 *2 (-1125 *4)) (-5 *1 (-843 *4 *2)))))
-(-10 -7 (-15 -2081 (|#2| (-578 |#1|) (-578 |#1|))))
-((-3614 (((-501) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053)) 138)) (-2889 ((|#4| |#4|) 154)) (-3419 (((-578 (-375 (-866 |#1|))) (-578 (-1070))) 117)) (-2312 (((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-578 (-578 |#4|)) (-701) (-701) (-501)) 69)) (-3557 (((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-578 |#4|)) 51)) (-1365 (((-621 |#4|) (-621 |#4|) (-578 |#4|)) 46)) (-1290 (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053)) 150)) (-3483 (((-501) (-621 |#4|) (-839) (-1053)) 131) (((-501) (-621 |#4|) (-578 (-1070)) (-839) (-1053)) 130) (((-501) (-621 |#4|) (-578 |#4|) (-839) (-1053)) 129) (((-501) (-621 |#4|) (-1053)) 126) (((-501) (-621 |#4|) (-578 (-1070)) (-1053)) 125) (((-501) (-621 |#4|) (-578 |#4|) (-1053)) 124) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-839)) 123) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)) (-839)) 122) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|) (-839)) 121) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|)) 119) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070))) 118) (((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|)) 115)) (-2105 ((|#4| (-866 |#1|)) 62)) (-3141 (((-107) (-578 |#4|) (-578 (-578 |#4|))) 151)) (-4066 (((-578 (-578 (-501))) (-501) (-501)) 128)) (-3555 (((-578 (-578 |#4|)) (-578 (-578 |#4|))) 81)) (-3844 (((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|))))) 79)) (-2609 (((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|))))) 78)) (-3560 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|)) 65)) (-2294 (((-578 |#4|) |#4|) 40)) (-1731 (((-578 (-375 (-866 |#1|))) (-578 |#4|)) 113) (((-621 (-375 (-866 |#1|))) (-621 |#4|)) 47) (((-375 (-866 |#1|)) |#4|) 110)) (-2971 (((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))))) (|:| |rgsz| (-501))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-701) (-1053) (-501)) 87)) (-3813 (((-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))) (-621 |#4|) (-701)) 77)) (-2154 (((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-621 |#4|) (-701)) 97)) (-1686 (((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| -2978 (-621 (-375 (-866 |#1|)))) (|:| |vec| (-578 (-375 (-866 |#1|)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) 38)))
-(((-844 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|) (-839))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)) (-839))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-839))) (-15 -3483 ((-501) (-621 |#4|) (-578 |#4|) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 (-1070)) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 |#4|) (-839) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 (-1070)) (-839) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-839) (-1053))) (-15 -3614 ((-501) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053))) (-15 -1290 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053))) (-15 -2971 ((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))))) (|:| |rgsz| (-501))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-701) (-1053) (-501))) (-15 -1731 ((-375 (-866 |#1|)) |#4|)) (-15 -1731 ((-621 (-375 (-866 |#1|))) (-621 |#4|))) (-15 -1731 ((-578 (-375 (-866 |#1|))) (-578 |#4|))) (-15 -3419 ((-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2105 (|#4| (-866 |#1|))) (-15 -3560 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|))) (-15 -3813 ((-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))) (-621 |#4|) (-701))) (-15 -3557 ((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-578 |#4|))) (-15 -1686 ((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| -2978 (-621 (-375 (-866 |#1|)))) (|:| |vec| (-578 (-375 (-866 |#1|)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (-15 -2294 ((-578 |#4|) |#4|)) (-15 -2609 ((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -3844 ((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -3555 ((-578 (-578 |#4|)) (-578 (-578 |#4|)))) (-15 -4066 ((-578 (-578 (-501))) (-501) (-501))) (-15 -3141 ((-107) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2154 ((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-621 |#4|) (-701))) (-15 -1365 ((-621 |#4|) (-621 |#4|) (-578 |#4|))) (-15 -2312 ((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-578 (-578 |#4|)) (-701) (-701) (-501))) (-15 -2889 (|#4| |#4|))) (-13 (-276) (-134)) (-13 (-777) (-556 (-1070))) (-723) (-870 |#1| |#3| |#2|)) (T -844))
-((-2889 (*1 *2 *2) (-12 (-4 *3 (-13 (-276) (-134))) (-4 *4 (-13 (-777) (-556 (-1070)))) (-4 *5 (-723)) (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-870 *3 *5 *4)))) (-2312 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-5 *4 (-621 *12)) (-5 *5 (-578 (-375 (-866 *9)))) (-5 *6 (-578 (-578 *12))) (-5 *7 (-701)) (-5 *8 (-501)) (-4 *9 (-13 (-276) (-134))) (-4 *12 (-870 *9 *11 *10)) (-4 *10 (-13 (-777) (-556 (-1070)))) (-4 *11 (-723)) (-5 *2 (-2 (|:| |eqzro| (-578 *12)) (|:| |neqzro| (-578 *12)) (|:| |wcond| (-578 (-866 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *9)))) (|:| -4119 (-578 (-1148 (-375 (-866 *9))))))))) (-5 *1 (-844 *9 *10 *11 *12)))) (-1365 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *1 (-844 *4 *5 *6 *7)))) (-2154 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-701)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (-5 *1 (-844 *5 *6 *7 *8)))) (-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-107)) (-5 *1 (-844 *5 *6 *7 *8)))) (-4066 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-578 (-501)))) (-5 *1 (-844 *4 *5 *6 *7)) (-5 *3 (-501)) (-4 *7 (-870 *4 *6 *5)))) (-3555 (*1 *2 *2) (-12 (-5 *2 (-578 (-578 *6))) (-4 *6 (-870 *3 *5 *4)) (-4 *3 (-13 (-276) (-134))) (-4 *4 (-13 (-777) (-556 (-1070)))) (-4 *5 (-723)) (-5 *1 (-844 *3 *4 *5 *6)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-701)) (-5 *1 (-844 *4 *5 *6 *7)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-701)) (-5 *1 (-844 *4 *5 *6 *7)))) (-2294 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 *3)) (-5 *1 (-844 *4 *5 *6 *3)) (-4 *3 (-870 *4 *6 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2978 (-621 (-375 (-866 *4)))) (|:| |vec| (-578 (-375 (-866 *4)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4))))))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5)))) (-3557 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4))))))) (-5 *3 (-578 *7)) (-4 *4 (-13 (-276) (-134))) (-4 *7 (-870 *4 *6 *5)) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *1 (-844 *4 *5 *6 *7)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *8))))) (-5 *1 (-844 *5 *6 *7 *8)) (-5 *4 (-701)))) (-3560 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-4 *7 (-870 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-578 *7)) (|:| |n0| (-578 *7)))) (-5 *1 (-844 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-13 (-276) (-134))) (-4 *2 (-870 *4 *6 *5)) (-5 *1 (-844 *4 *5 *6 *2)) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-621 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)))) (-1731 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-375 (-866 *4))) (-5 *1 (-844 *4 *5 *6 *3)) (-4 *3 (-870 *4 *6 *5)))) (-2971 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-621 *11)) (-5 *4 (-578 (-375 (-866 *8)))) (-5 *5 (-701)) (-5 *6 (-1053)) (-4 *8 (-13 (-276) (-134))) (-4 *11 (-870 *8 *10 *9)) (-4 *9 (-13 (-777) (-556 (-1070)))) (-4 *10 (-723)) (-5 *2 (-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 *11)) (|:| |neqzro| (-578 *11)) (|:| |wcond| (-578 (-866 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *8)))) (|:| -4119 (-578 (-1148 (-375 (-866 *8)))))))))) (|:| |rgsz| (-501)))) (-5 *1 (-844 *8 *9 *10 *11)) (-5 *7 (-501)))) (-1290 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-866 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4)))))))))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5)))) (-3614 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *4 (-1053)) (-4 *5 (-13 (-276) (-134))) (-4 *8 (-870 *5 *7 *6)) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-839)) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) (-3483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *10)) (-5 *4 (-578 (-1070))) (-5 *5 (-839)) (-5 *6 (-1053)) (-4 *10 (-870 *7 *9 *8)) (-4 *7 (-13 (-276) (-134))) (-4 *8 (-13 (-777) (-556 (-1070)))) (-4 *9 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *7 *8 *9 *10)))) (-3483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *10)) (-5 *4 (-578 *10)) (-5 *5 (-839)) (-5 *6 (-1053)) (-4 *10 (-870 *7 *9 *8)) (-4 *7 (-13 (-276) (-134))) (-4 *8 (-13 (-777) (-556 (-1070)))) (-4 *9 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *7 *8 *9 *10)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-1053)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 (-1070))) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 *9)) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-839)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 (-1070))) (-5 *5 (-839)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-866 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *6)))) (|:| -4119 (-578 (-1148 (-375 (-866 *6)))))))))) (-5 *1 (-844 *6 *7 *8 *9)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *5 (-839)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-866 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *6)))) (|:| -4119 (-578 (-1148 (-375 (-866 *6)))))))))) (-5 *1 (-844 *6 *7 *8 *9)) (-5 *4 (-578 *9)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-866 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4)))))))))) (-5 *1 (-844 *4 *5 *6 *7)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-578 (-1070))) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)) (-5 *4 (-578 *8)))))
-(-10 -7 (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 |#4|) (-839))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-578 (-1070)) (-839))) (-15 -3483 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-621 |#4|) (-839))) (-15 -3483 ((-501) (-621 |#4|) (-578 |#4|) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 (-1070)) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 |#4|) (-839) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-578 (-1070)) (-839) (-1053))) (-15 -3483 ((-501) (-621 |#4|) (-839) (-1053))) (-15 -3614 ((-501) (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053))) (-15 -1290 ((-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|))))))))) (-1053))) (-15 -2971 ((-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))))) (|:| |rgsz| (-501))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-701) (-1053) (-501))) (-15 -1731 ((-375 (-866 |#1|)) |#4|)) (-15 -1731 ((-621 (-375 (-866 |#1|))) (-621 |#4|))) (-15 -1731 ((-578 (-375 (-866 |#1|))) (-578 |#4|))) (-15 -3419 ((-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2105 (|#4| (-866 |#1|))) (-15 -3560 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-578 |#4|)) (|:| |n0| (-578 |#4|))) (-578 |#4|) (-578 |#4|))) (-15 -3813 ((-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))) (-621 |#4|) (-701))) (-15 -3557 ((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-578 |#4|))) (-15 -1686 ((-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))) (-2 (|:| -2978 (-621 (-375 (-866 |#1|)))) (|:| |vec| (-578 (-375 (-866 |#1|)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (-15 -2294 ((-578 |#4|) |#4|)) (-15 -2609 ((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -3844 ((-701) (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 |#4|)))))) (-15 -3555 ((-578 (-578 |#4|)) (-578 (-578 |#4|)))) (-15 -4066 ((-578 (-578 (-501))) (-501) (-501))) (-15 -3141 ((-107) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2154 ((-578 (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-621 |#4|) (-701))) (-15 -1365 ((-621 |#4|) (-621 |#4|) (-578 |#4|))) (-15 -2312 ((-2 (|:| |eqzro| (-578 |#4|)) (|:| |neqzro| (-578 |#4|)) (|:| |wcond| (-578 (-866 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 |#1|)))) (|:| -4119 (-578 (-1148 (-375 (-866 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))) (-621 |#4|) (-578 (-375 (-866 |#1|))) (-578 (-578 |#4|)) (-701) (-701) (-501))) (-15 -2889 (|#4| |#4|)))
-((-2857 (($ $ (-991 (-199))) 69) (($ $ (-991 (-199)) (-991 (-199))) 70)) (-1236 (((-991 (-199)) $) 43)) (-3096 (((-991 (-199)) $) 42)) (-2323 (((-991 (-199)) $) 44)) (-3693 (((-501) (-501)) 36)) (-2891 (((-501) (-501)) 32)) (-2334 (((-501) (-501)) 34)) (-2602 (((-107) (-107)) 38)) (-3536 (((-501)) 35)) (-3237 (($ $ (-991 (-199))) 73) (($ $) 74)) (-3875 (($ (-1 (-863 (-199)) (-199)) (-991 (-199))) 83) (($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199))) 84)) (-1871 (($ (-1 (-199) (-199)) (-991 (-199))) 91) (($ (-1 (-199) (-199))) 94)) (-2701 (($ (-1 (-199) (-199)) (-991 (-199))) 78) (($ (-1 (-199) (-199)) (-991 (-199)) (-991 (-199))) 79) (($ (-578 (-1 (-199) (-199))) (-991 (-199))) 86) (($ (-578 (-1 (-199) (-199))) (-991 (-199)) (-991 (-199))) 87) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199))) 81) (($ $ (-991 (-199))) 75)) (-2259 (((-107) $) 39)) (-3628 (((-501)) 40)) (-3286 (((-501)) 31)) (-2709 (((-501)) 33)) (-2616 (((-578 (-578 (-863 (-199)))) $) 22)) (-1839 (((-107) (-107)) 41)) (-3691 (((-786) $) 105)) (-3938 (((-107)) 37)))
-(((-845) (-13 (-874) (-10 -8 (-15 -2701 ($ (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-578 (-1 (-199) (-199))) (-991 (-199)))) (-15 -2701 ($ (-578 (-1 (-199) (-199))) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -1871 ($ (-1 (-199) (-199)) (-991 (-199)))) (-15 -1871 ($ (-1 (-199) (-199)))) (-15 -2701 ($ $ (-991 (-199)))) (-15 -2259 ((-107) $)) (-15 -2857 ($ $ (-991 (-199)))) (-15 -2857 ($ $ (-991 (-199)) (-991 (-199)))) (-15 -3237 ($ $ (-991 (-199)))) (-15 -3237 ($ $)) (-15 -2323 ((-991 (-199)) $)) (-15 -3286 ((-501))) (-15 -2891 ((-501) (-501))) (-15 -2709 ((-501))) (-15 -2334 ((-501) (-501))) (-15 -3536 ((-501))) (-15 -3693 ((-501) (-501))) (-15 -3938 ((-107))) (-15 -2602 ((-107) (-107))) (-15 -3628 ((-501))) (-15 -1839 ((-107) (-107)))))) (T -845))
-((-2701 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1 (-199) (-199)))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-1 (-199) (-199)))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-3875 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-3875 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-1871 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-845)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-845)))) (-2857 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-2857 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-3237 (*1 *1 *1) (-5 *1 (-845))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) (-3286 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-2891 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-2709 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-3536 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-3938 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845)))) (-2602 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845)))) (-3628 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845)))))
-(-13 (-874) (-10 -8 (-15 -2701 ($ (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-578 (-1 (-199) (-199))) (-991 (-199)))) (-15 -2701 ($ (-578 (-1 (-199) (-199))) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -1871 ($ (-1 (-199) (-199)) (-991 (-199)))) (-15 -1871 ($ (-1 (-199) (-199)))) (-15 -2701 ($ $ (-991 (-199)))) (-15 -2259 ((-107) $)) (-15 -2857 ($ $ (-991 (-199)))) (-15 -2857 ($ $ (-991 (-199)) (-991 (-199)))) (-15 -3237 ($ $ (-991 (-199)))) (-15 -3237 ($ $)) (-15 -2323 ((-991 (-199)) $)) (-15 -3286 ((-501))) (-15 -2891 ((-501) (-501))) (-15 -2709 ((-501))) (-15 -2334 ((-501) (-501))) (-15 -3536 ((-501))) (-15 -3693 ((-501) (-501))) (-15 -3938 ((-107))) (-15 -2602 ((-107) (-107))) (-15 -3628 ((-501))) (-15 -1839 ((-107) (-107)))))
-((-1871 (((-845) |#1| (-1070)) 16) (((-845) |#1| (-1070) (-991 (-199))) 20)) (-2701 (((-845) |#1| |#1| (-1070) (-991 (-199))) 18) (((-845) |#1| (-1070) (-991 (-199))) 14)))
-(((-846 |#1|) (-10 -7 (-15 -2701 ((-845) |#1| (-1070) (-991 (-199)))) (-15 -2701 ((-845) |#1| |#1| (-1070) (-991 (-199)))) (-15 -1871 ((-845) |#1| (-1070) (-991 (-199)))) (-15 -1871 ((-845) |#1| (-1070)))) (-556 (-490))) (T -846))
-((-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) (-1871 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) (-2701 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) (-2701 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))))
-(-10 -7 (-15 -2701 ((-845) |#1| (-1070) (-991 (-199)))) (-15 -2701 ((-845) |#1| |#1| (-1070) (-991 (-199)))) (-15 -1871 ((-845) |#1| (-1070) (-991 (-199)))) (-15 -1871 ((-845) |#1| (-1070))))
-((-2857 (($ $ (-991 (-199)) (-991 (-199)) (-991 (-199))) 68)) (-3283 (((-991 (-199)) $) 40)) (-1236 (((-991 (-199)) $) 39)) (-3096 (((-991 (-199)) $) 38)) (-3895 (((-578 (-578 (-199))) $) 43)) (-2323 (((-991 (-199)) $) 41)) (-2423 (((-501) (-501)) 32)) (-2873 (((-501) (-501)) 28)) (-2877 (((-501) (-501)) 30)) (-2847 (((-107) (-107)) 35)) (-3633 (((-501)) 31)) (-3237 (($ $ (-991 (-199))) 71) (($ $) 72)) (-3875 (($ (-1 (-863 (-199)) (-199)) (-991 (-199))) 76) (($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199))) 77)) (-2701 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199))) 79) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199))) 80) (($ $ (-991 (-199))) 74)) (-2700 (((-501)) 36)) (-3795 (((-501)) 27)) (-1524 (((-501)) 29)) (-2616 (((-578 (-578 (-863 (-199)))) $) 92)) (-2901 (((-107) (-107)) 37)) (-3691 (((-786) $) 91)) (-3050 (((-107)) 34)))
-(((-847) (-13 (-889) (-10 -8 (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ $ (-991 (-199)))) (-15 -2857 ($ $ (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -3237 ($ $ (-991 (-199)))) (-15 -3237 ($ $)) (-15 -2323 ((-991 (-199)) $)) (-15 -3895 ((-578 (-578 (-199))) $)) (-15 -3795 ((-501))) (-15 -2873 ((-501) (-501))) (-15 -1524 ((-501))) (-15 -2877 ((-501) (-501))) (-15 -3633 ((-501))) (-15 -2423 ((-501) (-501))) (-15 -3050 ((-107))) (-15 -2847 ((-107) (-107))) (-15 -2700 ((-501))) (-15 -2901 ((-107) (-107)))))) (T -847))
-((-3875 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) (-3875 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) (-2701 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) (-2701 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) (-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) (-2857 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) (-3237 (*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) (-3237 (*1 *1 *1) (-5 *1 (-847))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-199)))) (-5 *1 (-847)))) (-3795 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-1524 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-2877 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-3633 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-2423 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-3050 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847)))) (-2700 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))) (-2901 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847)))))
-(-13 (-889) (-10 -8 (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)))) (-15 -3875 ($ (-1 (-863 (-199)) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)))) (-15 -2701 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -2701 ($ $ (-991 (-199)))) (-15 -2857 ($ $ (-991 (-199)) (-991 (-199)) (-991 (-199)))) (-15 -3237 ($ $ (-991 (-199)))) (-15 -3237 ($ $)) (-15 -2323 ((-991 (-199)) $)) (-15 -3895 ((-578 (-578 (-199))) $)) (-15 -3795 ((-501))) (-15 -2873 ((-501) (-501))) (-15 -1524 ((-501))) (-15 -2877 ((-501) (-501))) (-15 -3633 ((-501))) (-15 -2423 ((-501) (-501))) (-15 -3050 ((-107))) (-15 -2847 ((-107) (-107))) (-15 -2700 ((-501))) (-15 -2901 ((-107) (-107)))))
-((-2124 (((-578 (-991 (-199))) (-578 (-578 (-863 (-199))))) 23)))
-(((-848) (-10 -7 (-15 -2124 ((-578 (-991 (-199))) (-578 (-578 (-863 (-199)))))))) (T -848))
-((-2124 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-578 (-991 (-199)))) (-5 *1 (-848)))))
-(-10 -7 (-15 -2124 ((-578 (-991 (-199))) (-578 (-578 (-863 (-199)))))))
-((-4028 (((-282 (-501)) (-1070)) 15)) (-4020 (((-282 (-501)) (-1070)) 13)) (-3897 (((-282 (-501)) (-1070)) 11)) (-2402 (((-282 (-501)) (-1070) (-1053)) 18)))
-(((-849) (-10 -7 (-15 -2402 ((-282 (-501)) (-1070) (-1053))) (-15 -3897 ((-282 (-501)) (-1070))) (-15 -4028 ((-282 (-501)) (-1070))) (-15 -4020 ((-282 (-501)) (-1070))))) (T -849))
-((-4020 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) (-4028 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1053)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))))
-(-10 -7 (-15 -2402 ((-282 (-501)) (-1070) (-1053))) (-15 -3897 ((-282 (-501)) (-1070))) (-15 -4028 ((-282 (-501)) (-1070))) (-15 -4020 ((-282 (-501)) (-1070))))
-((-4028 ((|#2| |#2|) 25)) (-4020 ((|#2| |#2|) 26)) (-3897 ((|#2| |#2|) 24)) (-2402 ((|#2| |#2| (-1053)) 23)))
-(((-850 |#1| |#2|) (-10 -7 (-15 -2402 (|#2| |#2| (-1053))) (-15 -3897 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4020 (|#2| |#2|))) (-777) (-389 |#1|)) (T -850))
-((-4020 (*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))) (-4028 (*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))) (-2402 (*1 *2 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-777)) (-5 *1 (-850 *4 *2)) (-4 *2 (-389 *4)))))
-(-10 -7 (-15 -2402 (|#2| |#2| (-1053))) (-15 -3897 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -4020 (|#2| |#2|)))
-((-3809 (((-808 |#1| |#3|) |#2| (-810 |#1|) (-808 |#1| |#3|)) 24)) (-2410 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12)))
-(((-851 |#1| |#2| |#3|) (-10 -7 (-15 -2410 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3809 ((-808 |#1| |#3|) |#2| (-810 |#1|) (-808 |#1| |#3|)))) (-1001) (-806 |#1|) (-13 (-1001) (-950 |#2|))) (T -851))
-((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-13 (-1001) (-950 *3))) (-4 *3 (-806 *5)) (-5 *1 (-851 *5 *3 *6)))) (-2410 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1001) (-950 *5))) (-4 *5 (-806 *4)) (-4 *4 (-1001)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-851 *4 *5 *6)))))
-(-10 -7 (-15 -2410 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -3809 ((-808 |#1| |#3|) |#2| (-810 |#1|) (-808 |#1| |#3|))))
-((-3809 (((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)) 29)))
-(((-852 |#1| |#2| |#3|) (-10 -7 (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) (-1001) (-13 (-508) (-777) (-806 |#1|)) (-13 (-389 |#2|) (-556 (-810 |#1|)) (-806 |#1|) (-950 (-553 $)))) (T -852))
-((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-13 (-389 *6) (-556 *4) (-806 *5) (-950 (-553 $)))) (-5 *4 (-810 *5)) (-4 *6 (-13 (-508) (-777) (-806 *5))) (-5 *1 (-852 *5 *6 *3)))))
-(-10 -7 (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))))
-((-3809 (((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|)) 12)))
-(((-853 |#1|) (-10 -7 (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|)))) (-500)) (T -853))
-((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 (-501) *3)) (-5 *4 (-810 (-501))) (-4 *3 (-500)) (-5 *1 (-853 *3)))))
-(-10 -7 (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))))
-((-3809 (((-808 |#1| |#2|) (-553 |#2|) (-810 |#1|) (-808 |#1| |#2|)) 52)))
-(((-854 |#1| |#2|) (-10 -7 (-15 -3809 ((-808 |#1| |#2|) (-553 |#2|) (-810 |#1|) (-808 |#1| |#2|)))) (-1001) (-13 (-777) (-950 (-553 $)) (-556 (-810 |#1|)) (-806 |#1|))) (T -854))
-((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6)) (-5 *3 (-553 *6)) (-4 *5 (-1001)) (-4 *6 (-13 (-777) (-950 (-553 $)) (-556 *4) (-806 *5))) (-5 *4 (-810 *5)) (-5 *1 (-854 *5 *6)))))
-(-10 -7 (-15 -3809 ((-808 |#1| |#2|) (-553 |#2|) (-810 |#1|) (-808 |#1| |#2|))))
-((-3809 (((-805 |#1| |#2| |#3|) |#3| (-810 |#1|) (-805 |#1| |#2| |#3|)) 14)))
-(((-855 |#1| |#2| |#3|) (-10 -7 (-15 -3809 ((-805 |#1| |#2| |#3|) |#3| (-810 |#1|) (-805 |#1| |#2| |#3|)))) (-1001) (-806 |#1|) (-601 |#2|)) (T -855))
-((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-805 *5 *6 *3)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-806 *5)) (-4 *3 (-601 *6)) (-5 *1 (-855 *5 *6 *3)))))
-(-10 -7 (-15 -3809 ((-805 |#1| |#2| |#3|) |#3| (-810 |#1|) (-805 |#1| |#2| |#3|))))
-((-3809 (((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|)) 17 (|has| |#3| (-806 |#1|))) (((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|) (-1 (-808 |#1| |#5|) |#3| (-810 |#1|) (-808 |#1| |#5|))) 16)))
-(((-856 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3809 ((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|) (-1 (-808 |#1| |#5|) |#3| (-810 |#1|) (-808 |#1| |#5|)))) (IF (|has| |#3| (-806 |#1|)) (-15 -3809 ((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|))) |noBranch|)) (-1001) (-723) (-777) (-13 (-959) (-777) (-806 |#1|)) (-13 (-870 |#4| |#2| |#3|) (-556 (-810 |#1|)))) (T -856))
-((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-13 (-870 *8 *6 *7) (-556 *4))) (-5 *4 (-810 *5)) (-4 *7 (-806 *5)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-13 (-959) (-777) (-806 *5))) (-5 *1 (-856 *5 *6 *7 *8 *3)))) (-3809 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-808 *6 *3) *8 (-810 *6) (-808 *6 *3))) (-4 *8 (-777)) (-5 *2 (-808 *6 *3)) (-5 *4 (-810 *6)) (-4 *6 (-1001)) (-4 *3 (-13 (-870 *9 *7 *8) (-556 *4))) (-4 *7 (-723)) (-4 *9 (-13 (-959) (-777) (-806 *6))) (-5 *1 (-856 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -3809 ((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|) (-1 (-808 |#1| |#5|) |#3| (-810 |#1|) (-808 |#1| |#5|)))) (IF (|has| |#3| (-806 |#1|)) (-15 -3809 ((-808 |#1| |#5|) |#5| (-810 |#1|) (-808 |#1| |#5|))) |noBranch|))
-((-4081 (((-282 (-501)) (-1070) (-578 (-1 (-107) |#1|))) 16) (((-282 (-501)) (-1070) (-1 (-107) |#1|)) 13)))
-(((-857 |#1|) (-10 -7 (-15 -4081 ((-282 (-501)) (-1070) (-1 (-107) |#1|))) (-15 -4081 ((-282 (-501)) (-1070) (-578 (-1 (-107) |#1|))))) (-1104)) (T -857))
-((-4081 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-578 (-1 (-107) *5))) (-4 *5 (-1104)) (-5 *2 (-282 (-501))) (-5 *1 (-857 *5)))) (-4081 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1104)) (-5 *2 (-282 (-501))) (-5 *1 (-857 *5)))))
-(-10 -7 (-15 -4081 ((-282 (-501)) (-1070) (-1 (-107) |#1|))) (-15 -4081 ((-282 (-501)) (-1070) (-578 (-1 (-107) |#1|)))))
-((-4081 ((|#2| |#2| (-578 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12)))
-(((-858 |#1| |#2| |#3|) (-10 -7 (-15 -4081 (|#2| |#2| (-1 (-107) |#3|))) (-15 -4081 (|#2| |#2| (-578 (-1 (-107) |#3|))))) (-777) (-389 |#1|) (-1104)) (T -858))
-((-4081 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1 (-107) *5))) (-4 *5 (-1104)) (-4 *4 (-777)) (-5 *1 (-858 *4 *2 *5)) (-4 *2 (-389 *4)))) (-4081 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1104)) (-4 *4 (-777)) (-5 *1 (-858 *4 *2 *5)) (-4 *2 (-389 *4)))))
-(-10 -7 (-15 -4081 (|#2| |#2| (-1 (-107) |#3|))) (-15 -4081 (|#2| |#2| (-578 (-1 (-107) |#3|)))))
-((-3809 (((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)) 25)))
-(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) (-1001) (-13 (-508) (-806 |#1|) (-556 (-810 |#1|))) (-906 |#2|)) (T -859))
-((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-906 *6)) (-4 *6 (-13 (-508) (-806 *5) (-556 *4))) (-5 *4 (-810 *5)) (-5 *1 (-859 *5 *6 *3)))))
-(-10 -7 (-15 -3809 ((-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))))
-((-3809 (((-808 |#1| (-1070)) (-1070) (-810 |#1|) (-808 |#1| (-1070))) 17)))
-(((-860 |#1|) (-10 -7 (-15 -3809 ((-808 |#1| (-1070)) (-1070) (-810 |#1|) (-808 |#1| (-1070))))) (-1001)) (T -860))
-((-3809 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 (-1070))) (-5 *3 (-1070)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-5 *1 (-860 *5)))))
-(-10 -7 (-15 -3809 ((-808 |#1| (-1070)) (-1070) (-810 |#1|) (-808 |#1| (-1070)))))
-((-2689 (((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))) 33)) (-3809 (((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-1 |#3| (-578 |#3|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))) 32)))
-(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -3809 ((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-1 |#3| (-578 |#3|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) (-15 -2689 ((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|))))) (-1001) (-13 (-959) (-777)) (-13 (-959) (-556 (-810 |#1|)) (-950 |#2|))) (T -861))
-((-2689 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-810 *6))) (-5 *5 (-1 (-808 *6 *8) *8 (-810 *6) (-808 *6 *8))) (-4 *6 (-1001)) (-4 *8 (-13 (-959) (-556 (-810 *6)) (-950 *7))) (-5 *2 (-808 *6 *8)) (-4 *7 (-13 (-959) (-777))) (-5 *1 (-861 *6 *7 *8)))) (-3809 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-578 (-810 *7))) (-5 *5 (-1 *9 (-578 *9))) (-5 *6 (-1 (-808 *7 *9) *9 (-810 *7) (-808 *7 *9))) (-4 *7 (-1001)) (-4 *9 (-13 (-959) (-556 (-810 *7)) (-950 *8))) (-5 *2 (-808 *7 *9)) (-5 *3 (-578 *9)) (-4 *8 (-13 (-959) (-777))) (-5 *1 (-861 *7 *8 *9)))))
-(-10 -7 (-15 -3809 ((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-1 |#3| (-578 |#3|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))) (-15 -2689 ((-808 |#1| |#3|) (-578 |#3|) (-578 (-810 |#1|)) (-808 |#1| |#3|) (-1 (-808 |#1| |#3|) |#3| (-810 |#1|) (-808 |#1| |#3|)))))
-((-3228 (((-1064 (-375 (-501))) (-501)) 61)) (-1219 (((-1064 (-501)) (-501)) 64)) (-2475 (((-1064 (-501)) (-501)) 58)) (-1282 (((-501) (-1064 (-501))) 53)) (-2955 (((-1064 (-375 (-501))) (-501)) 47)) (-3573 (((-1064 (-501)) (-501)) 36)) (-4080 (((-1064 (-501)) (-501)) 66)) (-3495 (((-1064 (-501)) (-501)) 65)) (-2652 (((-1064 (-375 (-501))) (-501)) 49)))
-(((-862) (-10 -7 (-15 -2652 ((-1064 (-375 (-501))) (-501))) (-15 -3495 ((-1064 (-501)) (-501))) (-15 -4080 ((-1064 (-501)) (-501))) (-15 -3573 ((-1064 (-501)) (-501))) (-15 -2955 ((-1064 (-375 (-501))) (-501))) (-15 -1282 ((-501) (-1064 (-501)))) (-15 -2475 ((-1064 (-501)) (-501))) (-15 -1219 ((-1064 (-501)) (-501))) (-15 -3228 ((-1064 (-375 (-501))) (-501))))) (T -862))
-((-3228 (*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501)))) (-1219 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-2475 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-1064 (-501))) (-5 *2 (-501)) (-5 *1 (-862)))) (-2955 (*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501)))) (-3573 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-4080 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-3495 (*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) (-2652 (*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501)))))
-(-10 -7 (-15 -2652 ((-1064 (-375 (-501))) (-501))) (-15 -3495 ((-1064 (-501)) (-501))) (-15 -4080 ((-1064 (-501)) (-501))) (-15 -3573 ((-1064 (-501)) (-501))) (-15 -2955 ((-1064 (-375 (-501))) (-501))) (-15 -1282 ((-501) (-1064 (-501)))) (-15 -2475 ((-1064 (-501)) (-501))) (-15 -1219 ((-1064 (-501)) (-501))) (-15 -3228 ((-1064 (-375 (-501))) (-501))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701)) NIL (|has| |#1| (-23)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) 11 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-1801 (($ (-578 |#1|)) 13)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) NIL (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) 8)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 10 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3203 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3155 (((-107) $ (-701)) NIL)) (-4139 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-3718 (($ $ (-578 |#1|)) 24)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) 18) (($ $ (-1116 (-501))) NIL)) (-1293 ((|#1| $ $) NIL (|has| |#1| (-959)))) (-3613 (((-839) $) 16)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-2220 (($ $ $) 22)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490)))) (($ (-578 |#1|)) 17)) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3790 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-501) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-657))) (($ $ |#1|) NIL (|has| |#1| (-657)))) (-3581 (((-701) $) 14 (|has| $ (-6 -4167)))))
-(((-863 |#1|) (-895 |#1|) (-959)) (T -863))
-NIL
-(-895 |#1|)
-((-2207 (((-447 |#1| |#2|) (-866 |#2|)) 17)) (-3464 (((-220 |#1| |#2|) (-866 |#2|)) 29)) (-2549 (((-866 |#2|) (-447 |#1| |#2|)) 22)) (-2895 (((-220 |#1| |#2|) (-447 |#1| |#2|)) 53)) (-4016 (((-866 |#2|) (-220 |#1| |#2|)) 26)) (-3814 (((-447 |#1| |#2|) (-220 |#1| |#2|)) 44)))
-(((-864 |#1| |#2|) (-10 -7 (-15 -3814 ((-447 |#1| |#2|) (-220 |#1| |#2|))) (-15 -2895 ((-220 |#1| |#2|) (-447 |#1| |#2|))) (-15 -2207 ((-447 |#1| |#2|) (-866 |#2|))) (-15 -2549 ((-866 |#2|) (-447 |#1| |#2|))) (-15 -4016 ((-866 |#2|) (-220 |#1| |#2|))) (-15 -3464 ((-220 |#1| |#2|) (-866 |#2|)))) (-578 (-1070)) (-959)) (T -864))
-((-3464 (*1 *2 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-959)) (-5 *2 (-220 *4 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-578 (-1070))))) (-4016 (*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-866 *5)) (-5 *1 (-864 *4 *5)))) (-2549 (*1 *2 *3) (-12 (-5 *3 (-447 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-866 *5)) (-5 *1 (-864 *4 *5)))) (-2207 (*1 *2 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-959)) (-5 *2 (-447 *4 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-578 (-1070))))) (-2895 (*1 *2 *3) (-12 (-5 *3 (-447 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-220 *4 *5)) (-5 *1 (-864 *4 *5)))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-447 *4 *5)) (-5 *1 (-864 *4 *5)))))
-(-10 -7 (-15 -3814 ((-447 |#1| |#2|) (-220 |#1| |#2|))) (-15 -2895 ((-220 |#1| |#2|) (-447 |#1| |#2|))) (-15 -2207 ((-447 |#1| |#2|) (-866 |#2|))) (-15 -2549 ((-866 |#2|) (-447 |#1| |#2|))) (-15 -4016 ((-866 |#2|) (-220 |#1| |#2|))) (-15 -3464 ((-220 |#1| |#2|) (-866 |#2|))))
-((-2032 (((-578 |#2|) |#2| |#2|) 10)) (-2727 (((-701) (-578 |#1|)) 37 (|has| |#1| (-775)))) (-2840 (((-578 |#2|) |#2|) 11)) (-3763 (((-701) (-578 |#1|) (-501) (-501)) 36 (|has| |#1| (-775)))) (-1759 ((|#1| |#2|) 32 (|has| |#1| (-775)))))
-(((-865 |#1| |#2|) (-10 -7 (-15 -2032 ((-578 |#2|) |#2| |#2|)) (-15 -2840 ((-578 |#2|) |#2|)) (IF (|has| |#1| (-775)) (PROGN (-15 -1759 (|#1| |#2|)) (-15 -2727 ((-701) (-578 |#1|))) (-15 -3763 ((-701) (-578 |#1|) (-501) (-501)))) |noBranch|)) (-331) (-1125 |#1|)) (T -865))
-((-3763 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-501)) (-4 *5 (-775)) (-4 *5 (-331)) (-5 *2 (-701)) (-5 *1 (-865 *5 *6)) (-4 *6 (-1125 *5)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-775)) (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1125 *4)))) (-1759 (*1 *2 *3) (-12 (-4 *2 (-331)) (-4 *2 (-775)) (-5 *1 (-865 *2 *3)) (-4 *3 (-1125 *2)))) (-2840 (*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1125 *4)))) (-2032 (*1 *2 *3 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -2032 ((-578 |#2|) |#2| |#2|)) (-15 -2840 ((-578 |#2|) |#2|)) (IF (|has| |#1| (-775)) (PROGN (-15 -1759 (|#1| |#2|)) (-15 -2727 ((-701) (-578 |#1|))) (-15 -3763 ((-701) (-578 |#1|) (-501) (-501)))) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-1070)) $) 15)) (-3728 (((-1064 $) $ (-1070)) 21) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-1070))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 8) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-1070) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-1070) $) NIL)) (-1749 (($ $ $ (-1070)) NIL (|has| |#1| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-1070)) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 (-1070)) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-1070) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-1070) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#1|) (-1070)) NIL) (($ (-1064 $) (-1070)) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-1070)) NIL)) (-2285 (((-487 (-1070)) $) NIL) (((-701) $ (-1070)) NIL) (((-578 (-701)) $ (-578 (-1070))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 (-1070)) (-487 (-1070))) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-2752 (((-3 (-1070) "failed") $) 19)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-1070)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $ (-1070)) 29 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-1070) |#1|) NIL) (($ $ (-578 (-1070)) (-578 |#1|)) NIL) (($ $ (-1070) $) NIL) (($ $ (-578 (-1070)) (-578 $)) NIL)) (-2532 (($ $ (-1070)) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1201 (((-487 (-1070)) $) NIL) (((-701) $ (-1070)) NIL) (((-578 (-701)) $ (-578 (-1070))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-1070) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-1070) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-1070) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-1070)) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 25) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-1070)) 27) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-866 |#1|) (-13 (-870 |#1| (-487 (-1070)) (-1070)) (-10 -8 (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1070))) |noBranch|))) (-959)) (T -866))
-((-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-866 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))))
-(-13 (-870 |#1| (-487 (-1070)) (-1070)) (-10 -8 (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1070))) |noBranch|)))
-((-1212 (((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)) 18)))
-(((-867 |#1| |#2|) (-10 -7 (-15 -1212 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|)))) (-959) (-959)) (T -867))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-866 *6)) (-5 *1 (-867 *5 *6)))))
-(-10 -7 (-15 -1212 ((-866 |#2|) (-1 |#2| |#1|) (-866 |#1|))))
-((-3728 (((-1118 |#1| (-866 |#2|)) (-866 |#2|) (-1145 |#1|)) 18)))
-(((-868 |#1| |#2|) (-10 -7 (-15 -3728 ((-1118 |#1| (-866 |#2|)) (-866 |#2|) (-1145 |#1|)))) (-1070) (-959)) (T -868))
-((-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-1145 *5)) (-14 *5 (-1070)) (-4 *6 (-959)) (-5 *2 (-1118 *5 (-866 *6))) (-5 *1 (-868 *5 *6)) (-5 *3 (-866 *6)))))
-(-10 -7 (-15 -3728 ((-1118 |#1| (-866 |#2|)) (-866 |#2|) (-1145 |#1|))))
-((-1699 (((-701) $) 69) (((-701) $ (-578 |#4|)) 72)) (-3676 (($ $) 169)) (-1559 (((-373 $) $) 161)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 112)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 |#4| "failed") $) 58)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL) (((-501) $) NIL) ((|#4| $) 57)) (-1749 (($ $ $ |#4|) 74)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 102) (((-621 |#2|) (-621 $)) 95)) (-3533 (($ $) 176) (($ $ |#4|) 179)) (-3854 (((-578 $) $) 61)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 194) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 188)) (-2713 (((-578 $) $) 27)) (-3787 (($ |#2| |#3|) NIL) (($ $ |#4| (-701)) NIL) (($ $ (-578 |#4|) (-578 (-701))) 55)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#4|) 158)) (-2948 (((-3 (-578 $) "failed") $) 41)) (-1285 (((-3 (-578 $) "failed") $) 30)) (-2551 (((-3 (-2 (|:| |var| |#4|) (|:| -3027 (-701))) "failed") $) 45)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 105)) (-2305 (((-373 (-1064 $)) (-1064 $)) 118)) (-2572 (((-373 (-1064 $)) (-1064 $)) 116)) (-3739 (((-373 $) $) 136)) (-3195 (($ $ (-578 (-262 $))) 20) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-578 |#4|) (-578 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-578 |#4|) (-578 $)) NIL)) (-2532 (($ $ |#4|) 76)) (-1248 (((-810 (-346)) $) 208) (((-810 (-501)) $) 201) (((-490) $) 216)) (-1734 ((|#2| $) NIL) (($ $ |#4|) 171)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 150)) (-2495 ((|#2| $ |#3|) NIL) (($ $ |#4| (-701)) 50) (($ $ (-578 |#4|) (-578 (-701))) 53)) (-1274 (((-3 $ "failed") $) 152)) (-3762 (((-107) $ $) 182)))
-(((-869 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -2375 ((-3 (-1148 |#1|) "failed") (-621 |#1|))) (-15 -3533 (|#1| |#1| |#4|)) (-15 -1734 (|#1| |#1| |#4|)) (-15 -2532 (|#1| |#1| |#4|)) (-15 -1749 (|#1| |#1| |#1| |#4|)) (-15 -3854 ((-578 |#1|) |#1|)) (-15 -1699 ((-701) |#1| (-578 |#4|))) (-15 -1699 ((-701) |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| |#4|) (|:| -3027 (-701))) "failed") |#1|)) (-15 -2948 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -1285 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -3787 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -3787 (|#1| |#1| |#4| (-701))) (-15 -1554 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -2713 ((-578 |#1|) |#1|)) (-15 -2495 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -2495 (|#1| |#1| |#4| (-701))) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#4| |#1|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#4| |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#4| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3787 (|#1| |#2| |#3|)) (-15 -2495 (|#2| |#1| |#3|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3533 (|#1| |#1|))) (-870 |#2| |#3| |#4|) (-959) (-723) (-777)) (T -869))
-NIL
-(-10 -8 (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -1274 ((-3 |#1| "failed") |#1|)) (-15 -3762 ((-107) |#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -2375 ((-3 (-1148 |#1|) "failed") (-621 |#1|))) (-15 -3533 (|#1| |#1| |#4|)) (-15 -1734 (|#1| |#1| |#4|)) (-15 -2532 (|#1| |#1| |#4|)) (-15 -1749 (|#1| |#1| |#1| |#4|)) (-15 -3854 ((-578 |#1|) |#1|)) (-15 -1699 ((-701) |#1| (-578 |#4|))) (-15 -1699 ((-701) |#1|)) (-15 -2551 ((-3 (-2 (|:| |var| |#4|) (|:| -3027 (-701))) "failed") |#1|)) (-15 -2948 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -1285 ((-3 (-578 |#1|) "failed") |#1|)) (-15 -3787 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -3787 (|#1| |#1| |#4| (-701))) (-15 -1554 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -2713 ((-578 |#1|) |#1|)) (-15 -2495 (|#1| |#1| (-578 |#4|) (-578 (-701)))) (-15 -2495 (|#1| |#1| |#4| (-701))) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#4| |#1|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#4| |#1|)) (-15 -3195 (|#1| |#1| (-578 |#4|) (-578 |#2|))) (-15 -3195 (|#1| |#1| |#4| |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -3787 (|#1| |#2| |#3|)) (-15 -2495 (|#2| |#1| |#3|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -3533 (|#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 |#3|) $) 112)) (-3728 (((-1064 $) $ |#3|) 127) (((-1064 |#1|) $) 126)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 89 (|has| |#1| (-508)))) (-2865 (($ $) 90 (|has| |#1| (-508)))) (-1639 (((-107) $) 92 (|has| |#1| (-508)))) (-1699 (((-701) $) 114) (((-701) $ (-578 |#3|)) 113)) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 102 (|has| |#1| (-830)))) (-3676 (($ $) 100 (|has| |#1| (-419)))) (-1559 (((-373 $) $) 99 (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 105 (|has| |#1| (-830)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 166) (((-3 (-375 (-501)) "failed") $) 164 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 162 (|has| |#1| (-950 (-501)))) (((-3 |#3| "failed") $) 138)) (-3490 ((|#1| $) 167) (((-375 (-501)) $) 163 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 161 (|has| |#1| (-950 (-501)))) ((|#3| $) 137)) (-1749 (($ $ $ |#3|) 110 (|has| |#1| (-156)))) (-3858 (($ $) 156)) (-3868 (((-621 (-501)) (-621 $)) 136 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 135 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 134) (((-621 |#1|) (-621 $)) 133)) (-2174 (((-3 $ "failed") $) 34)) (-3533 (($ $) 178 (|has| |#1| (-419))) (($ $ |#3|) 107 (|has| |#1| (-419)))) (-3854 (((-578 $) $) 111)) (-1628 (((-107) $) 98 (|has| |#1| (-830)))) (-3503 (($ $ |#1| |#2| $) 174)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 86 (-12 (|has| |#3| (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 85 (-12 (|has| |#3| (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 171)) (-3794 (($ (-1064 |#1|) |#3|) 119) (($ (-1064 $) |#3|) 118)) (-2713 (((-578 $) $) 128)) (-2706 (((-107) $) 154)) (-3787 (($ |#1| |#2|) 155) (($ $ |#3| (-701)) 121) (($ $ (-578 |#3|) (-578 (-701))) 120)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) 122)) (-2285 ((|#2| $) 172) (((-701) $ |#3|) 124) (((-578 (-701)) $ (-578 |#3|)) 123)) (-4111 (($ $ $) 81 (|has| |#1| (-777)))) (-1323 (($ $ $) 80 (|has| |#1| (-777)))) (-3515 (($ (-1 |#2| |#2|) $) 173)) (-1212 (($ (-1 |#1| |#1|) $) 153)) (-2752 (((-3 |#3| "failed") $) 125)) (-3845 (($ $) 151)) (-3850 ((|#1| $) 150)) (-1697 (($ (-578 $)) 96 (|has| |#1| (-419))) (($ $ $) 95 (|has| |#1| (-419)))) (-3460 (((-1053) $) 9)) (-2948 (((-3 (-578 $) "failed") $) 116)) (-1285 (((-3 (-578 $) "failed") $) 117)) (-2551 (((-3 (-2 (|:| |var| |#3|) (|:| -3027 (-701))) "failed") $) 115)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 168)) (-3841 ((|#1| $) 169)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 97 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) 94 (|has| |#1| (-419))) (($ $ $) 93 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 104 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 103 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 101 (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) 147) (($ $ (-262 $)) 146) (($ $ $ $) 145) (($ $ (-578 $) (-578 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-578 |#3|) (-578 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-578 |#3|) (-578 $)) 140)) (-2532 (($ $ |#3|) 109 (|has| |#1| (-156)))) (-2596 (($ $ |#3|) 42) (($ $ (-578 |#3|)) 41) (($ $ |#3| (-701)) 40) (($ $ (-578 |#3|) (-578 (-701))) 39)) (-1201 ((|#2| $) 152) (((-701) $ |#3|) 132) (((-578 (-701)) $ (-578 |#3|)) 131)) (-1248 (((-810 (-346)) $) 84 (-12 (|has| |#3| (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) 83 (-12 (|has| |#3| (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) 82 (-12 (|has| |#3| (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) 177 (|has| |#1| (-419))) (($ $ |#3|) 108 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 106 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 165) (($ |#3|) 139) (($ $) 87 (|has| |#1| (-508))) (($ (-375 (-501))) 74 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501))))))) (-1303 (((-578 |#1|) $) 170)) (-2495 ((|#1| $ |#2|) 157) (($ $ |#3| (-701)) 130) (($ $ (-578 |#3|) (-578 (-701))) 129)) (-1274 (((-3 $ "failed") $) 75 (-1405 (-1280 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 175 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 91 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ |#3|) 38) (($ $ (-578 |#3|)) 37) (($ $ |#3| (-701)) 36) (($ $ (-578 |#3|) (-578 (-701))) 35)) (-3778 (((-107) $ $) 78 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 77 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 79 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 76 (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 158 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 160 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 159 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-870 |#1| |#2| |#3|) (-1180) (-959) (-723) (-777)) (T -870))
-((-3533 (*1 *1 *1) (-12 (-4 *1 (-870 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-1201 (*1 *2 *1 *3) (-12 (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-701)))) (-1201 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-701))))) (-2495 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-870 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *2 (-777)))) (-2495 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-701))) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)))) (-2713 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) (-3728 (*1 *2 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-1064 *1)) (-4 *1 (-870 *4 *5 *3)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-1064 *3)))) (-2752 (*1 *2 *1) (|partial| -12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-2285 (*1 *2 *1 *3) (-12 (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-701)))) (-2285 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-701))))) (-1554 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-870 *4 *5 *3)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-870 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *2 (-777)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-701))) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 *4)) (-4 *4 (-959)) (-4 *1 (-870 *4 *5 *3)) (-4 *5 (-723)) (-4 *3 (-777)))) (-3794 (*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)))) (-1285 (*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) (-2948 (*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) (-2551 (*1 *2 *1) (|partial| -12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| |var| *5) (|:| -3027 (-701)))))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-701)))) (-1699 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-701)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *5)))) (-3854 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) (-1749 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-156)))) (-2532 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-156)))) (-1734 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-419)))) (-3533 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-419)))) (-3676 (*1 *1 *1) (-12 (-4 *1 (-870 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-1559 (*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-373 *1)) (-4 *1 (-870 *3 *4 *5)))))
-(-13 (-820 |t#3|) (-294 |t#1| |t#2|) (-278 $) (-476 |t#3| |t#1|) (-476 |t#3| $) (-950 |t#3|) (-345 |t#1|) (-10 -8 (-15 -1201 ((-701) $ |t#3|)) (-15 -1201 ((-578 (-701)) $ (-578 |t#3|))) (-15 -2495 ($ $ |t#3| (-701))) (-15 -2495 ($ $ (-578 |t#3|) (-578 (-701)))) (-15 -2713 ((-578 $) $)) (-15 -3728 ((-1064 $) $ |t#3|)) (-15 -3728 ((-1064 |t#1|) $)) (-15 -2752 ((-3 |t#3| "failed") $)) (-15 -2285 ((-701) $ |t#3|)) (-15 -2285 ((-578 (-701)) $ (-578 |t#3|))) (-15 -1554 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |t#3|)) (-15 -3787 ($ $ |t#3| (-701))) (-15 -3787 ($ $ (-578 |t#3|) (-578 (-701)))) (-15 -3794 ($ (-1064 |t#1|) |t#3|)) (-15 -3794 ($ (-1064 $) |t#3|)) (-15 -1285 ((-3 (-578 $) "failed") $)) (-15 -2948 ((-3 (-578 $) "failed") $)) (-15 -2551 ((-3 (-2 (|:| |var| |t#3|) (|:| -3027 (-701))) "failed") $)) (-15 -1699 ((-701) $)) (-15 -1699 ((-701) $ (-578 |t#3|))) (-15 -3800 ((-578 |t#3|) $)) (-15 -3854 ((-578 $) $)) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (IF (|has| |t#3| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-556 (-810 (-501)))) (IF (|has| |t#3| (-556 (-810 (-501)))) (-6 (-556 (-810 (-501)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-556 (-810 (-346)))) (IF (|has| |t#3| (-556 (-810 (-346)))) (-6 (-556 (-810 (-346)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-806 (-501))) (IF (|has| |t#3| (-806 (-501))) (-6 (-806 (-501))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-806 (-346))) (IF (|has| |t#3| (-806 (-346))) (-6 (-806 (-346))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -1749 ($ $ $ |t#3|)) (-15 -2532 ($ $ |t#3|))) |noBranch|) (IF (|has| |t#1| (-419)) (PROGN (-6 (-419)) (-15 -1734 ($ $ |t#3|)) (-15 -3533 ($ $)) (-15 -3533 ($ $ |t#3|)) (-15 -1559 ((-373 $) $)) (-15 -3676 ($ $))) |noBranch|) (IF (|has| |t#1| (-6 -4165)) (-6 -4165) |noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-556 (-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501))))) ((-260) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-278 $) . T) ((-294 |#1| |#2|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-830)) (|has| |#1| (-419))) ((-476 |#3| |#1|) . T) ((-476 |#3| $) . T) ((-476 $ $) . T) ((-508) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 |#3|) . T) ((-806 (-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346)))) ((-806 (-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))) ((-830) |has| |#1| (-830)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) |has| |#1| (-830)))
-((-3800 (((-578 |#2|) |#5|) 36)) (-3728 (((-1064 |#5|) |#5| |#2| (-1064 |#5|)) 23) (((-375 (-1064 |#5|)) |#5| |#2|) 16)) (-3794 ((|#5| (-375 (-1064 |#5|)) |#2|) 30)) (-2752 (((-3 |#2| "failed") |#5|) 61)) (-2948 (((-3 (-578 |#5|) "failed") |#5|) 55)) (-2000 (((-3 (-2 (|:| |val| |#5|) (|:| -3027 (-501))) "failed") |#5|) 45)) (-1285 (((-3 (-578 |#5|) "failed") |#5|) 57)) (-2551 (((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-501))) "failed") |#5|) 48)))
-(((-871 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-578 |#2|) |#5|)) (-15 -2752 ((-3 |#2| "failed") |#5|)) (-15 -3728 ((-375 (-1064 |#5|)) |#5| |#2|)) (-15 -3794 (|#5| (-375 (-1064 |#5|)) |#2|)) (-15 -3728 ((-1064 |#5|) |#5| |#2| (-1064 |#5|))) (-15 -1285 ((-3 (-578 |#5|) "failed") |#5|)) (-15 -2948 ((-3 (-578 |#5|) "failed") |#5|)) (-15 -2551 ((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-501))) "failed") |#5|)) (-15 -2000 ((-3 (-2 (|:| |val| |#5|) (|:| -3027 (-501))) "failed") |#5|))) (-723) (-777) (-959) (-870 |#3| |#1| |#2|) (-13 (-331) (-10 -8 (-15 -3691 ($ |#4|)) (-15 -2946 (|#4| $)) (-15 -2949 (|#4| $))))) (T -871))
-((-2000 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3027 (-501)))) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-2551 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3027 (-501)))) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-2948 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-1285 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-3728 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))) (-4 *7 (-870 *6 *5 *4)) (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-5 *1 (-871 *5 *4 *6 *7 *3)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-1064 *2))) (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-4 *2 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))) (-5 *1 (-871 *5 *4 *6 *7 *2)) (-4 *7 (-870 *6 *5 *4)))) (-3728 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-375 (-1064 *3))) (-5 *1 (-871 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) (-2752 (*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-959)) (-4 *6 (-870 *5 *4 *2)) (-4 *2 (-777)) (-5 *1 (-871 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *6)) (-15 -2946 (*6 $)) (-15 -2949 (*6 $))))))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *5)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))))
-(-10 -7 (-15 -3800 ((-578 |#2|) |#5|)) (-15 -2752 ((-3 |#2| "failed") |#5|)) (-15 -3728 ((-375 (-1064 |#5|)) |#5| |#2|)) (-15 -3794 (|#5| (-375 (-1064 |#5|)) |#2|)) (-15 -3728 ((-1064 |#5|) |#5| |#2| (-1064 |#5|))) (-15 -1285 ((-3 (-578 |#5|) "failed") |#5|)) (-15 -2948 ((-3 (-578 |#5|) "failed") |#5|)) (-15 -2551 ((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-501))) "failed") |#5|)) (-15 -2000 ((-3 (-2 (|:| |val| |#5|) (|:| -3027 (-501))) "failed") |#5|)))
-((-1212 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
-(((-872 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1212 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-723) (-777) (-959) (-870 |#3| |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701)))))) (T -872))
-((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-777)) (-4 *8 (-959)) (-4 *6 (-723)) (-4 *2 (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701)))))) (-5 *1 (-872 *6 *7 *8 *5 *2)) (-4 *5 (-870 *8 *6 *7)))))
-(-10 -7 (-15 -1212 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2754 (((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#3| (-701)) 37)) (-2282 (((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) (-375 (-501)) (-701)) 33)) (-3592 (((-2 (|:| -3027 (-701)) (|:| -3189 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-701)) 52)) (-3564 (((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#5| (-701)) 62 (|has| |#3| (-419)))))
-(((-873 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2754 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#3| (-701))) (-15 -2282 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) (-375 (-501)) (-701))) (IF (|has| |#3| (-419)) (-15 -3564 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#5| (-701))) |noBranch|) (-15 -3592 ((-2 (|:| -3027 (-701)) (|:| -3189 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-701)))) (-723) (-777) (-508) (-870 |#3| |#1| |#2|) (-13 (-331) (-10 -8 (-15 -2946 (|#4| $)) (-15 -2949 (|#4| $)) (-15 -3691 ($ |#4|))))) (T -873))
-((-3592 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *3 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| (-578 *3)))) (-5 *1 (-873 *5 *6 *7 *3 *8)) (-5 *4 (-701)) (-4 *8 (-13 (-331) (-10 -8 (-15 -2946 (*3 $)) (-15 -2949 (*3 $)) (-15 -3691 ($ *3))))))) (-3564 (*1 *2 *3 *4) (-12 (-4 *7 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *8 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| *3))) (-5 *1 (-873 *5 *6 *7 *8 *3)) (-5 *4 (-701)) (-4 *3 (-13 (-331) (-10 -8 (-15 -2946 (*8 $)) (-15 -2949 (*8 $)) (-15 -3691 ($ *8))))))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-501))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *8 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *9) (|:| |radicand| *9))) (-5 *1 (-873 *5 *6 *7 *8 *9)) (-5 *4 (-701)) (-4 *9 (-13 (-331) (-10 -8 (-15 -2946 (*8 $)) (-15 -2949 (*8 $)) (-15 -3691 ($ *8))))))) (-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-508)) (-4 *7 (-870 *3 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *8) (|:| |radicand| *8))) (-5 *1 (-873 *5 *6 *3 *7 *8)) (-5 *4 (-701)) (-4 *8 (-13 (-331) (-10 -8 (-15 -2946 (*7 $)) (-15 -2949 (*7 $)) (-15 -3691 ($ *7))))))))
-(-10 -7 (-15 -2754 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#3| (-701))) (-15 -2282 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) (-375 (-501)) (-701))) (IF (|has| |#3| (-419)) (-15 -3564 ((-2 (|:| -3027 (-701)) (|:| -3189 |#5|) (|:| |radicand| |#5|)) |#5| (-701))) |noBranch|) (-15 -3592 ((-2 (|:| -3027 (-701)) (|:| -3189 |#4|) (|:| |radicand| (-578 |#4|))) |#4| (-701))))
-((-1236 (((-991 (-199)) $) 8)) (-3096 (((-991 (-199)) $) 9)) (-2616 (((-578 (-578 (-863 (-199)))) $) 10)) (-3691 (((-786) $) 6)))
-(((-874) (-1180)) (T -874))
-((-2616 (*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-578 (-578 (-863 (-199))))))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-991 (-199))))) (-1236 (*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-991 (-199))))))
-(-13 (-555 (-786)) (-10 -8 (-15 -2616 ((-578 (-578 (-863 (-199)))) $)) (-15 -3096 ((-991 (-199)) $)) (-15 -1236 ((-991 (-199)) $))))
-(((-555 (-786)) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 62 (|has| |#1| (-508)))) (-2865 (($ $) 63 (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 28)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) 24)) (-2174 (((-3 $ "failed") $) 35)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-3503 (($ $ |#1| |#2| $) 47)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) 16)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| |#2|) NIL)) (-2285 ((|#2| $) 19)) (-3515 (($ (-1 |#2| |#2|) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3845 (($ $) 23)) (-3850 ((|#1| $) 21)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 40)) (-3841 ((|#1| $) NIL)) (-4138 (($ $ |#2| |#1| $) 71 (-12 (|has| |#2| (-123)) (|has| |#1| (-508))))) (-3694 (((-3 $ "failed") $ $) 73 (|has| |#1| (-508))) (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-508)))) (-1201 ((|#2| $) 17)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) 39) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) 34) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ |#2|) 31)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 15)) (-3771 (($ $ $ (-701)) 58 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 68 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 54) (($ $ (-701)) 55)) (-1850 (($) 22 T CONST)) (-1925 (($) 12 T CONST)) (-3751 (((-107) $ $) 67)) (-3803 (($ $ |#1|) 74 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) 53) (($ $ (-701)) 51)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-875 |#1| |#2|) (-13 (-294 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-508)) (IF (|has| |#2| (-123)) (-15 -4138 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|))) (-959) (-722)) (T -875))
-((-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-875 *3 *2)) (-4 *2 (-123)) (-4 *3 (-508)) (-4 *3 (-959)) (-4 *2 (-722)))))
-(-13 (-294 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-508)) (IF (|has| |#2| (-123)) (-15 -4138 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|)))
-((-2554 (((-3 (-621 |#1|) "failed") |#2| (-839)) 14)))
-(((-876 |#1| |#2|) (-10 -7 (-15 -2554 ((-3 (-621 |#1|) "failed") |#2| (-839)))) (-508) (-593 |#1|)) (T -876))
-((-2554 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-839)) (-4 *5 (-508)) (-5 *2 (-621 *5)) (-5 *1 (-876 *5 *3)) (-4 *3 (-593 *5)))))
-(-10 -7 (-15 -2554 ((-3 (-621 |#1|) "failed") |#2| (-839))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) 17 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 16 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 14)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) |#1|) 13)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) 10 (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) 12 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) 11)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) 15) (($ $ (-1116 (-501))) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) NIL)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3581 (((-701) $) 8 (|has| $ (-6 -4167)))))
-(((-877 |#1|) (-19 |#1|) (-1104)) (T -877))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1003) . T))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
+(((-724) (-1184)) (T -724))
+NIL
+(-13 (-726) (-23))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-726) . T) ((-779) . T) ((-1003) . T))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-1640 (($ $ $) 27)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
+(((-725) (-1184)) (T -725))
+((-1640 (*1 *1 *1 *1) (-4 *1 (-725))))
+(-13 (-727) (-10 -8 (-15 -1640 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-1003) . T))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
+(((-726) (-1184)) (T -726))
+NIL
+(-13 (-779) (-23))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-557 (-787)) . T) ((-779) . T) ((-1003) . T))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) 23 T CONST)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 22 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 25) (($ (-843) $) 21)))
+(((-727) (-1184)) (T -727))
+NIL
+(-13 (-724) (-123))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-724) . T) ((-726) . T) ((-779) . T) ((-1003) . T))
+((-2814 (((-107) $) 41)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 42)) (-1256 (((-3 (-377 (-517)) "failed") $) 78)) (-1355 (((-107) $) 72)) (-3364 (((-377 (-517)) $) 76)) (-1506 ((|#2| $) 26)) (-1893 (($ (-1 |#2| |#2|) $) 23)) (-4118 (($ $) 61)) (-3645 (((-493) $) 67)) (-1487 (($ $) 21)) (-2256 (((-787) $) 56) (($ (-517)) 39) (($ |#2|) 37) (($ (-377 (-517))) NIL)) (-2961 (((-703)) 10)) (-3710 ((|#2| $) 71)) (-1547 (((-107) $ $) 29)) (-1572 (((-107) $ $) 69)) (-1654 (($ $) 31) (($ $ $) NIL)) (-1642 (($ $ $) 30)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-728 |#1| |#2|) (-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-729 |#2|) (-156)) (T -728))
+((-2961 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))))
+(-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -4118 (|#1| |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-1611 (((-703)) 53 (|has| |#1| (-338)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 94 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 92 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 90)) (-3189 (((-517) $) 95 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 93 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 89)) (-3621 (((-3 $ "failed") $) 34)) (-3775 ((|#1| $) 79)) (-1256 (((-3 (-377 (-517)) "failed") $) 66 (|has| |#1| (-502)))) (-1355 (((-107) $) 68 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 67 (|has| |#1| (-502)))) (-3209 (($) 56 (|has| |#1| (-338)))) (-3848 (((-107) $) 31)) (-3997 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-1506 ((|#1| $) 71)) (-2967 (($ $ $) 62 (|has| |#1| (-779)))) (-3099 (($ $ $) 61 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 81)) (-1549 (((-843) $) 55 (|has| |#1| (-338)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 65 (|has| |#1| (-333)))) (-3448 (($ (-843)) 54 (|has| |#1| (-338)))) (-4142 ((|#1| $) 76)) (-1287 ((|#1| $) 77)) (-3181 ((|#1| $) 78)) (-2976 ((|#1| $) 72)) (-2999 ((|#1| $) 73)) (-1467 ((|#1| $) 74)) (-3490 ((|#1| $) 75)) (-3206 (((-1021) $) 10)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 87 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 85 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 84 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 83 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 82 (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) 88 (|has| |#1| (-258 |#1| |#1|)))) (-3645 (((-493) $) 63 (|has| |#1| (-558 (-493))))) (-1487 (($ $) 80)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 91 (|has| |#1| (-952 (-377 (-517)))))) (-1328 (((-3 $ "failed") $) 64 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3710 ((|#1| $) 69 (|has| |#1| (-970)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 59 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 58 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 60 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 57 (|has| |#1| (-779)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-729 |#1|) (-1184) (-156)) (T -729))
+((-1487 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1287 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1467 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3997 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-4118 (*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(-13 (-37 |t#1|) (-381 |t#1|) (-308 |t#1|) (-10 -8 (-15 -1487 ($ $)) (-15 -3775 (|t#1| $)) (-15 -3181 (|t#1| $)) (-15 -1287 (|t#1| $)) (-15 -4142 (|t#1| $)) (-15 -3490 (|t#1| $)) (-15 -1467 (|t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2976 (|t#1| $)) (-15 -1506 (|t#1| $)) (-15 -3997 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-338)) (-6 (-338)) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -3710 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|) (IF (|has| |t#1| (-333)) (-15 -4118 ($ $)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-338) |has| |#1| (-338)) ((-308 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1893 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) (-729 |#2|) (-156) (-729 |#4|) (-156)) (T -730))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))))
+(-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-915 |#1|) "failed") $) 35) (((-3 (-517) "failed") $) NIL (-3807 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL (-3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3189 ((|#1| $) NIL) (((-915 |#1|) $) 33) (((-517) $) NIL (-3807 (|has| (-915 |#1|) (-952 (-517))) (|has| |#1| (-952 (-517))))) (((-377 (-517)) $) NIL (-3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-3621 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 16)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1355 (((-107) $) NIL (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-3209 (($) NIL (|has| |#1| (-338)))) (-3848 (((-107) $) NIL)) (-3997 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-915 |#1|) (-915 |#1|)) 29)) (-1506 ((|#1| $) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-4142 ((|#1| $) 22)) (-1287 ((|#1| $) 20)) (-3181 ((|#1| $) 18)) (-2976 ((|#1| $) 26)) (-2999 ((|#1| $) 25)) (-1467 ((|#1| $) 24)) (-3490 ((|#1| $) 23)) (-3206 (((-1021) $) NIL)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1487 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-915 |#1|)) 30) (($ (-377 (-517))) NIL (-3807 (|has| (-915 |#1|) (-952 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3710 ((|#1| $) NIL (|has| |#1| (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 8 T CONST)) (-2409 (($) 12 T CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-731 |#1|) (-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -3997 ($ (-915 |#1|) (-915 |#1|))))) (-156)) (T -731))
+((-3997 (*1 *1 *2 *2) (-12 (-5 *2 (-915 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
+(-13 (-729 |#1|) (-381 (-915 |#1|)) (-10 -8 (-15 -3997 ($ (-915 |#1|) (-915 |#1|)))))
+((-2750 (((-107) $ $) 7)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-3232 (((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 13)) (-1547 (((-107) $ $) 6)))
+(((-732) (-1184)) (T -732))
+((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-3232 (*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950)))))
+(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -3232 ((-950) (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-3655 (((-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#3| |#2| (-1073)) 19)))
+(((-733 |#1| |#2| |#3|) (-10 -7 (-15 -3655 ((-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#3| |#2| (-1073)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880)) (-593 |#2|)) (T -733))
+((-3655 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -3655 ((-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#3| |#2| (-1073))))
+((-1674 (((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)) 26) (((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|)) 27) (((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1073)) 16) (((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1073)) 17) (((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1073)) 22) (((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1073)) 24) (((-3 (-583 (-1153 |#2|)) "failed") (-623 |#2|) (-1073)) 36) (((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-623 |#2|) (-1153 |#2|) (-1073)) 34)))
+(((-734 |#1| |#2|) (-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-623 |#2|) (-1153 |#2|) (-1073))) (-15 -1674 ((-3 (-583 (-1153 |#2|)) "failed") (-623 |#2|) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1073))) (-15 -1674 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1674 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880))) (T -734))
+((-1674 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) (-1674 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) (-1674 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1753 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1094) (-880))))) (-1674 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1753 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) (-1674 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1073)) (-4 *6 (-13 (-29 *5) (-1094) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1153 *6))) (-5 *1 (-734 *5 *6)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1153 *7)))))
+(-10 -7 (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-623 |#2|) (-1153 |#2|) (-1073))) (-15 -1674 ((-3 (-583 (-1153 |#2|)) "failed") (-623 |#2|) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 (-265 |#2|)) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#2|)) (|:| -1753 (-583 (-1153 |#2|)))) "failed") (-583 |#2|) (-583 (-109)) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") (-265 |#2|) (-109) (-1073))) (-15 -1674 ((-3 (-2 (|:| |particular| |#2|) (|:| -1753 (-583 |#2|))) |#2| "failed") |#2| (-109) (-1073))) (-15 -1674 ((-3 |#2| "failed") (-265 |#2|) (-109) (-265 |#2|) (-583 |#2|))) (-15 -1674 ((-3 |#2| "failed") |#2| (-109) (-265 |#2|) (-583 |#2|))))
+((-1245 (($) 9)) (-2883 (((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 26)) (-2274 (((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $) 23)) (-1710 (($ (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) 20)) (-2245 (($ (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) 18)) (-2258 (((-1158)) 12)))
+(((-735) (-10 -8 (-15 -1245 ($)) (-15 -2258 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2245 ($ (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2883 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))) (T -735))
+((-2883 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))) (-1710 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) (-2245 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))) (-2258 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-735)))) (-1245 (*1 *1) (-5 *1 (-735))))
+(-10 -8 (-15 -1245 ($)) (-15 -2258 ((-1158))) (-15 -2274 ((-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) $)) (-15 -2245 ($ (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))))) (-15 -1710 ($ (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-15 -2883 ((-3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))) "failed") (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))))
+((-2612 ((|#2| |#2| (-1073)) 15)) (-2575 ((|#2| |#2| (-1073)) 47)) (-2252 (((-1 |#2| |#2|) (-1073)) 11)))
+(((-736 |#1| |#2|) (-10 -7 (-15 -2612 (|#2| |#2| (-1073))) (-15 -2575 (|#2| |#2| (-1073))) (-15 -2252 ((-1 |#2| |#2|) (-1073)))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134)) (-13 (-29 |#1|) (-1094) (-880))) (T -736))
+((-2252 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1094) (-880))))) (-2575 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))) (-2612 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))))
+(-10 -7 (-15 -2612 (|#2| |#2| (-1073))) (-15 -2575 (|#2| |#2| (-1073))) (-15 -2252 ((-1 |#2| |#2|) (-1073))))
+((-1674 (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349)) 114) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349)) 115) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349)) 117) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349)) 118) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349)) 119) (((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349))) 120) (((-950) (-740) (-973)) 105) (((-950) (-740)) 106)) (-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740) (-973)) 71) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740)) 73)))
+(((-737) (-10 -7 (-15 -1674 ((-950) (-740))) (-15 -1674 ((-950) (-740) (-973))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740) (-973))))) (T -737))
+((-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737)))))
+(-10 -7 (-15 -1674 ((-950) (-740))) (-15 -1674 ((-950) (-740) (-973))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349))) (-15 -1674 ((-950) (-1153 (-286 (-349))) (-349) (-349) (-583 (-349)) (-286 (-349)) (-583 (-349)) (-349) (-349))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-740) (-973))))
+((-3532 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1753 (-583 |#4|))) (-590 |#4|) |#4|) 32)))
+(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1753 (-583 |#4|))) (-590 |#4|) |#4|))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|)) (T -738))
+((-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
+(-10 -7 (-15 -3532 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1753 (-583 |#4|))) (-590 |#4|) |#4|)))
+((-4112 (((-2 (|:| -2131 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))) 51)) (-4013 (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4| |#2|) 59) (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4|) 58) (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3| |#2|) 20) (((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3|) 21)) (-3457 ((|#2| |#4| |#1|) 60) ((|#2| |#3| |#1|) 27)) (-1998 ((|#2| |#3| (-583 (-377 |#2|))) 93) (((-3 |#2| "failed") |#3| (-377 |#2|)) 90)))
+(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1998 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -1998 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3| |#2|)) (-15 -3457 (|#2| |#3| |#1|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4| |#2|)) (-15 -3457 (|#2| |#4| |#1|)) (-15 -4112 ((-2 (|:| -2131 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|))))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1130 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -739))
+((-4112 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2131 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) (-3457 (*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))) (-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))) (-4013 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) (-3457 (*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) (-4013 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) (-4013 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-1998 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))) (-1998 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))))
+(-10 -7 (-15 -1998 ((-3 |#2| "failed") |#3| (-377 |#2|))) (-15 -1998 (|#2| |#3| (-583 (-377 |#2|)))) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#3| |#2|)) (-15 -3457 (|#2| |#3| |#1|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4|)) (-15 -4013 ((-583 (-2 (|:| -2986 |#2|) (|:| -2126 |#2|))) |#4| |#2|)) (-15 -3457 (|#2| |#4| |#1|)) (-15 -4112 ((-2 (|:| -2131 |#3|) (|:| |rh| (-583 (-377 |#2|)))) |#4| (-583 (-377 |#2|)))))
+((-2750 (((-107) $ $) NIL)) (-3189 (((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $) 9)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11) (($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) 8)) (-1547 (((-107) $ $) NIL)))
+(((-740) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))) (T -740))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))) $))))
+((-2846 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1069 |#2|)) (-1 (-388 |#2|) |#2|)) 118)) (-2199 (((-583 (-2 (|:| |poly| |#2|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 45)) (-1981 (((-583 (-2 (|:| |deg| (-703)) (|:| -2131 |#2|))) |#3|) 95)) (-2470 ((|#2| |#3|) 37)) (-2156 (((-583 (-2 (|:| -1619 |#1|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|)) 82)) (-2109 ((|#3| |#3| (-377 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2470 (|#2| |#3|)) (-15 -1981 ((-583 (-2 (|:| |deg| (-703)) (|:| -2131 |#2|))) |#3|)) (-15 -2156 ((-583 (-2 (|:| -1619 |#1|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1069 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2109 (|#3| |#3| |#2|)) (-15 -2109 (|#3| |#3| (-377 |#2|)))) (-13 (-333) (-134) (-952 (-377 (-517)))) (-1130 |#1|) (-593 |#2|) (-593 (-377 |#2|))) (T -741))
+((-2109 (*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))) (-2109 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1130 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) (-2846 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1069 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2131 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-2156 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1619 *5) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) (-1981 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2131 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) (-2470 (*1 *2 *3) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
+(-10 -7 (-15 -2470 (|#2| |#3|)) (-15 -1981 ((-583 (-2 (|:| |deg| (-703)) (|:| -2131 |#2|))) |#3|)) (-15 -2156 ((-583 (-2 (|:| -1619 |#1|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 |#3|))) |#3| (-1 (-583 |#1|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 |#3|))) |#3| (-1 (-583 |#2|) |#2| (-1069 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2109 (|#3| |#3| |#2|)) (-15 -2109 (|#3| |#3| (-377 |#2|))))
+((-1983 (((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|))) 117) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|)) 116) (((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|))) 111) (((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|)) 109)) (-2171 ((|#2| (-591 |#2| (-377 |#2|))) 77) ((|#2| (-590 (-377 |#2|))) 81)))
+(((-742 |#1| |#2|) (-10 -7 (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2171 (|#2| (-590 (-377 |#2|)))) (-15 -2171 (|#2| (-591 |#2| (-377 |#2|))))) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -742))
+((-2171 (*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) (-1983 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))))
+(-10 -7 (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-590 (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-590 (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -1983 ((-2 (|:| |particular| (-3 (-377 |#2|) "failed")) (|:| -1753 (-583 (-377 |#2|)))) (-591 |#2| (-377 |#2|)) (-377 |#2|))) (-15 -1983 ((-2 (|:| -1753 (-583 (-377 |#2|))) (|:| -2790 (-623 |#1|))) (-591 |#2| (-377 |#2|)) (-583 (-377 |#2|)))) (-15 -2171 (|#2| (-590 (-377 |#2|)))) (-15 -2171 (|#2| (-591 |#2| (-377 |#2|)))))
+((-2187 (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) |#5| |#4|) 47)))
+(((-743 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2187 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) |#5| |#4|))) (-333) (-593 |#1|) (-1130 |#1|) (-657 |#1| |#3|) (-593 |#4|)) (T -743))
+((-2187 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1130 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
+(-10 -7 (-15 -2187 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) |#5| |#4|)))
+((-2846 (((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 43)) (-1461 (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 137 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|))) 134 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|)) 138 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-590 (-377 |#2|))) 136 (|has| |#1| (-27))) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 36) (((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 37) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|)) 34) (((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 35)) (-2199 (((-583 (-2 (|:| |poly| |#2|) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|)) 80)))
+(((-744 |#1| |#2|) (-10 -7 (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |noBranch|)) (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517)))) (-1130 |#1|)) (T -744))
+((-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) (-2199 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-2846 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))) (-1461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) (-1461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
+(-10 -7 (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|) (-1 (-388 |#2|) |#2|))) (-15 -2846 ((-583 (-2 (|:| |frac| (-377 |#2|)) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -2199 ((-583 (-2 (|:| |poly| |#2|) (|:| -2131 (-591 |#2| (-377 |#2|))))) (-591 |#2| (-377 |#2|)) (-1 (-583 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-590 (-377 |#2|)) (-1 (-388 |#2|) |#2|))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)))) (-15 -1461 ((-583 (-377 |#2|)) (-591 |#2| (-377 |#2|)) (-1 (-388 |#2|) |#2|)))) |noBranch|))
+((-1776 (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) (-623 |#2|) (-1153 |#1|)) 86) (((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)) (|:| -2131 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1153 |#1|)) 14)) (-2032 (((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#2|) (-1153 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1753 (-583 |#1|))) |#2| |#1|)) 92)) (-1674 (((-3 (-2 (|:| |particular| (-1153 |#1|)) (|:| -1753 (-623 |#1|))) "failed") (-623 |#1|) (-1153 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed") |#2| |#1|)) 45)))
+(((-745 |#1| |#2|) (-10 -7 (-15 -1776 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)) (|:| -2131 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1153 |#1|))) (-15 -1776 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) (-623 |#2|) (-1153 |#1|))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#1|)) (|:| -1753 (-623 |#1|))) "failed") (-623 |#1|) (-1153 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -2032 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#2|) (-1153 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1753 (-583 |#1|))) |#2| |#1|)))) (-333) (-593 |#1|)) (T -745))
+((-2032 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1753 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *6) "failed")) (|:| -1753 (-583 (-1153 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1153 *6)))) (-1674 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1753 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1153 *6)) (|:| -1753 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *6)))) (-1776 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *5)))) (-1776 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5)) (|:| -2131 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *6 (-593 *5)))))
+(-10 -7 (-15 -1776 ((-2 (|:| A (-623 |#1|)) (|:| |eqs| (-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)) (|:| -2131 |#2|) (|:| |rh| |#1|))))) (-623 |#1|) (-1153 |#1|))) (-15 -1776 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#1|))) (-623 |#2|) (-1153 |#1|))) (-15 -1674 ((-3 (-2 (|:| |particular| (-1153 |#1|)) (|:| -1753 (-623 |#1|))) "failed") (-623 |#1|) (-1153 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1753 (-583 |#1|))) "failed") |#2| |#1|))) (-15 -2032 ((-2 (|:| |particular| (-3 (-1153 |#1|) "failed")) (|:| -1753 (-583 (-1153 |#1|)))) (-623 |#2|) (-1153 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1753 (-583 |#1|))) |#2| |#1|))))
+((-1537 (((-623 |#1|) (-583 |#1|) (-703)) 13) (((-623 |#1|) (-583 |#1|)) 14)) (-2306 (((-3 (-1153 |#1|) "failed") |#2| |#1| (-583 |#1|)) 34)) (-2679 (((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)) 42)))
+(((-746 |#1| |#2|) (-10 -7 (-15 -1537 ((-623 |#1|) (-583 |#1|))) (-15 -1537 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -2306 ((-3 (-1153 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2679 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|)))) (-333) (-593 |#1|)) (T -746))
+((-2679 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) (-2306 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1153 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))) (-1537 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))))
+(-10 -7 (-15 -1537 ((-623 |#1|) (-583 |#1|))) (-15 -1537 ((-623 |#1|) (-583 |#1|) (-703))) (-15 -2306 ((-3 (-1153 |#1|) "failed") |#2| |#1| (-583 |#1|))) (-15 -2679 ((-3 |#1| "failed") |#2| |#1| (-583 |#1|) (-1 |#1| |#1|))))
+((-2750 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-2814 (((-107) $) NIL (|has| |#2| (-123)))) (-2847 (($ (-843)) NIL (|has| |#2| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#2| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#2| (-123)))) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#2| (-338)))) (-3709 (((-517) $) NIL (|has| |#2| (-777)))) (-2411 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) ((|#2| $) NIL (|has| |#2| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#2| (-961)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#2| (-961))) (((-623 |#2|) (-623 $)) NIL (|has| |#2| (-961)))) (-3621 (((-3 $ "failed") $) NIL (|has| |#2| (-961)))) (-3209 (($) NIL (|has| |#2| (-338)))) (-1445 ((|#2| $ (-517) |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ (-517)) NIL)) (-3556 (((-107) $) NIL (|has| |#2| (-777)))) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#2| (-961)))) (-2475 (((-107) $) NIL (|has| |#2| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#2| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#2| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#2| (-338)))) (-3206 (((-1021) $) NIL (|has| |#2| (-1003)))) (-1647 ((|#2| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) |#2|) NIL) ((|#2| $ (-517)) NIL)) (-3501 ((|#2| $ $) NIL (|has| |#2| (-961)))) (-3794 (($ (-1153 |#2|)) NIL)) (-3141 (((-125)) NIL (|has| |#2| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#2|) $) NIL) (((-787) $) NIL (|has| |#2| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#2| (-952 (-517))) (|has| |#2| (-1003))) (|has| |#2| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#2| (-952 (-377 (-517)))) (|has| |#2| (-1003)))) (($ |#2|) NIL (|has| |#2| (-1003)))) (-2961 (((-703)) NIL (|has| |#2| (-961)))) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#2| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (-2396 (($) NIL (|has| |#2| (-123)) CONST)) (-2409 (($) NIL (|has| |#2| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#2| (-207)) (|has| |#2| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#2| (-822 (-1073))) (|has| |#2| (-961)))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#2| (-961))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1547 (((-107) $ $) NIL (|has| |#2| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1572 (((-107) $ $) 11 (-3807 (|has| |#2| (-725)) (|has| |#2| (-777))))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $ $) NIL (|has| |#2| (-961))) (($ $) NIL (|has| |#2| (-961)))) (-1642 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-703)) NIL (|has| |#2| (-961))) (($ $ (-843)) NIL (|has| |#2| (-961)))) (* (($ $ $) NIL (|has| |#2| (-961))) (($ (-517) $) NIL (|has| |#2| (-961))) (($ $ |#2|) NIL (|has| |#2| (-659))) (($ |#2| $) NIL (|has| |#2| (-659))) (($ (-703) $) NIL (|has| |#2| (-123))) (($ (-843) $) NIL (|has| |#2| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-747 |#1| |#2| |#3|) (-212 |#1| |#2|) (-703) (-725) (-1 (-107) (-1153 |#2|) (-1153 |#2|))) (T -747))
+NIL
+(-212 |#1| |#2|)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3469 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1073)) NIL)) (-2932 (((-703) $) NIL) (((-703) $ (-1073)) NIL)) (-1364 (((-583 (-750 (-1073))) $) NIL)) (-2352 (((-1069 $) $ (-750 (-1073))) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-750 (-1073)))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3960 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-750 (-1073)) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL) (((-3 (-1026 |#1| (-1073)) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-750 (-1073)) $) NIL) (((-1073) $) NIL) (((-1026 |#1| (-1073)) $) NIL)) (-3388 (($ $ $ (-750 (-1073))) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1073))) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 (-750 (-1073))) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-750 (-1073)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-750 (-1073)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ (-1073)) NIL) (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) (-750 (-1073))) NIL) (($ (-1069 $) (-750 (-1073))) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-750 (-1073))) NIL)) (-2349 (((-489 (-750 (-1073))) $) NIL) (((-703) $ (-750 (-1073))) NIL) (((-583 (-703)) $ (-583 (-750 (-1073)))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 (-750 (-1073))) (-489 (-750 (-1073)))) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2656 (((-1 $ (-703)) (-1073)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1409 (((-3 (-750 (-1073)) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-2133 (((-750 (-1073)) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2982 (((-107) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-750 (-1073))) (|:| -2077 (-703))) "failed") $) NIL)) (-2604 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-750 (-1073)) |#1|) NIL) (($ $ (-583 (-750 (-1073))) (-583 |#1|)) NIL) (($ $ (-750 (-1073)) $) NIL) (($ $ (-583 (-750 (-1073))) (-583 $)) NIL) (($ $ (-1073) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3010 (($ $ (-750 (-1073))) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-750 (-1073))) NIL) (($ $ (-583 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1890 (((-583 (-1073)) $) NIL)) (-3688 (((-489 (-750 (-1073))) $) NIL) (((-703) $ (-750 (-1073))) NIL) (((-583 (-703)) $ (-583 (-750 (-1073)))) NIL) (((-703) $ (-1073)) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-750 (-1073)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-750 (-1073)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-750 (-1073)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-750 (-1073))) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-750 (-1073))) NIL) (($ (-1073)) NIL) (($ (-1026 |#1| (-1073))) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-750 (-1073))) NIL) (($ $ (-583 (-750 (-1073)))) NIL) (($ $ (-750 (-1073)) (-703)) NIL) (($ $ (-583 (-750 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-748 |#1|) (-13 (-226 |#1| (-1073) (-750 (-1073)) (-489 (-750 (-1073)))) (-952 (-1026 |#1| (-1073)))) (-961)) (T -748))
+NIL
+(-13 (-226 |#1| (-1073) (-750 (-1073)) (-489 (-750 (-1073)))) (-952 (-1026 |#1| (-1073))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-333)))) (-1213 (($ $) NIL (|has| |#2| (-333)))) (-2454 (((-107) $) NIL (|has| |#2| (-333)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#2| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-333)))) (-1707 (((-107) $ $) NIL (|has| |#2| (-333)))) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL (|has| |#2| (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#2| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-3849 (((-107) $) NIL (|has| |#2| (-333)))) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-1365 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 20 (|has| |#2| (-333)))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-333))) (($ $ $) NIL (|has| |#2| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-3146 (((-703) $) NIL (|has| |#2| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-3127 (($ $ (-703)) NIL) (($ $) 13)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-377 (-517))) NIL (|has| |#2| (-333))) (($ $) NIL (|has| |#2| (-333)))) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) NIL (|has| |#2| (-333)))) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) 15 (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ $ (-517)) 18 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-377 (-517)) $) NIL (|has| |#2| (-333))) (($ $ (-377 (-517))) NIL (|has| |#2| (-333)))))
+(((-749 |#1| |#2| |#3|) (-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |noBranch|) (-15 -2256 ($ |#2|)) (-15 -2256 (|#2| $)))) (-1003) (-822 |#1|) |#1|) (T -749))
+((-2256 (*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) (-2256 (*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3))))
+(-13 (-106 $ $) (-207) (-10 -8 (IF (|has| |#2| (-333)) (-6 (-333)) |noBranch|) (-15 -2256 ($ |#2|)) (-15 -2256 (|#2| $))))
+((-2750 (((-107) $ $) NIL)) (-2932 (((-703) $) NIL)) (-1638 ((|#1| $) 10)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3972 (((-703) $) 11)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2656 (($ |#1| (-703)) 9)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3127 (($ $) NIL) (($ $ (-703)) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)))
+(((-750 |#1|) (-239 |#1|) (-779)) (T -750))
+NIL
+(-239 |#1|)
+((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) 29)) (-1611 (((-703) $) NIL)) (-3092 (($) NIL T CONST)) (-3791 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 19)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-1660 (($ $) 31)) (-3621 (((-3 $ "failed") $) NIL)) (-1337 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3848 (((-107) $) NIL)) (-3466 ((|#1| $ (-517)) NIL)) (-3882 (((-703) $ (-517)) NIL)) (-2402 (($ $) 35)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2208 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 16)) (-3109 (((-107) $ $) 33)) (-2195 (((-703) $) 25)) (-3985 (((-1056) $) NIL)) (-2611 (($ $ $) NIL)) (-2301 (($ $ $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 ((|#1| $) 30)) (-2879 (((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $) NIL)) (-2486 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2409 (($) 14 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 34)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL) (($ |#1| (-703)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-751 |#1|) (-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1647 (|#1| $)) (-15 -1660 ($ $)) (-15 -2402 ($ $)) (-15 -3109 ((-107) $ $)) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -2208 ((-3 $ "failed") $ |#1|)) (-15 -3791 ((-3 $ "failed") $ |#1|)) (-15 -2486 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -2195 ((-703) $)) (-15 -3463 ((-583 |#1|) $)))) (-779)) (T -751))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1647 (*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2402 (*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3109 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2301 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2611 (*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2208 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3791 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2208 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-3791 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2486 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1337 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3882 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))) (-3466 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(-13 (-775) (-952 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-703))) (-15 -1647 (|#1| $)) (-15 -1660 ($ $)) (-15 -2402 ($ $)) (-15 -3109 ((-107) $ $)) (-15 -2301 ($ $ $)) (-15 -2611 ($ $ $)) (-15 -2208 ((-3 $ "failed") $ $)) (-15 -3791 ((-3 $ "failed") $ $)) (-15 -2208 ((-3 $ "failed") $ |#1|)) (-15 -3791 ((-3 $ "failed") $ |#1|)) (-15 -2486 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1337 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1611 ((-703) $)) (-15 -3882 ((-703) $ (-517))) (-15 -3466 (|#1| $ (-517))) (-15 -2879 ((-583 (-2 (|:| |gen| |#1|) (|:| -2624 (-703)))) $)) (-15 -2195 ((-703) $)) (-15 -3463 ((-583 |#1|) $))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3709 (((-517) $) 53)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3556 (((-107) $) 51)) (-3848 (((-107) $) 31)) (-2475 (((-107) $) 52)) (-2967 (($ $ $) 50)) (-3099 (($ $ $) 49)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 54)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 47)) (-1583 (((-107) $ $) 46)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 48)) (-1572 (((-107) $ $) 45)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-752) (-1184)) (T -752))
+NIL
+(-13 (-509) (-777))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2105 (($ (-1021)) 7)) (-2230 (((-107) $ (-1056) (-1021)) 15)) (-2030 (((-754) $) 12)) (-1822 (((-754) $) 11)) (-2021 (((-1158) $) 9)) (-3261 (((-107) $ (-1021)) 16)))
+(((-753) (-10 -8 (-15 -2105 ($ (-1021))) (-15 -2021 ((-1158) $)) (-15 -1822 ((-754) $)) (-15 -2030 ((-754) $)) (-15 -2230 ((-107) $ (-1056) (-1021))) (-15 -3261 ((-107) $ (-1021))))) (T -753))
+((-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2230 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-1822 (*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-753)))) (-2105 (*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753)))))
+(-10 -8 (-15 -2105 ($ (-1021))) (-15 -2021 ((-1158) $)) (-15 -1822 ((-754) $)) (-15 -2030 ((-754) $)) (-15 -2230 ((-107) $ (-1056) (-1021))) (-15 -3261 ((-107) $ (-1021))))
+((-2733 (((-1158) $ (-755)) 12)) (-1493 (((-1158) $ (-1073)) 32)) (-3303 (((-1158) $ (-1056) (-1056)) 34)) (-3231 (((-1158) $ (-1056)) 33)) (-3025 (((-1158) $) 19)) (-3945 (((-1158) $ (-517)) 28)) (-2415 (((-1158) $ (-199)) 30)) (-1417 (((-1158) $) 18)) (-1947 (((-1158) $) 26)) (-2698 (((-1158) $) 25)) (-2755 (((-1158) $) 23)) (-2429 (((-1158) $) 24)) (-2700 (((-1158) $) 22)) (-2998 (((-1158) $) 21)) (-3270 (((-1158) $) 20)) (-2581 (((-1158) $) 16)) (-3956 (((-1158) $) 17)) (-1896 (((-1158) $) 15)) (-3658 (((-1158) $) 14)) (-2642 (((-1158) $) 13)) (-4157 (($ (-1056) (-755)) 9)) (-3013 (($ (-1056) (-1056) (-755)) 8)) (-3508 (((-1073) $) 51)) (-3263 (((-1073) $) 55)) (-2654 (((-2 (|:| |cd| (-1056)) (|:| -1207 (-1056))) $) 54)) (-4110 (((-1056) $) 52)) (-2157 (((-1158) $) 41)) (-3356 (((-517) $) 49)) (-2166 (((-199) $) 50)) (-2282 (((-1158) $) 40)) (-3687 (((-1158) $) 48)) (-3119 (((-1158) $) 47)) (-2884 (((-1158) $) 45)) (-3656 (((-1158) $) 46)) (-2727 (((-1158) $) 44)) (-2855 (((-1158) $) 43)) (-3778 (((-1158) $) 42)) (-1960 (((-1158) $) 38)) (-3378 (((-1158) $) 39)) (-3102 (((-1158) $) 37)) (-2771 (((-1158) $) 36)) (-3571 (((-1158) $) 35)) (-3019 (((-1158) $) 11)))
+(((-754) (-10 -8 (-15 -3013 ($ (-1056) (-1056) (-755))) (-15 -4157 ($ (-1056) (-755))) (-15 -3019 ((-1158) $)) (-15 -2733 ((-1158) $ (-755))) (-15 -2642 ((-1158) $)) (-15 -3658 ((-1158) $)) (-15 -1896 ((-1158) $)) (-15 -2581 ((-1158) $)) (-15 -3956 ((-1158) $)) (-15 -1417 ((-1158) $)) (-15 -3025 ((-1158) $)) (-15 -3270 ((-1158) $)) (-15 -2998 ((-1158) $)) (-15 -2700 ((-1158) $)) (-15 -2755 ((-1158) $)) (-15 -2429 ((-1158) $)) (-15 -2698 ((-1158) $)) (-15 -1947 ((-1158) $)) (-15 -3945 ((-1158) $ (-517))) (-15 -2415 ((-1158) $ (-199))) (-15 -1493 ((-1158) $ (-1073))) (-15 -3231 ((-1158) $ (-1056))) (-15 -3303 ((-1158) $ (-1056) (-1056))) (-15 -3571 ((-1158) $)) (-15 -2771 ((-1158) $)) (-15 -3102 ((-1158) $)) (-15 -1960 ((-1158) $)) (-15 -3378 ((-1158) $)) (-15 -2282 ((-1158) $)) (-15 -2157 ((-1158) $)) (-15 -3778 ((-1158) $)) (-15 -2855 ((-1158) $)) (-15 -2727 ((-1158) $)) (-15 -2884 ((-1158) $)) (-15 -3656 ((-1158) $)) (-15 -3119 ((-1158) $)) (-15 -3687 ((-1158) $)) (-15 -3356 ((-517) $)) (-15 -2166 ((-199) $)) (-15 -3508 ((-1073) $)) (-15 -4110 ((-1056) $)) (-15 -2654 ((-2 (|:| |cd| (-1056)) (|:| -1207 (-1056))) $)) (-15 -3263 ((-1073) $)))) (T -754))
+((-3263 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1056)) (|:| -1207 (-1056)))) (-5 *1 (-754)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-754)))) (-3508 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))) (-3687 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3656 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2855 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3778 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2282 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2771 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3303 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-3231 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-1493 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-3945 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-1947 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2429 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2700 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2998 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-1417 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-3658 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2642 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-2733 (*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1158)) (-5 *1 (-754)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754)))) (-3013 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(-10 -8 (-15 -3013 ($ (-1056) (-1056) (-755))) (-15 -4157 ($ (-1056) (-755))) (-15 -3019 ((-1158) $)) (-15 -2733 ((-1158) $ (-755))) (-15 -2642 ((-1158) $)) (-15 -3658 ((-1158) $)) (-15 -1896 ((-1158) $)) (-15 -2581 ((-1158) $)) (-15 -3956 ((-1158) $)) (-15 -1417 ((-1158) $)) (-15 -3025 ((-1158) $)) (-15 -3270 ((-1158) $)) (-15 -2998 ((-1158) $)) (-15 -2700 ((-1158) $)) (-15 -2755 ((-1158) $)) (-15 -2429 ((-1158) $)) (-15 -2698 ((-1158) $)) (-15 -1947 ((-1158) $)) (-15 -3945 ((-1158) $ (-517))) (-15 -2415 ((-1158) $ (-199))) (-15 -1493 ((-1158) $ (-1073))) (-15 -3231 ((-1158) $ (-1056))) (-15 -3303 ((-1158) $ (-1056) (-1056))) (-15 -3571 ((-1158) $)) (-15 -2771 ((-1158) $)) (-15 -3102 ((-1158) $)) (-15 -1960 ((-1158) $)) (-15 -3378 ((-1158) $)) (-15 -2282 ((-1158) $)) (-15 -2157 ((-1158) $)) (-15 -3778 ((-1158) $)) (-15 -2855 ((-1158) $)) (-15 -2727 ((-1158) $)) (-15 -2884 ((-1158) $)) (-15 -3656 ((-1158) $)) (-15 -3119 ((-1158) $)) (-15 -3687 ((-1158) $)) (-15 -3356 ((-517) $)) (-15 -2166 ((-199) $)) (-15 -3508 ((-1073) $)) (-15 -4110 ((-1056) $)) (-15 -2654 ((-2 (|:| |cd| (-1056)) (|:| -1207 (-1056))) $)) (-15 -3263 ((-1073) $)))
+((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 12)) (-3999 (($) 15)) (-2394 (($) 13)) (-3851 (($) 16)) (-3322 (($) 14)) (-1547 (((-107) $ $) 8)))
+(((-755) (-13 (-1003) (-10 -8 (-15 -2394 ($)) (-15 -3999 ($)) (-15 -3851 ($)) (-15 -3322 ($))))) (T -755))
+((-2394 (*1 *1) (-5 *1 (-755))) (-3999 (*1 *1) (-5 *1 (-755))) (-3851 (*1 *1) (-5 *1 (-755))) (-3322 (*1 *1) (-5 *1 (-755))))
+(-13 (-1003) (-10 -8 (-15 -2394 ($)) (-15 -3999 ($)) (-15 -3851 ($)) (-15 -3322 ($))))
+((-2750 (((-107) $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 21) (($ (-1073)) 17)) (-2663 (((-107) $) 10)) (-1546 (((-107) $) 9)) (-2763 (((-107) $) 11)) (-1965 (((-107) $) 8)) (-1547 (((-107) $ $) 19)))
+(((-756) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -1965 ((-107) $)) (-15 -1546 ((-107) $)) (-15 -2663 ((-107) $)) (-15 -2763 ((-107) $))))) (T -756))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-756)))) (-1965 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))) (-2763 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -1965 ((-107) $)) (-15 -1546 ((-107) $)) (-15 -2663 ((-107) $)) (-15 -2763 ((-107) $))))
+((-2750 (((-107) $ $) NIL)) (-3136 (($ (-756) (-583 (-1073))) 24)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1504 (((-756) $) 25)) (-2509 (((-583 (-1073)) $) 26)) (-2256 (((-787) $) 23)) (-1547 (((-107) $ $) NIL)))
+(((-757) (-13 (-1003) (-10 -8 (-15 -1504 ((-756) $)) (-15 -2509 ((-583 (-1073)) $)) (-15 -3136 ($ (-756) (-583 (-1073))))))) (T -757))
+((-1504 (*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))) (-2509 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-757)))) (-3136 (*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1073))) (-5 *1 (-757)))))
+(-13 (-1003) (-10 -8 (-15 -1504 ((-756) $)) (-15 -2509 ((-583 (-1073)) $)) (-15 -3136 ($ (-756) (-583 (-1073))))))
+((-2482 (((-1158) (-754) (-286 |#1|) (-107)) 22) (((-1158) (-754) (-286 |#1|)) 76) (((-1056) (-286 |#1|) (-107)) 75) (((-1056) (-286 |#1|)) 74)))
+(((-758 |#1|) (-10 -7 (-15 -2482 ((-1056) (-286 |#1|))) (-15 -2482 ((-1056) (-286 |#1|) (-107))) (-15 -2482 ((-1158) (-754) (-286 |#1|))) (-15 -2482 ((-1158) (-754) (-286 |#1|) (-107)))) (-13 (-760) (-779) (-961))) (T -758))
+((-2482 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *6)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *5)))) (-2482 (*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *5)))) (-2482 (*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *4)))))
+(-10 -7 (-15 -2482 ((-1056) (-286 |#1|))) (-15 -2482 ((-1056) (-286 |#1|) (-107))) (-15 -2482 ((-1158) (-754) (-286 |#1|))) (-15 -2482 ((-1158) (-754) (-286 |#1|) (-107))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2837 ((|#1| $) 10)) (-3837 (($ |#1|) 9)) (-3848 (((-107) $) NIL)) (-1339 (($ |#2| (-703)) NIL)) (-2349 (((-703) $) NIL)) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3127 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-3688 (((-703) $) NIL)) (-2256 (((-787) $) 17) (($ (-517)) NIL) (($ |#2|) NIL (|has| |#2| (-156)))) (-2720 ((|#2| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $) NIL (|has| |#1| (-207)))) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-759 |#1| |#2|) (-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |noBranch|) (-15 -3837 ($ |#1|)) (-15 -2837 (|#1| $)))) (-642 |#2|) (-961)) (T -759))
+((-3837 (*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))) (-2837 (*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961)))))
+(-13 (-642 |#2|) (-10 -8 (IF (|has| |#1| (-207)) (-6 (-207)) |noBranch|) (-15 -3837 ($ |#1|)) (-15 -2837 (|#1| $))))
+((-2482 (((-1158) (-754) $ (-107)) 9) (((-1158) (-754) $) 8) (((-1056) $ (-107)) 7) (((-1056) $) 6)))
+(((-760) (-1184)) (T -760))
+((-2482 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1158)))) (-2482 (*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1158)))) (-2482 (*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1056)))) (-2482 (*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1056)))))
+(-13 (-10 -8 (-15 -2482 ((-1056) $)) (-15 -2482 ((-1056) $ (-107))) (-15 -2482 ((-1158) (-754) $)) (-15 -2482 ((-1158) (-754) $ (-107)))))
+((-1280 (((-282) (-1056) (-1056)) 12)) (-2972 (((-107) (-1056) (-1056)) 33)) (-2038 (((-107) (-1056)) 32)) (-1808 (((-51) (-1056)) 25)) (-1993 (((-51) (-1056)) 23)) (-2226 (((-51) (-754)) 17)) (-4122 (((-583 (-1056)) (-1056)) 28)) (-2250 (((-583 (-1056))) 27)))
+(((-761) (-10 -7 (-15 -2226 ((-51) (-754))) (-15 -1993 ((-51) (-1056))) (-15 -1808 ((-51) (-1056))) (-15 -2250 ((-583 (-1056)))) (-15 -4122 ((-583 (-1056)) (-1056))) (-15 -2038 ((-107) (-1056))) (-15 -2972 ((-107) (-1056) (-1056))) (-15 -1280 ((-282) (-1056) (-1056))))) (T -761))
+((-1280 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-761)))) (-2972 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))) (-4122 (*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)) (-5 *3 (-1056)))) (-2250 (*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(-10 -7 (-15 -2226 ((-51) (-754))) (-15 -1993 ((-51) (-1056))) (-15 -1808 ((-51) (-1056))) (-15 -2250 ((-583 (-1056)))) (-15 -4122 ((-583 (-1056)) (-1056))) (-15 -2038 ((-107) (-1056))) (-15 -2972 ((-107) (-1056) (-1056))) (-15 -1280 ((-282) (-1056) (-1056))))
+((-2750 (((-107) $ $) 18)) (-1413 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3245 (($ $ $) 72)) (-3009 (((-107) $ $) 73)) (-2953 (((-107) $ (-703)) 8)) (-1362 (($ (-583 |#1|)) 68) (($) 67)) (-2337 (($ (-1 (-107) |#1|) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3483 (($ $) 62)) (-1679 (($ $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ |#1| $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) 46 (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 54 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2967 ((|#1| $) 78)) (-2797 (($ $ $) 81)) (-3237 (($ $ $) 80)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3099 ((|#1| $) 79)) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22)) (-1812 (($ $ $) 69)) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40) (($ |#1| $ (-703)) 63)) (-3206 (((-1021) $) 21)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 51)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3350 (((-583 (-2 (|:| -1257 |#1|) (|:| -3217 (-703)))) $) 61)) (-3170 (($ $ |#1|) 71) (($ $ $) 70)) (-3089 (($) 49) (($ (-583 |#1|)) 48)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 50)) (-2256 (((-787) $) 20)) (-3167 (($ (-583 |#1|)) 66) (($) 65)) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19)) (-1572 (((-107) $ $) 64)) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-762 |#1|) (-1184) (-779)) (T -762))
+((-2967 (*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))))
+(-13 (-669 |t#1|) (-886 |t#1|) (-10 -8 (-15 -2967 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-209 |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-628 |#1|) . T) ((-669 |#1|) . T) ((-886 |#1|) . T) ((-1001 |#1|) . T) ((-1003) . T) ((-1108) . T))
+((-1346 (((-1158) (-1021) (-1021)) 47)) (-3178 (((-1158) (-753) (-51)) 44)) (-1532 (((-51) (-753)) 16)))
+(((-763) (-10 -7 (-15 -1532 ((-51) (-753))) (-15 -3178 ((-1158) (-753) (-51))) (-15 -1346 ((-1158) (-1021) (-1021))))) (T -763))
+((-1346 (*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1158)) (-5 *1 (-763)))) (-3178 (*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1158)) (-5 *1 (-763)))) (-1532 (*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
+(-10 -7 (-15 -1532 ((-51) (-753))) (-15 -3178 ((-1158) (-753) (-51))) (-15 -1346 ((-1158) (-1021) (-1021))))
+((-1893 (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)) 12) (((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|)) 13)))
+(((-764 |#1| |#2|) (-10 -7 (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|)))) (-1003) (-1003)) (T -764))
+((-1893 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))))
+(-10 -7 (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|))) (-15 -1893 ((-765 |#2|) (-1 |#2| |#1|) (-765 |#1|) (-765 |#2|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL (|has| |#1| (-21)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3709 (((-517) $) NIL (|has| |#1| (-777)))) (-3092 (($) NIL (|has| |#1| (-21)) CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 15)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-3621 (((-3 $ "failed") $) 40 (|has| |#1| (-777)))) (-1256 (((-3 (-377 (-517)) "failed") $) 49 (|has| |#1| (-502)))) (-1355 (((-107) $) 43 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 46 (|has| |#1| (-502)))) (-3556 (((-107) $) NIL (|has| |#1| (-777)))) (-3848 (((-107) $) NIL (|has| |#1| (-777)))) (-2475 (((-107) $) NIL (|has| |#1| (-777)))) (-2967 (($ $ $) NIL (|has| |#1| (-777)))) (-3099 (($ $ $) NIL (|has| |#1| (-777)))) (-3985 (((-1056) $) NIL)) (-2676 (($) 13)) (-2169 (((-107) $) 12)) (-3206 (((-1021) $) NIL)) (-1515 (((-107) $) 11)) (-2256 (((-787) $) 18) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3807 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-2961 (((-703)) 34 (|has| |#1| (-777)))) (-3710 (($ $) NIL (|has| |#1| (-777)))) (-2207 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2396 (($) 22 (|has| |#1| (-21)) CONST)) (-2409 (($) 31 (|has| |#1| (-777)) CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1547 (((-107) $ $) 20)) (-1595 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 42 (|has| |#1| (-777)))) (-1654 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-1642 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 37 (|has| |#1| (-777))) (($ (-517) $) 25 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21)))))
+(((-765 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2676 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) (-1003)) (T -765))
+((-2676 (*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-1256 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))))
+(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2676 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-109) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-109) $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3447 ((|#1| (-109) |#1|) NIL)) (-3848 (((-107) $) NIL)) (-1261 (($ |#1| (-331 (-109))) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1392 (($ $ (-1 |#1| |#1|)) NIL)) (-3269 (($ $ (-1 |#1| |#1|)) NIL)) (-1449 ((|#1| $ |#1|) NIL)) (-3445 ((|#1| |#1|) NIL (|has| |#1| (-156)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-109)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2061 (($ $) NIL (|has| |#1| (-156))) (($ $ $) NIL (|has| |#1| (-156)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ (-109) (-517)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-766 |#1|) (-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#1| |#1|))) (-15 -1392 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#1| (-109) |#1|)) (-15 -1261 ($ |#1| (-331 (-109)))))) (-961)) (T -766))
+((-2061 (*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-2061 (*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-3445 (*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (-1392 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) (-3447 (*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961)))) (-1261 (*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-952 |#1|) (-952 (-109)) (-258 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |#1| (-156)) (PROGN (-6 (-37 |#1|)) (-15 -2061 ($ $)) (-15 -2061 ($ $ $)) (-15 -3445 (|#1| |#1|))) |noBranch|) (-15 -3269 ($ $ (-1 |#1| |#1|))) (-15 -1392 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-109) (-517))) (-15 ** ($ $ (-517))) (-15 -3447 (|#1| (-109) |#1|)) (-15 -1261 ($ |#1| (-331 (-109))))))
+((-3818 (((-189 (-467)) (-1056)) 8)))
+(((-767) (-10 -7 (-15 -3818 ((-189 (-467)) (-1056))))) (T -767))
+((-3818 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
+(-10 -7 (-15 -3818 ((-189 (-467)) (-1056))))
+((-2750 (((-107) $ $) 7)) (-3826 (((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 14) (((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 13)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 16) (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 15)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
+(((-768) (-1184)) (T -768))
+((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-3826 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-950)))) (-3826 (*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950)))))
+(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3826 ((-950) (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -3826 ((-950) (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2507 (((-950) (-583 (-286 (-349))) (-583 (-349))) 143) (((-950) (-286 (-349)) (-583 (-349))) 141) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349)))) 140) (((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349)))) 139) (((-950) (-770)) 112) (((-950) (-770) (-973)) 111)) (-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770) (-973)) 76) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770)) 78)) (-2744 (((-950) (-583 (-286 (-349))) (-583 (-349))) 144) (((-950) (-770)) 128)))
+(((-769) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770) (-973))) (-15 -2507 ((-950) (-770) (-973))) (-15 -2507 ((-950) (-770))) (-15 -2744 ((-950) (-770))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2507 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2744 ((-950) (-583 (-286 (-349))) (-583 (-349)))))) (T -769))
+((-2744 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) (-2744 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-769)))) (-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))))
+(-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-770) (-973))) (-15 -2507 ((-950) (-770) (-973))) (-15 -2507 ((-950) (-770))) (-15 -2744 ((-950) (-770))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-286 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)) (-583 (-772 (-349))) (-583 (-772 (-349))))) (-15 -2507 ((-950) (-286 (-349)) (-583 (-349)))) (-15 -2507 ((-950) (-583 (-286 (-349))) (-583 (-349)))) (-15 -2744 ((-950) (-583 (-286 (-349))) (-583 (-349)))))
+((-2750 (((-107) $ $) NIL)) (-3189 (((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) $) 15)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 14) (($ (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) 8) (($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) 10) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) 12)) (-1547 (((-107) $ $) NIL)))
+(((-770) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2256 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -2256 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) $))))) (T -770))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *1 (-770)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199))))))) (-15 -2256 ($ (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) (-15 -2256 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199)))))) $))))
+((-1893 (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)) 13) (((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|)) 14)))
+(((-771 |#1| |#2|) (-10 -7 (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|)))) (-1003) (-1003)) (T -771))
+((-1893 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))))
+(-10 -7 (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|))) (-15 -1893 ((-772 |#2|) (-1 |#2| |#1|) (-772 |#1|) (-772 |#2|) (-772 |#2|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL (|has| |#1| (-21)))) (-3893 (((-1021) $) 24)) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3709 (((-517) $) NIL (|has| |#1| (-777)))) (-3092 (($) NIL (|has| |#1| (-21)) CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 16)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 9)) (-3621 (((-3 $ "failed") $) 46 (|has| |#1| (-777)))) (-1256 (((-3 (-377 (-517)) "failed") $) 53 (|has| |#1| (-502)))) (-1355 (((-107) $) 48 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 51 (|has| |#1| (-502)))) (-3556 (((-107) $) NIL (|has| |#1| (-777)))) (-2699 (($) 13)) (-3848 (((-107) $) NIL (|has| |#1| (-777)))) (-2475 (((-107) $) NIL (|has| |#1| (-777)))) (-2722 (($) 14)) (-2967 (($ $ $) NIL (|has| |#1| (-777)))) (-3099 (($ $ $) NIL (|has| |#1| (-777)))) (-3985 (((-1056) $) NIL)) (-2169 (((-107) $) 12)) (-3206 (((-1021) $) NIL)) (-1515 (((-107) $) 11)) (-2256 (((-787) $) 22) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 8) (($ (-517)) NIL (-3807 (|has| |#1| (-777)) (|has| |#1| (-952 (-517)))))) (-2961 (((-703)) 40 (|has| |#1| (-777)))) (-3710 (($ $) NIL (|has| |#1| (-777)))) (-2207 (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (-2396 (($) 28 (|has| |#1| (-21)) CONST)) (-2409 (($) 37 (|has| |#1| (-777)) CONST)) (-1606 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1547 (((-107) $ $) 26)) (-1595 (((-107) $ $) NIL (|has| |#1| (-777)))) (-1572 (((-107) $ $) 47 (|has| |#1| (-777)))) (-1654 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 33 (|has| |#1| (-21)))) (-1642 (($ $ $) 35 (|has| |#1| (-21)))) (** (($ $ (-843)) NIL (|has| |#1| (-777))) (($ $ (-703)) NIL (|has| |#1| (-777)))) (* (($ $ $) 43 (|has| |#1| (-777))) (($ (-517) $) 31 (|has| |#1| (-21))) (($ (-703) $) NIL (|has| |#1| (-21))) (($ (-843) $) NIL (|has| |#1| (-21)))))
+(((-772 |#1|) (-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2699 ($)) (-15 -2722 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (-15 -3893 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|))) (-1003)) (T -772))
+((-2699 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-2722 (*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-3893 (*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))) (-1355 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) (-1256 (*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))))
+(-13 (-1003) (-381 |#1|) (-10 -8 (-15 -2699 ($)) (-15 -2722 ($)) (-15 -1515 ((-107) $)) (-15 -2169 ((-107) $)) (-15 -3893 ((-1021) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|)))
+((-2750 (((-107) $ $) 7)) (-1611 (((-703)) 20)) (-3209 (($) 23)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-1549 (((-843) $) 22)) (-3985 (((-1056) $) 9)) (-3448 (($ (-843)) 21)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
+(((-773) (-1184)) (T -773))
+NIL
+(-13 (-779) (-338))
+(((-97) . T) ((-557 (-787)) . T) ((-338) . T) ((-779) . T) ((-1003) . T))
+((-2835 (((-107) (-1153 |#2|) (-1153 |#2|)) 17)) (-3155 (((-107) (-1153 |#2|) (-1153 |#2|)) 18)) (-4154 (((-107) (-1153 |#2|) (-1153 |#2|)) 14)))
+(((-774 |#1| |#2|) (-10 -7 (-15 -4154 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -2835 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -3155 ((-107) (-1153 |#2|) (-1153 |#2|)))) (-703) (-724)) (T -774))
+((-3155 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-2835 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))) (-4154 (*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(-10 -7 (-15 -4154 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -2835 ((-107) (-1153 |#2|) (-1153 |#2|))) (-15 -3155 ((-107) (-1153 |#2|) (-1153 |#2|))))
+((-2750 (((-107) $ $) 7)) (-3092 (($) 24 T CONST)) (-3621 (((-3 $ "failed") $) 28)) (-3848 (((-107) $) 25)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-703)) 27) (($ $ (-843)) 22)) (-2409 (($) 23 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (** (($ $ (-703)) 26) (($ $ (-843)) 21)) (* (($ $ $) 20)))
+(((-775) (-1184)) (T -775))
+NIL
+(-13 (-779) (-659))
+(((-97) . T) ((-557 (-787)) . T) ((-659) . T) ((-779) . T) ((-1015) . T) ((-1003) . T))
+((-3709 (((-517) $) 17)) (-3556 (((-107) $) 10)) (-2475 (((-107) $) 11)) (-3710 (($ $) 19)))
+(((-776 |#1|) (-10 -8 (-15 -3710 (|#1| |#1|)) (-15 -3709 ((-517) |#1|)) (-15 -2475 ((-107) |#1|)) (-15 -3556 ((-107) |#1|))) (-777)) (T -776))
+NIL
+(-10 -8 (-15 -3710 (|#1| |#1|)) (-15 -3709 ((-517) |#1|)) (-15 -2475 ((-107) |#1|)) (-15 -3556 ((-107) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 24)) (-4038 (((-3 $ "failed") $ $) 26)) (-3709 (((-517) $) 33)) (-3092 (($) 23 T CONST)) (-3621 (((-3 $ "failed") $) 39)) (-3556 (((-107) $) 35)) (-3848 (((-107) $) 42)) (-2475 (((-107) $) 34)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 45)) (-2961 (((-703)) 44)) (-3710 (($ $) 32)) (-2207 (($ $ (-703)) 40) (($ $ (-843)) 36)) (-2396 (($) 22 T CONST)) (-2409 (($) 43 T CONST)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)) (-1654 (($ $ $) 28) (($ $) 27)) (-1642 (($ $ $) 20)) (** (($ $ (-703)) 41) (($ $ (-843)) 37)) (* (($ (-703) $) 25) (($ (-843) $) 21) (($ (-517) $) 29) (($ $ $) 38)))
+(((-777) (-1184)) (T -777))
+((-3556 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) (-3710 (*1 *1 *1) (-4 *1 (-777))))
+(-13 (-723) (-961) (-659) (-10 -8 (-15 -3556 ((-107) $)) (-15 -2475 ((-107) $)) (-15 -3709 ((-517) $)) (-15 -3710 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-779) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2967 (($ $ $) 10)) (-3099 (($ $ $) 9)) (-1606 (((-107) $ $) 12)) (-1583 (((-107) $ $) 11)) (-1595 (((-107) $ $) 13)))
+(((-778 |#1|) (-10 -8 (-15 -2967 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|)) (-15 -1595 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|)) (-15 -1583 ((-107) |#1| |#1|))) (-779)) (T -778))
+NIL
+(-10 -8 (-15 -2967 (|#1| |#1| |#1|)) (-15 -3099 (|#1| |#1| |#1|)) (-15 -1595 ((-107) |#1| |#1|)) (-15 -1606 ((-107) |#1| |#1|)) (-15 -1583 ((-107) |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2967 (($ $ $) 13)) (-3099 (($ $ $) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1606 (((-107) $ $) 16)) (-1583 (((-107) $ $) 17)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 15)) (-1572 (((-107) $ $) 18)))
+(((-779) (-1184)) (T -779))
+((-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1583 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1606 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-1595 (*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) (-3099 (*1 *1 *1 *1) (-4 *1 (-779))) (-2967 (*1 *1 *1 *1) (-4 *1 (-779))))
+(-13 (-1003) (-10 -8 (-15 -1572 ((-107) $ $)) (-15 -1583 ((-107) $ $)) (-15 -1606 ((-107) $ $)) (-15 -1595 ((-107) $ $)) (-15 -3099 ($ $ $)) (-15 -2967 ($ $ $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-3311 (($ $ $) 45)) (-3527 (($ $ $) 44)) (-2626 (($ $ $) 42)) (-3784 (($ $ $) 51)) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 46)) (-2975 (((-3 $ "failed") $ $) 49)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3534 (($ $) 35)) (-4102 (($ $ $) 39)) (-2985 (($ $ $) 38)) (-2218 (($ $ $) 47)) (-1423 (($ $ $) 53)) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 41)) (-1971 (((-3 $ "failed") $ $) 48)) (-2476 (((-3 $ "failed") $ |#2|) 28)) (-3266 ((|#2| $) 32)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#2|) 12)) (-1311 (((-583 |#2|) $) 18)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-780 |#1| |#2|) (-10 -8 (-15 -2218 (|#1| |#1| |#1|)) (-15 -3678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -2975 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3311 (|#1| |#1| |#1|)) (-15 -3527 (|#1| |#1| |#1|)) (-15 -2626 (|#1| |#1| |#1|)) (-15 -2582 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2256 ((-787) |#1|))) (-781 |#2|) (-961)) (T -780))
+NIL
+(-10 -8 (-15 -2218 (|#1| |#1| |#1|)) (-15 -3678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -3784 (|#1| |#1| |#1|)) (-15 -2975 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3311 (|#1| |#1| |#1|)) (-15 -3527 (|#1| |#1| |#1|)) (-15 -2626 (|#1| |#1| |#1|)) (-15 -2582 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3220 |#1|)) |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -1971 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4102 (|#1| |#1| |#1|)) (-15 -2985 (|#1| |#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -2476 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1311 ((-583 |#2|) |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3311 (($ $ $) 45 (|has| |#1| (-333)))) (-3527 (($ $ $) 46 (|has| |#1| (-333)))) (-2626 (($ $ $) 48 (|has| |#1| (-333)))) (-3784 (($ $ $) 43 (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 42 (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) 44 (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 47 (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) 74 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 72 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 69)) (-3189 (((-517) $) 75 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 73 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 68)) (-1212 (($ $) 64)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 55 (|has| |#1| (-421)))) (-3848 (((-107) $) 31)) (-1339 (($ |#1| (-703)) 62)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 58 (|has| |#1| (-509)))) (-2349 (((-703) $) 66)) (-4102 (($ $ $) 52 (|has| |#1| (-333)))) (-2985 (($ $ $) 53 (|has| |#1| (-333)))) (-2218 (($ $ $) 41 (|has| |#1| (-333)))) (-1423 (($ $ $) 50 (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 49 (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) 51 (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 54 (|has| |#1| (-333)))) (-1191 ((|#1| $) 65)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-509)))) (-3688 (((-703) $) 67)) (-3266 ((|#1| $) 56 (|has| |#1| (-421)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 71 (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) 70)) (-1311 (((-583 |#1|) $) 61)) (-2720 ((|#1| $ (-703)) 63)) (-2961 (((-703)) 29)) (-1587 ((|#1| $ |#1| |#1|) 60)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-781 |#1|) (-1184) (-961)) (T -781))
+((-3688 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-2349 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1191 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1339 (*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) (-1587 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-2856 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-2441 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-3266 (*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-3534 (*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) (-2962 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-2985 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4102 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1971 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-1423 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2582 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))) (-2626 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3551 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) (-3527 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3311 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-2975 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3784 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-3678 (*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))) (-2218 (*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(-13 (-961) (-106 |t#1| |t#1|) (-381 |t#1|) (-10 -8 (-15 -3688 ((-703) $)) (-15 -2349 ((-703) $)) (-15 -1191 (|t#1| $)) (-15 -1212 ($ $)) (-15 -2720 (|t#1| $ (-703))) (-15 -1339 ($ |t#1| (-703))) (-15 -1311 ((-583 |t#1|) $)) (-15 -1587 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -2476 ((-3 $ "failed") $ |t#1|)) (-15 -2856 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2441 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -3266 (|t#1| $)) (-15 -3534 ($ $))) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-15 -2962 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2985 ($ $ $)) (-15 -4102 ($ $ $)) (-15 -1971 ((-3 $ "failed") $ $)) (-15 -1423 ($ $ $)) (-15 -2582 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $)) (-15 -2626 ($ $ $)) (-15 -3551 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -3527 ($ $ $)) (-15 -3311 ($ $ $)) (-15 -2975 ((-3 $ "failed") $ $)) (-15 -3784 ($ $ $)) (-15 -3678 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $)) (-15 -2218 ($ $ $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-381 |#1|) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2707 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-3551 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-333)))) (-2441 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-509)))) (-2962 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-333)))) (-1587 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31)))
+(((-782 |#1| |#2|) (-10 -7 (-15 -2707 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1587 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2856 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2441 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2962 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3551 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|)) (-961) (-781 |#1|)) (T -782))
+((-3551 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2962 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2441 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-2856 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))) (-1587 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))) (-2707 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
+(-10 -7 (-15 -2707 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -1587 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-509)) (PROGN (-15 -2856 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2441 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -2962 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3551 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2| (-94 |#1|)))) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#1| (-333)))) (-3527 (($ $ $) NIL (|has| |#1| (-333)))) (-2626 (($ $ $) NIL (|has| |#1| (-333)))) (-3784 (($ $ $) NIL (|has| |#1| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 25 (|has| |#1| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-3078 (((-787) $ (-787)) NIL)) (-3848 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) NIL)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 21 (|has| |#1| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 19 (|has| |#1| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#1| (-333)))) (-2985 (($ $ $) NIL (|has| |#1| (-333)))) (-2218 (($ $ $) NIL (|has| |#1| (-333)))) (-1423 (($ $ $) NIL (|has| |#1| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 23 (|has| |#1| (-333)))) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3688 (((-703) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-952 (-377 (-517))))) (($ |#1|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#1| $ |#1| |#1|) 15)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-783 |#1| |#2| |#3|) (-13 (-781 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))))) (-961) (-94 |#1|) (-1 |#1| |#1|)) (T -783))
+((-3078 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-781 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3311 (($ $ $) NIL (|has| |#2| (-333)))) (-3527 (($ $ $) NIL (|has| |#2| (-333)))) (-2626 (($ $ $) NIL (|has| |#2| (-333)))) (-3784 (($ $ $) NIL (|has| |#2| (-333)))) (-3678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-2975 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-3551 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#2| (-421)))) (-3848 (((-107) $) NIL)) (-1339 (($ |#2| (-703)) 16)) (-2441 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-509)))) (-2856 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-509)))) (-2349 (((-703) $) NIL)) (-4102 (($ $ $) NIL (|has| |#2| (-333)))) (-2985 (($ $ $) NIL (|has| |#2| (-333)))) (-2218 (($ $ $) NIL (|has| |#2| (-333)))) (-1423 (($ $ $) NIL (|has| |#2| (-333)))) (-2582 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-1971 (((-3 $ "failed") $ $) NIL (|has| |#2| (-333)))) (-2962 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-3688 (((-703) $) NIL)) (-3266 ((|#2| $) NIL (|has| |#2| (-421)))) (-2256 (((-787) $) 23) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (($ (-1149 |#1|)) 18)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-703)) NIL)) (-2961 (((-703)) NIL)) (-1587 ((|#2| $ |#2| |#2|) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) 13 T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-784 |#1| |#2| |#3| |#4|) (-13 (-781 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))))) (-1073) (-961) (-94 |#2|) (-1 |#2| |#2|)) (T -784))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-781 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|)))))
+((-2388 ((|#1| (-703) |#1|) 35 (|has| |#1| (-37 (-377 (-517)))))) (-1394 ((|#1| (-703) (-703) |#1|) 27) ((|#1| (-703) |#1|) 20)) (-1475 ((|#1| (-703) |#1|) 31)) (-2598 ((|#1| (-703) |#1|) 29)) (-1342 ((|#1| (-703) |#1|) 28)))
+(((-785 |#1|) (-10 -7 (-15 -1342 (|#1| (-703) |#1|)) (-15 -2598 (|#1| (-703) |#1|)) (-15 -1475 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2388 (|#1| (-703) |#1|)) |noBranch|)) (-156)) (T -785))
+((-2388 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))) (-1394 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1394 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1475 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-2598 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) (-1342 (*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(-10 -7 (-15 -1342 (|#1| (-703) |#1|)) (-15 -2598 (|#1| (-703) |#1|)) (-15 -1475 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) |#1|)) (-15 -1394 (|#1| (-703) (-703) |#1|)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -2388 (|#1| (-703) |#1|)) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-3199 (((-517) $) 12)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 18) (($ (-517)) 11)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 8)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 9)))
+(((-786) (-13 (-779) (-10 -8 (-15 -2256 ($ (-517))) (-15 -3199 ((-517) $))))) (T -786))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))))
+(-13 (-779) (-10 -8 (-15 -2256 ($ (-517))) (-15 -3199 ((-517) $))))
+((-2750 (((-107) $ $) NIL)) (-1919 (($ $ $) 115)) (-2095 (((-517) $) 30) (((-517)) 35)) (-2098 (($ (-517)) 44)) (-3831 (($ $ $) 45) (($ (-583 $)) 76)) (-1755 (($ $ (-583 $)) 74)) (-3265 (((-517) $) 33)) (-3301 (($ $ $) 63)) (-2541 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-3846 (((-517) $) 32)) (-3083 (($ $ $) 62)) (-3890 (($ $) 105)) (-1534 (($ $ $) 119)) (-3989 (($ (-583 $)) 52)) (-2206 (($ $ (-583 $)) 69)) (-2939 (($ (-517) (-517)) 46)) (-3959 (($ $) 116) (($ $ $) 117)) (-3652 (($ $ (-517)) 40) (($ $) 43)) (-2518 (($ $ $) 89)) (-4125 (($ $ $) 122)) (-3774 (($ $) 106)) (-2497 (($ $ $) 90)) (-3229 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2808 (((-1158) $) 8)) (-2508 (($ $) 109) (($ $ (-703)) 112)) (-2346 (($ $ $) 65)) (-1709 (($ $ $) 64)) (-1623 (($ $ (-583 $)) 100)) (-3773 (($ $ $) 104)) (-4023 (($ (-583 $)) 50)) (-3374 (($ $) 60) (($ (-583 $)) 61)) (-1804 (($ $ $) 113)) (-2323 (($ $) 107)) (-1361 (($ $ $) 118)) (-3078 (($ (-517)) 20) (($ (-1073)) 22) (($ (-1056)) 29) (($ (-199)) 24)) (-4025 (($ $ $) 93)) (-2630 (($ $) 94)) (-1903 (((-1158) (-1056)) 14)) (-2222 (($ (-1056)) 13)) (-1840 (($ (-583 (-583 $))) 48)) (-3639 (($ $ (-517)) 39) (($ $) 42)) (-3985 (((-1056) $) NIL)) (-1243 (($ $ $) 121)) (-2612 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1511 (((-107) $) 98)) (-1621 (($ $ (-583 $)) 102) (($ $ $ $) 103)) (-2756 (($ (-517)) 36)) (-1881 (((-517) $) 31) (((-517)) 34)) (-3940 (($ $ $) 37) (($ (-583 $)) 75)) (-3206 (((-1021) $) NIL)) (-2476 (($ $ $) 91)) (-1746 (($) 12)) (-1449 (($ $ (-583 $)) 99)) (-3501 (($ $) 108) (($ $ (-703)) 111)) (-2486 (($ $ $) 88)) (-3127 (($ $ (-703)) 127)) (-3517 (($ (-583 $)) 51)) (-2256 (((-787) $) 18)) (-2986 (($ $ (-517)) 38) (($ $) 41)) (-2221 (($ $) 58) (($ (-583 $)) 59)) (-3167 (($ $) 56) (($ (-583 $)) 57)) (-4148 (($ $) 114)) (-3472 (($ (-583 $)) 55)) (-1270 (($ $ $) 97)) (-1946 (($ $ $) 120)) (-4035 (($ $ $) 92)) (-2457 (($ $ $) 77)) (-2881 (($ $ $) 95) (($ $) 96)) (-1606 (($ $ $) 81)) (-1583 (($ $ $) 79)) (-1547 (((-107) $ $) 15) (($ $ $) 16)) (-1595 (($ $ $) 80)) (-1572 (($ $ $) 78)) (-1667 (($ $ $) 86)) (-1654 (($ $ $) 83) (($ $) 84)) (-1642 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-787) (-13 (-1003) (-10 -8 (-15 -2808 ((-1158) $)) (-15 -2222 ($ (-1056))) (-15 -1903 ((-1158) (-1056))) (-15 -3078 ($ (-517))) (-15 -3078 ($ (-1073))) (-15 -3078 ($ (-1056))) (-15 -3078 ($ (-199))) (-15 -1746 ($)) (-15 -2095 ((-517) $)) (-15 -1881 ((-517) $)) (-15 -2095 ((-517))) (-15 -1881 ((-517))) (-15 -3846 ((-517) $)) (-15 -3265 ((-517) $)) (-15 -2756 ($ (-517))) (-15 -2098 ($ (-517))) (-15 -2939 ($ (-517) (-517))) (-15 -3639 ($ $ (-517))) (-15 -3652 ($ $ (-517))) (-15 -2986 ($ $ (-517))) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2986 ($ $)) (-15 -3940 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3940 ($ (-583 $))) (-15 -3831 ($ (-583 $))) (-15 -1623 ($ $ (-583 $))) (-15 -1621 ($ $ (-583 $))) (-15 -1621 ($ $ $ $)) (-15 -3773 ($ $ $)) (-15 -1511 ((-107) $)) (-15 -1449 ($ $ (-583 $))) (-15 -3890 ($ $)) (-15 -1243 ($ $ $)) (-15 -4148 ($ $)) (-15 -1840 ($ (-583 (-583 $)))) (-15 -1919 ($ $ $)) (-15 -3959 ($ $)) (-15 -3959 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1534 ($ $ $)) (-15 -1946 ($ $ $)) (-15 -4125 ($ $ $)) (-15 -3127 ($ $ (-703))) (-15 -1270 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3301 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2206 ($ $ (-583 $))) (-15 -1755 ($ $ (-583 $))) (-15 -3774 ($ $)) (-15 -3501 ($ $)) (-15 -3501 ($ $ (-703))) (-15 -2508 ($ $)) (-15 -2508 ($ $ (-703))) (-15 -2323 ($ $)) (-15 -1804 ($ $ $)) (-15 -2541 ($ $)) (-15 -2541 ($ $ $)) (-15 -2541 ($ $ $ $)) (-15 -3229 ($ $)) (-15 -3229 ($ $ $)) (-15 -3229 ($ $ $ $)) (-15 -2612 ($ $)) (-15 -2612 ($ $ $)) (-15 -2612 ($ $ $ $)) (-15 -3167 ($ $)) (-15 -3167 ($ (-583 $))) (-15 -2221 ($ $)) (-15 -2221 ($ (-583 $))) (-15 -3374 ($ $)) (-15 -3374 ($ (-583 $))) (-15 -4023 ($ (-583 $))) (-15 -3517 ($ (-583 $))) (-15 -3989 ($ (-583 $))) (-15 -3472 ($ (-583 $))) (-15 -1547 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -1572 ($ $ $)) (-15 -1583 ($ $ $)) (-15 -1595 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -1654 ($ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ $)) (-15 -2486 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -2497 ($ $ $)) (-15 -2476 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2630 ($ $)) (-15 -2881 ($ $ $)) (-15 -2881 ($ $))))) (T -787))
+((-2808 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-787)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) (-1746 (*1 *1) (-5 *1 (-787))) (-2095 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2095 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-1881 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2756 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2939 (*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3652 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-2986 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) (-3639 (*1 *1 *1) (-5 *1 (-787))) (-3652 (*1 *1 *1) (-5 *1 (-787))) (-2986 (*1 *1 *1) (-5 *1 (-787))) (-3940 (*1 *1 *1 *1) (-5 *1 (-787))) (-3831 (*1 *1 *1 *1) (-5 *1 (-787))) (-3940 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3831 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1623 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1621 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1621 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3773 (*1 *1 *1 *1) (-5 *1 (-787))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3890 (*1 *1 *1) (-5 *1 (-787))) (-1243 (*1 *1 *1 *1) (-5 *1 (-787))) (-4148 (*1 *1 *1) (-5 *1 (-787))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) (-1919 (*1 *1 *1 *1) (-5 *1 (-787))) (-3959 (*1 *1 *1) (-5 *1 (-787))) (-3959 (*1 *1 *1 *1) (-5 *1 (-787))) (-1361 (*1 *1 *1 *1) (-5 *1 (-787))) (-1534 (*1 *1 *1 *1) (-5 *1 (-787))) (-1946 (*1 *1 *1 *1) (-5 *1 (-787))) (-4125 (*1 *1 *1 *1) (-5 *1 (-787))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-1270 (*1 *1 *1 *1) (-5 *1 (-787))) (-3083 (*1 *1 *1 *1) (-5 *1 (-787))) (-3301 (*1 *1 *1 *1) (-5 *1 (-787))) (-1709 (*1 *1 *1 *1) (-5 *1 (-787))) (-2346 (*1 *1 *1 *1) (-5 *1 (-787))) (-2206 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1755 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3774 (*1 *1 *1) (-5 *1 (-787))) (-3501 (*1 *1 *1) (-5 *1 (-787))) (-3501 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-2508 (*1 *1 *1) (-5 *1 (-787))) (-2508 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) (-2323 (*1 *1 *1) (-5 *1 (-787))) (-1804 (*1 *1 *1 *1) (-5 *1 (-787))) (-2541 (*1 *1 *1) (-5 *1 (-787))) (-2541 (*1 *1 *1 *1) (-5 *1 (-787))) (-2541 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3229 (*1 *1 *1) (-5 *1 (-787))) (-3229 (*1 *1 *1 *1) (-5 *1 (-787))) (-3229 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-2612 (*1 *1 *1) (-5 *1 (-787))) (-2612 (*1 *1 *1 *1) (-5 *1 (-787))) (-2612 (*1 *1 *1 *1 *1) (-5 *1 (-787))) (-3167 (*1 *1 *1) (-5 *1 (-787))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-2221 (*1 *1 *1) (-5 *1 (-787))) (-2221 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3374 (*1 *1 *1) (-5 *1 (-787))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3517 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3989 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) (-1547 (*1 *1 *1 *1) (-5 *1 (-787))) (-2457 (*1 *1 *1 *1) (-5 *1 (-787))) (-1572 (*1 *1 *1 *1) (-5 *1 (-787))) (-1583 (*1 *1 *1 *1) (-5 *1 (-787))) (-1595 (*1 *1 *1 *1) (-5 *1 (-787))) (-1606 (*1 *1 *1 *1) (-5 *1 (-787))) (-1642 (*1 *1 *1 *1) (-5 *1 (-787))) (-1654 (*1 *1 *1 *1) (-5 *1 (-787))) (-1654 (*1 *1 *1) (-5 *1 (-787))) (* (*1 *1 *1 *1) (-5 *1 (-787))) (-1667 (*1 *1 *1 *1) (-5 *1 (-787))) (** (*1 *1 *1 *1) (-5 *1 (-787))) (-2486 (*1 *1 *1 *1) (-5 *1 (-787))) (-2518 (*1 *1 *1 *1) (-5 *1 (-787))) (-2497 (*1 *1 *1 *1) (-5 *1 (-787))) (-2476 (*1 *1 *1 *1) (-5 *1 (-787))) (-4035 (*1 *1 *1 *1) (-5 *1 (-787))) (-4025 (*1 *1 *1 *1) (-5 *1 (-787))) (-2630 (*1 *1 *1) (-5 *1 (-787))) (-2881 (*1 *1 *1 *1) (-5 *1 (-787))) (-2881 (*1 *1 *1) (-5 *1 (-787))))
+(-13 (-1003) (-10 -8 (-15 -2808 ((-1158) $)) (-15 -2222 ($ (-1056))) (-15 -1903 ((-1158) (-1056))) (-15 -3078 ($ (-517))) (-15 -3078 ($ (-1073))) (-15 -3078 ($ (-1056))) (-15 -3078 ($ (-199))) (-15 -1746 ($)) (-15 -2095 ((-517) $)) (-15 -1881 ((-517) $)) (-15 -2095 ((-517))) (-15 -1881 ((-517))) (-15 -3846 ((-517) $)) (-15 -3265 ((-517) $)) (-15 -2756 ($ (-517))) (-15 -2098 ($ (-517))) (-15 -2939 ($ (-517) (-517))) (-15 -3639 ($ $ (-517))) (-15 -3652 ($ $ (-517))) (-15 -2986 ($ $ (-517))) (-15 -3639 ($ $)) (-15 -3652 ($ $)) (-15 -2986 ($ $)) (-15 -3940 ($ $ $)) (-15 -3831 ($ $ $)) (-15 -3940 ($ (-583 $))) (-15 -3831 ($ (-583 $))) (-15 -1623 ($ $ (-583 $))) (-15 -1621 ($ $ (-583 $))) (-15 -1621 ($ $ $ $)) (-15 -3773 ($ $ $)) (-15 -1511 ((-107) $)) (-15 -1449 ($ $ (-583 $))) (-15 -3890 ($ $)) (-15 -1243 ($ $ $)) (-15 -4148 ($ $)) (-15 -1840 ($ (-583 (-583 $)))) (-15 -1919 ($ $ $)) (-15 -3959 ($ $)) (-15 -3959 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -1534 ($ $ $)) (-15 -1946 ($ $ $)) (-15 -4125 ($ $ $)) (-15 -3127 ($ $ (-703))) (-15 -1270 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3301 ($ $ $)) (-15 -1709 ($ $ $)) (-15 -2346 ($ $ $)) (-15 -2206 ($ $ (-583 $))) (-15 -1755 ($ $ (-583 $))) (-15 -3774 ($ $)) (-15 -3501 ($ $)) (-15 -3501 ($ $ (-703))) (-15 -2508 ($ $)) (-15 -2508 ($ $ (-703))) (-15 -2323 ($ $)) (-15 -1804 ($ $ $)) (-15 -2541 ($ $)) (-15 -2541 ($ $ $)) (-15 -2541 ($ $ $ $)) (-15 -3229 ($ $)) (-15 -3229 ($ $ $)) (-15 -3229 ($ $ $ $)) (-15 -2612 ($ $)) (-15 -2612 ($ $ $)) (-15 -2612 ($ $ $ $)) (-15 -3167 ($ $)) (-15 -3167 ($ (-583 $))) (-15 -2221 ($ $)) (-15 -2221 ($ (-583 $))) (-15 -3374 ($ $)) (-15 -3374 ($ (-583 $))) (-15 -4023 ($ (-583 $))) (-15 -3517 ($ (-583 $))) (-15 -3989 ($ (-583 $))) (-15 -3472 ($ (-583 $))) (-15 -1547 ($ $ $)) (-15 -2457 ($ $ $)) (-15 -1572 ($ $ $)) (-15 -1583 ($ $ $)) (-15 -1595 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1642 ($ $ $)) (-15 -1654 ($ $ $)) (-15 -1654 ($ $)) (-15 * ($ $ $)) (-15 -1667 ($ $ $)) (-15 ** ($ $ $)) (-15 -2486 ($ $ $)) (-15 -2518 ($ $ $)) (-15 -2497 ($ $ $)) (-15 -2476 ($ $ $)) (-15 -4035 ($ $ $)) (-15 -4025 ($ $ $)) (-15 -2630 ($ $)) (-15 -2881 ($ $ $)) (-15 -2881 ($ $))))
+((-1462 (((-1158) (-583 (-51))) 24)) (-2088 (((-1158) (-1056) (-787)) 14) (((-1158) (-787)) 9) (((-1158) (-1056)) 11)))
+(((-788) (-10 -7 (-15 -2088 ((-1158) (-1056))) (-15 -2088 ((-1158) (-787))) (-15 -2088 ((-1158) (-1056) (-787))) (-15 -1462 ((-1158) (-583 (-51)))))) (T -788))
+((-1462 (*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1158)) (-5 *1 (-788)))) (-2088 (*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) (-2088 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-788)))))
+(-10 -7 (-15 -2088 ((-1158) (-1056))) (-15 -2088 ((-1158) (-787))) (-15 -2088 ((-1158) (-1056) (-787))) (-15 -1462 ((-1158) (-583 (-51)))))
+((-2750 (((-107) $ $) NIL)) (-1638 (((-3 $ "failed") (-1073)) 32)) (-1611 (((-703)) 30)) (-3209 (($) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1549 (((-843) $) 28)) (-3985 (((-1056) $) 38)) (-3448 (($ (-843)) 27)) (-3206 (((-1021) $) NIL)) (-3645 (((-1073) $) 13) (((-493) $) 19) (((-814 (-349)) $) 25) (((-814 (-517)) $) 22)) (-2256 (((-787) $) 16)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 35)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 34)))
+(((-789 |#1|) (-13 (-773) (-558 (-1073)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -1638 ((-3 $ "failed") (-1073))))) (-583 (-1073))) (T -789))
+((-1638 (*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))))
+(-13 (-773) (-558 (-1073)) (-558 (-493)) (-558 (-814 (-349))) (-558 (-814 (-517))) (-10 -8 (-15 -1638 ((-3 $ "failed") (-1073)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (((-874 |#1|) $) NIL) (($ (-874 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-156)))) (-2961 (((-703)) NIL)) (-2273 (((-1158) (-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-790 |#1| |#2| |#3| |#4|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 ((-874 |#1|) $)) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2273 ((-1158) (-703))))) (-961) (-583 (-1073)) (-583 (-703)) (-703)) (T -790))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) (-1667 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 *3)) (-14 *7 *3))))
+(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 ((-874 |#1|) $)) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2273 ((-1158) (-703)))))
+((-3418 (((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|) 31)) (-1883 (((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|) 24)))
+(((-791 |#1| |#2| |#3|) (-10 -7 (-15 -1883 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3418 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|))) (-333) (-1145 |#1|) (-1130 |#1|)) (T -791))
+((-3418 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))) (-1883 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))))
+(-10 -7 (-15 -1883 ((-3 (-377 |#3|) "failed") (-703) (-703) |#2| |#2|)) (-15 -3418 ((-3 (-157 |#3|) "failed") (-703) (-703) |#2| |#2|)))
+((-1883 (((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|)) 28) (((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) 26)))
+(((-792 |#1| |#2| |#3|) (-10 -7 (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|)))) (-333) (-1073) |#1|) (T -792))
+((-1883 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) (-1883 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
+(-10 -7 (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (-15 -1883 ((-3 (-377 (-1127 |#2| |#1|)) "failed") (-703) (-703) (-1146 |#1| |#2| |#3|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $ (-517)) 62)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-3959 (($ (-1069 (-517)) (-517)) 61)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-3531 (($ $) 64)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3972 (((-703) $) 69)) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1734 (((-517)) 66)) (-3340 (((-517) $) 65)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1672 (($ $ (-517)) 68)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-2930 (((-1054 (-517)) $) 70)) (-1545 (($ $) 67)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-3383 (((-517) $ (-517)) 63)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-793 |#1|) (-1184) (-517)) (T -793))
+((-2930 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1054 (-517))))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) (-1672 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-1545 (*1 *1 *1) (-4 *1 (-793 *2))) (-1734 (*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3340 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3531 (*1 *1 *1) (-4 *1 (-793 *2))) (-3383 (*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
+(-13 (-278) (-134) (-10 -8 (-15 -2930 ((-1054 (-517)) $)) (-15 -3972 ((-703) $)) (-15 -1672 ($ $ (-517))) (-15 -1545 ($ $)) (-15 -1734 ((-517))) (-15 -3340 ((-517) $)) (-15 -3531 ($ $)) (-15 -3383 ((-517) $ (-517))) (-15 -3766 ($ $ (-517))) (-15 -3959 ($ (-1069 (-517)) (-517)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-278) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $ (-517)) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3959 (($ (-1069 (-517)) (-517)) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3531 (($ $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3972 (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1734 (((-517)) NIL)) (-3340 (((-517) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1672 (($ $ (-517)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2930 (((-1054 (-517)) $) NIL)) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-3383 (((-517) $ (-517)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-794 |#1|) (-793 |#1|) (-517)) (T -794))
+NIL
+(-793 |#1|)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-794 |#1|) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-794 |#1|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| (-794 |#1|) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-3189 (((-794 |#1|) $) NIL) (((-1073) $) NIL (|has| (-794 |#1|) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-794 |#1|) (-952 (-517)))) (((-517) $) NIL (|has| (-794 |#1|) (-952 (-517))))) (-2869 (($ $) NIL) (($ (-517) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-794 |#1|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-794 |#1|))) (|:| |vec| (-1153 (-794 |#1|)))) (-623 $) (-1153 $)) NIL) (((-623 (-794 |#1|)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-794 |#1|) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-794 |#1|) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-794 |#1|) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-794 |#1|) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| (-794 |#1|) (-1049)))) (-2475 (((-107) $) NIL (|has| (-794 |#1|) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-3099 (($ $ $) NIL (|has| (-794 |#1|) (-779)))) (-1893 (($ (-1 (-794 |#1|) (-794 |#1|)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-794 |#1|) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-794 |#1|) (-278)))) (-2597 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-794 |#1|) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-794 |#1|)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-794 |#1|) (-794 |#1|)) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-265 (-794 |#1|))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-265 (-794 |#1|)))) NIL (|has| (-794 |#1|) (-280 (-794 |#1|)))) (($ $ (-583 (-1073)) (-583 (-794 |#1|))) NIL (|has| (-794 |#1|) (-478 (-1073) (-794 |#1|)))) (($ $ (-1073) (-794 |#1|)) NIL (|has| (-794 |#1|) (-478 (-1073) (-794 |#1|))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-794 |#1|)) NIL (|has| (-794 |#1|) (-258 (-794 |#1|) (-794 |#1|))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-794 |#1|) $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-794 |#1|) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-794 |#1|) (-558 (-493)))) (((-349) $) NIL (|has| (-794 |#1|) (-937))) (((-199) $) NIL (|has| (-794 |#1|) (-937)))) (-2005 (((-157 (-377 (-517))) $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL) (($ (-794 |#1|)) NIL) (($ (-1073)) NIL (|has| (-794 |#1|) (-952 (-1073))))) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-794 |#1|) (-831))) (|has| (-794 |#1|) (-132))))) (-2961 (((-703)) NIL)) (-1949 (((-794 |#1|) $) NIL (|has| (-794 |#1|) (-502)))) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ (-517)) NIL)) (-3710 (($ $) NIL (|has| (-794 |#1|) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $) NIL (|has| (-794 |#1|) (-207))) (($ $ (-703)) NIL (|has| (-794 |#1|) (-207))) (($ $ (-1073)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-794 |#1|) (-822 (-1073)))) (($ $ (-1 (-794 |#1|) (-794 |#1|)) (-703)) NIL) (($ $ (-1 (-794 |#1|) (-794 |#1|))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-794 |#1|) (-779)))) (-1667 (($ $ $) NIL) (($ (-794 |#1|) (-794 |#1|)) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-794 |#1|) $) NIL) (($ $ (-794 |#1|)) NIL)))
+(((-795 |#1|) (-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) (-517)) (T -795))
+((-3383 (*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) (-2869 (*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))))
+(-13 (-909 (-794 |#1|)) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 ((|#2| $) NIL (|has| |#2| (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| |#2| (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (|has| |#2| (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517))))) (-3189 ((|#2| $) NIL) (((-1073) $) NIL (|has| |#2| (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-517)))) (((-517) $) NIL (|has| |#2| (-952 (-517))))) (-2869 (($ $) 31) (($ (-517) $) 32)) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 53)) (-3209 (($) NIL (|has| |#2| (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) NIL (|has| |#2| (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| |#2| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| |#2| (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 ((|#2| $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#2| (-1049)))) (-2475 (((-107) $) NIL (|has| |#2| (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 49)) (-2836 (($) NIL (|has| |#2| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| |#2| (-278)))) (-2597 ((|#2| $) NIL (|has| |#2| (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 |#2|) (-583 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-280 |#2|))) (($ $ (-265 |#2|)) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-265 |#2|))) NIL (|has| |#2| (-280 |#2|))) (($ $ (-583 (-1073)) (-583 |#2|)) NIL (|has| |#2| (-478 (-1073) |#2|))) (($ $ (-1073) |#2|) NIL (|has| |#2| (-478 (-1073) |#2|)))) (-3146 (((-703) $) NIL)) (-1449 (($ $ |#2|) NIL (|has| |#2| (-258 |#2| |#2|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2971 (($ $) NIL)) (-1800 ((|#2| $) NIL)) (-3645 (((-814 (-517)) $) NIL (|has| |#2| (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| |#2| (-558 (-814 (-349))))) (((-493) $) NIL (|has| |#2| (-558 (-493)))) (((-349) $) NIL (|has| |#2| (-937))) (((-199) $) NIL (|has| |#2| (-937)))) (-2005 (((-157 (-377 (-517))) $) 68)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-2256 (((-787) $) 85) (($ (-517)) 19) (($ $) NIL) (($ (-377 (-517))) 24) (($ |#2|) 18) (($ (-1073)) NIL (|has| |#2| (-952 (-1073))))) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-1949 ((|#2| $) NIL (|has| |#2| (-502)))) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ (-517)) 60)) (-3710 (($ $) NIL (|has| |#2| (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 14 T CONST)) (-2409 (($) 16 T CONST)) (-2731 (($ $) NIL (|has| |#2| (-207))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) 35)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ $) 23) (($ |#2| |#2|) 54)) (-1654 (($ $) 39) (($ $ $) 41)) (-1642 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) 50)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 42) (($ $ $) 44) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-796 |#1| |#2|) (-13 (-909 |#2|) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)))) (-517) (-793 |#1|)) (T -796))
+((-3383 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) (-2005 (*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) (-2869 (*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
+(-13 (-909 |#2|) (-10 -8 (-15 -3383 ((-377 (-517)) $ (-517))) (-15 -2005 ((-157 (-377 (-517))) $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $))))
+((-2750 (((-107) $ $) NIL)) (-2239 (((-517) $) 15)) (-2280 (($ (-142)) 11)) (-3725 (($ (-142)) 12)) (-3985 (((-1056) $) NIL)) (-3512 (((-142) $) 13)) (-3206 (((-1021) $) NIL)) (-2806 (($ (-142)) 9)) (-2140 (($ (-142)) 8)) (-2256 (((-787) $) 23) (($ (-142)) 16)) (-2012 (($ (-142)) 10)) (-1547 (((-107) $ $) NIL)))
+(((-797) (-13 (-1003) (-10 -8 (-15 -2140 ($ (-142))) (-15 -2806 ($ (-142))) (-15 -2012 ($ (-142))) (-15 -2280 ($ (-142))) (-15 -3725 ($ (-142))) (-15 -3512 ((-142) $)) (-15 -2239 ((-517) $)) (-15 -2256 ($ (-142)))))) (T -797))
+((-2140 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2806 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2012 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-3512 (*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(-13 (-1003) (-10 -8 (-15 -2140 ($ (-142))) (-15 -2806 ($ (-142))) (-15 -2012 ($ (-142))) (-15 -2280 ($ (-142))) (-15 -3725 ($ (-142))) (-15 -3512 ((-142) $)) (-15 -2239 ((-517) $)) (-15 -2256 ($ (-142)))))
+((-2256 (((-286 (-517)) (-377 (-874 (-47)))) 21) (((-286 (-517)) (-874 (-47))) 16)))
+(((-798) (-10 -7 (-15 -2256 ((-286 (-517)) (-874 (-47)))) (-15 -2256 ((-286 (-517)) (-377 (-874 (-47))))))) (T -798))
+((-2256 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))))
+(-10 -7 (-15 -2256 ((-286 (-517)) (-874 (-47)))) (-15 -2256 ((-286 (-517)) (-377 (-874 (-47))))))
+((-1893 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 14)))
+(((-799 |#1| |#2|) (-10 -7 (-15 -1893 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1108) (-1108)) (T -799))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))))
+(-10 -7 (-15 -1893 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|))))
+((-2689 (($ |#1| |#1|) 8)) (-1526 ((|#1| $ (-703)) 10)))
+(((-800 |#1|) (-10 -8 (-15 -2689 ($ |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) (-1108)) (T -800))
+((-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1108)))) (-2689 (*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1108)))))
+(-10 -8 (-15 -2689 ($ |#1| |#1|)) (-15 -1526 (|#1| $ (-703))))
+((-1893 (((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)) 14)))
+(((-801 |#1| |#2|) (-10 -7 (-15 -1893 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|)))) (-1108) (-1108)) (T -801))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))))
+(-10 -7 (-15 -1893 ((-802 |#2|) (-1 |#2| |#1|) (-802 |#1|))))
+((-2689 (($ |#1| |#1| |#1|) 8)) (-1526 ((|#1| $ (-703)) 10)))
+(((-802 |#1|) (-10 -8 (-15 -2689 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) (-1108)) (T -802))
+((-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1108)))) (-2689 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1108)))))
+(-10 -8 (-15 -2689 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703))))
+((-1893 (((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)) 14)))
+(((-803 |#1| |#2|) (-10 -7 (-15 -1893 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|)))) (-1108) (-1108)) (T -803))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))))
+(-10 -7 (-15 -1893 ((-804 |#2|) (-1 |#2| |#1|) (-804 |#1|))))
+((-1860 (($ |#1| |#1| |#1|) 8)) (-1526 ((|#1| $ (-703)) 10)))
+(((-804 |#1|) (-10 -8 (-15 -1860 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703)))) (-1108)) (T -804))
+((-1526 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1108)))) (-1860 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1108)))))
+(-10 -8 (-15 -1860 ($ |#1| |#1| |#1|)) (-15 -1526 (|#1| $ (-703))))
+((-2816 (((-1054 (-583 (-517))) (-583 (-517)) (-1054 (-583 (-517)))) 30)) (-1751 (((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517))) 26)) (-1938 (((-1054 (-583 (-517))) (-583 (-517))) 39) (((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517))) 38)) (-1500 (((-1054 (-583 (-517))) (-517)) 40)) (-3587 (((-1054 (-583 (-517))) (-517) (-517)) 22) (((-1054 (-583 (-517))) (-517)) 16) (((-1054 (-583 (-517))) (-517) (-517) (-517)) 12)) (-1622 (((-1054 (-583 (-517))) (-1054 (-583 (-517)))) 24)) (-1487 (((-583 (-517)) (-583 (-517))) 23)))
+(((-805) (-10 -7 (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517))) (-15 -1487 ((-583 (-517)) (-583 (-517)))) (-15 -1622 ((-1054 (-583 (-517))) (-1054 (-583 (-517))))) (-15 -1751 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -2816 ((-1054 (-583 (-517))) (-583 (-517)) (-1054 (-583 (-517))))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)))) (-15 -1500 ((-1054 (-583 (-517))) (-517))))) (T -805))
+((-1500 (*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-1938 (*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-1938 (*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-2816 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805)))) (-1751 (*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) (-1622 (*1 *2 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-3587 (*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) (-3587 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
+(-10 -7 (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517))) (-15 -3587 ((-1054 (-583 (-517))) (-517) (-517))) (-15 -1487 ((-583 (-517)) (-583 (-517)))) (-15 -1622 ((-1054 (-583 (-517))) (-1054 (-583 (-517))))) (-15 -1751 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -2816 ((-1054 (-583 (-517))) (-583 (-517)) (-1054 (-583 (-517))))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)) (-583 (-517)))) (-15 -1938 ((-1054 (-583 (-517))) (-583 (-517)))) (-15 -1500 ((-1054 (-583 (-517))) (-517))))
+((-3645 (((-814 (-349)) $) 9 (|has| |#1| (-558 (-814 (-349))))) (((-814 (-517)) $) 8 (|has| |#1| (-558 (-814 (-517)))))))
+(((-806 |#1|) (-1184) (-1108)) (T -806))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-558 (-814 (-517)))) (-6 (-558 (-814 (-517)))) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-349)))) (-6 (-558 (-814 (-349)))) |noBranch|)))
+(((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))))
+((-2750 (((-107) $ $) NIL)) (-3462 (($) 14)) (-3441 (($ (-811 |#1| |#2|) (-811 |#1| |#3|)) 27)) (-2336 (((-811 |#1| |#3|) $) 16)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2945 (((-107) $) 22)) (-3713 (($) 19)) (-2256 (((-787) $) 30)) (-3735 (((-811 |#1| |#2|) $) 15)) (-1547 (((-107) $ $) 25)))
+(((-807 |#1| |#2| |#3|) (-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -3441 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3735 ((-811 |#1| |#2|) $)) (-15 -2336 ((-811 |#1| |#3|) $)))) (-1003) (-1003) (-603 |#2|)) (T -807))
+((-2945 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-3713 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3462 (*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) (-3441 (*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6)))) (-3735 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) (-2336 (*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
+(-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -3441 ($ (-811 |#1| |#2|) (-811 |#1| |#3|))) (-15 -3735 ((-811 |#1| |#2|) $)) (-15 -2336 ((-811 |#1| |#3|) $))))
+((-2750 (((-107) $ $) 7)) (-4057 (((-811 |#1| $) $ (-814 |#1|) (-811 |#1| $)) 13)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
+(((-808 |#1|) (-1184) (-1003)) (T -808))
+((-4057 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -4057 ((-811 |t#1| $) $ (-814 |t#1|) (-811 |t#1| $)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-1609 (((-107) (-583 |#2|) |#3|) 22) (((-107) |#2| |#3|) 17)) (-1571 (((-811 |#1| |#2|) |#2| |#3|) 42 (-12 (-2630 (|has| |#2| (-952 (-1073)))) (-2630 (|has| |#2| (-961))))) (((-583 (-265 (-874 |#2|))) |#2| |#3|) 41 (-12 (|has| |#2| (-961)) (-2630 (|has| |#2| (-952 (-1073)))))) (((-583 (-265 |#2|)) |#2| |#3|) 34 (|has| |#2| (-952 (-1073)))) (((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|) 20)))
+(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -1609 ((-107) |#2| |#3|)) (-15 -1609 ((-107) (-583 |#2|) |#3|)) (-15 -1571 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1073))) (-15 -1571 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -1571 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -1571 ((-811 |#1| |#2|) |#2| |#3|))))) (-1003) (-808 |#1|) (-558 (-814 |#1|))) (T -809))
+((-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2630 (-4 *3 (-952 (-1073)))) (-2630 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2630 (-4 *3 (-952 (-1073)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1073))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) (-1571 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) (-1609 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5))))) (-1609 (*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))))
+(-10 -7 (-15 -1609 ((-107) |#2| |#3|)) (-15 -1609 ((-107) (-583 |#2|) |#3|)) (-15 -1571 ((-807 |#1| |#2| (-583 |#2|)) (-583 |#2|) |#3|)) (IF (|has| |#2| (-952 (-1073))) (-15 -1571 ((-583 (-265 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-961)) (-15 -1571 ((-583 (-265 (-874 |#2|))) |#2| |#3|)) (-15 -1571 ((-811 |#1| |#2|) |#2| |#3|)))))
+((-1893 (((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)) 21)))
+(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|)))) (-1003) (-1003) (-1003)) (T -810))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7)))))
+(-10 -7 (-15 -1893 ((-811 |#1| |#3|) (-1 |#3| |#2|) (-811 |#1| |#2|))))
+((-2750 (((-107) $ $) NIL)) (-1413 (($ $ $) 37)) (-2843 (((-3 (-107) "failed") $ (-814 |#1|)) 34)) (-3462 (($) 11)) (-3985 (((-1056) $) NIL)) (-1914 (($ (-814 |#1|) |#2| $) 20)) (-3206 (((-1021) $) NIL)) (-2764 (((-3 |#2| "failed") (-814 |#1|) $) 48)) (-2945 (((-107) $) 14)) (-3713 (($) 12)) (-3814 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))) $) 25)) (-2276 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|)))) 23)) (-2256 (((-787) $) 42)) (-2246 (($ (-814 |#1|) |#2| $ |#2|) 46)) (-1598 (($ (-814 |#1|) |#2| $) 45)) (-1547 (((-107) $ $) 39)))
+(((-811 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -1413 ($ $ $)) (-15 -2764 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -1598 ($ (-814 |#1|) |#2| $)) (-15 -1914 ($ (-814 |#1|) |#2| $)) (-15 -2246 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -3814 ((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))))) (-15 -2843 ((-3 (-107) "failed") $ (-814 |#1|))))) (-1003) (-1003)) (T -811))
+((-2945 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3713 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3462 (*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-1413 (*1 *1 *1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-2764 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2)))) (-1598 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-1914 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-2246 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) (-2843 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -2945 ((-107) $)) (-15 -3713 ($)) (-15 -3462 ($)) (-15 -1413 ($ $ $)) (-15 -2764 ((-3 |#2| "failed") (-814 |#1|) $)) (-15 -1598 ($ (-814 |#1|) |#2| $)) (-15 -1914 ($ (-814 |#1|) |#2| $)) (-15 -2246 ($ (-814 |#1|) |#2| $ |#2|)) (-15 -3814 ((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))) $)) (-15 -2276 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 |#2|))))) (-15 -2843 ((-3 (-107) "failed") $ (-814 |#1|)))))
+((-3820 (((-814 |#1|) (-814 |#1|) (-583 (-1073)) (-1 (-107) (-583 |#2|))) 30) (((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|))) 42) (((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|)) 33)) (-2843 (((-107) (-583 |#2|) (-814 |#1|)) 39) (((-107) |#2| (-814 |#1|)) 35)) (-2286 (((-1 (-107) |#2|) (-814 |#1|)) 14)) (-2935 (((-583 |#2|) (-814 |#1|)) 23)) (-1374 (((-814 |#1|) (-814 |#1|) |#2|) 19)))
+(((-812 |#1| |#2|) (-10 -7 (-15 -3820 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1073)) (-1 (-107) (-583 |#2|)))) (-15 -2286 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -2843 ((-107) |#2| (-814 |#1|))) (-15 -2843 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -1374 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -2935 ((-583 |#2|) (-814 |#1|)))) (-1003) (-1108)) (T -812))
+((-2935 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))) (-1374 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1108)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1108)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))) (-3820 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1073))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-812 *5 *6)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))))
+(-10 -7 (-15 -3820 ((-814 |#1|) (-814 |#1|) (-1 (-107) |#2|))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1 (-107) |#2|)))) (-15 -3820 ((-814 |#1|) (-814 |#1|) (-583 (-1073)) (-1 (-107) (-583 |#2|)))) (-15 -2286 ((-1 (-107) |#2|) (-814 |#1|))) (-15 -2843 ((-107) |#2| (-814 |#1|))) (-15 -2843 ((-107) (-583 |#2|) (-814 |#1|))) (-15 -1374 ((-814 |#1|) (-814 |#1|) |#2|)) (-15 -2935 ((-583 |#2|) (-814 |#1|))))
+((-1893 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 17)))
+(((-813 |#1| |#2|) (-10 -7 (-15 -1893 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1003) (-1003)) (T -813))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))))
+(-10 -7 (-15 -1893 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))))
+((-2750 (((-107) $ $) NIL)) (-1469 (($ $ (-583 (-51))) 62)) (-1364 (((-583 $) $) 116)) (-3187 (((-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51))) $) 22)) (-2710 (((-107) $) 29)) (-1752 (($ $ (-583 (-1073)) (-51)) 24)) (-2664 (($ $ (-583 (-51))) 61)) (-1772 (((-3 |#1| "failed") $) 59) (((-3 (-1073) "failed") $) 138)) (-3189 ((|#1| $) 55) (((-1073) $) NIL)) (-2269 (($ $) 106)) (-2554 (((-107) $) 45)) (-3218 (((-583 (-51)) $) 43)) (-1512 (($ (-1073) (-107) (-107) (-107)) 63)) (-2288 (((-3 (-583 $) "failed") (-583 $)) 70)) (-1685 (((-107) $) 48)) (-3095 (((-107) $) 47)) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) 34)) (-2966 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 41)) (-1735 (((-3 (-2 (|:| |val| $) (|:| -2077 $)) "failed") $) 81)) (-3401 (((-3 (-583 $) "failed") $) 31)) (-2800 (((-3 (-583 $) "failed") $ (-109)) 105) (((-3 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 $))) "failed") $) 93)) (-1624 (((-3 (-583 $) "failed") $) 35)) (-3174 (((-3 (-2 (|:| |val| $) (|:| -2077 (-703))) "failed") $) 38)) (-2580 (((-107) $) 28)) (-3206 (((-1021) $) NIL)) (-2958 (((-107) $) 20)) (-2608 (((-107) $) 44)) (-2057 (((-583 (-51)) $) 109)) (-3519 (((-107) $) 46)) (-1449 (($ (-109) (-583 $)) 90)) (-1694 (((-703) $) 27)) (-2433 (($ $) 60)) (-3645 (($ (-583 $)) 57)) (-3819 (((-107) $) 25)) (-2256 (((-787) $) 50) (($ |#1|) 18) (($ (-1073)) 64)) (-1374 (($ $ (-51)) 108)) (-2396 (($) 89 T CONST)) (-2409 (($) 71 T CONST)) (-1547 (((-107) $ $) 77)) (-1667 (($ $ $) 98)) (-1642 (($ $ $) 102)) (** (($ $ (-703)) 97) (($ $ $) 51)) (* (($ $ $) 103)))
+(((-814 |#1|) (-13 (-1003) (-952 |#1|) (-952 (-1073)) (-10 -8 (-15 0 ($) -1619) (-15 1 ($) -1619) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -2800 ((-3 (-583 $) "failed") $ (-109))) (-15 -2800 ((-3 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |val| $) (|:| -2077 (-703))) "failed") $)) (-15 -2966 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1624 ((-3 (-583 $) "failed") $)) (-15 -1735 ((-3 (-2 (|:| |val| $) (|:| -2077 $)) "failed") $)) (-15 -1449 ($ (-109) (-583 $))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1694 ((-703) $)) (-15 -3645 ($ (-583 $))) (-15 -2433 ($ $)) (-15 -2580 ((-107) $)) (-15 -2554 ((-107) $)) (-15 -2710 ((-107) $)) (-15 -3819 ((-107) $)) (-15 -3519 ((-107) $)) (-15 -3095 ((-107) $)) (-15 -1685 ((-107) $)) (-15 -2608 ((-107) $)) (-15 -3218 ((-583 (-51)) $)) (-15 -2664 ($ $ (-583 (-51)))) (-15 -1469 ($ $ (-583 (-51)))) (-15 -1512 ($ (-1073) (-107) (-107) (-107))) (-15 -1752 ($ $ (-583 (-1073)) (-51))) (-15 -3187 ((-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51))) $)) (-15 -2958 ((-107) $)) (-15 -2269 ($ $)) (-15 -1374 ($ $ (-51))) (-15 -2057 ((-583 (-51)) $)) (-15 -1364 ((-583 $) $)) (-15 -2288 ((-3 (-583 $) "failed") (-583 $))))) (-1003)) (T -814))
+((-2396 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2409 (*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-3401 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3703 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2800 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-2800 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3174 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2966 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1735 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1449 (*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1642 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1667 (*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1694 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2433 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3519 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-3218 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2664 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1469 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1512 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-1752 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2269 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) (-1374 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) (-2288 (*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(-13 (-1003) (-952 |#1|) (-952 (-1073)) (-10 -8 (-15 (-2396) ($) -1619) (-15 (-2409) ($) -1619) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -2800 ((-3 (-583 $) "failed") $ (-109))) (-15 -2800 ((-3 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 $))) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |val| $) (|:| -2077 (-703))) "failed") $)) (-15 -2966 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1624 ((-3 (-583 $) "failed") $)) (-15 -1735 ((-3 (-2 (|:| |val| $) (|:| -2077 $)) "failed") $)) (-15 -1449 ($ (-109) (-583 $))) (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703))) (-15 ** ($ $ $)) (-15 -1667 ($ $ $)) (-15 -1694 ((-703) $)) (-15 -3645 ($ (-583 $))) (-15 -2433 ($ $)) (-15 -2580 ((-107) $)) (-15 -2554 ((-107) $)) (-15 -2710 ((-107) $)) (-15 -3819 ((-107) $)) (-15 -3519 ((-107) $)) (-15 -3095 ((-107) $)) (-15 -1685 ((-107) $)) (-15 -2608 ((-107) $)) (-15 -3218 ((-583 (-51)) $)) (-15 -2664 ($ $ (-583 (-51)))) (-15 -1469 ($ $ (-583 (-51)))) (-15 -1512 ($ (-1073) (-107) (-107) (-107))) (-15 -1752 ($ $ (-583 (-1073)) (-51))) (-15 -3187 ((-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51))) $)) (-15 -2958 ((-107) $)) (-15 -2269 ($ $)) (-15 -1374 ($ $ (-51))) (-15 -2057 ((-583 (-51)) $)) (-15 -1364 ((-583 $) $)) (-15 -2288 ((-3 (-583 $) "failed") (-583 $)))))
+((-2750 (((-107) $ $) NIL)) (-3463 (((-583 |#1|) $) 16)) (-3153 (((-107) $) 38)) (-1772 (((-3 (-608 |#1|) "failed") $) 41)) (-3189 (((-608 |#1|) $) 39)) (-1660 (($ $) 18)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2195 (((-703) $) 45)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-608 |#1|) $) 17)) (-2256 (((-787) $) 37) (($ (-608 |#1|)) 21) (((-751 |#1|) $) 27) (($ |#1|) 20)) (-2409 (($) 8 T CONST)) (-2332 (((-583 (-608 |#1|)) $) 23)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 11)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 48)))
+(((-815 |#1|) (-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 1 ($) -1619) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ($ |#1|)) (-15 -1647 ((-608 |#1|) $)) (-15 -2195 ((-703) $)) (-15 -2332 ((-583 (-608 |#1|)) $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3463 ((-583 |#1|) $)))) (-779)) (T -815))
+((-2409 (*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2256 (*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-2332 (*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
+(-13 (-779) (-952 (-608 |#1|)) (-10 -8 (-15 (-2409) ($) -1619) (-15 -2256 ((-751 |#1|) $)) (-15 -2256 ($ |#1|)) (-15 -1647 ((-608 |#1|) $)) (-15 -2195 ((-703) $)) (-15 -2332 ((-583 (-608 |#1|)) $)) (-15 -1660 ($ $)) (-15 -3153 ((-107) $)) (-15 -3463 ((-583 |#1|) $))))
+((-1775 ((|#1| |#1| |#1|) 19)))
+(((-816 |#1| |#2|) (-10 -7 (-15 -1775 (|#1| |#1| |#1|))) (-1130 |#2|) (-961)) (T -816))
+((-1775 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1130 *3)))))
+(-10 -7 (-15 -1775 (|#1| |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-1308 (((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 14)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2238 (((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 13)) (-1547 (((-107) $ $) 6)))
+(((-817) (-1184)) (T -817))
+((-1308 (*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) (-2238 (*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-950)))))
+(-13 (-1003) (-10 -7 (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| |explanations| (-1056))) (-973) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))) (-15 -2238 ((-950) (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-3566 ((|#1| |#1| (-703)) 23)) (-1304 (((-3 |#1| "failed") |#1| |#1|) 22)) (-2132 (((-3 (-2 (|:| -3639 |#1|) (|:| -3652 |#1|)) "failed") |#1| (-703) (-703)) 26) (((-583 |#1|) |#1|) 28)))
+(((-818 |#1| |#2|) (-10 -7 (-15 -2132 ((-583 |#1|) |#1|)) (-15 -2132 ((-3 (-2 (|:| -3639 |#1|) (|:| -3652 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1304 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3566 (|#1| |#1| (-703)))) (-1130 |#2|) (-333)) (T -818))
+((-3566 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1130 *4)))) (-1304 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1130 *3)))) (-2132 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1130 *5)))) (-2132 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -2132 ((-583 |#1|) |#1|)) (-15 -2132 ((-3 (-2 (|:| -3639 |#1|) (|:| -3652 |#1|)) "failed") |#1| (-703) (-703))) (-15 -1304 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3566 (|#1| |#1| (-703))))
+((-1674 (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056)) 92) (((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056) (-199)) 87) (((-950) (-820) (-973)) 76) (((-950) (-820)) 77)) (-1308 (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820) (-973)) 50) (((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820)) 52)))
+(((-819) (-10 -7 (-15 -1674 ((-950) (-820))) (-15 -1674 ((-950) (-820) (-973))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056) (-199))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820) (-973))))) (T -819))
+((-1308 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))) (-1308 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))) (-1674 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1674 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819)))))
+(-10 -7 (-15 -1674 ((-950) (-820))) (-15 -1674 ((-950) (-820) (-973))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056) (-199))) (-15 -1674 ((-950) (-349) (-349) (-349) (-349) (-703) (-703) (-583 (-286 (-349))) (-583 (-583 (-286 (-349)))) (-1056))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820))) (-15 -1308 ((-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056)))) (-820) (-973))))
+((-2750 (((-107) $ $) NIL)) (-3189 (((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))) $) 10)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 12) (($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) 9)) (-1547 (((-107) $ $) NIL)))
+(((-820) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))) $))))) (T -820))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ($ (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))))) (-15 -2256 ((-787) $)) (-15 -3189 ((-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199))) $))))
+((-3127 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) 10) (($ $ |#2| (-703)) 12) (($ $ (-583 |#2|) (-583 (-703))) 15)) (-2731 (($ $ |#2|) 16) (($ $ (-583 |#2|)) 18) (($ $ |#2| (-703)) 19) (($ $ (-583 |#2|) (-583 (-703))) 21)))
+(((-821 |#1| |#2|) (-10 -8 (-15 -2731 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2731 (|#1| |#1| |#2| (-703))) (-15 -2731 (|#1| |#1| (-583 |#2|))) (-15 -2731 (|#1| |#1| |#2|)) (-15 -3127 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#2| (-703))) (-15 -3127 (|#1| |#1| (-583 |#2|))) (-15 -3127 (|#1| |#1| |#2|))) (-822 |#2|) (-1003)) (T -821))
+NIL
+(-10 -8 (-15 -2731 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -2731 (|#1| |#1| |#2| (-703))) (-15 -2731 (|#1| |#1| (-583 |#2|))) (-15 -2731 (|#1| |#1| |#2|)) (-15 -3127 (|#1| |#1| (-583 |#2|) (-583 (-703)))) (-15 -3127 (|#1| |#1| |#2| (-703))) (-15 -3127 (|#1| |#1| (-583 |#2|))) (-15 -3127 (|#1| |#1| |#2|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3127 (($ $ |#1|) 42) (($ $ (-583 |#1|)) 41) (($ $ |#1| (-703)) 40) (($ $ (-583 |#1|) (-583 (-703))) 39)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#1|) 38) (($ $ (-583 |#1|)) 37) (($ $ |#1| (-703)) 36) (($ $ (-583 |#1|) (-583 (-703))) 35)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-822 |#1|) (-1184) (-1003)) (T -822))
+((-3127 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) (-2731 (*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2731 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) (-2731 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))))
+(-13 (-961) (-10 -8 (-15 -3127 ($ $ |t#1|)) (-15 -3127 ($ $ (-583 |t#1|))) (-15 -3127 ($ $ |t#1| (-703))) (-15 -3127 ($ $ (-583 |t#1|) (-583 (-703)))) (-15 -2731 ($ $ |t#1|)) (-15 -2731 ($ $ (-583 |t#1|))) (-15 -2731 ($ $ |t#1| (-703))) (-15 -2731 ($ $ (-583 |t#1|) (-583 (-703))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 26)) (-2953 (((-107) $ (-703)) NIL)) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-2204 (($ $ $) NIL (|has| $ (-6 -4181)))) (-3449 (($ $ $) NIL (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) (($ $ "left" $) NIL (|has| $ (-6 -4181))) (($ $ "right" $) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3652 (($ $) 25)) (-2913 (($ |#1|) 12) (($ $ $) 17)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3639 (($ $) 23)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) 20)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) 29 (|has| |#1| (-1003))) (((-1095 |#1|) $) 9)) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 21 (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-823 |#1|) (-13 (-114 |#1|) (-10 -8 (-15 -2913 ($ |#1|)) (-15 -2913 ($ $ $)) (-15 -2256 ((-1095 |#1|) $)))) (-1003)) (T -823))
+((-2913 (*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2913 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003)))))
+(-13 (-114 |#1|) (-10 -8 (-15 -2913 ($ |#1|)) (-15 -2913 ($ $ $)) (-15 -2256 ((-1095 |#1|) $))))
+((-1531 ((|#2| (-1040 |#1| |#2|)) 39)))
+(((-824 |#1| |#2|) (-10 -7 (-15 -1531 (|#2| (-1040 |#1| |#2|)))) (-843) (-13 (-961) (-10 -7 (-6 (-4182 "*"))))) (T -824))
+((-1531 (*1 *2 *3) (-12 (-5 *3 (-1040 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4182 "*"))))) (-5 *1 (-824 *4 *2)))))
+(-10 -7 (-15 -1531 (|#2| (-1040 |#1| |#2|))))
+((-2750 (((-107) $ $) 7)) (-3092 (($) 20 T CONST)) (-3621 (((-3 $ "failed") $) 16)) (-3185 (((-1005 |#1|) $ |#1|) 35)) (-3848 (((-107) $) 19)) (-2967 (($ $ $) 33 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3099 (($ $ $) 32 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 27)) (-3206 (((-1021) $) 10)) (-2051 ((|#1| $ |#1|) 37)) (-1449 ((|#1| $ |#1|) 36)) (-3887 (($ (-583 (-583 |#1|))) 38)) (-1199 (($ (-583 |#1|)) 39)) (-1487 (($ $ $) 23)) (-3394 (($ $ $) 22)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13) (($ $ (-703)) 17) (($ $ (-517)) 24)) (-2409 (($) 21 T CONST)) (-1606 (((-107) $ $) 30 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1583 (((-107) $ $) 29 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 31 (-3807 (|has| |#1| (-779)) (|has| |#1| (-338))))) (-1572 (((-107) $ $) 34)) (-1667 (($ $ $) 26)) (** (($ $ (-843)) 14) (($ $ (-703)) 18) (($ $ (-517)) 25)) (* (($ $ $) 15)))
+(((-825 |#1|) (-1184) (-1003)) (T -825))
+((-1199 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3)))) (-2051 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-1449 (*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) (-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(-13 (-442) (-10 -8 (-15 -1199 ($ (-583 |t#1|))) (-15 -3887 ($ (-583 (-583 |t#1|)))) (-15 -2051 (|t#1| $ |t#1|)) (-15 -1449 (|t#1| $ |t#1|)) (-15 -3185 ((-1005 |t#1|) $ |t#1|)) (-15 -1572 ((-107) $ $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-338)) (-6 (-779)) |noBranch|)))
+(((-97) . T) ((-557 (-787)) . T) ((-442) . T) ((-659) . T) ((-779) -3807 (|has| |#1| (-779)) (|has| |#1| (-338))) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2842 (((-583 (-583 (-703))) $) 106)) (-4036 (((-583 (-703)) (-827 |#1|) $) 128)) (-1395 (((-583 (-703)) (-827 |#1|) $) 129)) (-4075 (((-583 (-827 |#1|)) $) 96)) (-3209 (((-827 |#1|) $ (-517)) 101) (((-827 |#1|) $) 102)) (-1193 (($ (-583 (-827 |#1|))) 108)) (-3972 (((-703) $) 103)) (-1978 (((-1005 (-1005 |#1|)) $) 126)) (-3185 (((-1005 |#1|) $ |#1|) 119) (((-1005 (-1005 |#1|)) $ (-1005 |#1|)) 137) (((-1005 (-583 |#1|)) $ (-583 |#1|)) 140)) (-2236 (((-1005 |#1|) $) 99)) (-2787 (((-107) (-827 |#1|) $) 90)) (-3985 (((-1056) $) NIL)) (-3408 (((-1158) $) 93) (((-1158) $ (-517) (-517)) 141)) (-3206 (((-1021) $) NIL)) (-3079 (((-583 (-827 |#1|)) $) 94)) (-1449 (((-827 |#1|) $ (-703)) 97)) (-3688 (((-703) $) 104)) (-2256 (((-787) $) 117) (((-583 (-827 |#1|)) $) 22) (($ (-583 (-827 |#1|))) 107)) (-2372 (((-583 |#1|) $) 105)) (-1547 (((-107) $ $) 134)) (-1595 (((-107) $ $) 132)) (-1572 (((-107) $ $) 131)))
+(((-826 |#1|) (-13 (-1003) (-10 -8 (-15 -2256 ((-583 (-827 |#1|)) $)) (-15 -3079 ((-583 (-827 |#1|)) $)) (-15 -1449 ((-827 |#1|) $ (-703))) (-15 -3209 ((-827 |#1|) $ (-517))) (-15 -3209 ((-827 |#1|) $)) (-15 -3972 ((-703) $)) (-15 -3688 ((-703) $)) (-15 -2372 ((-583 |#1|) $)) (-15 -4075 ((-583 (-827 |#1|)) $)) (-15 -2842 ((-583 (-583 (-703))) $)) (-15 -2256 ($ (-583 (-827 |#1|)))) (-15 -1193 ($ (-583 (-827 |#1|)))) (-15 -3185 ((-1005 |#1|) $ |#1|)) (-15 -1978 ((-1005 (-1005 |#1|)) $)) (-15 -3185 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -3185 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -2787 ((-107) (-827 |#1|) $)) (-15 -4036 ((-583 (-703)) (-827 |#1|) $)) (-15 -1395 ((-583 (-703)) (-827 |#1|) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -1572 ((-107) $ $)) (-15 -1595 ((-107) $ $)) (-15 -3408 ((-1158) $)) (-15 -3408 ((-1158) $ (-517) (-517))))) (-1003)) (T -826))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3079 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-3209 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) (-3209 (*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2842 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-1193 (*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1978 (*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) (-2787 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) (-4036 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-1395 (*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1572 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-1595 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) (-3408 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ((-583 (-827 |#1|)) $)) (-15 -3079 ((-583 (-827 |#1|)) $)) (-15 -1449 ((-827 |#1|) $ (-703))) (-15 -3209 ((-827 |#1|) $ (-517))) (-15 -3209 ((-827 |#1|) $)) (-15 -3972 ((-703) $)) (-15 -3688 ((-703) $)) (-15 -2372 ((-583 |#1|) $)) (-15 -4075 ((-583 (-827 |#1|)) $)) (-15 -2842 ((-583 (-583 (-703))) $)) (-15 -2256 ($ (-583 (-827 |#1|)))) (-15 -1193 ($ (-583 (-827 |#1|)))) (-15 -3185 ((-1005 |#1|) $ |#1|)) (-15 -1978 ((-1005 (-1005 |#1|)) $)) (-15 -3185 ((-1005 (-1005 |#1|)) $ (-1005 |#1|))) (-15 -3185 ((-1005 (-583 |#1|)) $ (-583 |#1|))) (-15 -2787 ((-107) (-827 |#1|) $)) (-15 -4036 ((-583 (-703)) (-827 |#1|) $)) (-15 -1395 ((-583 (-703)) (-827 |#1|) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -1572 ((-107) $ $)) (-15 -1595 ((-107) $ $)) (-15 -3408 ((-1158) $)) (-15 -3408 ((-1158) $ (-517) (-517)))))
+((-2750 (((-107) $ $) NIL)) (-3166 (((-583 $) (-583 $)) 76)) (-3709 (((-517) $) 59)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3972 (((-703) $) 57)) (-3185 (((-1005 |#1|) $ |#1|) 48)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) 62)) (-3643 (((-703) $) 60)) (-2236 (((-1005 |#1|) $) 41)) (-2967 (($ $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-3099 (($ $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-3897 (((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $) 35)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 92)) (-3206 (((-1021) $) NIL)) (-2111 (((-1005 |#1|) $) 99 (|has| |#1| (-338)))) (-3998 (((-107) $) 58)) (-2051 ((|#1| $ |#1|) 46)) (-1449 ((|#1| $ |#1|) 93)) (-3688 (((-703) $) 43)) (-3887 (($ (-583 (-583 |#1|))) 84)) (-3278 (((-888) $) 52)) (-1199 (($ (-583 |#1|)) 21)) (-1487 (($ $ $) NIL)) (-3394 (($ $ $) NIL)) (-2807 (($ (-583 (-583 |#1|))) 38)) (-2408 (($ (-583 (-583 |#1|))) 87)) (-4106 (($ (-583 |#1|)) 95)) (-2256 (((-787) $) 83) (($ (-583 (-583 |#1|))) 65) (($ (-583 |#1|)) 66)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2409 (($) 16 T CONST)) (-1606 (((-107) $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1547 (((-107) $ $) 44)) (-1595 (((-107) $ $) NIL (-3807 (|has| |#1| (-338)) (|has| |#1| (-779))))) (-1572 (((-107) $ $) 64)) (-1667 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ $ $) 22)))
+(((-827 |#1|) (-13 (-825 |#1|) (-10 -8 (-15 -3897 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2807 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 |#1|))) (-15 -2408 ($ (-583 (-583 |#1|)))) (-15 -3688 ((-703) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -3278 ((-888) $)) (-15 -3972 ((-703) $)) (-15 -3643 ((-703) $)) (-15 -3709 ((-517) $)) (-15 -3998 ((-107) $)) (-15 -1769 ((-107) $)) (-15 -3166 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2111 ((-1005 |#1|) $)) |noBranch|) (IF (|has| |#1| (-502)) (-15 -4106 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -4106 ($ (-583 |#1|))) |noBranch|)))) (-1003)) (T -827))
+((-3897 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2807 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-2408 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) (-3688 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3643 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
+(-13 (-825 |#1|) (-10 -8 (-15 -3897 ((-2 (|:| |preimage| (-583 |#1|)) (|:| |image| (-583 |#1|))) $)) (-15 -2807 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 (-583 |#1|)))) (-15 -2256 ($ (-583 |#1|))) (-15 -2408 ($ (-583 (-583 |#1|)))) (-15 -3688 ((-703) $)) (-15 -2236 ((-1005 |#1|) $)) (-15 -3278 ((-888) $)) (-15 -3972 ((-703) $)) (-15 -3643 ((-703) $)) (-15 -3709 ((-517) $)) (-15 -3998 ((-107) $)) (-15 -1769 ((-107) $)) (-15 -3166 ((-583 $) (-583 $))) (IF (|has| |#1| (-338)) (-15 -2111 ((-1005 |#1|) $)) |noBranch|) (IF (|has| |#1| (-502)) (-15 -4106 ($ (-583 |#1|))) (IF (|has| |#1| (-338)) (-15 -4106 ($ (-583 |#1|))) |noBranch|))))
+((-3994 (((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|)) 127)) (-2916 ((|#1|) 75)) (-3746 (((-388 (-1069 |#4|)) (-1069 |#4|)) 136)) (-1901 (((-388 (-1069 |#4|)) (-583 |#3|) (-1069 |#4|)) 67)) (-3689 (((-388 (-1069 |#4|)) (-1069 |#4|)) 146)) (-2317 (((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|) |#3|) 91)))
+(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|))) (-15 -3689 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3746 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -2916 (|#1|)) (-15 -2317 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|) |#3|)) (-15 -1901 ((-388 (-1069 |#4|)) (-583 |#3|) (-1069 |#4|)))) (-831) (-725) (-779) (-871 |#1| |#2| |#3|)) (T -828))
+((-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1069 *8)))) (-2317 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7)))) (-2916 (*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) (-3994 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|))) (-15 -3689 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -3746 ((-388 (-1069 |#4|)) (-1069 |#4|))) (-15 -2916 (|#1|)) (-15 -2317 ((-3 (-583 (-1069 |#4|)) "failed") (-583 (-1069 |#4|)) (-1069 |#4|) |#3|)) (-15 -1901 ((-388 (-1069 |#4|)) (-583 |#3|) (-1069 |#4|))))
+((-3994 (((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|)) 36)) (-2916 ((|#1|) 53)) (-3746 (((-388 (-1069 |#2|)) (-1069 |#2|)) 101)) (-1901 (((-388 (-1069 |#2|)) (-1069 |#2|)) 88)) (-3689 (((-388 (-1069 |#2|)) (-1069 |#2|)) 112)))
+(((-829 |#1| |#2|) (-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|))) (-15 -3689 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -3746 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -2916 (|#1|)) (-15 -1901 ((-388 (-1069 |#2|)) (-1069 |#2|)))) (-831) (-1130 |#1|)) (T -829))
+((-1901 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))) (-2916 (*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1130 *2)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))) (-3689 (*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))) (-3994 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5)))))
+(-10 -7 (-15 -3994 ((-3 (-583 (-1069 |#2|)) "failed") (-583 (-1069 |#2|)) (-1069 |#2|))) (-15 -3689 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -3746 ((-388 (-1069 |#2|)) (-1069 |#2|))) (-15 -2916 (|#1|)) (-15 -1901 ((-388 (-1069 |#2|)) (-1069 |#2|))))
+((-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 39)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 18)) (-1328 (((-3 $ "failed") $) 33)))
+(((-830 |#1|) (-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|)))) (-831)) (T -830))
+NIL
+(-10 -8 (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 60)) (-2535 (($ $) 51)) (-2759 (((-388 $) $) 52)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 57)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3849 (((-107) $) 53)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2561 (((-388 (-1069 $)) (-1069 $)) 58)) (-2209 (((-388 (-1069 $)) (-1069 $)) 59)) (-3755 (((-388 $) $) 50)) (-2476 (((-3 $ "failed") $ $) 42)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 56 (|has| $ (-132)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-1328 (((-3 $ "failed") $) 55 (|has| $ (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-831) (-1184)) (T -831))
+((-1862 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-831)))) (-3143 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))) (-2209 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))) (-2561 (*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))) (-3179 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *1))) (-5 *3 (-1069 *1)) (-4 *1 (-831)))) (-3870 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1153 *1)))) (-1328 (*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831)))))
+(-13 (-1112) (-10 -8 (-15 -3143 ((-388 (-1069 $)) (-1069 $))) (-15 -2209 ((-388 (-1069 $)) (-1069 $))) (-15 -2561 ((-388 (-1069 $)) (-1069 $))) (-15 -1862 ((-1069 $) (-1069 $) (-1069 $))) (-15 -3179 ((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $))) (IF (|has| $ (-132)) (PROGN (-15 -3870 ((-3 (-1153 $) "failed") (-623 $))) (-15 -1328 ((-3 $ "failed") $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2909 (((-107) $) NIL)) (-3250 (((-703)) NIL)) (-1472 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-1611 (((-703)) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 $ "failed") $) NIL)) (-3189 (($ $) NIL)) (-1967 (($ (-1153 $)) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3442 (($) NIL)) (-3391 (((-107) $) NIL)) (-2378 (($ $) NIL) (($ $ (-703)) NIL)) (-3849 (((-107) $) NIL)) (-3972 (((-765 (-843)) $) NIL) (((-843) $) NIL)) (-3848 (((-107) $) NIL)) (-2453 (($) NIL (|has| $ (-338)))) (-2434 (((-107) $) NIL (|has| $ (-338)))) (-1506 (($ $ (-843)) NIL (|has| $ (-338))) (($ $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3777 (((-1069 $) $ (-843)) NIL (|has| $ (-338))) (((-1069 $) $) NIL)) (-1549 (((-843) $) NIL)) (-1704 (((-1069 $) $) NIL (|has| $ (-338)))) (-2729 (((-3 (-1069 $) "failed") $ $) NIL (|has| $ (-338))) (((-1069 $) $) NIL (|has| $ (-338)))) (-3600 (($ $ (-1069 $)) NIL (|has| $ (-338)))) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL T CONST)) (-3448 (($ (-843)) NIL)) (-3202 (((-107) $) NIL)) (-3206 (((-1021) $) NIL)) (-3220 (($) NIL (|has| $ (-338)))) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL)) (-3755 (((-388 $) $) NIL)) (-3327 (((-843)) NIL) (((-765 (-843))) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-1620 (((-3 (-703) "failed") $ $) NIL) (((-703) $) NIL)) (-3141 (((-125)) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-3688 (((-843) $) NIL) (((-765 (-843)) $) NIL)) (-2135 (((-1069 $)) NIL)) (-1766 (($) NIL)) (-1224 (($) NIL (|has| $ (-338)))) (-4114 (((-623 $) (-1153 $)) NIL) (((-1153 $) $) NIL)) (-3645 (((-517) $) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2961 (((-703)) NIL)) (-1753 (((-1153 $) (-843)) NIL) (((-1153 $)) NIL)) (-3329 (((-107) $ $) NIL)) (-1871 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-4103 (($ $ (-703)) NIL (|has| $ (-338))) (($ $) NIL (|has| $ (-338)))) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-832 |#1|) (-13 (-319) (-299 $) (-558 (-517))) (-843)) (T -832))
+NIL
+(-13 (-319) (-299 $) (-558 (-517)))
+((-3046 (((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)) 76)) (-3027 (((-107) (-306 |#2| |#3| |#4| |#5|)) 16)) (-3972 (((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|)) 14)))
+(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -3027 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|)))) (-13 (-779) (-509) (-952 (-517))) (-400 |#1|) (-1130 |#2|) (-1130 (-377 |#3|)) (-312 |#2| |#3| |#4|)) (T -833))
+((-3046 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) (-3972 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 |#2| |#3| |#4| |#5|))) (-15 -3027 ((-107) (-306 |#2| |#3| |#4| |#5|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#5|)) "failed") (-306 |#2| |#3| |#4| |#5|))))
+((-3046 (((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 56)) (-3027 (((-107) (-306 (-377 (-517)) |#1| |#2| |#3|)) 13)) (-3972 (((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)) 11)))
+(((-834 |#1| |#2| |#3|) (-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3027 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|)))) (-1130 (-377 (-517))) (-1130 (-377 |#1|)) (-312 (-377 (-517)) |#1| |#2|)) (T -834))
+((-3046 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *6))) (-5 *1 (-834 *4 *5 *6)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6)))) (-3972 (*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6)))))
+(-10 -7 (-15 -3972 ((-3 (-703) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3027 ((-107) (-306 (-377 (-517)) |#1| |#2| |#3|))) (-15 -3046 ((-3 (-2 (|:| -3972 (-703)) (|:| -1234 |#3|)) "failed") (-306 (-377 (-517)) |#1| |#2| |#3|))))
+((-2327 ((|#2| |#2|) 25)) (-1284 (((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) 15)) (-3024 (((-843) (-517)) 35)) (-3812 (((-517) |#2|) 42)) (-1962 (((-517) |#2|) 21) (((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|) 20)))
+(((-835 |#1| |#2|) (-10 -7 (-15 -3024 ((-843) (-517))) (-15 -1962 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -1962 ((-517) |#2|)) (-15 -1284 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3812 ((-517) |#2|)) (-15 -2327 (|#2| |#2|))) (-1130 (-377 (-517))) (-1130 (-377 |#1|))) (T -835))
+((-2327 (*1 *2 *2) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1130 (-377 *3))))) (-3812 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))) (-1284 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4))))) (-1962 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))) (-1962 (*1 *2 *3) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1130 (-377 *3))))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4))))))
+(-10 -7 (-15 -3024 ((-843) (-517))) (-15 -1962 ((-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))) |#1|)) (-15 -1962 ((-517) |#2|)) (-15 -1284 ((-517) (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))))) (-15 -3812 ((-517) |#2|)) (-15 -2327 (|#2| |#2|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 ((|#1| $) 80)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-2518 (($ $ $) NIL)) (-3621 (((-3 $ "failed") $) 74)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-2121 (($ |#1| (-388 |#1|)) 72)) (-1693 (((-1069 |#1|) |#1| |#1|) 40)) (-2008 (($ $) 48)) (-3848 (((-107) $) NIL)) (-1911 (((-517) $) 77)) (-3894 (($ $ (-517)) 79)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-2227 ((|#1| $) 76)) (-1833 (((-388 |#1|) $) 75)) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) 73)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3966 (($ $) 38)) (-2256 (((-787) $) 98) (($ (-517)) 53) (($ $) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 30) (((-377 |#1|) $) 58) (($ (-377 (-388 |#1|))) 66)) (-2961 (((-703)) 51)) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 23 T CONST)) (-2409 (($) 11 T CONST)) (-1547 (((-107) $ $) 67)) (-1667 (($ $ $) NIL)) (-1654 (($ $) 87) (($ $ $) NIL)) (-1642 (($ $ $) 37)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 89) (($ $ $) 36) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ |#1| $) 88) (($ $ |#1|) NIL)))
+(((-836 |#1|) (-13 (-333) (-37 |#1|) (-10 -8 (-15 -2256 ((-377 |#1|) $)) (-15 -2256 ($ (-377 (-388 |#1|)))) (-15 -3966 ($ $)) (-15 -1833 ((-388 |#1|) $)) (-15 -2227 (|#1| $)) (-15 -3894 ($ $ (-517))) (-15 -1911 ((-517) $)) (-15 -1693 ((-1069 |#1|) |#1| |#1|)) (-15 -2008 ($ $)) (-15 -2121 ($ |#1| (-388 |#1|))) (-15 -2668 (|#1| $)))) (-278)) (T -836))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) (-3966 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2227 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-3894 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-1911 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-1693 (*1 *2 *3 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) (-2121 (*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) (-2668 (*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
+(-13 (-333) (-37 |#1|) (-10 -8 (-15 -2256 ((-377 |#1|) $)) (-15 -2256 ($ (-377 (-388 |#1|)))) (-15 -3966 ($ $)) (-15 -1833 ((-388 |#1|) $)) (-15 -2227 (|#1| $)) (-15 -3894 ($ $ (-517))) (-15 -1911 ((-517) $)) (-15 -1693 ((-1069 |#1|) |#1| |#1|)) (-15 -2008 ($ $)) (-15 -2121 ($ |#1| (-388 |#1|))) (-15 -2668 (|#1| $))))
+((-2121 (((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1073)) 16) (((-51) (-377 (-874 |#1|)) (-1073)) 17)))
+(((-837 |#1|) (-10 -7 (-15 -2121 ((-51) (-377 (-874 |#1|)) (-1073))) (-15 -2121 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1073)))) (-13 (-278) (-134))) (T -837))
+((-2121 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1073)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6)))) (-2121 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5)))))
+(-10 -7 (-15 -2121 ((-51) (-377 (-874 |#1|)) (-1073))) (-15 -2121 ((-51) (-874 |#1|) (-388 (-874 |#1|)) (-1073))))
+((-2116 ((|#4| (-583 |#4|)) 118) (((-1069 |#4|) (-1069 |#4|) (-1069 |#4|)) 65) ((|#4| |#4| |#4|) 117)) (-1401 (((-1069 |#4|) (-583 (-1069 |#4|))) 111) (((-1069 |#4|) (-1069 |#4|) (-1069 |#4|)) 48) ((|#4| (-583 |#4|)) 53) ((|#4| |#4| |#4|) 82)))
+(((-838 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1401 (|#4| |#4| |#4|)) (-15 -1401 (|#4| (-583 |#4|))) (-15 -1401 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -1401 ((-1069 |#4|) (-583 (-1069 |#4|)))) (-15 -2116 (|#4| |#4| |#4|)) (-15 -2116 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2116 (|#4| (-583 |#4|)))) (-725) (-779) (-278) (-871 |#3| |#1| |#2|)) (T -838))
+((-2116 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-2116 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-2116 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-583 (-1069 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1069 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) (-1401 (*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) (-1401 (*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))))
+(-10 -7 (-15 -1401 (|#4| |#4| |#4|)) (-15 -1401 (|#4| (-583 |#4|))) (-15 -1401 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -1401 ((-1069 |#4|) (-583 (-1069 |#4|)))) (-15 -2116 (|#4| |#4| |#4|)) (-15 -2116 ((-1069 |#4|) (-1069 |#4|) (-1069 |#4|))) (-15 -2116 (|#4| (-583 |#4|))))
+((-2548 (((-826 (-517)) (-888)) 22) (((-826 (-517)) (-583 (-517))) 19)) (-3077 (((-826 (-517)) (-583 (-517))) 46) (((-826 (-517)) (-843)) 47)) (-2616 (((-826 (-517))) 23)) (-3275 (((-826 (-517))) 36) (((-826 (-517)) (-583 (-517))) 35)) (-3277 (((-826 (-517))) 34) (((-826 (-517)) (-583 (-517))) 33)) (-3399 (((-826 (-517))) 32) (((-826 (-517)) (-583 (-517))) 31)) (-1952 (((-826 (-517))) 30) (((-826 (-517)) (-583 (-517))) 29)) (-1925 (((-826 (-517))) 28) (((-826 (-517)) (-583 (-517))) 27)) (-3745 (((-826 (-517))) 38) (((-826 (-517)) (-583 (-517))) 37)) (-2519 (((-826 (-517)) (-583 (-517))) 50) (((-826 (-517)) (-843)) 51)) (-2340 (((-826 (-517)) (-583 (-517))) 48) (((-826 (-517)) (-843)) 49)) (-1744 (((-826 (-517)) (-583 (-517))) 43) (((-826 (-517)) (-843)) 45)) (-3436 (((-826 (-517)) (-583 (-843))) 40)))
+(((-839) (-10 -7 (-15 -3077 ((-826 (-517)) (-843))) (-15 -3077 ((-826 (-517)) (-583 (-517)))) (-15 -1744 ((-826 (-517)) (-843))) (-15 -1744 ((-826 (-517)) (-583 (-517)))) (-15 -3436 ((-826 (-517)) (-583 (-843)))) (-15 -2340 ((-826 (-517)) (-843))) (-15 -2340 ((-826 (-517)) (-583 (-517)))) (-15 -2519 ((-826 (-517)) (-843))) (-15 -2519 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)))) (-15 -1952 ((-826 (-517)) (-583 (-517)))) (-15 -1952 ((-826 (-517)))) (-15 -3399 ((-826 (-517)) (-583 (-517)))) (-15 -3399 ((-826 (-517)))) (-15 -3277 ((-826 (-517)) (-583 (-517)))) (-15 -3277 ((-826 (-517)))) (-15 -3275 ((-826 (-517)) (-583 (-517)))) (-15 -3275 ((-826 (-517)))) (-15 -3745 ((-826 (-517)) (-583 (-517)))) (-15 -3745 ((-826 (-517)))) (-15 -2616 ((-826 (-517)))) (-15 -2548 ((-826 (-517)) (-583 (-517)))) (-15 -2548 ((-826 (-517)) (-888))))) (T -839))
+((-2548 (*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2616 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3745 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3275 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3277 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3399 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1952 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1925 (*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-2340 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3436 (*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-1744 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(-10 -7 (-15 -3077 ((-826 (-517)) (-843))) (-15 -3077 ((-826 (-517)) (-583 (-517)))) (-15 -1744 ((-826 (-517)) (-843))) (-15 -1744 ((-826 (-517)) (-583 (-517)))) (-15 -3436 ((-826 (-517)) (-583 (-843)))) (-15 -2340 ((-826 (-517)) (-843))) (-15 -2340 ((-826 (-517)) (-583 (-517)))) (-15 -2519 ((-826 (-517)) (-843))) (-15 -2519 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)) (-583 (-517)))) (-15 -1925 ((-826 (-517)))) (-15 -1952 ((-826 (-517)) (-583 (-517)))) (-15 -1952 ((-826 (-517)))) (-15 -3399 ((-826 (-517)) (-583 (-517)))) (-15 -3399 ((-826 (-517)))) (-15 -3277 ((-826 (-517)) (-583 (-517)))) (-15 -3277 ((-826 (-517)))) (-15 -3275 ((-826 (-517)) (-583 (-517)))) (-15 -3275 ((-826 (-517)))) (-15 -3745 ((-826 (-517)) (-583 (-517)))) (-15 -3745 ((-826 (-517)))) (-15 -2616 ((-826 (-517)))) (-15 -2548 ((-826 (-517)) (-583 (-517)))) (-15 -2548 ((-826 (-517)) (-888))))
+((-3833 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))) 10)) (-3161 (((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))) 9)))
+(((-840 |#1|) (-10 -7 (-15 -3161 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3833 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073))))) (-421)) (T -840))
+((-3833 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4)))) (-3161 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
+(-10 -7 (-15 -3161 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3833 ((-583 (-874 |#1|)) (-583 (-874 |#1|)) (-583 (-1073)))))
+((-2256 (((-286 |#1|) (-446)) 15)))
+(((-841 |#1|) (-10 -7 (-15 -2256 ((-286 |#1|) (-446)))) (-13 (-779) (-509))) (T -841))
+((-2256 (*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509))))))
+(-10 -7 (-15 -2256 ((-286 |#1|) (-446))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-842) (-1184)) (T -842))
+((-1780 (*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1931 (-583 *1)) (|:| -3220 *1))) (-5 *3 (-583 *1)))) (-1737 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842)))))
+(-13 (-421) (-10 -8 (-15 -1780 ((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $))) (-15 -1737 ((-3 (-583 $) "failed") (-583 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1401 (($ $ $) NIL)) (-2256 (((-787) $) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2409 (($) NIL T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ $ $) NIL)))
+(((-843) (-13 (-25) (-779) (-659) (-10 -8 (-15 -1401 ($ $ $)) (-6 (-4182 "*"))))) (T -843))
+((-1401 (*1 *1 *1 *1) (-5 *1 (-843))))
+(-13 (-25) (-779) (-659) (-10 -8 (-15 -1401 ($ $ $)) (-6 (-4182 "*"))))
+((-4082 ((|#2| (-583 |#1|) (-583 |#1|)) 22)))
+(((-844 |#1| |#2|) (-10 -7 (-15 -4082 (|#2| (-583 |#1|) (-583 |#1|)))) (-333) (-1130 |#1|)) (T -844))
+((-4082 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1130 *4)) (-5 *1 (-844 *4 *2)))))
+(-10 -7 (-15 -4082 (|#2| (-583 |#1|) (-583 |#1|))))
+((-4058 (((-1069 |#2|) (-583 |#2|) (-583 |#2|)) 17) (((-1127 |#1| |#2|) (-1127 |#1| |#2|) (-583 |#2|) (-583 |#2|)) 13)))
+(((-845 |#1| |#2|) (-10 -7 (-15 -4058 ((-1127 |#1| |#2|) (-1127 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -4058 ((-1069 |#2|) (-583 |#2|) (-583 |#2|)))) (-1073) (-333)) (T -845))
+((-4058 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1069 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1073)))) (-4058 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1127 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1073)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5)))))
+(-10 -7 (-15 -4058 ((-1127 |#1| |#2|) (-1127 |#1| |#2|) (-583 |#2|) (-583 |#2|))) (-15 -4058 ((-1069 |#2|) (-583 |#2|) (-583 |#2|))))
+((-3149 (((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056)) 137)) (-3214 ((|#4| |#4|) 153)) (-1798 (((-583 (-377 (-874 |#1|))) (-583 (-1073))) 116)) (-2628 (((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517)) 73)) (-3758 (((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-583 |#4|)) 57)) (-3938 (((-623 |#4|) (-623 |#4|) (-583 |#4|)) 53)) (-3461 (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056)) 149)) (-1246 (((-517) (-623 |#4|) (-843) (-1056)) 130) (((-517) (-623 |#4|) (-583 (-1073)) (-843) (-1056)) 129) (((-517) (-623 |#4|) (-583 |#4|) (-843) (-1056)) 128) (((-517) (-623 |#4|) (-1056)) 125) (((-517) (-623 |#4|) (-583 (-1073)) (-1056)) 124) (((-517) (-623 |#4|) (-583 |#4|) (-1056)) 123) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843)) 122) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)) (-843)) 121) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843)) 120) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|)) 118) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073))) 117) (((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|)) 114)) (-1301 ((|#4| (-874 |#1|)) 66)) (-1957 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 150)) (-2465 (((-583 (-583 (-517))) (-517) (-517)) 127)) (-3740 (((-583 (-583 |#4|)) (-583 (-583 |#4|))) 85)) (-1376 (((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 83)) (-2534 (((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|))))) 82)) (-3489 (((-107) (-583 (-874 |#1|))) 17) (((-107) (-583 |#4|)) 13)) (-3787 (((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|)) 69)) (-2440 (((-583 |#4|) |#4|) 47)) (-3240 (((-583 (-377 (-874 |#1|))) (-583 |#4|)) 112) (((-623 (-377 (-874 |#1|))) (-623 |#4|)) 54) (((-377 (-874 |#1|)) |#4|) 109)) (-2739 (((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1056) (-517)) 89)) (-4093 (((-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703)) 81)) (-3478 (((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703)) 98)) (-2006 (((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| -2790 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) 46)))
+(((-846 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-843) (-1056))) (-15 -3149 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -3461 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -2739 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1056) (-517))) (-15 -3240 ((-377 (-874 |#1|)) |#4|)) (-15 -3240 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -3240 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -1798 ((-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1301 (|#4| (-874 |#1|))) (-15 -3787 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4093 ((-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -3758 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -2006 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| -2790 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -2440 ((-583 |#4|) |#4|)) (-15 -2534 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -1376 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3740 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2465 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3478 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3938 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2628 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3214 (|#4| |#4|)) (-15 -3489 ((-107) (-583 |#4|))) (-15 -3489 ((-107) (-583 (-874 |#1|))))) (-13 (-278) (-134)) (-13 (-779) (-558 (-1073))) (-725) (-871 |#1| |#3| |#2|)) (T -846))
+((-3489 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3489 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3214 (*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4)))) (-2628 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1073)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *9)))) (|:| -1753 (-583 (-1153 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12)))) (-3938 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-3478 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1957 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8)))) (-2465 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5)))) (-3740 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6)))) (-1376 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))) (-2440 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2790 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3758 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703)))) (-3787 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1301 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)))) (-1798 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) (-3240 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) (-2739 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1056)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1073)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *8)))) (|:| -1753 (-583 (-1153 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))) (-3149 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *4 (-1056)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-1246 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1056)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) (-1246 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) (-1246 (*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1073))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) (-1246 (*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(-10 -7 (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 |#4|) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-583 (-1073)) (-843))) (-15 -1246 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-623 |#4|) (-843))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 |#4|) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-583 (-1073)) (-843) (-1056))) (-15 -1246 ((-517) (-623 |#4|) (-843) (-1056))) (-15 -3149 ((-517) (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -3461 ((-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|))))))))) (-1056))) (-15 -2739 ((-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))))) (|:| |rgsz| (-517))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-703) (-1056) (-517))) (-15 -3240 ((-377 (-874 |#1|)) |#4|)) (-15 -3240 ((-623 (-377 (-874 |#1|))) (-623 |#4|))) (-15 -3240 ((-583 (-377 (-874 |#1|))) (-583 |#4|))) (-15 -1798 ((-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1301 (|#4| (-874 |#1|))) (-15 -3787 ((-2 (|:| |sysok| (-107)) (|:| |z0| (-583 |#4|)) (|:| |n0| (-583 |#4|))) (-583 |#4|) (-583 |#4|))) (-15 -4093 ((-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))) (-623 |#4|) (-703))) (-15 -3758 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-583 |#4|))) (-15 -2006 ((-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))) (-2 (|:| -2790 (-623 (-377 (-874 |#1|)))) (|:| |vec| (-583 (-377 (-874 |#1|)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-15 -2440 ((-583 |#4|) |#4|)) (-15 -2534 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -1376 ((-703) (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 |#4|)))))) (-15 -3740 ((-583 (-583 |#4|)) (-583 (-583 |#4|)))) (-15 -2465 ((-583 (-583 (-517))) (-517) (-517))) (-15 -1957 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -3478 ((-583 (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-623 |#4|) (-703))) (-15 -3938 ((-623 |#4|) (-623 |#4|) (-583 |#4|))) (-15 -2628 ((-2 (|:| |eqzro| (-583 |#4|)) (|:| |neqzro| (-583 |#4|)) (|:| |wcond| (-583 (-874 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 |#1|)))) (|:| -1753 (-583 (-1153 (-377 (-874 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))) (-623 |#4|) (-583 (-377 (-874 |#1|))) (-583 (-583 |#4|)) (-703) (-703) (-517))) (-15 -3214 (|#4| |#4|)) (-15 -3489 ((-107) (-583 |#4|))) (-15 -3489 ((-107) (-583 (-874 |#1|)))))
+((-2059 (((-849) |#1| (-1073)) 16) (((-849) |#1| (-1073) (-998 (-199))) 20)) (-3982 (((-849) |#1| |#1| (-1073) (-998 (-199))) 18) (((-849) |#1| (-1073) (-998 (-199))) 14)))
+(((-847 |#1|) (-10 -7 (-15 -3982 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -3982 ((-849) |#1| |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073)))) (-558 (-493))) (T -847))
+((-2059 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-2059 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3982 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) (-3982 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))))
+(-10 -7 (-15 -3982 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -3982 ((-849) |#1| |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073) (-998 (-199)))) (-15 -2059 ((-849) |#1| (-1073))))
+((-4132 (($ $ (-998 (-199)) (-998 (-199)) (-998 (-199))) 68)) (-1422 (((-998 (-199)) $) 40)) (-1408 (((-998 (-199)) $) 39)) (-1397 (((-998 (-199)) $) 38)) (-3633 (((-583 (-583 (-199))) $) 43)) (-1557 (((-998 (-199)) $) 41)) (-1353 (((-517) (-517)) 32)) (-1276 (((-517) (-517)) 28)) (-1305 (((-517) (-517)) 30)) (-4050 (((-107) (-107)) 35)) (-2152 (((-517)) 31)) (-3437 (($ $ (-998 (-199))) 71) (($ $) 72)) (-3427 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 76) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 77)) (-3982 (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 79) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 80) (($ $ (-998 (-199))) 74)) (-3973 (((-517)) 36)) (-3974 (((-517)) 27)) (-3496 (((-517)) 29)) (-2602 (((-583 (-583 (-865 (-199)))) $) 92)) (-3286 (((-107) (-107)) 37)) (-2256 (((-787) $) 91)) (-2215 (((-107)) 34)))
+(((-848) (-13 (-891) (-10 -8 (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -3633 ((-583 (-583 (-199))) $)) (-15 -3974 ((-517))) (-15 -1276 ((-517) (-517))) (-15 -3496 ((-517))) (-15 -1305 ((-517) (-517))) (-15 -2152 ((-517))) (-15 -1353 ((-517) (-517))) (-15 -2215 ((-107))) (-15 -4050 ((-107) (-107))) (-15 -3973 ((-517))) (-15 -3286 ((-107) (-107)))))) (T -848))
+((-3427 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3427 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3982 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3982 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-4132 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3437 (*1 *1 *1) (-5 *1 (-848))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) (-3633 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848)))) (-3974 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1276 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3496 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1305 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2152 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-2215 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-4050 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))) (-3973 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))) (-3286 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
+(-13 (-891) (-10 -8 (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -3633 ((-583 (-583 (-199))) $)) (-15 -3974 ((-517))) (-15 -1276 ((-517) (-517))) (-15 -3496 ((-517))) (-15 -1305 ((-517) (-517))) (-15 -2152 ((-517))) (-15 -1353 ((-517) (-517))) (-15 -2215 ((-107))) (-15 -4050 ((-107) (-107))) (-15 -3973 ((-517))) (-15 -3286 ((-107) (-107)))))
+((-4132 (($ $ (-998 (-199))) 69) (($ $ (-998 (-199)) (-998 (-199))) 70)) (-1408 (((-998 (-199)) $) 43)) (-1397 (((-998 (-199)) $) 42)) (-1557 (((-998 (-199)) $) 44)) (-2675 (((-517) (-517)) 36)) (-3223 (((-517) (-517)) 32)) (-1687 (((-517) (-517)) 34)) (-2471 (((-107) (-107)) 38)) (-3553 (((-517)) 35)) (-3437 (($ $ (-998 (-199))) 73) (($ $) 74)) (-3427 (($ (-1 (-865 (-199)) (-199)) (-998 (-199))) 83) (($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 84)) (-2059 (($ (-1 (-199) (-199)) (-998 (-199))) 91) (($ (-1 (-199) (-199))) 94)) (-3982 (($ (-1 (-199) (-199)) (-998 (-199))) 78) (($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199))) 79) (($ (-583 (-1 (-199) (-199))) (-998 (-199))) 86) (($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199))) 87) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199))) 80) (($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199))) 81) (($ $ (-998 (-199))) 75)) (-2094 (((-107) $) 39)) (-2113 (((-517)) 40)) (-2761 (((-517)) 31)) (-4056 (((-517)) 33)) (-2602 (((-583 (-583 (-865 (-199)))) $) 22)) (-1424 (((-107) (-107)) 41)) (-2256 (((-787) $) 105)) (-2798 (((-107)) 37)))
+(((-849) (-13 (-876) (-10 -8 (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -2094 ((-107) $)) (-15 -4132 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -2761 ((-517))) (-15 -3223 ((-517) (-517))) (-15 -4056 ((-517))) (-15 -1687 ((-517) (-517))) (-15 -3553 ((-517))) (-15 -2675 ((-517) (-517))) (-15 -2798 ((-107))) (-15 -2471 ((-107) (-107))) (-15 -2113 ((-517))) (-15 -1424 ((-107) (-107)))))) (T -849))
+((-3982 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3427 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-3427 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2059 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) (-2059 (*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) (-3982 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2094 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-4132 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-4132 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3437 (*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-3437 (*1 *1 *1) (-5 *1 (-849))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) (-2761 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-4056 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1687 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-3553 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-2798 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))) (-2113 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))) (-1424 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(-13 (-876) (-10 -8 (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)))) (-15 -3982 ($ (-583 (-1 (-199) (-199))) (-998 (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)))) (-15 -3982 ($ (-1 (-199) (-199)) (-1 (-199) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)))) (-15 -3427 ($ (-1 (-865 (-199)) (-199)) (-998 (-199)) (-998 (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)) (-998 (-199)))) (-15 -2059 ($ (-1 (-199) (-199)))) (-15 -3982 ($ $ (-998 (-199)))) (-15 -2094 ((-107) $)) (-15 -4132 ($ $ (-998 (-199)))) (-15 -4132 ($ $ (-998 (-199)) (-998 (-199)))) (-15 -3437 ($ $ (-998 (-199)))) (-15 -3437 ($ $)) (-15 -1557 ((-998 (-199)) $)) (-15 -2761 ((-517))) (-15 -3223 ((-517) (-517))) (-15 -4056 ((-517))) (-15 -1687 ((-517) (-517))) (-15 -3553 ((-517))) (-15 -2675 ((-517) (-517))) (-15 -2798 ((-107))) (-15 -2471 ((-107) (-107))) (-15 -2113 ((-517))) (-15 -1424 ((-107) (-107)))))
+((-3244 (((-583 (-998 (-199))) (-583 (-583 (-865 (-199))))) 23)))
+(((-850) (-10 -7 (-15 -3244 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199)))))))) (T -850))
+((-3244 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850)))))
+(-10 -7 (-15 -3244 ((-583 (-998 (-199))) (-583 (-583 (-865 (-199)))))))
+((-2167 ((|#2| |#2|) 25)) (-3751 ((|#2| |#2|) 26)) (-1619 ((|#2| |#2|) 24)) (-2107 ((|#2| |#2| (-1056)) 23)))
+(((-851 |#1| |#2|) (-10 -7 (-15 -2107 (|#2| |#2| (-1056))) (-15 -1619 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -3751 (|#2| |#2|))) (-779) (-400 |#1|)) (T -851))
+((-3751 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2167 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-1619 (*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) (-2107 (*1 *2 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4)))))
+(-10 -7 (-15 -2107 (|#2| |#2| (-1056))) (-15 -1619 (|#2| |#2|)) (-15 -2167 (|#2| |#2|)) (-15 -3751 (|#2| |#2|)))
+((-2167 (((-286 (-517)) (-1073)) 15)) (-3751 (((-286 (-517)) (-1073)) 13)) (-1619 (((-286 (-517)) (-1073)) 11)) (-2107 (((-286 (-517)) (-1073) (-1056)) 18)))
+(((-852) (-10 -7 (-15 -2107 ((-286 (-517)) (-1073) (-1056))) (-15 -1619 ((-286 (-517)) (-1073))) (-15 -2167 ((-286 (-517)) (-1073))) (-15 -3751 ((-286 (-517)) (-1073))))) (T -852))
+((-3751 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) (-2107 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1056)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
+(-10 -7 (-15 -2107 ((-286 (-517)) (-1073) (-1056))) (-15 -1619 ((-286 (-517)) (-1073))) (-15 -2167 ((-286 (-517)) (-1073))) (-15 -3751 ((-286 (-517)) (-1073))))
+((-4057 (((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)) 24)) (-1216 (((-1 (-107) |#2|) (-1 (-107) |#3|)) 12)))
+(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -1216 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -4057 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-808 |#1|) (-13 (-1003) (-952 |#2|))) (T -853))
+((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6)))))
+(-10 -7 (-15 -1216 ((-1 (-107) |#2|) (-1 (-107) |#3|))) (-15 -4057 ((-811 |#1| |#3|) |#2| (-814 |#1|) (-811 |#1| |#3|))))
+((-4057 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 29)))
+(((-854 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-779) (-808 |#1|)) (-13 (-400 |#2|) (-558 (-814 |#1|)) (-808 |#1|) (-952 (-556 $)))) (T -854))
+((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3)))))
+(-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))
+((-4057 (((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)) 12)))
+(((-855 |#1|) (-10 -7 (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|)))) (-502)) (T -855))
+((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3)))))
+(-10 -7 (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))))
+((-4057 (((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)) 52)))
+(((-856 |#1| |#2|) (-10 -7 (-15 -4057 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|)))) (-1003) (-13 (-779) (-952 (-556 $)) (-558 (-814 |#1|)) (-808 |#1|))) (T -856))
+((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6)))))
+(-10 -7 (-15 -4057 ((-811 |#1| |#2|) (-556 |#2|) (-814 |#1|) (-811 |#1| |#2|))))
+((-4057 (((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)) 14)))
+(((-857 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|)))) (-1003) (-808 |#1|) (-603 |#2|)) (T -857))
+((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3)))))
+(-10 -7 (-15 -4057 ((-807 |#1| |#2| |#3|) |#3| (-814 |#1|) (-807 |#1| |#2| |#3|))))
+((-4057 (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|)) 17 (|has| |#3| (-808 |#1|))) (((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|))) 16)))
+(((-858 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |noBranch|)) (-1003) (-725) (-779) (-13 (-961) (-779) (-808 |#1|)) (-13 (-871 |#4| |#2| |#3|) (-558 (-814 |#1|)))) (T -858))
+((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) (-4057 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|) (-1 (-811 |#1| |#5|) |#3| (-814 |#1|) (-811 |#1| |#5|)))) (IF (|has| |#3| (-808 |#1|)) (-15 -4057 ((-811 |#1| |#5|) |#5| (-814 |#1|) (-811 |#1| |#5|))) |noBranch|))
+((-3820 ((|#2| |#2| (-583 (-1 (-107) |#3|))) 11) ((|#2| |#2| (-1 (-107) |#3|)) 12)))
+(((-859 |#1| |#2| |#3|) (-10 -7 (-15 -3820 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3820 (|#2| |#2| (-583 (-1 (-107) |#3|))))) (-779) (-400 |#1|) (-1108)) (T -859))
+((-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))))
+(-10 -7 (-15 -3820 (|#2| |#2| (-1 (-107) |#3|))) (-15 -3820 (|#2| |#2| (-583 (-1 (-107) |#3|)))))
+((-3820 (((-286 (-517)) (-1073) (-583 (-1 (-107) |#1|))) 16) (((-286 (-517)) (-1073) (-1 (-107) |#1|)) 13)))
+(((-860 |#1|) (-10 -7 (-15 -3820 ((-286 (-517)) (-1073) (-1 (-107) |#1|))) (-15 -3820 ((-286 (-517)) (-1073) (-583 (-1 (-107) |#1|))))) (-1108)) (T -860))
+((-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))))
+(-10 -7 (-15 -3820 ((-286 (-517)) (-1073) (-1 (-107) |#1|))) (-15 -3820 ((-286 (-517)) (-1073) (-583 (-1 (-107) |#1|)))))
+((-4057 (((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)) 25)))
+(((-861 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-1003) (-13 (-509) (-808 |#1|) (-558 (-814 |#1|))) (-909 |#2|)) (T -861))
+((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3)))))
+(-10 -7 (-15 -4057 ((-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))
+((-4057 (((-811 |#1| (-1073)) (-1073) (-814 |#1|) (-811 |#1| (-1073))) 17)))
+(((-862 |#1|) (-10 -7 (-15 -4057 ((-811 |#1| (-1073)) (-1073) (-814 |#1|) (-811 |#1| (-1073))))) (-1003)) (T -862))
+((-4057 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1073))) (-5 *3 (-1073)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5)))))
+(-10 -7 (-15 -4057 ((-811 |#1| (-1073)) (-1073) (-814 |#1|) (-811 |#1| (-1073)))))
+((-3906 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 33)) (-4057 (((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))) 32)))
+(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -4057 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -3906 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|))))) (-1003) (-13 (-961) (-779)) (-13 (-961) (-558 (-814 |#1|)) (-952 |#2|))) (T -863))
+((-3906 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8)))) (-4057 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9)))))
+(-10 -7 (-15 -4057 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-1 |#3| (-583 |#3|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))) (-15 -3906 ((-811 |#1| |#3|) (-583 |#3|) (-583 (-814 |#1|)) (-811 |#1| |#3|) (-1 (-811 |#1| |#3|) |#3| (-814 |#1|) (-811 |#1| |#3|)))))
+((-3357 (((-1069 (-377 (-517))) (-517)) 61)) (-2313 (((-1069 (-517)) (-517)) 64)) (-3682 (((-1069 (-517)) (-517)) 58)) (-1982 (((-517) (-1069 (-517))) 53)) (-3747 (((-1069 (-377 (-517))) (-517)) 47)) (-2765 (((-1069 (-517)) (-517)) 36)) (-2598 (((-1069 (-517)) (-517)) 66)) (-1342 (((-1069 (-517)) (-517)) 65)) (-1781 (((-1069 (-377 (-517))) (-517)) 49)))
+(((-864) (-10 -7 (-15 -1781 ((-1069 (-377 (-517))) (-517))) (-15 -1342 ((-1069 (-517)) (-517))) (-15 -2598 ((-1069 (-517)) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3747 ((-1069 (-377 (-517))) (-517))) (-15 -1982 ((-517) (-1069 (-517)))) (-15 -3682 ((-1069 (-517)) (-517))) (-15 -2313 ((-1069 (-517)) (-517))) (-15 -3357 ((-1069 (-377 (-517))) (-517))))) (T -864))
+((-3357 (*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2313 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-3682 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-1982 (*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-517)) (-5 *1 (-864)))) (-3747 (*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2765 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-1342 (*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) (-1781 (*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(-10 -7 (-15 -1781 ((-1069 (-377 (-517))) (-517))) (-15 -1342 ((-1069 (-517)) (-517))) (-15 -2598 ((-1069 (-517)) (-517))) (-15 -2765 ((-1069 (-517)) (-517))) (-15 -3747 ((-1069 (-377 (-517))) (-517))) (-15 -1982 ((-517) (-1069 (-517)))) (-15 -3682 ((-1069 (-517)) (-517))) (-15 -2313 ((-1069 (-517)) (-517))) (-15 -3357 ((-1069 (-377 (-517))) (-517))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703)) NIL (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 11 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-2889 (($ (-583 |#1|)) 13)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) 8)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 10 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1292 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3847 (((-107) $ (-703)) NIL)) (-2195 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-1672 (($ $ (-583 |#1|)) 24)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 18) (($ $ (-1121 (-517))) NIL)) (-3501 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3141 (((-843) $) 16)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2862 (($ $ $) 22)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 17)) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 23) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1642 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2296 (((-703) $) 14 (|has| $ (-6 -4180)))))
+(((-865 |#1|) (-897 |#1|) (-961)) (T -865))
+NIL
+(-897 |#1|)
+((-2753 (((-449 |#1| |#2|) (-874 |#2|)) 17)) (-4024 (((-221 |#1| |#2|) (-874 |#2|)) 29)) (-3156 (((-874 |#2|) (-449 |#1| |#2|)) 22)) (-3241 (((-221 |#1| |#2|) (-449 |#1| |#2|)) 53)) (-3256 (((-874 |#2|) (-221 |#1| |#2|)) 26)) (-4104 (((-449 |#1| |#2|) (-221 |#1| |#2|)) 44)))
+(((-866 |#1| |#2|) (-10 -7 (-15 -4104 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -3241 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2753 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -3156 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -3256 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -4024 ((-221 |#1| |#2|) (-874 |#2|)))) (-583 (-1073)) (-961)) (T -866))
+((-4024 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)))))
+(-10 -7 (-15 -4104 ((-449 |#1| |#2|) (-221 |#1| |#2|))) (-15 -3241 ((-221 |#1| |#2|) (-449 |#1| |#2|))) (-15 -2753 ((-449 |#1| |#2|) (-874 |#2|))) (-15 -3156 ((-874 |#2|) (-449 |#1| |#2|))) (-15 -3256 ((-874 |#2|) (-221 |#1| |#2|))) (-15 -4024 ((-221 |#1| |#2|) (-874 |#2|))))
+((-1945 (((-583 |#2|) |#2| |#2|) 10)) (-1273 (((-703) (-583 |#1|)) 37 (|has| |#1| (-777)))) (-4002 (((-583 |#2|) |#2|) 11)) (-2026 (((-703) (-583 |#1|) (-517) (-517)) 39 (|has| |#1| (-777)))) (-3495 ((|#1| |#2|) 32 (|has| |#1| (-777)))))
+(((-867 |#1| |#2|) (-10 -7 (-15 -1945 ((-583 |#2|) |#2| |#2|)) (-15 -4002 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3495 (|#1| |#2|)) (-15 -1273 ((-703) (-583 |#1|))) (-15 -2026 ((-703) (-583 |#1|) (-517) (-517)))) |noBranch|)) (-333) (-1130 |#1|)) (T -867))
+((-2026 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1130 *5)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1130 *4)))) (-3495 (*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1130 *2)))) (-4002 (*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4)))) (-1945 (*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -1945 ((-583 |#2|) |#2| |#2|)) (-15 -4002 ((-583 |#2|) |#2|)) (IF (|has| |#1| (-777)) (PROGN (-15 -3495 (|#1| |#2|)) (-15 -1273 ((-703) (-583 |#1|))) (-15 -2026 ((-703) (-583 |#1|) (-517) (-517)))) |noBranch|))
+((-1893 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 18)))
+(((-868 |#1| |#2|) (-10 -7 (-15 -1893 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-961) (-961)) (T -868))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6)))))
+(-10 -7 (-15 -1893 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|))))
+((-2352 (((-1127 |#1| (-874 |#2|)) (-874 |#2|) (-1149 |#1|)) 18)))
+(((-869 |#1| |#2|) (-10 -7 (-15 -2352 ((-1127 |#1| (-874 |#2|)) (-874 |#2|) (-1149 |#1|)))) (-1073) (-961)) (T -869))
+((-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-1149 *5)) (-14 *5 (-1073)) (-4 *6 (-961)) (-5 *2 (-1127 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6)))))
+(-10 -7 (-15 -2352 ((-1127 |#1| (-874 |#2|)) (-874 |#2|) (-1149 |#1|))))
+((-1369 (((-703) $) 69) (((-703) $ (-583 |#4|)) 72)) (-2535 (($ $) 169)) (-2759 (((-388 $) $) 161)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 112)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) 58)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) 57)) (-3388 (($ $ $ |#4|) 74)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 102) (((-623 |#2|) (-623 $)) 95)) (-3534 (($ $) 176) (($ $ |#4|) 179)) (-1201 (((-583 $) $) 61)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 194) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 188)) (-4094 (((-583 $) $) 27)) (-1339 (($ |#2| |#3|) NIL) (($ $ |#4| (-703)) NIL) (($ $ (-583 |#4|) (-583 (-703))) 55)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#4|) 158)) (-3703 (((-3 (-583 $) "failed") $) 41)) (-3401 (((-3 (-583 $) "failed") $) 30)) (-3174 (((-3 (-2 (|:| |var| |#4|) (|:| -2077 (-703))) "failed") $) 45)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 105)) (-2561 (((-388 (-1069 $)) (-1069 $)) 118)) (-2209 (((-388 (-1069 $)) (-1069 $)) 116)) (-3755 (((-388 $) $) 136)) (-2051 (($ $ (-583 (-265 $))) 20) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-583 |#4|) (-583 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-583 |#4|) (-583 $)) NIL)) (-3010 (($ $ |#4|) 76)) (-3645 (((-814 (-349)) $) 208) (((-814 (-517)) $) 201) (((-493) $) 216)) (-3266 ((|#2| $) NIL) (($ $ |#4|) 171)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 150)) (-2720 ((|#2| $ |#3|) NIL) (($ $ |#4| (-703)) 50) (($ $ (-583 |#4|) (-583 (-703))) 53)) (-1328 (((-3 $ "failed") $) 152)) (-1572 (((-107) $ $) 182)))
+(((-870 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -3534 (|#1| |#1| |#4|)) (-15 -3266 (|#1| |#1| |#4|)) (-15 -3010 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -1201 ((-583 |#1|) |#1|)) (-15 -1369 ((-703) |#1| (-583 |#4|))) (-15 -1369 ((-703) |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| |#4|) (|:| -2077 (-703))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1339 (|#1| |#1| |#4| (-703))) (-15 -2711 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -4094 ((-583 |#1|) |#1|)) (-15 -2720 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2720 (|#1| |#1| |#4| (-703))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1339 (|#1| |#2| |#3|)) (-15 -2720 (|#2| |#1| |#3|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3534 (|#1| |#1|))) (-871 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -870))
+NIL
+(-10 -8 (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -1328 ((-3 |#1| "failed") |#1|)) (-15 -1572 ((-107) |#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3870 ((-3 (-1153 |#1|) "failed") (-623 |#1|))) (-15 -3534 (|#1| |#1| |#4|)) (-15 -3266 (|#1| |#1| |#4|)) (-15 -3010 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -1201 ((-583 |#1|) |#1|)) (-15 -1369 ((-703) |#1| (-583 |#4|))) (-15 -1369 ((-703) |#1|)) (-15 -3174 ((-3 (-2 (|:| |var| |#4|) (|:| -2077 (-703))) "failed") |#1|)) (-15 -3703 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -3401 ((-3 (-583 |#1|) "failed") |#1|)) (-15 -1339 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -1339 (|#1| |#1| |#4| (-703))) (-15 -2711 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -4094 ((-583 |#1|) |#1|)) (-15 -2720 (|#1| |#1| (-583 |#4|) (-583 (-703)))) (-15 -2720 (|#1| |#1| |#4| (-703))) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#4| |#1|)) (-15 -2051 (|#1| |#1| (-583 |#4|) (-583 |#2|))) (-15 -2051 (|#1| |#1| |#4| |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -1339 (|#1| |#2| |#3|)) (-15 -2720 (|#2| |#1| |#3|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3534 (|#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#3|) $) 110)) (-2352 (((-1069 $) $ |#3|) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136)) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135)) (-3388 (($ $ $ |#3|) 108 (|has| |#1| (-156)))) (-1212 (($ $) 154)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3621 (((-3 $ "failed") $) 34)) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-1436 (($ $ |#1| |#2| $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1350 (($ (-1069 |#1|) |#3|) 117) (($ (-1069 $) |#3|) 116)) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 120)) (-2349 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 |#2| |#2|) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-1409 (((-3 |#3| "failed") $) 123)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3985 (((-1056) $) 9)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) 113)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3010 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-3127 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3688 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-509))) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517))))))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-871 |#1| |#2| |#3|) (-1184) (-961) (-725) (-779)) (T -871))
+((-3534 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3688 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-3688 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-2720 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-4094 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-2352 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)))) (-2352 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *3)))) (-1409 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2349 (*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) (-2349 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) (-2711 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-871 *4 *5 *3)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) (-1350 (*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) (-3401 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3703 (*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3174 (*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-703)))))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-1369 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-1201 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) (-3388 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3010 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) (-3266 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-3534 (*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) (-2535 (*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-2759 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5)))))
+(-13 (-822 |t#3|) (-296 |t#1| |t#2|) (-280 $) (-478 |t#3| |t#1|) (-478 |t#3| $) (-952 |t#3|) (-347 |t#1|) (-10 -8 (-15 -3688 ((-703) $ |t#3|)) (-15 -3688 ((-583 (-703)) $ (-583 |t#3|))) (-15 -2720 ($ $ |t#3| (-703))) (-15 -2720 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -4094 ((-583 $) $)) (-15 -2352 ((-1069 $) $ |t#3|)) (-15 -2352 ((-1069 |t#1|) $)) (-15 -1409 ((-3 |t#3| "failed") $)) (-15 -2349 ((-703) $ |t#3|)) (-15 -2349 ((-583 (-703)) $ (-583 |t#3|))) (-15 -2711 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |t#3|)) (-15 -1339 ($ $ |t#3| (-703))) (-15 -1339 ($ $ (-583 |t#3|) (-583 (-703)))) (-15 -1350 ($ (-1069 |t#1|) |t#3|)) (-15 -1350 ($ (-1069 $) |t#3|)) (-15 -3401 ((-3 (-583 $) "failed") $)) (-15 -3703 ((-3 (-583 $) "failed") $)) (-15 -3174 ((-3 (-2 (|:| |var| |t#3|) (|:| -2077 (-703))) "failed") $)) (-15 -1369 ((-703) $)) (-15 -1369 ((-703) $ (-583 |t#3|))) (-15 -1364 ((-583 |t#3|) $)) (-15 -1201 ((-583 $) $)) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (IF (|has| |t#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-517)))) (IF (|has| |t#3| (-558 (-814 (-517)))) (-6 (-558 (-814 (-517)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-558 (-814 (-349)))) (IF (|has| |t#3| (-558 (-814 (-349)))) (-6 (-558 (-814 (-349)))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-808 (-517))) (IF (|has| |t#3| (-808 (-517))) (-6 (-808 (-517))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-808 (-349))) (IF (|has| |t#3| (-808 (-349))) (-6 (-808 (-349))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3388 ($ $ $ |t#3|)) (-15 -3010 ($ $ |t#3|))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-6 (-421)) (-15 -3266 ($ $ |t#3|)) (-15 -3534 ($ $)) (-15 -3534 ($ $ |t#3|)) (-15 -2759 ((-388 $) $)) (-15 -2535 ($ $))) |noBranch|) (IF (|has| |t#1| (-6 -4178)) (-6 -4178) |noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) |has| |#1| (-831)))
+((-1364 (((-583 |#2|) |#5|) 36)) (-2352 (((-1069 |#5|) |#5| |#2| (-1069 |#5|)) 23) (((-377 (-1069 |#5|)) |#5| |#2|) 16)) (-1350 ((|#5| (-377 (-1069 |#5|)) |#2|) 30)) (-1409 (((-3 |#2| "failed") |#5|) 61)) (-3703 (((-3 (-583 |#5|) "failed") |#5|) 55)) (-1735 (((-3 (-2 (|:| |val| |#5|) (|:| -2077 (-517))) "failed") |#5|) 45)) (-3401 (((-3 (-583 |#5|) "failed") |#5|) 57)) (-3174 (((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-517))) "failed") |#5|) 48)))
+(((-872 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1364 ((-583 |#2|) |#5|)) (-15 -1409 ((-3 |#2| "failed") |#5|)) (-15 -2352 ((-377 (-1069 |#5|)) |#5| |#2|)) (-15 -1350 (|#5| (-377 (-1069 |#5|)) |#2|)) (-15 -2352 ((-1069 |#5|) |#5| |#2| (-1069 |#5|))) (-15 -3401 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3703 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3174 ((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-517))) "failed") |#5|)) (-15 -1735 ((-3 (-2 (|:| |val| |#5|) (|:| -2077 (-517))) "failed") |#5|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -2256 ($ |#4|)) (-15 -1787 (|#4| $)) (-15 -1800 (|#4| $))))) (T -872))
+((-1735 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-3174 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-3703 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-3401 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-2352 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) (-2352 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1069 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) (-1409 (*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *6)) (-15 -1787 (*6 $)) (-15 -1800 (*6 $))))))) (-1364 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
+(-10 -7 (-15 -1364 ((-583 |#2|) |#5|)) (-15 -1409 ((-3 |#2| "failed") |#5|)) (-15 -2352 ((-377 (-1069 |#5|)) |#5| |#2|)) (-15 -1350 (|#5| (-377 (-1069 |#5|)) |#2|)) (-15 -2352 ((-1069 |#5|) |#5| |#2| (-1069 |#5|))) (-15 -3401 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3703 ((-3 (-583 |#5|) "failed") |#5|)) (-15 -3174 ((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-517))) "failed") |#5|)) (-15 -1735 ((-3 (-2 (|:| |val| |#5|) (|:| -2077 (-517))) "failed") |#5|)))
+((-1893 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23)))
+(((-873 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1893 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-725) (-779) (-961) (-871 |#3| |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (T -873))
+((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7)))))
+(-10 -7 (-15 -1893 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-1073)) $) 15)) (-2352 (((-1069 $) $ (-1073)) 21) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-1073))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 8) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-1073) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-1073) $) NIL)) (-3388 (($ $ $ (-1073)) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-1073)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 (-1073)) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1073) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1073) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) (-1073)) NIL) (($ (-1069 $) (-1073)) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-1073)) NIL)) (-2349 (((-489 (-1073)) $) NIL) (((-703) $ (-1073)) NIL) (((-583 (-703)) $ (-583 (-1073))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 (-1073)) (-489 (-1073))) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1409 (((-3 (-1073) "failed") $) 19)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-1073)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $ (-1073)) 29 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-1073) |#1|) NIL) (($ $ (-583 (-1073)) (-583 |#1|)) NIL) (($ $ (-1073) $) NIL) (($ $ (-583 (-1073)) (-583 $)) NIL)) (-3010 (($ $ (-1073)) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-3688 (((-489 (-1073)) $) NIL) (((-703) $ (-1073)) NIL) (((-583 (-703)) $ (-583 (-1073))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-1073) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-1073) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-1073) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-1073)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 25) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-1073)) 27) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-874 |#1|) (-13 (-871 |#1| (-489 (-1073)) (-1073)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1073))) |noBranch|))) (-961)) (T -874))
+((-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))))
+(-13 (-871 |#1| (-489 (-1073)) (-1073)) (-10 -8 (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1073))) |noBranch|)))
+((-1434 (((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#3| (-703)) 37)) (-2315 (((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703)) 33)) (-2936 (((-2 (|:| -2077 (-703)) (|:| -1931 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)) 52)) (-3827 (((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#5| (-703)) 62 (|has| |#3| (-421)))))
+(((-875 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1434 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2315 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -3827 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |noBranch|) (-15 -2936 ((-2 (|:| -2077 (-703)) (|:| -1931 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703)))) (-725) (-779) (-509) (-871 |#3| |#1| |#2|) (-13 (-333) (-10 -8 (-15 -1787 (|#4| $)) (-15 -1800 (|#4| $)) (-15 -2256 ($ |#4|))))) (T -875))
+((-2936 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*3 $)) (-15 -1800 (*3 $)) (-15 -2256 ($ *3))))))) (-3827 (*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))) (-2315 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))) (-1434 (*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*7 $)) (-15 -1800 (*7 $)) (-15 -2256 ($ *7))))))))
+(-10 -7 (-15 -1434 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#3| (-703))) (-15 -2315 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) (-377 (-517)) (-703))) (IF (|has| |#3| (-421)) (-15 -3827 ((-2 (|:| -2077 (-703)) (|:| -1931 |#5|) (|:| |radicand| |#5|)) |#5| (-703))) |noBranch|) (-15 -2936 ((-2 (|:| -2077 (-703)) (|:| -1931 |#4|) (|:| |radicand| (-583 |#4|))) |#4| (-703))))
+((-1408 (((-998 (-199)) $) 8)) (-1397 (((-998 (-199)) $) 9)) (-2602 (((-583 (-583 (-865 (-199)))) $) 10)) (-2256 (((-787) $) 6)))
+(((-876) (-1184)) (T -876))
+((-2602 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2602 ((-583 (-583 (-865 (-199)))) $)) (-15 -1397 ((-998 (-199)) $)) (-15 -1408 ((-998 (-199)) $))))
+(((-557 (-787)) . T))
+((-3198 (((-3 (-623 |#1|) "failed") |#2| (-843)) 14)))
+(((-877 |#1| |#2|) (-10 -7 (-15 -3198 ((-3 (-623 |#1|) "failed") |#2| (-843)))) (-509) (-593 |#1|)) (T -877))
+((-3198 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5)))))
+(-10 -7 (-15 -3198 ((-3 (-623 |#1|) "failed") |#2| (-843))))
+((-3905 (((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 16)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|) 18)) (-1893 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 13)))
+(((-878 |#1| |#2|) (-10 -7 (-15 -3905 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1893 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1108) (-1108)) (T -878))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-878 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5)))))
+(-10 -7 (-15 -3905 ((-879 |#2|) (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-879 |#1|) |#2|)) (-15 -1893 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) 17 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 16 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 14)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) |#1|) 13)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) 10 (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) 12 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) 11)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) 15) (($ $ (-1121 (-517))) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) NIL)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-2296 (((-703) $) 8 (|has| $ (-6 -4180)))))
+(((-879 |#1|) (-19 |#1|) (-1108)) (T -879))
NIL
(-19 |#1|)
-((-3162 (((-877 |#2|) (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|) 16)) (-3547 ((|#2| (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|) 18)) (-1212 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 13)))
-(((-878 |#1| |#2|) (-10 -7 (-15 -3162 ((-877 |#2|) (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|)) (-15 -1212 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1104) (-1104)) (T -878))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-877 *6)) (-5 *1 (-878 *5 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-877 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-878 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-877 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-877 *5)) (-5 *1 (-878 *6 *5)))))
-(-10 -7 (-15 -3162 ((-877 |#2|) (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-877 |#1|) |#2|)) (-15 -1212 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))
-((-3028 (($ $ (-993 $)) 7) (($ $ (-1070)) 6)))
-(((-879) (-1180)) (T -879))
-((-3028 (*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-879)))) (-3028 (*1 *1 *1 *2) (-12 (-4 *1 (-879)) (-5 *2 (-1070)))))
-(-13 (-10 -8 (-15 -3028 ($ $ (-1070))) (-15 -3028 ($ $ (-993 $)))))
-((-1317 (((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)) (-1070)) 23) (((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070))) 24) (((-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 |#1|))) (-866 |#1|) (-1070) (-866 |#1|) (-1070)) 41)))
-(((-880 |#1|) (-10 -7 (-15 -1317 ((-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 |#1|))) (-866 |#1|) (-1070) (-866 |#1|) (-1070))) (-15 -1317 ((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -1317 ((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)) (-1070)))) (-13 (-331) (-134))) (T -880))
-((-1317 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-5 *5 (-1070)) (-4 *6 (-13 (-331) (-134))) (-5 *2 (-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 *6))) (|:| |prim| (-1064 *6)))) (-5 *1 (-880 *6)))) (-1317 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-331) (-134))) (-5 *2 (-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 *5))) (|:| |prim| (-1064 *5)))) (-5 *1 (-880 *5)))) (-1317 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-1070)) (-4 *5 (-13 (-331) (-134))) (-5 *2 (-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 *5)))) (-5 *1 (-880 *5)))))
-(-10 -7 (-15 -1317 ((-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 |#1|))) (-866 |#1|) (-1070) (-866 |#1|) (-1070))) (-15 -1317 ((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)))) (-15 -1317 ((-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 |#1|))) (|:| |prim| (-1064 |#1|))) (-578 (-866 |#1|)) (-578 (-1070)) (-1070))))
-((-1923 (((-578 |#1|) |#1| |#1|) 42)) (-1628 (((-107) |#1|) 39)) (-1246 ((|#1| |#1|) 64)) (-1856 ((|#1| |#1|) 63)))
-(((-881 |#1|) (-10 -7 (-15 -1628 ((-107) |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -1923 ((-578 |#1|) |#1| |#1|))) (-500)) (T -881))
-((-1923 (*1 *2 *3 *3) (-12 (-5 *2 (-578 *3)) (-5 *1 (-881 *3)) (-4 *3 (-500)))) (-1246 (*1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-500)))) (-1856 (*1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-500)))) (-1628 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-881 *3)) (-4 *3 (-500)))))
-(-10 -7 (-15 -1628 ((-107) |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -1923 ((-578 |#1|) |#1| |#1|)))
-((-3802 (((-1154) (-786)) 9)))
-(((-882) (-10 -7 (-15 -3802 ((-1154) (-786))))) (T -882))
-((-3802 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-882)))))
-(-10 -7 (-15 -3802 ((-1154) (-786))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-3405 (($ $ $) 63 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (-3177 (((-3 $ "failed") $ $) 50 (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-3796 (((-701)) 34 (-12 (|has| |#1| (-336)) (|has| |#2| (-336))))) (-3864 ((|#2| $) 21)) (-3349 ((|#1| $) 20)) (-2540 (($) NIL (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) CONST)) (-2174 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))))) (-2890 (($) NIL (-12 (|has| |#1| (-336)) (|has| |#2| (-336))))) (-1355 (((-107) $) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))))) (-4111 (($ $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-1323 (($ $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-1953 (($ |#1| |#2|) 19)) (-3104 (((-839) $) NIL (-12 (|has| |#1| (-336)) (|has| |#2| (-336))))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 37 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))))) (-3506 (($ (-839)) NIL (-12 (|has| |#1| (-336)) (|has| |#2| (-336))))) (-3708 (((-1018) $) NIL)) (-3097 (($ $ $) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440))))) (-2144 (($ $ $) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440))))) (-3691 (((-786) $) 14)) (-3948 (($ $ (-501)) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440)))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657))))) (($ $ (-839)) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))))) (-1850 (($) 40 (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) CONST)) (-1925 (($) 24 (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))) CONST)) (-3778 (((-107) $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-3768 (((-107) $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-3751 (((-107) $ $) 18)) (-3773 (((-107) $ $) NIL (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-3762 (((-107) $ $) 66 (-1405 (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-777)) (|has| |#2| (-777)))))) (-3803 (($ $ $) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440))))) (-3797 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3790 (($ $ $) 43 (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (** (($ $ (-501)) NIL (-12 (|has| |#1| (-440)) (|has| |#2| (-440)))) (($ $ (-701)) 31 (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657))))) (($ $ (-839)) NIL (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))))) (* (($ (-501) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-701) $) 46 (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (($ (-839) $) NIL (-1405 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (($ $ $) 27 (-1405 (-12 (|has| |#1| (-440)) (|has| |#2| (-440))) (-12 (|has| |#1| (-657)) (|has| |#2| (-657)))))))
-(((-883 |#1| |#2|) (-13 (-1001) (-10 -8 (IF (|has| |#1| (-336)) (IF (|has| |#2| (-336)) (-6 (-336)) |noBranch|) |noBranch|) (IF (|has| |#1| (-657)) (IF (|has| |#2| (-657)) (-6 (-657)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-440)) (IF (|has| |#2| (-440)) (-6 (-440)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |noBranch|) |noBranch|) (IF (|has| |#1| (-777)) (IF (|has| |#2| (-777)) (-6 (-777)) |noBranch|) |noBranch|) (-15 -1953 ($ |#1| |#2|)) (-15 -3349 (|#1| $)) (-15 -3864 (|#2| $)))) (-1001) (-1001)) (T -883))
-((-1953 (*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-3349 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1001)))) (-3864 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1001)))))
-(-13 (-1001) (-10 -8 (IF (|has| |#1| (-336)) (IF (|has| |#2| (-336)) (-6 (-336)) |noBranch|) |noBranch|) (IF (|has| |#1| (-657)) (IF (|has| |#2| (-657)) (-6 (-657)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-440)) (IF (|has| |#2| (-440)) (-6 (-440)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |noBranch|) |noBranch|) (IF (|has| |#1| (-777)) (IF (|has| |#2| (-777)) (-6 (-777)) |noBranch|) |noBranch|) (-15 -1953 ($ |#1| |#2|)) (-15 -3349 (|#1| $)) (-15 -3864 (|#2| $))))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-2213 (($ $ $) 43)) (-3216 (($ $ $) 44)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1323 ((|#1| $) 45)) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-884 |#1|) (-1180) (-777)) (T -884))
-((-1323 (*1 *2 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))) (-2213 (*1 *1 *1 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4167) (-15 -1323 (|t#1| $)) (-15 -3216 ($ $ $)) (-15 -2213 ($ $ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-1774 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|) 84)) (-1855 ((|#2| |#2| |#2|) 82)) (-2545 (((-2 (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|) 86)) (-2251 (((-2 (|:| |coef1| |#2|) (|:| -3664 |#2|)) |#2| |#2|) 88)) (-2646 (((-2 (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|) 106 (|has| |#1| (-419)))) (-3922 (((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 45)) (-4058 (((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 63)) (-3651 (((-2 (|:| |coef1| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 65)) (-3211 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-3119 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701)) 70)) (-2924 (((-2 (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|) 96)) (-3218 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701)) 73)) (-4044 (((-578 (-701)) |#2| |#2|) 81)) (-3175 ((|#1| |#2| |#2|) 41)) (-2998 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|) 104 (|has| |#1| (-419)))) (-1633 ((|#1| |#2| |#2|) 102 (|has| |#1| (-419)))) (-1253 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 43)) (-1291 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|) 62)) (-1749 ((|#1| |#2| |#2|) 60)) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|) 35)) (-1652 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-2755 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-2019 ((|#2| |#2| |#2|) 74)) (-3582 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701)) 68)) (-3269 ((|#2| |#2| |#2| (-701)) 66)) (-3664 ((|#2| |#2| |#2|) 110 (|has| |#1| (-419)))) (-3694 (((-1148 |#2|) (-1148 |#2|) |#1|) 21)) (-2419 (((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|) 38)) (-2102 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|) 94)) (-2532 ((|#1| |#2|) 91)) (-3761 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701)) 72)) (-2980 ((|#2| |#2| |#2| (-701)) 71)) (-3222 (((-578 |#2|) |#2| |#2|) 79)) (-3446 ((|#2| |#2| |#1| |#1| (-701)) 49)) (-2224 ((|#1| |#1| |#1| (-701)) 48)) (* (((-1148 |#2|) |#1| (-1148 |#2|)) 16)))
-(((-885 |#1| |#2|) (-10 -7 (-15 -1749 (|#1| |#2| |#2|)) (-15 -1291 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -4058 ((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3651 ((-2 (|:| |coef1| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3269 (|#2| |#2| |#2| (-701))) (-15 -3582 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -3119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -2980 (|#2| |#2| |#2| (-701))) (-15 -3761 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -3218 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -2019 (|#2| |#2| |#2|)) (-15 -2755 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3211 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1774 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2545 ((-2 (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2251 ((-2 (|:| |coef1| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2532 (|#1| |#2|)) (-15 -2102 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|)) (-15 -2924 ((-2 (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|)) (-15 -3222 ((-578 |#2|) |#2| |#2|)) (-15 -4044 ((-578 (-701)) |#2| |#2|)) (IF (|has| |#1| (-419)) (PROGN (-15 -1633 (|#1| |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|)) (-15 -2646 ((-2 (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|)) (-15 -3664 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1148 |#2|) |#1| (-1148 |#2|))) (-15 -3694 ((-1148 |#2|) (-1148 |#2|) |#1|)) (-15 -2352 ((-2 (|:| -3189 |#1|) (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|)) (-15 -2419 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|)) (-15 -2224 (|#1| |#1| |#1| (-701))) (-15 -3446 (|#2| |#2| |#1| |#1| (-701))) (-15 -1652 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3175 (|#1| |#2| |#2|)) (-15 -1253 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3922 ((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|))) (-508) (-1125 |#1|)) (T -885))
-((-3922 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1253 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-3175 (*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) (-1652 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-3446 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-2224 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *2 (-508)) (-5 *1 (-885 *2 *4)) (-4 *4 (-1125 *2)))) (-2419 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2352 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3189 *4) (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-3694 (*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-508)) (-5 *1 (-885 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-508)) (-5 *1 (-885 *3 *4)))) (-3664 (*1 *2 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-2646 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1633 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2998 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1633 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1633 (*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-4 *2 (-419)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) (-4044 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-701))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-3222 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2924 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2532 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2102 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2532 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2532 (*1 *2 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) (-2251 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2545 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1774 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1855 (*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-3211 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2755 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-2019 (*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) (-3218 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))) (-3761 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))) (-2980 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-508)) (-5 *1 (-885 *4 *2)) (-4 *2 (-1125 *4)))) (-3119 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))) (-3582 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))) (-3269 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-508)) (-5 *1 (-885 *4 *2)) (-4 *2 (-1125 *4)))) (-3651 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-4058 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1291 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) (-1749 (*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))))
-(-10 -7 (-15 -1749 (|#1| |#2| |#2|)) (-15 -1291 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -4058 ((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3651 ((-2 (|:| |coef1| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3269 (|#2| |#2| |#2| (-701))) (-15 -3582 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -3119 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -2980 (|#2| |#2| |#2| (-701))) (-15 -3761 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -3218 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-701))) (-15 -2019 (|#2| |#2| |#2|)) (-15 -2755 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3211 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1774 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2545 ((-2 (|:| |coef2| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2251 ((-2 (|:| |coef1| |#2|) (|:| -3664 |#2|)) |#2| |#2|)) (-15 -2532 (|#1| |#2|)) (-15 -2102 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|)) (-15 -2924 ((-2 (|:| |coef2| |#2|) (|:| -2532 |#1|)) |#2|)) (-15 -3222 ((-578 |#2|) |#2| |#2|)) (-15 -4044 ((-578 (-701)) |#2| |#2|)) (IF (|has| |#1| (-419)) (PROGN (-15 -1633 (|#1| |#2| |#2|)) (-15 -2998 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|)) (-15 -2646 ((-2 (|:| |coef2| |#2|) (|:| -1633 |#1|)) |#2| |#2|)) (-15 -3664 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1148 |#2|) |#1| (-1148 |#2|))) (-15 -3694 ((-1148 |#2|) (-1148 |#2|) |#1|)) (-15 -2352 ((-2 (|:| -3189 |#1|) (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|)) (-15 -2419 ((-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) |#2| |#2|)) (-15 -2224 (|#1| |#1| |#1| (-701))) (-15 -3446 (|#2| |#2| |#1| |#1| (-701))) (-15 -1652 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3175 (|#1| |#2| |#2|)) (-15 -1253 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)) (-15 -3922 ((-2 (|:| |coef2| |#2|) (|:| -1749 |#1|)) |#2| |#2|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) 26)) (-2540 (($) NIL T CONST)) (-3440 (((-578 (-578 (-501))) (-578 (-501))) 28)) (-2593 (((-501) $) 44)) (-3273 (($ (-578 (-501))) 17)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1248 (((-578 (-501)) $) 11)) (-3097 (($ $) 31)) (-3691 (((-786) $) 42) (((-578 (-501)) $) 9)) (-1850 (($) 7 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 19)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 18)) (-3790 (($ $ $) 20)) (* (($ (-701) $) 24) (($ (-839) $) NIL)))
-(((-886) (-13 (-727) (-556 (-578 (-501))) (-10 -8 (-15 -3273 ($ (-578 (-501)))) (-15 -3440 ((-578 (-578 (-501))) (-578 (-501)))) (-15 -2593 ((-501) $)) (-15 -3097 ($ $)) (-15 -3691 ((-578 (-501)) $))))) (T -886))
-((-3273 (*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-886)))) (-3440 (*1 *2 *3) (-12 (-5 *2 (-578 (-578 (-501)))) (-5 *1 (-886)) (-5 *3 (-578 (-501))))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-886)))) (-3097 (*1 *1 *1) (-5 *1 (-886))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-886)))))
-(-13 (-727) (-556 (-578 (-501))) (-10 -8 (-15 -3273 ($ (-578 (-501)))) (-15 -3440 ((-578 (-578 (-501))) (-578 (-501)))) (-15 -2593 ((-501) $)) (-15 -3097 ($ $)) (-15 -3691 ((-578 (-501)) $))))
-((-3803 (($ $ |#2|) 30)) (-3797 (($ $) 22) (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-375 (-501)) $) 26) (($ $ (-375 (-501))) 28)))
-(((-887 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|))) (-888 |#2| |#3| |#4|) (-959) (-722) (-777)) (T -887))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-375 (-501)))) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 -3803 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 * (|#1| (-839) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 |#3|) $) 76)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-3331 (((-107) $) 75)) (-1355 (((-107) $) 31)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| |#2|) 63) (($ $ |#3| |#2|) 78) (($ $ (-578 |#3|) (-578 |#2|)) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-1201 ((|#2| $) 66)) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49 (|has| |#1| (-156)))) (-2495 ((|#1| $ |#2|) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501)))))))
-(((-888 |#1| |#2| |#3|) (-1180) (-959) (-722) (-777)) (T -888))
-((-3850 (*1 *2 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-722)) (-4 *4 (-777)) (-4 *2 (-959)))) (-3845 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *4 (-777)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *2 (-722)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-959)) (-4 *3 (-722)) (-4 *2 (-777)))) (-3787 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 *5)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-722)) (-4 *6 (-777)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *5 (-777)) (-5 *2 (-578 *5)))) (-3331 (*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *5 (-777)) (-5 *2 (-107)))) (-1267 (*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *4 (-777)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -3787 ($ $ |t#3| |t#2|)) (-15 -3787 ($ $ (-578 |t#3|) (-578 |t#2|))) (-15 -3845 ($ $)) (-15 -3850 (|t#1| $)) (-15 -1201 (|t#2| $)) (-15 -3800 ((-578 |t#3|) $)) (-15 -3331 ((-107) $)) (-15 -1267 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-260) |has| |#1| (-508)) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3283 (((-991 (-199)) $) 8)) (-1236 (((-991 (-199)) $) 9)) (-3096 (((-991 (-199)) $) 10)) (-2616 (((-578 (-578 (-863 (-199)))) $) 11)) (-3691 (((-786) $) 6)))
-(((-889) (-1180)) (T -889))
-((-2616 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-578 (-578 (-863 (-199))))))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199))))) (-1236 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199))))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199))))))
-(-13 (-555 (-786)) (-10 -8 (-15 -2616 ((-578 (-578 (-863 (-199)))) $)) (-15 -3096 ((-991 (-199)) $)) (-15 -1236 ((-991 (-199)) $)) (-15 -3283 ((-991 (-199)) $))))
-(((-555 (-786)) . T))
-((-3800 (((-578 |#4|) $) 23)) (-3482 (((-107) $) 47)) (-1189 (((-107) $) 46)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#4|) 35)) (-2772 (((-107) $) 48)) (-2606 (((-107) $ $) 54)) (-1408 (((-107) $ $) 57)) (-1662 (((-107) $) 52)) (-4110 (((-578 |#5|) (-578 |#5|) $) 89)) (-2339 (((-578 |#5|) (-578 |#5|) $) 86)) (-1852 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3453 (((-578 |#4|) $) 27)) (-1479 (((-107) |#4| $) 29)) (-2200 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-1638 (($ $ |#4|) 32)) (-2482 (($ $ |#4|) 31)) (-3737 (($ $ |#4|) 33)) (-3751 (((-107) $ $) 39)))
-(((-890 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1189 ((-107) |#1|)) (-15 -4110 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -2339 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -1852 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2200 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2772 ((-107) |#1|)) (-15 -1408 ((-107) |#1| |#1|)) (-15 -2606 ((-107) |#1| |#1|)) (-15 -1662 ((-107) |#1|)) (-15 -3482 ((-107) |#1|)) (-15 -2861 ((-2 (|:| |under| |#1|) (|:| -3383 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1638 (|#1| |#1| |#4|)) (-15 -3737 (|#1| |#1| |#4|)) (-15 -2482 (|#1| |#1| |#4|)) (-15 -1479 ((-107) |#4| |#1|)) (-15 -3453 ((-578 |#4|) |#1|)) (-15 -3800 ((-578 |#4|) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-891 |#2| |#3| |#4| |#5|) (-959) (-723) (-777) (-972 |#2| |#3| |#4|)) (T -890))
-NIL
-(-10 -8 (-15 -1189 ((-107) |#1|)) (-15 -4110 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -2339 ((-578 |#5|) (-578 |#5|) |#1|)) (-15 -1852 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2200 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2772 ((-107) |#1|)) (-15 -1408 ((-107) |#1| |#1|)) (-15 -2606 ((-107) |#1| |#1|)) (-15 -1662 ((-107) |#1|)) (-15 -3482 ((-107) |#1|)) (-15 -2861 ((-2 (|:| |under| |#1|) (|:| -3383 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1638 (|#1| |#1| |#4|)) (-15 -3737 (|#1| |#1| |#4|)) (-15 -2482 (|#1| |#1| |#4|)) (-15 -1479 ((-107) |#4| |#1|)) (-15 -3453 ((-578 |#4|) |#1|)) (-15 -3800 ((-578 |#4|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167)))) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167)))) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-3708 (((-1018) $) 10)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167)))))
-(((-891 |#1| |#2| |#3| |#4|) (-1180) (-959) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -891))
-((-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *1 (-891 *3 *4 *5 *6)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *1 (-891 *3 *4 *5 *6)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-972 *3 *4 *2)) (-4 *2 (-777)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))) (-3453 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))) (-1479 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-107)))) (-2482 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2)))) (-3737 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2)))) (-1638 (*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2)))) (-2861 (*1 *2 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3383 *1) (|:| |upper| *1))) (-4 *1 (-891 *4 *5 *3 *6)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-1662 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))) (-2606 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))) (-1408 (*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))) (-2200 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1852 (*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2339 (*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)))) (-4110 (*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)))) (-1189 (*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))))
-(-13 (-1001) (-138 |t#4|) (-555 (-578 |t#4|)) (-10 -8 (-6 -4167) (-15 -3765 ((-3 $ "failed") (-578 |t#4|))) (-15 -3490 ($ (-578 |t#4|))) (-15 -2361 (|t#3| $)) (-15 -3800 ((-578 |t#3|) $)) (-15 -3453 ((-578 |t#3|) $)) (-15 -1479 ((-107) |t#3| $)) (-15 -2482 ($ $ |t#3|)) (-15 -3737 ($ $ |t#3|)) (-15 -1638 ($ $ |t#3|)) (-15 -2861 ((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |t#3|)) (-15 -3482 ((-107) $)) (IF (|has| |t#1| (-508)) (PROGN (-15 -1662 ((-107) $)) (-15 -2606 ((-107) $ $)) (-15 -1408 ((-107) $ $)) (-15 -2772 ((-107) $)) (-15 -2200 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1852 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2339 ((-578 |t#4|) (-578 |t#4|) $)) (-15 -4110 ((-578 |t#4|) (-578 |t#4|) $)) (-15 -1189 ((-107) $))) |noBranch|)))
-(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-1001) . T) ((-1104) . T))
-((-3115 (((-578 |#4|) |#4| |#4|) 114)) (-2031 (((-578 |#4|) (-578 |#4|) (-107)) 103 (|has| |#1| (-419))) (((-578 |#4|) (-578 |#4|)) 104 (|has| |#1| (-419)))) (-1598 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 34)) (-2332 (((-107) |#4|) 33)) (-3267 (((-578 |#4|) |#4|) 100 (|has| |#1| (-419)))) (-1937 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-107) |#4|) (-578 |#4|)) 19)) (-2034 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|)) 21)) (-2687 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|)) 22)) (-1689 (((-3 (-2 (|:| |bas| (-443 |#1| |#2| |#3| |#4|)) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|)) 72)) (-3655 (((-578 |#4|) (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-3398 (((-578 |#4|) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 107)) (-1409 (((-578 |#4|) (-578 |#4|)) 106)) (-2504 (((-578 |#4|) (-578 |#4|) (-578 |#4|) (-107)) 47) (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 49)) (-1202 ((|#4| |#4| (-578 |#4|)) 48)) (-2592 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 110 (|has| |#1| (-419)))) (-3246 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 113 (|has| |#1| (-419)))) (-3111 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 112 (|has| |#1| (-419)))) (-1208 (((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|))) 86) (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 88) (((-578 |#4|) (-578 |#4|) |#4|) 117) (((-578 |#4|) |#4| |#4|) 115) (((-578 |#4|) (-578 |#4|)) 87)) (-3243 (((-578 |#4|) (-578 |#4|) (-578 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-276))))) (-3402 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 40)) (-2279 (((-107) (-578 |#4|)) 61)) (-3589 (((-107) (-578 |#4|) (-578 (-578 |#4|))) 52)) (-2628 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 28)) (-2367 (((-107) |#4|) 27)) (-2205 (((-578 |#4|) (-578 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-276))))) (-1707 (((-578 |#4|) (-578 |#4|)) 95 (-12 (|has| |#1| (-134)) (|has| |#1| (-276))))) (-1695 (((-578 |#4|) (-578 |#4|)) 65)) (-2248 (((-578 |#4|) (-578 |#4|)) 78)) (-2151 (((-107) (-578 |#4|) (-578 |#4|)) 50)) (-2521 (((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|)) 38)) (-3410 (((-107) |#4|) 35)))
-(((-892 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1208 ((-578 |#4|) (-578 |#4|))) (-15 -1208 ((-578 |#4|) |#4| |#4|)) (-15 -1409 ((-578 |#4|) (-578 |#4|))) (-15 -3115 ((-578 |#4|) |#4| |#4|)) (-15 -1208 ((-578 |#4|) (-578 |#4|) |#4|)) (-15 -1208 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -1208 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|)))) (-15 -2151 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3589 ((-107) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2279 ((-107) (-578 |#4|))) (-15 -1937 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-107) |#4|) (-578 |#4|))) (-15 -2034 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|))) (-15 -2687 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|))) (-15 -3402 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2332 ((-107) |#4|)) (-15 -1598 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2367 ((-107) |#4|)) (-15 -2628 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -3410 ((-107) |#4|)) (-15 -2521 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2504 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2504 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-107))) (-15 -1202 (|#4| |#4| (-578 |#4|))) (-15 -1695 ((-578 |#4|) (-578 |#4|))) (-15 -1689 ((-3 (-2 (|:| |bas| (-443 |#1| |#2| |#3| |#4|)) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|))) (-15 -2248 ((-578 |#4|) (-578 |#4|))) (-15 -3655 ((-578 |#4|) (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3398 ((-578 |#4|) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-419)) (PROGN (-15 -3267 ((-578 |#4|) |#4|)) (-15 -2031 ((-578 |#4|) (-578 |#4|))) (-15 -2031 ((-578 |#4|) (-578 |#4|) (-107))) (-15 -2592 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -3111 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -3246 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |noBranch|) (IF (|has| |#1| (-276)) (IF (|has| |#1| (-134)) (PROGN (-15 -1707 ((-578 |#4|) (-578 |#4|))) (-15 -2205 ((-578 |#4|) (-578 |#4|))) (-15 -3243 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |noBranch|) |noBranch|)) (-508) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -892))
-((-3243 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2205 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1707 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3246 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3111 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2592 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2031 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-107)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2031 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-3267 (*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-3398 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-892 *5 *6 *7 *8)))) (-3655 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-578 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *1 (-892 *6 *7 *8 *9)))) (-2248 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1689 (*1 *2 *3) (|partial| -12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-443 *4 *5 *6 *7)) (|:| -2425 (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-1695 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1202 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *2)))) (-2504 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-107)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7)))) (-2504 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-3410 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-2628 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2367 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-1598 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2332 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-107) *8))) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2034 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-107) *8))) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-1937 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *7)))) (-3589 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *5 *6 *7 *8)))) (-2151 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *7)))) (-1208 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-578 *7) (-578 *7))) (-5 *2 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7)))) (-1208 (*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1208 (*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *3)))) (-3115 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) (-1208 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) (-1208 (*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1208 ((-578 |#4|) (-578 |#4|))) (-15 -1208 ((-578 |#4|) |#4| |#4|)) (-15 -1409 ((-578 |#4|) (-578 |#4|))) (-15 -3115 ((-578 |#4|) |#4| |#4|)) (-15 -1208 ((-578 |#4|) (-578 |#4|) |#4|)) (-15 -1208 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -1208 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-1 (-578 |#4|) (-578 |#4|)))) (-15 -2151 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3589 ((-107) (-578 |#4|) (-578 (-578 |#4|)))) (-15 -2279 ((-107) (-578 |#4|))) (-15 -1937 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-1 (-107) |#4|) (-578 |#4|))) (-15 -2034 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|))) (-15 -2687 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 (-1 (-107) |#4|)) (-578 |#4|))) (-15 -3402 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2332 ((-107) |#4|)) (-15 -1598 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2367 ((-107) |#4|)) (-15 -2628 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -3410 ((-107) |#4|)) (-15 -2521 ((-2 (|:| |goodPols| (-578 |#4|)) (|:| |badPols| (-578 |#4|))) (-578 |#4|))) (-15 -2504 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -2504 ((-578 |#4|) (-578 |#4|) (-578 |#4|) (-107))) (-15 -1202 (|#4| |#4| (-578 |#4|))) (-15 -1695 ((-578 |#4|) (-578 |#4|))) (-15 -1689 ((-3 (-2 (|:| |bas| (-443 |#1| |#2| |#3| |#4|)) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|))) (-15 -2248 ((-578 |#4|) (-578 |#4|))) (-15 -3655 ((-578 |#4|) (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3398 ((-578 |#4|) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-419)) (PROGN (-15 -3267 ((-578 |#4|) |#4|)) (-15 -2031 ((-578 |#4|) (-578 |#4|))) (-15 -2031 ((-578 |#4|) (-578 |#4|) (-107))) (-15 -2592 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -3111 ((-578 |#4|) (-578 |#4|) (-578 |#4|))) (-15 -3246 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |noBranch|) (IF (|has| |#1| (-276)) (IF (|has| |#1| (-134)) (PROGN (-15 -1707 ((-578 |#4|) (-578 |#4|))) (-15 -2205 ((-578 |#4|) (-578 |#4|))) (-15 -3243 ((-578 |#4|) (-578 |#4|) (-578 |#4|)))) |noBranch|) |noBranch|))
-((-1315 (((-2 (|:| R (-621 |#1|)) (|:| A (-621 |#1|)) (|:| |Ainv| (-621 |#1|))) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-3382 (((-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|)) 35)) (-1821 (((-621 |#1|) (-621 |#1|) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
-(((-893 |#1|) (-10 -7 (-15 -1315 ((-2 (|:| R (-621 |#1|)) (|:| A (-621 |#1|)) (|:| |Ainv| (-621 |#1|))) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1821 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3382 ((-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|)))) (-331)) (T -893))
-((-3382 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| C (-621 *5)) (|:| |g| (-1148 *5))))) (-5 *1 (-893 *5)) (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)))) (-1821 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-621 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-5 *1 (-893 *5)))) (-1315 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-331)) (-5 *2 (-2 (|:| R (-621 *6)) (|:| A (-621 *6)) (|:| |Ainv| (-621 *6)))) (-5 *1 (-893 *6)) (-5 *3 (-621 *6)))))
-(-10 -7 (-15 -1315 ((-2 (|:| R (-621 |#1|)) (|:| A (-621 |#1|)) (|:| |Ainv| (-621 |#1|))) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1821 ((-621 |#1|) (-621 |#1|) (-621 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3382 ((-578 (-2 (|:| C (-621 |#1|)) (|:| |g| (-1148 |#1|)))) (-621 |#1|) (-1148 |#1|))))
-((-1559 (((-373 |#4|) |#4|) 47)))
-(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1559 ((-373 |#4|) |#4|))) (-777) (-723) (-419) (-870 |#3| |#2| |#1|)) (T -894))
-((-1559 (*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-419)) (-5 *2 (-373 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4)))))
-(-10 -7 (-15 -1559 ((-373 |#4|) |#4|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2563 (($ (-701)) 112 (|has| |#1| (-23)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-1934 (((-501) (-1 (-107) |#1|) $) 97) (((-501) |#1| $) 96 (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) 95 (|has| |#1| (-1001)))) (-1801 (($ (-578 |#1|)) 118)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) 105 (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3203 ((|#1| $) 102 (-12 (|has| |#1| (-959)) (|has| |#1| (-916))))) (-3155 (((-107) $ (-701)) 10)) (-4139 ((|#1| $) 103 (-12 (|has| |#1| (-959)) (|has| |#1| (-916))))) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-3718 (($ $ (-578 |#1|)) 115)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1293 ((|#1| $ $) 106 (|has| |#1| (-959)))) (-3613 (((-839) $) 117)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-2220 (($ $ $) 104)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490)))) (($ (-578 |#1|)) 116)) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 83 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 85 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 82 (|has| |#1| (-777)))) (-3797 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-3790 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-501) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-657))) (($ $ |#1|) 107 (|has| |#1| (-657)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-895 |#1|) (-1180) (-959)) (T -895))
-((-1801 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-895 *3)))) (-3613 (*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-959)) (-5 *2 (-839)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-895 *3)))) (-2220 (*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-959)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-895 *3)) (-4 *3 (-959)))))
-(-13 (-1147 |t#1|) (-10 -8 (-15 -1801 ($ (-578 |t#1|))) (-15 -3613 ((-839) $)) (-15 -1248 ($ (-578 |t#1|))) (-15 -2220 ($ $ $)) (-15 -3718 ($ $ (-578 |t#1|)))))
-(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-340 |#1|) . T) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-19 |#1|) . T) ((-777) |has| |#1| (-777)) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1104) . T) ((-1147 |#1|) . T))
-((-1212 (((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)) 17)))
-(((-896 |#1| |#2|) (-10 -7 (-15 -1212 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|)))) (-959) (-959)) (T -896))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-863 *6)) (-5 *1 (-896 *5 *6)))))
-(-10 -7 (-15 -1212 ((-863 |#2|) (-1 |#2| |#1|) (-863 |#1|))))
-((-2301 ((|#1| (-863 |#1|)) 13)) (-1687 ((|#1| (-863 |#1|)) 12)) (-3105 ((|#1| (-863 |#1|)) 11)) (-2477 ((|#1| (-863 |#1|)) 15)) (-3052 ((|#1| (-863 |#1|)) 21)) (-2362 ((|#1| (-863 |#1|)) 14)) (-1715 ((|#1| (-863 |#1|)) 16)) (-3531 ((|#1| (-863 |#1|)) 20)) (-3479 ((|#1| (-863 |#1|)) 19)))
-(((-897 |#1|) (-10 -7 (-15 -3105 (|#1| (-863 |#1|))) (-15 -1687 (|#1| (-863 |#1|))) (-15 -2301 (|#1| (-863 |#1|))) (-15 -2362 (|#1| (-863 |#1|))) (-15 -2477 (|#1| (-863 |#1|))) (-15 -1715 (|#1| (-863 |#1|))) (-15 -3479 (|#1| (-863 |#1|))) (-15 -3531 (|#1| (-863 |#1|))) (-15 -3052 (|#1| (-863 |#1|)))) (-959)) (T -897))
-((-3052 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-1715 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-1687 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(-10 -7 (-15 -3105 (|#1| (-863 |#1|))) (-15 -1687 (|#1| (-863 |#1|))) (-15 -2301 (|#1| (-863 |#1|))) (-15 -2362 (|#1| (-863 |#1|))) (-15 -2477 (|#1| (-863 |#1|))) (-15 -1715 (|#1| (-863 |#1|))) (-15 -3479 (|#1| (-863 |#1|))) (-15 -3531 (|#1| (-863 |#1|))) (-15 -3052 (|#1| (-863 |#1|))))
-((-1467 (((-3 |#1| "failed") |#1|) 18)) (-2022 (((-3 |#1| "failed") |#1|) 6)) (-2851 (((-3 |#1| "failed") |#1|) 16)) (-3609 (((-3 |#1| "failed") |#1|) 4)) (-2994 (((-3 |#1| "failed") |#1|) 20)) (-3235 (((-3 |#1| "failed") |#1|) 8)) (-2604 (((-3 |#1| "failed") |#1| (-701)) 1)) (-2371 (((-3 |#1| "failed") |#1|) 3)) (-2829 (((-3 |#1| "failed") |#1|) 2)) (-3255 (((-3 |#1| "failed") |#1|) 21)) (-1602 (((-3 |#1| "failed") |#1|) 9)) (-3125 (((-3 |#1| "failed") |#1|) 19)) (-2107 (((-3 |#1| "failed") |#1|) 7)) (-3202 (((-3 |#1| "failed") |#1|) 17)) (-2926 (((-3 |#1| "failed") |#1|) 5)) (-2872 (((-3 |#1| "failed") |#1|) 24)) (-1360 (((-3 |#1| "failed") |#1|) 12)) (-2601 (((-3 |#1| "failed") |#1|) 22)) (-1510 (((-3 |#1| "failed") |#1|) 10)) (-3153 (((-3 |#1| "failed") |#1|) 26)) (-2009 (((-3 |#1| "failed") |#1|) 14)) (-2098 (((-3 |#1| "failed") |#1|) 27)) (-2445 (((-3 |#1| "failed") |#1|) 15)) (-1311 (((-3 |#1| "failed") |#1|) 25)) (-2418 (((-3 |#1| "failed") |#1|) 13)) (-1820 (((-3 |#1| "failed") |#1|) 23)) (-2413 (((-3 |#1| "failed") |#1|) 11)))
-(((-898 |#1|) (-1180) (-1090)) (T -898))
-((-2098 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3153 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1311 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2872 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1820 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2601 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3255 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2994 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3125 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1467 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3202 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2851 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2445 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2009 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2418 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1360 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2413 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1510 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-1602 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3235 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2107 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2022 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2926 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-3609 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2371 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2829 (*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))) (-2604 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(-13 (-10 -7 (-15 -2604 ((-3 |t#1| "failed") |t#1| (-701))) (-15 -2829 ((-3 |t#1| "failed") |t#1|)) (-15 -2371 ((-3 |t#1| "failed") |t#1|)) (-15 -3609 ((-3 |t#1| "failed") |t#1|)) (-15 -2926 ((-3 |t#1| "failed") |t#1|)) (-15 -2022 ((-3 |t#1| "failed") |t#1|)) (-15 -2107 ((-3 |t#1| "failed") |t#1|)) (-15 -3235 ((-3 |t#1| "failed") |t#1|)) (-15 -1602 ((-3 |t#1| "failed") |t#1|)) (-15 -1510 ((-3 |t#1| "failed") |t#1|)) (-15 -2413 ((-3 |t#1| "failed") |t#1|)) (-15 -1360 ((-3 |t#1| "failed") |t#1|)) (-15 -2418 ((-3 |t#1| "failed") |t#1|)) (-15 -2009 ((-3 |t#1| "failed") |t#1|)) (-15 -2445 ((-3 |t#1| "failed") |t#1|)) (-15 -2851 ((-3 |t#1| "failed") |t#1|)) (-15 -3202 ((-3 |t#1| "failed") |t#1|)) (-15 -1467 ((-3 |t#1| "failed") |t#1|)) (-15 -3125 ((-3 |t#1| "failed") |t#1|)) (-15 -2994 ((-3 |t#1| "failed") |t#1|)) (-15 -3255 ((-3 |t#1| "failed") |t#1|)) (-15 -2601 ((-3 |t#1| "failed") |t#1|)) (-15 -1820 ((-3 |t#1| "failed") |t#1|)) (-15 -2872 ((-3 |t#1| "failed") |t#1|)) (-15 -1311 ((-3 |t#1| "failed") |t#1|)) (-15 -3153 ((-3 |t#1| "failed") |t#1|)) (-15 -2098 ((-3 |t#1| "failed") |t#1|))))
-((-1512 ((|#4| |#4| (-578 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-1827 ((|#4| |#4| (-578 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1212 ((|#4| (-1 |#4| (-866 |#1|)) |#4|) 30)))
-(((-899 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1827 (|#4| |#4| |#3|)) (-15 -1827 (|#4| |#4| (-578 |#3|))) (-15 -1512 (|#4| |#4| |#3|)) (-15 -1512 (|#4| |#4| (-578 |#3|))) (-15 -1212 (|#4| (-1 |#4| (-866 |#1|)) |#4|))) (-959) (-723) (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070))))) (-870 (-866 |#1|) |#2| |#3|)) (T -899))
-((-1212 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-866 *4))) (-4 *4 (-959)) (-4 *2 (-870 (-866 *4) *5 *6)) (-4 *5 (-723)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *6 *2)))) (-1512 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *4 (-959)) (-4 *5 (-723)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-870 (-866 *4) *5 *6)))) (-1512 (*1 *2 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-870 (-866 *4) *5 *3)))) (-1827 (*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *4 (-959)) (-4 *5 (-723)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-870 (-866 *4) *5 *6)))) (-1827 (*1 *2 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-870 (-866 *4) *5 *3)))))
-(-10 -7 (-15 -1827 (|#4| |#4| |#3|)) (-15 -1827 (|#4| |#4| (-578 |#3|))) (-15 -1512 (|#4| |#4| |#3|)) (-15 -1512 (|#4| |#4| (-578 |#3|))) (-15 -1212 (|#4| (-1 |#4| (-866 |#1|)) |#4|)))
-((-1268 ((|#2| |#3|) 34)) (-3819 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|) 71)) (-1897 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) 86)))
-(((-900 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|)) (-15 -1268 (|#2| |#3|))) (-318) (-1125 |#1|) (-1125 |#2|) (-655 |#2| |#3|)) (T -900))
-((-1268 (*1 *2 *3) (-12 (-4 *3 (-1125 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-900 *4 *2 *3 *5)) (-4 *4 (-318)) (-4 *5 (-655 *2 *3)))) (-3819 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-655 *3 *5)))) (-1897 (*1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -4119 (-621 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-621 *4)))) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-655 *4 *5)))))
-(-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|)) (-15 -1268 (|#2| |#3|)))
-((-3736 (((-107) $ $) NIL)) (-2968 (((-3 (-107) "failed") $) 67)) (-1780 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-276))))) (-1230 (($ $ (-3 (-107) "failed")) 68)) (-1725 (($ (-578 |#4|) |#4|) 24)) (-3460 (((-1053) $) NIL)) (-3742 (($ $) 65)) (-3708 (((-1018) $) NIL)) (-1407 (((-107) $) 66)) (-3122 (($) 29)) (-2524 ((|#4| $) 70)) (-2546 (((-578 |#4|) $) 69)) (-3691 (((-786) $) 64)) (-3751 (((-107) $ $) NIL)))
-(((-901 |#1| |#2| |#3| |#4|) (-13 (-1001) (-555 (-786)) (-10 -8 (-15 -3122 ($)) (-15 -1725 ($ (-578 |#4|) |#4|)) (-15 -2968 ((-3 (-107) "failed") $)) (-15 -1230 ($ $ (-3 (-107) "failed"))) (-15 -1407 ((-107) $)) (-15 -2546 ((-578 |#4|) $)) (-15 -2524 (|#4| $)) (-15 -3742 ($ $)) (IF (|has| |#1| (-276)) (IF (|has| |#1| (-134)) (-15 -1780 ($ $)) |noBranch|) |noBranch|))) (-419) (-777) (-723) (-870 |#1| |#3| |#2|)) (T -901))
-((-3122 (*1 *1) (-12 (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))) (-1725 (*1 *1 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-870 *4 *6 *5)) (-4 *4 (-419)) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *1 (-901 *4 *5 *6 *3)))) (-2968 (*1 *2 *1) (|partial| -12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) (-1230 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) (-1407 (*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) (-2546 (*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-578 *6)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) (-2524 (*1 *2 *1) (-12 (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)))) (-3742 (*1 *1 *1) (-12 (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))) (-1780 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-276)) (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))))
-(-13 (-1001) (-555 (-786)) (-10 -8 (-15 -3122 ($)) (-15 -1725 ($ (-578 |#4|) |#4|)) (-15 -2968 ((-3 (-107) "failed") $)) (-15 -1230 ($ $ (-3 (-107) "failed"))) (-15 -1407 ((-107) $)) (-15 -2546 ((-578 |#4|) $)) (-15 -2524 (|#4| $)) (-15 -3742 ($ $)) (IF (|has| |#1| (-276)) (IF (|has| |#1| (-134)) (-15 -1780 ($ $)) |noBranch|) |noBranch|)))
-((-2401 (((-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501)))) (-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501))))) 64)))
-(((-902 |#1| |#2|) (-10 -7 (-15 -2401 ((-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501)))) (-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501))))))) (-578 (-1070)) (-701)) (T -902))
-((-2401 (*1 *2 *2) (-12 (-5 *2 (-901 (-375 (-501)) (-787 *3) (-212 *4 (-701)) (-220 *3 (-375 (-501))))) (-14 *3 (-578 (-1070))) (-14 *4 (-701)) (-5 *1 (-902 *3 *4)))))
-(-10 -7 (-15 -2401 ((-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501)))) (-901 (-375 (-501)) (-787 |#1|) (-212 |#2| (-701)) (-220 |#1| (-375 (-501)))))))
-((-1319 (((-107) |#5| |#5|) 37)) (-3494 (((-107) |#5| |#5|) 51)) (-1645 (((-107) |#5| (-578 |#5|)) 73) (((-107) |#5| |#5|) 60)) (-1400 (((-107) (-578 |#4|) (-578 |#4|)) 57)) (-3422 (((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) 62)) (-2394 (((-1154)) 33)) (-2660 (((-1154) (-1053) (-1053) (-1053)) 29)) (-3551 (((-578 |#5|) (-578 |#5|)) 80)) (-1894 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) 78)) (-2221 (((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107)) 100)) (-1461 (((-107) |#5| |#5|) 46)) (-1837 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3882 (((-107) (-578 |#4|) (-578 |#4|)) 56)) (-3091 (((-107) (-578 |#4|) (-578 |#4|)) 58)) (-3523 (((-107) (-578 |#4|) (-578 |#4|)) 59)) (-2918 (((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)) 96)) (-2638 (((-578 |#5|) (-578 |#5|)) 42)))
-(((-903 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2660 ((-1154) (-1053) (-1053) (-1053))) (-15 -2394 ((-1154))) (-15 -1319 ((-107) |#5| |#5|)) (-15 -2638 ((-578 |#5|) (-578 |#5|))) (-15 -1461 ((-107) |#5| |#5|)) (-15 -3494 ((-107) |#5| |#5|)) (-15 -1400 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3882 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3091 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3523 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -1837 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1645 ((-107) |#5| |#5|)) (-15 -1645 ((-107) |#5| (-578 |#5|))) (-15 -3551 ((-578 |#5|) (-578 |#5|))) (-15 -3422 ((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -1894 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-15 -2221 ((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -2918 ((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -903))
-((-2918 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-977 *6 *7 *8 *9)))) (-2221 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-107)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -3709 *7)))) (-4 *6 (-972 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-3422 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) (-3551 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-1645 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-903 *5 *6 *7 *8 *3)))) (-1645 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3523 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3882 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-1400 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3494 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-1461 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) (-1319 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-2394 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-2660 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2660 ((-1154) (-1053) (-1053) (-1053))) (-15 -2394 ((-1154))) (-15 -1319 ((-107) |#5| |#5|)) (-15 -2638 ((-578 |#5|) (-578 |#5|))) (-15 -1461 ((-107) |#5| |#5|)) (-15 -3494 ((-107) |#5| |#5|)) (-15 -1400 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3882 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3091 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3523 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -1837 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1645 ((-107) |#5| |#5|)) (-15 -1645 ((-107) |#5| (-578 |#5|))) (-15 -3551 ((-578 |#5|) (-578 |#5|))) (-15 -3422 ((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -1894 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-15 -2221 ((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -2918 ((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107))))
-((-3484 (((-1070) $) 15)) (-2150 (((-1053) $) 16)) (-4022 (($ (-1070) (-1053)) 14)) (-3691 (((-786) $) 13)))
-(((-904) (-13 (-555 (-786)) (-10 -8 (-15 -4022 ($ (-1070) (-1053))) (-15 -3484 ((-1070) $)) (-15 -2150 ((-1053) $))))) (T -904))
-((-4022 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1053)) (-5 *1 (-904)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-904)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-904)))))
-(-13 (-555 (-786)) (-10 -8 (-15 -4022 ($ (-1070) (-1053))) (-15 -3484 ((-1070) $)) (-15 -2150 ((-1053) $))))
-((-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-1070) "failed") $) 65) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) 95)) (-3490 ((|#2| $) NIL) (((-1070) $) 60) (((-375 (-501)) $) NIL) (((-501) $) 92)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 112) (((-621 |#2|) (-621 $)) 28)) (-2890 (($) 98)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 74) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 83)) (-2117 (($ $) 10)) (-3493 (((-3 $ "failed") $) 20)) (-1212 (($ (-1 |#2| |#2|) $) 22)) (-3746 (($) 16)) (-2801 (($ $) 54)) (-2596 (($ $) NIL) (($ $ (-701)) NIL) (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3307 (($ $) 12)) (-1248 (((-810 (-501)) $) 69) (((-810 (-346)) $) 78) (((-490) $) 40) (((-346) $) 44) (((-199) $) 47)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 90) (($ |#2|) NIL) (($ (-1070)) 57)) (-3965 (((-701)) 31)) (-3762 (((-107) $ $) 50)))
-(((-905 |#1| |#2|) (-10 -8 (-15 -3762 ((-107) |#1| |#1|)) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3691 (|#1| (-1070))) (-15 -2890 (|#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -3691 ((-786) |#1|))) (-906 |#2|) (-508)) (T -905))
-((-3965 (*1 *2) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4)))))
-(-10 -8 (-15 -3762 ((-107) |#1| |#1|)) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3691 (|#1| (-1070))) (-15 -2890 (|#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3307 (|#1| |#1|)) (-15 -2117 (|#1| |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -3809 ((-808 (-501) |#1|) |#1| (-810 (-501)) (-808 (-501) |#1|))) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -3868 ((-621 |#2|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2197 ((|#1| $) 139 (|has| |#1| (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 130 (|has| |#1| (-830)))) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 133 (|has| |#1| (-830)))) (-2781 (((-107) $ $) 59)) (-1417 (((-501) $) 120 (|has| |#1| (-750)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 178) (((-3 (-1070) "failed") $) 128 (|has| |#1| (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) 112 (|has| |#1| (-950 (-501)))) (((-3 (-501) "failed") $) 110 (|has| |#1| (-950 (-501))))) (-3490 ((|#1| $) 177) (((-1070) $) 127 (|has| |#1| (-950 (-1070)))) (((-375 (-501)) $) 111 (|has| |#1| (-950 (-501)))) (((-501) $) 109 (|has| |#1| (-950 (-501))))) (-3023 (($ $ $) 55)) (-3868 (((-621 (-501)) (-621 $)) 152 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 151 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 150) (((-621 |#1|) (-621 $)) 149)) (-2174 (((-3 $ "failed") $) 34)) (-2890 (($) 137 (|has| |#1| (-500)))) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-2164 (((-107) $) 122 (|has| |#1| (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 146 (|has| |#1| (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 145 (|has| |#1| (-806 (-346))))) (-1355 (((-107) $) 31)) (-2117 (($ $) 141)) (-2946 ((|#1| $) 143)) (-3493 (((-3 $ "failed") $) 108 (|has| |#1| (-1046)))) (-4067 (((-107) $) 121 (|has| |#1| (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-4111 (($ $ $) 118 (|has| |#1| (-777)))) (-1323 (($ $ $) 117 (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) 169)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3746 (($) 107 (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2801 (($ $) 138 (|has| |#1| (-276)))) (-3383 ((|#1| $) 135 (|has| |#1| (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 132 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 131 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 175 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 173 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 172 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 171 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) 170 (|has| |#1| (-476 (-1070) |#1|)))) (-1864 (((-701) $) 58)) (-2007 (($ $ |#1|) 176 (|has| |#1| (-256 |#1| |#1|)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-2596 (($ $) 168 (|has| |#1| (-206))) (($ $ (-701)) 166 (|has| |#1| (-206))) (($ $ (-1070)) 164 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 163 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 162 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 161 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-3307 (($ $) 140)) (-2949 ((|#1| $) 142)) (-1248 (((-810 (-501)) $) 148 (|has| |#1| (-556 (-810 (-501))))) (((-810 (-346)) $) 147 (|has| |#1| (-556 (-810 (-346))))) (((-490) $) 125 (|has| |#1| (-556 (-490)))) (((-346) $) 124 (|has| |#1| (-933))) (((-199) $) 123 (|has| |#1| (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 134 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ |#1|) 181) (($ (-1070)) 129 (|has| |#1| (-950 (-1070))))) (-1274 (((-3 $ "failed") $) 126 (-1405 (|has| |#1| (-132)) (-1280 (|has| $ (-132)) (|has| |#1| (-830)))))) (-3965 (((-701)) 29)) (-2803 ((|#1| $) 136 (|has| |#1| (-500)))) (-2442 (((-107) $ $) 39)) (-1720 (($ $) 119 (|has| |#1| (-750)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $) 167 (|has| |#1| (-206))) (($ $ (-701)) 165 (|has| |#1| (-206))) (($ $ (-1070)) 160 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 159 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 158 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 157 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-3778 (((-107) $ $) 115 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 114 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 116 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 113 (|has| |#1| (-777)))) (-3803 (($ $ $) 64) (($ |#1| |#1|) 144)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
-(((-906 |#1|) (-1180) (-508)) (T -906))
-((-3803 (*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-2946 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-2117 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-3307 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-276)))) (-2801 (*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-276)))) (-2890 (*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-500)) (-4 *2 (-508)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-500)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-500)))))
-(-13 (-331) (-37 |t#1|) (-950 |t#1|) (-306 |t#1|) (-204 |t#1|) (-345 |t#1|) (-804 |t#1|) (-368 |t#1|) (-10 -8 (-15 -3803 ($ |t#1| |t#1|)) (-15 -2946 (|t#1| $)) (-15 -2949 (|t#1| $)) (-15 -2117 ($ $)) (-15 -3307 ($ $)) (IF (|has| |t#1| (-1046)) (-6 (-1046)) |noBranch|) (IF (|has| |t#1| (-950 (-501))) (PROGN (-6 (-950 (-501))) (-6 (-950 (-375 (-501))))) |noBranch|) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-750)) (-6 (-750)) |noBranch|) (IF (|has| |t#1| (-933)) (-6 (-933)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-950 (-1070))) (-6 (-950 (-1070))) |noBranch|) (IF (|has| |t#1| (-276)) (PROGN (-15 -2197 (|t#1| $)) (-15 -2801 ($ $))) |noBranch|) (IF (|has| |t#1| (-500)) (PROGN (-15 -2890 ($)) (-15 -2803 (|t#1| $)) (-15 -3383 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-830)) (-6 (-830)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-556 (-199)) |has| |#1| (-933)) ((-556 (-346)) |has| |#1| (-933)) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-556 (-810 (-346))) |has| |#1| (-556 (-810 (-346)))) ((-556 (-810 (-501))) |has| |#1| (-556 (-810 (-501)))) ((-204 |#1|) . T) ((-206) |has| |#1| (-206)) ((-216) . T) ((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-260) . T) ((-276) . T) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-331) . T) ((-306 |#1|) . T) ((-345 |#1|) . T) ((-368 |#1|) . T) ((-419) . T) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|)) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-657) . T) ((-721) |has| |#1| (-750)) ((-722) |has| |#1| (-750)) ((-724) |has| |#1| (-750)) ((-727) |has| |#1| (-750)) ((-750) |has| |#1| (-750)) ((-775) |has| |#1| (-750)) ((-777) -1405 (|has| |#1| (-777)) (|has| |#1| (-750))) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-806 (-346)) |has| |#1| (-806 (-346))) ((-806 (-501)) |has| |#1| (-806 (-501))) ((-804 |#1|) . T) ((-830) |has| |#1| (-830)) ((-841) . T) ((-933) |has| |#1| (-933)) ((-950 (-375 (-501))) |has| |#1| (-950 (-501))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 (-1070)) |has| |#1| (-950 (-1070))) ((-950 |#1|) . T) ((-964 (-375 (-501))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-1046)) ((-1104) . T) ((-1108) . T))
-((-1212 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#2| |#1|) |#3|))) (-508) (-508) (-906 |#1|) (-906 |#2|)) (T -907))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-4 *2 (-906 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5)))))
-(-10 -7 (-15 -1212 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2269 (($ (-1037 |#1| |#2|)) 11)) (-2630 (((-1037 |#1| |#2|) $) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2007 ((|#2| $ (-212 |#1| |#2|)) 16)) (-3691 (((-786) $) NIL)) (-1850 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL)))
-(((-908 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2269 ($ (-1037 |#1| |#2|))) (-15 -2630 ((-1037 |#1| |#2|) $)) (-15 -2007 (|#2| $ (-212 |#1| |#2|))))) (-839) (-331)) (T -908))
-((-2269 (*1 *1 *2) (-12 (-5 *2 (-1037 *3 *4)) (-14 *3 (-839)) (-4 *4 (-331)) (-5 *1 (-908 *3 *4)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-1037 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-839)) (-4 *4 (-331)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-212 *4 *2)) (-14 *4 (-839)) (-4 *2 (-331)) (-5 *1 (-908 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2269 ($ (-1037 |#1| |#2|))) (-15 -2630 ((-1037 |#1| |#2|) $)) (-15 -2007 (|#2| $ (-212 |#1| |#2|)))))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2253 (($ $) 46)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-4139 (((-701) $) 45)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-3085 ((|#1| $) 44)) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2047 ((|#1| |#1| $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-1862 ((|#1| $) 47)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-2366 ((|#1| $) 43)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-909 |#1|) (-1180) (-1104)) (T -909))
-((-2047 (*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))) (-1862 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))) (-2253 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4167) (-15 -2047 (|t#1| |t#1| $)) (-15 -1862 (|t#1| $)) (-15 -2253 ($ $)) (-15 -4139 ((-701) $)) (-15 -3085 (|t#1| $)) (-15 -2366 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3749 ((|#1| $) 12)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-500)))) (-1696 (((-107) $) NIL (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) NIL (|has| |#1| (-500)))) (-2508 (($ |#1| |#1| |#1| |#1|) 16)) (-1355 (((-107) $) NIL)) (-2626 ((|#1| $) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3596 ((|#1| $) 15)) (-2531 ((|#1| $) 14)) (-2757 ((|#1| $) 13)) (-3708 (((-1018) $) NIL)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) NIL (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-476 (-1070) |#1|)))) (-2007 (($ $ |#1|) NIL (|has| |#1| (-256 |#1| |#1|)))) (-2596 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3097 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-1720 ((|#1| $) NIL (|has| |#1| (-967)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 8 T CONST)) (-1925 (($) 10 T CONST)) (-3584 (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-331))) (($ (-375 (-501)) $) NIL (|has| |#1| (-331)))))
-(((-910 |#1|) (-912 |#1|) (-156)) (T -910))
-NIL
-(-912 |#1|)
-((-3292 (((-107) $) 42)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#2| $) 43)) (-2870 (((-3 (-375 (-501)) "failed") $) 78)) (-1696 (((-107) $) 72)) (-3518 (((-375 (-501)) $) 76)) (-1355 (((-107) $) 41)) (-2626 ((|#2| $) 22)) (-1212 (($ (-1 |#2| |#2|) $) 19)) (-3833 (($ $) 61)) (-2596 (($ $) NIL) (($ $ (-701)) NIL) (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1248 (((-490) $) 67)) (-3097 (($ $) 17)) (-3691 (((-786) $) 56) (($ (-501)) 38) (($ |#2|) 36) (($ (-375 (-501))) NIL)) (-3965 (((-701)) 10)) (-1720 ((|#2| $) 71)) (-3751 (((-107) $ $) 25)) (-3762 (((-107) $ $) 69)) (-3797 (($ $) 29) (($ $ $) 28)) (-3790 (($ $ $) 26)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL)))
-(((-911 |#1| |#2|) (-10 -8 (-15 -3691 (|#1| (-375 (-501)))) (-15 -3762 ((-107) |#1| |#1|)) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 * (|#1| |#1| (-375 (-501)))) (-15 -3833 (|#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -1355 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-912 |#2|) (-156)) (T -911))
-((-3965 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))))
-(-10 -8 (-15 -3691 (|#1| (-375 (-501)))) (-15 -3762 ((-107) |#1| |#1|)) (-15 * (|#1| (-375 (-501)) |#1|)) (-15 * (|#1| |#1| (-375 (-501)))) (-15 -3833 (|#1| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -1720 (|#2| |#1|)) (-15 -2626 (|#2| |#1|)) (-15 -3097 (|#1| |#1|)) (-15 -1212 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3691 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -1355 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 * (|#1| (-701) |#1|)) (-15 -3292 ((-107) |#1|)) (-15 * (|#1| (-839) |#1|)) (-15 -3790 (|#1| |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3765 (((-3 (-501) "failed") $) 119 (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 117 (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) 116)) (-3490 (((-501) $) 120 (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) 118 (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) 115)) (-3868 (((-621 (-501)) (-621 $)) 90 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 89 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 88) (((-621 |#1|) (-621 $)) 87)) (-2174 (((-3 $ "failed") $) 34)) (-3749 ((|#1| $) 80)) (-2870 (((-3 (-375 (-501)) "failed") $) 76 (|has| |#1| (-500)))) (-1696 (((-107) $) 78 (|has| |#1| (-500)))) (-3518 (((-375 (-501)) $) 77 (|has| |#1| (-500)))) (-2508 (($ |#1| |#1| |#1| |#1|) 81)) (-1355 (((-107) $) 31)) (-2626 ((|#1| $) 82)) (-4111 (($ $ $) 68 (|has| |#1| (-777)))) (-1323 (($ $ $) 67 (|has| |#1| (-777)))) (-1212 (($ (-1 |#1| |#1|) $) 91)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 73 (|has| |#1| (-331)))) (-3596 ((|#1| $) 83)) (-2531 ((|#1| $) 84)) (-2757 ((|#1| $) 85)) (-3708 (((-1018) $) 10)) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 97 (|has| |#1| (-278 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-278 |#1|))) (($ $ (-262 |#1|)) 95 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-262 |#1|))) 94 (|has| |#1| (-278 |#1|))) (($ $ (-578 (-1070)) (-578 |#1|)) 93 (|has| |#1| (-476 (-1070) |#1|))) (($ $ (-1070) |#1|) 92 (|has| |#1| (-476 (-1070) |#1|)))) (-2007 (($ $ |#1|) 98 (|has| |#1| (-256 |#1| |#1|)))) (-2596 (($ $) 114 (|has| |#1| (-206))) (($ $ (-701)) 112 (|has| |#1| (-206))) (($ $ (-1070)) 110 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 109 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 108 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 107 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1248 (((-490) $) 74 (|has| |#1| (-556 (-490))))) (-3097 (($ $) 86)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 37) (($ (-375 (-501))) 62 (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-1720 ((|#1| $) 79 (|has| |#1| (-967)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 72 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $) 113 (|has| |#1| (-206))) (($ $ (-701)) 111 (|has| |#1| (-206))) (($ $ (-1070)) 106 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 105 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 104 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 103 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-3778 (((-107) $ $) 65 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 64 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 66 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 63 (|has| |#1| (-777)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 71 (|has| |#1| (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-375 (-501))) 70 (|has| |#1| (-331))) (($ (-375 (-501)) $) 69 (|has| |#1| (-331)))))
-(((-912 |#1|) (-1180) (-156)) (T -912))
-((-3097 (*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-2508 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) (-2870 (*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))))
-(-13 (-37 |t#1|) (-380 |t#1|) (-204 |t#1|) (-306 |t#1|) (-345 |t#1|) (-10 -8 (-15 -3097 ($ $)) (-15 -2757 (|t#1| $)) (-15 -2531 (|t#1| $)) (-15 -3596 (|t#1| $)) (-15 -2626 (|t#1| $)) (-15 -2508 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3749 (|t#1| $)) (IF (|has| |t#1| (-260)) (-6 (-260)) |noBranch|) (IF (|has| |t#1| (-777)) (-6 (-777)) |noBranch|) (IF (|has| |t#1| (-331)) (-6 (-216)) |noBranch|) (IF (|has| |t#1| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-967)) (-15 -1720 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-500)) (PROGN (-15 -1696 ((-107) $)) (-15 -3518 ((-375 (-501)) $)) (-15 -2870 ((-3 (-375 (-501)) "failed") $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-331)) ((-37 |#1|) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-331)) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-331)) (|has| |#1| (-260))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-204 |#1|) . T) ((-206) |has| |#1| (-206)) ((-216) |has| |#1| (-331)) ((-256 |#1| $) |has| |#1| (-256 |#1| |#1|)) ((-260) -1405 (|has| |#1| (-331)) (|has| |#1| (-260))) ((-278 |#1|) |has| |#1| (-278 |#1|)) ((-306 |#1|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-476 (-1070) |#1|) |has| |#1| (-476 (-1070) |#1|)) ((-476 |#1| |#1|) |has| |#1| (-278 |#1|)) ((-583 (-375 (-501))) |has| |#1| (-331)) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-331)) ((-648 |#1|) . T) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-964 (-375 (-501))) |has| |#1| (-331)) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-331)) (|has| |#1| (-260))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-1212 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|))) (-912 |#2|) (-156) (-912 |#4|) (-156)) (T -913))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))))
-(-10 -7 (-15 -1212 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2253 (($ $) 20)) (-1994 (($ (-578 |#1|)) 29)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-4139 (((-701) $) 22)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) 24)) (-4114 (($ |#1| $) 15)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3085 ((|#1| $) 23)) (-1251 ((|#1| $) 19)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2047 ((|#1| |#1| $) 14)) (-1407 (((-107) $) 17)) (-3122 (($) NIL)) (-1862 ((|#1| $) 18)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) NIL)) (-2366 ((|#1| $) 26)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-914 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -1994 ($ (-578 |#1|))))) (-1001)) (T -914))
-((-1994 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-914 *3)))))
-(-13 (-909 |#1|) (-10 -8 (-15 -1994 ($ (-578 |#1|)))))
-((-3743 (($ $) 12)) (-1342 (($ $ (-501)) 13)))
-(((-915 |#1|) (-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -1342 (|#1| |#1| (-501)))) (-916)) (T -915))
-NIL
-(-10 -8 (-15 -3743 (|#1| |#1|)) (-15 -1342 (|#1| |#1| (-501))))
-((-3743 (($ $) 6)) (-1342 (($ $ (-501)) 7)) (** (($ $ (-375 (-501))) 8)))
-(((-916) (-1180)) (T -916))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-375 (-501))))) (-1342 (*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-501)))) (-3743 (*1 *1 *1) (-4 *1 (-916))))
-(-13 (-10 -8 (-15 -3743 ($ $)) (-15 -1342 ($ $ (-501))) (-15 ** ($ $ (-375 (-501))))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3767 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| (-375 |#2|) (-331)))) (-2865 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1639 (((-107) $) NIL (|has| (-375 |#2|) (-331)))) (-2239 (((-621 (-375 |#2|)) (-1148 $)) NIL) (((-621 (-375 |#2|))) NIL)) (-2225 (((-375 |#2|) $) NIL)) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| (-375 |#2|) (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1559 (((-373 $) $) NIL (|has| (-375 |#2|) (-331)))) (-2781 (((-107) $ $) NIL (|has| (-375 |#2|) (-331)))) (-3796 (((-701)) NIL (|has| (-375 |#2|) (-336)))) (-3285 (((-107)) NIL)) (-2330 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| (-375 |#2|) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-3 (-375 |#2|) "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| (-375 |#2|) (-950 (-501)))) (((-375 (-501)) $) NIL (|has| (-375 |#2|) (-950 (-375 (-501))))) (((-375 |#2|) $) NIL)) (-3142 (($ (-1148 (-375 |#2|)) (-1148 $)) NIL) (($ (-1148 (-375 |#2|))) 70) (($ (-1148 |#2|) |#2|) NIL)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-375 |#2|) (-318)))) (-3023 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3070 (((-621 (-375 |#2|)) $ (-1148 $)) NIL) (((-621 (-375 |#2|)) $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-375 |#2|) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-375 |#2|))) (|:| |vec| (-1148 (-375 |#2|)))) (-621 $) (-1148 $)) NIL) (((-621 (-375 |#2|)) (-621 $)) NIL)) (-3566 (((-1148 $) (-1148 $)) NIL)) (-3547 (($ |#3|) 65) (((-3 $ "failed") (-375 |#3|)) NIL (|has| (-375 |#2|) (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-1286 (((-578 (-578 |#1|))) NIL (|has| |#1| (-336)))) (-2142 (((-107) |#1| |#1|) NIL)) (-3689 (((-839)) NIL)) (-2890 (($) NIL (|has| (-375 |#2|) (-336)))) (-2516 (((-107)) NIL)) (-1436 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-3034 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| (-375 |#2|) (-331)))) (-3533 (($ $) NIL)) (-1317 (($) NIL (|has| (-375 |#2|) (-318)))) (-3521 (((-107) $) NIL (|has| (-375 |#2|) (-318)))) (-3067 (($ $ (-701)) NIL (|has| (-375 |#2|) (-318))) (($ $) NIL (|has| (-375 |#2|) (-318)))) (-1628 (((-107) $) NIL (|has| (-375 |#2|) (-331)))) (-3169 (((-839) $) NIL (|has| (-375 |#2|) (-318))) (((-762 (-839)) $) NIL (|has| (-375 |#2|) (-318)))) (-1355 (((-107) $) NIL)) (-1206 (((-701)) NIL)) (-3740 (((-1148 $) (-1148 $)) NIL)) (-2626 (((-375 |#2|) $) NIL)) (-1607 (((-578 (-866 |#1|)) (-1070)) NIL (|has| |#1| (-331)))) (-3493 (((-3 $ "failed") $) NIL (|has| (-375 |#2|) (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-375 |#2|) (-331)))) (-1792 ((|#3| $) NIL (|has| (-375 |#2|) (-331)))) (-3104 (((-839) $) NIL (|has| (-375 |#2|) (-336)))) (-1316 ((|#3| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| (-375 |#2|) (-331))) (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3460 (((-1053) $) NIL)) (-1275 (((-621 (-375 |#2|))) 52)) (-2368 (((-621 (-375 |#2|))) 51)) (-3833 (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1318 (($ (-1148 |#2|) |#2|) 71)) (-2466 (((-621 (-375 |#2|))) 50)) (-2796 (((-621 (-375 |#2|))) 49)) (-1276 (((-2 (|:| |num| (-621 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3418 (((-2 (|:| |num| (-1148 |#2|)) (|:| |den| |#2|)) $) 77)) (-2664 (((-1148 $)) 46)) (-1897 (((-1148 $)) 45)) (-3672 (((-107) $) NIL)) (-2131 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-3746 (($) NIL (|has| (-375 |#2|) (-318)) CONST)) (-3506 (($ (-839)) NIL (|has| (-375 |#2|) (-336)))) (-2050 (((-3 |#2| "failed")) 63)) (-3708 (((-1018) $) NIL)) (-4122 (((-701)) NIL)) (-3987 (($) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| (-375 |#2|) (-331)))) (-3664 (($ (-578 $)) NIL (|has| (-375 |#2|) (-331))) (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| (-375 |#2|) (-318)))) (-3739 (((-373 $) $) NIL (|has| (-375 |#2|) (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-375 |#2|) (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| (-375 |#2|) (-331)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| (-375 |#2|) (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| (-375 |#2|) (-331)))) (-1864 (((-701) $) NIL (|has| (-375 |#2|) (-331)))) (-2007 ((|#1| $ |#1| |#1|) NIL)) (-2435 (((-3 |#2| "failed")) 62)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| (-375 |#2|) (-331)))) (-2532 (((-375 |#2|) (-1148 $)) NIL) (((-375 |#2|)) 42)) (-1984 (((-701) $) NIL (|has| (-375 |#2|) (-318))) (((-3 (-701) "failed") $ $) NIL (|has| (-375 |#2|) (-318)))) (-2596 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-2231 (((-621 (-375 |#2|)) (-1148 $) (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331)))) (-2264 ((|#3|) 53)) (-1349 (($) NIL (|has| (-375 |#2|) (-318)))) (-2085 (((-1148 (-375 |#2|)) $ (-1148 $)) NIL) (((-621 (-375 |#2|)) (-1148 $) (-1148 $)) NIL) (((-1148 (-375 |#2|)) $) 72) (((-621 (-375 |#2|)) (-1148 $)) NIL)) (-1248 (((-1148 (-375 |#2|)) $) NIL) (($ (-1148 (-375 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| (-375 |#2|) (-318)))) (-1416 (((-1148 $) (-1148 $)) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 |#2|)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-950 (-375 (-501)))))) (($ $) NIL (|has| (-375 |#2|) (-331)))) (-1274 (($ $) NIL (|has| (-375 |#2|) (-318))) (((-3 $ "failed") $) NIL (|has| (-375 |#2|) (-132)))) (-2942 ((|#3| $) NIL)) (-3965 (((-701)) NIL)) (-2675 (((-107)) 60)) (-3969 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-4119 (((-1148 $)) 124)) (-2442 (((-107) $ $) NIL (|has| (-375 |#2|) (-331)))) (-2548 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2710 (((-107)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-375 |#2|) (-331)))) (-1850 (($) 94 T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1 (-375 |#2|) (-375 |#2|)) (-701)) NIL (|has| (-375 |#2|) (-331))) (($ $ (-1 (-375 |#2|) (-375 |#2|))) NIL (|has| (-375 |#2|) (-331))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| (-375 |#2|) (-331)) (|has| (-375 |#2|) (-820 (-1070))))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318)))) (($ $) NIL (-1405 (-12 (|has| (-375 |#2|) (-206)) (|has| (-375 |#2|) (-331))) (|has| (-375 |#2|) (-318))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ $) NIL (|has| (-375 |#2|) (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| (-375 |#2|) (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 |#2|)) NIL) (($ (-375 |#2|) $) NIL) (($ (-375 (-501)) $) NIL (|has| (-375 |#2|) (-331))) (($ $ (-375 (-501))) NIL (|has| (-375 |#2|) (-331)))))
-(((-917 |#1| |#2| |#3| |#4| |#5|) (-310 |#1| |#2| |#3|) (-1108) (-1125 |#1|) (-1125 (-375 |#2|)) (-375 |#2|) (-701)) (T -917))
-NIL
-(-310 |#1| |#2| |#3|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3838 (((-578 (-501)) $) 54)) (-4085 (($ (-578 (-501))) 62)) (-2197 (((-501) $) 40 (|has| (-501) (-276)))) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL (|has| (-501) (-750)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) 49) (((-3 (-1070) "failed") $) NIL (|has| (-501) (-950 (-1070)))) (((-3 (-375 (-501)) "failed") $) 47 (|has| (-501) (-950 (-501)))) (((-3 (-501) "failed") $) 49 (|has| (-501) (-950 (-501))))) (-3490 (((-501) $) NIL) (((-1070) $) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) NIL (|has| (-501) (-950 (-501)))) (((-501) $) NIL (|has| (-501) (-950 (-501))))) (-3023 (($ $ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| (-501) (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2890 (($) NIL (|has| (-501) (-500)))) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3640 (((-578 (-501)) $) 60)) (-2164 (((-107) $) NIL (|has| (-501) (-750)))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (|has| (-501) (-806 (-501)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (|has| (-501) (-806 (-346))))) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL)) (-2946 (((-501) $) 37)) (-3493 (((-3 $ "failed") $) NIL (|has| (-501) (-1046)))) (-4067 (((-107) $) NIL (|has| (-501) (-750)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-501) (-777)))) (-1212 (($ (-1 (-501) (-501)) $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL)) (-3746 (($) NIL (|has| (-501) (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-2801 (($ $) NIL (|has| (-501) (-276))) (((-375 (-501)) $) 42)) (-3306 (((-1048 (-501)) $) 59)) (-2567 (($ (-578 (-501)) (-578 (-501))) 63)) (-3383 (((-501) $) 53 (|has| (-501) (-500)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| (-501) (-830)))) (-3739 (((-373 $) $) NIL)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3195 (($ $ (-578 (-501)) (-578 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-501) (-501)) NIL (|has| (-501) (-278 (-501)))) (($ $ (-262 (-501))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-262 (-501)))) NIL (|has| (-501) (-278 (-501)))) (($ $ (-578 (-1070)) (-578 (-501))) NIL (|has| (-501) (-476 (-1070) (-501)))) (($ $ (-1070) (-501)) NIL (|has| (-501) (-476 (-1070) (-501))))) (-1864 (((-701) $) NIL)) (-2007 (($ $ (-501)) NIL (|has| (-501) (-256 (-501) (-501))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $) 11 (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3307 (($ $) NIL)) (-2949 (((-501) $) 39)) (-3261 (((-578 (-501)) $) 61)) (-1248 (((-810 (-501)) $) NIL (|has| (-501) (-556 (-810 (-501))))) (((-810 (-346)) $) NIL (|has| (-501) (-556 (-810 (-346))))) (((-490) $) NIL (|has| (-501) (-556 (-490)))) (((-346) $) NIL (|has| (-501) (-933))) (((-199) $) NIL (|has| (-501) (-933)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-501) (-830))))) (-3691 (((-786) $) 77) (($ (-501)) 43) (($ $) NIL) (($ (-375 (-501))) 19) (($ (-501)) 43) (($ (-1070)) NIL (|has| (-501) (-950 (-1070)))) (((-375 (-501)) $) 17)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-501) (-830))) (|has| (-501) (-132))))) (-3965 (((-701)) 9)) (-2803 (((-501) $) 51 (|has| (-501) (-500)))) (-2442 (((-107) $ $) NIL)) (-1720 (($ $) NIL (|has| (-501) (-750)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 10 T CONST)) (-1925 (($) 12 T CONST)) (-3584 (($ $) NIL (|has| (-501) (-206))) (($ $ (-701)) NIL (|has| (-501) (-206))) (($ $ (-1070)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| (-501) (-820 (-1070)))) (($ $ (-1 (-501) (-501)) (-701)) NIL) (($ $ (-1 (-501) (-501))) NIL)) (-3778 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3751 (((-107) $ $) 14)) (-3773 (((-107) $ $) NIL (|has| (-501) (-777)))) (-3762 (((-107) $ $) 33 (|has| (-501) (-777)))) (-3803 (($ $ $) 29) (($ (-501) (-501)) 31)) (-3797 (($ $) 15) (($ $ $) 22)) (-3790 (($ $ $) 20)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 25) (($ $ $) 27) (($ $ (-375 (-501))) NIL) (($ (-375 (-501)) $) NIL) (($ (-501) $) 25) (($ $ (-501)) NIL)))
-(((-918 |#1|) (-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -3838 ((-578 (-501)) $)) (-15 -3306 ((-1048 (-501)) $)) (-15 -3640 ((-578 (-501)) $)) (-15 -3261 ((-578 (-501)) $)) (-15 -4085 ($ (-578 (-501)))) (-15 -2567 ($ (-578 (-501)) (-578 (-501)))))) (-501)) (T -918))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-3261 (*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-4085 (*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) (-2567 (*1 *1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))))
-(-13 (-906 (-501)) (-10 -8 (-15 -3691 ((-375 (-501)) $)) (-15 -2801 ((-375 (-501)) $)) (-15 -3838 ((-578 (-501)) $)) (-15 -3306 ((-1048 (-501)) $)) (-15 -3640 ((-578 (-501)) $)) (-15 -3261 ((-578 (-501)) $)) (-15 -4085 ($ (-578 (-501)))) (-15 -2567 ($ (-578 (-501)) (-578 (-501))))))
-((-3265 (((-50) (-375 (-501)) (-501)) 9)))
-(((-919) (-10 -7 (-15 -3265 ((-50) (-375 (-501)) (-501))))) (T -919))
-((-3265 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-501))) (-5 *4 (-501)) (-5 *2 (-50)) (-5 *1 (-919)))))
-(-10 -7 (-15 -3265 ((-50) (-375 (-501)) (-501))))
-((-3796 (((-501)) 13)) (-2232 (((-501)) 16)) (-3113 (((-1154) (-501)) 15)) (-3400 (((-501) (-501)) 17) (((-501)) 12)))
-(((-920) (-10 -7 (-15 -3400 ((-501))) (-15 -3796 ((-501))) (-15 -3400 ((-501) (-501))) (-15 -3113 ((-1154) (-501))) (-15 -2232 ((-501))))) (T -920))
-((-2232 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-920)))) (-3400 (*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) (-3796 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) (-3400 (*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))))
-(-10 -7 (-15 -3400 ((-501))) (-15 -3796 ((-501))) (-15 -3400 ((-501) (-501))) (-15 -3113 ((-1154) (-501))) (-15 -2232 ((-501))))
-((-2452 (((-373 |#1|) |#1|) 40)) (-3739 (((-373 |#1|) |#1|) 39)))
-(((-921 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1|))) (-1125 (-375 (-501)))) (T -921))
-((-2452 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1125 (-375 (-501)))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1125 (-375 (-501)))))))
-(-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1|)))
-((-2870 (((-3 (-375 (-501)) "failed") |#1|) 14)) (-1696 (((-107) |#1|) 13)) (-3518 (((-375 (-501)) |#1|) 9)))
-(((-922 |#1|) (-10 -7 (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|))) (-950 (-375 (-501)))) (T -922))
-((-2870 (*1 *2 *3) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-922 *3)) (-4 *3 (-950 *2)))) (-1696 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-922 *3)) (-4 *3 (-950 (-375 (-501)))))) (-3518 (*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-922 *3)) (-4 *3 (-950 *2)))))
-(-10 -7 (-15 -3518 ((-375 (-501)) |#1|)) (-15 -1696 ((-107) |#1|)) (-15 -2870 ((-3 (-375 (-501)) "failed") |#1|)))
-((-3754 ((|#2| $ "value" |#2|) 12)) (-2007 ((|#2| $ "value") 10)) (-2970 (((-107) $ $) 18)))
-(((-923 |#1| |#2|) (-10 -8 (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -2970 ((-107) |#1| |#1|)) (-15 -2007 (|#2| |#1| "value"))) (-924 |#2|) (-1104)) (T -923))
-NIL
-(-10 -8 (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -2970 ((-107) |#1| |#1|)) (-15 -2007 (|#2| |#1| "value")))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-2540 (($) 7 T CONST)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-924 |#1|) (-1180) (-1104)) (T -924))
-((-1961 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-578 *1)) (-4 *1 (-924 *3)))) (-3604 (*1 *2 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-578 *1)) (-4 *1 (-924 *3)))) (-2341 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1104)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-3386 (*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))) (-1932 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-501)))) (-2970 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-3201 (*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-1378 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *1)) (|has| *1 (-6 -4168)) (-4 *1 (-924 *3)) (-4 *3 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4168)) (-4 *1 (-924 *2)) (-4 *2 (-1104)))) (-1594 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-924 *2)) (-4 *2 (-1104)))))
-(-13 (-454 |t#1|) (-10 -8 (-15 -1961 ((-578 $) $)) (-15 -3604 ((-578 $) $)) (-15 -2341 ((-107) $)) (-15 -2150 (|t#1| $)) (-15 -2007 (|t#1| $ "value")) (-15 -2622 ((-107) $)) (-15 -3386 ((-578 |t#1|) $)) (-15 -1932 ((-501) $ $)) (IF (|has| |t#1| (-1001)) (PROGN (-15 -2970 ((-107) $ $)) (-15 -3201 ((-107) $ $))) |noBranch|) (IF (|has| $ (-6 -4168)) (PROGN (-15 -1378 ($ $ (-578 $))) (-15 -3754 (|t#1| $ "value" |t#1|)) (-15 -1594 (|t#1| $ |t#1|))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3743 (($ $) 9) (($ $ (-701)) 43) (($ (-375 (-501))) 12) (($ (-501)) 15)) (-2899 (((-3 $ "failed") (-1064 $) (-839) (-786)) 23) (((-3 $ "failed") (-1064 $) (-839)) 28)) (-1342 (($ $ (-501)) 49)) (-3965 (((-701)) 16)) (-1250 (((-578 $) (-1064 $)) NIL) (((-578 $) (-1064 (-375 (-501)))) 54) (((-578 $) (-1064 (-501))) 59) (((-578 $) (-866 $)) 63) (((-578 $) (-866 (-375 (-501)))) 67) (((-578 $) (-866 (-501))) 71)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL) (($ $ (-375 (-501))) 47)))
-(((-925 |#1|) (-10 -8 (-15 -3743 (|#1| (-501))) (-15 -3743 (|#1| (-375 (-501)))) (-15 -3743 (|#1| |#1| (-701))) (-15 -1250 ((-578 |#1|) (-866 (-501)))) (-15 -1250 ((-578 |#1|) (-866 (-375 (-501))))) (-15 -1250 ((-578 |#1|) (-866 |#1|))) (-15 -1250 ((-578 |#1|) (-1064 (-501)))) (-15 -1250 ((-578 |#1|) (-1064 (-375 (-501))))) (-15 -1250 ((-578 |#1|) (-1064 |#1|))) (-15 -2899 ((-3 |#1| "failed") (-1064 |#1|) (-839))) (-15 -2899 ((-3 |#1| "failed") (-1064 |#1|) (-839) (-786))) (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -1342 (|#1| |#1| (-501))) (-15 -3743 (|#1| |#1|)) (-15 ** (|#1| |#1| (-501))) (-15 -3965 ((-701))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839)))) (-926)) (T -925))
-((-3965 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-925 *3)) (-4 *3 (-926)))))
-(-10 -8 (-15 -3743 (|#1| (-501))) (-15 -3743 (|#1| (-375 (-501)))) (-15 -3743 (|#1| |#1| (-701))) (-15 -1250 ((-578 |#1|) (-866 (-501)))) (-15 -1250 ((-578 |#1|) (-866 (-375 (-501))))) (-15 -1250 ((-578 |#1|) (-866 |#1|))) (-15 -1250 ((-578 |#1|) (-1064 (-501)))) (-15 -1250 ((-578 |#1|) (-1064 (-375 (-501))))) (-15 -1250 ((-578 |#1|) (-1064 |#1|))) (-15 -2899 ((-3 |#1| "failed") (-1064 |#1|) (-839))) (-15 -2899 ((-3 |#1| "failed") (-1064 |#1|) (-839) (-786))) (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -1342 (|#1| |#1| (-501))) (-15 -3743 (|#1| |#1|)) (-15 ** (|#1| |#1| (-501))) (-15 -3965 ((-701))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 91)) (-2865 (($ $) 92)) (-1639 (((-107) $) 94)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 111)) (-1559 (((-373 $) $) 112)) (-3743 (($ $) 75) (($ $ (-701)) 61) (($ (-375 (-501))) 60) (($ (-501)) 59)) (-2781 (((-107) $ $) 102)) (-1417 (((-501) $) 129)) (-2540 (($) 17 T CONST)) (-2899 (((-3 $ "failed") (-1064 $) (-839) (-786)) 69) (((-3 $ "failed") (-1064 $) (-839)) 68)) (-3765 (((-3 (-501) "failed") $) 87 (|has| (-375 (-501)) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 85 (|has| (-375 (-501)) (-950 (-375 (-501))))) (((-3 (-375 (-501)) "failed") $) 83)) (-3490 (((-501) $) 88 (|has| (-375 (-501)) (-950 (-501)))) (((-375 (-501)) $) 86 (|has| (-375 (-501)) (-950 (-375 (-501))))) (((-375 (-501)) $) 82)) (-2636 (($ $ (-786)) 58)) (-2859 (($ $ (-786)) 57)) (-3023 (($ $ $) 106)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 105)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 100)) (-1628 (((-107) $) 113)) (-2164 (((-107) $) 127)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 74)) (-4067 (((-107) $) 128)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 109)) (-4111 (($ $ $) 126)) (-1323 (($ $ $) 125)) (-3786 (((-3 (-1064 $) "failed") $) 70)) (-1741 (((-3 (-786) "failed") $) 72)) (-2731 (((-3 (-1064 $) "failed") $) 71)) (-1697 (($ (-578 $)) 98) (($ $ $) 97)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 114)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 99)) (-3664 (($ (-578 $)) 96) (($ $ $) 95)) (-3739 (((-373 $) $) 110)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 107)) (-3694 (((-3 $ "failed") $ $) 90)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 101)) (-1864 (((-701) $) 103)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 104)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 119) (($ $) 89) (($ (-375 (-501))) 84) (($ (-501)) 81) (($ (-375 (-501))) 78)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 93)) (-2391 (((-375 (-501)) $ $) 56)) (-1250 (((-578 $) (-1064 $)) 67) (((-578 $) (-1064 (-375 (-501)))) 66) (((-578 $) (-1064 (-501))) 65) (((-578 $) (-866 $)) 64) (((-578 $) (-866 (-375 (-501)))) 63) (((-578 $) (-866 (-501))) 62)) (-1720 (($ $) 130)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 115)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 123)) (-3768 (((-107) $ $) 122)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 124)) (-3762 (((-107) $ $) 121)) (-3803 (($ $ $) 120)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 116) (($ $ (-375 (-501))) 73)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ (-375 (-501)) $) 118) (($ $ (-375 (-501))) 117) (($ (-501) $) 80) (($ $ (-501)) 79) (($ (-375 (-501)) $) 77) (($ $ (-375 (-501))) 76)))
-(((-926) (-1180)) (T -926))
-((-3743 (*1 *1 *1) (-4 *1 (-926))) (-1741 (*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-786)))) (-2731 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064 *1)) (-4 *1 (-926)))) (-3786 (*1 *2 *1) (|partial| -12 (-5 *2 (-1064 *1)) (-4 *1 (-926)))) (-2899 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1064 *1)) (-5 *3 (-839)) (-5 *4 (-786)) (-4 *1 (-926)))) (-2899 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1064 *1)) (-5 *3 (-839)) (-4 *1 (-926)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-926)) (-5 *2 (-578 *1)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-1064 (-375 (-501)))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-1064 (-501))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-926)) (-5 *2 (-578 *1)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) (-1250 (*1 *2 *3) (-12 (-5 *3 (-866 (-501))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) (-3743 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-701)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-926)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-926)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-786)))) (-2859 (*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-786)))) (-2391 (*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-375 (-501))))))
-(-13 (-134) (-775) (-156) (-331) (-380 (-375 (-501))) (-37 (-501)) (-37 (-375 (-501))) (-916) (-10 -8 (-15 -1741 ((-3 (-786) "failed") $)) (-15 -2731 ((-3 (-1064 $) "failed") $)) (-15 -3786 ((-3 (-1064 $) "failed") $)) (-15 -2899 ((-3 $ "failed") (-1064 $) (-839) (-786))) (-15 -2899 ((-3 $ "failed") (-1064 $) (-839))) (-15 -1250 ((-578 $) (-1064 $))) (-15 -1250 ((-578 $) (-1064 (-375 (-501))))) (-15 -1250 ((-578 $) (-1064 (-501)))) (-15 -1250 ((-578 $) (-866 $))) (-15 -1250 ((-578 $) (-866 (-375 (-501))))) (-15 -1250 ((-578 $) (-866 (-501)))) (-15 -3743 ($ $ (-701))) (-15 -3743 ($ $)) (-15 -3743 ($ (-375 (-501)))) (-15 -3743 ($ (-501))) (-15 -2636 ($ $ (-786))) (-15 -2859 ($ $ (-786))) (-15 -2391 ((-375 (-501)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 (-501)) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 (-501) (-501)) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-380 (-375 (-501))) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 (-501)) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 (-501)) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-775) . T) ((-777) . T) ((-841) . T) ((-916) . T) ((-950 (-375 (-501))) . T) ((-950 (-501)) |has| (-375 (-501)) (-950 (-501))) ((-964 (-375 (-501))) . T) ((-964 (-501)) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T))
-((-2839 (((-2 (|:| |ans| |#2|) (|:| -1320 |#2|) (|:| |sol?| (-107))) (-501) |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 61)))
-(((-927 |#1| |#2|) (-10 -7 (-15 -2839 ((-2 (|:| |ans| |#2|) (|:| -1320 |#2|) (|:| |sol?| (-107))) (-501) |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-27) (-389 |#1|))) (T -927))
-((-2839 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1070)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1090) (-27) (-389 *8))) (-4 *8 (-13 (-419) (-777) (-134) (-950 *3) (-577 *3))) (-5 *3 (-501)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1320 *4) (|:| |sol?| (-107)))) (-5 *1 (-927 *8 *4)))))
-(-10 -7 (-15 -2839 ((-2 (|:| |ans| |#2|) (|:| -1320 |#2|) (|:| |sol?| (-107))) (-501) |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3007 (((-3 (-578 |#2|) "failed") (-501) |#2| |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
-(((-928 |#1| |#2|) (-10 -7 (-15 -3007 ((-3 (-578 |#2|) "failed") (-501) |#2| |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501))) (-13 (-1090) (-27) (-389 |#1|))) (T -928))
-((-3007 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1070)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1090) (-27) (-389 *8))) (-4 *8 (-13 (-419) (-777) (-134) (-950 *3) (-577 *3))) (-5 *3 (-501)) (-5 *2 (-578 *4)) (-5 *1 (-928 *8 *4)))))
-(-10 -7 (-15 -3007 ((-3 (-578 |#2|) "failed") (-501) |#2| |#2| |#2| (-1070) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-578 |#2|)) (-1 (-3 (-2 (|:| -3071 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2788 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-501)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-501) (-1 |#2| |#2|)) 30)) (-4061 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |c| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|)) 56)) (-4105 (((-2 (|:| |ans| (-375 |#2|)) (|:| |nosol| (-107))) (-375 |#2|) (-375 |#2|)) 61)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -4061 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |c| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|))) (-15 -4105 ((-2 (|:| |ans| (-375 |#2|)) (|:| |nosol| (-107))) (-375 |#2|) (-375 |#2|))) (-15 -2788 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-501)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-501) (-1 |#2| |#2|)))) (-13 (-331) (-134) (-950 (-501))) (-1125 |#1|)) (T -929))
-((-2788 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1125 *6)) (-4 *6 (-13 (-331) (-134) (-950 *4))) (-5 *4 (-501)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))) (-4105 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |ans| (-375 *5)) (|:| |nosol| (-107)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-375 *5)))) (-4061 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-375 *6)) (|:| |c| (-375 *6)) (|:| -1348 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-375 *6)))))
-(-10 -7 (-15 -4061 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |c| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|))) (-15 -4105 ((-2 (|:| |ans| (-375 |#2|)) (|:| |nosol| (-107))) (-375 |#2|) (-375 |#2|))) (-15 -2788 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-501)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-501) (-1 |#2| |#2|))))
-((-1361 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |h| |#2|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|)) 22)) (-2977 (((-3 (-578 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|)) 32)))
-(((-930 |#1| |#2|) (-10 -7 (-15 -1361 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |h| |#2|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|))) (-15 -2977 ((-3 (-578 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|)))) (-13 (-331) (-134) (-950 (-501))) (-1125 |#1|)) (T -930))
-((-2977 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-375 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-375 *5)))) (-1361 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-375 *6)) (|:| |h| *6) (|:| |c1| (-375 *6)) (|:| |c2| (-375 *6)) (|:| -1348 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-375 *6)))))
-(-10 -7 (-15 -1361 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-375 |#2|)) (|:| |h| |#2|) (|:| |c1| (-375 |#2|)) (|:| |c2| (-375 |#2|)) (|:| -1348 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|) (-1 |#2| |#2|))) (-15 -2977 ((-3 (-578 (-375 |#2|)) "failed") (-375 |#2|) (-375 |#2|) (-375 |#2|))))
-((-2934 (((-1 |#1|) (-578 (-2 (|:| -2150 |#1|) (|:| -1506 (-501))))) 37)) (-1326 (((-1 |#1|) (-997 |#1|)) 45)) (-3927 (((-1 |#1|) (-1148 |#1|) (-1148 (-501)) (-501)) 34)))
-(((-931 |#1|) (-10 -7 (-15 -1326 ((-1 |#1|) (-997 |#1|))) (-15 -2934 ((-1 |#1|) (-578 (-2 (|:| -2150 |#1|) (|:| -1506 (-501)))))) (-15 -3927 ((-1 |#1|) (-1148 |#1|) (-1148 (-501)) (-501)))) (-1001)) (T -931))
-((-3927 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *6)) (-5 *4 (-1148 (-501))) (-5 *5 (-501)) (-4 *6 (-1001)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -2150 *4) (|:| -1506 (-501))))) (-4 *4 (-1001)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) (-1326 (*1 *2 *3) (-12 (-5 *3 (-997 *4)) (-4 *4 (-1001)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
-(-10 -7 (-15 -1326 ((-1 |#1|) (-997 |#1|))) (-15 -2934 ((-1 |#1|) (-578 (-2 (|:| -2150 |#1|) (|:| -1506 (-501)))))) (-15 -3927 ((-1 |#1|) (-1148 |#1|) (-1148 (-501)) (-501))))
-((-3169 (((-701) (-301 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3169 ((-701) (-301 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-331) (-1125 |#1|) (-1125 (-375 |#2|)) (-310 |#1| |#2| |#3|) (-13 (-336) (-331))) (T -932))
-((-3169 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-301 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-4 *4 (-1125 (-375 *7))) (-4 *8 (-310 *6 *7 *4)) (-4 *9 (-13 (-336) (-331))) (-5 *2 (-701)) (-5 *1 (-932 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3169 ((-701) (-301 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-1248 (((-199) $) 6) (((-346) $) 9)))
-(((-933) (-1180)) (T -933))
-NIL
-(-13 (-556 (-199)) (-556 (-346)))
-(((-556 (-199)) . T) ((-556 (-346)) . T))
-((-3237 (((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 31) (((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501))) 28)) (-3915 (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501))) 33) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501))) 29) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 32) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|) 27)) (-2175 (((-578 (-375 (-501))) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) 19)) (-1945 (((-375 (-501)) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 16)))
-(((-934 |#1|) (-10 -7 (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|)) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501)))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -1945 ((-375 (-501)) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -2175 ((-578 (-375 (-501))) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))))) (-1125 (-501))) (T -934))
-((-2175 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *2 (-578 (-375 (-501)))) (-5 *1 (-934 *4)) (-4 *4 (-1125 (-501))))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *2 (-375 (-501))) (-5 *1 (-934 *4)) (-4 *4 (-1125 (-501))))) (-3237 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) (-3237 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *4 (-375 (-501))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) (-3915 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *5) (|:| -1320 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-2 (|:| -1313 *5) (|:| -1320 *5))))) (-3915 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-375 (-501))))) (-3915 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-3915 (*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))))
-(-10 -7 (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|)) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501)))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -1945 ((-375 (-501)) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -2175 ((-578 (-375 (-501))) (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))))
-((-3237 (((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 35) (((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501))) 32)) (-3915 (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501))) 30) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501))) 26) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) 28) (((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|) 24)))
-(((-935 |#1|) (-10 -7 (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|)) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501)))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-1125 (-375 (-501)))) (T -935))
-((-3237 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))))) (-3237 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *4 (-375 (-501))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *4)))) (-3915 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *5) (|:| -1320 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *5)) (-5 *4 (-2 (|:| -1313 *5) (|:| -1320 *5))))) (-3915 (*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *4) (|:| -1320 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *4)))) (-3915 (*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))) (-5 *4 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) (-3915 (*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))))))
-(-10 -7 (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1|)) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-375 (-501)))) (-15 -3915 ((-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-375 (-501)))) (-15 -3237 ((-3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) "failed") |#1| (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))) (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))))
-((-2778 (((-578 (-346)) (-866 (-501)) (-346)) 27) (((-578 (-346)) (-866 (-375 (-501))) (-346)) 26)) (-2679 (((-578 (-578 (-346))) (-578 (-866 (-501))) (-578 (-1070)) (-346)) 36)))
-(((-936) (-10 -7 (-15 -2778 ((-578 (-346)) (-866 (-375 (-501))) (-346))) (-15 -2778 ((-578 (-346)) (-866 (-501)) (-346))) (-15 -2679 ((-578 (-578 (-346))) (-578 (-866 (-501))) (-578 (-1070)) (-346))))) (T -936))
-((-2679 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 (-346)))) (-5 *1 (-936)) (-5 *5 (-346)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-866 (-501))) (-5 *2 (-578 (-346))) (-5 *1 (-936)) (-5 *4 (-346)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *2 (-578 (-346))) (-5 *1 (-936)) (-5 *4 (-346)))))
-(-10 -7 (-15 -2778 ((-578 (-346)) (-866 (-375 (-501))) (-346))) (-15 -2778 ((-578 (-346)) (-866 (-501)) (-346))) (-15 -2679 ((-578 (-578 (-346))) (-578 (-866 (-501))) (-578 (-1070)) (-346))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 70)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-3743 (($ $) NIL) (($ $ (-701)) NIL) (($ (-375 (-501))) NIL) (($ (-501)) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) 65)) (-2540 (($) NIL T CONST)) (-2899 (((-3 $ "failed") (-1064 $) (-839) (-786)) NIL) (((-3 $ "failed") (-1064 $) (-839)) 49)) (-3765 (((-3 (-375 (-501)) "failed") $) NIL (|has| (-375 (-501)) (-950 (-375 (-501))))) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-501) "failed") $) NIL (-1405 (|has| (-375 (-501)) (-950 (-501))) (|has| |#1| (-950 (-501)))))) (-3490 (((-375 (-501)) $) 14 (|has| (-375 (-501)) (-950 (-375 (-501))))) (((-375 (-501)) $) 14) ((|#1| $) 108) (((-501) $) NIL (-1405 (|has| (-375 (-501)) (-950 (-501))) (|has| |#1| (-950 (-501)))))) (-2636 (($ $ (-786)) 40)) (-2859 (($ $ (-786)) 41)) (-3023 (($ $ $) NIL)) (-2038 (((-375 (-501)) $ $) 18)) (-2174 (((-3 $ "failed") $) 83)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-2164 (((-107) $) 60)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL)) (-4067 (((-107) $) 63)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3786 (((-3 (-1064 $) "failed") $) 78)) (-1741 (((-3 (-786) "failed") $) 77)) (-2731 (((-3 (-1064 $) "failed") $) 75)) (-2245 (((-3 (-968 $ (-1064 $)) "failed") $) 73)) (-1697 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 84)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ (-578 $)) NIL) (($ $ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-3691 (((-786) $) 82) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ $) 57) (($ (-375 (-501))) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ |#1|) 110)) (-3965 (((-701)) NIL)) (-2442 (((-107) $ $) NIL)) (-2391 (((-375 (-501)) $ $) 24)) (-1250 (((-578 $) (-1064 $)) 55) (((-578 $) (-1064 (-375 (-501)))) NIL) (((-578 $) (-1064 (-501))) NIL) (((-578 $) (-866 $)) NIL) (((-578 $) (-866 (-375 (-501)))) NIL) (((-578 $) (-866 (-501))) NIL)) (-1220 (($ (-968 $ (-1064 $)) (-786)) 39)) (-1720 (($ $) 19)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL)) (-1850 (($) 28 T CONST)) (-1925 (($) 34 T CONST)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 71)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 21)) (-3803 (($ $ $) 32)) (-3797 (($ $) 33) (($ $ $) 69)) (-3790 (($ $ $) 103)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL) (($ $ (-375 (-501))) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 91) (($ $ $) 96) (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ (-501) $) 91) (($ $ (-501)) NIL) (($ (-375 (-501)) $) NIL) (($ $ (-375 (-501))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-937 |#1|) (-13 (-926) (-380 |#1|) (-37 |#1|) (-10 -8 (-15 -1220 ($ (-968 $ (-1064 $)) (-786))) (-15 -2245 ((-3 (-968 $ (-1064 $)) "failed") $)) (-15 -2038 ((-375 (-501)) $ $)))) (-13 (-775) (-331) (-933))) (T -937))
-((-1220 (*1 *1 *2 *3) (-12 (-5 *2 (-968 (-937 *4) (-1064 (-937 *4)))) (-5 *3 (-786)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-775) (-331) (-933))))) (-2245 (*1 *2 *1) (|partial| -12 (-5 *2 (-968 (-937 *3) (-1064 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-775) (-331) (-933))))) (-2038 (*1 *2 *1 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-775) (-331) (-933))))))
-(-13 (-926) (-380 |#1|) (-37 |#1|) (-10 -8 (-15 -1220 ($ (-968 $ (-1064 $)) (-786))) (-15 -2245 ((-3 (-968 $ (-1064 $)) "failed") $)) (-15 -2038 ((-375 (-501)) $ $))))
-((-2201 (((-2 (|:| -2499 |#2|) (|:| -3996 (-578 |#1|))) |#2| (-578 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-938 |#1| |#2|) (-10 -7 (-15 -2201 (|#2| |#2| |#1|)) (-15 -2201 ((-2 (|:| -2499 |#2|) (|:| -3996 (-578 |#1|))) |#2| (-578 |#1|)))) (-331) (-593 |#1|)) (T -938))
-((-2201 (*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-2 (|:| -2499 *3) (|:| -3996 (-578 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-578 *5)) (-4 *3 (-593 *5)))) (-2201 (*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-938 *3 *2)) (-4 *2 (-593 *3)))))
-(-10 -7 (-15 -2201 (|#2| |#2| |#1|)) (-15 -2201 ((-2 (|:| -2499 |#2|) (|:| -3996 (-578 |#1|))) |#2| (-578 |#1|))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2589 ((|#1| $ |#1|) 14)) (-3754 ((|#1| $ |#1|) 12)) (-4088 (($ |#1|) 10)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2007 ((|#1| $) 11)) (-3993 ((|#1| $) 13)) (-3691 (((-786) $) 21 (|has| |#1| (-1001)))) (-3751 (((-107) $ $) 9)))
-(((-939 |#1|) (-13 (-1104) (-10 -8 (-15 -4088 ($ |#1|)) (-15 -2007 (|#1| $)) (-15 -3754 (|#1| $ |#1|)) (-15 -3993 (|#1| $)) (-15 -2589 (|#1| $ |#1|)) (-15 -3751 ((-107) $ $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|))) (-1104)) (T -939))
-((-4088 (*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-3754 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-3993 (*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-2589 (*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) (-3751 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-939 *3)) (-4 *3 (-1104)))))
-(-13 (-1104) (-10 -8 (-15 -4088 ($ |#1|)) (-15 -2007 (|#1| $)) (-15 -3754 (|#1| $ |#1|)) (-15 -3993 (|#1| $)) (-15 -2589 (|#1| $ |#1|)) (-15 -3751 ((-107) $ $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) NIL)) (-2073 (((-578 $) (-578 |#4|)) 104) (((-578 $) (-578 |#4|) (-107)) 105) (((-578 $) (-578 |#4|) (-107) (-107)) 103) (((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107)) 106)) (-3800 (((-578 |#3|) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2599 ((|#4| |#4| $) NIL)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 98)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 53)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) 26 (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4110 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) NIL)) (-3490 (($ (-578 |#4|)) NIL)) (-1199 (((-3 $ "failed") $) 39)) (-1778 ((|#4| |#4| $) 56)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 72 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1379 ((|#4| |#4| $) NIL)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) NIL)) (-3180 (((-107) |#4| $) NIL)) (-1209 (((-107) |#4| $) NIL)) (-1972 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1825 (((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107)) 118)) (-2732 (((-578 |#4|) $) 16 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2361 ((|#3| $) 33)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 17 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2519 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 21)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) NIL)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 96)) (-1383 (((-3 |#4| "failed") $) 37)) (-1618 (((-578 $) |#4| $) 79)) (-2217 (((-3 (-107) (-578 $)) |#4| $) NIL)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 89) (((-107) |#4| $) 51)) (-3420 (((-578 $) |#4| $) 101) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) 102) (((-578 $) |#4| (-578 $)) NIL)) (-3326 (((-578 $) (-578 |#4|) (-107) (-107) (-107)) 113)) (-2297 (($ |#4| $) 69) (($ (-578 |#4|) $) 70) (((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 66)) (-3574 (((-578 |#4|) $) NIL)) (-1590 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1762 ((|#4| |#4| $) NIL)) (-3523 (((-107) $ $) NIL)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3618 ((|#4| |#4| $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 |#4| "failed") $) 35)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3478 (((-3 $ "failed") $ |#4|) 47)) (-3718 (($ $ |#4|) NIL) (((-578 $) |#4| $) 81) (((-578 $) |#4| (-578 $)) NIL) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) 76)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 15)) (-3122 (($) 13)) (-1201 (((-701) $) NIL)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) 12)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 20)) (-1638 (($ $ |#3|) 42)) (-2482 (($ $ |#3|) 43)) (-1218 (($ $) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) 31) (((-578 |#4|) $) 40)) (-4104 (((-701) $) NIL (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) NIL)) (-1709 (((-578 $) |#4| $) 78) (((-578 $) |#4| (-578 $)) NIL) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) NIL)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) NIL)) (-3036 (((-107) |#4| $) NIL)) (-2659 (((-107) |#3| $) 52)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-940 |#1| |#2| |#3| |#4|) (-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2297 ((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107))) (-15 -3326 ((-578 $) (-578 |#4|) (-107) (-107) (-107))) (-15 -1825 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107))))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -940))
-((-2297 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-972 *5 *6 *7)))) (-2073 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-2073 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-3326 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) (-1825 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-578 *8)))))
-(-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2297 ((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107))) (-15 -3326 ((-578 $) (-578 |#4|) (-107) (-107) (-107))) (-15 -1825 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107)))))
-((-1794 (((-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501))))))) (-621 (-375 (-866 (-501))))) 58)) (-3042 (((-578 (-621 (-282 (-501)))) (-282 (-501)) (-621 (-375 (-866 (-501))))) 48)) (-1425 (((-578 (-282 (-501))) (-621 (-375 (-866 (-501))))) 41)) (-1415 (((-578 (-621 (-282 (-501)))) (-621 (-375 (-866 (-501))))) 67)) (-2058 (((-621 (-282 (-501))) (-621 (-282 (-501)))) 33)) (-1568 (((-578 (-621 (-282 (-501)))) (-578 (-621 (-282 (-501))))) 61)) (-3500 (((-3 (-621 (-282 (-501))) "failed") (-621 (-375 (-866 (-501))))) 65)))
-(((-941) (-10 -7 (-15 -1794 ((-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501))))))) (-621 (-375 (-866 (-501)))))) (-15 -3042 ((-578 (-621 (-282 (-501)))) (-282 (-501)) (-621 (-375 (-866 (-501)))))) (-15 -1425 ((-578 (-282 (-501))) (-621 (-375 (-866 (-501)))))) (-15 -3500 ((-3 (-621 (-282 (-501))) "failed") (-621 (-375 (-866 (-501)))))) (-15 -2058 ((-621 (-282 (-501))) (-621 (-282 (-501))))) (-15 -1568 ((-578 (-621 (-282 (-501)))) (-578 (-621 (-282 (-501)))))) (-15 -1415 ((-578 (-621 (-282 (-501)))) (-621 (-375 (-866 (-501)))))))) (T -941))
-((-1415 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)))) (-1568 (*1 *2 *2) (-12 (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-621 (-282 (-501)))) (-5 *1 (-941)))) (-3500 (*1 *2 *3) (|partial| -12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-621 (-282 (-501)))) (-5 *1 (-941)))) (-1425 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-282 (-501)))) (-5 *1 (-941)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *4 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)) (-5 *3 (-282 (-501))))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501)))))))) (-5 *1 (-941)))))
-(-10 -7 (-15 -1794 ((-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501))))))) (-621 (-375 (-866 (-501)))))) (-15 -3042 ((-578 (-621 (-282 (-501)))) (-282 (-501)) (-621 (-375 (-866 (-501)))))) (-15 -1425 ((-578 (-282 (-501))) (-621 (-375 (-866 (-501)))))) (-15 -3500 ((-3 (-621 (-282 (-501))) "failed") (-621 (-375 (-866 (-501)))))) (-15 -2058 ((-621 (-282 (-501))) (-621 (-282 (-501))))) (-15 -1568 ((-578 (-621 (-282 (-501)))) (-578 (-621 (-282 (-501)))))) (-15 -1415 ((-578 (-621 (-282 (-501)))) (-621 (-375 (-866 (-501)))))))
-((-3017 (((-578 (-621 |#1|)) (-578 (-621 |#1|))) 56) (((-621 |#1|) (-621 |#1|)) 55) (((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-578 (-621 |#1|))) 54) (((-621 |#1|) (-621 |#1|) (-621 |#1|)) 51)) (-2590 (((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839)) 50) (((-621 |#1|) (-621 |#1|) (-839)) 49)) (-2374 (((-578 (-621 (-501))) (-578 (-578 (-501)))) 66) (((-578 (-621 (-501))) (-578 (-822 (-501))) (-501)) 65) (((-621 (-501)) (-578 (-501))) 62) (((-621 (-501)) (-822 (-501)) (-501)) 61)) (-3869 (((-621 (-866 |#1|)) (-701)) 79)) (-3595 (((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839)) 36 (|has| |#1| (-6 (-4169 "*")))) (((-621 |#1|) (-621 |#1|) (-839)) 34 (|has| |#1| (-6 (-4169 "*"))))))
-(((-942 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4169 "*"))) (-15 -3595 ((-621 |#1|) (-621 |#1|) (-839))) |noBranch|) (IF (|has| |#1| (-6 (-4169 "*"))) (-15 -3595 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839))) |noBranch|) (-15 -3869 ((-621 (-866 |#1|)) (-701))) (-15 -2590 ((-621 |#1|) (-621 |#1|) (-839))) (-15 -2590 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839))) (-15 -3017 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3017 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -3017 ((-621 |#1|) (-621 |#1|))) (-15 -3017 ((-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -2374 ((-621 (-501)) (-822 (-501)) (-501))) (-15 -2374 ((-621 (-501)) (-578 (-501)))) (-15 -2374 ((-578 (-621 (-501))) (-578 (-822 (-501))) (-501))) (-15 -2374 ((-578 (-621 (-501))) (-578 (-578 (-501)))))) (-959)) (T -942))
-((-2374 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-501)))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-942 *4)) (-4 *4 (-959)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-822 (-501)))) (-5 *4 (-501)) (-5 *2 (-578 (-621 *4))) (-5 *1 (-942 *5)) (-4 *5 (-959)))) (-2374 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-942 *4)) (-4 *4 (-959)))) (-2374 (*1 *2 *3 *4) (-12 (-5 *3 (-822 (-501))) (-5 *4 (-501)) (-5 *2 (-621 *4)) (-5 *1 (-942 *5)) (-4 *5 (-959)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-578 (-621 *3))) (-4 *3 (-959)) (-5 *1 (-942 *3)))) (-3017 (*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-942 *3)))) (-3017 (*1 *2 *2 *2) (-12 (-5 *2 (-578 (-621 *3))) (-4 *3 (-959)) (-5 *1 (-942 *3)))) (-3017 (*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-942 *3)))) (-2590 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-621 *4))) (-5 *3 (-839)) (-4 *4 (-959)) (-5 *1 (-942 *4)))) (-2590 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-839)) (-4 *4 (-959)) (-5 *1 (-942 *4)))) (-3869 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-621 (-866 *4))) (-5 *1 (-942 *4)) (-4 *4 (-959)))) (-3595 (*1 *2 *2 *3) (-12 (-5 *2 (-578 (-621 *4))) (-5 *3 (-839)) (|has| *4 (-6 (-4169 "*"))) (-4 *4 (-959)) (-5 *1 (-942 *4)))) (-3595 (*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-839)) (|has| *4 (-6 (-4169 "*"))) (-4 *4 (-959)) (-5 *1 (-942 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4169 "*"))) (-15 -3595 ((-621 |#1|) (-621 |#1|) (-839))) |noBranch|) (IF (|has| |#1| (-6 (-4169 "*"))) (-15 -3595 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839))) |noBranch|) (-15 -3869 ((-621 (-866 |#1|)) (-701))) (-15 -2590 ((-621 |#1|) (-621 |#1|) (-839))) (-15 -2590 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-839))) (-15 -3017 ((-621 |#1|) (-621 |#1|) (-621 |#1|))) (-15 -3017 ((-578 (-621 |#1|)) (-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -3017 ((-621 |#1|) (-621 |#1|))) (-15 -3017 ((-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -2374 ((-621 (-501)) (-822 (-501)) (-501))) (-15 -2374 ((-621 (-501)) (-578 (-501)))) (-15 -2374 ((-578 (-621 (-501))) (-578 (-822 (-501))) (-501))) (-15 -2374 ((-578 (-621 (-501))) (-578 (-578 (-501))))))
-((-2704 (((-621 |#1|) (-578 (-621 |#1|)) (-1148 |#1|)) 48 (|has| |#1| (-276)))) (-3205 (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 (-1148 |#1|))) 71 (|has| |#1| (-331))) (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 |#1|)) 69 (|has| |#1| (-331)))) (-2767 (((-1148 |#1|) (-578 (-1148 |#1|)) (-501)) 73 (-12 (|has| |#1| (-331)) (|has| |#1| (-336))))) (-3715 (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-839)) 78 (-12 (|has| |#1| (-331)) (|has| |#1| (-336)))) (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107)) 76 (-12 (|has| |#1| (-331)) (|has| |#1| (-336)))) (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|))) 75 (-12 (|has| |#1| (-331)) (|has| |#1| (-336)))) (((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107) (-501) (-501)) 74 (-12 (|has| |#1| (-331)) (|has| |#1| (-336))))) (-1216 (((-107) (-578 (-621 |#1|))) 67 (|has| |#1| (-331))) (((-107) (-578 (-621 |#1|)) (-501)) 66 (|has| |#1| (-331)))) (-2320 (((-1148 (-1148 |#1|)) (-578 (-621 |#1|)) (-1148 |#1|)) 46 (|has| |#1| (-276)))) (-3193 (((-621 |#1|) (-578 (-621 |#1|)) (-621 |#1|)) 32)) (-1940 (((-621 |#1|) (-1148 (-1148 |#1|))) 29)) (-1287 (((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-501)) 62 (|has| |#1| (-331))) (((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|))) 61 (|has| |#1| (-331))) (((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-107) (-501)) 60 (|has| |#1| (-331)))))
-(((-943 |#1|) (-10 -7 (-15 -1940 ((-621 |#1|) (-1148 (-1148 |#1|)))) (-15 -3193 ((-621 |#1|) (-578 (-621 |#1|)) (-621 |#1|))) (IF (|has| |#1| (-276)) (PROGN (-15 -2320 ((-1148 (-1148 |#1|)) (-578 (-621 |#1|)) (-1148 |#1|))) (-15 -2704 ((-621 |#1|) (-578 (-621 |#1|)) (-1148 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-107) (-501))) (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-501))) (-15 -1216 ((-107) (-578 (-621 |#1|)) (-501))) (-15 -1216 ((-107) (-578 (-621 |#1|)))) (-15 -3205 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 |#1|))) (-15 -3205 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 (-1148 |#1|))))) |noBranch|) (IF (|has| |#1| (-336)) (IF (|has| |#1| (-331)) (PROGN (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107) (-501) (-501))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-839))) (-15 -2767 ((-1148 |#1|) (-578 (-1148 |#1|)) (-501)))) |noBranch|) |noBranch|)) (-959)) (T -943))
-((-2767 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1148 *5))) (-5 *4 (-501)) (-5 *2 (-1148 *5)) (-5 *1 (-943 *5)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *4 (-336)) (-4 *4 (-959)) (-5 *2 (-578 (-578 (-621 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-578 (-621 *4))))) (-3715 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-501)) (-4 *6 (-331)) (-4 *6 (-336)) (-4 *6 (-959)) (-5 *2 (-578 (-578 (-621 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-578 (-621 *6))))) (-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-1148 (-1148 *5))) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) (-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) (-1216 (*1 *2 *3) (-12 (-5 *3 (-578 (-621 *4))) (-4 *4 (-331)) (-4 *4 (-959)) (-5 *2 (-107)) (-5 *1 (-943 *4)))) (-1216 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-501)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-107)) (-5 *1 (-943 *5)))) (-1287 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-501)) (-5 *2 (-621 *5)) (-5 *1 (-943 *5)) (-4 *5 (-331)) (-4 *5 (-959)))) (-1287 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-621 *4))) (-5 *2 (-621 *4)) (-5 *1 (-943 *4)) (-4 *4 (-331)) (-4 *4 (-959)))) (-1287 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-621 *6))) (-5 *4 (-107)) (-5 *5 (-501)) (-5 *2 (-621 *6)) (-5 *1 (-943 *6)) (-4 *6 (-331)) (-4 *6 (-959)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-1148 *5)) (-4 *5 (-276)) (-4 *5 (-959)) (-5 *2 (-621 *5)) (-5 *1 (-943 *5)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-4 *5 (-276)) (-4 *5 (-959)) (-5 *2 (-1148 (-1148 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1148 *5)))) (-3193 (*1 *2 *3 *2) (-12 (-5 *3 (-578 (-621 *4))) (-5 *2 (-621 *4)) (-4 *4 (-959)) (-5 *1 (-943 *4)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-4 *4 (-959)) (-5 *2 (-621 *4)) (-5 *1 (-943 *4)))))
-(-10 -7 (-15 -1940 ((-621 |#1|) (-1148 (-1148 |#1|)))) (-15 -3193 ((-621 |#1|) (-578 (-621 |#1|)) (-621 |#1|))) (IF (|has| |#1| (-276)) (PROGN (-15 -2320 ((-1148 (-1148 |#1|)) (-578 (-621 |#1|)) (-1148 |#1|))) (-15 -2704 ((-621 |#1|) (-578 (-621 |#1|)) (-1148 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-107) (-501))) (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -1287 ((-621 |#1|) (-578 (-621 |#1|)) (-578 (-621 |#1|)) (-501))) (-15 -1216 ((-107) (-578 (-621 |#1|)) (-501))) (-15 -1216 ((-107) (-578 (-621 |#1|)))) (-15 -3205 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 |#1|))) (-15 -3205 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-1148 (-1148 |#1|))))) |noBranch|) (IF (|has| |#1| (-336)) (IF (|has| |#1| (-331)) (PROGN (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107) (-501) (-501))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-107))) (-15 -3715 ((-578 (-578 (-621 |#1|))) (-578 (-621 |#1|)) (-839))) (-15 -2767 ((-1148 |#1|) (-578 (-1148 |#1|)) (-501)))) |noBranch|) |noBranch|))
-((-3972 ((|#1| (-839) |#1|) 9)))
-(((-944 |#1|) (-10 -7 (-15 -3972 (|#1| (-839) |#1|))) (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $))))) (T -944))
-((-3972 (*1 *2 *3 *2) (-12 (-5 *3 (-839)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $))))))))
-(-10 -7 (-15 -3972 (|#1| (-839) |#1|)))
-((-3890 ((|#1| |#1| (-839)) 9)))
-(((-945 |#1|) (-10 -7 (-15 -3890 (|#1| |#1| (-839)))) (-13 (-1001) (-10 -8 (-15 * ($ $ $))))) (T -945))
-((-3890 (*1 *2 *2 *3) (-12 (-5 *3 (-839)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1001) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -3890 (|#1| |#1| (-839))))
-((-3691 ((|#1| (-280)) 11) (((-1154) |#1|) 9)))
-(((-946 |#1|) (-10 -7 (-15 -3691 ((-1154) |#1|)) (-15 -3691 (|#1| (-280)))) (-1104)) (T -946))
-((-3691 (*1 *2 *3) (-12 (-5 *3 (-280)) (-5 *1 (-946 *2)) (-4 *2 (-1104)))) (-3691 (*1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *1 (-946 *3)) (-4 *3 (-1104)))))
-(-10 -7 (-15 -3691 ((-1154) |#1|)) (-15 -3691 (|#1| (-280))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3547 (($ |#4|) 25)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-1316 ((|#4| $) 27)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 46) (($ (-501)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3965 (((-701)) 43)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 23 T CONST)) (-3751 (((-107) $ $) 40)) (-3797 (($ $) 31) (($ $ $) NIL)) (-3790 (($ $ $) 29)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-947 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -3547 ($ |#4|)) (-15 -3691 ($ |#4|)) (-15 -1316 (|#4| $)))) (-331) (-723) (-777) (-870 |#1| |#2| |#3|) (-578 |#4|)) (T -947))
-((-3547 (*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-870 *3 *4 *5)) (-14 *6 (-578 *2)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-870 *3 *4 *5)) (-14 *6 (-578 *2)))) (-1316 (*1 *2 *1) (-12 (-4 *2 (-870 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-14 *6 (-578 *2)))))
-(-13 (-156) (-37 |#1|) (-10 -8 (-15 -3547 ($ |#4|)) (-15 -3691 ($ |#4|)) (-15 -1316 (|#4| $))))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-1991 (((-1154) $ (-1070) (-1070)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-1879 (((-107) (-107)) 39)) (-2813 (((-107) (-107)) 38)) (-3754 (((-50) $ (-1070) (-50)) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 (-50) "failed") (-1070) $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-2256 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-3 (-50) "failed") (-1070) $) NIL)) (-1526 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-2156 (((-50) $ (-1070) (-50)) NIL (|has| $ (-6 -4168)))) (-1905 (((-50) $ (-1070)) NIL)) (-2732 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1070) $) NIL (|has| (-1070) (-777)))) (-3380 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-1522 (((-1070) $) NIL (|has| (-1070) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-1500 (((-578 (-1070)) $) 34)) (-3576 (((-107) (-1070) $) NIL)) (-1328 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-2658 (((-578 (-1070)) $) NIL)) (-2852 (((-107) (-1070) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-1190 (((-50) $) NIL (|has| (-1070) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) "failed") (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL)) (-3084 (($ $ (-50)) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-50)) (-578 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-262 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-578 (-262 (-50)))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-4137 (((-578 (-50)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (((-50) $ (-1070)) 35) (((-50) $ (-1070) (-50)) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-701) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001)))) (((-701) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-3691 (((-786) $) 37 (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-948) (-13 (-1081 (-1070) (-50)) (-10 -7 (-15 -1879 ((-107) (-107))) (-15 -2813 ((-107) (-107))) (-6 -4167)))) (T -948))
-((-1879 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-948)))) (-2813 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-948)))))
-(-13 (-1081 (-1070) (-50)) (-10 -7 (-15 -1879 ((-107) (-107))) (-15 -2813 ((-107) (-107))) (-6 -4167)))
-((-3490 ((|#2| $) 10)))
-(((-949 |#1| |#2|) (-10 -8 (-15 -3490 (|#2| |#1|))) (-950 |#2|) (-1104)) (T -949))
-NIL
-(-10 -8 (-15 -3490 (|#2| |#1|)))
-((-3765 (((-3 |#1| "failed") $) 7)) (-3490 ((|#1| $) 8)) (-3691 (($ |#1|) 6)))
-(((-950 |#1|) (-1180) (-1104)) (T -950))
-((-3490 (*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) (-3765 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) (-3691 (*1 *1 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))))
-(-13 (-10 -8 (-15 -3691 ($ |t#1|)) (-15 -3765 ((-3 |t#1| "failed") $)) (-15 -3490 (|t#1| $))))
-((-1963 (((-578 (-578 (-262 (-375 (-866 |#2|))))) (-578 (-866 |#2|)) (-578 (-1070))) 35)))
-(((-951 |#1| |#2|) (-10 -7 (-15 -1963 ((-578 (-578 (-262 (-375 (-866 |#2|))))) (-578 (-866 |#2|)) (-578 (-1070))))) (-508) (-13 (-508) (-950 |#1|))) (T -951))
-((-1963 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-4 *6 (-13 (-508) (-950 *5))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *6)))))) (-5 *1 (-951 *5 *6)))))
-(-10 -7 (-15 -1963 ((-578 (-578 (-262 (-375 (-866 |#2|))))) (-578 (-866 |#2|)) (-578 (-1070)))))
-((-3800 (((-578 (-1070)) (-375 (-866 |#1|))) 15)) (-3728 (((-375 (-1064 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070)) 22)) (-3794 (((-375 (-866 |#1|)) (-375 (-1064 (-375 (-866 |#1|)))) (-1070)) 24)) (-2752 (((-3 (-1070) "failed") (-375 (-866 |#1|))) 18)) (-3195 (((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-262 (-375 (-866 |#1|))))) 29) (((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|)))) 31) (((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-1070)) (-578 (-375 (-866 |#1|)))) 26) (((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|))) 27)) (-3691 (((-375 (-866 |#1|)) |#1|) 11)))
-(((-952 |#1|) (-10 -7 (-15 -3800 ((-578 (-1070)) (-375 (-866 |#1|)))) (-15 -2752 ((-3 (-1070) "failed") (-375 (-866 |#1|)))) (-15 -3728 ((-375 (-1064 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070))) (-15 -3794 ((-375 (-866 |#1|)) (-375 (-1064 (-375 (-866 |#1|)))) (-1070))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-1070)) (-578 (-375 (-866 |#1|))))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -3691 ((-375 (-866 |#1|)) |#1|))) (-508)) (T -952))
-((-3691 (*1 *2 *3) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-952 *3)) (-4 *3 (-508)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-262 (-375 (-866 *4))))) (-5 *2 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *1 (-952 *4)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *3 (-262 (-375 (-866 *4)))) (-5 *2 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *1 (-952 *4)))) (-3195 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-5 *4 (-578 (-375 (-866 *5)))) (-5 *2 (-375 (-866 *5))) (-4 *5 (-508)) (-5 *1 (-952 *5)))) (-3195 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-375 (-866 *4))) (-5 *3 (-1070)) (-4 *4 (-508)) (-5 *1 (-952 *4)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-1064 (-375 (-866 *5))))) (-5 *4 (-1070)) (-5 *2 (-375 (-866 *5))) (-5 *1 (-952 *5)) (-4 *5 (-508)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-375 (-1064 (-375 (-866 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-375 (-866 *5))))) (-2752 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-1070)) (-5 *1 (-952 *4)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-1070))) (-5 *1 (-952 *4)))))
-(-10 -7 (-15 -3800 ((-578 (-1070)) (-375 (-866 |#1|)))) (-15 -2752 ((-3 (-1070) "failed") (-375 (-866 |#1|)))) (-15 -3728 ((-375 (-1064 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070))) (-15 -3794 ((-375 (-866 |#1|)) (-375 (-1064 (-375 (-866 |#1|)))) (-1070))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-1070)) (-578 (-375 (-866 |#1|))))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-262 (-375 (-866 |#1|))))) (-15 -3195 ((-375 (-866 |#1|)) (-375 (-866 |#1|)) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -3691 ((-375 (-866 |#1|)) |#1|)))
-((-3602 (((-346)) 15)) (-1326 (((-1 (-346)) (-346) (-346)) 20)) (-1348 (((-1 (-346)) (-701)) 42)) (-1640 (((-346)) 33)) (-2091 (((-1 (-346)) (-346) (-346)) 34)) (-3783 (((-346)) 26)) (-1802 (((-1 (-346)) (-346)) 27)) (-3322 (((-346) (-701)) 37)) (-1621 (((-1 (-346)) (-701)) 38)) (-2958 (((-1 (-346)) (-701) (-701)) 41)) (-3360 (((-1 (-346)) (-701) (-701)) 39)))
-(((-953) (-10 -7 (-15 -3602 ((-346))) (-15 -1640 ((-346))) (-15 -3783 ((-346))) (-15 -3322 ((-346) (-701))) (-15 -1326 ((-1 (-346)) (-346) (-346))) (-15 -2091 ((-1 (-346)) (-346) (-346))) (-15 -1802 ((-1 (-346)) (-346))) (-15 -1621 ((-1 (-346)) (-701))) (-15 -3360 ((-1 (-346)) (-701) (-701))) (-15 -2958 ((-1 (-346)) (-701) (-701))) (-15 -1348 ((-1 (-346)) (-701))))) (T -953))
-((-1348 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) (-2958 (*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) (-3360 (*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) (-1621 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) (-1802 (*1 *2 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))) (-2091 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))) (-1326 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-346)) (-5 *1 (-953)))) (-3783 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953)))) (-1640 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953)))) (-3602 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953)))))
-(-10 -7 (-15 -3602 ((-346))) (-15 -1640 ((-346))) (-15 -3783 ((-346))) (-15 -3322 ((-346) (-701))) (-15 -1326 ((-1 (-346)) (-346) (-346))) (-15 -2091 ((-1 (-346)) (-346) (-346))) (-15 -1802 ((-1 (-346)) (-346))) (-15 -1621 ((-1 (-346)) (-701))) (-15 -3360 ((-1 (-346)) (-701) (-701))) (-15 -2958 ((-1 (-346)) (-701) (-701))) (-15 -1348 ((-1 (-346)) (-701))))
-((-3739 (((-373 |#1|) |#1|) 31)))
-(((-954 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1|))) (-1125 (-375 (-866 (-501))))) (T -954))
-((-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1125 (-375 (-866 (-501))))))))
-(-10 -7 (-15 -3739 ((-373 |#1|) |#1|)))
-((-3167 (((-375 (-373 (-866 |#1|))) (-375 (-866 |#1|))) 14)))
-(((-955 |#1|) (-10 -7 (-15 -3167 ((-375 (-373 (-866 |#1|))) (-375 (-866 |#1|))))) (-276)) (T -955))
-((-3167 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-276)) (-5 *2 (-375 (-373 (-866 *4)))) (-5 *1 (-955 *4)))))
-(-10 -7 (-15 -3167 ((-375 (-373 (-866 |#1|))) (-375 (-866 |#1|)))))
-((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 (-710 |#1| (-787 |#2|)))))) (-578 (-710 |#1| (-787 |#2|)))) NIL)) (-2073 (((-578 $) (-578 (-710 |#1| (-787 |#2|)))) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-107)) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-107) (-107)) NIL)) (-3800 (((-578 (-787 |#2|)) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-2599 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-3676 (((-578 (-2 (|:| |val| (-710 |#1| (-787 |#2|))) (|:| -3709 $))) (-710 |#1| (-787 |#2|)) $) NIL)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ (-787 |#2|)) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 (-710 |#1| (-787 |#2|)) "failed") $ (-787 |#2|)) NIL)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) NIL (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))) $ (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL)) (-4110 (((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|))) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 (-710 |#1| (-787 |#2|)))) NIL)) (-3490 (($ (-578 (-710 |#1| (-787 |#2|)))) NIL)) (-1199 (((-3 $ "failed") $) NIL)) (-1778 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001))))) (-1526 (($ (-710 |#1| (-787 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (($ (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-710 |#1| (-787 |#2|))) (|:| |den| |#1|)) (-710 |#1| (-787 |#2|)) $) NIL (|has| |#1| (-508)))) (-2130 (((-107) (-710 |#1| (-787 |#2|)) $ (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL)) (-1379 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-3547 (((-710 |#1| (-787 |#2|)) (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $ (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (((-710 |#1| (-787 |#2|)) (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $ (-710 |#1| (-787 |#2|))) NIL (|has| $ (-6 -4167))) (((-710 |#1| (-787 |#2|)) (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $ (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL)) (-1577 (((-2 (|:| -2109 (-578 (-710 |#1| (-787 |#2|)))) (|:| -2342 (-578 (-710 |#1| (-787 |#2|))))) $) NIL)) (-3180 (((-107) (-710 |#1| (-787 |#2|)) $) NIL)) (-1209 (((-107) (-710 |#1| (-787 |#2|)) $) NIL)) (-1972 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-2732 (((-578 (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1964 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-2361 (((-787 |#2|) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-710 |#1| (-787 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001))))) (-2519 (($ (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) $) NIL)) (-3453 (((-578 (-787 |#2|)) $) NIL)) (-1479 (((-107) (-787 |#2|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2064 (((-3 (-710 |#1| (-787 |#2|)) (-578 $)) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-2019 (((-578 (-2 (|:| |val| (-710 |#1| (-787 |#2|))) (|:| -3709 $))) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-1383 (((-3 (-710 |#1| (-787 |#2|)) "failed") $) NIL)) (-1618 (((-578 $) (-710 |#1| (-787 |#2|)) $) NIL)) (-2217 (((-3 (-107) (-578 $)) (-710 |#1| (-787 |#2|)) $) NIL)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) (-710 |#1| (-787 |#2|)) $) NIL)) (-3420 (((-578 $) (-710 |#1| (-787 |#2|)) $) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) $) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-578 $)) NIL) (((-578 $) (-710 |#1| (-787 |#2|)) (-578 $)) NIL)) (-2297 (($ (-710 |#1| (-787 |#2|)) $) NIL) (($ (-578 (-710 |#1| (-787 |#2|))) $) NIL)) (-3574 (((-578 (-710 |#1| (-787 |#2|))) $) NIL)) (-1590 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-1762 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-3523 (((-107) $ $) NIL)) (-2200 (((-2 (|:| |num| (-710 |#1| (-787 |#2|))) (|:| |den| |#1|)) (-710 |#1| (-787 |#2|)) $) NIL (|has| |#1| (-508)))) (-2667 (((-107) (-710 |#1| (-787 |#2|)) $) NIL) (((-107) $) NIL)) (-3618 (((-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 (-710 |#1| (-787 |#2|)) "failed") $) NIL)) (-2520 (((-3 (-710 |#1| (-787 |#2|)) "failed") (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL)) (-3478 (((-3 $ "failed") $ (-710 |#1| (-787 |#2|))) NIL)) (-3718 (($ $ (-710 |#1| (-787 |#2|))) NIL) (((-578 $) (-710 |#1| (-787 |#2|)) $) NIL) (((-578 $) (-710 |#1| (-787 |#2|)) (-578 $)) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) $) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-578 $)) NIL)) (-2369 (((-107) (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-710 |#1| (-787 |#2|))) (-578 (-710 |#1| (-787 |#2|)))) NIL (-12 (|has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (($ $ (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|))) NIL (-12 (|has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (($ $ (-262 (-710 |#1| (-787 |#2|)))) NIL (-12 (|has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (($ $ (-578 (-262 (-710 |#1| (-787 |#2|))))) NIL (-12 (|has| (-710 |#1| (-787 |#2|)) (-278 (-710 |#1| (-787 |#2|)))) (|has| (-710 |#1| (-787 |#2|)) (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-1201 (((-701) $) NIL)) (-3713 (((-701) (-710 |#1| (-787 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-710 |#1| (-787 |#2|)) (-1001)))) (((-701) (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-710 |#1| (-787 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-710 |#1| (-787 |#2|)))) NIL)) (-1638 (($ $ (-787 |#2|)) NIL)) (-2482 (($ $ (-787 |#2|)) NIL)) (-1218 (($ $) NIL)) (-3737 (($ $ (-787 |#2|)) NIL)) (-3691 (((-786) $) NIL) (((-578 (-710 |#1| (-787 |#2|))) $) NIL)) (-4104 (((-701) $) NIL (|has| (-787 |#2|) (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 (-710 |#1| (-787 |#2|))))) "failed") (-578 (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 (-710 |#1| (-787 |#2|))))) "failed") (-578 (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|))) (-1 (-107) (-710 |#1| (-787 |#2|)) (-710 |#1| (-787 |#2|)))) NIL)) (-2560 (((-107) $ (-1 (-107) (-710 |#1| (-787 |#2|)) (-578 (-710 |#1| (-787 |#2|))))) NIL)) (-1709 (((-578 $) (-710 |#1| (-787 |#2|)) $) NIL) (((-578 $) (-710 |#1| (-787 |#2|)) (-578 $)) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) $) NIL) (((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-578 $)) NIL)) (-1200 (((-107) (-1 (-107) (-710 |#1| (-787 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 (-787 |#2|)) $) NIL)) (-3036 (((-107) (-710 |#1| (-787 |#2|)) $) NIL)) (-2659 (((-107) (-787 |#2|) $) NIL)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-956 |#1| |#2|) (-13 (-977 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) (-10 -8 (-15 -2073 ((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-107) (-107))))) (-419) (-578 (-1070))) (T -956))
-((-2073 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-956 *5 *6)))))
-(-13 (-977 |#1| (-487 (-787 |#2|)) (-787 |#2|) (-710 |#1| (-787 |#2|))) (-10 -8 (-15 -2073 ((-578 $) (-578 (-710 |#1| (-787 |#2|))) (-107) (-107)))))
-((-1326 (((-1 (-501)) (-991 (-501))) 33)) (-1800 (((-501) (-501) (-501) (-501) (-501)) 30)) (-1670 (((-1 (-501)) |RationalNumber|) NIL)) (-3199 (((-1 (-501)) |RationalNumber|) NIL)) (-1299 (((-1 (-501)) (-501) |RationalNumber|) NIL)))
-(((-957) (-10 -7 (-15 -1326 ((-1 (-501)) (-991 (-501)))) (-15 -1299 ((-1 (-501)) (-501) |RationalNumber|)) (-15 -1670 ((-1 (-501)) |RationalNumber|)) (-15 -3199 ((-1 (-501)) |RationalNumber|)) (-15 -1800 ((-501) (-501) (-501) (-501) (-501))))) (T -957))
-((-1800 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-957)))) (-3199 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)))) (-1670 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)))) (-1299 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)) (-5 *3 (-501)))) (-1326 (*1 *2 *3) (-12 (-5 *3 (-991 (-501))) (-5 *2 (-1 (-501))) (-5 *1 (-957)))))
-(-10 -7 (-15 -1326 ((-1 (-501)) (-991 (-501)))) (-15 -1299 ((-1 (-501)) (-501) |RationalNumber|)) (-15 -1670 ((-1 (-501)) |RationalNumber|)) (-15 -3199 ((-1 (-501)) |RationalNumber|)) (-15 -1800 ((-501) (-501) (-501) (-501) (-501))))
-((-3691 (((-786) $) NIL) (($ (-501)) 10)))
-(((-958 |#1|) (-10 -8 (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-959)) (T -958))
-NIL
-(-10 -8 (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-959) (-1180)) (T -959))
-((-3965 (*1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-701)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-959)))))
-(-13 (-965) (-657) (-583 $) (-10 -8 (-15 -3965 ((-701))) (-15 -3691 ($ (-501))) (-6 -4164)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 $) . T) ((-657) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-2981 (((-107) $) 27)) (-4007 (((-107) $) 16)) (-1648 (((-701) $) 13)) (-3248 (((-701) $) 14)) (-3697 (((-107) $) 25)) (-3719 (((-107) $) 29)))
-(((-960 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3248 ((-701) |#1|)) (-15 -1648 ((-701) |#1|)) (-15 -3719 ((-107) |#1|)) (-15 -2981 ((-107) |#1|)) (-15 -3697 ((-107) |#1|)) (-15 -4007 ((-107) |#1|))) (-961 |#2| |#3| |#4| |#5| |#6|) (-701) (-701) (-959) (-211 |#3| |#4|) (-211 |#2| |#4|)) (T -960))
-NIL
-(-10 -8 (-15 -3248 ((-701) |#1|)) (-15 -1648 ((-701) |#1|)) (-15 -3719 ((-107) |#1|)) (-15 -2981 ((-107) |#1|)) (-15 -3697 ((-107) |#1|)) (-15 -4007 ((-107) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2981 (((-107) $) 51)) (-3177 (((-3 $ "failed") $ $) 19)) (-4007 (((-107) $) 53)) (-2997 (((-107) $ (-701)) 61)) (-2540 (($) 17 T CONST)) (-1933 (($ $) 34 (|has| |#3| (-276)))) (-2358 ((|#4| $ (-501)) 39)) (-3689 (((-701) $) 33 (|has| |#3| (-508)))) (-1905 ((|#3| $ (-501) (-501)) 41)) (-2732 (((-578 |#3|) $) 68 (|has| $ (-6 -4167)))) (-3752 (((-701) $) 32 (|has| |#3| (-508)))) (-3552 (((-578 |#5|) $) 31 (|has| |#3| (-508)))) (-1648 (((-701) $) 45)) (-3248 (((-701) $) 44)) (-3379 (((-107) $ (-701)) 60)) (-1567 (((-501) $) 49)) (-2734 (((-501) $) 47)) (-3380 (((-578 |#3|) $) 69 (|has| $ (-6 -4167)))) (-2211 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1001)) (|has| $ (-6 -4167))))) (-2969 (((-501) $) 48)) (-3491 (((-501) $) 46)) (-2630 (($ (-578 (-578 |#3|))) 54)) (-2519 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2237 (((-578 (-578 |#3|)) $) 43)) (-3155 (((-107) $ (-701)) 59)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-508)))) (-2369 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#3|) (-578 |#3|)) 75 (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-262 |#3|)) 73 (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-578 (-262 |#3|))) 72 (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))) (-1262 (((-107) $ $) 55)) (-1407 (((-107) $) 58)) (-3122 (($) 57)) (-2007 ((|#3| $ (-501) (-501)) 42) ((|#3| $ (-501) (-501) |#3|) 40)) (-3697 (((-107) $) 52)) (-3713 (((-701) |#3| $) 70 (-12 (|has| |#3| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4167)))) (-3764 (($ $) 56)) (-2952 ((|#5| $ (-501)) 38)) (-3691 (((-786) $) 11)) (-1200 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4167)))) (-3719 (((-107) $) 50)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#3|) 35 (|has| |#3| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3581 (((-701) $) 62 (|has| $ (-6 -4167)))))
-(((-961 |#1| |#2| |#3| |#4| |#5|) (-1180) (-701) (-701) (-959) (-211 |t#2| |t#3|) (-211 |t#1| |t#3|)) (T -961))
-((-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) (-2630 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *5))) (-4 *5 (-959)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))) (-3697 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))) (-3719 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))) (-1567 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))) (-2969 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))) (-1648 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-701)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-701)))) (-2237 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-578 (-578 *5))))) (-2007 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)) (-4 *2 (-959)))) (-1905 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)) (-4 *2 (-959)))) (-2007 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *2 (-959)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)))) (-2358 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *6 *2 *7)) (-4 *6 (-959)) (-4 *7 (-211 *4 *6)) (-4 *2 (-211 *5 *6)))) (-2952 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *6 *7 *2)) (-4 *6 (-959)) (-4 *7 (-211 *5 *6)) (-4 *2 (-211 *4 *6)))) (-1212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) (-3694 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-961 *3 *4 *2 *5 *6)) (-4 *2 (-959)) (-4 *5 (-211 *4 *2)) (-4 *6 (-211 *3 *2)) (-4 *2 (-508)))) (-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5 *6)) (-4 *2 (-959)) (-4 *5 (-211 *4 *2)) (-4 *6 (-211 *3 *2)) (-4 *2 (-331)))) (-1933 (*1 *1 *1) (-12 (-4 *1 (-961 *2 *3 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *2 *4)) (-4 *4 (-276)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-701)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-701)))) (-3552 (*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-578 *7)))))
-(-13 (-106 |t#3| |t#3|) (-454 |t#3|) (-10 -8 (-6 -4167) (IF (|has| |t#3| (-156)) (-6 (-648 |t#3|)) |noBranch|) (-15 -2630 ($ (-578 (-578 |t#3|)))) (-15 -4007 ((-107) $)) (-15 -3697 ((-107) $)) (-15 -2981 ((-107) $)) (-15 -3719 ((-107) $)) (-15 -1567 ((-501) $)) (-15 -2969 ((-501) $)) (-15 -2734 ((-501) $)) (-15 -3491 ((-501) $)) (-15 -1648 ((-701) $)) (-15 -3248 ((-701) $)) (-15 -2237 ((-578 (-578 |t#3|)) $)) (-15 -2007 (|t#3| $ (-501) (-501))) (-15 -1905 (|t#3| $ (-501) (-501))) (-15 -2007 (|t#3| $ (-501) (-501) |t#3|)) (-15 -2358 (|t#4| $ (-501))) (-15 -2952 (|t#5| $ (-501))) (-15 -1212 ($ (-1 |t#3| |t#3|) $)) (-15 -1212 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-508)) (-15 -3694 ((-3 $ "failed") $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-331)) (-15 -3803 ($ $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-276)) (-15 -1933 ($ $)) |noBranch|) (IF (|has| |t#3| (-508)) (PROGN (-15 -3689 ((-701) $)) (-15 -3752 ((-701) $)) (-15 -3552 ((-578 |t#5|) $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-555 (-786)) . T) ((-278 |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))) ((-454 |#3|) . T) ((-476 |#3| |#3|) -12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))) ((-583 |#3|) . T) ((-648 |#3|) |has| |#3| (-156)) ((-964 |#3|) . T) ((-1001) . T) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2981 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-4007 (((-107) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-1933 (($ $) 40 (|has| |#3| (-276)))) (-2358 (((-212 |#2| |#3|) $ (-501)) 29)) (-1380 (($ (-621 |#3|)) 38)) (-3689 (((-701) $) 42 (|has| |#3| (-508)))) (-1905 ((|#3| $ (-501) (-501)) NIL)) (-2732 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-3752 (((-701) $) 44 (|has| |#3| (-508)))) (-3552 (((-578 (-212 |#1| |#3|)) $) 48 (|has| |#3| (-508)))) (-1648 (((-701) $) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2630 (($ (-578 (-578 |#3|))) 24)) (-2519 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2237 (((-578 (-578 |#3|)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-508)))) (-2369 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-262 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-578 (-262 |#3|))) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#3| $ (-501) (-501)) NIL) ((|#3| $ (-501) (-501) |#3|) NIL)) (-3613 (((-125)) 51 (|has| |#3| (-331)))) (-3697 (((-107) $) NIL)) (-3713 (((-701) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001)))) (((-701) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 60 (|has| |#3| (-556 (-490))))) (-2952 (((-212 |#1| |#3|) $ (-501)) 33)) (-3691 (((-786) $) 16) (((-621 |#3|) $) 35)) (-1200 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-1850 (($) 13 T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#3|) NIL (|has| |#3| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-962 |#1| |#2| |#3|) (-13 (-961 |#1| |#2| |#3| (-212 |#2| |#3|) (-212 |#1| |#3|)) (-555 (-621 |#3|)) (-10 -8 (IF (|has| |#3| (-331)) (-6 (-1156 |#3|)) |noBranch|) (IF (|has| |#3| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (-15 -1380 ($ (-621 |#3|))) (-15 -3691 ((-621 |#3|) $)))) (-701) (-701) (-959)) (T -962))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-621 *5)) (-5 *1 (-962 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-959)))) (-1380 (*1 *1 *2) (-12 (-5 *2 (-621 *5)) (-4 *5 (-959)) (-5 *1 (-962 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)))))
-(-13 (-961 |#1| |#2| |#3| (-212 |#2| |#3|) (-212 |#1| |#3|)) (-555 (-621 |#3|)) (-10 -8 (IF (|has| |#3| (-331)) (-6 (-1156 |#3|)) |noBranch|) (IF (|has| |#3| (-556 (-490))) (-6 (-556 (-490))) |noBranch|) (-15 -1380 ($ (-621 |#3|))) (-15 -3691 ((-621 |#3|) $))))
-((-3547 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1212 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-963 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1212 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3547 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-701) (-701) (-959) (-211 |#2| |#3|) (-211 |#1| |#3|) (-961 |#1| |#2| |#3| |#4| |#5|) (-959) (-211 |#2| |#7|) (-211 |#1| |#7|) (-961 |#1| |#2| |#7| |#8| |#9|)) (T -963))
-((-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-959)) (-4 *2 (-959)) (-14 *5 (-701)) (-14 *6 (-701)) (-4 *8 (-211 *6 *7)) (-4 *9 (-211 *5 *7)) (-4 *10 (-211 *6 *2)) (-4 *11 (-211 *5 *2)) (-5 *1 (-963 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-961 *5 *6 *7 *8 *9)) (-4 *12 (-961 *5 *6 *2 *10 *11)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-959)) (-4 *10 (-959)) (-14 *5 (-701)) (-14 *6 (-701)) (-4 *8 (-211 *6 *7)) (-4 *9 (-211 *5 *7)) (-4 *2 (-961 *5 *6 *10 *11 *12)) (-5 *1 (-963 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-961 *5 *6 *7 *8 *9)) (-4 *11 (-211 *6 *10)) (-4 *12 (-211 *5 *10)))))
-(-10 -7 (-15 -1212 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3547 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ |#1|) 23)))
-(((-964 |#1|) (-1180) (-965)) (T -964))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-965)))))
+((-2082 (($ $ (-996 $)) 7) (($ $ (-1073)) 6)))
+(((-880) (-1184)) (T -880))
+((-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880)))) (-2082 (*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1073)))))
+(-13 (-10 -8 (-15 -2082 ($ $ (-1073))) (-15 -2082 ($ $ (-996 $)))))
+((-3442 (((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)) (-1073)) 23) (((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073))) 24) (((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 |#1|))) (-874 |#1|) (-1073) (-874 |#1|) (-1073)) 41)))
+(((-881 |#1|) (-10 -7 (-15 -3442 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 |#1|))) (-874 |#1|) (-1073) (-874 |#1|) (-1073))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)) (-1073)))) (-13 (-333) (-134))) (T -881))
+((-3442 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-5 *5 (-1073)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *6))) (|:| |prim| (-1069 *6)))) (-5 *1 (-881 *6)))) (-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))) (-3442 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1073)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))))
+(-10 -7 (-15 -3442 ((-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 |#1|))) (-874 |#1|) (-1073) (-874 |#1|) (-1073))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)))) (-15 -3442 ((-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 |#1|))) (|:| |prim| (-1069 |#1|))) (-583 (-874 |#1|)) (-583 (-1073)) (-1073))))
+((-2400 (((-583 |#1|) |#1| |#1|) 42)) (-3849 (((-107) |#1|) 39)) (-2450 ((|#1| |#1|) 64)) (-3090 ((|#1| |#1|) 63)))
+(((-882 |#1|) (-10 -7 (-15 -3849 ((-107) |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2400 ((-583 |#1|) |#1| |#1|))) (-502)) (T -882))
+((-2400 (*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) (-2450 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-3090 (*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))) (-3849 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502)))))
+(-10 -7 (-15 -3849 ((-107) |#1|)) (-15 -3090 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2400 ((-583 |#1|) |#1| |#1|)))
+((-2808 (((-1158) (-787)) 9)))
+(((-883) (-10 -7 (-15 -2808 ((-1158) (-787))))) (T -883))
+((-2808 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-883)))))
+(-10 -7 (-15 -2808 ((-1158) (-787))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 62 (|has| |#1| (-509)))) (-1213 (($ $) 63 (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 28)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) 24)) (-3621 (((-3 $ "failed") $) 35)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-1436 (($ $ |#1| |#2| $) 47)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 16)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| |#2|) NIL)) (-2349 ((|#2| $) 19)) (-3328 (($ (-1 |#2| |#2|) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ $) 23)) (-1191 ((|#1| $) 21)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 40)) (-4141 ((|#1| $) NIL)) (-1953 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-123)) (|has| |#1| (-509))))) (-2476 (((-3 $ "failed") $ $) 74 (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-509)))) (-3688 ((|#2| $) 17)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) 39) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 34) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ |#2|) 31)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 15)) (-2053 (($ $ $ (-703)) 58 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 68 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 54) (($ $ (-703)) 55)) (-2396 (($) 22 T CONST)) (-2409 (($) 12 T CONST)) (-1547 (((-107) $ $) 67)) (-1667 (($ $ |#1|) 75 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) 53) (($ $ (-703)) 51)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 50) (($ $ |#1|) 49) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-884 |#1| |#2|) (-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -1953 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) (-961) (-724)) (T -884))
+((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724)))))
+(-13 (-296 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| |#2| (-123)) (-15 -1953 ($ $ |#2| |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1640 (($ $ $) 63 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (-4038 (((-3 $ "failed") $ $) 50 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (-1611 (((-703)) 34 (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3324 ((|#2| $) 21)) (-2234 ((|#1| $) 20)) (-3092 (($) NIL (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-3621 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-3209 (($) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3848 (((-107) $) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2967 (($ $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-3099 (($ $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-2599 (($ |#1| |#2|) 19)) (-1549 (((-843) $) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 37 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-3448 (($ (-843)) NIL (-12 (|has| |#1| (-338)) (|has| |#2| (-338))))) (-3206 (((-1021) $) NIL)) (-1487 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-3394 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-2256 (((-787) $) 14)) (-2207 (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (-2396 (($) 40 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))) CONST)) (-2409 (($) 24 (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))) CONST)) (-1606 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1583 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1547 (((-107) $ $) 18)) (-1595 (((-107) $ $) NIL (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1572 (((-107) $ $) 66 (-3807 (-12 (|has| |#1| (-725)) (|has| |#2| (-725))) (-12 (|has| |#1| (-779)) (|has| |#2| (-779)))))) (-1667 (($ $ $) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442))))) (-1654 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1642 (($ $ $) 43 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725)))))) (** (($ $ (-517)) NIL (-12 (|has| |#1| (-442)) (|has| |#2| (-442)))) (($ $ (-703)) 31 (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659))))) (($ $ (-843)) NIL (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))) (* (($ (-517) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-703) $) 46 (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ (-843) $) NIL (-3807 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-123)) (|has| |#2| (-123))) (-12 (|has| |#1| (-725)) (|has| |#2| (-725))))) (($ $ $) 27 (-3807 (-12 (|has| |#1| (-442)) (|has| |#2| (-442))) (-12 (|has| |#1| (-659)) (|has| |#2| (-659)))))))
+(((-885 |#1| |#2|) (-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |noBranch|) |noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |noBranch|) |noBranch|) (-15 -2599 ($ |#1| |#2|)) (-15 -2234 (|#1| $)) (-15 -3324 (|#2| $)))) (-1003) (-1003)) (T -885))
+((-2599 (*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-2234 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003)))) (-3324 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003)))))
+(-13 (-1003) (-10 -8 (IF (|has| |#1| (-338)) (IF (|has| |#2| (-338)) (-6 (-338)) |noBranch|) |noBranch|) (IF (|has| |#1| (-659)) (IF (|has| |#2| (-659)) (-6 (-659)) |noBranch|) |noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |noBranch|) |noBranch|) (IF (|has| |#1| (-123)) (IF (|has| |#2| (-123)) (-6 (-123)) |noBranch|) |noBranch|) (IF (|has| |#1| (-442)) (IF (|has| |#2| (-442)) (-6 (-442)) |noBranch|) |noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |noBranch|) |noBranch|) (IF (|has| |#1| (-725)) (IF (|has| |#2| (-725)) (-6 (-725)) |noBranch|) |noBranch|) (IF (|has| |#1| (-779)) (IF (|has| |#2| (-779)) (-6 (-779)) |noBranch|) |noBranch|) (-15 -2599 ($ |#1| |#2|)) (-15 -2234 (|#1| $)) (-15 -3324 (|#2| $))))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2797 (($ $ $) 43)) (-3237 (($ $ $) 44)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3099 ((|#1| $) 45)) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-886 |#1|) (-1184) (-779)) (T -886))
+((-3099 (*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) (-2797 (*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4180) (-15 -3099 (|t#1| $)) (-15 -3237 ($ $ $)) (-15 -2797 ($ $ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-3624 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|) 84)) (-3081 ((|#2| |#2| |#2|) 82)) (-3131 (((-2 (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|) 86)) (-3169 (((-2 (|:| |coef1| |#2|) (|:| -1401 |#2|)) |#2| |#2|) 88)) (-1714 (((-2 (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|) 106 (|has| |#1| (-421)))) (-3850 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 45)) (-2406 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 63)) (-2312 (((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 65)) (-1385 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 77)) (-1713 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 70)) (-3498 (((-2 (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|) 96)) (-3253 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 73)) (-2329 (((-583 (-703)) |#2| |#2|) 81)) (-4028 ((|#1| |#2| |#2|) 41)) (-2963 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|) 104 (|has| |#1| (-421)))) (-2407 ((|#1| |#2| |#2|) 102 (|has| |#1| (-421)))) (-4026 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 43)) (-3475 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 62)) (-3388 ((|#1| |#2| |#2|) 60)) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|) 35)) (-2683 ((|#2| |#2| |#2| |#2| |#1|) 52)) (-1446 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 75)) (-1855 ((|#2| |#2| |#2|) 74)) (-2840 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 68)) (-3753 ((|#2| |#2| |#2| (-703)) 66)) (-1401 ((|#2| |#2| |#2|) 110 (|has| |#1| (-421)))) (-2476 (((-1153 |#2|) (-1153 |#2|) |#1|) 21)) (-1306 (((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|) 38)) (-1271 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|) 94)) (-3010 ((|#1| |#2|) 91)) (-2015 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703)) 72)) (-2809 ((|#2| |#2| |#2| (-703)) 71)) (-3292 (((-583 |#2|) |#2| |#2|) 79)) (-2072 ((|#2| |#2| |#1| |#1| (-703)) 49)) (-2903 ((|#1| |#1| |#1| (-703)) 48)) (* (((-1153 |#2|) |#1| (-1153 |#2|)) 16)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -3475 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2406 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2312 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| (-703))) (-15 -2840 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1713 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2809 (|#2| |#2| |#2| (-703))) (-15 -2015 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1446 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1385 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3081 (|#2| |#2| |#2|)) (-15 -3624 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3131 ((-2 (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3010 (|#1| |#2|)) (-15 -1271 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3498 ((-2 (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3292 ((-583 |#2|) |#2| |#2|)) (-15 -2329 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2407 (|#1| |#2| |#2|)) (-15 -2963 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1714 ((-2 (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1401 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1153 |#2|) |#1| (-1153 |#2|))) (-15 -2476 ((-1153 |#2|) (-1153 |#2|) |#1|)) (-15 -1874 ((-2 (|:| -1931 |#1|) (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -1306 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -2903 (|#1| |#1| |#1| (-703))) (-15 -2072 (|#2| |#2| |#1| |#1| (-703))) (-15 -2683 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4028 (|#1| |#2| |#2|)) (-15 -4026 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3850 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|))) (-509) (-1130 |#1|)) (T -887))
+((-3850 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-4026 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-4028 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) (-2683 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-2072 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-2903 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1130 *2)))) (-1306 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1874 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1931 *4) (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2476 (*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) (-1401 (*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-1714 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2963 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2407 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) (-2329 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3292 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3498 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1271 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3010 (*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) (-3169 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3131 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3624 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3081 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-1385 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1446 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-1855 (*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) (-3253 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-2015 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-2809 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))) (-1713 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-2840 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))) (-3753 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))) (-2312 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-2406 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3475 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) (-3388 (*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))))
+(-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -3475 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2406 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -2312 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3753 (|#2| |#2| |#2| (-703))) (-15 -2840 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1713 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -2809 (|#2| |#2| |#2| (-703))) (-15 -2015 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -3253 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-703))) (-15 -1855 (|#2| |#2| |#2|)) (-15 -1446 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1385 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3081 (|#2| |#2| |#2|)) (-15 -3624 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3131 ((-2 (|:| |coef2| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3169 ((-2 (|:| |coef1| |#2|) (|:| -1401 |#2|)) |#2| |#2|)) (-15 -3010 (|#1| |#2|)) (-15 -1271 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3498 ((-2 (|:| |coef2| |#2|) (|:| -3010 |#1|)) |#2|)) (-15 -3292 ((-583 |#2|) |#2| |#2|)) (-15 -2329 ((-583 (-703)) |#2| |#2|)) (IF (|has| |#1| (-421)) (PROGN (-15 -2407 (|#1| |#2| |#2|)) (-15 -2963 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1714 ((-2 (|:| |coef2| |#2|) (|:| -2407 |#1|)) |#2| |#2|)) (-15 -1401 (|#2| |#2| |#2|))) |noBranch|) (-15 * ((-1153 |#2|) |#1| (-1153 |#2|))) (-15 -2476 ((-1153 |#2|) (-1153 |#2|) |#1|)) (-15 -1874 ((-2 (|:| -1931 |#1|) (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -1306 ((-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) |#2| |#2|)) (-15 -2903 (|#1| |#1| |#1| (-703))) (-15 -2072 (|#2| |#2| |#1| |#1| (-703))) (-15 -2683 (|#2| |#2| |#2| |#2| |#1|)) (-15 -4028 (|#1| |#2| |#2|)) (-15 -4026 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3850 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) 26)) (-3092 (($) NIL T CONST)) (-2027 (((-583 (-583 (-517))) (-583 (-517))) 28)) (-2380 (((-517) $) 44)) (-3790 (($ (-583 (-517))) 17)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3645 (((-583 (-517)) $) 11)) (-1487 (($ $) 31)) (-2256 (((-787) $) 42) (((-583 (-517)) $) 9)) (-2396 (($) 7 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 19)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 18)) (-1642 (($ $ $) 20)) (* (($ (-703) $) 24) (($ (-843) $) NIL)))
+(((-888) (-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3790 ($ (-583 (-517)))) (-15 -2027 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2380 ((-517) $)) (-15 -1487 ($ $)) (-15 -2256 ((-583 (-517)) $))))) (T -888))
+((-3790 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) (-2027 (*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517))))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888)))) (-1487 (*1 *1 *1) (-5 *1 (-888))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))))
+(-13 (-727) (-558 (-583 (-517))) (-10 -8 (-15 -3790 ($ (-583 (-517)))) (-15 -2027 ((-583 (-583 (-517))) (-583 (-517)))) (-15 -2380 ((-517) $)) (-15 -1487 ($ $)) (-15 -2256 ((-583 (-517)) $))))
+((-1667 (($ $ |#2|) 30)) (-1654 (($ $) 22) (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-377 (-517)) $) 26) (($ $ (-377 (-517))) 28)))
+(((-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1667 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|))) (-890 |#2| |#3| |#4|) (-961) (-724) (-779)) (T -889))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-377 (-517)))) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 -1667 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 * (|#1| (-843) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#3|) $) 74)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3201 (((-107) $) 73)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-583 |#3|) (-583 |#2|)) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-3688 ((|#2| $) 64)) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-890 |#1| |#2| |#3|) (-1184) (-961) (-724) (-779)) (T -890))
+((-1191 (*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) (-4152 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779)))) (-1339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -1339 ($ $ |t#3| |t#2|)) (-15 -1339 ($ $ (-583 |t#3|) (-583 |t#2|))) (-15 -4152 ($ $)) (-15 -1191 (|t#1| $)) (-15 -3688 (|t#2| $)) (-15 -1364 ((-583 |t#3|) $)) (-15 -3201 ((-107) $)) (-15 -1545 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1422 (((-998 (-199)) $) 8)) (-1408 (((-998 (-199)) $) 9)) (-1397 (((-998 (-199)) $) 10)) (-2602 (((-583 (-583 (-865 (-199)))) $) 11)) (-2256 (((-787) $) 6)))
+(((-891) (-1184)) (T -891))
+((-2602 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199))))))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2602 ((-583 (-583 (-865 (-199)))) $)) (-15 -1397 ((-998 (-199)) $)) (-15 -1408 ((-998 (-199)) $)) (-15 -1422 ((-998 (-199)) $))))
+(((-557 (-787)) . T))
+((-1364 (((-583 |#4|) $) 23)) (-1235 (((-107) $) 47)) (-3586 (((-107) $) 46)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#4|) 35)) (-1615 (((-107) $) 48)) (-2512 (((-107) $ $) 54)) (-3630 (((-107) $ $) 57)) (-2703 (((-107) $) 52)) (-1677 (((-583 |#5|) (-583 |#5|) $) 89)) (-1741 (((-583 |#5|) (-583 |#5|) $) 86)) (-3060 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 80)) (-3921 (((-583 |#4|) $) 27)) (-1792 (((-107) |#4| $) 29)) (-2690 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 72)) (-2442 (($ $ |#4|) 32)) (-3759 (($ $ |#4|) 31)) (-1846 (($ $ |#4|) 33)) (-1547 (((-107) $ $) 39)))
+(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3586 ((-107) |#1|)) (-15 -1677 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1741 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3060 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2690 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1615 ((-107) |#1|)) (-15 -3630 ((-107) |#1| |#1|)) (-15 -2512 ((-107) |#1| |#1|)) (-15 -2703 ((-107) |#1|)) (-15 -1235 ((-107) |#1|)) (-15 -3166 ((-2 (|:| |under| |#1|) (|:| -2597 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -1846 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1792 ((-107) |#4| |#1|)) (-15 -3921 ((-583 |#4|) |#1|)) (-15 -1364 ((-583 |#4|) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-893 |#2| |#3| |#4| |#5|) (-961) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -892))
+NIL
+(-10 -8 (-15 -3586 ((-107) |#1|)) (-15 -1677 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -1741 ((-583 |#5|) (-583 |#5|) |#1|)) (-15 -3060 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2690 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1615 ((-107) |#1|)) (-15 -3630 ((-107) |#1| |#1|)) (-15 -2512 ((-107) |#1| |#1|)) (-15 -2703 ((-107) |#1|)) (-15 -1235 ((-107) |#1|)) (-15 -3166 ((-2 (|:| |under| |#1|) (|:| -2597 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -1846 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1792 ((-107) |#4| |#1|)) (-15 -3921 ((-583 |#4|) |#1|)) (-15 -1364 ((-583 |#4|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180)))) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180)))) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-3206 (((-1021) $) 10)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
+(((-893 |#1| |#2| |#3| |#4|) (-1184) (-961) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -893))
+((-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-3921 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1792 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-3759 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-2442 (*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))) (-3166 (*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2597 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))) (-1235 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2512 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-3630 (*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))) (-2690 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3060 (*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1741 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-1677 (*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(-13 (-1003) (-138 |t#4|) (-557 (-583 |t#4|)) (-10 -8 (-6 -4180) (-15 -1772 ((-3 $ "failed") (-583 |t#4|))) (-15 -3189 ($ (-583 |t#4|))) (-15 -1976 (|t#3| $)) (-15 -1364 ((-583 |t#3|) $)) (-15 -3921 ((-583 |t#3|) $)) (-15 -1792 ((-107) |t#3| $)) (-15 -3759 ($ $ |t#3|)) (-15 -1846 ($ $ |t#3|)) (-15 -2442 ($ $ |t#3|)) (-15 -3166 ((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |t#3|)) (-15 -1235 ((-107) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2703 ((-107) $)) (-15 -2512 ((-107) $ $)) (-15 -3630 ((-107) $ $)) (-15 -1615 ((-107) $)) (-15 -2690 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3060 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1741 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -1677 ((-583 |t#4|) (-583 |t#4|) $)) (-15 -3586 ((-107) $))) |noBranch|)))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-1003) . T) ((-1108) . T))
+((-1681 (((-583 |#4|) |#4| |#4|) 116)) (-1935 (((-583 |#4|) (-583 |#4|) (-107)) 105 (|has| |#1| (-421))) (((-583 |#4|) (-583 |#4|)) 106 (|has| |#1| (-421)))) (-1964 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 34)) (-1665 (((-107) |#4|) 33)) (-3734 (((-583 |#4|) |#4|) 101 (|has| |#1| (-421)))) (-2499 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|)) 19)) (-1969 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 21)) (-2100 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|)) 22)) (-2142 (((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|)) 72)) (-2355 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 84)) (-1558 (((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 109)) (-3640 (((-583 |#4|) (-583 |#4|)) 108)) (-2783 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107)) 47) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 49)) (-3700 ((|#4| |#4| (-583 |#4|)) 48)) (-2371 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 112 (|has| |#1| (-421)))) (-3528 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 115 (|has| |#1| (-421)))) (-1632 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 114 (|has| |#1| (-421)))) (-1816 (((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|))) 86) (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 88) (((-583 |#4|) (-583 |#4|) |#4|) 119) (((-583 |#4|) |#4| |#4|) 117) (((-583 |#4|) (-583 |#4|)) 87)) (-3503 (((-583 |#4|) (-583 |#4|) (-583 |#4|)) 98 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-1603 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 40)) (-2284 (((-107) (-583 |#4|)) 61)) (-2898 (((-107) (-583 |#4|) (-583 (-583 |#4|))) 52)) (-1528 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 28)) (-2035 (((-107) |#4|) 27)) (-2737 (((-583 |#4|) (-583 |#4|)) 96 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-3662 (((-583 |#4|) (-583 |#4|)) 97 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-1343 (((-583 |#4|) (-583 |#4|)) 65)) (-3144 (((-583 |#4|) (-583 |#4|)) 78)) (-3451 (((-107) (-583 |#4|) (-583 |#4|)) 50)) (-2899 (((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|)) 38)) (-1698 (((-107) |#4|) 35)))
+(((-894 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1816 ((-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) |#4| |#4|)) (-15 -3640 ((-583 |#4|) (-583 |#4|))) (-15 -1681 ((-583 |#4|) |#4| |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -3451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2898 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2284 ((-107) (-583 |#4|))) (-15 -2499 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -1969 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2100 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -1603 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1665 ((-107) |#4|)) (-15 -1964 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2035 ((-107) |#4|)) (-15 -1528 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1698 ((-107) |#4|)) (-15 -2899 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3700 (|#4| |#4| (-583 |#4|))) (-15 -1343 ((-583 |#4|) (-583 |#4|))) (-15 -2142 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -3144 ((-583 |#4|) (-583 |#4|))) (-15 -2355 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1558 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3734 ((-583 |#4|) |#4|)) (-15 -1935 ((-583 |#4|) (-583 |#4|))) (-15 -1935 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2371 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1632 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3528 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3662 ((-583 |#4|) (-583 |#4|))) (-15 -2737 ((-583 |#4|) (-583 |#4|))) (-15 -3503 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) |noBranch|)) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -894))
+((-3503 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2737 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3662 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3528 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1632 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2371 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1935 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1935 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3734 (*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1558 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8)))) (-2355 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9)))) (-3144 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2142 (*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -4139 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1343 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-3700 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2)))) (-2783 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2783 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-2899 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1528 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2035 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1964 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-1665 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1603 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) (-2100 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-1969 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) (-2284 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-2898 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8)))) (-3451 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1816 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))) (-1816 (*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1816 (*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) (-1681 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-3640 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) (-1816 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) (-1816 (*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1816 ((-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) |#4| |#4|)) (-15 -3640 ((-583 |#4|) (-583 |#4|))) (-15 -1681 ((-583 |#4|) |#4| |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) |#4|)) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1816 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-1 (-583 |#4|) (-583 |#4|)))) (-15 -3451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2898 ((-107) (-583 |#4|) (-583 (-583 |#4|)))) (-15 -2284 ((-107) (-583 |#4|))) (-15 -2499 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-1 (-107) |#4|) (-583 |#4|))) (-15 -1969 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -2100 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 (-1 (-107) |#4|)) (-583 |#4|))) (-15 -1603 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1665 ((-107) |#4|)) (-15 -1964 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2035 ((-107) |#4|)) (-15 -1528 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -1698 ((-107) |#4|)) (-15 -2899 ((-2 (|:| |goodPols| (-583 |#4|)) (|:| |badPols| (-583 |#4|))) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -2783 ((-583 |#4|) (-583 |#4|) (-583 |#4|) (-107))) (-15 -3700 (|#4| |#4| (-583 |#4|))) (-15 -1343 ((-583 |#4|) (-583 |#4|))) (-15 -2142 ((-3 (-2 (|:| |bas| (-445 |#1| |#2| |#3| |#4|)) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|))) (-15 -3144 ((-583 |#4|) (-583 |#4|))) (-15 -2355 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1558 ((-583 |#4|) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3734 ((-583 |#4|) |#4|)) (-15 -1935 ((-583 |#4|) (-583 |#4|))) (-15 -1935 ((-583 |#4|) (-583 |#4|) (-107))) (-15 -2371 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -1632 ((-583 |#4|) (-583 |#4|) (-583 |#4|))) (-15 -3528 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (PROGN (-15 -3662 ((-583 |#4|) (-583 |#4|))) (-15 -2737 ((-583 |#4|) (-583 |#4|))) (-15 -3503 ((-583 |#4|) (-583 |#4|) (-583 |#4|)))) |noBranch|) |noBranch|))
+((-1441 (((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-2584 (((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)) 35)) (-2838 (((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
+(((-895 |#1|) (-10 -7 (-15 -1441 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2838 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2584 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|)))) (-333)) (T -895))
+((-2584 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)))) (-2838 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5)))) (-1441 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6)))))
+(-10 -7 (-15 -1441 ((-2 (|:| R (-623 |#1|)) (|:| A (-623 |#1|)) (|:| |Ainv| (-623 |#1|))) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2838 ((-623 |#1|) (-623 |#1|) (-623 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2584 ((-583 (-2 (|:| C (-623 |#1|)) (|:| |g| (-1153 |#1|)))) (-623 |#1|) (-1153 |#1|))))
+((-2759 (((-388 |#4|) |#4|) 47)))
+(((-896 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2759 ((-388 |#4|) |#4|))) (-779) (-725) (-421) (-871 |#3| |#2| |#1|)) (T -896))
+((-2759 (*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
+(-10 -7 (-15 -2759 ((-388 |#4|) |#4|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3526 (($ (-703)) 112 (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-2889 (($ (-583 |#1|)) 118)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1292 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3847 (((-107) $ (-703)) 10)) (-2195 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-1672 (($ $ (-583 |#1|)) 115)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3501 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-3141 (((-843) $) 117)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-2862 (($ $ $) 104)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493)))) (($ (-583 |#1|)) 116)) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1654 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1642 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-897 |#1|) (-1184) (-961)) (T -897))
+((-2889 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) (-1672 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961)))))
+(-13 (-1151 |t#1|) (-10 -8 (-15 -2889 ($ (-583 |t#1|))) (-15 -3141 ((-843) $)) (-15 -3645 ($ (-583 |t#1|))) (-15 -2862 ($ $ $)) (-15 -1672 ($ $ (-583 |t#1|)))))
+(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T) ((-1151 |#1|) . T))
+((-1893 (((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)) 17)))
+(((-898 |#1| |#2|) (-10 -7 (-15 -1893 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|)))) (-961) (-961)) (T -898))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6)))))
+(-10 -7 (-15 -1893 ((-865 |#2|) (-1 |#2| |#1|) (-865 |#1|))))
+((-2517 ((|#1| (-865 |#1|)) 13)) (-2017 ((|#1| (-865 |#1|)) 12)) (-1563 ((|#1| (-865 |#1|)) 11)) (-3705 ((|#1| (-865 |#1|)) 15)) (-2239 ((|#1| (-865 |#1|)) 21)) (-1987 ((|#1| (-865 |#1|)) 14)) (-3654 ((|#1| (-865 |#1|)) 16)) (-3512 ((|#1| (-865 |#1|)) 20)) (-1205 ((|#1| (-865 |#1|)) 19)))
+(((-899 |#1|) (-10 -7 (-15 -1563 (|#1| (-865 |#1|))) (-15 -2017 (|#1| (-865 |#1|))) (-15 -2517 (|#1| (-865 |#1|))) (-15 -1987 (|#1| (-865 |#1|))) (-15 -3705 (|#1| (-865 |#1|))) (-15 -3654 (|#1| (-865 |#1|))) (-15 -1205 (|#1| (-865 |#1|))) (-15 -3512 (|#1| (-865 |#1|))) (-15 -2239 (|#1| (-865 |#1|)))) (-961)) (T -899))
+((-2239 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3654 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-3705 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1987 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-2517 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(-10 -7 (-15 -1563 (|#1| (-865 |#1|))) (-15 -2017 (|#1| (-865 |#1|))) (-15 -2517 (|#1| (-865 |#1|))) (-15 -1987 (|#1| (-865 |#1|))) (-15 -3705 (|#1| (-865 |#1|))) (-15 -3654 (|#1| (-865 |#1|))) (-15 -1205 (|#1| (-865 |#1|))) (-15 -3512 (|#1| (-865 |#1|))) (-15 -2239 (|#1| (-865 |#1|))))
+((-3885 (((-3 |#1| "failed") |#1|) 18)) (-1878 (((-3 |#1| "failed") |#1|) 6)) (-4078 (((-3 |#1| "failed") |#1|) 16)) (-3113 (((-3 |#1| "failed") |#1|) 4)) (-2944 (((-3 |#1| "failed") |#1|) 20)) (-3413 (((-3 |#1| "failed") |#1|) 8)) (-2492 (((-3 |#1| "failed") |#1| (-703)) 1)) (-2064 (((-3 |#1| "failed") |#1|) 3)) (-3930 (((-3 |#1| "failed") |#1|) 2)) (-3608 (((-3 |#1| "failed") |#1|) 21)) (-2011 (((-3 |#1| "failed") |#1|) 9)) (-1779 (((-3 |#1| "failed") |#1|) 19)) (-1312 (((-3 |#1| "failed") |#1|) 7)) (-1282 (((-3 |#1| "failed") |#1|) 17)) (-3518 (((-3 |#1| "failed") |#1|) 5)) (-1266 (((-3 |#1| "failed") |#1|) 24)) (-3884 (((-3 |#1| "failed") |#1|) 12)) (-2460 (((-3 |#1| "failed") |#1|) 22)) (-2895 (((-3 |#1| "failed") |#1|) 10)) (-3829 (((-3 |#1| "failed") |#1|) 26)) (-1778 (((-3 |#1| "failed") |#1|) 14)) (-1240 (((-3 |#1| "failed") |#1|) 27)) (-3363 (((-3 |#1| "failed") |#1|) 15)) (-1403 (((-3 |#1| "failed") |#1|) 25)) (-1297 (((-3 |#1| "failed") |#1|) 13)) (-2828 (((-3 |#1| "failed") |#1|) 23)) (-1247 (((-3 |#1| "failed") |#1|) 11)))
+(((-900 |#1|) (-1184) (-1094)) (T -900))
+((-1240 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3829 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1403 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1266 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2828 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2460 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3608 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2944 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1779 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3885 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1282 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-4078 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1778 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1297 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3884 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1247 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2895 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2011 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3413 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1312 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-1878 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3518 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3113 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2064 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3930 (*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-2492 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(-13 (-10 -7 (-15 -2492 ((-3 |t#1| "failed") |t#1| (-703))) (-15 -3930 ((-3 |t#1| "failed") |t#1|)) (-15 -2064 ((-3 |t#1| "failed") |t#1|)) (-15 -3113 ((-3 |t#1| "failed") |t#1|)) (-15 -3518 ((-3 |t#1| "failed") |t#1|)) (-15 -1878 ((-3 |t#1| "failed") |t#1|)) (-15 -1312 ((-3 |t#1| "failed") |t#1|)) (-15 -3413 ((-3 |t#1| "failed") |t#1|)) (-15 -2011 ((-3 |t#1| "failed") |t#1|)) (-15 -2895 ((-3 |t#1| "failed") |t#1|)) (-15 -1247 ((-3 |t#1| "failed") |t#1|)) (-15 -3884 ((-3 |t#1| "failed") |t#1|)) (-15 -1297 ((-3 |t#1| "failed") |t#1|)) (-15 -1778 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -4078 ((-3 |t#1| "failed") |t#1|)) (-15 -1282 ((-3 |t#1| "failed") |t#1|)) (-15 -3885 ((-3 |t#1| "failed") |t#1|)) (-15 -1779 ((-3 |t#1| "failed") |t#1|)) (-15 -2944 ((-3 |t#1| "failed") |t#1|)) (-15 -3608 ((-3 |t#1| "failed") |t#1|)) (-15 -2460 ((-3 |t#1| "failed") |t#1|)) (-15 -2828 ((-3 |t#1| "failed") |t#1|)) (-15 -1266 ((-3 |t#1| "failed") |t#1|)) (-15 -1403 ((-3 |t#1| "failed") |t#1|)) (-15 -3829 ((-3 |t#1| "failed") |t#1|)) (-15 -1240 ((-3 |t#1| "failed") |t#1|))))
+((-2906 ((|#4| |#4| (-583 |#3|)) 55) ((|#4| |#4| |#3|) 54)) (-2885 ((|#4| |#4| (-583 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1893 ((|#4| (-1 |#4| (-874 |#1|)) |#4|) 30)))
+(((-901 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2885 (|#4| |#4| |#3|)) (-15 -2885 (|#4| |#4| (-583 |#3|))) (-15 -2906 (|#4| |#4| |#3|)) (-15 -2906 (|#4| |#4| (-583 |#3|))) (-15 -1893 (|#4| (-1 |#4| (-874 |#1|)) |#4|))) (-961) (-725) (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073))))) (-871 (-874 |#1|) |#2| |#3|)) (T -901))
+((-1893 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *6 *2)))) (-2906 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-2906 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) (-2885 (*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))) (-2885 (*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))))
+(-10 -7 (-15 -2885 (|#4| |#4| |#3|)) (-15 -2885 (|#4| |#4| (-583 |#3|))) (-15 -2906 (|#4| |#4| |#3|)) (-15 -2906 (|#4| |#4| (-583 |#3|))) (-15 -1893 (|#4| (-1 |#4| (-874 |#1|)) |#4|)))
+((-1616 ((|#2| |#3|) 34)) (-4140 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 71)) (-2216 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 86)))
+(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -1616 (|#2| |#3|))) (-319) (-1130 |#1|) (-1130 |#2|) (-657 |#2| |#3|)) (T -902))
+((-1616 (*1 *2 *3) (-12 (-4 *3 (-1130 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) (-2216 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))))
+(-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)) (-15 -1616 (|#2| |#3|)))
+((-4099 (((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))) 64)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -4099 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517))))))) (-583 (-1073)) (-703)) (T -903))
+((-4099 (*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4)))))
+(-10 -7 (-15 -4099 ((-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))) (-904 (-377 (-517)) (-789 |#1|) (-214 |#2| (-703)) (-221 |#1| (-377 (-517)))))))
+((-2750 (((-107) $ $) NIL)) (-2324 (((-3 (-107) "failed") $) 67)) (-3670 (($ $) 35 (-12 (|has| |#1| (-134)) (|has| |#1| (-278))))) (-4117 (($ $ (-3 (-107) "failed")) 68)) (-3196 (($ (-583 |#4|) |#4|) 24)) (-3985 (((-1056) $) NIL)) (-1891 (($ $) 65)) (-3206 (((-1021) $) NIL)) (-3619 (((-107) $) 66)) (-1746 (($) 29)) (-2923 ((|#4| $) 70)) (-3140 (((-583 |#4|) $) 69)) (-2256 (((-787) $) 64)) (-1547 (((-107) $ $) NIL)))
+(((-904 |#1| |#2| |#3| |#4|) (-13 (-1003) (-557 (-787)) (-10 -8 (-15 -1746 ($)) (-15 -3196 ($ (-583 |#4|) |#4|)) (-15 -2324 ((-3 (-107) "failed") $)) (-15 -4117 ($ $ (-3 (-107) "failed"))) (-15 -3619 ((-107) $)) (-15 -3140 ((-583 |#4|) $)) (-15 -2923 (|#4| $)) (-15 -1891 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3670 ($ $)) |noBranch|) |noBranch|))) (-421) (-779) (-725) (-871 |#1| |#3| |#2|)) (T -904))
+((-1746 (*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-3196 (*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3)))) (-2324 (*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-3619 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-3140 (*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) (-2923 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))) (-1891 (*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) (-3670 (*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))))
+(-13 (-1003) (-557 (-787)) (-10 -8 (-15 -1746 ($)) (-15 -3196 ($ (-583 |#4|) |#4|)) (-15 -2324 ((-3 (-107) "failed") $)) (-15 -4117 ($ $ (-3 (-107) "failed"))) (-15 -3619 ((-107) $)) (-15 -3140 ((-583 |#4|) $)) (-15 -2923 (|#4| $)) (-15 -1891 ($ $)) (IF (|has| |#1| (-278)) (IF (|has| |#1| (-134)) (-15 -3670 ($ $)) |noBranch|) |noBranch|)))
+((-3471 (((-107) |#5| |#5|) 37)) (-1331 (((-107) |#5| |#5|) 51)) (-3499 (((-107) |#5| (-583 |#5|)) 73) (((-107) |#5| |#5|) 60)) (-2254 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-1837 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 62)) (-4034 (((-1158)) 33)) (-1882 (((-1158) (-1056) (-1056) (-1056)) 29)) (-3694 (((-583 |#5|) (-583 |#5|)) 80)) (-2197 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) 78)) (-2871 (((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 100)) (-3576 (((-107) |#5| |#5|) 46)) (-2954 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3506 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-1451 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3411 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3444 (((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 96)) (-1634 (((-583 |#5|) (-583 |#5|)) 42)))
+(((-905 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -905))
+((-3444 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-2871 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) (-3499 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2954 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1451 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3506 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-2254 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3576 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) (-3471 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-4034 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1882 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
+((-1638 (((-1073) $) 15)) (-3199 (((-1056) $) 16)) (-2126 (($ (-1073) (-1056)) 14)) (-2256 (((-787) $) 13)))
+(((-906) (-13 (-557 (-787)) (-10 -8 (-15 -2126 ($ (-1073) (-1056))) (-15 -1638 ((-1073) $)) (-15 -3199 ((-1056) $))))) (T -906))
+((-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-906)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-906)))) (-3199 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-906)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2126 ($ (-1073) (-1056))) (-15 -1638 ((-1073) $)) (-15 -3199 ((-1056) $))))
+((-1893 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|))) (-509) (-509) (-909 |#1|) (-909 |#2|)) (T -907))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5)))))
+(-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-1073) "failed") $) 65) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) 95)) (-3189 ((|#2| $) NIL) (((-1073) $) 60) (((-377 (-517)) $) NIL) (((-517) $) 92)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 112) (((-623 |#2|) (-623 $)) 28)) (-3209 (($) 98)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 74) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 83)) (-1405 (($ $) 10)) (-1319 (((-3 $ "failed") $) 20)) (-1893 (($ (-1 |#2| |#2|) $) 22)) (-2836 (($) 16)) (-1927 (($ $) 54)) (-3127 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2971 (($ $) 12)) (-3645 (((-814 (-517)) $) 69) (((-814 (-349)) $) 78) (((-493) $) 40) (((-349) $) 44) (((-199) $) 47)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 90) (($ |#2|) NIL) (($ (-1073)) 57)) (-2961 (((-703)) 31)) (-1572 (((-107) $ $) 50)))
+(((-908 |#1| |#2|) (-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -3209 (|#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|))) (-909 |#2|) (-509)) (T -908))
+((-2961 (*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4)))))
+(-10 -8 (-15 -1572 ((-107) |#1| |#1|)) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -2256 (|#1| (-1073))) (-15 -3209 (|#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2971 (|#1| |#1|)) (-15 -1405 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -4057 ((-811 (-517) |#1|) |#1| (-814 (-517)) (-811 (-517) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3355 ((-623 |#2|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 ((|#1| $) 139 (|has| |#1| (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 130 (|has| |#1| (-831)))) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 133 (|has| |#1| (-831)))) (-1707 (((-107) $ $) 59)) (-3709 (((-517) $) 120 (|has| |#1| (-752)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 178) (((-3 (-1073) "failed") $) 128 (|has| |#1| (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) 112 (|has| |#1| (-952 (-517)))) (((-3 (-517) "failed") $) 110 (|has| |#1| (-952 (-517))))) (-3189 ((|#1| $) 177) (((-1073) $) 127 (|has| |#1| (-952 (-1073)))) (((-377 (-517)) $) 111 (|has| |#1| (-952 (-517)))) (((-517) $) 109 (|has| |#1| (-952 (-517))))) (-2518 (($ $ $) 55)) (-3355 (((-623 (-517)) (-623 $)) 152 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 151 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 150) (((-623 |#1|) (-623 $)) 149)) (-3621 (((-3 $ "failed") $) 34)) (-3209 (($) 137 (|has| |#1| (-502)))) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3556 (((-107) $) 122 (|has| |#1| (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 146 (|has| |#1| (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 145 (|has| |#1| (-808 (-349))))) (-3848 (((-107) $) 31)) (-1405 (($ $) 141)) (-1787 ((|#1| $) 143)) (-1319 (((-3 $ "failed") $) 108 (|has| |#1| (-1049)))) (-2475 (((-107) $) 121 (|has| |#1| (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2967 (($ $ $) 118 (|has| |#1| (-779)))) (-3099 (($ $ $) 117 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 169)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-2836 (($) 107 (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1927 (($ $) 138 (|has| |#1| (-278)))) (-2597 ((|#1| $) 135 (|has| |#1| (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 132 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 131 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 175 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 173 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 172 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 171 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 170 (|has| |#1| (-478 (-1073) |#1|)))) (-3146 (((-703) $) 58)) (-1449 (($ $ |#1|) 176 (|has| |#1| (-258 |#1| |#1|)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-3127 (($ $) 168 (|has| |#1| (-207))) (($ $ (-703)) 166 (|has| |#1| (-207))) (($ $ (-1073)) 164 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 163 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 162 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 161 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2971 (($ $) 140)) (-1800 ((|#1| $) 142)) (-3645 (((-814 (-517)) $) 148 (|has| |#1| (-558 (-814 (-517))))) (((-814 (-349)) $) 147 (|has| |#1| (-558 (-814 (-349))))) (((-493) $) 125 (|has| |#1| (-558 (-493)))) (((-349) $) 124 (|has| |#1| (-937))) (((-199) $) 123 (|has| |#1| (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 134 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 181) (($ (-1073)) 129 (|has| |#1| (-952 (-1073))))) (-1328 (((-3 $ "failed") $) 126 (-3807 (|has| |#1| (-132)) (-4035 (|has| $ (-132)) (|has| |#1| (-831)))))) (-2961 (((-703)) 29)) (-1949 ((|#1| $) 136 (|has| |#1| (-502)))) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 119 (|has| |#1| (-752)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 167 (|has| |#1| (-207))) (($ $ (-703)) 165 (|has| |#1| (-207))) (($ $ (-1073)) 160 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 159 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 158 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 157 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-1606 (((-107) $ $) 115 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 114 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 116 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 113 (|has| |#1| (-779)))) (-1667 (($ $ $) 64) (($ |#1| |#1|) 144)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+(((-909 |#1|) (-1184) (-509)) (T -909))
+((-1667 (*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1800 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-1405 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-2971 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-1927 (*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) (-3209 (*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509)))) (-1949 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) (-2597 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))))
+(-13 (-333) (-37 |t#1|) (-952 |t#1|) (-308 |t#1|) (-205 |t#1|) (-347 |t#1|) (-806 |t#1|) (-370 |t#1|) (-10 -8 (-15 -1667 ($ |t#1| |t#1|)) (-15 -1787 (|t#1| $)) (-15 -1800 (|t#1| $)) (-15 -1405 ($ $)) (-15 -2971 ($ $)) (IF (|has| |t#1| (-1049)) (-6 (-1049)) |noBranch|) (IF (|has| |t#1| (-952 (-517))) (PROGN (-6 (-952 (-517))) (-6 (-952 (-377 (-517))))) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-752)) (-6 (-752)) |noBranch|) (IF (|has| |t#1| (-937)) (-6 (-937)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-952 (-1073))) (-6 (-952 (-1073))) |noBranch|) (IF (|has| |t#1| (-278)) (PROGN (-15 -2668 (|t#1| $)) (-15 -1927 ($ $))) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -3209 ($)) (-15 -1949 (|t#1| $)) (-15 -2597 (|t#1| $))) |noBranch|) (IF (|has| |t#1| (-831)) (-6 (-831)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) |has| |#1| (-937)) ((-558 (-349)) |has| |#1| (-937)) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-558 (-814 (-349))) |has| |#1| (-558 (-814 (-349)))) ((-558 (-814 (-517))) |has| |#1| (-558 (-814 (-517)))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) . T) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) . T) ((-278) . T) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-333) . T) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-370 |#1|) . T) ((-421) . T) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-723) |has| |#1| (-752)) ((-724) |has| |#1| (-752)) ((-726) |has| |#1| (-752)) ((-727) |has| |#1| (-752)) ((-752) |has| |#1| (-752)) ((-777) |has| |#1| (-752)) ((-779) -3807 (|has| |#1| (-779)) (|has| |#1| (-752))) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-808 (-349)) |has| |#1| (-808 (-349))) ((-808 (-517)) |has| |#1| (-808 (-517))) ((-806 |#1|) . T) ((-831) |has| |#1| (-831)) ((-842) . T) ((-937) |has| |#1| (-937)) ((-952 (-377 (-517))) |has| |#1| (-952 (-517))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-1073)) |has| |#1| (-952 (-1073))) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-1049)) ((-1108) . T) ((-1112) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-2182 (($ (-1040 |#1| |#2|)) 11)) (-1840 (((-1040 |#1| |#2|) $) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1449 ((|#2| $ (-214 |#1| |#2|)) 16)) (-2256 (((-787) $) NIL)) (-2396 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL)))
+(((-910 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2182 ($ (-1040 |#1| |#2|))) (-15 -1840 ((-1040 |#1| |#2|) $)) (-15 -1449 (|#2| $ (-214 |#1| |#2|))))) (-843) (-333)) (T -910))
+((-2182 (*1 *1 *2) (-12 (-5 *2 (-1040 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -2182 ($ (-1040 |#1| |#2|))) (-15 -1840 ((-1040 |#1| |#2|) $)) (-15 -1449 (|#2| $ (-214 |#1| |#2|)))))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-3186 (($ $) 46)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-2195 (((-703) $) 45)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2578 ((|#1| $) 44)) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3838 ((|#1| |#1| $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-3129 ((|#1| $) 47)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-2028 ((|#1| $) 43)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-911 |#1|) (-1184) (-1108)) (T -911))
+((-3838 (*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-3129 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-3186 (*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))) (-2028 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4180) (-15 -3838 (|t#1| |t#1| $)) (-15 -3129 (|t#1| $)) (-15 -3186 ($ $)) (-15 -2195 ((-703) $)) (-15 -2578 (|t#1| $)) (-15 -2028 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-2814 (((-107) $) 42)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#2| $) 43)) (-1256 (((-3 (-377 (-517)) "failed") $) 78)) (-1355 (((-107) $) 72)) (-3364 (((-377 (-517)) $) 76)) (-3848 (((-107) $) 41)) (-1506 ((|#2| $) 22)) (-1893 (($ (-1 |#2| |#2|) $) 19)) (-4118 (($ $) 61)) (-3127 (($ $) NIL) (($ $ (-703)) NIL) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3645 (((-493) $) 67)) (-1487 (($ $) 17)) (-2256 (((-787) $) 56) (($ (-517)) 38) (($ |#2|) 36) (($ (-377 (-517))) NIL)) (-2961 (((-703)) 10)) (-3710 ((|#2| $) 71)) (-1547 (((-107) $ $) 25)) (-1572 (((-107) $ $) 69)) (-1654 (($ $) 29) (($ $ $) 28)) (-1642 (($ $ $) 26)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL)))
+(((-912 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -4118 (|#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -3848 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-913 |#2|) (-156)) (T -912))
+((-2961 (*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))))
+(-10 -8 (-15 -2256 (|#1| (-377 (-517)))) (-15 -1572 ((-107) |#1| |#1|)) (-15 * (|#1| (-377 (-517)) |#1|)) (-15 * (|#1| |#1| (-377 (-517)))) (-15 -4118 (|#1| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -3710 (|#2| |#1|)) (-15 -1506 (|#2| |#1|)) (-15 -1487 (|#1| |#1|)) (-15 -1893 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -2256 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -3848 ((-107) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 * (|#1| (-703) |#1|)) (-15 -2814 ((-107) |#1|)) (-15 * (|#1| (-843) |#1|)) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1772 (((-3 (-517) "failed") $) 119 (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 117 (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) 116)) (-3189 (((-517) $) 120 (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) 118 (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) 115)) (-3355 (((-623 (-517)) (-623 $)) 90 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 89 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 88) (((-623 |#1|) (-623 $)) 87)) (-3621 (((-3 $ "failed") $) 34)) (-3775 ((|#1| $) 80)) (-1256 (((-3 (-377 (-517)) "failed") $) 76 (|has| |#1| (-502)))) (-1355 (((-107) $) 78 (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) 77 (|has| |#1| (-502)))) (-2802 (($ |#1| |#1| |#1| |#1|) 81)) (-3848 (((-107) $) 31)) (-1506 ((|#1| $) 82)) (-2967 (($ $ $) 68 (|has| |#1| (-779)))) (-3099 (($ $ $) 67 (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) 91)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 73 (|has| |#1| (-333)))) (-2976 ((|#1| $) 83)) (-2999 ((|#1| $) 84)) (-1467 ((|#1| $) 85)) (-3206 (((-1021) $) 10)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 97 (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) 95 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) 94 (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) 93 (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) 92 (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) 98 (|has| |#1| (-258 |#1| |#1|)))) (-3127 (($ $) 114 (|has| |#1| (-207))) (($ $ (-703)) 112 (|has| |#1| (-207))) (($ $ (-1073)) 110 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 109 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 108 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 107 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-3645 (((-493) $) 74 (|has| |#1| (-558 (-493))))) (-1487 (($ $) 86)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 37) (($ (-377 (-517))) 62 (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (((-3 $ "failed") $) 75 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-3710 ((|#1| $) 79 (|has| |#1| (-970)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 72 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $) 113 (|has| |#1| (-207))) (($ $ (-703)) 111 (|has| |#1| (-207))) (($ $ (-1073)) 106 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 105 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 104 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 103 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-1606 (((-107) $ $) 65 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 64 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 66 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 63 (|has| |#1| (-779)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 71 (|has| |#1| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-377 (-517))) 70 (|has| |#1| (-333))) (($ (-377 (-517)) $) 69 (|has| |#1| (-333)))))
+(((-913 |#1|) (-1184) (-156)) (T -913))
+((-1487 (*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1467 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2976 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-1506 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-2802 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3775 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) (-3710 (*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) (-3364 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) (-1256 (*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))))
+(-13 (-37 |t#1|) (-381 |t#1|) (-205 |t#1|) (-308 |t#1|) (-347 |t#1|) (-10 -8 (-15 -1487 ($ $)) (-15 -1467 (|t#1| $)) (-15 -2999 (|t#1| $)) (-15 -2976 (|t#1| $)) (-15 -1506 (|t#1| $)) (-15 -2802 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3775 (|t#1| $)) (IF (|has| |t#1| (-262)) (-6 (-262)) |noBranch|) (IF (|has| |t#1| (-779)) (-6 (-779)) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-217)) |noBranch|) (IF (|has| |t#1| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-132)) |noBranch|) (IF (|has| |t#1| (-970)) (-15 -3710 (|t#1| $)) |noBranch|) (IF (|has| |t#1| (-502)) (PROGN (-15 -1355 ((-107) $)) (-15 -3364 ((-377 (-517)) $)) (-15 -1256 ((-3 (-377 (-517)) "failed") $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-333)) ((-37 |#1|) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-333)) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-205 |#1|) . T) ((-207) |has| |#1| (-207)) ((-217) |has| |#1| (-333)) ((-258 |#1| $) |has| |#1| (-258 |#1| |#1|)) ((-262) -3807 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-280 |#1|) |has| |#1| (-280 |#1|)) ((-308 |#1|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-478 (-1073) |#1|) |has| |#1| (-478 (-1073) |#1|)) ((-478 |#1| |#1|) |has| |#1| (-280 |#1|)) ((-585 (-377 (-517))) |has| |#1| (-333)) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-333)) ((-650 |#1|) . T) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-333)) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-333)) (|has| |#1| (-262))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1893 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-914 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|))) (-913 |#2|) (-156) (-913 |#4|) (-156)) (T -914))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))))
+(-10 -7 (-15 -1893 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3775 ((|#1| $) 12)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-502)))) (-1355 (((-107) $) NIL (|has| |#1| (-502)))) (-3364 (((-377 (-517)) $) NIL (|has| |#1| (-502)))) (-2802 (($ |#1| |#1| |#1| |#1|) 16)) (-3848 (((-107) $) NIL)) (-1506 ((|#1| $) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-2976 ((|#1| $) 15)) (-2999 ((|#1| $) 14)) (-1467 ((|#1| $) 13)) (-3206 (((-1021) $) NIL)) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-280 |#1|))) (($ $ (-265 |#1|)) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-265 |#1|))) NIL (|has| |#1| (-280 |#1|))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-478 (-1073) |#1|))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-478 (-1073) |#1|)))) (-1449 (($ $ |#1|) NIL (|has| |#1| (-258 |#1| |#1|)))) (-3127 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-1487 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3710 ((|#1| $) NIL (|has| |#1| (-970)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 8 T CONST)) (-2409 (($) 10 T CONST)) (-2731 (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-333)))))
+(((-915 |#1|) (-913 |#1|) (-156)) (T -915))
+NIL
+(-913 |#1|)
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-3186 (($ $) 20)) (-1692 (($ (-583 |#1|)) 29)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-2195 (((-703) $) 22)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 24)) (-1710 (($ |#1| $) 15)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2578 ((|#1| $) 23)) (-4006 ((|#1| $) 19)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3838 ((|#1| |#1| $) 14)) (-3619 (((-107) $) 17)) (-1746 (($) NIL)) (-3129 ((|#1| $) 18)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) NIL)) (-2028 ((|#1| $) 26)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-916 |#1|) (-13 (-911 |#1|) (-10 -8 (-15 -1692 ($ (-583 |#1|))))) (-1003)) (T -916))
+((-1692 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3)))))
+(-13 (-911 |#1|) (-10 -8 (-15 -1692 ($ (-583 |#1|)))))
+((-3766 (($ $) 12)) (-3824 (($ $ (-517)) 13)))
+(((-917 |#1|) (-10 -8 (-15 -3766 (|#1| |#1|)) (-15 -3824 (|#1| |#1| (-517)))) (-918)) (T -917))
+NIL
+(-10 -8 (-15 -3766 (|#1| |#1|)) (-15 -3824 (|#1| |#1| (-517))))
+((-3766 (($ $) 6)) (-3824 (($ $ (-517)) 7)) (** (($ $ (-377 (-517))) 8)))
+(((-918) (-1184)) (T -918))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) (-3824 (*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517)))) (-3766 (*1 *1 *1) (-4 *1 (-918))))
+(-13 (-10 -8 (-15 -3766 ($ $)) (-15 -3824 ($ $ (-517))) (-15 ** ($ $ (-377 (-517))))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2039 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| (-377 |#2|) (-333)))) (-1213 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2454 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3055 (((-623 (-377 |#2|)) (-1153 $)) NIL) (((-623 (-377 |#2|))) NIL)) (-1472 (((-377 |#2|) $) NIL)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| (-377 |#2|) (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-2759 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-1707 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-1611 (((-703)) NIL (|has| (-377 |#2|) (-338)))) (-2752 (((-107)) NIL)) (-1639 (((-107) |#1|) 147) (((-107) |#2|) 152)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-3 (-377 |#2|) "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| (-377 |#2|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-377 |#2|) (-952 (-377 (-517))))) (((-377 |#2|) $) NIL)) (-1967 (($ (-1153 (-377 |#2|)) (-1153 $)) NIL) (($ (-1153 (-377 |#2|))) 70) (($ (-1153 |#2|) |#2|) NIL)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-377 |#2|) (-319)))) (-2518 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-2410 (((-623 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-377 |#2|) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-377 |#2|))) (|:| |vec| (-1153 (-377 |#2|)))) (-623 $) (-1153 $)) NIL) (((-623 (-377 |#2|)) (-623 $)) NIL)) (-3843 (((-1153 $) (-1153 $)) NIL)) (-3225 (($ |#3|) 65) (((-3 $ "failed") (-377 |#3|)) NIL (|has| (-377 |#2|) (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-3407 (((-583 (-583 |#1|))) NIL (|has| |#1| (-338)))) (-3384 (((-107) |#1| |#1|) NIL)) (-2261 (((-843)) NIL)) (-3209 (($) NIL (|has| (-377 |#2|) (-338)))) (-2866 (((-107)) NIL)) (-2666 (((-107) |#1|) 56) (((-107) |#2|) 149)) (-2497 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| (-377 |#2|) (-333)))) (-3534 (($ $) NIL)) (-3442 (($) NIL (|has| (-377 |#2|) (-319)))) (-3391 (((-107) $) NIL (|has| (-377 |#2|) (-319)))) (-2378 (($ $ (-703)) NIL (|has| (-377 |#2|) (-319))) (($ $) NIL (|has| (-377 |#2|) (-319)))) (-3849 (((-107) $) NIL (|has| (-377 |#2|) (-333)))) (-3972 (((-843) $) NIL (|has| (-377 |#2|) (-319))) (((-765 (-843)) $) NIL (|has| (-377 |#2|) (-319)))) (-3848 (((-107) $) NIL)) (-1790 (((-703)) NIL)) (-1870 (((-1153 $) (-1153 $)) NIL)) (-1506 (((-377 |#2|) $) NIL)) (-2043 (((-583 (-874 |#1|)) (-1073)) NIL (|has| |#1| (-333)))) (-1319 (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3777 ((|#3| $) NIL (|has| (-377 |#2|) (-333)))) (-1549 (((-843) $) NIL (|has| (-377 |#2|) (-338)))) (-3216 ((|#3| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-3985 (((-1056) $) NIL)) (-1909 (((-623 (-377 |#2|))) 52)) (-2041 (((-623 (-377 |#2|))) 51)) (-4118 (($ $) NIL (|has| (-377 |#2|) (-333)))) (-3454 (($ (-1153 |#2|) |#2|) 71)) (-3580 (((-623 (-377 |#2|))) 50)) (-1872 (((-623 (-377 |#2|))) 49)) (-1920 (((-2 (|:| |num| (-623 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1784 (((-2 (|:| |num| (-1153 |#2|)) (|:| |den| |#2|)) $) 77)) (-1924 (((-1153 $)) 46)) (-2216 (((-1153 $)) 45)) (-2491 (((-107) $) NIL)) (-3291 (((-107) $) NIL) (((-107) $ |#1|) NIL) (((-107) $ |#2|) NIL)) (-2836 (($) NIL (|has| (-377 |#2|) (-319)) CONST)) (-3448 (($ (-843)) NIL (|has| (-377 |#2|) (-338)))) (-3854 (((-3 |#2| "failed")) 63)) (-3206 (((-1021) $) NIL)) (-1786 (((-703)) NIL)) (-3220 (($) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| (-377 |#2|) (-333)))) (-1401 (($ (-583 $)) NIL (|has| (-377 |#2|) (-333))) (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| (-377 |#2|) (-319)))) (-3755 (((-388 $) $) NIL (|has| (-377 |#2|) (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-377 |#2|) (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| (-377 |#2|) (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| (-377 |#2|) (-333)))) (-3146 (((-703) $) NIL (|has| (-377 |#2|) (-333)))) (-1449 ((|#1| $ |#1| |#1|) NIL)) (-3259 (((-3 |#2| "failed")) 62)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3010 (((-377 |#2|) (-1153 $)) NIL) (((-377 |#2|)) 42)) (-1620 (((-703) $) NIL (|has| (-377 |#2|) (-319))) (((-3 (-703) "failed") $ $) NIL (|has| (-377 |#2|) (-319)))) (-3127 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-2970 (((-623 (-377 |#2|)) (-1153 $) (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333)))) (-2135 ((|#3|) 53)) (-1766 (($) NIL (|has| (-377 |#2|) (-319)))) (-4114 (((-1153 (-377 |#2|)) $ (-1153 $)) NIL) (((-623 (-377 |#2|)) (-1153 $) (-1153 $)) NIL) (((-1153 (-377 |#2|)) $) 72) (((-623 (-377 |#2|)) (-1153 $)) NIL)) (-3645 (((-1153 (-377 |#2|)) $) NIL) (($ (-1153 (-377 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| (-377 |#2|) (-319)))) (-3696 (((-1153 $) (-1153 $)) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 |#2|)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| (-377 |#2|) (-952 (-377 (-517)))) (|has| (-377 |#2|) (-333)))) (($ $) NIL (|has| (-377 |#2|) (-333)))) (-1328 (($ $) NIL (|has| (-377 |#2|) (-319))) (((-3 $ "failed") $) NIL (|has| (-377 |#2|) (-132)))) (-3669 ((|#3| $) NIL)) (-2961 (((-703)) NIL)) (-2025 (((-107)) 60)) (-2992 (((-107) |#1|) 153) (((-107) |#2|) 154)) (-1753 (((-1153 $)) 124)) (-3329 (((-107) $ $) NIL (|has| (-377 |#2|) (-333)))) (-3148 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-4065 (((-107)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (-2396 (($) 94 T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1 (-377 |#2|) (-377 |#2|)) (-703)) NIL (|has| (-377 |#2|) (-333))) (($ $ (-1 (-377 |#2|) (-377 |#2|))) NIL (|has| (-377 |#2|) (-333))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| (-377 |#2|) (-333)) (|has| (-377 |#2|) (-822 (-1073))))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319)))) (($ $) NIL (-3807 (-12 (|has| (-377 |#2|) (-207)) (|has| (-377 |#2|) (-333))) (|has| (-377 |#2|) (-319))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ $) NIL (|has| (-377 |#2|) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| (-377 |#2|) (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 |#2|)) NIL) (($ (-377 |#2|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-377 |#2|) (-333))) (($ $ (-377 (-517))) NIL (|has| (-377 |#2|) (-333)))))
+(((-919 |#1| |#2| |#3| |#4| |#5|) (-312 |#1| |#2| |#3|) (-1112) (-1130 |#1|) (-1130 (-377 |#2|)) (-377 |#2|) (-703)) (T -919))
+NIL
+(-312 |#1| |#2| |#3|)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1314 (((-583 (-517)) $) 54)) (-2629 (($ (-583 (-517))) 62)) (-2668 (((-517) $) 40 (|has| (-517) (-278)))) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL (|has| (-517) (-752)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) 49) (((-3 (-1073) "failed") $) NIL (|has| (-517) (-952 (-1073)))) (((-3 (-377 (-517)) "failed") $) 47 (|has| (-517) (-952 (-517)))) (((-3 (-517) "failed") $) 49 (|has| (-517) (-952 (-517))))) (-3189 (((-517) $) NIL) (((-1073) $) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) NIL (|has| (-517) (-952 (-517)))) (((-517) $) NIL (|has| (-517) (-952 (-517))))) (-2518 (($ $ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| (-517) (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3209 (($) NIL (|has| (-517) (-502)))) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-2210 (((-583 (-517)) $) 60)) (-3556 (((-107) $) NIL (|has| (-517) (-752)))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (|has| (-517) (-808 (-517)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (|has| (-517) (-808 (-349))))) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL)) (-1787 (((-517) $) 37)) (-1319 (((-3 $ "failed") $) NIL (|has| (-517) (-1049)))) (-2475 (((-107) $) NIL (|has| (-517) (-752)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-517) (-779)))) (-1893 (($ (-1 (-517) (-517)) $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL)) (-2836 (($) NIL (|has| (-517) (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-1927 (($ $) NIL (|has| (-517) (-278))) (((-377 (-517)) $) 42)) (-2959 (((-1054 (-517)) $) 59)) (-2160 (($ (-583 (-517)) (-583 (-517))) 63)) (-2597 (((-517) $) 53 (|has| (-517) (-502)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| (-517) (-831)))) (-3755 (((-388 $) $) NIL)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2051 (($ $ (-583 (-517)) (-583 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-517) (-517)) NIL (|has| (-517) (-280 (-517)))) (($ $ (-265 (-517))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-265 (-517)))) NIL (|has| (-517) (-280 (-517)))) (($ $ (-583 (-1073)) (-583 (-517))) NIL (|has| (-517) (-478 (-1073) (-517)))) (($ $ (-1073) (-517)) NIL (|has| (-517) (-478 (-1073) (-517))))) (-3146 (((-703) $) NIL)) (-1449 (($ $ (-517)) NIL (|has| (-517) (-258 (-517) (-517))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $) 11 (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-2971 (($ $) NIL)) (-1800 (((-517) $) 39)) (-3676 (((-583 (-517)) $) 61)) (-3645 (((-814 (-517)) $) NIL (|has| (-517) (-558 (-814 (-517))))) (((-814 (-349)) $) NIL (|has| (-517) (-558 (-814 (-349))))) (((-493) $) NIL (|has| (-517) (-558 (-493)))) (((-349) $) NIL (|has| (-517) (-937))) (((-199) $) NIL (|has| (-517) (-937)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-517) (-831))))) (-2256 (((-787) $) 77) (($ (-517)) 43) (($ $) NIL) (($ (-377 (-517))) 19) (($ (-517)) 43) (($ (-1073)) NIL (|has| (-517) (-952 (-1073)))) (((-377 (-517)) $) 17)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-517) (-831))) (|has| (-517) (-132))))) (-2961 (((-703)) 9)) (-1949 (((-517) $) 51 (|has| (-517) (-502)))) (-3329 (((-107) $ $) NIL)) (-3710 (($ $) NIL (|has| (-517) (-752)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 10 T CONST)) (-2409 (($) 12 T CONST)) (-2731 (($ $) NIL (|has| (-517) (-207))) (($ $ (-703)) NIL (|has| (-517) (-207))) (($ $ (-1073)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| (-517) (-822 (-1073)))) (($ $ (-1 (-517) (-517)) (-703)) NIL) (($ $ (-1 (-517) (-517))) NIL)) (-1606 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1547 (((-107) $ $) 14)) (-1595 (((-107) $ $) NIL (|has| (-517) (-779)))) (-1572 (((-107) $ $) 33 (|has| (-517) (-779)))) (-1667 (($ $ $) 29) (($ (-517) (-517)) 31)) (-1654 (($ $) 15) (($ $ $) 22)) (-1642 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 25) (($ $ $) 27) (($ $ (-377 (-517))) NIL) (($ (-377 (-517)) $) NIL) (($ (-517) $) 25) (($ $ (-517)) NIL)))
+(((-920 |#1|) (-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1314 ((-583 (-517)) $)) (-15 -2959 ((-1054 (-517)) $)) (-15 -2210 ((-583 (-517)) $)) (-15 -3676 ((-583 (-517)) $)) (-15 -2629 ($ (-583 (-517)))) (-15 -2160 ($ (-583 (-517)) (-583 (-517)))))) (-517)) (T -920))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1927 (*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-1314 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2210 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2629 (*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) (-2160 (*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(-13 (-909 (-517)) (-10 -8 (-15 -2256 ((-377 (-517)) $)) (-15 -1927 ((-377 (-517)) $)) (-15 -1314 ((-583 (-517)) $)) (-15 -2959 ((-1054 (-517)) $)) (-15 -2210 ((-583 (-517)) $)) (-15 -3676 ((-583 (-517)) $)) (-15 -2629 ($ (-583 (-517)))) (-15 -2160 ($ (-583 (-517)) (-583 (-517))))))
+((-3711 (((-51) (-377 (-517)) (-517)) 9)))
+(((-921) (-10 -7 (-15 -3711 ((-51) (-377 (-517)) (-517))))) (T -921))
+((-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921)))))
+(-10 -7 (-15 -3711 ((-51) (-377 (-517)) (-517))))
+((-1611 (((-517)) 13)) (-2980 (((-517)) 16)) (-1658 (((-1158) (-517)) 15)) (-1581 (((-517) (-517)) 17) (((-517)) 12)))
+(((-922) (-10 -7 (-15 -1581 ((-517))) (-15 -1611 ((-517))) (-15 -1581 ((-517) (-517))) (-15 -1658 ((-1158) (-517))) (-15 -2980 ((-517))))) (T -922))
+((-2980 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-922)))) (-1581 (*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1611 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) (-1581 (*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
+(-10 -7 (-15 -1581 ((-517))) (-15 -1611 ((-517))) (-15 -1581 ((-517) (-517))) (-15 -1658 ((-1158) (-517))) (-15 -2980 ((-517))))
+((-3432 (((-388 |#1|) |#1|) 40)) (-3755 (((-388 |#1|) |#1|) 39)))
+(((-923 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|))) (-1130 (-377 (-517)))) (T -923))
+((-3432 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))))
+(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|)))
+((-1256 (((-3 (-377 (-517)) "failed") |#1|) 14)) (-1355 (((-107) |#1|) 13)) (-3364 (((-377 (-517)) |#1|) 9)))
+(((-924 |#1|) (-10 -7 (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|))) (-952 (-377 (-517)))) (T -924))
+((-1256 (*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))) (-1355 (*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517)))))) (-3364 (*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
+(-10 -7 (-15 -3364 ((-377 (-517)) |#1|)) (-15 -1355 ((-107) |#1|)) (-15 -1256 ((-3 (-377 (-517)) "failed") |#1|)))
+((-2411 ((|#2| $ "value" |#2|) 12)) (-1449 ((|#2| $ "value") 10)) (-2732 (((-107) $ $) 18)))
+(((-925 |#1| |#2|) (-10 -8 (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -1449 (|#2| |#1| "value"))) (-926 |#2|) (-1108)) (T -925))
+NIL
+(-10 -8 (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -2732 ((-107) |#1| |#1|)) (-15 -1449 (|#2| |#1| "value")))
+((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3092 (($) 7 T CONST)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-926 |#1|) (-1184) (-1108)) (T -926))
+((-1479 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-3063 (*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3199 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1108)))) (-2655 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3992 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) (-2459 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))) (-2732 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1272 (*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-4040 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4181)) (-4 *1 (-926 *3)) (-4 *3 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))) (-1918 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))))
+(-13 (-456 |t#1|) (-10 -8 (-15 -1479 ((-583 $) $)) (-15 -3063 ((-583 $) $)) (-15 -1763 ((-107) $)) (-15 -3199 (|t#1| $)) (-15 -1449 (|t#1| $ "value")) (-15 -2655 ((-107) $)) (-15 -3992 ((-583 |t#1|) $)) (-15 -2459 ((-517) $ $)) (IF (|has| |t#1| (-1003)) (PROGN (-15 -2732 ((-107) $ $)) (-15 -1272 ((-107) $ $))) |noBranch|) (IF (|has| $ (-6 -4181)) (PROGN (-15 -4040 ($ $ (-583 $))) (-15 -2411 (|t#1| $ "value" |t#1|)) (-15 -1918 (|t#1| $ |t#1|))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-3766 (($ $) 9) (($ $ (-703)) 43) (($ (-377 (-517))) 12) (($ (-517)) 15)) (-3267 (((-3 $ "failed") (-1069 $) (-843) (-787)) 23) (((-3 $ "failed") (-1069 $) (-843)) 28)) (-3824 (($ $ (-517)) 49)) (-2961 (((-703)) 16)) (-3995 (((-583 $) (-1069 $)) NIL) (((-583 $) (-1069 (-377 (-517)))) 54) (((-583 $) (-1069 (-517))) 59) (((-583 $) (-874 $)) 63) (((-583 $) (-874 (-377 (-517)))) 67) (((-583 $) (-874 (-517))) 71)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) 47)))
+(((-927 |#1|) (-10 -8 (-15 -3766 (|#1| (-517))) (-15 -3766 (|#1| (-377 (-517)))) (-15 -3766 (|#1| |#1| (-703))) (-15 -3995 ((-583 |#1|) (-874 (-517)))) (-15 -3995 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-874 |#1|))) (-15 -3995 ((-583 |#1|) (-1069 (-517)))) (-15 -3995 ((-583 |#1|) (-1069 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-1069 |#1|))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3824 (|#1| |#1| (-517))) (-15 -3766 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843)))) (-928)) (T -927))
+((-2961 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928)))))
+(-10 -8 (-15 -3766 (|#1| (-517))) (-15 -3766 (|#1| (-377 (-517)))) (-15 -3766 (|#1| |#1| (-703))) (-15 -3995 ((-583 |#1|) (-874 (-517)))) (-15 -3995 ((-583 |#1|) (-874 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-874 |#1|))) (-15 -3995 ((-583 |#1|) (-1069 (-517)))) (-15 -3995 ((-583 |#1|) (-1069 (-377 (-517))))) (-15 -3995 ((-583 |#1|) (-1069 |#1|))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843))) (-15 -3267 ((-3 |#1| "failed") (-1069 |#1|) (-843) (-787))) (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -3824 (|#1| |#1| (-517))) (-15 -3766 (|#1| |#1|)) (-15 ** (|#1| |#1| (-517))) (-15 -2961 ((-703))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 89)) (-1213 (($ $) 90)) (-2454 (((-107) $) 92)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 109)) (-2759 (((-388 $) $) 110)) (-3766 (($ $) 73) (($ $ (-703)) 59) (($ (-377 (-517))) 58) (($ (-517)) 57)) (-1707 (((-107) $ $) 100)) (-3709 (((-517) $) 127)) (-3092 (($) 17 T CONST)) (-3267 (((-3 $ "failed") (-1069 $) (-843) (-787)) 67) (((-3 $ "failed") (-1069 $) (-843)) 66)) (-1772 (((-3 (-517) "failed") $) 85 (|has| (-377 (-517)) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 83 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) 81)) (-3189 (((-517) $) 86 (|has| (-377 (-517)) (-952 (-517)))) (((-377 (-517)) $) 84 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 80)) (-1610 (($ $ (-787)) 56)) (-4144 (($ $ (-787)) 55)) (-2518 (($ $ $) 104)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 103)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 98)) (-3849 (((-107) $) 111)) (-3556 (((-107) $) 125)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 72)) (-2475 (((-107) $) 126)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 107)) (-2967 (($ $ $) 124)) (-3099 (($ $ $) 123)) (-3928 (((-3 (-1069 $) "failed") $) 68)) (-3326 (((-3 (-787) "failed") $) 70)) (-1315 (((-3 (-1069 $) "failed") $) 69)) (-1365 (($ (-583 $)) 96) (($ $ $) 95)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 112)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 97)) (-1401 (($ (-583 $)) 94) (($ $ $) 93)) (-3755 (((-388 $) $) 108)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 105)) (-2476 (((-3 $ "failed") $ $) 88)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 99)) (-3146 (((-703) $) 101)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 102)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 117) (($ $) 87) (($ (-377 (-517))) 82) (($ (-517)) 79) (($ (-377 (-517))) 76)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 91)) (-3383 (((-377 (-517)) $ $) 54)) (-3995 (((-583 $) (-1069 $)) 65) (((-583 $) (-1069 (-377 (-517)))) 64) (((-583 $) (-1069 (-517))) 63) (((-583 $) (-874 $)) 62) (((-583 $) (-874 (-377 (-517)))) 61) (((-583 $) (-874 (-517))) 60)) (-3710 (($ $) 128)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 113)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 121)) (-1583 (((-107) $ $) 120)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 122)) (-1572 (((-107) $ $) 119)) (-1667 (($ $ $) 118)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 114) (($ $ (-377 (-517))) 71)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ (-377 (-517)) $) 116) (($ $ (-377 (-517))) 115) (($ (-517) $) 78) (($ $ (-517)) 77) (($ (-377 (-517)) $) 75) (($ $ (-377 (-517))) 74)))
+(((-928) (-1184)) (T -928))
+((-3766 (*1 *1 *1) (-4 *1 (-928))) (-3326 (*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787)))) (-1315 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))) (-3928 (*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))) (-3267 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) (-3267 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1069 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3995 (*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) (-3766 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) (-1610 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-4144 (*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))) (-3383 (*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517))))))
+(-13 (-134) (-777) (-156) (-333) (-381 (-377 (-517))) (-37 (-517)) (-37 (-377 (-517))) (-918) (-10 -8 (-15 -3326 ((-3 (-787) "failed") $)) (-15 -1315 ((-3 (-1069 $) "failed") $)) (-15 -3928 ((-3 (-1069 $) "failed") $)) (-15 -3267 ((-3 $ "failed") (-1069 $) (-843) (-787))) (-15 -3267 ((-3 $ "failed") (-1069 $) (-843))) (-15 -3995 ((-583 $) (-1069 $))) (-15 -3995 ((-583 $) (-1069 (-377 (-517))))) (-15 -3995 ((-583 $) (-1069 (-517)))) (-15 -3995 ((-583 $) (-874 $))) (-15 -3995 ((-583 $) (-874 (-377 (-517))))) (-15 -3995 ((-583 $) (-874 (-517)))) (-15 -3766 ($ $ (-703))) (-15 -3766 ($ $)) (-15 -3766 ($ (-377 (-517)))) (-15 -3766 ($ (-517))) (-15 -1610 ($ $ (-787))) (-15 -4144 ($ $ (-787))) (-15 -3383 ((-377 (-517)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 (-517)) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 (-517) (-517)) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-381 (-377 (-517))) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 (-517)) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 (-517)) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-842) . T) ((-918) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) |has| (-377 (-517)) (-952 (-517))) ((-967 (-377 (-517))) . T) ((-967 (-517)) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
+((-3991 (((-2 (|:| |ans| |#2|) (|:| -3652 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 61)))
+(((-929 |#1| |#2|) (-10 -7 (-15 -3991 ((-2 (|:| |ans| |#2|) (|:| -3652 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-27) (-400 |#1|))) (T -929))
+((-3991 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4)))))
+(-10 -7 (-15 -3991 ((-2 (|:| |ans| |#2|) (|:| -3652 |#2|) (|:| |sol?| (-107))) (-517) |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3028 (((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 47)))
+(((-930 |#1| |#2|) (-10 -7 (-15 -3028 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517))) (-13 (-1094) (-27) (-400 |#1|))) (T -930))
+((-3028 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4)))))
+(-10 -7 (-15 -3028 ((-3 (-583 |#2|) "failed") (-517) |#2| |#2| |#2| (-1073) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-583 |#2|)) (-1 (-3 (-2 (|:| -2422 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1773 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)) 30)) (-2431 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 56)) (-1618 (((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|)) 61)))
+(((-931 |#1| |#2|) (-10 -7 (-15 -2431 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1618 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -1773 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1130 |#1|)) (T -931))
+((-1773 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3)))) (-1618 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5)))) (-2431 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -2431 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |c| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -1618 ((-2 (|:| |ans| (-377 |#2|)) (|:| |nosol| (-107))) (-377 |#2|) (-377 |#2|))) (-15 -1773 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-517)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-517) (-1 |#2| |#2|))))
+((-3896 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|)) 22)) (-2781 (((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)) 32)))
+(((-932 |#1| |#2|) (-10 -7 (-15 -3896 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2781 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|)))) (-13 (-333) (-134) (-952 (-517))) (-1130 |#1|)) (T -932))
+((-2781 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))) (-3896 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
+(-10 -7 (-15 -3896 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-377 |#2|)) (|:| |h| |#2|) (|:| |c1| (-377 |#2|)) (|:| |c2| (-377 |#2|)) (|:| -2147 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|) (-1 |#2| |#2|))) (-15 -2781 ((-3 (-583 (-377 |#2|)) "failed") (-377 |#2|) (-377 |#2|) (-377 |#2|))))
+((-3601 (((-1 |#1|) (-583 (-2 (|:| -3199 |#1|) (|:| -2932 (-517))))) 37)) (-3290 (((-1 |#1|) (-1005 |#1|)) 45)) (-3877 (((-1 |#1|) (-1153 |#1|) (-1153 (-517)) (-517)) 34)))
+(((-933 |#1|) (-10 -7 (-15 -3290 ((-1 |#1|) (-1005 |#1|))) (-15 -3601 ((-1 |#1|) (-583 (-2 (|:| -3199 |#1|) (|:| -2932 (-517)))))) (-15 -3877 ((-1 |#1|) (-1153 |#1|) (-1153 (-517)) (-517)))) (-1003)) (T -933))
+((-3877 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 *6)) (-5 *4 (-1153 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3199 *4) (|:| -2932 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))))
+(-10 -7 (-15 -3290 ((-1 |#1|) (-1005 |#1|))) (-15 -3601 ((-1 |#1|) (-583 (-2 (|:| -3199 |#1|) (|:| -2932 (-517)))))) (-15 -3877 ((-1 |#1|) (-1153 |#1|) (-1153 (-517)) (-517))))
+((-3972 (((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-934 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-333) (-1130 |#1|) (-1130 (-377 |#2|)) (-312 |#1| |#2| |#3|) (-13 (-338) (-333))) (T -934))
+((-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-4 *4 (-1130 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -3972 ((-703) (-306 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-3437 (((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 31) (((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 28)) (-3813 (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 33) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517))) 29) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 32) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|) 27)) (-3632 (((-583 (-377 (-517))) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) 19)) (-2555 (((-377 (-517)) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 16)))
+(((-935 |#1|) (-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -2555 ((-377 (-517)) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3632 ((-583 (-377 (-517))) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))))) (-1130 (-517))) (T -935))
+((-3632 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))) (-3437 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) (-3437 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-377 (-517))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-3813 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))))
+(-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -2555 ((-377 (-517)) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3632 ((-583 (-377 (-517))) (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))))
+((-3437 (((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 35) (((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 32)) (-3813 (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517))) 30) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517))) 26) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) 28) (((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|) 24)))
+(((-936 |#1|) (-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-1130 (-377 (-517)))) (T -936))
+((-3437 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))) (-3437 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *5)) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))) (-3813 (*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *4) (|:| -3652 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) (-3813 (*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) (-3813 (*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))))
+(-10 -7 (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1|)) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-377 (-517)))) (-15 -3813 ((-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-377 (-517)))) (-15 -3437 ((-3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) "failed") |#1| (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))) (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))))
+((-3645 (((-199) $) 6) (((-349) $) 9)))
+(((-937) (-1184)) (T -937))
+NIL
+(-13 (-558 (-199)) (-558 (-349)))
+(((-558 (-199)) . T) ((-558 (-349)) . T))
+((-1674 (((-583 (-349)) (-874 (-517)) (-349)) 27) (((-583 (-349)) (-874 (-377 (-517))) (-349)) 26)) (-2047 (((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1073)) (-349)) 36)))
+(((-938) (-10 -7 (-15 -1674 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -1674 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -2047 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1073)) (-349))))) (T -938))
+((-2047 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))))
+(-10 -7 (-15 -1674 ((-583 (-349)) (-874 (-377 (-517))) (-349))) (-15 -1674 ((-583 (-349)) (-874 (-517)) (-349))) (-15 -2047 ((-583 (-583 (-349))) (-583 (-874 (-517))) (-583 (-1073)) (-349))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 70)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-3766 (($ $) NIL) (($ $ (-703)) NIL) (($ (-377 (-517))) NIL) (($ (-517)) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) 65)) (-3092 (($) NIL T CONST)) (-3267 (((-3 $ "failed") (-1069 $) (-843) (-787)) NIL) (((-3 $ "failed") (-1069 $) (-843)) 49)) (-1772 (((-3 (-377 (-517)) "failed") $) NIL (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#1| "failed") $) 108) (((-3 (-517) "failed") $) NIL (-3807 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-3189 (((-377 (-517)) $) 14 (|has| (-377 (-517)) (-952 (-377 (-517))))) (((-377 (-517)) $) 14) ((|#1| $) 109) (((-517) $) NIL (-3807 (|has| (-377 (-517)) (-952 (-517))) (|has| |#1| (-952 (-517)))))) (-1610 (($ $ (-787)) 40)) (-4144 (($ $ (-787)) 41)) (-2518 (($ $ $) NIL)) (-2002 (((-377 (-517)) $ $) 18)) (-3621 (((-3 $ "failed") $) 83)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-3556 (((-107) $) 60)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL)) (-2475 (((-107) $) 63)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-3928 (((-3 (-1069 $) "failed") $) 78)) (-3326 (((-3 (-787) "failed") $) 77)) (-1315 (((-3 (-1069 $) "failed") $) 75)) (-3115 (((-3 (-971 $ (-1069 $)) "failed") $) 73)) (-1365 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 84)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ (-583 $)) NIL) (($ $ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2256 (((-787) $) 82) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) 57) (($ (-377 (-517))) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#1|) 111)) (-2961 (((-703)) NIL)) (-3329 (((-107) $ $) NIL)) (-3383 (((-377 (-517)) $ $) 24)) (-3995 (((-583 $) (-1069 $)) 55) (((-583 $) (-1069 (-377 (-517)))) NIL) (((-583 $) (-1069 (-517))) NIL) (((-583 $) (-874 $)) NIL) (((-583 $) (-874 (-377 (-517)))) NIL) (((-583 $) (-874 (-517))) NIL)) (-2325 (($ (-971 $ (-1069 $)) (-787)) 39)) (-3710 (($ $) 19)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL)) (-2396 (($) 28 T CONST)) (-2409 (($) 34 T CONST)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 71)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 21)) (-1667 (($ $ $) 32)) (-1654 (($ $) 33) (($ $ $) 69)) (-1642 (($ $ $) 104)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL) (($ $ (-377 (-517))) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 92) (($ $ $) 97) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ (-517) $) 92) (($ $ (-517)) NIL) (($ (-377 (-517)) $) NIL) (($ $ (-377 (-517))) NIL) (($ |#1| $) 96) (($ $ |#1|) NIL)))
+(((-939 |#1|) (-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2325 ($ (-971 $ (-1069 $)) (-787))) (-15 -3115 ((-3 (-971 $ (-1069 $)) "failed") $)) (-15 -2002 ((-377 (-517)) $ $)))) (-13 (-777) (-333) (-937))) (T -939))
+((-2325 (*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1069 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937))))) (-3115 (*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1069 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) (-2002 (*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))))
+(-13 (-928) (-381 |#1|) (-37 |#1|) (-10 -8 (-15 -2325 ($ (-971 $ (-1069 $)) (-787))) (-15 -3115 ((-3 (-971 $ (-1069 $)) "failed") $)) (-15 -2002 ((-377 (-517)) $ $))))
+((-2702 (((-2 (|:| -2131 |#2|) (|:| -3837 (-583 |#1|))) |#2| (-583 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-940 |#1| |#2|) (-10 -7 (-15 -2702 (|#2| |#2| |#1|)) (-15 -2702 ((-2 (|:| -2131 |#2|) (|:| -3837 (-583 |#1|))) |#2| (-583 |#1|)))) (-333) (-593 |#1|)) (T -940))
+((-2702 (*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3837 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))) (-2702 (*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3)))))
+(-10 -7 (-15 -2702 (|#2| |#2| |#1|)) (-15 -2702 ((-2 (|:| -2131 |#2|) (|:| -3837 (-583 |#1|))) |#2| (-583 |#1|))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2356 ((|#1| $ |#1|) 14)) (-2411 ((|#1| $ |#1|) 12)) (-2651 (($ |#1|) 10)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1449 ((|#1| $) 11)) (-3126 ((|#1| $) 13)) (-2256 (((-787) $) 21 (|has| |#1| (-1003)))) (-1547 (((-107) $ $) 9)))
+(((-941 |#1|) (-13 (-1108) (-10 -8 (-15 -2651 ($ |#1|)) (-15 -1449 (|#1| $)) (-15 -2411 (|#1| $ |#1|)) (-15 -3126 (|#1| $)) (-15 -2356 (|#1| $ |#1|)) (-15 -1547 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1108)) (T -941))
+((-2651 (*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-3126 (*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-2356 (*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) (-1547 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1108)))))
+(-13 (-1108) (-10 -8 (-15 -2651 ($ |#1|)) (-15 -1449 (|#1| $)) (-15 -2411 (|#1| $ |#1|)) (-15 -3126 (|#1| $)) (-15 -2356 (|#1| $ |#1|)) (-15 -1547 ((-107) $ $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) 104) (((-583 $) (-583 |#4|) (-107)) 105) (((-583 $) (-583 |#4|) (-107) (-107)) 103) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 106)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 98)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 53)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) 26 (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 39)) (-3659 ((|#4| |#4| $) 56)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 72 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-4063 (((-107) |#4| $) NIL)) (-1829 (((-107) |#4| $) NIL)) (-1538 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2865 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 118)) (-1536 (((-583 |#4|) $) 16 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 17 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 96)) (-2068 (((-3 |#4| "failed") $) 37)) (-2117 (((-583 $) |#4| $) 79)) (-2834 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 89) (((-107) |#4| $) 51)) (-1812 (((-583 $) |#4| $) 101) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 102) (((-583 $) |#4| (-583 $)) NIL)) (-3160 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 113)) (-2474 (($ |#4| $) 69) (($ (-583 |#4|) $) 70) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 66)) (-2774 (((-583 |#4|) $) NIL)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) 47)) (-1672 (($ $ |#4|) NIL) (((-583 $) |#4| $) 81) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 76)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 13)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 12)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 20)) (-2442 (($ $ |#3|) 42)) (-3759 (($ $ |#3|) 43)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3596 (((-583 $) |#4| $) 78) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-2119 (((-107) |#4| $) NIL)) (-1871 (((-107) |#3| $) 52)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-942 |#1| |#2| |#3| |#4|) (-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -942))
+((-2474 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-4029 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) (-2865 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(-13 (-980 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
+((-3130 (((-583 (-623 |#1|)) (-583 (-623 |#1|))) 57) (((-623 |#1|) (-623 |#1|)) 56) (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 55) (((-623 |#1|) (-623 |#1|) (-623 |#1|)) 52)) (-2363 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 51) (((-623 |#1|) (-623 |#1|) (-843)) 50)) (-3860 (((-583 (-623 (-517))) (-583 (-583 (-517)))) 67) (((-583 (-623 (-517))) (-583 (-827 (-517))) (-517)) 66) (((-623 (-517)) (-583 (-517))) 63) (((-623 (-517)) (-827 (-517)) (-517)) 62)) (-3369 (((-623 (-874 |#1|)) (-703)) 80)) (-2965 (((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843)) 37 (|has| |#1| (-6 (-4182 "*")))) (((-623 |#1|) (-623 |#1|) (-843)) 35 (|has| |#1| (-6 (-4182 "*"))))))
+(((-943 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-623 |#1|) (-623 |#1|) (-843))) |noBranch|) (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |noBranch|) (-15 -3369 ((-623 (-874 |#1|)) (-703))) (-15 -2363 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -2363 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -3130 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3130 ((-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3860 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3860 ((-623 (-517)) (-583 (-517)))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-583 (-517)))))) (-961)) (T -943))
+((-3860 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-3860 (*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3130 (*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3130 (*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-3130 (*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) (-2363 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-2363 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) (-2965 (*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) (-2965 (*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-623 |#1|) (-623 |#1|) (-843))) |noBranch|) (IF (|has| |#1| (-6 (-4182 "*"))) (-15 -2965 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) |noBranch|) (-15 -3369 ((-623 (-874 |#1|)) (-703))) (-15 -2363 ((-623 |#1|) (-623 |#1|) (-843))) (-15 -2363 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-843))) (-15 -3130 ((-623 |#1|) (-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3130 ((-623 |#1|) (-623 |#1|))) (-15 -3130 ((-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3860 ((-623 (-517)) (-827 (-517)) (-517))) (-15 -3860 ((-623 (-517)) (-583 (-517)))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-827 (-517))) (-517))) (-15 -3860 ((-583 (-623 (-517))) (-583 (-583 (-517))))))
+((-4010 (((-623 |#1|) (-583 (-623 |#1|)) (-1153 |#1|)) 48 (|has| |#1| (-278)))) (-1313 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 (-1153 |#1|))) 73 (|has| |#1| (-333))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 |#1|)) 76 (|has| |#1| (-333)))) (-1555 (((-1153 |#1|) (-583 (-1153 |#1|)) (-517)) 90 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-1646 (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843)) 82 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107)) 80 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|))) 79 (-12 (|has| |#1| (-333)) (|has| |#1| (-338)))) (((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517)) 78 (-12 (|has| |#1| (-333)) (|has| |#1| (-338))))) (-3348 (((-107) (-583 (-623 |#1|))) 68 (|has| |#1| (-333))) (((-107) (-583 (-623 |#1|)) (-517)) 70 (|has| |#1| (-333)))) (-1521 (((-1153 (-1153 |#1|)) (-583 (-623 |#1|)) (-1153 |#1|)) 46 (|has| |#1| (-278)))) (-1209 (((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|)) 32)) (-2510 (((-623 |#1|) (-1153 (-1153 |#1|))) 29)) (-3421 (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517)) 62 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|))) 61 (|has| |#1| (-333))) (((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517)) 66 (|has| |#1| (-333)))))
+(((-944 |#1|) (-10 -7 (-15 -2510 ((-623 |#1|) (-1153 (-1153 |#1|)))) (-15 -1209 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -1521 ((-1153 (-1153 |#1|)) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -4010 ((-623 |#1|) (-583 (-623 |#1|)) (-1153 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 (-1153 |#1|))))) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -1555 ((-1153 |#1|) (-583 (-1153 |#1|)) (-517)))) |noBranch|) |noBranch|)) (-961)) (T -944))
+((-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1153 *5))) (-5 *4 (-517)) (-5 *2 (-1153 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1646 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1646 (*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) (-1646 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1153 (-1153 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) (-3421 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961)))) (-3421 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) (-3421 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1153 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)))) (-1521 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1153 (-1153 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1153 *5)))) (-1209 (*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)))))
+(-10 -7 (-15 -2510 ((-623 |#1|) (-1153 (-1153 |#1|)))) (-15 -1209 ((-623 |#1|) (-583 (-623 |#1|)) (-623 |#1|))) (IF (|has| |#1| (-278)) (PROGN (-15 -1521 ((-1153 (-1153 |#1|)) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -4010 ((-623 |#1|) (-583 (-623 |#1|)) (-1153 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-107) (-517))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -3421 ((-623 |#1|) (-583 (-623 |#1|)) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)) (-517))) (-15 -3348 ((-107) (-583 (-623 |#1|)))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 |#1|))) (-15 -1313 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-1153 (-1153 |#1|))))) |noBranch|) (IF (|has| |#1| (-338)) (IF (|has| |#1| (-333)) (PROGN (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107) (-517) (-517))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-107))) (-15 -1646 ((-583 (-583 (-623 |#1|))) (-583 (-623 |#1|)) (-843))) (-15 -1555 ((-1153 |#1|) (-583 (-1153 |#1|)) (-517)))) |noBranch|) |noBranch|))
+((-4003 ((|#1| (-843) |#1|) 9)))
+(((-945 |#1|) (-10 -7 (-15 -4003 (|#1| (-843) |#1|))) (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $))))) (T -945))
+((-4003 (*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $))))))))
+(-10 -7 (-15 -4003 (|#1| (-843) |#1|)))
+((-2633 (((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517))))) 58)) (-2159 (((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517))))) 48)) (-2559 (((-583 (-286 (-517))) (-623 (-377 (-874 (-517))))) 41)) (-3686 (((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517))))) 67)) (-3915 (((-623 (-286 (-517))) (-623 (-286 (-517)))) 33)) (-2822 (((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517))))) 61)) (-1400 (((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517))))) 65)))
+(((-946) (-10 -7 (-15 -2633 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -2159 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -2559 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1400 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -3915 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2822 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3686 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517)))))))) (T -946))
+((-3686 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-2822 (*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-1400 (*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))) (-2559 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517))))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946)))))
+(-10 -7 (-15 -2633 ((-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517))))))) (-623 (-377 (-874 (-517)))))) (-15 -2159 ((-583 (-623 (-286 (-517)))) (-286 (-517)) (-623 (-377 (-874 (-517)))))) (-15 -2559 ((-583 (-286 (-517))) (-623 (-377 (-874 (-517)))))) (-15 -1400 ((-3 (-623 (-286 (-517))) "failed") (-623 (-377 (-874 (-517)))))) (-15 -3915 ((-623 (-286 (-517))) (-623 (-286 (-517))))) (-15 -2822 ((-583 (-623 (-286 (-517)))) (-583 (-623 (-286 (-517)))))) (-15 -3686 ((-583 (-623 (-286 (-517)))) (-623 (-377 (-874 (-517)))))))
+((-3577 ((|#1| |#1| (-843)) 9)))
+(((-947 |#1|) (-10 -7 (-15 -3577 (|#1| |#1| (-843)))) (-13 (-1003) (-10 -8 (-15 * ($ $ $))))) (T -947))
+((-3577 (*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -3577 (|#1| |#1| (-843))))
+((-2256 ((|#1| (-282)) 11) (((-1158) |#1|) 9)))
+(((-948 |#1|) (-10 -7 (-15 -2256 ((-1158) |#1|)) (-15 -2256 (|#1| (-282)))) (-1108)) (T -948))
+((-2256 (*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1108)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-948 *3)) (-4 *3 (-1108)))))
+(-10 -7 (-15 -2256 ((-1158) |#1|)) (-15 -2256 (|#1| (-282))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3225 (($ |#4|) 25)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3216 ((|#4| $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 46) (($ (-517)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2961 (((-703)) 43)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 23 T CONST)) (-1547 (((-107) $ $) 40)) (-1654 (($ $) 31) (($ $ $) NIL)) (-1642 (($ $ $) 29)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-949 |#1| |#2| |#3| |#4| |#5|) (-13 (-156) (-37 |#1|) (-10 -8 (-15 -3225 ($ |#4|)) (-15 -2256 ($ |#4|)) (-15 -3216 (|#4| $)))) (-333) (-725) (-779) (-871 |#1| |#2| |#3|) (-583 |#4|)) (T -949))
+((-3225 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) (-3216 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
+(-13 (-156) (-37 |#1|) (-10 -8 (-15 -3225 ($ |#4|)) (-15 -2256 ($ |#4|)) (-15 -3216 (|#4| $))))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-1668 (((-1158) $ (-1073) (-1073)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2106 (((-107) (-107)) 39)) (-3816 (((-107) (-107)) 38)) (-2411 (((-51) $ (-1073) (-51)) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 (-51) "failed") (-1073) $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-3 (-51) "failed") (-1073) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -4181)))) (-1377 (((-51) $ (-1073)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1073) $) NIL (|has| (-1073) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-3482 (((-1073) $) NIL (|has| (-1073) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2274 (((-583 (-1073)) $) 34)) (-2793 (((-107) (-1073) $) NIL)) (-3309 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-1857 (((-583 (-1073)) $) NIL)) (-4088 (((-107) (-1073) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-1647 (((-51) $) NIL (|has| (-1073) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) "failed") (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL)) (-2565 (($ $ (-51)) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-1941 (((-583 (-51)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-51) $ (-1073)) 35) (((-51) $ (-1073) (-51)) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-2256 (((-787) $) 37 (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-950) (-13 (-1085 (-1073) (-51)) (-10 -7 (-15 -2106 ((-107) (-107))) (-15 -3816 ((-107) (-107))) (-6 -4180)))) (T -950))
+((-2106 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
+(-13 (-1085 (-1073) (-51)) (-10 -7 (-15 -2106 ((-107) (-107))) (-15 -3816 ((-107) (-107))) (-6 -4180)))
+((-3189 ((|#2| $) 10)))
+(((-951 |#1| |#2|) (-10 -8 (-15 -3189 (|#2| |#1|))) (-952 |#2|) (-1108)) (T -951))
+NIL
+(-10 -8 (-15 -3189 (|#2| |#1|)))
+((-1772 (((-3 |#1| "failed") $) 7)) (-3189 ((|#1| $) 8)) (-2256 (($ |#1|) 6)))
+(((-952 |#1|) (-1184) (-1108)) (T -952))
+((-3189 (*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) (-1772 (*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) (-2256 (*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))))
+(-13 (-10 -8 (-15 -2256 ($ |t#1|)) (-15 -1772 ((-3 |t#1| "failed") $)) (-15 -3189 (|t#1| $))))
+((-1488 (((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1073))) 35)))
+(((-953 |#1| |#2|) (-10 -7 (-15 -1488 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1073))))) (-509) (-13 (-509) (-952 |#1|))) (T -953))
+((-1488 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6)))))
+(-10 -7 (-15 -1488 ((-583 (-583 (-265 (-377 (-874 |#2|))))) (-583 (-874 |#2|)) (-583 (-1073)))))
+((-3041 (((-349)) 15)) (-3290 (((-1 (-349)) (-349) (-349)) 20)) (-2147 (((-1 (-349)) (-703)) 42)) (-2466 (((-349)) 33)) (-2527 (((-1 (-349)) (-349) (-349)) 34)) (-3907 (((-349)) 26)) (-2697 (((-1 (-349)) (-349)) 27)) (-3125 (((-349) (-703)) 37)) (-2136 (((-1 (-349)) (-703)) 38)) (-1696 (((-1 (-349)) (-703) (-703)) 41)) (-2350 (((-1 (-349)) (-703) (-703)) 39)))
+(((-954) (-10 -7 (-15 -3041 ((-349))) (-15 -2466 ((-349))) (-15 -3907 ((-349))) (-15 -3125 ((-349) (-703))) (-15 -3290 ((-1 (-349)) (-349) (-349))) (-15 -2527 ((-1 (-349)) (-349) (-349))) (-15 -2697 ((-1 (-349)) (-349))) (-15 -2136 ((-1 (-349)) (-703))) (-15 -2350 ((-1 (-349)) (-703) (-703))) (-15 -1696 ((-1 (-349)) (-703) (-703))) (-15 -2147 ((-1 (-349)) (-703))))) (T -954))
+((-2147 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-1696 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2350 (*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) (-2697 (*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-2527 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-3290 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954)))) (-3907 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-2466 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))) (-3041 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
+(-10 -7 (-15 -3041 ((-349))) (-15 -2466 ((-349))) (-15 -3907 ((-349))) (-15 -3125 ((-349) (-703))) (-15 -3290 ((-1 (-349)) (-349) (-349))) (-15 -2527 ((-1 (-349)) (-349) (-349))) (-15 -2697 ((-1 (-349)) (-349))) (-15 -2136 ((-1 (-349)) (-703))) (-15 -2350 ((-1 (-349)) (-703) (-703))) (-15 -1696 ((-1 (-349)) (-703) (-703))) (-15 -2147 ((-1 (-349)) (-703))))
+((-3755 (((-388 |#1|) |#1|) 31)))
+(((-955 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|))) (-1130 (-377 (-874 (-517))))) (T -955))
+((-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1130 (-377 (-874 (-517))))))))
+(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)))
+((-3954 (((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))) 14)))
+(((-956 |#1|) (-10 -7 (-15 -3954 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|))))) (-278)) (T -956))
+((-3954 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4)))))
+(-10 -7 (-15 -3954 ((-377 (-388 (-874 |#1|))) (-377 (-874 |#1|)))))
+((-1364 (((-583 (-1073)) (-377 (-874 |#1|))) 15)) (-2352 (((-377 (-1069 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073)) 22)) (-1350 (((-377 (-874 |#1|)) (-377 (-1069 (-377 (-874 |#1|)))) (-1073)) 24)) (-1409 (((-3 (-1073) "failed") (-377 (-874 |#1|))) 18)) (-2051 (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|))))) 29) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|)))) 31) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1073)) (-583 (-377 (-874 |#1|)))) 26) (((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|))) 27)) (-2256 (((-377 (-874 |#1|)) |#1|) 11)))
+(((-957 |#1|) (-10 -7 (-15 -1364 ((-583 (-1073)) (-377 (-874 |#1|)))) (-15 -1409 ((-3 (-1073) "failed") (-377 (-874 |#1|)))) (-15 -2352 ((-377 (-1069 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1350 ((-377 (-874 |#1|)) (-377 (-1069 (-377 (-874 |#1|)))) (-1073))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1073)) (-583 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2256 ((-377 (-874 |#1|)) |#1|))) (-509)) (T -957))
+((-2256 (*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-2051 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) (-2051 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) (-1350 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 (-377 (-874 *5))))) (-5 *4 (-1073)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509)))) (-2352 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-377 (-1069 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5))))) (-1409 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1073)) (-5 *1 (-957 *4)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1073))) (-5 *1 (-957 *4)))))
+(-10 -7 (-15 -1364 ((-583 (-1073)) (-377 (-874 |#1|)))) (-15 -1409 ((-3 (-1073) "failed") (-377 (-874 |#1|)))) (-15 -2352 ((-377 (-1069 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1350 ((-377 (-874 |#1|)) (-377 (-1069 (-377 (-874 |#1|)))) (-1073))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-1073)) (-583 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-265 (-377 (-874 |#1|))))) (-15 -2051 ((-377 (-874 |#1|)) (-377 (-874 |#1|)) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2256 ((-377 (-874 |#1|)) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 (-712 |#1| (-789 |#2|)))))) (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-4029 (((-583 $) (-583 (-712 |#1| (-789 |#2|)))) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)) NIL)) (-1364 (((-583 (-789 |#2|)) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-2437 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2535 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3726 $))) (-712 |#1| (-789 |#2|)) $) NIL)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ (-789 |#2|)) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 (-712 |#1| (-789 |#2|)) "failed") $ (-789 |#2|)) NIL)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) NIL (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-1677 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-3189 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-1660 (((-3 $ "failed") $) NIL)) (-3659 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-2052 (($ (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-3283 (((-107) (-712 |#1| (-789 |#2|)) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-4049 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3225 (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $ (-712 |#1| (-789 |#2|))) NIL (|has| $ (-6 -4180))) (((-712 |#1| (-789 |#2|)) (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2901 (((-2 (|:| -1210 (-583 (-712 |#1| (-789 |#2|)))) (|:| -1513 (-583 (-712 |#1| (-789 |#2|))))) $) NIL)) (-4063 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1829 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1538 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1536 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1497 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-1976 (((-789 |#2|) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-1433 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) $) NIL)) (-3921 (((-583 (-789 |#2|)) $) NIL)) (-1792 (((-107) (-789 |#2|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3955 (((-3 (-712 |#1| (-789 |#2|)) (-583 $)) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-1855 (((-583 (-2 (|:| |val| (-712 |#1| (-789 |#2|))) (|:| -3726 $))) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-2068 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2117 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL)) (-2834 (((-3 (-107) (-583 $)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1812 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL)) (-2474 (($ (-712 |#1| (-789 |#2|)) $) NIL) (($ (-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-2774 (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-3852 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3522 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| (-712 |#1| (-789 |#2|))) (|:| |den| |#1|)) (-712 |#1| (-789 |#2|)) $) NIL (|has| |#1| (-509)))) (-1959 (((-107) (-712 |#1| (-789 |#2|)) $) NIL) (((-107) $) NIL)) (-3183 (((-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 (-712 |#1| (-789 |#2|)) "failed") $) NIL)) (-2887 (((-3 (-712 |#1| (-789 |#2|)) "failed") (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL)) (-1195 (((-3 $ "failed") $ (-712 |#1| (-789 |#2|))) NIL)) (-1672 (($ $ (-712 |#1| (-789 |#2|))) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-2048 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-712 |#1| (-789 |#2|))) (-583 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-265 (-712 |#1| (-789 |#2|)))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (($ $ (-583 (-265 (-712 |#1| (-789 |#2|))))) NIL (-12 (|has| (-712 |#1| (-789 |#2|)) (-280 (-712 |#1| (-789 |#2|)))) (|has| (-712 |#1| (-789 |#2|)) (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-3688 (((-703) $) NIL)) (-3217 (((-703) (-712 |#1| (-789 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-712 |#1| (-789 |#2|)) (-1003)))) (((-703) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-712 |#1| (-789 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-712 |#1| (-789 |#2|)))) NIL)) (-2442 (($ $ (-789 |#2|)) NIL)) (-3759 (($ $ (-789 |#2|)) NIL)) (-2303 (($ $) NIL)) (-1846 (($ $ (-789 |#2|)) NIL)) (-2256 (((-787) $) NIL) (((-583 (-712 |#1| (-789 |#2|))) $) NIL)) (-1605 (((-703) $) NIL (|has| (-789 |#2|) (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 (-712 |#1| (-789 |#2|))))) "failed") (-583 (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|))) (-1 (-107) (-712 |#1| (-789 |#2|)) (-712 |#1| (-789 |#2|)))) NIL)) (-2114 (((-107) $ (-1 (-107) (-712 |#1| (-789 |#2|)) (-583 (-712 |#1| (-789 |#2|))))) NIL)) (-3596 (((-583 $) (-712 |#1| (-789 |#2|)) $) NIL) (((-583 $) (-712 |#1| (-789 |#2|)) (-583 $)) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) $) NIL) (((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-583 $)) NIL)) (-3675 (((-107) (-1 (-107) (-712 |#1| (-789 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 (-789 |#2|)) $) NIL)) (-2119 (((-107) (-712 |#1| (-789 |#2|)) $) NIL)) (-1871 (((-107) (-789 |#2|) $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-958 |#1| |#2|) (-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -4029 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107))))) (-421) (-583 (-1073))) (T -958))
+((-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))))
+(-13 (-980 |#1| (-489 (-789 |#2|)) (-789 |#2|) (-712 |#1| (-789 |#2|))) (-10 -8 (-15 -4029 ((-583 $) (-583 (-712 |#1| (-789 |#2|))) (-107) (-107)))))
+((-3290 (((-1 (-517)) (-998 (-517))) 33)) (-2685 (((-517) (-517) (-517) (-517) (-517)) 30)) (-3336 (((-1 (-517)) |RationalNumber|) NIL)) (-1251 (((-1 (-517)) |RationalNumber|) NIL)) (-1270 (((-1 (-517)) (-517) |RationalNumber|) NIL)))
+(((-959) (-10 -7 (-15 -3290 ((-1 (-517)) (-998 (-517)))) (-15 -1270 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -3336 ((-1 (-517)) |RationalNumber|)) (-15 -1251 ((-1 (-517)) |RationalNumber|)) (-15 -2685 ((-517) (-517) (-517) (-517) (-517))))) (T -959))
+((-2685 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959)))) (-1251 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-3336 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))) (-1270 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517)))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
+(-10 -7 (-15 -3290 ((-1 (-517)) (-998 (-517)))) (-15 -1270 ((-1 (-517)) (-517) |RationalNumber|)) (-15 -3336 ((-1 (-517)) |RationalNumber|)) (-15 -1251 ((-1 (-517)) |RationalNumber|)) (-15 -2685 ((-517) (-517) (-517) (-517) (-517))))
+((-2256 (((-787) $) NIL) (($ (-517)) 10)))
+(((-960 |#1|) (-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-961)) (T -960))
+NIL
+(-10 -8 (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-961) (-1184)) (T -961))
+((-2961 (*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961)))))
+(-13 (-968) (-659) (-585 $) (-10 -8 (-15 -2961 ((-703))) (-15 -2256 ($ (-517))) (-6 -4177)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 $) . T) ((-659) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-4058 (((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)) 45)))
+(((-962 |#1| |#2|) (-10 -7 (-15 -4058 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703)))) (-1073) (-333)) (T -962))
+((-4058 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1073)))))
+(-10 -7 (-15 -4058 ((-377 (-874 |#2|)) (-583 |#2|) (-583 |#2|) (-703) (-703))))
+((-2818 (((-107) $) 27)) (-3213 (((-107) $) 16)) (-1477 (((-703) $) 13)) (-1486 (((-703) $) 14)) (-1516 (((-107) $) 25)) (-1683 (((-107) $) 29)))
+(((-963 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1486 ((-703) |#1|)) (-15 -1477 ((-703) |#1|)) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|))) (-964 |#2| |#3| |#4| |#5| |#6|) (-703) (-703) (-961) (-212 |#3| |#4|) (-212 |#2| |#4|)) (T -963))
+NIL
+(-10 -8 (-15 -1486 ((-703) |#1|)) (-15 -1477 ((-703) |#1|)) (-15 -1683 ((-107) |#1|)) (-15 -2818 ((-107) |#1|)) (-15 -1516 ((-107) |#1|)) (-15 -3213 ((-107) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2818 (((-107) $) 51)) (-4038 (((-3 $ "failed") $ $) 19)) (-3213 (((-107) $) 53)) (-2953 (((-107) $ (-703)) 61)) (-3092 (($) 17 T CONST)) (-2468 (($ $) 34 (|has| |#3| (-278)))) (-1939 ((|#4| $ (-517)) 39)) (-2261 (((-703) $) 33 (|has| |#3| (-509)))) (-1377 ((|#3| $ (-517) (-517)) 41)) (-1536 (((-583 |#3|) $) 68 (|has| $ (-6 -4180)))) (-1948 (((-703) $) 32 (|has| |#3| (-509)))) (-3706 (((-583 |#5|) $) 31 (|has| |#3| (-509)))) (-1477 (((-703) $) 45)) (-1486 (((-703) $) 44)) (-2550 (((-107) $ (-703)) 60)) (-2813 (((-517) $) 49)) (-1338 (((-517) $) 47)) (-2560 (((-583 |#3|) $) 69 (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) 71 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 48)) (-1307 (((-517) $) 46)) (-1840 (($ (-583 (-583 |#3|))) 54)) (-1433 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3035 (((-583 (-583 |#3|)) $) 43)) (-3847 (((-107) $ (-703)) 59)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-509)))) (-2048 (((-107) (-1 (-107) |#3|) $) 66 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#3|) (-583 |#3|)) 75 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) 73 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) 72 (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) 55)) (-3619 (((-107) $) 58)) (-1746 (($) 57)) (-1449 ((|#3| $ (-517) (-517)) 42) ((|#3| $ (-517) (-517) |#3|) 40)) (-1516 (((-107) $) 52)) (-3217 (((-703) |#3| $) 70 (-12 (|has| |#3| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#3|) $) 67 (|has| $ (-6 -4180)))) (-2433 (($ $) 56)) (-3728 ((|#5| $ (-517)) 38)) (-2256 (((-787) $) 11)) (-3675 (((-107) (-1 (-107) |#3|) $) 65 (|has| $ (-6 -4180)))) (-1683 (((-107) $) 50)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#3|) 35 (|has| |#3| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2296 (((-703) $) 62 (|has| $ (-6 -4180)))))
+(((-964 |#1| |#2| |#3| |#4| |#5|) (-1184) (-703) (-703) (-961) (-212 |t#2| |t#3|) (-212 |t#1| |t#3|)) (T -964))
+((-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1516 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2818 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-1683 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))) (-2813 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1338 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1307 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-1486 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) (-1449 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-1377 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) (-1449 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) (-1939 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))) (-3728 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) (-2476 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) (-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) (-2468 (*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
+(-13 (-106 |t#3| |t#3|) (-456 |t#3|) (-10 -8 (-6 -4180) (IF (|has| |t#3| (-156)) (-6 (-650 |t#3|)) |noBranch|) (-15 -1840 ($ (-583 (-583 |t#3|)))) (-15 -3213 ((-107) $)) (-15 -1516 ((-107) $)) (-15 -2818 ((-107) $)) (-15 -1683 ((-107) $)) (-15 -2813 ((-517) $)) (-15 -2718 ((-517) $)) (-15 -1338 ((-517) $)) (-15 -1307 ((-517) $)) (-15 -1477 ((-703) $)) (-15 -1486 ((-703) $)) (-15 -3035 ((-583 (-583 |t#3|)) $)) (-15 -1449 (|t#3| $ (-517) (-517))) (-15 -1377 (|t#3| $ (-517) (-517))) (-15 -1449 (|t#3| $ (-517) (-517) |t#3|)) (-15 -1939 (|t#4| $ (-517))) (-15 -3728 (|t#5| $ (-517))) (-15 -1893 ($ (-1 |t#3| |t#3|) $)) (-15 -1893 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-509)) (-15 -2476 ((-3 $ "failed") $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-333)) (-15 -1667 ($ $ |t#3|)) |noBranch|) (IF (|has| |t#3| (-278)) (-15 -2468 ($ $)) |noBranch|) (IF (|has| |t#3| (-509)) (PROGN (-15 -2261 ((-703) $)) (-15 -1948 ((-703) $)) (-15 -3706 ((-583 |t#5|) $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-106 |#3| |#3|) . T) ((-123) . T) ((-557 (-787)) . T) ((-280 |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-456 |#3|) . T) ((-478 |#3| |#3|) -12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))) ((-585 |#3|) . T) ((-650 |#3|) |has| |#3| (-156)) ((-967 |#3|) . T) ((-1003) . T) ((-1108) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2818 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 40 (|has| |#3| (-278)))) (-1939 (((-214 |#2| |#3|) $ (-517)) 29)) (-4054 (($ (-623 |#3|)) 38)) (-2261 (((-703) $) 42 (|has| |#3| (-509)))) (-1377 ((|#3| $ (-517) (-517)) NIL)) (-1536 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-1948 (((-703) $) 44 (|has| |#3| (-509)))) (-3706 (((-583 (-214 |#1| |#3|)) $) 48 (|has| |#3| (-509)))) (-1477 (((-703) $) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#3|))) 24)) (-1433 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3035 (((-583 (-583 |#3|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-509)))) (-2048 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#3| $ (-517) (-517)) NIL) ((|#3| $ (-517) (-517) |#3|) NIL)) (-3141 (((-125)) 51 (|has| |#3| (-333)))) (-1516 (((-107) $) NIL)) (-3217 (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003)))) (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 60 (|has| |#3| (-558 (-493))))) (-3728 (((-214 |#1| |#3|) $ (-517)) 33)) (-2256 (((-787) $) 16) (((-623 |#3|) $) 35)) (-3675 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-2396 (($) 13 T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-965 |#1| |#2| |#3|) (-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1160 |#3|)) |noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (-15 -4054 ($ (-623 |#3|))) (-15 -2256 ((-623 |#3|) $)))) (-703) (-703) (-961)) (T -965))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) (-4054 (*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
+(-13 (-964 |#1| |#2| |#3| (-214 |#2| |#3|) (-214 |#1| |#3|)) (-557 (-623 |#3|)) (-10 -8 (IF (|has| |#3| (-333)) (-6 (-1160 |#3|)) |noBranch|) (IF (|has| |#3| (-558 (-493))) (-6 (-558 (-493))) |noBranch|) (-15 -4054 ($ (-623 |#3|))) (-15 -2256 ((-623 |#3|) $))))
+((-3225 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1893 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-966 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1893 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3225 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-703) (-703) (-961) (-212 |#2| |#3|) (-212 |#1| |#3|) (-964 |#1| |#2| |#3| |#4| |#5|) (-961) (-212 |#2| |#7|) (-212 |#1| |#7|) (-964 |#1| |#2| |#7| |#8| |#9|)) (T -966))
+((-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))))
+(-10 -7 (-15 -1893 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3225 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ |#1|) 23)))
+(((-967 |#1|) (-1184) (-968)) (T -967))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-968)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 26)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-965) (-1180)) (T -965))
-NIL
-(-13 (-21) (-1012))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-555 (-786)) . T) ((-1012) . T) ((-1001) . T))
-((-2805 (($ $) 16)) (-1453 (($ $) 22)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 49)) (-2626 (($ $) 24)) (-2801 (($ $) 11)) (-3383 (($ $) 38)) (-1248 (((-346) $) NIL) (((-199) $) NIL) (((-810 (-346)) $) 33)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL) (($ (-375 (-501))) 28) (($ (-501)) NIL) (($ (-375 (-501))) 28)) (-3965 (((-701)) 8)) (-2803 (($ $) 39)))
-(((-966 |#1|) (-10 -8 (-15 -1453 (|#1| |#1|)) (-15 -2805 (|#1| |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3383 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -3691 ((-786) |#1|))) (-967)) (T -966))
-((-3965 (*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-966 *3)) (-4 *3 (-967)))))
-(-10 -8 (-15 -1453 (|#1| |#1|)) (-15 -2805 (|#1| |#1|)) (-15 -2801 (|#1| |#1|)) (-15 -3383 (|#1| |#1|)) (-15 -2803 (|#1| |#1|)) (-15 -2626 (|#1| |#1|)) (-15 -3809 ((-808 (-346) |#1|) |#1| (-810 (-346)) (-808 (-346) |#1|))) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 -1248 ((-199) |#1|)) (-15 -1248 ((-346) |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3965 ((-701))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2197 (((-501) $) 98)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-2805 (($ $) 96)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-3743 (($ $) 106)) (-2781 (((-107) $ $) 59)) (-1417 (((-501) $) 123)) (-2540 (($) 17 T CONST)) (-1453 (($ $) 95)) (-3765 (((-3 (-501) "failed") $) 111) (((-3 (-375 (-501)) "failed") $) 108)) (-3490 (((-501) $) 110) (((-375 (-501)) $) 107)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-1628 (((-107) $) 71)) (-2164 (((-107) $) 121)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 102)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 105)) (-2626 (($ $) 101)) (-4067 (((-107) $) 122)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-4111 (($ $ $) 120)) (-1323 (($ $ $) 119)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-2801 (($ $) 97)) (-3383 (($ $) 99)) (-3739 (((-373 $) $) 74)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1248 (((-346) $) 114) (((-199) $) 113) (((-810 (-346)) $) 103)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ (-501)) 112) (($ (-375 (-501))) 109)) (-3965 (((-701)) 29)) (-2803 (($ $) 100)) (-2442 (((-107) $ $) 39)) (-1720 (($ $) 124)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3778 (((-107) $ $) 117)) (-3768 (((-107) $ $) 116)) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 118)) (-3762 (((-107) $ $) 115)) (-3803 (($ $ $) 64)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68) (($ $ (-375 (-501))) 104)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66)))
-(((-967) (-1180)) (T -967))
-((-1720 (*1 *1 *1) (-4 *1 (-967))) (-2626 (*1 *1 *1) (-4 *1 (-967))) (-2803 (*1 *1 *1) (-4 *1 (-967))) (-3383 (*1 *1 *1) (-4 *1 (-967))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-501)))) (-2801 (*1 *1 *1) (-4 *1 (-967))) (-2805 (*1 *1 *1) (-4 *1 (-967))) (-1453 (*1 *1 *1) (-4 *1 (-967))))
-(-13 (-331) (-775) (-933) (-950 (-501)) (-950 (-375 (-501))) (-916) (-556 (-810 (-346))) (-806 (-346)) (-134) (-10 -8 (-15 -2626 ($ $)) (-15 -2803 ($ $)) (-15 -3383 ($ $)) (-15 -2197 ((-501) $)) (-15 -2801 ($ $)) (-15 -2805 ($ $)) (-15 -1453 ($ $)) (-15 -1720 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-555 (-786)) . T) ((-156) . T) ((-556 (-199)) . T) ((-556 (-346)) . T) ((-556 (-810 (-346))) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 $) . T) ((-657) . T) ((-721) . T) ((-722) . T) ((-724) . T) ((-727) . T) ((-775) . T) ((-777) . T) ((-806 (-346)) . T) ((-841) . T) ((-916) . T) ((-933) . T) ((-950 (-375 (-501))) . T) ((-950 (-501)) . T) ((-964 (-375 (-501))) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) |#2| $) 23)) (-3796 ((|#1| $) 10)) (-1417 (((-501) |#2| $) 87)) (-2899 (((-3 $ "failed") |#2| (-839)) 57)) (-1320 ((|#1| $) 28)) (-2038 ((|#1| |#2| $ |#1|) 37)) (-3237 (($ $) 25)) (-2174 (((-3 |#2| "failed") |#2| $) 86)) (-2164 (((-107) |#2| $) NIL)) (-4067 (((-107) |#2| $) NIL)) (-3769 (((-107) |#2| $) 24)) (-2579 ((|#1| $) 88)) (-1313 ((|#1| $) 27)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2264 ((|#2| $) 78)) (-3691 (((-786) $) 70)) (-2391 ((|#1| |#2| $ |#1|) 38)) (-1250 (((-578 $) |#2|) 59)) (-3751 (((-107) $ $) 73)))
-(((-968 |#1| |#2|) (-13 (-974 |#1| |#2|) (-10 -8 (-15 -1313 (|#1| $)) (-15 -1320 (|#1| $)) (-15 -3796 (|#1| $)) (-15 -2579 (|#1| $)) (-15 -3237 ($ $)) (-15 -3769 ((-107) |#2| $)) (-15 -2038 (|#1| |#2| $ |#1|)))) (-13 (-775) (-331)) (-1125 |#1|)) (T -968))
-((-2038 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-1313 (*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-1320 (*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-3796 (*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-2579 (*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-3237 (*1 *1 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) (-3769 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-775) (-331))) (-5 *2 (-107)) (-5 *1 (-968 *4 *3)) (-4 *3 (-1125 *4)))))
-(-13 (-974 |#1| |#2|) (-10 -8 (-15 -1313 (|#1| $)) (-15 -1320 (|#1| $)) (-15 -3796 (|#1| $)) (-15 -2579 (|#1| $)) (-15 -3237 ($ $)) (-15 -3769 ((-107) |#2| $)) (-15 -2038 (|#1| |#2| $ |#1|))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2619 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) NIL)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-1525 (($ $ $) NIL)) (-2540 (($) NIL T CONST)) (-3804 (($ (-1070)) 10) (($ (-501)) 7)) (-3765 (((-3 (-501) "failed") $) NIL)) (-3490 (((-501) $) NIL)) (-3023 (($ $ $) NIL)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-621 (-501)) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL)) (-1696 (((-107) $) NIL)) (-3518 (((-375 (-501)) $) NIL)) (-2890 (($) NIL) (($ $) NIL)) (-3034 (($ $ $) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3185 (($ $ $ $) NIL)) (-2002 (($ $ $) NIL)) (-2164 (((-107) $) NIL)) (-2940 (($ $ $) NIL)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL)) (-1355 (((-107) $) NIL)) (-3729 (((-107) $) NIL)) (-3493 (((-3 $ "failed") $) NIL)) (-4067 (((-107) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4124 (($ $ $ $) NIL)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-4100 (($ $) NIL)) (-4139 (($ $) NIL)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3437 (($ $ $) NIL)) (-3746 (($) NIL T CONST)) (-2170 (($ $) NIL)) (-3708 (((-1018) $) NIL) (($ $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3260 (($ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-2565 (($ $) NIL)) (-3764 (($ $) NIL)) (-1248 (((-501) $) 16) (((-490) $) NIL) (((-810 (-501)) $) NIL) (((-346) $) NIL) (((-199) $) NIL) (($ (-1070)) 9)) (-3691 (((-786) $) 20) (($ (-501)) 6) (($ $) NIL) (($ (-501)) 6)) (-3965 (((-701)) NIL)) (-1808 (((-107) $ $) NIL)) (-1299 (($ $ $) NIL)) (-1965 (($) NIL)) (-2442 (((-107) $ $) NIL)) (-3429 (($ $ $ $) NIL)) (-1720 (($ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) NIL)) (-3797 (($ $) 19) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL)))
-(((-969) (-13 (-500) (-10 -8 (-6 -4154) (-6 -4159) (-6 -4155) (-15 -1248 ($ (-1070))) (-15 -3804 ($ (-1070))) (-15 -3804 ($ (-501)))))) (T -969))
-((-1248 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-969)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-969)))) (-3804 (*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-969)))))
-(-13 (-500) (-10 -8 (-6 -4154) (-6 -4159) (-6 -4155) (-15 -1248 ($ (-1070))) (-15 -3804 ($ (-1070))) (-15 -3804 ($ (-501)))))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-1991 (((-1154) $ (-1070) (-1070)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3953 (($) 9)) (-3754 (((-50) $ (-1070) (-50)) NIL)) (-3750 (($ $) 23)) (-2039 (($ $) 21)) (-4112 (($ $) 20)) (-2793 (($ $) 22)) (-1868 (($ $) 25)) (-3363 (($ $) 26)) (-2183 (($ $) 19)) (-1332 (($ $) 24)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) 18 (|has| $ (-6 -4167)))) (-4019 (((-3 (-50) "failed") (-1070) $) 34)) (-2540 (($) NIL T CONST)) (-3692 (($) 7)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-2256 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) 46 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-3 (-50) "failed") (-1070) $) NIL)) (-1526 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167)))) (-3658 (((-3 (-1053) "failed") $ (-1053) (-501)) 59)) (-2156 (((-50) $ (-1070) (-50)) NIL (|has| $ (-6 -4168)))) (-1905 (((-50) $ (-1070)) NIL)) (-2732 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1070) $) NIL (|has| (-1070) (-777)))) (-3380 (((-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) 28 (|has| $ (-6 -4167))) (((-578 (-50)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-1522 (((-1070) $) NIL (|has| (-1070) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4168))) (($ (-1 (-50) (-50)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL) (($ (-1 (-50) (-50)) $) NIL) (($ (-1 (-50) (-50) (-50)) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-1500 (((-578 (-1070)) $) NIL)) (-3576 (((-107) (-1070) $) NIL)) (-1328 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) 37)) (-2658 (((-578 (-1070)) $) NIL)) (-2852 (((-107) (-1070) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-2695 (((-346) $ (-1070)) 45)) (-4145 (((-578 (-1053)) $ (-1053)) 60)) (-1190 (((-50) $) NIL (|has| (-1070) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) "failed") (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL)) (-3084 (($ $ (-50)) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL (-12 (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-278 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (($ $ (-578 (-50)) (-578 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-50) (-50)) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-262 (-50))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001)))) (($ $ (-578 (-262 (-50)))) NIL (-12 (|has| (-50) (-278 (-50))) (|has| (-50) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001))))) (-4137 (((-578 (-50)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (((-50) $ (-1070)) NIL) (((-50) $ (-1070) (-50)) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-3879 (($ $ (-1070)) 47)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001)))) (((-701) (-50) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-50) (-1001)))) (((-701) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) 30)) (-3934 (($ $ $) 31)) (-3691 (((-786) $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-1231 (($ $ (-1070) (-346)) 43)) (-2556 (($ $ (-1070) (-346)) 44)) (-2866 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 (-1070)) (|:| -2922 (-50)))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) (-50)) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-50) (-1001)) (|has| (-2 (|:| -3626 (-1070)) (|:| -2922 (-50))) (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-970) (-13 (-1081 (-1070) (-50)) (-10 -8 (-15 -3934 ($ $ $)) (-15 -3692 ($)) (-15 -2183 ($ $)) (-15 -4112 ($ $)) (-15 -2039 ($ $)) (-15 -2793 ($ $)) (-15 -1332 ($ $)) (-15 -3750 ($ $)) (-15 -1868 ($ $)) (-15 -3363 ($ $)) (-15 -1231 ($ $ (-1070) (-346))) (-15 -2556 ($ $ (-1070) (-346))) (-15 -2695 ((-346) $ (-1070))) (-15 -4145 ((-578 (-1053)) $ (-1053))) (-15 -3879 ($ $ (-1070))) (-15 -3953 ($)) (-15 -3658 ((-3 (-1053) "failed") $ (-1053) (-501))) (-6 -4167)))) (T -970))
-((-3934 (*1 *1 *1 *1) (-5 *1 (-970))) (-3692 (*1 *1) (-5 *1 (-970))) (-2183 (*1 *1 *1) (-5 *1 (-970))) (-4112 (*1 *1 *1) (-5 *1 (-970))) (-2039 (*1 *1 *1) (-5 *1 (-970))) (-2793 (*1 *1 *1) (-5 *1 (-970))) (-1332 (*1 *1 *1) (-5 *1 (-970))) (-3750 (*1 *1 *1) (-5 *1 (-970))) (-1868 (*1 *1 *1) (-5 *1 (-970))) (-3363 (*1 *1 *1) (-5 *1 (-970))) (-1231 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-346)) (-5 *1 (-970)))) (-2556 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-346)) (-5 *1 (-970)))) (-2695 (*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-346)) (-5 *1 (-970)))) (-4145 (*1 *2 *1 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-970)) (-5 *3 (-1053)))) (-3879 (*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-970)))) (-3953 (*1 *1) (-5 *1 (-970))) (-3658 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-970)))))
-(-13 (-1081 (-1070) (-50)) (-10 -8 (-15 -3934 ($ $ $)) (-15 -3692 ($)) (-15 -2183 ($ $)) (-15 -4112 ($ $)) (-15 -2039 ($ $)) (-15 -2793 ($ $)) (-15 -1332 ($ $)) (-15 -3750 ($ $)) (-15 -1868 ($ $)) (-15 -3363 ($ $)) (-15 -1231 ($ $ (-1070) (-346))) (-15 -2556 ($ $ (-1070) (-346))) (-15 -2695 ((-346) $ (-1070))) (-15 -4145 ((-578 (-1053)) $ (-1053))) (-15 -3879 ($ $ (-1070))) (-15 -3953 ($)) (-15 -3658 ((-3 (-1053) "failed") $ (-1053) (-501))) (-6 -4167)))
-((-1511 (($ $) 45)) (-1441 (((-107) $ $) 74)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-866 (-375 (-501)))) 226) (((-3 $ "failed") (-866 (-501))) 225) (((-3 $ "failed") (-866 |#2|)) 228)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL) (((-501) $) NIL) ((|#4| $) NIL) (($ (-866 (-375 (-501)))) 214) (($ (-866 (-501))) 210) (($ (-866 |#2|)) 230)) (-3858 (($ $) NIL) (($ $ |#4|) 43)) (-2130 (((-107) $ $) 111) (((-107) $ (-578 $)) 112)) (-3132 (((-107) $) 56)) (-2352 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 106)) (-3182 (($ $) 137)) (-2611 (($ $) 133)) (-3855 (($ $) 132)) (-3090 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1936 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1964 (((-107) $ $) 120) (((-107) $ (-578 $)) 121)) (-2361 ((|#4| $) 33)) (-1955 (($ $ $) 109)) (-1257 (((-107) $) 55)) (-2595 (((-701) $) 35)) (-2538 (($ $) 151)) (-1493 (($ $) 148)) (-3723 (((-578 $) $) 68)) (-2682 (($ $) 57)) (-3894 (($ $) 144)) (-2274 (((-578 $) $) 65)) (-3154 (($ $) 59)) (-3850 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2939 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2735 (-701))) $ $) 110)) (-3276 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $) 107) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $ |#4|) 108)) (-2226 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $) 103) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $ |#4|) 104)) (-1782 (($ $ $) 89) (($ $ $ |#4|) 94)) (-3303 (($ $ $) 90) (($ $ $ |#4|) 95)) (-2329 (((-578 $) $) 51)) (-1590 (((-107) $ $) 117) (((-107) $ (-578 $)) 118)) (-1762 (($ $ $) 102)) (-3746 (($ $) 37)) (-3523 (((-107) $ $) 72)) (-2667 (((-107) $ $) 113) (((-107) $ (-578 $)) 115)) (-3618 (($ $ $) 100)) (-1657 (($ $) 40)) (-3664 ((|#2| |#2| $) 141) (($ (-578 $)) NIL) (($ $ $) NIL)) (-1785 (($ $ |#2|) NIL) (($ $ $) 130)) (-3982 (($ $ |#2|) 125) (($ $ $) 128)) (-2295 (($ $) 48)) (-1673 (($ $) 52)) (-1248 (((-810 (-346)) $) NIL) (((-810 (-501)) $) NIL) (((-490) $) NIL) (($ (-866 (-375 (-501)))) 216) (($ (-866 (-501))) 212) (($ (-866 |#2|)) 227) (((-1053) $) 249) (((-866 |#2|) $) 161)) (-3691 (((-786) $) 30) (($ (-501)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-866 |#2|) $) 162) (($ (-375 (-501))) NIL) (($ $) NIL)) (-1814 (((-3 (-107) "failed") $ $) 71)))
-(((-971 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 ((-866 |#2|) |#1|)) (-15 -1248 ((-866 |#2|) |#1|)) (-15 -1248 ((-1053) |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -3664 (|#2| |#2| |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3982 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| |#2|)) (-15 -3982 (|#1| |#1| |#2|)) (-15 -2611 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -1248 (|#1| (-866 |#2|))) (-15 -3490 (|#1| (-866 |#2|))) (-15 -3765 ((-3 |#1| "failed") (-866 |#2|))) (-15 -1248 (|#1| (-866 (-501)))) (-15 -3490 (|#1| (-866 (-501)))) (-15 -3765 ((-3 |#1| "failed") (-866 (-501)))) (-15 -1248 (|#1| (-866 (-375 (-501))))) (-15 -3490 (|#1| (-866 (-375 (-501))))) (-15 -3765 ((-3 |#1| "failed") (-866 (-375 (-501))))) (-15 -1762 (|#1| |#1| |#1|)) (-15 -3618 (|#1| |#1| |#1|)) (-15 -2939 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2735 (-701))) |#1| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 -2352 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -2226 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -2226 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3303 (|#1| |#1| |#1| |#4|)) (-15 -1782 (|#1| |#1| |#1| |#4|)) (-15 -3303 (|#1| |#1| |#1|)) (-15 -1782 (|#1| |#1| |#1|)) (-15 -1936 (|#1| |#1| |#1| |#4|)) (-15 -3090 (|#1| |#1| |#1| |#4|)) (-15 -1936 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -1964 ((-107) |#1| (-578 |#1|))) (-15 -1964 ((-107) |#1| |#1|)) (-15 -1590 ((-107) |#1| (-578 |#1|))) (-15 -1590 ((-107) |#1| |#1|)) (-15 -2667 ((-107) |#1| (-578 |#1|))) (-15 -2667 ((-107) |#1| |#1|)) (-15 -2130 ((-107) |#1| (-578 |#1|))) (-15 -2130 ((-107) |#1| |#1|)) (-15 -1441 ((-107) |#1| |#1|)) (-15 -3523 ((-107) |#1| |#1|)) (-15 -1814 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3723 ((-578 |#1|) |#1|)) (-15 -2274 ((-578 |#1|) |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -3132 ((-107) |#1|)) (-15 -1257 ((-107) |#1|)) (-15 -3858 (|#1| |#1| |#4|)) (-15 -3850 (|#1| |#1| |#4|)) (-15 -1673 (|#1| |#1|)) (-15 -2329 ((-578 |#1|) |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2595 ((-701) |#1|)) (-15 -2361 (|#4| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3490 (|#4| |#1|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3691 (|#1| |#4|)) (-15 -3850 (|#2| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-972 |#2| |#3| |#4|) (-959) (-723) (-777)) (T -971))
-NIL
-(-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3664 (|#1| |#1| |#1|)) (-15 -3664 (|#1| (-578 |#1|))) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 ((-866 |#2|) |#1|)) (-15 -1248 ((-866 |#2|) |#1|)) (-15 -1248 ((-1053) |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -1493 (|#1| |#1|)) (-15 -3894 (|#1| |#1|)) (-15 -3182 (|#1| |#1|)) (-15 -3664 (|#2| |#2| |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3982 (|#1| |#1| |#1|)) (-15 -1785 (|#1| |#1| |#2|)) (-15 -3982 (|#1| |#1| |#2|)) (-15 -2611 (|#1| |#1|)) (-15 -3855 (|#1| |#1|)) (-15 -1248 (|#1| (-866 |#2|))) (-15 -3490 (|#1| (-866 |#2|))) (-15 -3765 ((-3 |#1| "failed") (-866 |#2|))) (-15 -1248 (|#1| (-866 (-501)))) (-15 -3490 (|#1| (-866 (-501)))) (-15 -3765 ((-3 |#1| "failed") (-866 (-501)))) (-15 -1248 (|#1| (-866 (-375 (-501))))) (-15 -3490 (|#1| (-866 (-375 (-501))))) (-15 -3765 ((-3 |#1| "failed") (-866 (-375 (-501))))) (-15 -1762 (|#1| |#1| |#1|)) (-15 -3618 (|#1| |#1| |#1|)) (-15 -2939 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -2735 (-701))) |#1| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 -2352 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -3276 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -2226 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -1852 |#1|)) |#1| |#1| |#4|)) (-15 -2226 ((-2 (|:| -3189 |#1|) (|:| |gap| (-701)) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3303 (|#1| |#1| |#1| |#4|)) (-15 -1782 (|#1| |#1| |#1| |#4|)) (-15 -3303 (|#1| |#1| |#1|)) (-15 -1782 (|#1| |#1| |#1|)) (-15 -1936 (|#1| |#1| |#1| |#4|)) (-15 -3090 (|#1| |#1| |#1| |#4|)) (-15 -1936 (|#1| |#1| |#1|)) (-15 -3090 (|#1| |#1| |#1|)) (-15 -1964 ((-107) |#1| (-578 |#1|))) (-15 -1964 ((-107) |#1| |#1|)) (-15 -1590 ((-107) |#1| (-578 |#1|))) (-15 -1590 ((-107) |#1| |#1|)) (-15 -2667 ((-107) |#1| (-578 |#1|))) (-15 -2667 ((-107) |#1| |#1|)) (-15 -2130 ((-107) |#1| (-578 |#1|))) (-15 -2130 ((-107) |#1| |#1|)) (-15 -1441 ((-107) |#1| |#1|)) (-15 -3523 ((-107) |#1| |#1|)) (-15 -1814 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3723 ((-578 |#1|) |#1|)) (-15 -2274 ((-578 |#1|) |#1|)) (-15 -3154 (|#1| |#1|)) (-15 -2682 (|#1| |#1|)) (-15 -3132 ((-107) |#1|)) (-15 -1257 ((-107) |#1|)) (-15 -3858 (|#1| |#1| |#4|)) (-15 -3850 (|#1| |#1| |#4|)) (-15 -1673 (|#1| |#1|)) (-15 -2329 ((-578 |#1|) |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1657 (|#1| |#1|)) (-15 -3746 (|#1| |#1|)) (-15 -2595 ((-701) |#1|)) (-15 -2361 (|#4| |#1|)) (-15 -1248 ((-490) |#1|)) (-15 -1248 ((-810 (-501)) |#1|)) (-15 -1248 ((-810 (-346)) |#1|)) (-15 -3490 (|#4| |#1|)) (-15 -3765 ((-3 |#4| "failed") |#1|)) (-15 -3691 (|#1| |#4|)) (-15 -3850 (|#2| |#1|)) (-15 -3858 (|#1| |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 |#3|) $) 110)) (-3728 (((-1064 $) $ |#3|) 125) (((-1064 |#1|) $) 124)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 87 (|has| |#1| (-508)))) (-2865 (($ $) 88 (|has| |#1| (-508)))) (-1639 (((-107) $) 90 (|has| |#1| (-508)))) (-1699 (((-701) $) 112) (((-701) $ (-578 |#3|)) 111)) (-1511 (($ $) 271)) (-1441 (((-107) $ $) 257)) (-3177 (((-3 $ "failed") $ $) 19)) (-1855 (($ $ $) 216 (|has| |#1| (-508)))) (-3936 (((-578 $) $ $) 211 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) 100 (|has| |#1| (-830)))) (-3676 (($ $) 98 (|has| |#1| (-419)))) (-1559 (((-373 $) $) 97 (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 103 (|has| |#1| (-830)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 164) (((-3 (-375 (-501)) "failed") $) 162 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 160 (|has| |#1| (-950 (-501)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-866 (-375 (-501)))) 231 (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))) (((-3 $ "failed") (-866 (-501))) 228 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070)))))) (((-3 $ "failed") (-866 |#1|)) 225 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-37 (-501)))) (|has| |#3| (-556 (-1070)))) (-12 (-3031 (|has| |#1| (-500))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (-3031 (|has| |#1| (-906 (-501)))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))))) (-3490 ((|#1| $) 165) (((-375 (-501)) $) 161 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 159 (|has| |#1| (-950 (-501)))) ((|#3| $) 135) (($ (-866 (-375 (-501)))) 230 (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))) (($ (-866 (-501))) 227 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070)))))) (($ (-866 |#1|)) 224 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (-3031 (|has| |#1| (-37 (-501)))) (|has| |#3| (-556 (-1070)))) (-12 (-3031 (|has| |#1| (-500))) (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (-3031 (|has| |#1| (-906 (-501)))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))))) (-1749 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-508)))) (-3858 (($ $) 154) (($ $ |#3|) 266)) (-3868 (((-621 (-501)) (-621 $)) 134 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 133 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 132) (((-621 |#1|) (-621 $)) 131)) (-2130 (((-107) $ $) 256) (((-107) $ (-578 $)) 255)) (-2174 (((-3 $ "failed") $) 34)) (-3132 (((-107) $) 264)) (-2352 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 236)) (-3182 (($ $) 205 (|has| |#1| (-419)))) (-3533 (($ $) 176 (|has| |#1| (-419))) (($ $ |#3|) 105 (|has| |#1| (-419)))) (-3854 (((-578 $) $) 109)) (-1628 (((-107) $) 96 (|has| |#1| (-830)))) (-2611 (($ $) 221 (|has| |#1| (-508)))) (-3855 (($ $) 222 (|has| |#1| (-508)))) (-3090 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1936 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3503 (($ $ |#1| |#2| $) 172)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 84 (-12 (|has| |#3| (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 83 (-12 (|has| |#3| (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 169)) (-1964 (((-107) $ $) 250) (((-107) $ (-578 $)) 249)) (-4014 (($ $ $ $ $) 207 (|has| |#1| (-508)))) (-2361 ((|#3| $) 275)) (-3794 (($ (-1064 |#1|) |#3|) 117) (($ (-1064 $) |#3|) 116)) (-2713 (((-578 $) $) 126)) (-2706 (((-107) $) 152)) (-3787 (($ |#1| |#2|) 153) (($ $ |#3| (-701)) 119) (($ $ (-578 |#3|) (-578 (-701))) 118)) (-1955 (($ $ $) 235)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) 120)) (-1257 (((-107) $) 265)) (-2285 ((|#2| $) 170) (((-701) $ |#3|) 122) (((-578 (-701)) $ (-578 |#3|)) 121)) (-4111 (($ $ $) 79 (|has| |#1| (-777)))) (-2595 (((-701) $) 274)) (-1323 (($ $ $) 78 (|has| |#1| (-777)))) (-3515 (($ (-1 |#2| |#2|) $) 171)) (-1212 (($ (-1 |#1| |#1|) $) 151)) (-2752 (((-3 |#3| "failed") $) 123)) (-2538 (($ $) 202 (|has| |#1| (-419)))) (-1493 (($ $) 203 (|has| |#1| (-419)))) (-3723 (((-578 $) $) 260)) (-2682 (($ $) 263)) (-3894 (($ $) 204 (|has| |#1| (-419)))) (-2274 (((-578 $) $) 261)) (-3154 (($ $) 262)) (-3845 (($ $) 149)) (-3850 ((|#1| $) 148) (($ $ |#3|) 267)) (-1697 (($ (-578 $)) 94 (|has| |#1| (-419))) (($ $ $) 93 (|has| |#1| (-419)))) (-2939 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2735 (-701))) $ $) 234)) (-3276 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $) 238) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $ |#3|) 237)) (-2226 (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $) 240) (((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $ |#3|) 239)) (-1782 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3303 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3460 (((-1053) $) 9)) (-2019 (($ $ $) 210 (|has| |#1| (-508)))) (-2329 (((-578 $) $) 269)) (-2948 (((-3 (-578 $) "failed") $) 114)) (-1285 (((-3 (-578 $) "failed") $) 115)) (-2551 (((-3 (-2 (|:| |var| |#3|) (|:| -3027 (-701))) "failed") $) 113)) (-1590 (((-107) $ $) 252) (((-107) $ (-578 $)) 251)) (-1762 (($ $ $) 232)) (-3746 (($ $) 273)) (-3523 (((-107) $ $) 258)) (-2667 (((-107) $ $) 254) (((-107) $ (-578 $)) 253)) (-3618 (($ $ $) 233)) (-1657 (($ $) 272)) (-3708 (((-1018) $) 10)) (-1784 (((-2 (|:| -3664 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-508)))) (-1729 (((-2 (|:| -3664 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-508)))) (-3837 (((-107) $) 166)) (-3841 ((|#1| $) 167)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 95 (|has| |#1| (-419)))) (-3664 ((|#1| |#1| $) 206 (|has| |#1| (-419))) (($ (-578 $)) 92 (|has| |#1| (-419))) (($ $ $) 91 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 102 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 101 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 99 (|has| |#1| (-830)))) (-3095 (((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-508)))) (-3694 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-508)))) (-1785 (($ $ |#1|) 219 (|has| |#1| (-508))) (($ $ $) 217 (|has| |#1| (-508)))) (-3982 (($ $ |#1|) 220 (|has| |#1| (-508))) (($ $ $) 218 (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) 145) (($ $ (-262 $)) 144) (($ $ $ $) 143) (($ $ (-578 $) (-578 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-578 |#3|) (-578 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-578 |#3|) (-578 $)) 138)) (-2532 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-2596 (($ $ |#3|) 42) (($ $ (-578 |#3|)) 41) (($ $ |#3| (-701)) 40) (($ $ (-578 |#3|) (-578 (-701))) 39)) (-1201 ((|#2| $) 150) (((-701) $ |#3|) 130) (((-578 (-701)) $ (-578 |#3|)) 129)) (-2295 (($ $) 270)) (-1673 (($ $) 268)) (-1248 (((-810 (-346)) $) 82 (-12 (|has| |#3| (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) 81 (-12 (|has| |#3| (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) 80 (-12 (|has| |#3| (-556 (-490))) (|has| |#1| (-556 (-490))))) (($ (-866 (-375 (-501)))) 229 (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070))))) (($ (-866 (-501))) 226 (-1405 (-12 (-3031 (|has| |#1| (-37 (-375 (-501))))) (|has| |#1| (-37 (-501))) (|has| |#3| (-556 (-1070)))) (-12 (|has| |#1| (-37 (-375 (-501)))) (|has| |#3| (-556 (-1070)))))) (($ (-866 |#1|)) 223 (|has| |#3| (-556 (-1070)))) (((-1053) $) 201 (-12 (|has| |#1| (-950 (-501))) (|has| |#3| (-556 (-1070))))) (((-866 |#1|) $) 200 (|has| |#3| (-556 (-1070))))) (-1734 ((|#1| $) 175 (|has| |#1| (-419))) (($ $ |#3|) 106 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 104 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-866 |#1|) $) 199 (|has| |#3| (-556 (-1070)))) (($ (-375 (-501))) 72 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501)))))) (($ $) 85 (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) 168)) (-2495 ((|#1| $ |#2|) 155) (($ $ |#3| (-701)) 128) (($ $ (-578 |#3|) (-578 (-701))) 127)) (-1274 (((-3 $ "failed") $) 73 (-1405 (-1280 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 173 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 89 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1814 (((-3 (-107) "failed") $ $) 259)) (-1925 (($) 30 T CONST)) (-3158 (($ $ $ $ (-701)) 208 (|has| |#1| (-508)))) (-1851 (($ $ $ (-701)) 209 (|has| |#1| (-508)))) (-3584 (($ $ |#3|) 38) (($ $ (-578 |#3|)) 37) (($ $ |#3| (-701)) 36) (($ $ (-578 |#3|) (-578 (-701))) 35)) (-3778 (((-107) $ $) 76 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 75 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 77 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 74 (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 156 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 158 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 157 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-972 |#1| |#2| |#3|) (-1180) (-959) (-723) (-777)) (T -972))
-((-2361 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-2595 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-701)))) (-3746 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1657 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1511 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-2295 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-2329 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))) (-1673 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3850 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-3858 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-1257 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-3132 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-2682 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3154 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-2274 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))) (-3723 (*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))) (-1814 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-3523 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-1441 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-2130 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-2130 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) (-2667 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-2667 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) (-1590 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-1590 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) (-1964 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) (-1964 (*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) (-3090 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1936 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3090 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-1936 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-1782 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3303 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1782 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-3303 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) (-2226 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))) (-2226 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -1852 *1))) (-4 *1 (-972 *4 *5 *3)))) (-3276 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))) (-3276 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *4 *5 *3)))) (-2352 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))) (-1955 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-2939 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2735 (-701)))) (-4 *1 (-972 *3 *4 *5)))) (-3618 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-1762 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) (-3765 (*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))) (-3490 (*1 *1 *2) (-12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))) (-3765 (*1 *1 *2) (|partial| -1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) (-3490 (*1 *1 *2) (-1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) (-1248 (*1 *1 *2) (-1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) (-3765 (*1 *1 *2) (|partial| -1405 (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-3031 (-4 *3 (-37 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-500))) (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-906 (-501)))) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))))) (-3490 (*1 *1 *2) (-1405 (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-3031 (-4 *3 (-37 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-500))) (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-906 (-501)))) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *5 (-556 (-1070))) (-4 *4 (-723)) (-4 *5 (-777)))) (-3855 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-2611 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3982 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-1785 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3982 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-1785 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-1855 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3095 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-972 *3 *4 *5)))) (-1729 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef1| *1))) (-4 *1 (-972 *3 *4 *5)))) (-1784 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef2| *1))) (-4 *1 (-972 *3 *4 *5)))) (-1749 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3936 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))) (-2019 (*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-1851 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *3 (-508)))) (-3158 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *3 (-508)))) (-4014 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) (-3664 (*1 *2 *2 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-3182 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-3894 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-1493 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) (-2538 (*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))))
-(-13 (-870 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2361 (|t#3| $)) (-15 -2595 ((-701) $)) (-15 -3746 ($ $)) (-15 -1657 ($ $)) (-15 -1511 ($ $)) (-15 -2295 ($ $)) (-15 -2329 ((-578 $) $)) (-15 -1673 ($ $)) (-15 -3850 ($ $ |t#3|)) (-15 -3858 ($ $ |t#3|)) (-15 -1257 ((-107) $)) (-15 -3132 ((-107) $)) (-15 -2682 ($ $)) (-15 -3154 ($ $)) (-15 -2274 ((-578 $) $)) (-15 -3723 ((-578 $) $)) (-15 -1814 ((-3 (-107) "failed") $ $)) (-15 -3523 ((-107) $ $)) (-15 -1441 ((-107) $ $)) (-15 -2130 ((-107) $ $)) (-15 -2130 ((-107) $ (-578 $))) (-15 -2667 ((-107) $ $)) (-15 -2667 ((-107) $ (-578 $))) (-15 -1590 ((-107) $ $)) (-15 -1590 ((-107) $ (-578 $))) (-15 -1964 ((-107) $ $)) (-15 -1964 ((-107) $ (-578 $))) (-15 -3090 ($ $ $)) (-15 -1936 ($ $ $)) (-15 -3090 ($ $ $ |t#3|)) (-15 -1936 ($ $ $ |t#3|)) (-15 -1782 ($ $ $)) (-15 -3303 ($ $ $)) (-15 -1782 ($ $ $ |t#3|)) (-15 -3303 ($ $ $ |t#3|)) (-15 -2226 ((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $)) (-15 -2226 ((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -1852 $)) $ $ |t#3|)) (-15 -3276 ((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3276 ((-2 (|:| -3189 $) (|:| |gap| (-701)) (|:| -3236 $) (|:| -1852 $)) $ $ |t#3|)) (-15 -2352 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -1955 ($ $ $)) (-15 -2939 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -2735 (-701))) $ $)) (-15 -3618 ($ $ $)) (-15 -1762 ($ $ $)) (IF (|has| |t#3| (-556 (-1070))) (PROGN (-6 (-555 (-866 |t#1|))) (-6 (-556 (-866 |t#1|))) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3765 ((-3 $ "failed") (-866 (-375 (-501))))) (-15 -3490 ($ (-866 (-375 (-501))))) (-15 -1248 ($ (-866 (-375 (-501))))) (-15 -3765 ((-3 $ "failed") (-866 (-501)))) (-15 -3490 ($ (-866 (-501)))) (-15 -1248 ($ (-866 (-501)))) (IF (|has| |t#1| (-906 (-501))) |noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-866 |t#1|))) (-15 -3490 ($ (-866 |t#1|)))))) |noBranch|) (IF (|has| |t#1| (-37 (-501))) (IF (|has| |t#1| (-37 (-375 (-501)))) |noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-866 (-501)))) (-15 -3490 ($ (-866 (-501)))) (-15 -1248 ($ (-866 (-501)))) (IF (|has| |t#1| (-500)) |noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-866 |t#1|))) (-15 -3490 ($ (-866 |t#1|))))))) |noBranch|) (IF (|has| |t#1| (-37 (-501))) |noBranch| (IF (|has| |t#1| (-37 (-375 (-501)))) |noBranch| (PROGN (-15 -3765 ((-3 $ "failed") (-866 |t#1|))) (-15 -3490 ($ (-866 |t#1|)))))) (-15 -1248 ($ (-866 |t#1|))) (IF (|has| |t#1| (-950 (-501))) (-6 (-556 (-1053))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-15 -3855 ($ $)) (-15 -2611 ($ $)) (-15 -3982 ($ $ |t#1|)) (-15 -1785 ($ $ |t#1|)) (-15 -3982 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1855 ($ $ $)) (-15 -3095 ((-2 (|:| -3664 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1729 ((-2 (|:| -3664 $) (|:| |coef1| $)) $ $)) (-15 -1784 ((-2 (|:| -3664 $) (|:| |coef2| $)) $ $)) (-15 -1749 ($ $ $)) (-15 -3936 ((-578 $) $ $)) (-15 -2019 ($ $ $)) (-15 -1851 ($ $ $ (-701))) (-15 -3158 ($ $ $ $ (-701))) (-15 -4014 ($ $ $ $ $))) |noBranch|) (IF (|has| |t#1| (-419)) (PROGN (-15 -3664 (|t#1| |t#1| $)) (-15 -3182 ($ $)) (-15 -3894 ($ $)) (-15 -1493 ($ $)) (-15 -2538 ($ $))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-555 (-866 |#1|)) |has| |#3| (-556 (-1070))) ((-156) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-556 (-490)) -12 (|has| |#1| (-556 (-490))) (|has| |#3| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#3| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#3| (-556 (-810 (-501))))) ((-556 (-866 |#1|)) |has| |#3| (-556 (-1070))) ((-556 (-1053)) -12 (|has| |#1| (-950 (-501))) (|has| |#3| (-556 (-1070)))) ((-260) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-278 $) . T) ((-294 |#1| |#2|) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-830)) (|has| |#1| (-419))) ((-476 |#3| |#1|) . T) ((-476 |#3| $) . T) ((-476 $ $) . T) ((-508) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419))) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 |#3|) . T) ((-806 (-346)) -12 (|has| |#1| (-806 (-346))) (|has| |#3| (-806 (-346)))) ((-806 (-501)) -12 (|has| |#1| (-806 (-501))) (|has| |#3| (-806 (-501)))) ((-870 |#1| |#2| |#3|) . T) ((-830) |has| |#1| (-830)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 |#1|) . T) ((-950 |#3|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) |has| |#1| (-830)))
-((-3292 (((-107) |#3| $) 13)) (-2899 (((-3 $ "failed") |#3| (-839)) 23)) (-2174 (((-3 |#3| "failed") |#3| $) 37)) (-2164 (((-107) |#3| $) 16)) (-4067 (((-107) |#3| $) 14)))
-(((-973 |#1| |#2| |#3|) (-10 -8 (-15 -2899 ((-3 |#1| "failed") |#3| (-839))) (-15 -2174 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2164 ((-107) |#3| |#1|)) (-15 -4067 ((-107) |#3| |#1|)) (-15 -3292 ((-107) |#3| |#1|))) (-974 |#2| |#3|) (-13 (-775) (-331)) (-1125 |#2|)) (T -973))
-NIL
-(-10 -8 (-15 -2899 ((-3 |#1| "failed") |#3| (-839))) (-15 -2174 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2164 ((-107) |#3| |#1|)) (-15 -4067 ((-107) |#3| |#1|)) (-15 -3292 ((-107) |#3| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) |#2| $) 21)) (-1417 (((-501) |#2| $) 22)) (-2899 (((-3 $ "failed") |#2| (-839)) 15)) (-2038 ((|#1| |#2| $ |#1|) 13)) (-2174 (((-3 |#2| "failed") |#2| $) 18)) (-2164 (((-107) |#2| $) 19)) (-4067 (((-107) |#2| $) 20)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2264 ((|#2| $) 17)) (-3691 (((-786) $) 11)) (-2391 ((|#1| |#2| $ |#1|) 14)) (-1250 (((-578 $) |#2|) 16)) (-3751 (((-107) $ $) 6)))
-(((-974 |#1| |#2|) (-1180) (-13 (-775) (-331)) (-1125 |t#1|)) (T -974))
-((-1417 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-501)))) (-3292 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107)))) (-4067 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107)))) (-2164 (*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107)))) (-2174 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-775) (-331))) (-4 *2 (-1125 *3)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-775) (-331))) (-4 *2 (-1125 *3)))) (-1250 (*1 *2 *3) (-12 (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-578 *1)) (-4 *1 (-974 *4 *3)))) (-2899 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-839)) (-4 *4 (-13 (-775) (-331))) (-4 *1 (-974 *4 *2)) (-4 *2 (-1125 *4)))) (-2391 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-775) (-331))) (-4 *3 (-1125 *2)))) (-2038 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-775) (-331))) (-4 *3 (-1125 *2)))))
-(-13 (-1001) (-10 -8 (-15 -1417 ((-501) |t#2| $)) (-15 -3292 ((-107) |t#2| $)) (-15 -4067 ((-107) |t#2| $)) (-15 -2164 ((-107) |t#2| $)) (-15 -2174 ((-3 |t#2| "failed") |t#2| $)) (-15 -2264 (|t#2| $)) (-15 -1250 ((-578 $) |t#2|)) (-15 -2899 ((-3 $ "failed") |t#2| (-839))) (-15 -2391 (|t#1| |t#2| $ |t#1|)) (-15 -2038 (|t#1| |t#2| $ |t#1|))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3979 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701)) 95)) (-2651 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701)) 55)) (-3733 (((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)) 87)) (-2674 (((-701) (-578 |#4|) (-578 |#5|)) 27)) (-3679 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701)) 57) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107)) 59)) (-1688 (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107)) 79)) (-1248 (((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) 82)) (-3221 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-107)) 54)) (-2195 (((-701) (-578 |#4|) (-578 |#5|)) 19)))
-(((-975 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2195 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -2674 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -3221 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-107))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3979 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701))) (-15 -1248 ((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -3733 ((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -975))
-((-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *4 (-701)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-1154)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1053)) (-5 *1 (-975 *4 *5 *6 *7 *8)))) (-3979 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -3709 *11)))))) (-5 *6 (-701)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -3709 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-972 *7 *8 *9)) (-4 *11 (-977 *7 *8 *9 *10)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-5 *1 (-975 *7 *8 *9 *10 *11)))) (-1688 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-1688 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-3679 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3679 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-3679 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-701)) (-5 *6 (-107)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-4 *3 (-972 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *7 *8 *9 *3 *4)) (-4 *4 (-977 *7 *8 *9 *3)))) (-2651 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2651 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-3221 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-2674 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-975 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2195 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -2674 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -3221 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-107))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3979 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701))) (-15 -1248 ((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -3733 ((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701))))
-((-3180 (((-107) |#5| $) 20)) (-1209 (((-107) |#5| $) 23)) (-1972 (((-107) |#5| $) 16) (((-107) $) 44)) (-3420 (((-578 $) |#5| $) NIL) (((-578 $) (-578 |#5|) $) 76) (((-578 $) (-578 |#5|) (-578 $)) 74) (((-578 $) |#5| (-578 $)) 77)) (-3718 (($ $ |#5|) NIL) (((-578 $) |#5| $) NIL) (((-578 $) |#5| (-578 $)) 59) (((-578 $) (-578 |#5|) $) 61) (((-578 $) (-578 |#5|) (-578 $)) 63)) (-1709 (((-578 $) |#5| $) NIL) (((-578 $) |#5| (-578 $)) 53) (((-578 $) (-578 |#5|) $) 55) (((-578 $) (-578 |#5|) (-578 $)) 57)) (-3036 (((-107) |#5| $) 26)))
-(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3718 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3718 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3718 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3718 ((-578 |#1|) |#5| |#1|)) (-15 -1709 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -1709 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -1709 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -1709 ((-578 |#1|) |#5| |#1|)) (-15 -3420 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3420 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3420 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3420 ((-578 |#1|) |#5| |#1|)) (-15 -1209 ((-107) |#5| |#1|)) (-15 -1972 ((-107) |#1|)) (-15 -3036 ((-107) |#5| |#1|)) (-15 -3180 ((-107) |#5| |#1|)) (-15 -1972 ((-107) |#5| |#1|)) (-15 -3718 (|#1| |#1| |#5|))) (-977 |#2| |#3| |#4| |#5|) (-419) (-723) (-777) (-972 |#2| |#3| |#4|)) (T -976))
-NIL
-(-10 -8 (-15 -3718 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3718 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3718 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3718 ((-578 |#1|) |#5| |#1|)) (-15 -1709 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -1709 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -1709 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -1709 ((-578 |#1|) |#5| |#1|)) (-15 -3420 ((-578 |#1|) |#5| (-578 |#1|))) (-15 -3420 ((-578 |#1|) (-578 |#5|) (-578 |#1|))) (-15 -3420 ((-578 |#1|) (-578 |#5|) |#1|)) (-15 -3420 ((-578 |#1|) |#5| |#1|)) (-15 -1209 ((-107) |#5| |#1|)) (-15 -1972 ((-107) |#1|)) (-15 -3036 ((-107) |#5| |#1|)) (-15 -3180 ((-107) |#5| |#1|)) (-15 -1972 ((-107) |#5| |#1|)) (-15 -3718 (|#1| |#1| |#5|)))
-((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86) (((-578 $) (-578 |#4|) (-107)) 111)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-3180 (((-107) |#4| $) 136)) (-1209 (((-107) |#4| $) 133)) (-1972 (((-107) |#4| $) 137) (((-107) $) 134)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) 128)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 127)) (-1383 (((-3 |#4| "failed") $) 83)) (-1618 (((-578 $) |#4| $) 129)) (-2217 (((-3 (-107) (-578 $)) |#4| $) 132)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3420 (((-578 $) |#4| $) 125) (((-578 $) (-578 |#4|) $) 124) (((-578 $) (-578 |#4|) (-578 $)) 123) (((-578 $) |#4| (-578 $)) 122)) (-2297 (($ |#4| $) 117) (($ (-578 |#4|) $) 116)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77) (((-578 $) |#4| $) 115) (((-578 $) |#4| (-578 $)) 114) (((-578 $) (-578 |#4|) $) 113) (((-578 $) (-578 |#4|) (-578 $)) 112)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1709 (((-578 $) |#4| $) 121) (((-578 $) |#4| (-578 $)) 120) (((-578 $) (-578 |#4|) $) 119) (((-578 $) (-578 |#4|) (-578 $)) 118)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-3036 (((-107) |#4| $) 135)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167)))))
-(((-977 |#1| |#2| |#3| |#4|) (-1180) (-419) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -977))
-((-1972 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-3180 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-3036 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1972 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-1209 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-2217 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-3 (-107) (-578 *1))) (-4 *1 (-977 *4 *5 *6 *3)))) (-1354 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) (-1354 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1618 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-2064 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-3 *3 (-578 *1))) (-4 *1 (-977 *4 *5 *6 *3)))) (-2019 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) (-3676 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) (-3420 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-3420 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) (-3420 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) (-3420 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) (-1709 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-1709 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) (-1709 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) (-1709 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) (-2297 (*1 *1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *2)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-2297 (*1 *1 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)))) (-3718 (*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) (-3718 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) (-3718 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) (-3718 (*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) (-2073 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *5 *6 *7 *8)))))
-(-13 (-1099 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1972 ((-107) |t#4| $)) (-15 -3180 ((-107) |t#4| $)) (-15 -3036 ((-107) |t#4| $)) (-15 -1972 ((-107) $)) (-15 -1209 ((-107) |t#4| $)) (-15 -2217 ((-3 (-107) (-578 $)) |t#4| $)) (-15 -1354 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |t#4| $)) (-15 -1354 ((-107) |t#4| $)) (-15 -1618 ((-578 $) |t#4| $)) (-15 -2064 ((-3 |t#4| (-578 $)) |t#4| |t#4| $)) (-15 -2019 ((-578 (-2 (|:| |val| |t#4|) (|:| -3709 $))) |t#4| |t#4| $)) (-15 -3676 ((-578 (-2 (|:| |val| |t#4|) (|:| -3709 $))) |t#4| $)) (-15 -3420 ((-578 $) |t#4| $)) (-15 -3420 ((-578 $) (-578 |t#4|) $)) (-15 -3420 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -3420 ((-578 $) |t#4| (-578 $))) (-15 -1709 ((-578 $) |t#4| $)) (-15 -1709 ((-578 $) |t#4| (-578 $))) (-15 -1709 ((-578 $) (-578 |t#4|) $)) (-15 -1709 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -2297 ($ |t#4| $)) (-15 -2297 ($ (-578 |t#4|) $)) (-15 -3718 ((-578 $) |t#4| $)) (-15 -3718 ((-578 $) |t#4| (-578 $))) (-15 -3718 ((-578 $) (-578 |t#4|) $)) (-15 -3718 ((-578 $) (-578 |t#4|) (-578 $))) (-15 -2073 ((-578 $) (-578 |t#4|) (-107)))))
-(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1104) . T))
-((-2381 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|) 81)) (-4027 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|) 112)) (-3323 (((-578 |#5|) |#4| |#5|) 70)) (-3558 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2634 (((-1154)) 35)) (-2469 (((-1154)) 25)) (-3504 (((-1154) (-1053) (-1053) (-1053)) 31)) (-3344 (((-1154) (-1053) (-1053) (-1053)) 20)) (-2042 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|) 95)) (-2337 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107)) 106) (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-1352 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|) 101)))
-(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3344 ((-1154) (-1053) (-1053) (-1053))) (-15 -2469 ((-1154))) (-15 -3504 ((-1154) (-1053) (-1053) (-1053))) (-15 -2634 ((-1154))) (-15 -2042 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -2337 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2337 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107))) (-15 -1352 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -4027 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -3558 ((-107) |#4| |#5|)) (-15 -3558 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -3323 ((-578 |#5|) |#4| |#5|)) (-15 -2381 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -978))
-((-2381 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3323 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3558 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3558 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-4027 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-1352 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2337 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *5 (-107)) (-4 *8 (-972 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *4 (-777)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -3709 *9)))) (-5 *1 (-978 *6 *7 *4 *8 *9)))) (-2337 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-2042 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2634 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3504 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-2469 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3344 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3344 ((-1154) (-1053) (-1053) (-1053))) (-15 -2469 ((-1154))) (-15 -3504 ((-1154) (-1053) (-1053) (-1053))) (-15 -2634 ((-1154))) (-15 -2042 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -2337 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2337 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107))) (-15 -1352 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -4027 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -3558 ((-107) |#4| |#5|)) (-15 -3558 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -3323 ((-578 |#5|) |#4| |#5|)) (-15 -2381 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|)))
-((-3736 (((-107) $ $) NIL)) (-4081 (($ $ (-578 (-1070)) (-1 (-107) (-578 |#3|))) 29)) (-2453 (($ |#3| |#3|) 21) (($ |#3| |#3| (-578 (-1070))) 19)) (-2015 ((|#3| $) 13)) (-3765 (((-3 (-262 |#3|) "failed") $) 56)) (-3490 (((-262 |#3|) $) NIL)) (-3587 (((-578 (-1070)) $) 15)) (-3683 (((-810 |#1|) $) 11)) (-2006 ((|#3| $) 12)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2007 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-839)) 36)) (-3691 (((-786) $) 84) (($ (-262 |#3|)) 20)) (-3751 (((-107) $ $) 33)))
-(((-979 |#1| |#2| |#3|) (-13 (-1001) (-256 |#3| |#3|) (-950 (-262 |#3|)) (-10 -8 (-15 -2453 ($ |#3| |#3|)) (-15 -2453 ($ |#3| |#3| (-578 (-1070)))) (-15 -4081 ($ $ (-578 (-1070)) (-1 (-107) (-578 |#3|)))) (-15 -3683 ((-810 |#1|) $)) (-15 -2006 (|#3| $)) (-15 -2015 (|#3| $)) (-15 -2007 (|#3| $ |#3| (-839))) (-15 -3587 ((-578 (-1070)) $)))) (-1001) (-13 (-959) (-806 |#1|) (-777) (-556 (-810 |#1|))) (-13 (-389 |#2|) (-806 |#1|) (-556 (-810 |#1|)))) (T -979))
-((-2453 (*1 *1 *2 *2) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))))) (-2453 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) (-4081 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-1 (-107) (-578 *6))) (-4 *6 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *6)))) (-3683 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 *2))) (-5 *2 (-810 *3)) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 *2))))) (-2006 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))))) (-2015 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))))) (-2007 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) (-3587 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *2 (-578 (-1070))) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))))))
-(-13 (-1001) (-256 |#3| |#3|) (-950 (-262 |#3|)) (-10 -8 (-15 -2453 ($ |#3| |#3|)) (-15 -2453 ($ |#3| |#3| (-578 (-1070)))) (-15 -4081 ($ $ (-578 (-1070)) (-1 (-107) (-578 |#3|)))) (-15 -3683 ((-810 |#1|) $)) (-15 -2006 (|#3| $)) (-15 -2015 (|#3| $)) (-15 -2007 (|#3| $ |#3| (-839))) (-15 -3587 ((-578 (-1070)) $))))
-((-3736 (((-107) $ $) NIL)) (-3986 (((-1070) $) 8)) (-3460 (((-1053) $) 16)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 13)))
-(((-980 |#1|) (-13 (-1001) (-10 -8 (-15 -3986 ((-1070) $)))) (-1070)) (T -980))
-((-3986 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-980 *3)) (-14 *3 *2))))
-(-13 (-1001) (-10 -8 (-15 -3986 ((-1070) $))))
-((-3736 (((-107) $ $) NIL)) (-4062 (($ (-578 (-979 |#1| |#2| |#3|))) 12)) (-1258 (((-578 (-979 |#1| |#2| |#3|)) $) 19)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2007 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-839)) 25)) (-3691 (((-786) $) 15)) (-3751 (((-107) $ $) 18)))
-(((-981 |#1| |#2| |#3|) (-13 (-1001) (-256 |#3| |#3|) (-10 -8 (-15 -4062 ($ (-578 (-979 |#1| |#2| |#3|)))) (-15 -1258 ((-578 (-979 |#1| |#2| |#3|)) $)) (-15 -2007 (|#3| $ |#3| (-839))))) (-1001) (-13 (-959) (-806 |#1|) (-777) (-556 (-810 |#1|))) (-13 (-389 |#2|) (-806 |#1|) (-556 (-810 |#1|)))) (T -981))
-((-4062 (*1 *1 *2) (-12 (-5 *2 (-578 (-979 *3 *4 *5))) (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-981 *3 *4 *5)))) (-1258 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *2 (-578 (-979 *3 *4 *5))) (-5 *1 (-981 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))))) (-2007 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-981 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))))
-(-13 (-1001) (-256 |#3| |#3|) (-10 -8 (-15 -4062 ($ (-578 (-979 |#1| |#2| |#3|)))) (-15 -1258 ((-578 (-979 |#1| |#2| |#3|)) $)) (-15 -2007 (|#3| $ |#3| (-839)))))
-((-2078 (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107)) 73) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|))) 75) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107)) 74)))
-(((-982 |#1| |#2|) (-10 -7 (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107))) (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107)))) (-13 (-276) (-134)) (-578 (-1070))) (T -982))
-((-2078 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))))) (-2078 (*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-982 *4 *5)) (-5 *3 (-578 (-866 *4))) (-14 *5 (-578 (-1070))))) (-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))))))
-(-10 -7 (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107))) (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2078 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 125)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-331)))) (-2865 (($ $) NIL (|has| |#1| (-331)))) (-1639 (((-107) $) NIL (|has| |#1| (-331)))) (-2239 (((-621 |#1|) (-1148 $)) NIL) (((-621 |#1|)) 115)) (-2225 ((|#1| $) 119)) (-3431 (((-1077 (-839) (-701)) (-501)) NIL (|has| |#1| (-318)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3796 (((-701)) 40 (|has| |#1| (-336)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3142 (($ (-1148 |#1|) (-1148 $)) NIL) (($ (-1148 |#1|)) 43)) (-1390 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-318)))) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3070 (((-621 |#1|) $ (-1148 $)) NIL) (((-621 |#1|) $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 106) (((-621 |#1|) (-621 $)) 100)) (-3547 (($ |#2|) 61) (((-3 $ "failed") (-375 |#2|)) NIL (|has| |#1| (-331)))) (-2174 (((-3 $ "failed") $) NIL)) (-3689 (((-839)) 77)) (-2890 (($) 44 (|has| |#1| (-336)))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1317 (($) NIL (|has| |#1| (-318)))) (-3521 (((-107) $) NIL (|has| |#1| (-318)))) (-3067 (($ $ (-701)) NIL (|has| |#1| (-318))) (($ $) NIL (|has| |#1| (-318)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3169 (((-839) $) NIL (|has| |#1| (-318))) (((-762 (-839)) $) NIL (|has| |#1| (-318)))) (-1355 (((-107) $) NIL)) (-2626 ((|#1| $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-318)))) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1792 ((|#2| $) 84 (|has| |#1| (-331)))) (-3104 (((-839) $) 129 (|has| |#1| (-336)))) (-1316 ((|#2| $) 58)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3746 (($) NIL (|has| |#1| (-318)) CONST)) (-3506 (($ (-839)) 124 (|has| |#1| (-336)))) (-3708 (((-1018) $) NIL)) (-3987 (($) 121)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-1295 (((-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))) NIL (|has| |#1| (-318)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2532 ((|#1| (-1148 $)) NIL) ((|#1|) 109)) (-1984 (((-701) $) NIL (|has| |#1| (-318))) (((-3 (-701) "failed") $ $) NIL (|has| |#1| (-318)))) (-2596 (($ $) NIL (-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-1 |#1| |#1|) (-701)) NIL (|has| |#1| (-331))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-331)))) (-2231 (((-621 |#1|) (-1148 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-331)))) (-2264 ((|#2|) 73)) (-1349 (($) NIL (|has| |#1| (-318)))) (-2085 (((-1148 |#1|) $ (-1148 $)) 89) (((-621 |#1|) (-1148 $) (-1148 $)) NIL) (((-1148 |#1|) $) 71) (((-621 |#1|) (-1148 $)) 85)) (-1248 (((-1148 |#1|) $) NIL) (($ (-1148 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (|has| |#1| (-318)))) (-3691 (((-786) $) 57) (($ (-501)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-331))) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-331)) (|has| |#1| (-950 (-375 (-501))))))) (-1274 (($ $) NIL (|has| |#1| (-318))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2942 ((|#2| $) 82)) (-3965 (((-701)) 75)) (-4119 (((-1148 $)) 81)) (-2442 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 30 T CONST)) (-1925 (($) 19 T CONST)) (-3584 (($ $) NIL (-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#1| (-206)) (|has| |#1| (-331))) (|has| |#1| (-318)))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-331)) (|has| |#1| (-820 (-1070))))) (($ $ (-1 |#1| |#1|) (-701)) NIL (|has| |#1| (-331))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-331)))) (-3751 (((-107) $ $) 63)) (-3803 (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) 67) (($ $ $) NIL)) (-3790 (($ $ $) 65)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-375 (-501)) $) NIL (|has| |#1| (-331))) (($ $ (-375 (-501))) NIL (|has| |#1| (-331)))))
-(((-983 |#1| |#2| |#3|) (-655 |#1| |#2|) (-156) (-1125 |#1|) |#2|) (T -983))
-NIL
-(-655 |#1| |#2|)
-((-3739 (((-373 |#3|) |#3|) 16)))
-(((-984 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-373 |#3|) |#3|))) (-1125 (-375 (-501))) (-13 (-331) (-134) (-655 (-375 (-501)) |#1|)) (-1125 |#2|)) (T -984))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-13 (-331) (-134) (-655 (-375 (-501)) *4))) (-5 *2 (-373 *3)) (-5 *1 (-984 *4 *5 *3)) (-4 *3 (-1125 *5)))))
-(-10 -7 (-15 -3739 ((-373 |#3|) |#3|)))
-((-3739 (((-373 |#3|) |#3|) 16)))
-(((-985 |#1| |#2| |#3|) (-10 -7 (-15 -3739 ((-373 |#3|) |#3|))) (-1125 (-375 (-866 (-501)))) (-13 (-331) (-134) (-655 (-375 (-866 (-501))) |#1|)) (-1125 |#2|)) (T -985))
-((-3739 (*1 *2 *3) (-12 (-4 *4 (-1125 (-375 (-866 (-501))))) (-4 *5 (-13 (-331) (-134) (-655 (-375 (-866 (-501))) *4))) (-5 *2 (-373 *3)) (-5 *1 (-985 *4 *5 *3)) (-4 *3 (-1125 *5)))))
-(-10 -7 (-15 -3739 ((-373 |#3|) |#3|)))
-((-3736 (((-107) $ $) NIL)) (-4111 (($ $ $) 14)) (-1323 (($ $ $) 15)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3909 (($) 6)) (-1248 (((-1070) $) 18)) (-3691 (((-786) $) 12)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 13)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 8)))
-(((-986) (-13 (-777) (-10 -8 (-15 -3909 ($)) (-15 -1248 ((-1070) $))))) (T -986))
-((-3909 (*1 *1) (-5 *1 (-986))) (-1248 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-986)))))
-(-13 (-777) (-10 -8 (-15 -3909 ($)) (-15 -1248 ((-1070) $))))
-((-3710 ((|#1| |#1| (-1 (-501) |#1| |#1|)) 21) ((|#1| |#1| (-1 (-107) |#1|)) 18)) (-1968 (((-1154)) 15)) (-3063 (((-578 |#1|)) 9)))
-(((-987 |#1|) (-10 -7 (-15 -1968 ((-1154))) (-15 -3063 ((-578 |#1|))) (-15 -3710 (|#1| |#1| (-1 (-107) |#1|))) (-15 -3710 (|#1| |#1| (-1 (-501) |#1| |#1|)))) (-124)) (T -987))
-((-3710 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-501) *2 *2)) (-4 *2 (-124)) (-5 *1 (-987 *2)))) (-3710 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-987 *2)))) (-3063 (*1 *2) (-12 (-5 *2 (-578 *3)) (-5 *1 (-987 *3)) (-4 *3 (-124)))) (-1968 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-987 *3)) (-4 *3 (-124)))))
-(-10 -7 (-15 -1968 ((-1154))) (-15 -3063 ((-578 |#1|))) (-15 -3710 (|#1| |#1| (-1 (-107) |#1|))) (-15 -3710 (|#1| |#1| (-1 (-501) |#1| |#1|))))
-((-1763 (((-1148 (-621 |#1|)) (-578 (-621 |#1|))) 41) (((-1148 (-621 (-866 |#1|))) (-578 (-1070)) (-621 (-866 |#1|))) 60) (((-1148 (-621 (-375 (-866 |#1|)))) (-578 (-1070)) (-621 (-375 (-866 |#1|)))) 76)) (-2085 (((-1148 |#1|) (-621 |#1|) (-578 (-621 |#1|))) 35)))
-(((-988 |#1|) (-10 -7 (-15 -1763 ((-1148 (-621 (-375 (-866 |#1|)))) (-578 (-1070)) (-621 (-375 (-866 |#1|))))) (-15 -1763 ((-1148 (-621 (-866 |#1|))) (-578 (-1070)) (-621 (-866 |#1|)))) (-15 -1763 ((-1148 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -2085 ((-1148 |#1|) (-621 |#1|) (-578 (-621 |#1|))))) (-331)) (T -988))
-((-2085 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-621 *5))) (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-1148 *5)) (-5 *1 (-988 *5)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-578 (-621 *4))) (-4 *4 (-331)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-988 *4)))) (-1763 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-4 *5 (-331)) (-5 *2 (-1148 (-621 (-866 *5)))) (-5 *1 (-988 *5)) (-5 *4 (-621 (-866 *5))))) (-1763 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-4 *5 (-331)) (-5 *2 (-1148 (-621 (-375 (-866 *5))))) (-5 *1 (-988 *5)) (-5 *4 (-621 (-375 (-866 *5)))))))
-(-10 -7 (-15 -1763 ((-1148 (-621 (-375 (-866 |#1|)))) (-578 (-1070)) (-621 (-375 (-866 |#1|))))) (-15 -1763 ((-1148 (-621 (-866 |#1|))) (-578 (-1070)) (-621 (-866 |#1|)))) (-15 -1763 ((-1148 (-621 |#1|)) (-578 (-621 |#1|)))) (-15 -2085 ((-1148 |#1|) (-621 |#1|) (-578 (-621 |#1|)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2456 (((-578 (-701)) $) NIL) (((-578 (-701)) $ (-1070)) NIL)) (-1506 (((-701) $) NIL) (((-701) $ (-1070)) NIL)) (-3800 (((-578 (-990 (-1070))) $) NIL)) (-3728 (((-1064 $) $ (-990 (-1070))) NIL) (((-1064 |#1|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-990 (-1070)))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3457 (($ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-990 (-1070)) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL) (((-3 (-1023 |#1| (-1070)) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-990 (-1070)) $) NIL) (((-1070) $) NIL) (((-1023 |#1| (-1070)) $) NIL)) (-1749 (($ $ $ (-990 (-1070))) NIL (|has| |#1| (-156)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ (-990 (-1070))) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 (-990 (-1070))) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-990 (-1070)) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-990 (-1070)) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ (-1070)) NIL) (((-701) $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3794 (($ (-1064 |#1|) (-990 (-1070))) NIL) (($ (-1064 $) (-990 (-1070))) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-487 (-990 (-1070)))) NIL) (($ $ (-990 (-1070)) (-701)) NIL) (($ $ (-578 (-990 (-1070))) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-990 (-1070))) NIL)) (-2285 (((-487 (-990 (-1070))) $) NIL) (((-701) $ (-990 (-1070))) NIL) (((-578 (-701)) $ (-578 (-990 (-1070)))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 (-990 (-1070))) (-487 (-990 (-1070)))) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1435 (((-1 $ (-701)) (-1070)) NIL) (((-1 $ (-701)) $) NIL (|has| |#1| (-206)))) (-2752 (((-3 (-990 (-1070)) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-2486 (((-990 (-1070)) $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3597 (((-107) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-990 (-1070))) (|:| -3027 (-701))) "failed") $) NIL)) (-2577 (($ $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-990 (-1070)) |#1|) NIL) (($ $ (-578 (-990 (-1070))) (-578 |#1|)) NIL) (($ $ (-990 (-1070)) $) NIL) (($ $ (-578 (-990 (-1070))) (-578 $)) NIL) (($ $ (-1070) $) NIL (|has| |#1| (-206))) (($ $ (-578 (-1070)) (-578 $)) NIL (|has| |#1| (-206))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-206))) (($ $ (-578 (-1070)) (-578 |#1|)) NIL (|has| |#1| (-206)))) (-2532 (($ $ (-990 (-1070))) NIL (|has| |#1| (-156)))) (-2596 (($ $ (-990 (-1070))) NIL) (($ $ (-578 (-990 (-1070)))) NIL) (($ $ (-990 (-1070)) (-701)) NIL) (($ $ (-578 (-990 (-1070))) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1490 (((-578 (-1070)) $) NIL)) (-1201 (((-487 (-990 (-1070))) $) NIL) (((-701) $ (-990 (-1070))) NIL) (((-578 (-701)) $ (-578 (-990 (-1070)))) NIL) (((-701) $ (-1070)) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-990 (-1070)) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-990 (-1070)) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-990 (-1070)) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) NIL (|has| |#1| (-419))) (($ $ (-990 (-1070))) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-990 (-1070))) NIL) (($ (-1070)) NIL) (($ (-1023 |#1| (-1070))) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-487 (-990 (-1070)))) NIL) (($ $ (-990 (-1070)) (-701)) NIL) (($ $ (-578 (-990 (-1070))) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-990 (-1070))) NIL) (($ $ (-578 (-990 (-1070)))) NIL) (($ $ (-990 (-1070)) (-701)) NIL) (($ $ (-578 (-990 (-1070))) (-578 (-701))) NIL) (($ $) NIL (|has| |#1| (-206))) (($ $ (-701)) NIL (|has| |#1| (-206))) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-989 |#1|) (-13 (-224 |#1| (-1070) (-990 (-1070)) (-487 (-990 (-1070)))) (-950 (-1023 |#1| (-1070)))) (-959)) (T -989))
-NIL
-(-13 (-224 |#1| (-1070) (-990 (-1070)) (-487 (-990 (-1070)))) (-950 (-1023 |#1| (-1070))))
-((-3736 (((-107) $ $) NIL)) (-1506 (((-701) $) NIL)) (-3484 ((|#1| $) 10)) (-3765 (((-3 |#1| "failed") $) NIL)) (-3490 ((|#1| $) NIL)) (-3169 (((-701) $) 11)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-1435 (($ |#1| (-701)) 9)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2596 (($ $) NIL) (($ $ (-701)) NIL)) (-3691 (((-786) $) NIL) (($ |#1|) NIL)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 15)))
-(((-990 |#1|) (-237 |#1|) (-777)) (T -990))
-NIL
-(-237 |#1|)
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4087 (($ |#1| |#1|) 15)) (-1212 (((-578 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-775)))) (-3014 ((|#1| $) 10)) (-4045 ((|#1| $) 9)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4053 (((-501) $) 14)) (-1647 ((|#1| $) 12)) (-4060 ((|#1| $) 11)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1967 (((-578 |#1|) $) 35 (|has| |#1| (-775))) (((-578 |#1|) (-578 $)) 34 (|has| |#1| (-775)))) (-1248 (($ |#1|) 26)) (-3691 (((-786) $) 25 (|has| |#1| (-1001)))) (-3686 (($ |#1| |#1|) 8)) (-3005 (($ $ (-501)) 16)) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))))
-(((-991 |#1|) (-13 (-995 |#1|) (-10 -7 (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-996 |#1| (-578 |#1|))) |noBranch|))) (-1104)) (T -991))
-NIL
-(-13 (-995 |#1|) (-10 -7 (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-996 |#1| (-578 |#1|))) |noBranch|)))
-((-1212 (((-578 |#2|) (-1 |#2| |#1|) (-991 |#1|)) 23 (|has| |#1| (-775))) (((-991 |#2|) (-1 |#2| |#1|) (-991 |#1|)) 14)))
-(((-992 |#1| |#2|) (-10 -7 (-15 -1212 ((-991 |#2|) (-1 |#2| |#1|) (-991 |#1|))) (IF (|has| |#1| (-775)) (-15 -1212 ((-578 |#2|) (-1 |#2| |#1|) (-991 |#1|))) |noBranch|)) (-1104) (-1104)) (T -992))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-991 *5)) (-4 *5 (-775)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-578 *6)) (-5 *1 (-992 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-991 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-991 *6)) (-5 *1 (-992 *5 *6)))))
-(-10 -7 (-15 -1212 ((-991 |#2|) (-1 |#2| |#1|) (-991 |#1|))) (IF (|has| |#1| (-775)) (-15 -1212 ((-578 |#2|) (-1 |#2| |#1|) (-991 |#1|))) |noBranch|))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3484 (((-1070) $) 11)) (-4087 (((-991 |#1|) $) 12)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-4022 (($ (-1070) (-991 |#1|)) 10)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-3751 (((-107) $ $) 15 (|has| |#1| (-1001)))))
-(((-993 |#1|) (-13 (-1104) (-10 -8 (-15 -4022 ($ (-1070) (-991 |#1|))) (-15 -3484 ((-1070) $)) (-15 -4087 ((-991 |#1|) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|))) (-1104)) (T -993))
-((-4022 (*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-991 *4)) (-4 *4 (-1104)) (-5 *1 (-993 *4)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-993 *3)) (-4 *3 (-1104)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-991 *3)) (-5 *1 (-993 *3)) (-4 *3 (-1104)))))
-(-13 (-1104) (-10 -8 (-15 -4022 ($ (-1070) (-991 |#1|))) (-15 -3484 ((-1070) $)) (-15 -4087 ((-991 |#1|) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|)))
-((-1212 (((-993 |#2|) (-1 |#2| |#1|) (-993 |#1|)) 19)))
-(((-994 |#1| |#2|) (-10 -7 (-15 -1212 ((-993 |#2|) (-1 |#2| |#1|) (-993 |#1|)))) (-1104) (-1104)) (T -994))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-993 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-993 *6)) (-5 *1 (-994 *5 *6)))))
-(-10 -7 (-15 -1212 ((-993 |#2|) (-1 |#2| |#1|) (-993 |#1|))))
-((-4087 (($ |#1| |#1|) 7)) (-3014 ((|#1| $) 10)) (-4045 ((|#1| $) 12)) (-4053 (((-501) $) 8)) (-1647 ((|#1| $) 9)) (-4060 ((|#1| $) 11)) (-1248 (($ |#1|) 6)) (-3686 (($ |#1| |#1|) 14)) (-3005 (($ $ (-501)) 13)))
-(((-995 |#1|) (-1180) (-1104)) (T -995))
-((-3686 (*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-3005 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-995 *3)) (-4 *3 (-1104)))) (-4045 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-4060 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1104)) (-5 *2 (-501)))) (-4087 (*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))))
-(-13 (-1104) (-10 -8 (-15 -3686 ($ |t#1| |t#1|)) (-15 -3005 ($ $ (-501))) (-15 -4045 (|t#1| $)) (-15 -4060 (|t#1| $)) (-15 -3014 (|t#1| $)) (-15 -1647 (|t#1| $)) (-15 -4053 ((-501) $)) (-15 -4087 ($ |t#1| |t#1|)) (-15 -1248 ($ |t#1|))))
-(((-1104) . T))
-((-4087 (($ |#1| |#1|) 7)) (-1212 ((|#2| (-1 |#1| |#1|) $) 16)) (-3014 ((|#1| $) 10)) (-4045 ((|#1| $) 12)) (-4053 (((-501) $) 8)) (-1647 ((|#1| $) 9)) (-4060 ((|#1| $) 11)) (-1967 ((|#2| (-578 $)) 18) ((|#2| $) 17)) (-1248 (($ |#1|) 6)) (-3686 (($ |#1| |#1|) 14)) (-3005 (($ $ (-501)) 13)))
-(((-996 |#1| |#2|) (-1180) (-775) (-1044 |t#1|)) (T -996))
-((-1967 (*1 *2 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-996 *4 *2)) (-4 *4 (-775)) (-4 *2 (-1044 *4)))) (-1967 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *2)) (-4 *3 (-775)) (-4 *2 (-1044 *3)))) (-1212 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-996 *4 *2)) (-4 *4 (-775)) (-4 *2 (-1044 *4)))))
-(-13 (-995 |t#1|) (-10 -8 (-15 -1967 (|t#2| (-578 $))) (-15 -1967 (|t#2| $)) (-15 -1212 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-995 |#1|) . T) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3524 (($) NIL (|has| |#1| (-336)))) (-1442 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-3217 (($ $ $) 71)) (-3599 (((-107) $ $) 72)) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#1| (-336)))) (-2198 (($ (-578 |#1|)) NIL) (($) 13)) (-1221 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2256 (($ |#1| $) 67 (|has| $ (-6 -4167))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4167)))) (-2890 (($) NIL (|has| |#1| (-336)))) (-2732 (((-578 |#1|) $) 19 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-4111 ((|#1| $) 57 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1323 ((|#1| $) 55 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 34)) (-3104 (((-839) $) NIL (|has| |#1| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-3420 (($ $ $) 69)) (-1328 ((|#1| $) 25)) (-4114 (($ |#1| $) 65)) (-3506 (($ (-839)) NIL (|has| |#1| (-336)))) (-3708 (((-1018) $) NIL)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-1251 ((|#1| $) 27)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 21)) (-3122 (($) 11)) (-3327 (($ $ |#1|) NIL) (($ $ $) 70)) (-3013 (($) NIL) (($ (-578 |#1|)) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 16)) (-1248 (((-490) $) 52 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 61)) (-2655 (($ $) NIL (|has| |#1| (-336)))) (-3691 (((-786) $) NIL)) (-1393 (((-701) $) NIL)) (-3910 (($ (-578 |#1|)) NIL) (($) 12)) (-2866 (($ (-578 |#1|)) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 54)) (-3762 (((-107) $ $) NIL)) (-3581 (((-701) $) 10 (|has| $ (-6 -4167)))))
-(((-997 |#1|) (-394 |#1|) (-1001)) (T -997))
-NIL
-(-394 |#1|)
-((-1442 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3217 (($ $ $) 10)) (-3327 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-998 |#1| |#2|) (-10 -8 (-15 -1442 (|#1| |#2| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#2|)) (-15 -3327 (|#1| |#1| |#1|))) (-999 |#2|) (-1001)) (T -998))
-NIL
-(-10 -8 (-15 -1442 (|#1| |#2| |#1|)) (-15 -1442 (|#1| |#1| |#2|)) (-15 -1442 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -3327 (|#1| |#1| |#2|)) (-15 -3327 (|#1| |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-1442 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3217 (($ $ $) 20)) (-3599 (((-107) $ $) 19)) (-2997 (((-107) $ (-701)) 35)) (-2198 (($) 25) (($ (-578 |#1|)) 24)) (-1987 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4167)))) (-2540 (($) 36 T CONST)) (-2673 (($ $) 59 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 58 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4167)))) (-2732 (((-578 |#1|) $) 43 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 34)) (-3380 (((-578 |#1|) $) 44 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 38)) (-3155 (((-107) $ (-701)) 33)) (-3460 (((-1053) $) 9)) (-3420 (($ $ $) 23)) (-3708 (((-1018) $) 10)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-2369 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#1|) (-578 |#1|)) 50 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 48 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 (-262 |#1|))) 47 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 29)) (-1407 (((-107) $) 32)) (-3122 (($) 31)) (-3327 (($ $ $) 22) (($ $ |#1|) 21)) (-3713 (((-701) |#1| $) 45 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4167)))) (-3764 (($ $) 30)) (-1248 (((-490) $) 60 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 51)) (-3691 (((-786) $) 11)) (-3910 (($) 27) (($ (-578 |#1|)) 26)) (-1200 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 6)) (-3762 (((-107) $ $) 28)) (-3581 (((-701) $) 37 (|has| $ (-6 -4167)))))
-(((-999 |#1|) (-1180) (-1001)) (T -999))
-((-3762 (*1 *2 *1 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-3910 (*1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-999 *3)))) (-2198 (*1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-2198 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-999 *3)))) (-3420 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3327 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3327 (*1 *1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3217 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-3599 (*1 *2 *1 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1001)) (-5 *2 (-107)))) (-1442 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-1442 (*1 *1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) (-1442 (*1 *1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))))
-(-13 (-1001) (-138 |t#1|) (-10 -8 (-6 -4157) (-15 -3762 ((-107) $ $)) (-15 -3910 ($)) (-15 -3910 ($ (-578 |t#1|))) (-15 -2198 ($)) (-15 -2198 ($ (-578 |t#1|))) (-15 -3420 ($ $ $)) (-15 -3327 ($ $ $)) (-15 -3327 ($ $ |t#1|)) (-15 -3217 ($ $ $)) (-15 -3599 ((-107) $ $)) (-15 -1442 ($ $ $)) (-15 -1442 ($ $ |t#1|)) (-15 -1442 ($ |t#1| $))))
-(((-33) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) . T) ((-1104) . T))
-((-3460 (((-1053) $) 10)) (-3708 (((-1018) $) 8)))
-(((-1000 |#1|) (-10 -8 (-15 -3460 ((-1053) |#1|)) (-15 -3708 ((-1018) |#1|))) (-1001)) (T -1000))
-NIL
-(-10 -8 (-15 -3460 ((-1053) |#1|)) (-15 -3708 ((-1018) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)))
-(((-1001) (-1180)) (T -1001))
-((-3708 (*1 *2 *1) (-12 (-4 *1 (-1001)) (-5 *2 (-1018)))) (-3460 (*1 *2 *1) (-12 (-4 *1 (-1001)) (-5 *2 (-1053)))))
-(-13 (-97) (-555 (-786)) (-10 -8 (-15 -3708 ((-1018) $)) (-15 -3460 ((-1053) $))))
-(((-97) . T) ((-555 (-786)) . T))
-((-3736 (((-107) $ $) NIL)) (-3796 (((-701)) 30)) (-3186 (($ (-578 (-839))) 52)) (-1210 (((-3 $ "failed") $ (-839) (-839)) 57)) (-2890 (($) 32)) (-2211 (((-107) (-839) $) 35)) (-3104 (((-839) $) 50)) (-3460 (((-1053) $) NIL)) (-3506 (($ (-839)) 31)) (-3806 (((-3 $ "failed") $ (-839)) 55)) (-3708 (((-1018) $) NIL)) (-3646 (((-1148 $)) 40)) (-3343 (((-578 (-839)) $) 23)) (-2808 (((-701) $ (-839) (-839)) 56)) (-3691 (((-786) $) 29)) (-3751 (((-107) $ $) 21)))
-(((-1002 |#1| |#2|) (-13 (-336) (-10 -8 (-15 -3806 ((-3 $ "failed") $ (-839))) (-15 -1210 ((-3 $ "failed") $ (-839) (-839))) (-15 -3343 ((-578 (-839)) $)) (-15 -3186 ($ (-578 (-839)))) (-15 -3646 ((-1148 $))) (-15 -2211 ((-107) (-839) $)) (-15 -2808 ((-701) $ (-839) (-839))))) (-839) (-839)) (T -1002))
-((-3806 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-839)) (-5 *1 (-1002 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1210 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-839)) (-5 *1 (-1002 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-3186 (*1 *1 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-3646 (*1 *2) (-12 (-5 *2 (-1148 (-1002 *3 *4))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) (-2211 (*1 *2 *3 *1) (-12 (-5 *3 (-839)) (-5 *2 (-107)) (-5 *1 (-1002 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2808 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-701)) (-5 *1 (-1002 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-336) (-10 -8 (-15 -3806 ((-3 $ "failed") $ (-839))) (-15 -1210 ((-3 $ "failed") $ (-839) (-839))) (-15 -3343 ((-578 (-839)) $)) (-15 -3186 ($ (-578 (-839)))) (-15 -3646 ((-1148 $))) (-15 -2211 ((-107) (-839) $)) (-15 -2808 ((-701) $ (-839) (-839)))))
-((-3736 (((-107) $ $) NIL)) (-2494 (((-107) $) NIL)) (-2892 (((-1070) $) NIL)) (-2588 (((-107) $) NIL)) (-2011 (((-1053) $) NIL)) (-2321 (((-107) $) NIL)) (-1536 (((-107) $) NIL)) (-3889 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-1680 (((-107) $) NIL)) (-2004 (((-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-2370 (((-107) $) NIL)) (-2017 (((-199) $) NIL)) (-4055 (((-786) $) NIL)) (-2499 (((-107) $ $) NIL)) (-2007 (($ $ (-501)) NIL) (($ $ (-578 (-501))) NIL)) (-3770 (((-578 $) $) NIL)) (-1248 (($ (-578 $)) NIL) (($ (-1053)) NIL) (($ (-1070)) NIL) (($ (-501)) NIL) (($ (-199)) NIL) (($ (-786)) NIL)) (-3691 (((-786) $) NIL)) (-1329 (($ $) NIL)) (-1321 (($ $) NIL)) (-2750 (((-107) $) NIL)) (-3751 (((-107) $ $) NIL)) (-3581 (((-501) $) NIL)))
-(((-1003) (-1004 (-1053) (-1070) (-501) (-199) (-786))) (T -1003))
-NIL
-(-1004 (-1053) (-1070) (-501) (-199) (-786))
-((-3736 (((-107) $ $) 7)) (-2494 (((-107) $) 32)) (-2892 ((|#2| $) 27)) (-2588 (((-107) $) 33)) (-2011 ((|#1| $) 28)) (-2321 (((-107) $) 35)) (-1536 (((-107) $) 37)) (-3889 (((-107) $) 34)) (-3460 (((-1053) $) 9)) (-1680 (((-107) $) 31)) (-2004 ((|#3| $) 26)) (-3708 (((-1018) $) 10)) (-2370 (((-107) $) 30)) (-2017 ((|#4| $) 25)) (-4055 ((|#5| $) 24)) (-2499 (((-107) $ $) 38)) (-2007 (($ $ (-501)) 14) (($ $ (-578 (-501))) 13)) (-3770 (((-578 $) $) 29)) (-1248 (($ (-578 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-3691 (((-786) $) 11)) (-1329 (($ $) 16)) (-1321 (($ $) 17)) (-2750 (((-107) $) 36)) (-3751 (((-107) $ $) 6)) (-3581 (((-501) $) 15)))
-(((-1004 |#1| |#2| |#3| |#4| |#5|) (-1180) (-1001) (-1001) (-1001) (-1001) (-1001)) (T -1004))
-((-2499 (*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-1536 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2750 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2321 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-3889 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2588 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2494 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-2370 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))) (-3770 (*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-578 *1)) (-4 *1 (-1004 *3 *4 *5 *6 *7)))) (-2011 (*1 *2 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *2 *4 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *2 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *2 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-4055 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *2)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-1248 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *3 *2 *4 *5 *6)) (-4 *3 (-1001)) (-4 *2 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *2 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *2 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *5 *2 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *2 (-1001)) (-4 *6 (-1001)))) (-1248 (*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *2)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) (-1321 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-1329 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-501)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))))
-(-13 (-1001) (-10 -8 (-15 -2499 ((-107) $ $)) (-15 -1536 ((-107) $)) (-15 -2750 ((-107) $)) (-15 -2321 ((-107) $)) (-15 -3889 ((-107) $)) (-15 -2588 ((-107) $)) (-15 -2494 ((-107) $)) (-15 -1680 ((-107) $)) (-15 -2370 ((-107) $)) (-15 -3770 ((-578 $) $)) (-15 -2011 (|t#1| $)) (-15 -2892 (|t#2| $)) (-15 -2004 (|t#3| $)) (-15 -2017 (|t#4| $)) (-15 -4055 (|t#5| $)) (-15 -1248 ($ (-578 $))) (-15 -1248 ($ |t#1|)) (-15 -1248 ($ |t#2|)) (-15 -1248 ($ |t#3|)) (-15 -1248 ($ |t#4|)) (-15 -1248 ($ |t#5|)) (-15 -1321 ($ $)) (-15 -1329 ($ $)) (-15 -3581 ((-501) $)) (-15 -2007 ($ $ (-501))) (-15 -2007 ($ $ (-578 (-501))))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-2494 (((-107) $) 37)) (-2892 ((|#2| $) 41)) (-2588 (((-107) $) 36)) (-2011 ((|#1| $) 40)) (-2321 (((-107) $) 34)) (-1536 (((-107) $) 14)) (-3889 (((-107) $) 35)) (-3460 (((-1053) $) NIL)) (-1680 (((-107) $) 38)) (-2004 ((|#3| $) 43)) (-3708 (((-1018) $) NIL)) (-2370 (((-107) $) 39)) (-2017 ((|#4| $) 42)) (-4055 ((|#5| $) 44)) (-2499 (((-107) $ $) 33)) (-2007 (($ $ (-501)) 55) (($ $ (-578 (-501))) 57)) (-3770 (((-578 $) $) 21)) (-1248 (($ (-578 $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (-3691 (((-786) $) 22)) (-1329 (($ $) 20)) (-1321 (($ $) 51)) (-2750 (((-107) $) 18)) (-3751 (((-107) $ $) 32)) (-3581 (((-501) $) 53)))
-(((-1005 |#1| |#2| |#3| |#4| |#5|) (-1004 |#1| |#2| |#3| |#4| |#5|) (-1001) (-1001) (-1001) (-1001) (-1001)) (T -1005))
-NIL
-(-1004 |#1| |#2| |#3| |#4| |#5|)
-((-2522 (((-1154) $) 23)) (-3192 (($ (-1070) (-402) |#2|) 11)) (-3691 (((-786) $) 16)))
-(((-1006 |#1| |#2|) (-13 (-364) (-10 -8 (-15 -3192 ($ (-1070) (-402) |#2|)))) (-777) (-389 |#1|)) (T -1006))
-((-3192 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-402)) (-4 *5 (-777)) (-5 *1 (-1006 *5 *4)) (-4 *4 (-389 *5)))))
-(-13 (-364) (-10 -8 (-15 -3192 ($ (-1070) (-402) |#2|))))
-((-1319 (((-107) |#5| |#5|) 37)) (-3494 (((-107) |#5| |#5|) 51)) (-1645 (((-107) |#5| (-578 |#5|)) 74) (((-107) |#5| |#5|) 60)) (-1400 (((-107) (-578 |#4|) (-578 |#4|)) 57)) (-3422 (((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) 62)) (-2394 (((-1154)) 33)) (-2660 (((-1154) (-1053) (-1053) (-1053)) 29)) (-3551 (((-578 |#5|) (-578 |#5|)) 81)) (-1894 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) 79)) (-2221 (((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107)) 101)) (-1461 (((-107) |#5| |#5|) 46)) (-1837 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3882 (((-107) (-578 |#4|) (-578 |#4|)) 56)) (-3091 (((-107) (-578 |#4|) (-578 |#4|)) 58)) (-3523 (((-107) (-578 |#4|) (-578 |#4|)) 59)) (-2918 (((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-2638 (((-578 |#5|) (-578 |#5|)) 42)))
-(((-1007 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2660 ((-1154) (-1053) (-1053) (-1053))) (-15 -2394 ((-1154))) (-15 -1319 ((-107) |#5| |#5|)) (-15 -2638 ((-578 |#5|) (-578 |#5|))) (-15 -1461 ((-107) |#5| |#5|)) (-15 -3494 ((-107) |#5| |#5|)) (-15 -1400 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3882 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3091 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3523 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -1837 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1645 ((-107) |#5| |#5|)) (-15 -1645 ((-107) |#5| (-578 |#5|))) (-15 -3551 ((-578 |#5|) (-578 |#5|))) (-15 -3422 ((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -1894 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-15 -2221 ((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -2918 ((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -1007))
-((-2918 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-977 *6 *7 *8 *9)))) (-2221 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-107)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) (-1894 (*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -3709 *7)))) (-4 *6 (-972 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-3422 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)))) (-3551 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-1645 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1007 *5 *6 *7 *8 *3)))) (-1645 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-3523 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3882 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-1400 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-3494 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-1461 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))) (-1319 (*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) (-2394 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-2660 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2660 ((-1154) (-1053) (-1053) (-1053))) (-15 -2394 ((-1154))) (-15 -1319 ((-107) |#5| |#5|)) (-15 -2638 ((-578 |#5|) (-578 |#5|))) (-15 -1461 ((-107) |#5| |#5|)) (-15 -3494 ((-107) |#5| |#5|)) (-15 -1400 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3882 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3091 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -3523 ((-107) (-578 |#4|) (-578 |#4|))) (-15 -1837 ((-3 (-107) "failed") |#5| |#5|)) (-15 -1645 ((-107) |#5| |#5|)) (-15 -1645 ((-107) |#5| (-578 |#5|))) (-15 -3551 ((-578 |#5|) (-578 |#5|))) (-15 -3422 ((-107) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -1894 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-15 -2221 ((-578 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|)))) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -2918 ((-3 (-2 (|:| -2499 (-578 |#4|)) (|:| -3709 |#5|) (|:| |ineq| (-578 |#4|))) "failed") (-578 |#4|) |#5| (-578 |#4|) (-107) (-107) (-107) (-107) (-107))))
-((-2702 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|) 94)) (-2903 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|) 70)) (-1480 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|) 88)) (-3421 (((-578 |#5|) |#4| |#5|) 109)) (-2167 (((-578 |#5|) |#4| |#5|) 116)) (-2581 (((-578 |#5|) |#4| |#5|) 117)) (-1642 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 95)) (-3485 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 115)) (-2627 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-1632 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107)) 82) (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-2690 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|) 77)) (-2634 (((-1154)) 35)) (-2469 (((-1154)) 25)) (-3504 (((-1154) (-1053) (-1053) (-1053)) 31)) (-3344 (((-1154) (-1053) (-1053) (-1053)) 20)))
-(((-1008 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3344 ((-1154) (-1053) (-1053) (-1053))) (-15 -2469 ((-1154))) (-15 -3504 ((-1154) (-1053) (-1053) (-1053))) (-15 -2634 ((-1154))) (-15 -2903 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -1632 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1632 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107))) (-15 -2690 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -1480 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -2627 ((-107) |#4| |#5|)) (-15 -1642 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -3421 ((-578 |#5|) |#4| |#5|)) (-15 -3485 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2167 ((-578 |#5|) |#4| |#5|)) (-15 -2627 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2581 ((-578 |#5|) |#4| |#5|)) (-15 -2702 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-977 |#1| |#2| |#3| |#4|)) (T -1008))
-((-2702 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2581 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2627 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2167 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3485 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-3421 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-1642 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2627 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-1480 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2690 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *5 (-107)) (-4 *8 (-972 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *4 (-777)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -3709 *9)))) (-5 *1 (-1008 *6 *7 *4 *8 *9)))) (-1632 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) (-2903 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) (-2634 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3504 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) (-2469 (*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) (-3344 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3344 ((-1154) (-1053) (-1053) (-1053))) (-15 -2469 ((-1154))) (-15 -3504 ((-1154) (-1053) (-1053) (-1053))) (-15 -2634 ((-1154))) (-15 -2903 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -1632 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1632 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) |#3| (-107))) (-15 -2690 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -1480 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#4| |#5|)) (-15 -2627 ((-107) |#4| |#5|)) (-15 -1642 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -3421 ((-578 |#5|) |#4| |#5|)) (-15 -3485 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2167 ((-578 |#5|) |#4| |#5|)) (-15 -2627 ((-578 (-2 (|:| |val| (-107)) (|:| -3709 |#5|))) |#4| |#5|)) (-15 -2581 ((-578 |#5|) |#4| |#5|)) (-15 -2702 ((-578 (-2 (|:| |val| |#4|) (|:| -3709 |#5|))) |#4| |#5|)))
-((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86) (((-578 $) (-578 |#4|) (-107)) 111)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-3180 (((-107) |#4| $) 136)) (-1209 (((-107) |#4| $) 133)) (-1972 (((-107) |#4| $) 137) (((-107) $) 134)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) 128)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 127)) (-1383 (((-3 |#4| "failed") $) 83)) (-1618 (((-578 $) |#4| $) 129)) (-2217 (((-3 (-107) (-578 $)) |#4| $) 132)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3420 (((-578 $) |#4| $) 125) (((-578 $) (-578 |#4|) $) 124) (((-578 $) (-578 |#4|) (-578 $)) 123) (((-578 $) |#4| (-578 $)) 122)) (-2297 (($ |#4| $) 117) (($ (-578 |#4|) $) 116)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77) (((-578 $) |#4| $) 115) (((-578 $) |#4| (-578 $)) 114) (((-578 $) (-578 |#4|) $) 113) (((-578 $) (-578 |#4|) (-578 $)) 112)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1709 (((-578 $) |#4| $) 121) (((-578 $) |#4| (-578 $)) 120) (((-578 $) (-578 |#4|) $) 119) (((-578 $) (-578 |#4|) (-578 $)) 118)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-3036 (((-107) |#4| $) 135)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167)))))
-(((-1009 |#1| |#2| |#3| |#4|) (-1180) (-419) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -1009))
-NIL
-(-13 (-977 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-891 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1104) . T))
-((-1217 (((-578 (-501)) (-501) (-501) (-501)) 20)) (-1613 (((-578 (-501)) (-501) (-501) (-501)) 12)) (-3416 (((-578 (-501)) (-501) (-501) (-501)) 16)) (-3601 (((-501) (-501) (-501)) 9)) (-3625 (((-1148 (-501)) (-578 (-501)) (-1148 (-501)) (-501)) 44) (((-1148 (-501)) (-1148 (-501)) (-1148 (-501)) (-501)) 39)) (-2976 (((-578 (-501)) (-578 (-501)) (-578 (-501)) (-107)) 26)) (-3525 (((-621 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501))) 43)) (-1858 (((-621 (-501)) (-578 (-501)) (-578 (-501))) 31)) (-3300 (((-578 (-621 (-501))) (-578 (-501))) 33)) (-1284 (((-578 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501))) 46)) (-2190 (((-621 (-501)) (-578 (-501)) (-578 (-501)) (-578 (-501))) 54)))
-(((-1010) (-10 -7 (-15 -2190 ((-621 (-501)) (-578 (-501)) (-578 (-501)) (-578 (-501)))) (-15 -1284 ((-578 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501)))) (-15 -3300 ((-578 (-621 (-501))) (-578 (-501)))) (-15 -1858 ((-621 (-501)) (-578 (-501)) (-578 (-501)))) (-15 -3525 ((-621 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501)))) (-15 -2976 ((-578 (-501)) (-578 (-501)) (-578 (-501)) (-107))) (-15 -3625 ((-1148 (-501)) (-1148 (-501)) (-1148 (-501)) (-501))) (-15 -3625 ((-1148 (-501)) (-578 (-501)) (-1148 (-501)) (-501))) (-15 -3601 ((-501) (-501) (-501))) (-15 -3416 ((-578 (-501)) (-501) (-501) (-501))) (-15 -1613 ((-578 (-501)) (-501) (-501) (-501))) (-15 -1217 ((-578 (-501)) (-501) (-501) (-501))))) (T -1010))
-((-1217 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501)))) (-1613 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501)))) (-3416 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501)))) (-3601 (*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-1010)))) (-3625 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1148 (-501))) (-5 *3 (-578 (-501))) (-5 *4 (-501)) (-5 *1 (-1010)))) (-3625 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1148 (-501))) (-5 *3 (-501)) (-5 *1 (-1010)))) (-2976 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *3 (-107)) (-5 *1 (-1010)))) (-3525 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-621 (-501))) (-5 *3 (-578 (-501))) (-5 *1 (-1010)))) (-1858 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-1010)))) (-3300 (*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-1010)))) (-1284 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *3 (-621 (-501))) (-5 *1 (-1010)))) (-2190 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-1010)))))
-(-10 -7 (-15 -2190 ((-621 (-501)) (-578 (-501)) (-578 (-501)) (-578 (-501)))) (-15 -1284 ((-578 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501)))) (-15 -3300 ((-578 (-621 (-501))) (-578 (-501)))) (-15 -1858 ((-621 (-501)) (-578 (-501)) (-578 (-501)))) (-15 -3525 ((-621 (-501)) (-578 (-501)) (-578 (-501)) (-621 (-501)))) (-15 -2976 ((-578 (-501)) (-578 (-501)) (-578 (-501)) (-107))) (-15 -3625 ((-1148 (-501)) (-1148 (-501)) (-1148 (-501)) (-501))) (-15 -3625 ((-1148 (-501)) (-578 (-501)) (-1148 (-501)) (-501))) (-15 -3601 ((-501) (-501) (-501))) (-15 -3416 ((-578 (-501)) (-501) (-501) (-501))) (-15 -1613 ((-578 (-501)) (-501) (-501) (-501))) (-15 -1217 ((-578 (-501)) (-501) (-501) (-501))))
-((-3948 (($ $ (-839)) 12)) (** (($ $ (-839)) 10)))
-(((-1011 |#1|) (-10 -8 (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839)))) (-1012)) (T -1011))
-NIL
-(-10 -8 (-15 -3948 (|#1| |#1| (-839))) (-15 ** (|#1| |#1| (-839))))
-((-3736 (((-107) $ $) 7)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3948 (($ $ (-839)) 13)) (-3751 (((-107) $ $) 6)) (** (($ $ (-839)) 14)) (* (($ $ $) 15)))
-(((-1012) (-1180)) (T -1012))
-((* (*1 *1 *1 *1) (-4 *1 (-1012))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-839)))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-839)))))
-(-13 (-1001) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-839))) (-15 -3948 ($ $ (-839)))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL (|has| |#3| (-1001)))) (-3292 (((-107) $) NIL (|has| |#3| (-123)))) (-1822 (($ (-839)) NIL (|has| |#3| (-959)))) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-3405 (($ $ $) NIL (|has| |#3| (-723)))) (-3177 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-2997 (((-107) $ (-701)) NIL)) (-3796 (((-701)) NIL (|has| |#3| (-336)))) (-1417 (((-501) $) NIL (|has| |#3| (-775)))) (-3754 ((|#3| $ (-501) |#3|) NIL (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1001)))) (-3490 (((-501) $) NIL (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001)))) (((-375 (-501)) $) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001)))) ((|#3| $) NIL (|has| |#3| (-1001)))) (-3868 (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#3| (-577 (-501))) (|has| |#3| (-959)))) (((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 $) (-1148 $)) NIL (|has| |#3| (-959))) (((-621 |#3|) (-621 $)) NIL (|has| |#3| (-959)))) (-2174 (((-3 $ "failed") $) NIL (|has| |#3| (-959)))) (-2890 (($) NIL (|has| |#3| (-336)))) (-2156 ((|#3| $ (-501) |#3|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#3| $ (-501)) 12)) (-2164 (((-107) $) NIL (|has| |#3| (-775)))) (-2732 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL (|has| |#3| (-959)))) (-4067 (((-107) $) NIL (|has| |#3| (-775)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3380 (((-578 |#3|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-2519 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#3| |#3|) $) NIL)) (-3104 (((-839) $) NIL (|has| |#3| (-336)))) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#3| (-1001)))) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3506 (($ (-839)) NIL (|has| |#3| (-336)))) (-3708 (((-1018) $) NIL (|has| |#3| (-1001)))) (-1190 ((|#3| $) NIL (|has| (-501) (-777)))) (-3084 (($ $ |#3|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#3|))) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-262 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001)))) (($ $ (-578 |#3|) (-578 |#3|)) NIL (-12 (|has| |#3| (-278 |#3|)) (|has| |#3| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-4137 (((-578 |#3|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#3| $ (-501) |#3|) NIL) ((|#3| $ (-501)) NIL)) (-1293 ((|#3| $ $) NIL (|has| |#3| (-959)))) (-3759 (($ (-1148 |#3|)) NIL)) (-3613 (((-125)) NIL (|has| |#3| (-331)))) (-2596 (($ $) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1 |#3| |#3|) (-701)) NIL (|has| |#3| (-959))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-959)))) (-3713 (((-701) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167))) (((-701) |#3| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#3| (-1001))))) (-3764 (($ $) NIL)) (-3691 (((-1148 |#3|) $) NIL) (((-786) $) NIL (|has| |#3| (-1001))) (($ (-501)) NIL (-1405 (-12 (|has| |#3| (-950 (-501))) (|has| |#3| (-1001))) (|has| |#3| (-959)))) (($ (-375 (-501))) NIL (-12 (|has| |#3| (-950 (-375 (-501)))) (|has| |#3| (-1001)))) (($ |#3|) NIL (|has| |#3| (-1001)))) (-3965 (((-701)) NIL (|has| |#3| (-959)))) (-1200 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4167)))) (-1720 (($ $) NIL (|has| |#3| (-775)))) (-3948 (($ $ (-701)) NIL (|has| |#3| (-959))) (($ $ (-839)) NIL (|has| |#3| (-959)))) (-1850 (($) NIL (|has| |#3| (-123)) CONST)) (-1925 (($) NIL (|has| |#3| (-959)) CONST)) (-3584 (($ $) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $ (-701)) NIL (-12 (|has| |#3| (-206)) (|has| |#3| (-959)))) (($ $ (-1070)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#3| (-820 (-1070))) (|has| |#3| (-959)))) (($ $ (-1 |#3| |#3|) (-701)) NIL (|has| |#3| (-959))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-959)))) (-3778 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3768 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3751 (((-107) $ $) NIL (|has| |#3| (-1001)))) (-3773 (((-107) $ $) NIL (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3762 (((-107) $ $) 17 (-1405 (|has| |#3| (-723)) (|has| |#3| (-775))))) (-3803 (($ $ |#3|) NIL (|has| |#3| (-331)))) (-3797 (($ $ $) NIL (|has| |#3| (-959))) (($ $) NIL (|has| |#3| (-959)))) (-3790 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-701)) NIL (|has| |#3| (-959))) (($ $ (-839)) NIL (|has| |#3| (-959)))) (* (($ $ $) NIL (|has| |#3| (-959))) (($ (-501) $) NIL (|has| |#3| (-959))) (($ $ |#3|) NIL (|has| |#3| (-657))) (($ |#3| $) NIL (|has| |#3| (-657))) (($ (-701) $) NIL (|has| |#3| (-123))) (($ (-839) $) NIL (|has| |#3| (-25)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1013 |#1| |#2| |#3|) (-211 |#1| |#3|) (-701) (-701) (-723)) (T -1013))
-NIL
-(-211 |#1| |#3|)
-((-2289 (((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 36)) (-3509 (((-501) (-1118 |#2| |#1|)) 67 (|has| |#1| (-419)))) (-2962 (((-501) (-1118 |#2| |#1|)) 53)) (-3722 (((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 44)) (-2555 (((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 55 (|has| |#1| (-419)))) (-3200 (((-578 |#1|) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 47)) (-1581 (((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|)) 52)))
-(((-1014 |#1| |#2|) (-10 -7 (-15 -2289 ((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3722 ((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3200 ((-578 |#1|) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -1581 ((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -2962 ((-501) (-1118 |#2| |#1|))) (IF (|has| |#1| (-419)) (PROGN (-15 -2555 ((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3509 ((-501) (-1118 |#2| |#1|)))) |noBranch|)) (-750) (-1070)) (T -1014))
-((-3509 (*1 *2 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-419)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))) (-2555 (*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-419)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))) (-1581 (*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))) (-3200 (*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 *4)) (-5 *1 (-1014 *4 *5)))) (-3722 (*1 *2 *3 *3) (-12 (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 (-1118 *5 *4))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-1118 *5 *4)))) (-2289 (*1 *2 *3 *3) (-12 (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 (-1118 *5 *4))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-1118 *5 *4)))))
-(-10 -7 (-15 -2289 ((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3722 ((-578 (-1118 |#2| |#1|)) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3200 ((-578 |#1|) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -1581 ((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -2962 ((-501) (-1118 |#2| |#1|))) (IF (|has| |#1| (-419)) (PROGN (-15 -2555 ((-501) (-1118 |#2| |#1|) (-1118 |#2| |#1|))) (-15 -3509 ((-501) (-1118 |#2| |#1|)))) |noBranch|))
-((-1417 (((-3 (-501) "failed") |#2| (-1070) |#2| (-1053)) 16) (((-3 (-501) "failed") |#2| (-1070) (-769 |#2|)) 14) (((-3 (-501) "failed") |#2|) 51)))
-(((-1015 |#1| |#2|) (-10 -7 (-15 -1417 ((-3 (-501) "failed") |#2|)) (-15 -1417 ((-3 (-501) "failed") |#2| (-1070) (-769 |#2|))) (-15 -1417 ((-3 (-501) "failed") |#2| (-1070) |#2| (-1053)))) (-13 (-508) (-777) (-950 (-501)) (-577 (-501)) (-419)) (-13 (-27) (-1090) (-389 |#1|))) (T -1015))
-((-1417 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-1053)) (-4 *6 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *6 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))))) (-1417 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-769 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *6 *3)))) (-1417 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))))
-(-10 -7 (-15 -1417 ((-3 (-501) "failed") |#2|)) (-15 -1417 ((-3 (-501) "failed") |#2| (-1070) (-769 |#2|))) (-15 -1417 ((-3 (-501) "failed") |#2| (-1070) |#2| (-1053))))
-((-1417 (((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)) (-1053)) 34) (((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-769 (-375 (-866 |#1|)))) 29) (((-3 (-501) "failed") (-375 (-866 |#1|))) 12)))
-(((-1016 |#1|) (-10 -7 (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)))) (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-769 (-375 (-866 |#1|))))) (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)) (-1053)))) (-419)) (T -1016))
-((-1417 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-375 (-866 *6))) (-5 *4 (-1070)) (-5 *5 (-1053)) (-4 *6 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *6)))) (-1417 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-769 (-375 (-866 *6)))) (-5 *3 (-375 (-866 *6))) (-4 *6 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *6)))) (-1417 (*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *4)))))
-(-10 -7 (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)))) (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-769 (-375 (-866 |#1|))))) (-15 -1417 ((-3 (-501) "failed") (-375 (-866 |#1|)) (-1070) (-375 (-866 |#1|)) (-1053))))
-((-1780 (((-282 (-501)) (-47)) 11)))
-(((-1017) (-10 -7 (-15 -1780 ((-282 (-501)) (-47))))) (T -1017))
-((-1780 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-282 (-501))) (-5 *1 (-1017)))))
-(-10 -7 (-15 -1780 ((-282 (-501)) (-47))))
-((-3736 (((-107) $ $) NIL)) (-2308 (($ $) 41)) (-3292 (((-107) $) 65)) (-1950 (($ $ $) 48)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 84)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-2619 (($ $ $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) 74)) (-3676 (($ $) NIL)) (-1559 (((-373 $) $) NIL)) (-2781 (((-107) $ $) NIL)) (-1417 (((-501) $) NIL)) (-1525 (($ $ $) 71)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL)) (-3490 (((-501) $) NIL)) (-3023 (($ $ $) 59)) (-3868 (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 78) (((-621 (-501)) (-621 $)) 28)) (-2174 (((-3 $ "failed") $) NIL)) (-2870 (((-3 (-375 (-501)) "failed") $) NIL)) (-1696 (((-107) $) NIL)) (-3518 (((-375 (-501)) $) NIL)) (-2890 (($) 81) (($ $) 82)) (-3034 (($ $ $) 58)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL)) (-1628 (((-107) $) NIL)) (-3185 (($ $ $ $) NIL)) (-2002 (($ $ $) 79)) (-2164 (((-107) $) NIL)) (-2940 (($ $ $) NIL)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL)) (-1355 (((-107) $) 66)) (-3729 (((-107) $) 64)) (-3031 (($ $) 42)) (-3493 (((-3 $ "failed") $) NIL)) (-4067 (((-107) $) 75)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-4124 (($ $ $ $) 72)) (-4111 (($ $ $) 68) (($) 39)) (-1323 (($ $ $) 67) (($) 38)) (-4100 (($ $) NIL)) (-4139 (($ $) 70)) (-1697 (($ $ $) NIL) (($ (-578 $)) NIL)) (-3460 (((-1053) $) NIL)) (-3437 (($ $ $) NIL)) (-3746 (($) NIL T CONST)) (-2170 (($ $) 50)) (-3708 (((-1018) $) NIL) (($ $) 69)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL)) (-3664 (($ $ $) 62) (($ (-578 $)) NIL)) (-3260 (($ $) NIL)) (-3739 (((-373 $) $) NIL)) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL)) (-3694 (((-3 $ "failed") $ $) NIL)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL)) (-3172 (((-107) $) NIL)) (-1864 (((-701) $) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 61)) (-2596 (($ $ (-701)) NIL) (($ $) NIL)) (-2565 (($ $) 51)) (-3764 (($ $) NIL)) (-1248 (((-501) $) 32) (((-490) $) NIL) (((-810 (-501)) $) NIL) (((-346) $) NIL) (((-199) $) NIL)) (-3691 (((-786) $) 31) (($ (-501)) 80) (($ $) NIL) (($ (-501)) 80)) (-3965 (((-701)) NIL)) (-1808 (((-107) $ $) NIL)) (-1299 (($ $ $) NIL)) (-1965 (($) 37)) (-2442 (((-107) $ $) NIL)) (-3429 (($ $ $ $) 73)) (-1720 (($ $) 63)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-3099 (($ $ $) 44)) (-1850 (($) 35 T CONST)) (-3038 (($ $ $) 47)) (-1925 (($) 36 T CONST)) (-3671 (((-1053) $) 21) (((-1053) $ (-107)) 23) (((-1154) (-753) $) 24) (((-1154) (-753) $ (-107)) 25)) (-3045 (($ $) 45)) (-3584 (($ $ (-701)) NIL) (($ $) NIL)) (-3032 (($ $ $) 46)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 40)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 49)) (-3092 (($ $ $) 43)) (-3797 (($ $) 52) (($ $ $) 54)) (-3790 (($ $ $) 53)) (** (($ $ (-839)) NIL) (($ $ (-701)) 57)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 34) (($ $ $) 55)))
-(((-1018) (-13 (-500) (-597) (-751) (-10 -8 (-6 -4154) (-6 -4159) (-6 -4155) (-15 -1323 ($)) (-15 -4111 ($)) (-15 -3031 ($ $)) (-15 -2308 ($ $)) (-15 -3092 ($ $ $)) (-15 -3099 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -3045 ($ $)) (-15 -3032 ($ $ $)) (-15 -3038 ($ $ $))))) (T -1018))
-((-3099 (*1 *1 *1 *1) (-5 *1 (-1018))) (-3092 (*1 *1 *1 *1) (-5 *1 (-1018))) (-2308 (*1 *1 *1) (-5 *1 (-1018))) (-1323 (*1 *1) (-5 *1 (-1018))) (-4111 (*1 *1) (-5 *1 (-1018))) (-3031 (*1 *1 *1) (-5 *1 (-1018))) (-1950 (*1 *1 *1 *1) (-5 *1 (-1018))) (-3045 (*1 *1 *1) (-5 *1 (-1018))) (-3032 (*1 *1 *1 *1) (-5 *1 (-1018))) (-3038 (*1 *1 *1 *1) (-5 *1 (-1018))))
-(-13 (-500) (-597) (-751) (-10 -8 (-6 -4154) (-6 -4159) (-6 -4155) (-15 -1323 ($)) (-15 -4111 ($)) (-15 -3031 ($ $)) (-15 -2308 ($ $)) (-15 -3092 ($ $ $)) (-15 -3099 ($ $ $)) (-15 -1950 ($ $ $)) (-15 -3045 ($ $)) (-15 -3032 ($ $ $)) (-15 -3038 ($ $ $))))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2425 ((|#1| $) 44)) (-2997 (((-107) $ (-701)) 8)) (-2540 (($) 7 T CONST)) (-2988 ((|#1| |#1| $) 46)) (-1260 ((|#1| $) 45)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1328 ((|#1| $) 39)) (-4114 (($ |#1| $) 40)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1251 ((|#1| $) 41)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-3661 (((-701) $) 43)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) 42)) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-1019 |#1|) (-1180) (-1104)) (T -1019))
-((-2988 (*1 *2 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104)))) (-1260 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104)))) (-2425 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104)))) (-3661 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4167) (-15 -2988 (|t#1| |t#1| $)) (-15 -1260 (|t#1| $)) (-15 -2425 (|t#1| $)) (-15 -3661 ((-701) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-2225 ((|#3| $) 76)) (-3765 (((-3 (-501) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3490 (((-501) $) NIL) (((-375 (-501)) $) NIL) ((|#3| $) 37)) (-3868 (((-621 (-501)) (-621 $)) NIL) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL) (((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 $) (-1148 $)) 73) (((-621 |#3|) (-621 $)) 65)) (-2596 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070)) NIL) (($ $ (-701)) NIL) (($ $) NIL)) (-1651 ((|#3| $) 78)) (-1566 ((|#4| $) 32)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ |#3|) 16)) (** (($ $ (-839)) NIL) (($ $ (-701)) 15) (($ $ (-501)) 82)))
-(((-1020 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-501))) (-15 -1651 (|#3| |#1|)) (-15 -2225 (|#3| |#1|)) (-15 -1566 (|#4| |#1|)) (-15 -3868 ((-621 |#3|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3691 (|#1| |#3|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|) (-701))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3691 (|#1| (-501))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839))) (-15 -3691 ((-786) |#1|))) (-1021 |#2| |#3| |#4| |#5|) (-701) (-959) (-211 |#2| |#3|) (-211 |#2| |#3|)) (T -1020))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-501))) (-15 -1651 (|#3| |#1|)) (-15 -2225 (|#3| |#1|)) (-15 -1566 (|#4| |#1|)) (-15 -3868 ((-621 |#3|) (-621 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 |#3|)) (|:| |vec| (-1148 |#3|))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 |#1|) (-1148 |#1|))) (-15 -3868 ((-621 (-501)) (-621 |#1|))) (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3691 (|#1| |#3|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-501) |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|) (-701))) (-15 -2596 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3691 (|#1| (-501))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2225 ((|#2| $) 72)) (-2981 (((-107) $) 112)) (-3177 (((-3 $ "failed") $ $) 19)) (-4007 (((-107) $) 110)) (-2997 (((-107) $ (-701)) 102)) (-1292 (($ |#2|) 75)) (-2540 (($) 17 T CONST)) (-1933 (($ $) 129 (|has| |#2| (-276)))) (-2358 ((|#3| $ (-501)) 124)) (-3765 (((-3 (-501) "failed") $) 86 (|has| |#2| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) 84 (|has| |#2| (-950 (-375 (-501))))) (((-3 |#2| "failed") $) 81)) (-3490 (((-501) $) 87 (|has| |#2| (-950 (-501)))) (((-375 (-501)) $) 85 (|has| |#2| (-950 (-375 (-501))))) ((|#2| $) 80)) (-3868 (((-621 (-501)) (-621 $)) 79 (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 78 (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 77) (((-621 |#2|) (-621 $)) 76)) (-2174 (((-3 $ "failed") $) 34)) (-3689 (((-701) $) 130 (|has| |#2| (-508)))) (-1905 ((|#2| $ (-501) (-501)) 122)) (-2732 (((-578 |#2|) $) 95 (|has| $ (-6 -4167)))) (-1355 (((-107) $) 31)) (-3752 (((-701) $) 131 (|has| |#2| (-508)))) (-3552 (((-578 |#4|) $) 132 (|has| |#2| (-508)))) (-1648 (((-701) $) 118)) (-3248 (((-701) $) 119)) (-3379 (((-107) $ (-701)) 103)) (-3572 ((|#2| $) 67 (|has| |#2| (-6 (-4169 "*"))))) (-1567 (((-501) $) 114)) (-2734 (((-501) $) 116)) (-3380 (((-578 |#2|) $) 94 (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-2969 (((-501) $) 115)) (-3491 (((-501) $) 117)) (-2630 (($ (-578 (-578 |#2|))) 109)) (-2519 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2237 (((-578 (-578 |#2|)) $) 120)) (-3155 (((-107) $ (-701)) 104)) (-3460 (((-1053) $) 9)) (-1616 (((-3 $ "failed") $) 66 (|has| |#2| (-331)))) (-3708 (((-1018) $) 10)) (-3694 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-508)))) (-2369 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) 91 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 90 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 88 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) 108)) (-1407 (((-107) $) 105)) (-3122 (($) 106)) (-2007 ((|#2| $ (-501) (-501) |#2|) 123) ((|#2| $ (-501) (-501)) 121)) (-2596 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-701)) 51) (($ $ (-578 (-1070)) (-578 (-701))) 44 (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) 43 (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) 42 (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) 41 (|has| |#2| (-820 (-1070)))) (($ $ (-701)) 39 (|has| |#2| (-206))) (($ $) 37 (|has| |#2| (-206)))) (-1651 ((|#2| $) 71)) (-3133 (($ (-578 |#2|)) 74)) (-3697 (((-107) $) 111)) (-1566 ((|#3| $) 73)) (-3315 ((|#2| $) 68 (|has| |#2| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4167))) (((-701) |#2| $) 93 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 107)) (-2952 ((|#4| $ (-501)) 125)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 83 (|has| |#2| (-950 (-375 (-501))))) (($ |#2|) 82)) (-3965 (((-701)) 29)) (-1200 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4167)))) (-3719 (((-107) $) 113)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-701)) 49) (($ $ (-578 (-1070)) (-578 (-701))) 48 (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) 47 (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) 46 (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) 45 (|has| |#2| (-820 (-1070)))) (($ $ (-701)) 40 (|has| |#2| (-206))) (($ $) 38 (|has| |#2| (-206)))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#2|) 128 (|has| |#2| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 65 (|has| |#2| (-331)))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3581 (((-701) $) 101 (|has| $ (-6 -4167)))))
-(((-1021 |#1| |#2| |#3| |#4|) (-1180) (-701) (-959) (-211 |t#1| |t#2|) (-211 |t#1| |t#2|)) (T -1021))
-((-1292 (*1 *1 *2) (-12 (-4 *2 (-959)) (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-578 *4)) (-4 *4 (-959)) (-4 *1 (-1021 *3 *4 *5 *6)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *3 *4)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *2 *5)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *2 (-211 *3 *4)))) (-2225 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (-4 *2 (-959)))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (-4 *2 (-959)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *2 (-211 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *2 *5)) (-4 *4 (-959)) (-4 *2 (-211 *3 *4)) (-4 *5 (-211 *3 *4)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) (-1616 (*1 *1 *1) (|partial| -12 (-4 *1 (-1021 *2 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-211 *2 *3)) (-4 *5 (-211 *2 *3)) (-4 *3 (-331)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1021 *3 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *3 *4)) (-4 *4 (-331)))))
-(-13 (-204 |t#2|) (-106 |t#2| |t#2|) (-961 |t#1| |t#1| |t#2| |t#3| |t#4|) (-380 |t#2|) (-345 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-648 |t#2|)) |noBranch|) (-15 -1292 ($ |t#2|)) (-15 -3133 ($ (-578 |t#2|))) (-15 -1566 (|t#3| $)) (-15 -2225 (|t#2| $)) (-15 -1651 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4169 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3315 (|t#2| $)) (-15 -3572 (|t#2| $))) |noBranch|) (IF (|has| |t#2| (-331)) (PROGN (-15 -1616 ((-3 $ "failed") $)) (-15 ** ($ $ (-501)))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4169 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-555 (-786)) . T) ((-204 |#2|) . T) ((-206) |has| |#2| (-206)) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-345 |#2|) . T) ((-380 |#2|) . T) ((-454 |#2|) . T) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-583 |#2|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#2| (-577 (-501))) ((-577 |#2|) . T) ((-648 |#2|) -1405 (|has| |#2| (-156)) (|has| |#2| (-6 (-4169 "*")))) ((-657) . T) ((-820 (-1070)) |has| |#2| (-820 (-1070))) ((-961 |#1| |#1| |#2| |#3| |#4|) . T) ((-950 (-375 (-501))) |has| |#2| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#2| (-950 (-501))) ((-950 |#2|) . T) ((-964 |#2|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1104) . T))
-((-1755 ((|#4| |#4|) 67)) (-2475 ((|#4| |#4|) 62)) (-2408 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|) 75)) (-1387 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 66)) (-3997 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 64)))
-(((-1022 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2475 (|#4| |#4|)) (-15 -3997 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1755 (|#4| |#4|)) (-15 -1387 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2408 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|))) (-276) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|)) (T -1022))
-((-2408 (*1 *2 *3 *4) (-12 (-4 *5 (-276)) (-4 *6 (-340 *5)) (-4 *4 (-340 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-1022 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) (-1387 (*1 *2 *3) (-12 (-4 *4 (-276)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1022 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-1755 (*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1022 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-3997 (*1 *2 *3) (-12 (-4 *4 (-276)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1022 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1022 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(-10 -7 (-15 -2475 (|#4| |#4|)) (-15 -3997 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1755 (|#4| |#4|)) (-15 -1387 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2408 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4119 (-578 |#3|))) |#4| |#3|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 17)) (-3800 (((-578 |#2|) $) 160)) (-3728 (((-1064 $) $ |#2|) 54) (((-1064 |#1|) $) 43)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 110 (|has| |#1| (-508)))) (-2865 (($ $) 112 (|has| |#1| (-508)))) (-1639 (((-107) $) 114 (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 |#2|)) 193)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) 157) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 |#2| "failed") $) NIL)) (-3490 ((|#1| $) 155) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) ((|#2| $) NIL)) (-1749 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-3858 (($ $) 197)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) 82)) (-3533 (($ $) NIL (|has| |#1| (-419))) (($ $ |#2|) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-487 |#2|) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| |#1| (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| |#1| (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-1355 (((-107) $) 19)) (-3706 (((-701) $) 26)) (-3794 (($ (-1064 |#1|) |#2|) 48) (($ (-1064 $) |#2|) 64)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) 31)) (-3787 (($ |#1| (-487 |#2|)) 71) (($ $ |#2| (-701)) 52) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ |#2|) NIL)) (-2285 (((-487 |#2|) $) 187) (((-701) $ |#2|) 188) (((-578 (-701)) $ (-578 |#2|)) 189)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-487 |#2|) (-487 |#2|)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 122)) (-2752 (((-3 |#2| "failed") $) 162)) (-3845 (($ $) 196)) (-3850 ((|#1| $) 37)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| |#2|) (|:| -3027 (-701))) "failed") $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 32)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 140 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) 145 (|has| |#1| (-419))) (($ $ $) 132 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#1| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-830)))) (-3694 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-508)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-578 |#2|) (-578 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-578 |#2|) (-578 $)) 177)) (-2532 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-2596 (($ $ |#2|) 195) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1201 (((-487 |#2|) $) 183) (((-701) $ |#2|) 179) (((-578 (-701)) $ (-578 |#2|)) 181)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| |#1| (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| |#1| (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| |#1| (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#1| $) 128 (|has| |#1| (-419))) (($ $ |#2|) 131 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3691 (((-786) $) 151) (($ (-501)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-508))) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-1303 (((-578 |#1|) $) 154)) (-2495 ((|#1| $ (-487 |#2|)) 73) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 79)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) 117 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 102) (($ $ (-701)) 104)) (-1850 (($) 12 T CONST)) (-1925 (($) 14 T CONST)) (-3584 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 97)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 126 (|has| |#1| (-331)))) (-3797 (($ $) 85) (($ $ $) 95)) (-3790 (($ $ $) 49)) (** (($ $ (-839)) 103) (($ $ (-701)) 100)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 88) (($ $ $) 65) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1023 |#1| |#2|) (-870 |#1| (-487 |#2|) |#2|) (-959) (-777)) (T -1023))
-NIL
-(-870 |#1| (-487 |#2|) |#2|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3978 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 117 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 113 (|has| |#1| (-37 (-375 (-501)))))) (-3984 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3430 (((-866 |#1|) $ (-701)) NIL) (((-866 |#1|) $ (-701) (-701)) NIL)) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $ |#2|) NIL) (((-701) $ |#2| (-701)) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2706 (((-107) $) NIL)) (-3787 (($ $ (-578 |#2|) (-578 (-487 |#2|))) NIL) (($ $ |#2| (-487 |#2|)) NIL) (($ |#1| (-487 |#2|)) NIL) (($ $ |#2| (-701)) 57) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) 111 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3188 (($ $ |#2|) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3517 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-37 (-375 (-501)))))) (-3718 (($ $ (-701)) 15)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-1989 (($ $) 109 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (($ $ |#2| $) 95) (($ $ (-578 |#2|) (-578 $)) 88) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL)) (-2596 (($ $ |#2|) 98) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-1201 (((-487 |#2|) $) NIL)) (-1401 (((-1 (-1048 |#3|) |#3|) (-578 |#2|) (-578 (-1048 |#3|))) 78)) (-3991 (($ $) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 115 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 17)) (-3691 (((-786) $) 179) (($ (-501)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-508))) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#2|) 64) (($ |#3|) 62)) (-2495 ((|#1| $ (-487 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL) ((|#3| $ (-701)) 42)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-4003 (($ $) 153 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 149 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 157 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3550 (($ $) 159 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 155 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 151 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 18 T CONST)) (-1925 (($) 10 T CONST)) (-3584 (($ $ |#2|) NIL) (($ $ (-578 |#2|)) NIL) (($ $ |#2| (-701)) NIL) (($ $ (-578 |#2|) (-578 (-701))) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) 181 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 60)) (** (($ $ (-839)) NIL) (($ $ (-701)) 69) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 101 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 59) (($ $ (-375 (-501))) 106 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 104 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1024 |#1| |#2| |#3|) (-13 (-671 |#1| |#2|) (-10 -8 (-15 -2495 (|#3| $ (-701))) (-15 -3691 ($ |#2|)) (-15 -3691 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1401 ((-1 (-1048 |#3|) |#3|) (-578 |#2|) (-578 (-1048 |#3|)))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ |#2| |#1|)) (-15 -3517 ($ (-1 $) |#2| |#1|))) |noBranch|))) (-959) (-777) (-870 |#1| (-487 |#2|) |#2|)) (T -1024))
-((-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *2 (-870 *4 (-487 *5) *5)) (-5 *1 (-1024 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-777)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *2 (-777)) (-5 *1 (-1024 *3 *2 *4)) (-4 *4 (-870 *3 (-487 *2) *2)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-5 *1 (-1024 *3 *4 *2)) (-4 *2 (-870 *3 (-487 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-5 *1 (-1024 *3 *4 *2)) (-4 *2 (-870 *3 (-487 *4) *4)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1048 *7))) (-4 *6 (-777)) (-4 *7 (-870 *5 (-487 *6) *6)) (-4 *5 (-959)) (-5 *2 (-1 (-1048 *7) *7)) (-5 *1 (-1024 *5 *6 *7)))) (-3188 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-4 *2 (-777)) (-5 *1 (-1024 *3 *2 *4)) (-4 *4 (-870 *3 (-487 *2) *2)))) (-3517 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1024 *4 *3 *5))) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959)) (-4 *3 (-777)) (-5 *1 (-1024 *4 *3 *5)) (-4 *5 (-870 *4 (-487 *3) *3)))))
-(-13 (-671 |#1| |#2|) (-10 -8 (-15 -2495 (|#3| $ (-701))) (-15 -3691 ($ |#2|)) (-15 -3691 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1401 ((-1 (-1048 |#3|) |#3|) (-578 |#2|) (-578 (-1048 |#3|)))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ |#2| |#1|)) (-15 -3517 ($ (-1 $) |#2| |#1|))) |noBranch|)))
-((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86) (((-578 $) (-578 |#4|) (-107)) 111)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 126)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-3180 (((-107) |#4| $) 136)) (-1209 (((-107) |#4| $) 133)) (-1972 (((-107) |#4| $) 137) (((-107) $) 134)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) 128)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 127)) (-1383 (((-3 |#4| "failed") $) 83)) (-1618 (((-578 $) |#4| $) 129)) (-2217 (((-3 (-107) (-578 $)) |#4| $) 132)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-3420 (((-578 $) |#4| $) 125) (((-578 $) (-578 |#4|) $) 124) (((-578 $) (-578 |#4|) (-578 $)) 123) (((-578 $) |#4| (-578 $)) 122)) (-2297 (($ |#4| $) 117) (($ (-578 |#4|) $) 116)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77) (((-578 $) |#4| $) 115) (((-578 $) |#4| (-578 $)) 114) (((-578 $) (-578 |#4|) $) 113) (((-578 $) (-578 |#4|) (-578 $)) 112)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1709 (((-578 $) |#4| $) 121) (((-578 $) |#4| (-578 $)) 120) (((-578 $) (-578 |#4|) $) 119) (((-578 $) (-578 |#4|) (-578 $)) 118)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-3036 (((-107) |#4| $) 135)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167)))))
-(((-1025 |#1| |#2| |#3| |#4|) (-1180) (-419) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -1025))
-NIL
-(-13 (-1009 |t#1| |t#2| |t#3| |t#4|) (-714 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-714 |#1| |#2| |#3| |#4|) . T) ((-891 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1009 |#1| |#2| |#3| |#4|) . T) ((-1099 |#1| |#2| |#3| |#4|) . T) ((-1104) . T))
-((-2778 (((-578 |#2|) |#1|) 12)) (-2306 (((-578 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-578 |#2|) |#1|) 47)) (-3865 (((-578 |#2|) |#2| |#2| |#2|) 35) (((-578 |#2|) |#1|) 45)) (-1541 ((|#2| |#1|) 42)) (-1834 (((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-2694 (((-578 |#2|) |#2| |#2|) 34) (((-578 |#2|) |#1|) 44)) (-1259 (((-578 |#2|) |#2| |#2| |#2| |#2|) 36) (((-578 |#2|) |#1|) 46)) (-4144 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-3443 ((|#2| |#2| |#2| |#2|) 39)) (-1242 ((|#2| |#2| |#2|) 38)) (-1776 ((|#2| |#2| |#2| |#2| |#2|) 40)))
-(((-1026 |#1| |#2|) (-10 -7 (-15 -2778 ((-578 |#2|) |#1|)) (-15 -1541 (|#2| |#1|)) (-15 -1834 ((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2694 ((-578 |#2|) |#1|)) (-15 -3865 ((-578 |#2|) |#1|)) (-15 -1259 ((-578 |#2|) |#1|)) (-15 -2306 ((-578 |#2|) |#1|)) (-15 -2694 ((-578 |#2|) |#2| |#2|)) (-15 -3865 ((-578 |#2|) |#2| |#2| |#2|)) (-15 -1259 ((-578 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2306 ((-578 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1242 (|#2| |#2| |#2|)) (-15 -3443 (|#2| |#2| |#2| |#2|)) (-15 -1776 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4144 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1125 |#2|) (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (T -1026))
-((-4144 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-1776 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-3443 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-1242 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-2306 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))) (-1259 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))) (-3865 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))) (-2694 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))) (-2306 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) (-1259 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) (-2694 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) (-1834 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-2 (|:| |solns| (-578 *5)) (|:| |maps| (-578 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1026 *3 *5)) (-4 *3 (-1125 *5)))) (-1541 (*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -2778 ((-578 |#2|) |#1|)) (-15 -1541 (|#2| |#1|)) (-15 -1834 ((-2 (|:| |solns| (-578 |#2|)) (|:| |maps| (-578 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2694 ((-578 |#2|) |#1|)) (-15 -3865 ((-578 |#2|) |#1|)) (-15 -1259 ((-578 |#2|) |#1|)) (-15 -2306 ((-578 |#2|) |#1|)) (-15 -2694 ((-578 |#2|) |#2| |#2|)) (-15 -3865 ((-578 |#2|) |#2| |#2| |#2|)) (-15 -1259 ((-578 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2306 ((-578 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -1242 (|#2| |#2| |#2|)) (-15 -3443 (|#2| |#2| |#2| |#2|)) (-15 -1776 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4144 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2605 (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|))))) 94) (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070))) 93) (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|)))) 91) (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))) (-578 (-1070))) 89) (((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|)))) 75) (((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))) (-1070)) 76) (((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|))) 70) (((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)) (-1070)) 59)) (-1532 (((-578 (-578 (-282 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070))) 87) (((-578 (-282 |#1|)) (-375 (-866 |#1|)) (-1070)) 43)) (-2759 (((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-375 (-866 |#1|)) (-1070)) 97) (((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070)) 96)))
-(((-1027 |#1|) (-10 -7 (-15 -2605 ((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070)))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -1532 ((-578 (-282 |#1|)) (-375 (-866 |#1|)) (-1070))) (-15 -1532 ((-578 (-578 (-282 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2759 ((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2759 ((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-375 (-866 |#1|)) (-1070)))) (-13 (-276) (-777) (-134))) (T -1027))
-((-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-1060 (-578 (-282 *5)) (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 *5)))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-1060 (-578 (-282 *5)) (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-282 *5)))) (-5 *1 (-1027 *5)))) (-1532 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-282 *5))) (-5 *1 (-1027 *5)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-578 (-262 (-375 (-866 *4))))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *4))))) (-5 *1 (-1027 *4)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 *5))))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-578 (-375 (-866 *4)))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *4))))) (-5 *1 (-1027 *4)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-262 (-375 (-866 *4)))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1027 *4)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 *5)))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1027 *5)))) (-2605 (*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1027 *4)))) (-2605 (*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1027 *5)))))
-(-10 -7 (-15 -2605 ((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)) (-1070))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-375 (-866 |#1|)))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2605 ((-578 (-262 (-282 |#1|))) (-262 (-375 (-866 |#1|))))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-375 (-866 |#1|))))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070)))) (-15 -2605 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -1532 ((-578 (-282 |#1|)) (-375 (-866 |#1|)) (-1070))) (-15 -1532 ((-578 (-578 (-282 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2759 ((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2759 ((-1060 (-578 (-282 |#1|)) (-578 (-262 (-282 |#1|)))) (-375 (-866 |#1|)) (-1070))))
-((-2296 (((-375 (-1064 (-282 |#1|))) (-1148 (-282 |#1|)) (-375 (-1064 (-282 |#1|))) (-501)) 27)) (-2897 (((-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|)))) 39)))
-(((-1028 |#1|) (-10 -7 (-15 -2897 ((-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))))) (-15 -2296 ((-375 (-1064 (-282 |#1|))) (-1148 (-282 |#1|)) (-375 (-1064 (-282 |#1|))) (-501)))) (-13 (-508) (-777))) (T -1028))
-((-2296 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-375 (-1064 (-282 *5)))) (-5 *3 (-1148 (-282 *5))) (-5 *4 (-501)) (-4 *5 (-13 (-508) (-777))) (-5 *1 (-1028 *5)))) (-2897 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-375 (-1064 (-282 *3)))) (-4 *3 (-13 (-508) (-777))) (-5 *1 (-1028 *3)))))
-(-10 -7 (-15 -2897 ((-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))) (-375 (-1064 (-282 |#1|))))) (-15 -2296 ((-375 (-1064 (-282 |#1|))) (-1148 (-282 |#1|)) (-375 (-1064 (-282 |#1|))) (-501))))
-((-2778 (((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-282 |#1|))) (-578 (-1070))) 212) (((-578 (-262 (-282 |#1|))) (-282 |#1|) (-1070)) 20) (((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)) (-1070)) 26) (((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|))) 25) (((-578 (-262 (-282 |#1|))) (-282 |#1|)) 21)))
-(((-1029 |#1|) (-10 -7 (-15 -2778 ((-578 (-262 (-282 |#1|))) (-282 |#1|))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)) (-1070))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-282 |#1|) (-1070))) (-15 -2778 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-282 |#1|))) (-578 (-1070))))) (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (T -1029))
-((-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1029 *5)) (-5 *3 (-578 (-262 (-282 *5)))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-282 *5)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-262 (-282 *5))))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-262 (-282 *4))))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-282 *4)))))
-(-10 -7 (-15 -2778 ((-578 (-262 (-282 |#1|))) (-282 |#1|))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-262 (-282 |#1|)) (-1070))) (-15 -2778 ((-578 (-262 (-282 |#1|))) (-282 |#1|) (-1070))) (-15 -2778 ((-578 (-578 (-262 (-282 |#1|)))) (-578 (-262 (-282 |#1|))) (-578 (-1070)))))
-((-1576 ((|#2| |#2|) 20 (|has| |#1| (-777))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-2420 ((|#2| |#2|) 19 (|has| |#1| (-777))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15)))
-(((-1030 |#1| |#2|) (-10 -7 (-15 -2420 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -1576 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-777)) (PROGN (-15 -2420 (|#2| |#2|)) (-15 -1576 (|#2| |#2|))) |noBranch|)) (-1104) (-13 (-548 (-501) |#1|) (-10 -7 (-6 -4167) (-6 -4168)))) (T -1030))
-((-1576 (*1 *2 *2) (-12 (-4 *3 (-777)) (-4 *3 (-1104)) (-5 *1 (-1030 *3 *2)) (-4 *2 (-13 (-548 (-501) *3) (-10 -7 (-6 -4167) (-6 -4168)))))) (-2420 (*1 *2 *2) (-12 (-4 *3 (-777)) (-4 *3 (-1104)) (-5 *1 (-1030 *3 *2)) (-4 *2 (-13 (-548 (-501) *3) (-10 -7 (-6 -4167) (-6 -4168)))))) (-1576 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-1030 *4 *2)) (-4 *2 (-13 (-548 (-501) *4) (-10 -7 (-6 -4167) (-6 -4168)))))) (-2420 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-1030 *4 *2)) (-4 *2 (-13 (-548 (-501) *4) (-10 -7 (-6 -4167) (-6 -4168)))))))
-(-10 -7 (-15 -2420 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -1576 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-777)) (PROGN (-15 -2420 (|#2| |#2|)) (-15 -1576 (|#2| |#2|))) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-1446 (((-1059 3 |#1|) $) 105)) (-3468 (((-107) $) 72)) (-3208 (($ $ (-578 (-863 |#1|))) 20) (($ $ (-578 (-578 |#1|))) 75) (($ (-578 (-863 |#1|))) 74) (((-578 (-863 |#1|)) $) 73)) (-3044 (((-107) $) 41)) (-1801 (($ $ (-863 |#1|)) 46) (($ $ (-578 |#1|)) 51) (($ $ (-701)) 53) (($ (-863 |#1|)) 47) (((-863 |#1|) $) 45)) (-2905 (((-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701))) $) 103)) (-3401 (((-701) $) 26)) (-1206 (((-701) $) 25)) (-1671 (($ $ (-701) (-863 |#1|)) 39)) (-2014 (((-107) $) 82)) (-3704 (($ $ (-578 (-578 (-863 |#1|))) (-578 (-155)) (-155)) 89) (($ $ (-578 (-578 (-578 |#1|))) (-578 (-155)) (-155)) 91) (($ $ (-578 (-578 (-863 |#1|))) (-107) (-107)) 85) (($ $ (-578 (-578 (-578 |#1|))) (-107) (-107)) 93) (($ (-578 (-578 (-863 |#1|)))) 86) (($ (-578 (-578 (-863 |#1|))) (-107) (-107)) 87) (((-578 (-578 (-863 |#1|))) $) 84)) (-3216 (($ (-578 $)) 28) (($ $ $) 29)) (-1727 (((-578 (-155)) $) 101)) (-3918 (((-578 (-863 |#1|)) $) 96)) (-2511 (((-578 (-578 (-155))) $) 100)) (-4036 (((-578 (-578 (-578 (-863 |#1|)))) $) NIL)) (-3124 (((-578 (-578 (-578 (-701)))) $) 98)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3653 (((-701) $ (-578 (-863 |#1|))) 37)) (-3277 (((-107) $) 54)) (-1542 (($ $ (-578 (-863 |#1|))) 56) (($ $ (-578 (-578 |#1|))) 62) (($ (-578 (-863 |#1|))) 57) (((-578 (-863 |#1|)) $) 55)) (-3569 (($) 23) (($ (-1059 3 |#1|)) 24)) (-3764 (($ $) 35)) (-3249 (((-578 $) $) 34)) (-3913 (($ (-578 $)) 31)) (-4021 (((-578 $) $) 33)) (-3691 (((-786) $) 109)) (-3026 (((-107) $) 64)) (-1330 (($ $ (-578 (-863 |#1|))) 66) (($ $ (-578 (-578 |#1|))) 69) (($ (-578 (-863 |#1|))) 67) (((-578 (-863 |#1|)) $) 65)) (-1266 (($ $) 104)) (-3751 (((-107) $ $) NIL)))
-(((-1031 |#1|) (-1032 |#1|) (-959)) (T -1031))
-NIL
-(-1032 |#1|)
-((-3736 (((-107) $ $) 7)) (-1446 (((-1059 3 |#1|) $) 13)) (-3468 (((-107) $) 29)) (-3208 (($ $ (-578 (-863 |#1|))) 33) (($ $ (-578 (-578 |#1|))) 32) (($ (-578 (-863 |#1|))) 31) (((-578 (-863 |#1|)) $) 30)) (-3044 (((-107) $) 44)) (-1801 (($ $ (-863 |#1|)) 49) (($ $ (-578 |#1|)) 48) (($ $ (-701)) 47) (($ (-863 |#1|)) 46) (((-863 |#1|) $) 45)) (-2905 (((-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701))) $) 15)) (-3401 (((-701) $) 58)) (-1206 (((-701) $) 59)) (-1671 (($ $ (-701) (-863 |#1|)) 50)) (-2014 (((-107) $) 21)) (-3704 (($ $ (-578 (-578 (-863 |#1|))) (-578 (-155)) (-155)) 28) (($ $ (-578 (-578 (-578 |#1|))) (-578 (-155)) (-155)) 27) (($ $ (-578 (-578 (-863 |#1|))) (-107) (-107)) 26) (($ $ (-578 (-578 (-578 |#1|))) (-107) (-107)) 25) (($ (-578 (-578 (-863 |#1|)))) 24) (($ (-578 (-578 (-863 |#1|))) (-107) (-107)) 23) (((-578 (-578 (-863 |#1|))) $) 22)) (-3216 (($ (-578 $)) 57) (($ $ $) 56)) (-1727 (((-578 (-155)) $) 16)) (-3918 (((-578 (-863 |#1|)) $) 20)) (-2511 (((-578 (-578 (-155))) $) 17)) (-4036 (((-578 (-578 (-578 (-863 |#1|)))) $) 18)) (-3124 (((-578 (-578 (-578 (-701)))) $) 19)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3653 (((-701) $ (-578 (-863 |#1|))) 51)) (-3277 (((-107) $) 39)) (-1542 (($ $ (-578 (-863 |#1|))) 43) (($ $ (-578 (-578 |#1|))) 42) (($ (-578 (-863 |#1|))) 41) (((-578 (-863 |#1|)) $) 40)) (-3569 (($) 61) (($ (-1059 3 |#1|)) 60)) (-3764 (($ $) 52)) (-3249 (((-578 $) $) 53)) (-3913 (($ (-578 $)) 55)) (-4021 (((-578 $) $) 54)) (-3691 (((-786) $) 11)) (-3026 (((-107) $) 34)) (-1330 (($ $ (-578 (-863 |#1|))) 38) (($ $ (-578 (-578 |#1|))) 37) (($ (-578 (-863 |#1|))) 36) (((-578 (-863 |#1|)) $) 35)) (-1266 (($ $) 14)) (-3751 (((-107) $ $) 6)))
-(((-1032 |#1|) (-1180) (-959)) (T -1032))
-((-3691 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-786)))) (-3569 (*1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) (-3569 (*1 *1 *2) (-12 (-5 *2 (-1059 3 *3)) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-1206 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) (-3216 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-3216 (*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-4021 (*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)))) (-3249 (*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)))) (-3764 (*1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) (-3653 (*1 *2 *1 *3) (-12 (-5 *3 (-578 (-863 *4))) (-4 *1 (-1032 *4)) (-4 *4 (-959)) (-5 *2 (-701)))) (-1671 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-863 *4)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-863 *3)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1801 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1801 (*1 *1 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-863 *3)))) (-3044 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1542 (*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-1542 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1330 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-1330 (*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-1330 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-3208 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-3208 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-3704 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-863 *5)))) (-5 *3 (-578 (-155))) (-5 *4 (-155)) (-4 *1 (-1032 *5)) (-4 *5 (-959)))) (-3704 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-578 (-155))) (-5 *4 (-155)) (-4 *1 (-1032 *5)) (-4 *5 (-959)))) (-3704 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-863 *4)))) (-5 *3 (-107)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) (-3704 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-107)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) (-3704 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 *3)))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) (-3704 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-863 *4)))) (-5 *3 (-107)) (-4 *4 (-959)) (-4 *1 (-1032 *4)))) (-3704 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-863 *3)))))) (-2014 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))) (-3918 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-578 (-701))))))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-578 (-863 *3))))))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-155)))))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-155))))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701)))))) (-1266 (*1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) (-1446 (*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-1059 3 *3)))))
-(-13 (-1001) (-10 -8 (-15 -3569 ($)) (-15 -3569 ($ (-1059 3 |t#1|))) (-15 -1206 ((-701) $)) (-15 -3401 ((-701) $)) (-15 -3216 ($ (-578 $))) (-15 -3216 ($ $ $)) (-15 -3913 ($ (-578 $))) (-15 -4021 ((-578 $) $)) (-15 -3249 ((-578 $) $)) (-15 -3764 ($ $)) (-15 -3653 ((-701) $ (-578 (-863 |t#1|)))) (-15 -1671 ($ $ (-701) (-863 |t#1|))) (-15 -1801 ($ $ (-863 |t#1|))) (-15 -1801 ($ $ (-578 |t#1|))) (-15 -1801 ($ $ (-701))) (-15 -1801 ($ (-863 |t#1|))) (-15 -1801 ((-863 |t#1|) $)) (-15 -3044 ((-107) $)) (-15 -1542 ($ $ (-578 (-863 |t#1|)))) (-15 -1542 ($ $ (-578 (-578 |t#1|)))) (-15 -1542 ($ (-578 (-863 |t#1|)))) (-15 -1542 ((-578 (-863 |t#1|)) $)) (-15 -3277 ((-107) $)) (-15 -1330 ($ $ (-578 (-863 |t#1|)))) (-15 -1330 ($ $ (-578 (-578 |t#1|)))) (-15 -1330 ($ (-578 (-863 |t#1|)))) (-15 -1330 ((-578 (-863 |t#1|)) $)) (-15 -3026 ((-107) $)) (-15 -3208 ($ $ (-578 (-863 |t#1|)))) (-15 -3208 ($ $ (-578 (-578 |t#1|)))) (-15 -3208 ($ (-578 (-863 |t#1|)))) (-15 -3208 ((-578 (-863 |t#1|)) $)) (-15 -3468 ((-107) $)) (-15 -3704 ($ $ (-578 (-578 (-863 |t#1|))) (-578 (-155)) (-155))) (-15 -3704 ($ $ (-578 (-578 (-578 |t#1|))) (-578 (-155)) (-155))) (-15 -3704 ($ $ (-578 (-578 (-863 |t#1|))) (-107) (-107))) (-15 -3704 ($ $ (-578 (-578 (-578 |t#1|))) (-107) (-107))) (-15 -3704 ($ (-578 (-578 (-863 |t#1|))))) (-15 -3704 ($ (-578 (-578 (-863 |t#1|))) (-107) (-107))) (-15 -3704 ((-578 (-578 (-863 |t#1|))) $)) (-15 -2014 ((-107) $)) (-15 -3918 ((-578 (-863 |t#1|)) $)) (-15 -3124 ((-578 (-578 (-578 (-701)))) $)) (-15 -4036 ((-578 (-578 (-578 (-863 |t#1|)))) $)) (-15 -2511 ((-578 (-578 (-155))) $)) (-15 -1727 ((-578 (-155)) $)) (-15 -2905 ((-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701))) $)) (-15 -1266 ($ $)) (-15 -1446 ((-1059 3 |t#1|) $)) (-15 -3691 ((-786) $))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-2502 (((-1154) (-578 (-786))) 23) (((-1154) (-786)) 22)) (-1859 (((-1154) (-578 (-786))) 21) (((-1154) (-786)) 20)) (-2522 (((-1154) (-578 (-786))) 19) (((-1154) (-786)) 11) (((-1154) (-1053) (-786)) 17)))
-(((-1033) (-10 -7 (-15 -2522 ((-1154) (-1053) (-786))) (-15 -2522 ((-1154) (-786))) (-15 -1859 ((-1154) (-786))) (-15 -2502 ((-1154) (-786))) (-15 -2522 ((-1154) (-578 (-786)))) (-15 -1859 ((-1154) (-578 (-786)))) (-15 -2502 ((-1154) (-578 (-786)))))) (T -1033))
-((-2502 (*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-2522 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) (-2522 (*1 *2 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))))
-(-10 -7 (-15 -2522 ((-1154) (-1053) (-786))) (-15 -2522 ((-1154) (-786))) (-15 -1859 ((-1154) (-786))) (-15 -2502 ((-1154) (-786))) (-15 -2522 ((-1154) (-578 (-786)))) (-15 -1859 ((-1154) (-578 (-786)))) (-15 -2502 ((-1154) (-578 (-786)))))
-((-2726 (($ $ $) 10)) (-3041 (($ $) 9)) (-1223 (($ $ $) 13)) (-3076 (($ $ $) 15)) (-1730 (($ $ $) 12)) (-2108 (($ $ $) 14)) (-2134 (($ $) 17)) (-2338 (($ $) 16)) (-1720 (($ $) 6)) (-3705 (($ $ $) 11) (($ $) 7)) (-3360 (($ $ $) 8)))
-(((-1034) (-1180)) (T -1034))
-((-2134 (*1 *1 *1) (-4 *1 (-1034))) (-2338 (*1 *1 *1) (-4 *1 (-1034))) (-3076 (*1 *1 *1 *1) (-4 *1 (-1034))) (-2108 (*1 *1 *1 *1) (-4 *1 (-1034))) (-1223 (*1 *1 *1 *1) (-4 *1 (-1034))) (-1730 (*1 *1 *1 *1) (-4 *1 (-1034))) (-3705 (*1 *1 *1 *1) (-4 *1 (-1034))) (-2726 (*1 *1 *1 *1) (-4 *1 (-1034))) (-3041 (*1 *1 *1) (-4 *1 (-1034))) (-3360 (*1 *1 *1 *1) (-4 *1 (-1034))) (-3705 (*1 *1 *1) (-4 *1 (-1034))) (-1720 (*1 *1 *1) (-4 *1 (-1034))))
-(-13 (-10 -8 (-15 -1720 ($ $)) (-15 -3705 ($ $)) (-15 -3360 ($ $ $)) (-15 -3041 ($ $)) (-15 -2726 ($ $ $)) (-15 -3705 ($ $ $)) (-15 -1730 ($ $ $)) (-15 -1223 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -3076 ($ $ $)) (-15 -2338 ($ $)) (-15 -2134 ($ $))))
-((-3736 (((-107) $ $) 41)) (-2150 ((|#1| $) 15)) (-4091 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-2968 (((-107) $) 17)) (-3789 (($ $ |#1|) 28)) (-2345 (($ $ (-107)) 30)) (-3403 (($ $) 31)) (-2804 (($ $ |#2|) 29)) (-3460 (((-1053) $) NIL)) (-2562 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-3708 (((-1018) $) NIL)) (-1407 (((-107) $) 14)) (-3122 (($) 10)) (-3764 (($ $) 27)) (-3699 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3709 |#2|))) 21) (((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|)))) 24) (((-578 $) |#1| (-578 |#2|)) 26)) (-3086 ((|#2| $) 16)) (-3691 (((-786) $) 50)) (-3751 (((-107) $ $) 39)))
-(((-1035 |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -3122 ($)) (-15 -1407 ((-107) $)) (-15 -2150 (|#1| $)) (-15 -3086 (|#2| $)) (-15 -2968 ((-107) $)) (-15 -3699 ($ |#1| |#2| (-107))) (-15 -3699 ($ |#1| |#2|)) (-15 -3699 ($ (-2 (|:| |val| |#1|) (|:| -3709 |#2|)))) (-15 -3699 ((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))))) (-15 -3699 ((-578 $) |#1| (-578 |#2|))) (-15 -3764 ($ $)) (-15 -3789 ($ $ |#1|)) (-15 -2804 ($ $ |#2|)) (-15 -2345 ($ $ (-107))) (-15 -3403 ($ $)) (-15 -2562 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -4091 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1001) (-33)) (-13 (-1001) (-33))) (T -1035))
-((-3122 (*1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-2150 (*1 *2 *1) (-12 (-4 *2 (-13 (-1001) (-33))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-13 (-1001) (-33))))) (-3086 (*1 *2 *1) (-12 (-4 *2 (-13 (-1001) (-33))) (-5 *1 (-1035 *3 *2)) (-4 *3 (-13 (-1001) (-33))))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2 *3) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3709 *4))) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1035 *3 *4)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |val| *4) (|:| -3709 *5)))) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-578 (-1035 *4 *5))) (-5 *1 (-1035 *4 *5)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-578 (-1035 *3 *5))) (-5 *1 (-1035 *3 *5)) (-4 *3 (-13 (-1001) (-33))))) (-3764 (*1 *1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3789 (*1 *1 *1 *2) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-2804 (*1 *1 *1 *2) (-12 (-5 *1 (-1035 *3 *2)) (-4 *3 (-13 (-1001) (-33))) (-4 *2 (-13 (-1001) (-33))))) (-2345 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-3403 (*1 *1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-2562 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1001) (-33))) (-4 *6 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1035 *5 *6)))) (-4091 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1035 *4 *5)) (-4 *4 (-13 (-1001) (-33))))))
-(-13 (-1001) (-10 -8 (-15 -3122 ($)) (-15 -1407 ((-107) $)) (-15 -2150 (|#1| $)) (-15 -3086 (|#2| $)) (-15 -2968 ((-107) $)) (-15 -3699 ($ |#1| |#2| (-107))) (-15 -3699 ($ |#1| |#2|)) (-15 -3699 ($ (-2 (|:| |val| |#1|) (|:| -3709 |#2|)))) (-15 -3699 ((-578 $) (-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))))) (-15 -3699 ((-578 $) |#1| (-578 |#2|))) (-15 -3764 ($ $)) (-15 -3789 ($ $ |#1|)) (-15 -2804 ($ $ |#2|)) (-15 -2345 ($ $ (-107))) (-15 -3403 ($ $)) (-15 -2562 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -4091 ((-107) $ $ (-1 (-107) |#2| |#2|)))))
-((-3736 (((-107) $ $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-2150 (((-1035 |#1| |#2|) $) 25)) (-3253 (($ $) 75)) (-1279 (((-107) (-1035 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 84)) (-3861 (($ $ $ (-578 (-1035 |#1| |#2|))) 89) (($ $ $ (-578 (-1035 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 90)) (-2997 (((-107) $ (-701)) NIL)) (-1594 (((-1035 |#1| |#2|) $ (-1035 |#1| |#2|)) 42 (|has| $ (-6 -4168)))) (-3754 (((-1035 |#1| |#2|) $ "value" (-1035 |#1| |#2|)) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 40 (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-2776 (((-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))) $) 79)) (-2256 (($ (-1035 |#1| |#2|) $) 38)) (-1526 (($ (-1035 |#1| |#2|) $) 30)) (-2732 (((-578 (-1035 |#1| |#2|)) $) NIL (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-2798 (((-107) (-1035 |#1| |#2|) $) 81)) (-3201 (((-107) $ $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 (-1035 |#1| |#2|)) $) 54 (|has| $ (-6 -4167)))) (-2211 (((-107) (-1035 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-1035 |#1| |#2|) (-1001))))) (-2519 (($ (-1 (-1035 |#1| |#2|) (-1035 |#1| |#2|)) $) 46 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-1035 |#1| |#2|) (-1035 |#1| |#2|)) $) 45)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 (-1035 |#1| |#2|)) $) 52)) (-2341 (((-107) $) 41)) (-3460 (((-1053) $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-3708 (((-1018) $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-1301 (((-3 $ "failed") $) 74)) (-2369 (((-107) (-1 (-107) (-1035 |#1| |#2|)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-1035 |#1| |#2|)))) NIL (-12 (|has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))) (|has| (-1035 |#1| |#2|) (-1001)))) (($ $ (-262 (-1035 |#1| |#2|))) NIL (-12 (|has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))) (|has| (-1035 |#1| |#2|) (-1001)))) (($ $ (-1035 |#1| |#2|) (-1035 |#1| |#2|)) NIL (-12 (|has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))) (|has| (-1035 |#1| |#2|) (-1001)))) (($ $ (-578 (-1035 |#1| |#2|)) (-578 (-1035 |#1| |#2|))) NIL (-12 (|has| (-1035 |#1| |#2|) (-278 (-1035 |#1| |#2|))) (|has| (-1035 |#1| |#2|) (-1001))))) (-1262 (((-107) $ $) 49)) (-1407 (((-107) $) 22)) (-3122 (($) 24)) (-2007 (((-1035 |#1| |#2|) $ "value") NIL)) (-1932 (((-501) $ $) NIL)) (-2622 (((-107) $) 43)) (-3713 (((-701) (-1 (-107) (-1035 |#1| |#2|)) $) NIL (|has| $ (-6 -4167))) (((-701) (-1035 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-1035 |#1| |#2|) (-1001))))) (-3764 (($ $) 48)) (-3699 (($ (-1035 |#1| |#2|)) 9) (($ |#1| |#2| (-578 $)) 12) (($ |#1| |#2| (-578 (-1035 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-578 |#2|)) 17)) (-3916 (((-578 |#2|) $) 80)) (-3691 (((-786) $) 72 (|has| (-1035 |#1| |#2|) (-1001)))) (-1961 (((-578 $) $) 28)) (-2970 (((-107) $ $) NIL (|has| (-1035 |#1| |#2|) (-1001)))) (-1200 (((-107) (-1 (-107) (-1035 |#1| |#2|)) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 63 (|has| (-1035 |#1| |#2|) (-1001)))) (-3581 (((-701) $) 57 (|has| $ (-6 -4167)))))
-(((-1036 |#1| |#2|) (-13 (-924 (-1035 |#1| |#2|)) (-10 -8 (-6 -4168) (-6 -4167) (-15 -1301 ((-3 $ "failed") $)) (-15 -3253 ($ $)) (-15 -3699 ($ (-1035 |#1| |#2|))) (-15 -3699 ($ |#1| |#2| (-578 $))) (-15 -3699 ($ |#1| |#2| (-578 (-1035 |#1| |#2|)))) (-15 -3699 ($ |#1| |#2| |#1| (-578 |#2|))) (-15 -3916 ((-578 |#2|) $)) (-15 -2776 ((-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))) $)) (-15 -2798 ((-107) (-1035 |#1| |#2|) $)) (-15 -1279 ((-107) (-1035 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1526 ($ (-1035 |#1| |#2|) $)) (-15 -2256 ($ (-1035 |#1| |#2|) $)) (-15 -3861 ($ $ $ (-578 (-1035 |#1| |#2|)))) (-15 -3861 ($ $ $ (-578 (-1035 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1001) (-33)) (-13 (-1001) (-33))) (T -1036))
-((-1301 (*1 *1 *1) (|partial| -12 (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3253 (*1 *1 *1) (-12 (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1036 *2 *3))) (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) (-3699 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1035 *2 *3))) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))) (-5 *1 (-1036 *2 *3)))) (-3699 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-1001) (-33))) (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-578 *4)) (-5 *1 (-1036 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-2776 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1036 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))) (-2798 (*1 *2 *3 *1) (-12 (-5 *3 (-1035 *4 *5)) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1036 *4 *5)))) (-1279 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1035 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1001) (-33))) (-4 *6 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1036 *5 *6)))) (-1526 (*1 *1 *2 *1) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) (-2256 (*1 *1 *2 *1) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) (-3861 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-578 (-1035 *3 *4))) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) (-3861 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1035 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *1 (-1036 *4 *5)))))
-(-13 (-924 (-1035 |#1| |#2|)) (-10 -8 (-6 -4168) (-6 -4167) (-15 -1301 ((-3 $ "failed") $)) (-15 -3253 ($ $)) (-15 -3699 ($ (-1035 |#1| |#2|))) (-15 -3699 ($ |#1| |#2| (-578 $))) (-15 -3699 ($ |#1| |#2| (-578 (-1035 |#1| |#2|)))) (-15 -3699 ($ |#1| |#2| |#1| (-578 |#2|))) (-15 -3916 ((-578 |#2|) $)) (-15 -2776 ((-578 (-2 (|:| |val| |#1|) (|:| -3709 |#2|))) $)) (-15 -2798 ((-107) (-1035 |#1| |#2|) $)) (-15 -1279 ((-107) (-1035 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -1526 ($ (-1035 |#1| |#2|) $)) (-15 -2256 ($ (-1035 |#1| |#2|) $)) (-15 -3861 ($ $ $ (-578 (-1035 |#1| |#2|)))) (-15 -3861 ($ $ $ (-578 (-1035 |#1| |#2|)) (-1 (-107) |#2| |#2|)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2676 (($ $) NIL)) (-2225 ((|#2| $) NIL)) (-2981 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3669 (($ (-621 |#2|)) 45)) (-4007 (((-107) $) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1292 (($ |#2|) 9)) (-2540 (($) NIL T CONST)) (-1933 (($ $) 58 (|has| |#2| (-276)))) (-2358 (((-212 |#1| |#2|) $ (-501)) 31)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 |#2| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) ((|#2| $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) 72)) (-3689 (((-701) $) 60 (|has| |#2| (-508)))) (-1905 ((|#2| $ (-501) (-501)) NIL)) (-2732 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-1355 (((-107) $) NIL)) (-3752 (((-701) $) 62 (|has| |#2| (-508)))) (-3552 (((-578 (-212 |#1| |#2|)) $) 66 (|has| |#2| (-508)))) (-1648 (((-701) $) NIL)) (-3248 (((-701) $) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3572 ((|#2| $) 56 (|has| |#2| (-6 (-4169 "*"))))) (-1567 (((-501) $) NIL)) (-2734 (((-501) $) NIL)) (-3380 (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-2969 (((-501) $) NIL)) (-3491 (((-501) $) NIL)) (-2630 (($ (-578 (-578 |#2|))) 26)) (-2519 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2237 (((-578 (-578 |#2|)) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1616 (((-3 $ "failed") $) 69 (|has| |#2| (-331)))) (-3708 (((-1018) $) NIL)) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508)))) (-2369 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ (-501) (-501) |#2|) NIL) ((|#2| $ (-501) (-501)) NIL)) (-2596 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-1651 ((|#2| $) NIL)) (-3133 (($ (-578 |#2|)) 40)) (-3697 (((-107) $) NIL)) (-1566 (((-212 |#1| |#2|) $) NIL)) (-3315 ((|#2| $) 54 (|has| |#2| (-6 (-4169 "*"))))) (-3713 (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 81 (|has| |#2| (-556 (-490))))) (-2952 (((-212 |#1| |#2|) $ (-501)) 33)) (-3691 (((-786) $) 36) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#2| (-950 (-375 (-501))))) (($ |#2|) NIL) (((-621 |#2|) $) 42)) (-3965 (((-701)) 17)) (-1200 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3719 (((-107) $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 11 T CONST)) (-1925 (($) 14 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-701)) NIL (|has| |#2| (-206))) (($ $) NIL (|has| |#2| (-206)))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) 52) (($ $ (-501)) 71 (|has| |#2| (-331)))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-212 |#1| |#2|) $ (-212 |#1| |#2|)) 48) (((-212 |#1| |#2|) (-212 |#1| |#2|) $) 50)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1037 |#1| |#2|) (-13 (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-555 (-621 |#2|)) (-10 -8 (-15 -2676 ($ $)) (-15 -3669 ($ (-621 |#2|))) (-15 -3691 ((-621 |#2|) $)) (IF (|has| |#2| (-6 (-4169 "*"))) (-6 -4156) |noBranch|) (IF (|has| |#2| (-6 (-4169 "*"))) (IF (|has| |#2| (-6 -4164)) (-6 -4164) |noBranch|) |noBranch|) (IF (|has| |#2| (-556 (-490))) (-6 (-556 (-490))) |noBranch|))) (-701) (-959)) (T -1037))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-621 *4)) (-5 *1 (-1037 *3 *4)) (-14 *3 (-701)) (-4 *4 (-959)))) (-2676 (*1 *1 *1) (-12 (-5 *1 (-1037 *2 *3)) (-14 *2 (-701)) (-4 *3 (-959)))) (-3669 (*1 *1 *2) (-12 (-5 *2 (-621 *4)) (-4 *4 (-959)) (-5 *1 (-1037 *3 *4)) (-14 *3 (-701)))))
-(-13 (-1021 |#1| |#2| (-212 |#1| |#2|) (-212 |#1| |#2|)) (-555 (-621 |#2|)) (-10 -8 (-15 -2676 ($ $)) (-15 -3669 ($ (-621 |#2|))) (-15 -3691 ((-621 |#2|) $)) (IF (|has| |#2| (-6 (-4169 "*"))) (-6 -4156) |noBranch|) (IF (|has| |#2| (-6 (-4169 "*"))) (IF (|has| |#2| (-6 -4164)) (-6 -4164) |noBranch|) |noBranch|) (IF (|has| |#2| (-556 (-490))) (-6 (-556 (-490))) |noBranch|)))
-((-3612 (($ $) 19)) (-2474 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-4056 (((-107) $ $) 24)) (-2874 (($ $) 17)) (-2007 (((-131) $ (-501) (-131)) NIL) (((-131) $ (-501)) NIL) (($ $ (-1116 (-501))) NIL) (($ $ $) 29)) (-3691 (($ (-131)) 27) (((-786) $) NIL)))
-(((-1038 |#1|) (-10 -8 (-15 -3691 ((-786) |#1|)) (-15 -2007 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| (-128))) (-15 -2474 (|#1| |#1| (-131))) (-15 -3691 (|#1| (-131))) (-15 -4056 ((-107) |#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -2007 ((-131) |#1| (-501))) (-15 -2007 ((-131) |#1| (-501) (-131)))) (-1039)) (T -1038))
-NIL
-(-10 -8 (-15 -3691 ((-786) |#1|)) (-15 -2007 (|#1| |#1| |#1|)) (-15 -2474 (|#1| |#1| (-128))) (-15 -2474 (|#1| |#1| (-131))) (-15 -3691 (|#1| (-131))) (-15 -4056 ((-107) |#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -2007 ((-131) |#1| (-501))) (-15 -2007 ((-131) |#1| (-501) (-131))))
-((-3736 (((-107) $ $) 18 (|has| (-131) (-1001)))) (-3449 (($ $) 120)) (-3612 (($ $) 121)) (-2474 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-4042 (((-107) $ $) 118)) (-4032 (((-107) $ $ (-501)) 117)) (-3205 (((-578 $) $ (-131)) 110) (((-578 $) $ (-128)) 109)) (-2045 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-777)))) (-3441 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| (-131) (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 (((-131) $ (-501) (-131)) 52 (|has| $ (-6 -4168))) (((-131) $ (-1116 (-501)) (-131)) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-4089 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-3834 (($ $ (-1116 (-501)) $) 114)) (-2673 (($ $) 78 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-131) $) 77 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4167)))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4167)))) (-2156 (((-131) $ (-501) (-131)) 53 (|has| $ (-6 -4168)))) (-1905 (((-131) $ (-501)) 51)) (-4056 (((-107) $ $) 119)) (-1934 (((-501) (-1 (-107) (-131)) $) 97) (((-501) (-131) $) 96 (|has| (-131) (-1001))) (((-501) (-131) $ (-501)) 95 (|has| (-131) (-1001))) (((-501) $ $ (-501)) 113) (((-501) (-128) $ (-501)) 112)) (-2732 (((-578 (-131)) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) (-131)) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| (-131) (-777)))) (-3216 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| (-131) (-777)))) (-3990 (((-107) $ $ (-131)) 115)) (-3921 (((-701) $ $ (-131)) 116)) (-2519 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-1666 (($ $) 122)) (-2874 (($ $) 123)) (-3155 (((-107) $ (-701)) 10)) (-4082 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3460 (((-1053) $) 22 (|has| (-131) (-1001)))) (-1473 (($ (-131) $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| (-131) (-1001)))) (-1190 (((-131) $) 42 (|has| (-501) (-777)))) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-3084 (($ $ (-131)) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-131)))) 26 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) 25 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-131)) (-578 (-131))) 23 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-4137 (((-578 (-131)) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 (((-131) $ (-501) (-131)) 50) (((-131) $ (-501)) 49) (($ $ (-1116 (-501))) 63) (($ $ $) 102)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4167))) (((-701) (-131) $) 28 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| (-131) (-556 (-490))))) (-3699 (($ (-578 (-131))) 70)) (-3934 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (($ (-131)) 111) (((-786) $) 20 (|has| (-131) (-1001)))) (-1200 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| (-131) (-777)))) (-3768 (((-107) $ $) 83 (|has| (-131) (-777)))) (-3751 (((-107) $ $) 19 (|has| (-131) (-1001)))) (-3773 (((-107) $ $) 85 (|has| (-131) (-777)))) (-3762 (((-107) $ $) 82 (|has| (-131) (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-1039) (-1180)) (T -1039))
-((-2874 (*1 *1 *1) (-4 *1 (-1039))) (-1666 (*1 *1 *1) (-4 *1 (-1039))) (-3612 (*1 *1 *1) (-4 *1 (-1039))) (-3449 (*1 *1 *1) (-4 *1 (-1039))) (-4056 (*1 *2 *1 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-107)))) (-4042 (*1 *2 *1 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-107)))) (-4032 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-501)) (-5 *2 (-107)))) (-3921 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-131)) (-5 *2 (-701)))) (-3990 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-131)) (-5 *2 (-107)))) (-3834 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-1116 (-501))))) (-1934 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-501)))) (-1934 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-501)) (-5 *3 (-128)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1039)))) (-3205 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-578 *1)) (-4 *1 (-1039)))) (-3205 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-578 *1)) (-4 *1 (-1039)))) (-2474 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131)))) (-2474 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) (-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131)))) (-4089 (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) (-2007 (*1 *1 *1 *1) (-4 *1 (-1039))))
-(-13 (-19 (-131)) (-10 -8 (-15 -2874 ($ $)) (-15 -1666 ($ $)) (-15 -3612 ($ $)) (-15 -3449 ($ $)) (-15 -4056 ((-107) $ $)) (-15 -4042 ((-107) $ $)) (-15 -4032 ((-107) $ $ (-501))) (-15 -3921 ((-701) $ $ (-131))) (-15 -3990 ((-107) $ $ (-131))) (-15 -3834 ($ $ (-1116 (-501)) $)) (-15 -1934 ((-501) $ $ (-501))) (-15 -1934 ((-501) (-128) $ (-501))) (-15 -3691 ($ (-131))) (-15 -3205 ((-578 $) $ (-131))) (-15 -3205 ((-578 $) $ (-128))) (-15 -2474 ($ $ (-131))) (-15 -2474 ($ $ (-128))) (-15 -4082 ($ $ (-131))) (-15 -4082 ($ $ (-128))) (-15 -4089 ($ $ (-131))) (-15 -4089 ($ $ (-128))) (-15 -2007 ($ $ $))))
-(((-33) . T) ((-97) -1405 (|has| (-131) (-1001)) (|has| (-131) (-777))) ((-555 (-786)) -1405 (|has| (-131) (-1001)) (|has| (-131) (-777))) ((-138 (-131)) . T) ((-556 (-490)) |has| (-131) (-556 (-490))) ((-256 (-501) (-131)) . T) ((-258 (-501) (-131)) . T) ((-278 (-131)) -12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))) ((-340 (-131)) . T) ((-454 (-131)) . T) ((-548 (-501) (-131)) . T) ((-476 (-131) (-131)) -12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))) ((-586 (-131)) . T) ((-19 (-131)) . T) ((-777) |has| (-131) (-777)) ((-1001) -1405 (|has| (-131) (-1001)) (|has| (-131) (-777))) ((-1104) . T))
-((-3979 (((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701)) 93)) (-2651 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701)) 53)) (-3733 (((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)) 85)) (-2674 (((-701) (-578 |#4|) (-578 |#5|)) 27)) (-3679 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701)) 55) (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107)) 57)) (-1688 (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107)) 77)) (-1248 (((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) 80)) (-3221 (((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|) 52)) (-2195 (((-701) (-578 |#4|) (-578 |#5|)) 19)))
-(((-1040 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2195 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -2674 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -3221 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3979 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701))) (-15 -1248 ((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -3733 ((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701)))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|) (-1009 |#1| |#2| |#3| |#4|)) (T -1040))
-((-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *4 (-701)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-1154)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-1009 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1053)) (-5 *1 (-1040 *4 *5 *6 *7 *8)))) (-3979 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -3709 *11)))))) (-5 *6 (-701)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -3709 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-972 *7 *8 *9)) (-4 *11 (-1009 *7 *8 *9 *10)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-5 *1 (-1040 *7 *8 *9 *10 *11)))) (-1688 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) (-1688 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) (-3679 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3)))) (-3679 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *6 *7 *8 *3 *4)) (-4 *4 (-1009 *6 *7 *8 *3)))) (-3679 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-701)) (-5 *6 (-107)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-4 *3 (-972 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *7 *8 *9 *3 *4)) (-4 *4 (-1009 *7 *8 *9 *3)))) (-2651 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3)))) (-2651 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *6 *7 *8 *3 *4)) (-4 *4 (-1009 *6 *7 *8 *3)))) (-3221 (*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3)))) (-2674 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2195 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -2674 ((-701) (-578 |#4|) (-578 |#5|))) (-15 -3221 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -2651 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701) (-107))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5| (-701))) (-15 -3679 ((-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) |#4| |#5|)) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107))) (-15 -1688 ((-578 |#5|) (-578 |#4|) (-578 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3979 ((-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-578 |#4|) (-578 |#5|) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-2 (|:| |done| (-578 |#5|)) (|:| |todo| (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))))) (-701))) (-15 -1248 ((-1053) (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|)))) (-15 -3733 ((-1154) (-578 (-2 (|:| |val| (-578 |#4|)) (|:| -3709 |#5|))) (-701))))
-((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) NIL)) (-2073 (((-578 $) (-578 |#4|)) 109) (((-578 $) (-578 |#4|) (-107)) 110) (((-578 $) (-578 |#4|) (-107) (-107)) 108) (((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107)) 111)) (-3800 (((-578 |#3|) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2599 ((|#4| |#4| $) NIL)) (-3676 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| $) 83)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 61)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) 26 (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-4110 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) NIL)) (-3490 (($ (-578 |#4|)) NIL)) (-1199 (((-3 $ "failed") $) 39)) (-1778 ((|#4| |#4| $) 64)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 77 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1379 ((|#4| |#4| $) NIL)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) NIL)) (-3180 (((-107) |#4| $) NIL)) (-1209 (((-107) |#4| $) NIL)) (-1972 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1825 (((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107)) 123)) (-2732 (((-578 |#4|) $) 16 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2361 ((|#3| $) 33)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 17 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2519 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 21)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-2064 (((-3 |#4| (-578 $)) |#4| |#4| $) NIL)) (-2019 (((-578 (-2 (|:| |val| |#4|) (|:| -3709 $))) |#4| |#4| $) 102)) (-1383 (((-3 |#4| "failed") $) 37)) (-1618 (((-578 $) |#4| $) 87)) (-2217 (((-3 (-107) (-578 $)) |#4| $) NIL)) (-1354 (((-578 (-2 (|:| |val| (-107)) (|:| -3709 $))) |#4| $) 97) (((-107) |#4| $) 52)) (-3420 (((-578 $) |#4| $) 106) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) 107) (((-578 $) |#4| (-578 $)) NIL)) (-3326 (((-578 $) (-578 |#4|) (-107) (-107) (-107)) 118)) (-2297 (($ |#4| $) 74) (($ (-578 |#4|) $) 75) (((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 73)) (-3574 (((-578 |#4|) $) NIL)) (-1590 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1762 ((|#4| |#4| $) NIL)) (-3523 (((-107) $ $) NIL)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3618 ((|#4| |#4| $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 |#4| "failed") $) 35)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3478 (((-3 $ "failed") $ |#4|) 47)) (-3718 (($ $ |#4|) NIL) (((-578 $) |#4| $) 89) (((-578 $) |#4| (-578 $)) NIL) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) 85)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 15)) (-3122 (($) 13)) (-1201 (((-701) $) NIL)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) 12)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 20)) (-1638 (($ $ |#3|) 42)) (-2482 (($ $ |#3|) 43)) (-1218 (($ $) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) 31) (((-578 |#4|) $) 40)) (-4104 (((-701) $) NIL (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) NIL)) (-1709 (((-578 $) |#4| $) 53) (((-578 $) |#4| (-578 $)) NIL) (((-578 $) (-578 |#4|) $) NIL) (((-578 $) (-578 |#4|) (-578 $)) NIL)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) NIL)) (-3036 (((-107) |#4| $) NIL)) (-2659 (((-107) |#3| $) 60)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1041 |#1| |#2| |#3| |#4|) (-13 (-1009 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2297 ((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107))) (-15 -3326 ((-578 $) (-578 |#4|) (-107) (-107) (-107))) (-15 -1825 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107))))) (-419) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -1041))
-((-2297 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *3))) (-5 *1 (-1041 *5 *6 *7 *3)) (-4 *3 (-972 *5 *6 *7)))) (-2073 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) (-2073 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) (-3326 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) (-1825 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-1041 *5 *6 *7 *8))))) (-5 *1 (-1041 *5 *6 *7 *8)) (-5 *3 (-578 *8)))))
-(-13 (-1009 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2297 ((-578 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107))) (-15 -2073 ((-578 $) (-578 |#4|) (-107) (-107) (-107) (-107))) (-15 -3326 ((-578 $) (-578 |#4|) (-107) (-107) (-107))) (-15 -1825 ((-2 (|:| |val| (-578 |#4|)) (|:| |towers| (-578 $))) (-578 |#4|) (-107) (-107)))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2425 ((|#1| $) 28)) (-2947 (($ (-578 |#1|)) 33)) (-2997 (((-107) $ (-701)) NIL)) (-2540 (($) NIL T CONST)) (-2988 ((|#1| |#1| $) 30)) (-1260 ((|#1| $) 26)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1328 ((|#1| $) 29)) (-4114 (($ |#1| $) 31)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1251 ((|#1| $) 27)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 24)) (-3122 (($) 32)) (-3661 (((-701) $) 22)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 20)) (-3691 (((-786) $) 17 (|has| |#1| (-1001)))) (-2866 (($ (-578 |#1|)) NIL)) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 12 (|has| |#1| (-1001)))) (-3581 (((-701) $) 23 (|has| $ (-6 -4167)))))
-(((-1042 |#1|) (-13 (-1019 |#1|) (-10 -8 (-15 -2947 ($ (-578 |#1|))))) (-1001)) (T -1042))
-((-2947 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-1042 *3)))))
-(-13 (-1019 |#1|) (-10 -8 (-15 -2947 ($ (-578 |#1|)))))
-((-3754 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1116 (-501)) |#2|) 43) ((|#2| $ (-501) |#2|) 40)) (-3275 (((-107) $) 11)) (-2519 (($ (-1 |#2| |#2|) $) 38)) (-1190 ((|#2| $) NIL) (($ $ (-701)) 16)) (-3084 (($ $ |#2|) 39)) (-3654 (((-107) $) 10)) (-2007 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1116 (-501))) 30) ((|#2| $ (-501)) 22) ((|#2| $ (-501) |#2|) NIL)) (-1186 (($ $ $) 46) (($ $ |#2|) NIL)) (-3934 (($ $ $) 32) (($ |#2| $) NIL) (($ (-578 $)) 35) (($ $ |#2|) NIL)))
-(((-1043 |#1| |#2|) (-10 -8 (-15 -3275 ((-107) |#1|)) (-15 -3654 ((-107) |#1|)) (-15 -3754 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -3934 (|#1| (-578 |#1|))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -3754 (|#2| |#1| (-1116 (-501)) |#2|)) (-15 -3754 (|#2| |#1| "last" |#2|)) (-15 -3754 (|#1| |#1| "rest" |#1|)) (-15 -3754 (|#2| |#1| "first" |#2|)) (-15 -1186 (|#1| |#1| |#2|)) (-15 -1186 (|#1| |#1| |#1|)) (-15 -2007 (|#2| |#1| "last")) (-15 -2007 (|#1| |#1| "rest")) (-15 -1190 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "first")) (-15 -1190 (|#2| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|))) (-1044 |#2|) (-1104)) (T -1043))
-NIL
-(-10 -8 (-15 -3275 ((-107) |#1|)) (-15 -3654 ((-107) |#1|)) (-15 -3754 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501) |#2|)) (-15 -2007 (|#2| |#1| (-501))) (-15 -3084 (|#1| |#1| |#2|)) (-15 -3934 (|#1| |#1| |#2|)) (-15 -3934 (|#1| (-578 |#1|))) (-15 -2007 (|#1| |#1| (-1116 (-501)))) (-15 -3754 (|#2| |#1| (-1116 (-501)) |#2|)) (-15 -3754 (|#2| |#1| "last" |#2|)) (-15 -3754 (|#1| |#1| "rest" |#1|)) (-15 -3754 (|#2| |#1| "first" |#2|)) (-15 -1186 (|#1| |#1| |#2|)) (-15 -1186 (|#1| |#1| |#1|)) (-15 -2007 (|#2| |#1| "last")) (-15 -2007 (|#1| |#1| "rest")) (-15 -1190 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "first")) (-15 -1190 (|#2| |#1|)) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2519 (|#1| (-1 |#2| |#2|) |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2786 ((|#1| $) 65)) (-1511 (($ $) 67)) (-1991 (((-1154) $ (-501) (-501)) 97 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 52 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 56 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 58 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4168))) (($ $ "rest" $) 55 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 117 (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) 86 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4167)))) (-1564 ((|#1| $) 66)) (-2540 (($) 7 T CONST)) (-1199 (($ $) 73) (($ $ (-701)) 71)) (-2673 (($ $) 99 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4167))) (($ |#1| $) 100 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2156 ((|#1| $ (-501) |#1|) 85 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 87)) (-3275 (((-107) $) 83)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) 108)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 95 (|has| (-501) (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 94 (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 70) (($ $ (-701)) 68)) (-1473 (($ $ $ (-501)) 116) (($ |#1| $ (-501)) 115)) (-2658 (((-578 (-501)) $) 92)) (-2852 (((-107) (-501) $) 91)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 76) (($ $ (-701)) 74)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-3084 (($ $ |#1|) 96 (|has| $ (-6 -4168)))) (-3654 (((-107) $) 84)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 90)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1116 (-501))) 112) ((|#1| $ (-501)) 89) ((|#1| $ (-501) |#1|) 88)) (-1932 (((-501) $ $) 44)) (-1468 (($ $ (-1116 (-501))) 114) (($ $ (-501)) 113)) (-2622 (((-107) $) 46)) (-1455 (($ $) 62)) (-3873 (($ $) 59 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 63)) (-2787 (($ $) 64)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1248 (((-490) $) 98 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 107)) (-1186 (($ $ $) 61 (|has| $ (-6 -4168))) (($ $ |#1|) 60 (|has| $ (-6 -4168)))) (-3934 (($ $ $) 78) (($ |#1| $) 77) (($ (-578 $)) 110) (($ $ |#1|) 109)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-1044 |#1|) (-1180) (-1104)) (T -1044))
-((-3654 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))))
-(-13 (-1138 |t#1|) (-586 |t#1|) (-10 -8 (-15 -3654 ((-107) $)) (-15 -3275 ((-107) $))))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T) ((-1138 |#1|) . T))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) NIL)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1045 |#1| |#2| |#3|) (-1081 |#1| |#2|) (-1001) (-1001) |#2|) (T -1045))
-NIL
-(-1081 |#1| |#2|)
-((-3736 (((-107) $ $) 7)) (-3493 (((-3 $ "failed") $) 13)) (-3460 (((-1053) $) 9)) (-3746 (($) 14 T CONST)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11)) (-3751 (((-107) $ $) 6)))
-(((-1046) (-1180)) (T -1046))
-((-3746 (*1 *1) (-4 *1 (-1046))) (-3493 (*1 *1 *1) (|partial| -4 *1 (-1046))))
-(-13 (-1001) (-10 -8 (-15 -3746 ($) -3897) (-15 -3493 ((-3 $ "failed") $))))
-(((-97) . T) ((-555 (-786)) . T) ((-1001) . T))
-((-1677 (((-1048 |#1|) (-1048 |#1|)) 17)) (-3892 (((-1048 |#1|) (-1048 |#1|)) 13)) (-1540 (((-1048 |#1|) (-1048 |#1|) (-501) (-501)) 20)) (-2216 (((-1048 |#1|) (-1048 |#1|)) 15)))
-(((-1047 |#1|) (-10 -7 (-15 -3892 ((-1048 |#1|) (-1048 |#1|))) (-15 -2216 ((-1048 |#1|) (-1048 |#1|))) (-15 -1677 ((-1048 |#1|) (-1048 |#1|))) (-15 -1540 ((-1048 |#1|) (-1048 |#1|) (-501) (-501)))) (-13 (-508) (-134))) (T -1047))
-((-1540 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1047 *4)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3)))) (-2216 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3)))))
-(-10 -7 (-15 -3892 ((-1048 |#1|) (-1048 |#1|))) (-15 -2216 ((-1048 |#1|) (-1048 |#1|))) (-15 -1677 ((-1048 |#1|) (-1048 |#1|))) (-15 -1540 ((-1048 |#1|) (-1048 |#1|) (-501) (-501))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) NIL)) (-2786 ((|#1| $) NIL)) (-1511 (($ $) 48)) (-1991 (((-1154) $ (-501) (-501)) 73 (|has| $ (-6 -4168)))) (-1306 (($ $ (-501)) 107 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3486 (((-786) $) 37 (|has| |#1| (-1001)))) (-3351 (((-107)) 38 (|has| |#1| (-1001)))) (-1594 ((|#1| $ |#1|) NIL (|has| $ (-6 -4168)))) (-3319 (($ $ $) 95 (|has| $ (-6 -4168))) (($ $ (-501) $) 117)) (-2193 ((|#1| $ |#1|) 104 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 99 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 101 (|has| $ (-6 -4168))) (($ $ "rest" $) 103 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 106 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 86 (|has| $ (-6 -4168))) ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 55)) (-1564 ((|#1| $) NIL)) (-2540 (($) NIL T CONST)) (-1591 (($ $) 14)) (-1199 (($ $) 28) (($ $ (-701)) 85)) (-3345 (((-107) (-578 |#1|) $) 112 (|has| |#1| (-1001)))) (-1946 (($ (-578 |#1|)) 109)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) 54)) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-3275 (((-107) $) NIL)) (-2732 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2762 (((-1154) (-501) $) 116 (|has| |#1| (-1001)))) (-2853 (((-701) $) 114)) (-3604 (((-578 $) $) NIL)) (-3201 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 70 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 60) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3155 (((-107) $ (-701)) NIL)) (-3386 (((-578 |#1|) $) NIL)) (-2341 (((-107) $) NIL)) (-2898 (($ $) 87)) (-3346 (((-107) $) 13)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1383 ((|#1| $) NIL) (($ $ (-701)) NIL)) (-1473 (($ $ $ (-501)) NIL) (($ |#1| $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) 71)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1949 (($ (-1 |#1|)) 119) (($ (-1 |#1| |#1|) |#1|) 120)) (-3648 ((|#1| $) 10)) (-1190 ((|#1| $) 27) (($ $ (-701)) 46)) (-1255 (((-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701))) (-701) $) 24)) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-1974 (($ (-1 (-107) |#1|) $) 121)) (-1981 (($ (-1 (-107) |#1|) $) 122)) (-3084 (($ $ |#1|) 65 (|has| $ (-6 -4168)))) (-3718 (($ $ (-501)) 31)) (-3654 (((-107) $) 69)) (-3170 (((-107) $) 12)) (-3546 (((-107) $) 113)) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 20)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) 15)) (-3122 (($) 40)) (-2007 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1116 (-501))) NIL) ((|#1| $ (-501)) 51) ((|#1| $ (-501) |#1|) NIL)) (-1932 (((-501) $ $) 45)) (-1468 (($ $ (-1116 (-501))) NIL) (($ $ (-501)) NIL)) (-4086 (($ (-1 $)) 44)) (-2622 (((-107) $) 66)) (-1455 (($ $) 67)) (-3873 (($ $) 96 (|has| $ (-6 -4168)))) (-3278 (((-701) $) NIL)) (-2787 (($ $) NIL)) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 41)) (-1248 (((-490) $) NIL (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 50)) (-3198 (($ |#1| $) 94)) (-1186 (($ $ $) 97 (|has| $ (-6 -4168))) (($ $ |#1|) 98 (|has| $ (-6 -4168)))) (-3934 (($ $ $) 75) (($ |#1| $) 42) (($ (-578 $)) 80) (($ $ |#1|) 74)) (-1267 (($ $) 47)) (-3691 (((-786) $) 39 (|has| |#1| (-1001))) (($ (-578 |#1|)) 108)) (-1961 (((-578 $) $) NIL)) (-2970 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 111 (|has| |#1| (-1001)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1048 |#1|) (-13 (-608 |#1|) (-10 -8 (-6 -4168) (-15 -3691 ($ (-578 |#1|))) (-15 -1946 ($ (-578 |#1|))) (IF (|has| |#1| (-1001)) (-15 -3345 ((-107) (-578 |#1|) $)) |noBranch|) (-15 -1255 ((-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701))) (-701) $)) (-15 -4086 ($ (-1 $))) (-15 -3198 ($ |#1| $)) (IF (|has| |#1| (-1001)) (PROGN (-15 -2762 ((-1154) (-501) $)) (-15 -3486 ((-786) $)) (-15 -3351 ((-107)))) |noBranch|) (-15 -3319 ($ $ (-501) $)) (-15 -1949 ($ (-1 |#1|))) (-15 -1949 ($ (-1 |#1| |#1|) |#1|)) (-15 -1974 ($ (-1 (-107) |#1|) $)) (-15 -1981 ($ (-1 (-107) |#1|) $)))) (-1104)) (T -1048))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-1946 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-3345 (*1 *2 *3 *1) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-4 *4 (-1104)) (-5 *2 (-107)) (-5 *1 (-1048 *4)))) (-1255 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701)))) (-5 *1 (-1048 *4)) (-4 *4 (-1104)) (-5 *3 (-701)))) (-4086 (*1 *1 *2) (-12 (-5 *2 (-1 (-1048 *3))) (-5 *1 (-1048 *3)) (-4 *3 (-1104)))) (-3198 (*1 *1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1104)))) (-2762 (*1 *2 *3 *1) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1048 *4)) (-4 *4 (-1001)) (-4 *4 (-1104)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1048 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)))) (-3351 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1048 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)))) (-3319 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1048 *3)) (-4 *3 (-1104)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-1949 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-1974 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) (-1981 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))))
-(-13 (-608 |#1|) (-10 -8 (-6 -4168) (-15 -3691 ($ (-578 |#1|))) (-15 -1946 ($ (-578 |#1|))) (IF (|has| |#1| (-1001)) (-15 -3345 ((-107) (-578 |#1|) $)) |noBranch|) (-15 -1255 ((-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701))) (-701) $)) (-15 -4086 ($ (-1 $))) (-15 -3198 ($ |#1| $)) (IF (|has| |#1| (-1001)) (PROGN (-15 -2762 ((-1154) (-501) $)) (-15 -3486 ((-786) $)) (-15 -3351 ((-107)))) |noBranch|) (-15 -3319 ($ $ (-501) $)) (-15 -1949 ($ (-1 |#1|))) (-15 -1949 ($ (-1 |#1| |#1|) |#1|)) (-15 -1974 ($ (-1 (-107) |#1|) $)) (-15 -1981 ($ (-1 (-107) |#1|) $))))
-((-3934 (((-1048 |#1|) (-1048 (-1048 |#1|))) 15)))
-(((-1049 |#1|) (-10 -7 (-15 -3934 ((-1048 |#1|) (-1048 (-1048 |#1|))))) (-1104)) (T -1049))
-((-3934 (*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1049 *4)) (-4 *4 (-1104)))))
-(-10 -7 (-15 -3934 ((-1048 |#1|) (-1048 (-1048 |#1|)))))
-((-3162 (((-1048 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|)) 25)) (-3547 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|)) 26)) (-1212 (((-1048 |#2|) (-1 |#2| |#1|) (-1048 |#1|)) 16)))
-(((-1050 |#1| |#2|) (-10 -7 (-15 -1212 ((-1048 |#2|) (-1 |#2| |#1|) (-1048 |#1|))) (-15 -3162 ((-1048 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|))) (-15 -3547 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|)))) (-1104) (-1104)) (T -1050))
-((-3547 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1048 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-1050 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1048 *6)) (-4 *6 (-1104)) (-4 *3 (-1104)) (-5 *2 (-1048 *3)) (-5 *1 (-1050 *6 *3)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1048 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1048 *6)) (-5 *1 (-1050 *5 *6)))))
-(-10 -7 (-15 -1212 ((-1048 |#2|) (-1 |#2| |#1|) (-1048 |#1|))) (-15 -3162 ((-1048 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|))) (-15 -3547 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1048 |#1|))))
-((-1212 (((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-1048 |#2|)) 21)))
-(((-1051 |#1| |#2| |#3|) (-10 -7 (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-1048 |#2|)))) (-1104) (-1104) (-1104)) (T -1051))
-((-1212 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1048 *6)) (-5 *5 (-1048 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-1051 *6 *7 *8)))))
-(-10 -7 (-15 -1212 ((-1048 |#3|) (-1 |#3| |#1| |#2|) (-1048 |#1|) (-1048 |#2|))))
-((-3736 (((-107) $ $) 18)) (-3449 (($ $) 120)) (-3612 (($ $) 121)) (-2474 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-4042 (((-107) $ $) 118)) (-4032 (((-107) $ $ (-501)) 117)) (-2011 (($ (-501)) 127)) (-3205 (((-578 $) $ (-131)) 110) (((-578 $) $ (-128)) 109)) (-2045 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-777)))) (-3441 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| (-131) (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 (((-131) $ (-501) (-131)) 52 (|has| $ (-6 -4168))) (((-131) $ (-1116 (-501)) (-131)) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-4089 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-3834 (($ $ (-1116 (-501)) $) 114)) (-2673 (($ $) 78 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ (-131) $) 77 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4167)))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4167)))) (-2156 (((-131) $ (-501) (-131)) 53 (|has| $ (-6 -4168)))) (-1905 (((-131) $ (-501)) 51)) (-4056 (((-107) $ $) 119)) (-1934 (((-501) (-1 (-107) (-131)) $) 97) (((-501) (-131) $) 96 (|has| (-131) (-1001))) (((-501) (-131) $ (-501)) 95 (|has| (-131) (-1001))) (((-501) $ $ (-501)) 113) (((-501) (-128) $ (-501)) 112)) (-2732 (((-578 (-131)) $) 30 (|has| $ (-6 -4167)))) (-3634 (($ (-701) (-131)) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| (-131) (-777)))) (-3216 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| (-131) (-777)))) (-3990 (((-107) $ $ (-131)) 115)) (-3921 (((-701) $ $ (-131)) 116)) (-2519 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-1666 (($ $) 122)) (-2874 (($ $) 123)) (-3155 (((-107) $ (-701)) 10)) (-4082 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3460 (((-1053) $) 22)) (-1473 (($ (-131) $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21)) (-1190 (((-131) $) 42 (|has| (-501) (-777)))) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-3084 (($ $ (-131)) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-131)))) 26 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) 25 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-131)) (-578 (-131))) 23 (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-4137 (((-578 (-131)) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 (((-131) $ (-501) (-131)) 50) (((-131) $ (-501)) 49) (($ $ (-1116 (-501))) 63) (($ $ $) 102)) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-3713 (((-701) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4167))) (((-701) (-131) $) 28 (-12 (|has| (-131) (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| (-131) (-556 (-490))))) (-3699 (($ (-578 (-131))) 70)) (-3934 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (($ (-131)) 111) (((-786) $) 20)) (-1200 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4167)))) (-3671 (((-1053) $) 131) (((-1053) $ (-107)) 130) (((-1154) (-753) $) 129) (((-1154) (-753) $ (-107)) 128)) (-3778 (((-107) $ $) 84 (|has| (-131) (-777)))) (-3768 (((-107) $ $) 83 (|has| (-131) (-777)))) (-3751 (((-107) $ $) 19)) (-3773 (((-107) $ $) 85 (|has| (-131) (-777)))) (-3762 (((-107) $ $) 82 (|has| (-131) (-777)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-1052) (-1180)) (T -1052))
-((-2011 (*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1052)))))
-(-13 (-1039) (-1001) (-751) (-10 -8 (-15 -2011 ($ (-501)))))
-(((-33) . T) ((-97) . T) ((-555 (-786)) . T) ((-138 (-131)) . T) ((-556 (-490)) |has| (-131) (-556 (-490))) ((-256 (-501) (-131)) . T) ((-258 (-501) (-131)) . T) ((-278 (-131)) -12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))) ((-340 (-131)) . T) ((-454 (-131)) . T) ((-548 (-501) (-131)) . T) ((-476 (-131) (-131)) -12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))) ((-586 (-131)) . T) ((-19 (-131)) . T) ((-751) . T) ((-777) |has| (-131) (-777)) ((-1001) . T) ((-1039) . T) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3449 (($ $) NIL)) (-3612 (($ $) NIL)) (-2474 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-4042 (((-107) $ $) NIL)) (-4032 (((-107) $ $ (-501)) NIL)) (-2011 (($ (-501)) 7)) (-3205 (((-578 $) $ (-131)) NIL) (((-578 $) $ (-128)) NIL)) (-2045 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-777)))) (-3441 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| (-131) (-777))))) (-2861 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 (((-131) $ (-501) (-131)) NIL (|has| $ (-6 -4168))) (((-131) $ (-1116 (-501)) (-131)) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-4089 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-3834 (($ $ (-1116 (-501)) $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1526 (($ (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4167))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4167)))) (-2156 (((-131) $ (-501) (-131)) NIL (|has| $ (-6 -4168)))) (-1905 (((-131) $ (-501)) NIL)) (-4056 (((-107) $ $) NIL)) (-1934 (((-501) (-1 (-107) (-131)) $) NIL) (((-501) (-131) $) NIL (|has| (-131) (-1001))) (((-501) (-131) $ (-501)) NIL (|has| (-131) (-1001))) (((-501) $ $ (-501)) NIL) (((-501) (-128) $ (-501)) NIL)) (-2732 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-3634 (($ (-701) (-131)) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| (-131) (-777)))) (-3216 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-777)))) (-3380 (((-578 (-131)) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| (-131) (-777)))) (-3990 (((-107) $ $ (-131)) NIL)) (-3921 (((-701) $ $ (-131)) NIL)) (-2519 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-1666 (($ $) NIL)) (-2874 (($ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-4082 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3460 (((-1053) $) NIL)) (-1473 (($ (-131) $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-131) $) NIL (|has| (-501) (-777)))) (-2520 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-3084 (($ $ (-131)) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-131)))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-262 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001)))) (($ $ (-578 (-131)) (-578 (-131))) NIL (-12 (|has| (-131) (-278 (-131))) (|has| (-131) (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-4137 (((-578 (-131)) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 (((-131) $ (-501) (-131)) NIL) (((-131) $ (-501)) NIL) (($ $ (-1116 (-501))) NIL) (($ $ $) NIL)) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-3713 (((-701) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167))) (((-701) (-131) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-131) (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-131) (-556 (-490))))) (-3699 (($ (-578 (-131))) NIL)) (-3934 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (($ (-131)) NIL) (((-786) $) NIL)) (-1200 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4167)))) (-3671 (((-1053) $) 18) (((-1053) $ (-107)) 20) (((-1154) (-753) $) 21) (((-1154) (-753) $ (-107)) 22)) (-3778 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3768 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3762 (((-107) $ $) NIL (|has| (-131) (-777)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1053) (-1052)) (T -1053))
-NIL
-(-1052)
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-1991 (((-1154) $ (-1053) (-1053)) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-1053) |#1|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#1| "failed") (-1053) $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#1| "failed") (-1053) $) NIL)) (-1526 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-1053) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-1053)) NIL)) (-2732 (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-1053) $) NIL (|has| (-1053) (-777)))) (-3380 (((-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-1053) $) NIL (|has| (-1053) (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-1500 (((-578 (-1053)) $) NIL)) (-3576 (((-107) (-1053) $) NIL)) (-1328 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-2658 (((-578 (-1053)) $) NIL)) (-2852 (((-107) (-1053) $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-1190 ((|#1| $) NIL (|has| (-1053) (-777)))) (-2520 (((-3 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) "failed") (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL (-12 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-278 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-1053)) NIL) ((|#1| $ (-1053) |#1|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 (-1053)) (|:| -2922 |#1|)) (-1001)) (|has| |#1| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1054 |#1|) (-13 (-1081 (-1053) |#1|) (-10 -7 (-6 -4167))) (-1001)) (T -1054))
-NIL
-(-13 (-1081 (-1053) |#1|) (-10 -7 (-6 -4167)))
-((-3088 (((-1048 |#1|) (-1048 |#1|)) 77)) (-2174 (((-3 (-1048 |#1|) "failed") (-1048 |#1|)) 37)) (-3129 (((-1048 |#1|) (-375 (-501)) (-1048 |#1|)) 116 (|has| |#1| (-37 (-375 (-501)))))) (-2735 (((-1048 |#1|) |#1| (-1048 |#1|)) 120 (|has| |#1| (-331)))) (-1247 (((-1048 |#1|) (-1048 |#1|)) 90)) (-2416 (((-1048 (-501)) (-501)) 57)) (-2665 (((-1048 |#1|) (-1048 (-1048 |#1|))) 108 (|has| |#1| (-37 (-375 (-501)))))) (-3635 (((-1048 |#1|) (-501) (-501) (-1048 |#1|)) 95)) (-2607 (((-1048 |#1|) |#1| (-501)) 45)) (-1214 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 60)) (-2714 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 118 (|has| |#1| (-331)))) (-3527 (((-1048 |#1|) |#1| (-1 (-1048 |#1|))) 107 (|has| |#1| (-37 (-375 (-501)))))) (-3857 (((-1048 |#1|) (-1 |#1| (-501)) |#1| (-1 (-1048 |#1|))) 119 (|has| |#1| (-331)))) (-4107 (((-1048 |#1|) (-1048 |#1|)) 89)) (-1942 (((-1048 |#1|) (-1048 |#1|)) 76)) (-3914 (((-1048 |#1|) (-501) (-501) (-1048 |#1|)) 96)) (-3188 (((-1048 |#1|) |#1| (-1048 |#1|)) 105 (|has| |#1| (-37 (-375 (-501)))))) (-4109 (((-1048 (-501)) (-501)) 56)) (-3089 (((-1048 |#1|) |#1|) 59)) (-2059 (((-1048 |#1|) (-1048 |#1|) (-501) (-501)) 92)) (-1578 (((-1048 |#1|) (-1 |#1| (-501)) (-1048 |#1|)) 66)) (-3694 (((-3 (-1048 |#1|) "failed") (-1048 |#1|) (-1048 |#1|)) 35)) (-2159 (((-1048 |#1|) (-1048 |#1|)) 91)) (-3195 (((-1048 |#1|) (-1048 |#1|) |#1|) 71)) (-2621 (((-1048 |#1|) (-1048 |#1|)) 62)) (-3417 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 72)) (-3691 (((-1048 |#1|) |#1|) 67)) (-2318 (((-1048 |#1|) (-1048 (-1048 |#1|))) 82)) (-3803 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 36)) (-3797 (((-1048 |#1|) (-1048 |#1|)) 21) (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 23)) (-3790 (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 17)) (* (((-1048 |#1|) (-1048 |#1|) |#1|) 29) (((-1048 |#1|) |#1| (-1048 |#1|)) 26) (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 27)))
-(((-1055 |#1|) (-10 -7 (-15 -3790 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3797 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3797 ((-1048 |#1|) (-1048 |#1|))) (-15 * ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 * ((-1048 |#1|) |#1| (-1048 |#1|))) (-15 * ((-1048 |#1|) (-1048 |#1|) |#1|)) (-15 -3694 ((-3 (-1048 |#1|) "failed") (-1048 |#1|) (-1048 |#1|))) (-15 -3803 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -2174 ((-3 (-1048 |#1|) "failed") (-1048 |#1|))) (-15 -2607 ((-1048 |#1|) |#1| (-501))) (-15 -4109 ((-1048 (-501)) (-501))) (-15 -2416 ((-1048 (-501)) (-501))) (-15 -3089 ((-1048 |#1|) |#1|)) (-15 -1214 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -2621 ((-1048 |#1|) (-1048 |#1|))) (-15 -1578 ((-1048 |#1|) (-1 |#1| (-501)) (-1048 |#1|))) (-15 -3691 ((-1048 |#1|) |#1|)) (-15 -3195 ((-1048 |#1|) (-1048 |#1|) |#1|)) (-15 -3417 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -1942 ((-1048 |#1|) (-1048 |#1|))) (-15 -3088 ((-1048 |#1|) (-1048 |#1|))) (-15 -2318 ((-1048 |#1|) (-1048 (-1048 |#1|)))) (-15 -4107 ((-1048 |#1|) (-1048 |#1|))) (-15 -1247 ((-1048 |#1|) (-1048 |#1|))) (-15 -2159 ((-1048 |#1|) (-1048 |#1|))) (-15 -2059 ((-1048 |#1|) (-1048 |#1|) (-501) (-501))) (-15 -3635 ((-1048 |#1|) (-501) (-501) (-1048 |#1|))) (-15 -3914 ((-1048 |#1|) (-501) (-501) (-1048 |#1|))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ((-1048 |#1|) |#1| (-1048 |#1|))) (-15 -3527 ((-1048 |#1|) |#1| (-1 (-1048 |#1|)))) (-15 -2665 ((-1048 |#1|) (-1048 (-1048 |#1|)))) (-15 -3129 ((-1048 |#1|) (-375 (-501)) (-1048 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -2714 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3857 ((-1048 |#1|) (-1 |#1| (-501)) |#1| (-1 (-1048 |#1|)))) (-15 -2735 ((-1048 |#1|) |#1| (-1048 |#1|)))) |noBranch|)) (-959)) (T -1055))
-((-2735 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-331)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3857 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-501))) (-5 *5 (-1 (-1048 *4))) (-4 *4 (-331)) (-4 *4 (-959)) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)))) (-2714 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-331)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3129 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *4)) (-4 *4 (-37 *3)) (-4 *4 (-959)) (-5 *3 (-375 (-501))) (-5 *1 (-1055 *4)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959)))) (-3527 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1048 *3))) (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))) (-3188 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3914 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) (-3635 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) (-2059 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) (-2159 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-1247 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-4107 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-2318 (*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-959)))) (-3088 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-1942 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3417 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3691 (*1 *2 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) (-1578 (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-1 *4 (-501))) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) (-2621 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-1214 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3089 (*1 *2 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) (-2416 (*1 *2 *3) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-1055 *4)) (-4 *4 (-959)) (-5 *3 (-501)))) (-4109 (*1 *2 *3) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-1055 *4)) (-4 *4 (-959)) (-5 *3 (-501)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) (-2174 (*1 *2 *2) (|partial| -12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3803 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3694 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3797 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3797 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) (-3790 (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))))
-(-10 -7 (-15 -3790 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3797 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3797 ((-1048 |#1|) (-1048 |#1|))) (-15 * ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 * ((-1048 |#1|) |#1| (-1048 |#1|))) (-15 * ((-1048 |#1|) (-1048 |#1|) |#1|)) (-15 -3694 ((-3 (-1048 |#1|) "failed") (-1048 |#1|) (-1048 |#1|))) (-15 -3803 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -2174 ((-3 (-1048 |#1|) "failed") (-1048 |#1|))) (-15 -2607 ((-1048 |#1|) |#1| (-501))) (-15 -4109 ((-1048 (-501)) (-501))) (-15 -2416 ((-1048 (-501)) (-501))) (-15 -3089 ((-1048 |#1|) |#1|)) (-15 -1214 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -2621 ((-1048 |#1|) (-1048 |#1|))) (-15 -1578 ((-1048 |#1|) (-1 |#1| (-501)) (-1048 |#1|))) (-15 -3691 ((-1048 |#1|) |#1|)) (-15 -3195 ((-1048 |#1|) (-1048 |#1|) |#1|)) (-15 -3417 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -1942 ((-1048 |#1|) (-1048 |#1|))) (-15 -3088 ((-1048 |#1|) (-1048 |#1|))) (-15 -2318 ((-1048 |#1|) (-1048 (-1048 |#1|)))) (-15 -4107 ((-1048 |#1|) (-1048 |#1|))) (-15 -1247 ((-1048 |#1|) (-1048 |#1|))) (-15 -2159 ((-1048 |#1|) (-1048 |#1|))) (-15 -2059 ((-1048 |#1|) (-1048 |#1|) (-501) (-501))) (-15 -3635 ((-1048 |#1|) (-501) (-501) (-1048 |#1|))) (-15 -3914 ((-1048 |#1|) (-501) (-501) (-1048 |#1|))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ((-1048 |#1|) |#1| (-1048 |#1|))) (-15 -3527 ((-1048 |#1|) |#1| (-1 (-1048 |#1|)))) (-15 -2665 ((-1048 |#1|) (-1048 (-1048 |#1|)))) (-15 -3129 ((-1048 |#1|) (-375 (-501)) (-1048 |#1|)))) |noBranch|) (IF (|has| |#1| (-331)) (PROGN (-15 -2714 ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3857 ((-1048 |#1|) (-1 |#1| (-501)) |#1| (-1 (-1048 |#1|)))) (-15 -2735 ((-1048 |#1|) |#1| (-1048 |#1|)))) |noBranch|))
-((-3978 (((-1048 |#1|) (-1048 |#1|)) 100)) (-3937 (((-1048 |#1|) (-1048 |#1|)) 64)) (-2455 (((-2 (|:| -3970 (-1048 |#1|)) (|:| -3975 (-1048 |#1|))) (-1048 |#1|)) 96)) (-3970 (((-1048 |#1|) (-1048 |#1|)) 97)) (-1181 (((-2 (|:| -3929 (-1048 |#1|)) (|:| -3933 (-1048 |#1|))) (-1048 |#1|)) 53)) (-3929 (((-1048 |#1|) (-1048 |#1|)) 54)) (-3984 (((-1048 |#1|) (-1048 |#1|)) 102)) (-3945 (((-1048 |#1|) (-1048 |#1|)) 71)) (-1635 (((-1048 |#1|) (-1048 |#1|)) 39)) (-1989 (((-1048 |#1|) (-1048 |#1|)) 36)) (-3991 (((-1048 |#1|) (-1048 |#1|)) 103)) (-3949 (((-1048 |#1|) (-1048 |#1|)) 72)) (-3981 (((-1048 |#1|) (-1048 |#1|)) 101)) (-3940 (((-1048 |#1|) (-1048 |#1|)) 67)) (-3975 (((-1048 |#1|) (-1048 |#1|)) 98)) (-3933 (((-1048 |#1|) (-1048 |#1|)) 55)) (-4003 (((-1048 |#1|) (-1048 |#1|)) 111)) (-3958 (((-1048 |#1|) (-1048 |#1|)) 86)) (-3995 (((-1048 |#1|) (-1048 |#1|)) 105)) (-3952 (((-1048 |#1|) (-1048 |#1|)) 82)) (-4013 (((-1048 |#1|) (-1048 |#1|)) 115)) (-3964 (((-1048 |#1|) (-1048 |#1|)) 90)) (-3550 (((-1048 |#1|) (-1048 |#1|)) 117)) (-3967 (((-1048 |#1|) (-1048 |#1|)) 92)) (-4008 (((-1048 |#1|) (-1048 |#1|)) 113)) (-3961 (((-1048 |#1|) (-1048 |#1|)) 88)) (-3999 (((-1048 |#1|) (-1048 |#1|)) 107)) (-3955 (((-1048 |#1|) (-1048 |#1|)) 84)) (** (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 40)))
-(((-1056 |#1|) (-10 -7 (-15 -1989 ((-1048 |#1|) (-1048 |#1|))) (-15 -1635 ((-1048 |#1|) (-1048 |#1|))) (-15 ** ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -1181 ((-2 (|:| -3929 (-1048 |#1|)) (|:| -3933 (-1048 |#1|))) (-1048 |#1|))) (-15 -3929 ((-1048 |#1|) (-1048 |#1|))) (-15 -3933 ((-1048 |#1|) (-1048 |#1|))) (-15 -3937 ((-1048 |#1|) (-1048 |#1|))) (-15 -3940 ((-1048 |#1|) (-1048 |#1|))) (-15 -3945 ((-1048 |#1|) (-1048 |#1|))) (-15 -3949 ((-1048 |#1|) (-1048 |#1|))) (-15 -3952 ((-1048 |#1|) (-1048 |#1|))) (-15 -3955 ((-1048 |#1|) (-1048 |#1|))) (-15 -3958 ((-1048 |#1|) (-1048 |#1|))) (-15 -3961 ((-1048 |#1|) (-1048 |#1|))) (-15 -3964 ((-1048 |#1|) (-1048 |#1|))) (-15 -3967 ((-1048 |#1|) (-1048 |#1|))) (-15 -2455 ((-2 (|:| -3970 (-1048 |#1|)) (|:| -3975 (-1048 |#1|))) (-1048 |#1|))) (-15 -3970 ((-1048 |#1|) (-1048 |#1|))) (-15 -3975 ((-1048 |#1|) (-1048 |#1|))) (-15 -3978 ((-1048 |#1|) (-1048 |#1|))) (-15 -3981 ((-1048 |#1|) (-1048 |#1|))) (-15 -3984 ((-1048 |#1|) (-1048 |#1|))) (-15 -3991 ((-1048 |#1|) (-1048 |#1|))) (-15 -3995 ((-1048 |#1|) (-1048 |#1|))) (-15 -3999 ((-1048 |#1|) (-1048 |#1|))) (-15 -4003 ((-1048 |#1|) (-1048 |#1|))) (-15 -4008 ((-1048 |#1|) (-1048 |#1|))) (-15 -4013 ((-1048 |#1|) (-1048 |#1|))) (-15 -3550 ((-1048 |#1|) (-1048 |#1|)))) (-37 (-375 (-501)))) (T -1056))
-((-3550 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3975 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-2455 (*1 *2 *3) (-12 (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-2 (|:| -3970 (-1048 *4)) (|:| -3975 (-1048 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-1048 *4)))) (-3967 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3964 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-1181 (*1 *2 *3) (-12 (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-2 (|:| -3929 (-1048 *4)) (|:| -3933 (-1048 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-1048 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))))
-(-10 -7 (-15 -1989 ((-1048 |#1|) (-1048 |#1|))) (-15 -1635 ((-1048 |#1|) (-1048 |#1|))) (-15 ** ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -1181 ((-2 (|:| -3929 (-1048 |#1|)) (|:| -3933 (-1048 |#1|))) (-1048 |#1|))) (-15 -3929 ((-1048 |#1|) (-1048 |#1|))) (-15 -3933 ((-1048 |#1|) (-1048 |#1|))) (-15 -3937 ((-1048 |#1|) (-1048 |#1|))) (-15 -3940 ((-1048 |#1|) (-1048 |#1|))) (-15 -3945 ((-1048 |#1|) (-1048 |#1|))) (-15 -3949 ((-1048 |#1|) (-1048 |#1|))) (-15 -3952 ((-1048 |#1|) (-1048 |#1|))) (-15 -3955 ((-1048 |#1|) (-1048 |#1|))) (-15 -3958 ((-1048 |#1|) (-1048 |#1|))) (-15 -3961 ((-1048 |#1|) (-1048 |#1|))) (-15 -3964 ((-1048 |#1|) (-1048 |#1|))) (-15 -3967 ((-1048 |#1|) (-1048 |#1|))) (-15 -2455 ((-2 (|:| -3970 (-1048 |#1|)) (|:| -3975 (-1048 |#1|))) (-1048 |#1|))) (-15 -3970 ((-1048 |#1|) (-1048 |#1|))) (-15 -3975 ((-1048 |#1|) (-1048 |#1|))) (-15 -3978 ((-1048 |#1|) (-1048 |#1|))) (-15 -3981 ((-1048 |#1|) (-1048 |#1|))) (-15 -3984 ((-1048 |#1|) (-1048 |#1|))) (-15 -3991 ((-1048 |#1|) (-1048 |#1|))) (-15 -3995 ((-1048 |#1|) (-1048 |#1|))) (-15 -3999 ((-1048 |#1|) (-1048 |#1|))) (-15 -4003 ((-1048 |#1|) (-1048 |#1|))) (-15 -4008 ((-1048 |#1|) (-1048 |#1|))) (-15 -4013 ((-1048 |#1|) (-1048 |#1|))) (-15 -3550 ((-1048 |#1|) (-1048 |#1|))))
-((-3978 (((-1048 |#1|) (-1048 |#1|)) 57)) (-3937 (((-1048 |#1|) (-1048 |#1|)) 39)) (-3970 (((-1048 |#1|) (-1048 |#1|)) 53)) (-3929 (((-1048 |#1|) (-1048 |#1|)) 35)) (-3984 (((-1048 |#1|) (-1048 |#1|)) 60)) (-3945 (((-1048 |#1|) (-1048 |#1|)) 42)) (-1635 (((-1048 |#1|) (-1048 |#1|)) 31)) (-1989 (((-1048 |#1|) (-1048 |#1|)) 27)) (-3991 (((-1048 |#1|) (-1048 |#1|)) 61)) (-3949 (((-1048 |#1|) (-1048 |#1|)) 43)) (-3981 (((-1048 |#1|) (-1048 |#1|)) 58)) (-3940 (((-1048 |#1|) (-1048 |#1|)) 40)) (-3975 (((-1048 |#1|) (-1048 |#1|)) 55)) (-3933 (((-1048 |#1|) (-1048 |#1|)) 37)) (-4003 (((-1048 |#1|) (-1048 |#1|)) 65)) (-3958 (((-1048 |#1|) (-1048 |#1|)) 47)) (-3995 (((-1048 |#1|) (-1048 |#1|)) 63)) (-3952 (((-1048 |#1|) (-1048 |#1|)) 45)) (-4013 (((-1048 |#1|) (-1048 |#1|)) 68)) (-3964 (((-1048 |#1|) (-1048 |#1|)) 50)) (-3550 (((-1048 |#1|) (-1048 |#1|)) 69)) (-3967 (((-1048 |#1|) (-1048 |#1|)) 51)) (-4008 (((-1048 |#1|) (-1048 |#1|)) 67)) (-3961 (((-1048 |#1|) (-1048 |#1|)) 49)) (-3999 (((-1048 |#1|) (-1048 |#1|)) 66)) (-3955 (((-1048 |#1|) (-1048 |#1|)) 48)) (** (((-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) 33)))
-(((-1057 |#1|) (-10 -7 (-15 -1989 ((-1048 |#1|) (-1048 |#1|))) (-15 -1635 ((-1048 |#1|) (-1048 |#1|))) (-15 ** ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3929 ((-1048 |#1|) (-1048 |#1|))) (-15 -3933 ((-1048 |#1|) (-1048 |#1|))) (-15 -3937 ((-1048 |#1|) (-1048 |#1|))) (-15 -3940 ((-1048 |#1|) (-1048 |#1|))) (-15 -3945 ((-1048 |#1|) (-1048 |#1|))) (-15 -3949 ((-1048 |#1|) (-1048 |#1|))) (-15 -3952 ((-1048 |#1|) (-1048 |#1|))) (-15 -3955 ((-1048 |#1|) (-1048 |#1|))) (-15 -3958 ((-1048 |#1|) (-1048 |#1|))) (-15 -3961 ((-1048 |#1|) (-1048 |#1|))) (-15 -3964 ((-1048 |#1|) (-1048 |#1|))) (-15 -3967 ((-1048 |#1|) (-1048 |#1|))) (-15 -3970 ((-1048 |#1|) (-1048 |#1|))) (-15 -3975 ((-1048 |#1|) (-1048 |#1|))) (-15 -3978 ((-1048 |#1|) (-1048 |#1|))) (-15 -3981 ((-1048 |#1|) (-1048 |#1|))) (-15 -3984 ((-1048 |#1|) (-1048 |#1|))) (-15 -3991 ((-1048 |#1|) (-1048 |#1|))) (-15 -3995 ((-1048 |#1|) (-1048 |#1|))) (-15 -3999 ((-1048 |#1|) (-1048 |#1|))) (-15 -4003 ((-1048 |#1|) (-1048 |#1|))) (-15 -4008 ((-1048 |#1|) (-1048 |#1|))) (-15 -4013 ((-1048 |#1|) (-1048 |#1|))) (-15 -3550 ((-1048 |#1|) (-1048 |#1|)))) (-37 (-375 (-501)))) (T -1057))
-((-3550 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-4003 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3984 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3975 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3970 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3967 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3964 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3961 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3958 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3955 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3952 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3949 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3940 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3937 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3933 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-3929 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-1635 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(-10 -7 (-15 -1989 ((-1048 |#1|) (-1048 |#1|))) (-15 -1635 ((-1048 |#1|) (-1048 |#1|))) (-15 ** ((-1048 |#1|) (-1048 |#1|) (-1048 |#1|))) (-15 -3929 ((-1048 |#1|) (-1048 |#1|))) (-15 -3933 ((-1048 |#1|) (-1048 |#1|))) (-15 -3937 ((-1048 |#1|) (-1048 |#1|))) (-15 -3940 ((-1048 |#1|) (-1048 |#1|))) (-15 -3945 ((-1048 |#1|) (-1048 |#1|))) (-15 -3949 ((-1048 |#1|) (-1048 |#1|))) (-15 -3952 ((-1048 |#1|) (-1048 |#1|))) (-15 -3955 ((-1048 |#1|) (-1048 |#1|))) (-15 -3958 ((-1048 |#1|) (-1048 |#1|))) (-15 -3961 ((-1048 |#1|) (-1048 |#1|))) (-15 -3964 ((-1048 |#1|) (-1048 |#1|))) (-15 -3967 ((-1048 |#1|) (-1048 |#1|))) (-15 -3970 ((-1048 |#1|) (-1048 |#1|))) (-15 -3975 ((-1048 |#1|) (-1048 |#1|))) (-15 -3978 ((-1048 |#1|) (-1048 |#1|))) (-15 -3981 ((-1048 |#1|) (-1048 |#1|))) (-15 -3984 ((-1048 |#1|) (-1048 |#1|))) (-15 -3991 ((-1048 |#1|) (-1048 |#1|))) (-15 -3995 ((-1048 |#1|) (-1048 |#1|))) (-15 -3999 ((-1048 |#1|) (-1048 |#1|))) (-15 -4003 ((-1048 |#1|) (-1048 |#1|))) (-15 -4008 ((-1048 |#1|) (-1048 |#1|))) (-15 -4013 ((-1048 |#1|) (-1048 |#1|))) (-15 -3550 ((-1048 |#1|) (-1048 |#1|))))
-((-1910 (((-877 |#2|) |#2| |#2|) 35)) (-3533 ((|#2| |#2| |#1|) 19 (|has| |#1| (-276)))))
-(((-1058 |#1| |#2|) (-10 -7 (-15 -1910 ((-877 |#2|) |#2| |#2|)) (IF (|has| |#1| (-276)) (-15 -3533 (|#2| |#2| |#1|)) |noBranch|)) (-508) (-1125 |#1|)) (T -1058))
-((-3533 (*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-4 *3 (-508)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-1125 *3)))) (-1910 (*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-877 *3)) (-5 *1 (-1058 *4 *3)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -1910 ((-877 |#2|) |#2| |#2|)) (IF (|has| |#1| (-276)) (-15 -3533 (|#2| |#2| |#1|)) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-2265 (($ $ (-578 (-701))) 66)) (-1446 (($) 25)) (-3530 (($ $) 41)) (-1337 (((-578 $) $) 50)) (-3305 (((-107) $) 16)) (-2235 (((-578 (-863 |#2|)) $) 73)) (-3053 (($ $) 67)) (-3477 (((-701) $) 36)) (-3634 (($) 24)) (-3010 (($ $ (-578 (-701)) (-863 |#2|)) 59) (($ $ (-578 (-701)) (-701)) 60) (($ $ (-701) (-863 |#2|)) 62)) (-3216 (($ $ $) 47) (($ (-578 $)) 49)) (-1357 (((-701) $) 74)) (-2341 (((-107) $) 15)) (-3460 (((-1053) $) NIL)) (-2817 (((-107) $) 17)) (-3708 (((-1018) $) NIL)) (-3352 (((-155) $) 72)) (-1737 (((-863 |#2|) $) 68)) (-2025 (((-701) $) 69)) (-4092 (((-107) $) 71)) (-3355 (($ $ (-578 (-701)) (-155)) 65)) (-3250 (($ $) 42)) (-3691 (((-786) $) 84)) (-1345 (($ $ (-578 (-701)) (-107)) 64)) (-1961 (((-578 $) $) 11)) (-1426 (($ $ (-701)) 35)) (-1917 (($ $) 31)) (-2763 (($ $ $ (-863 |#2|) (-701)) 55)) (-2498 (($ $ (-863 |#2|)) 54)) (-2290 (($ $ (-578 (-701)) (-863 |#2|)) 53) (($ $ (-578 (-701)) (-701)) 57) (((-701) $ (-863 |#2|)) 58)) (-3751 (((-107) $ $) 78)))
-(((-1059 |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -2341 ((-107) $)) (-15 -3305 ((-107) $)) (-15 -2817 ((-107) $)) (-15 -3634 ($)) (-15 -1446 ($)) (-15 -1917 ($ $)) (-15 -1426 ($ $ (-701))) (-15 -1961 ((-578 $) $)) (-15 -3477 ((-701) $)) (-15 -3530 ($ $)) (-15 -3250 ($ $)) (-15 -3216 ($ $ $)) (-15 -3216 ($ (-578 $))) (-15 -1337 ((-578 $) $)) (-15 -2290 ($ $ (-578 (-701)) (-863 |#2|))) (-15 -2498 ($ $ (-863 |#2|))) (-15 -2763 ($ $ $ (-863 |#2|) (-701))) (-15 -3010 ($ $ (-578 (-701)) (-863 |#2|))) (-15 -2290 ($ $ (-578 (-701)) (-701))) (-15 -3010 ($ $ (-578 (-701)) (-701))) (-15 -2290 ((-701) $ (-863 |#2|))) (-15 -3010 ($ $ (-701) (-863 |#2|))) (-15 -1345 ($ $ (-578 (-701)) (-107))) (-15 -3355 ($ $ (-578 (-701)) (-155))) (-15 -2265 ($ $ (-578 (-701)))) (-15 -1737 ((-863 |#2|) $)) (-15 -2025 ((-701) $)) (-15 -4092 ((-107) $)) (-15 -3352 ((-155) $)) (-15 -1357 ((-701) $)) (-15 -3053 ($ $)) (-15 -2235 ((-578 (-863 |#2|)) $)))) (-839) (-959)) (T -1059))
-((-2341 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-2817 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3634 (*1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-1446 (*1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-1917 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-1426 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3530 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-3250 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-3216 (*1 *1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-3216 (*1 *1 *2) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-2290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-2498 (*1 *1 *1 *2) (-12 (-5 *2 (-863 *4)) (-4 *4 (-959)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)))) (-2763 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-863 *5)) (-5 *3 (-701)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-3010 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-2290 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) (-3010 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) (-2290 (*1 *2 *1 *3) (-12 (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *2 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-3010 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) (-1345 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-107)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) (-3355 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-155)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) (-2265 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-863 *4)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-2025 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) (-3053 (*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-578 (-863 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(-13 (-1001) (-10 -8 (-15 -2341 ((-107) $)) (-15 -3305 ((-107) $)) (-15 -2817 ((-107) $)) (-15 -3634 ($)) (-15 -1446 ($)) (-15 -1917 ($ $)) (-15 -1426 ($ $ (-701))) (-15 -1961 ((-578 $) $)) (-15 -3477 ((-701) $)) (-15 -3530 ($ $)) (-15 -3250 ($ $)) (-15 -3216 ($ $ $)) (-15 -3216 ($ (-578 $))) (-15 -1337 ((-578 $) $)) (-15 -2290 ($ $ (-578 (-701)) (-863 |#2|))) (-15 -2498 ($ $ (-863 |#2|))) (-15 -2763 ($ $ $ (-863 |#2|) (-701))) (-15 -3010 ($ $ (-578 (-701)) (-863 |#2|))) (-15 -2290 ($ $ (-578 (-701)) (-701))) (-15 -3010 ($ $ (-578 (-701)) (-701))) (-15 -2290 ((-701) $ (-863 |#2|))) (-15 -3010 ($ $ (-701) (-863 |#2|))) (-15 -1345 ($ $ (-578 (-701)) (-107))) (-15 -3355 ($ $ (-578 (-701)) (-155))) (-15 -2265 ($ $ (-578 (-701)))) (-15 -1737 ((-863 |#2|) $)) (-15 -2025 ((-701) $)) (-15 -4092 ((-107) $)) (-15 -3352 ((-155) $)) (-15 -1357 ((-701) $)) (-15 -3053 ($ $)) (-15 -2235 ((-578 (-863 |#2|)) $))))
-((-3736 (((-107) $ $) NIL)) (-2015 ((|#2| $) 11)) (-2006 ((|#1| $) 10)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3699 (($ |#1| |#2|) 9)) (-3691 (((-786) $) 16)) (-3751 (((-107) $ $) NIL)))
-(((-1060 |#1| |#2|) (-13 (-1001) (-10 -8 (-15 -3699 ($ |#1| |#2|)) (-15 -2006 (|#1| $)) (-15 -2015 (|#2| $)))) (-1001) (-1001)) (T -1060))
-((-3699 (*1 *1 *2 *3) (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-2006 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1001)))) (-2015 (*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-1060 *3 *2)) (-4 *3 (-1001)))))
-(-13 (-1001) (-10 -8 (-15 -3699 ($ |#1| |#2|)) (-15 -2006 (|#1| $)) (-15 -2015 (|#2| $))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-1068 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-276)) (|has| |#1| (-331))))) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 11)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2865 (($ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-1639 (((-107) $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2805 (($ $ (-501)) NIL) (($ $ (-501) (-501)) 66)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) NIL)) (-1488 (((-1068 |#1| |#2| |#3|) $) 36)) (-1641 (((-3 (-1068 |#1| |#2| |#3|) "failed") $) 29)) (-3818 (((-1068 |#1| |#2| |#3|) $) 30)) (-3978 (($ $) 107 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 83 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) 103 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 79 (|has| |#1| (-37 (-375 (-501)))))) (-1417 (((-501) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) 111 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 87 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1068 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1070) "failed") $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-501) "failed") $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))))) (-3490 (((-1068 |#1| |#2| |#3|) $) 131) (((-1070) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (((-375 (-501)) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331)))) (((-501) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))))) (-1574 (($ $) 34) (($ (-501) $) 35)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-1068 |#1| |#2| |#3|)) (-621 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-1068 |#1| |#2| |#3|))) (|:| |vec| (-1148 (-1068 |#1| |#2| |#3|)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-577 (-501))) (|has| |#1| (-331)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-577 (-501))) (|has| |#1| (-331))))) (-2174 (((-3 $ "failed") $) 48)) (-1880 (((-375 (-866 |#1|)) $ (-501)) 65 (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) 67 (|has| |#1| (-508)))) (-2890 (($) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-2164 (((-107) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-3331 (((-107) $) 25)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-806 (-501))) (|has| |#1| (-331)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-806 (-346))) (|has| |#1| (-331))))) (-3169 (((-501) $) NIL) (((-501) $ (-501)) 24)) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL (|has| |#1| (-331)))) (-2946 (((-1068 |#1| |#2| |#3|) $) 38 (|has| |#1| (-331)))) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3493 (((-3 $ "failed") $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-1046)) (|has| |#1| (-331))))) (-4067 (((-107) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-2917 (($ $ (-839)) NIL)) (-3608 (($ (-1 |#1| (-501)) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-501)) 18) (($ $ (-986) (-501)) NIL) (($ $ (-578 (-986)) (-578 (-501))) NIL)) (-4111 (($ $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-1323 (($ $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-331)))) (-1635 (($ $) 72 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3822 (($ (-501) (-1068 |#1| |#2| |#3|)) 33)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 70 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 71 (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-1046)) (|has| |#1| (-331))) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-2801 (($ $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-276)) (|has| |#1| (-331))))) (-3383 (((-1068 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-501)) 145)) (-3694 (((-3 $ "failed") $ $) 49 (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) 73 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-501))))) (($ $ (-1070) (-1068 |#1| |#2| |#3|)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-476 (-1070) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 (-1068 |#1| |#2| |#3|))) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-476 (-1070) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-262 (-1068 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-262 (-1068 |#1| |#2| |#3|))) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-1068 |#1| |#2| |#3|)) (-578 (-1068 |#1| |#2| |#3|))) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-278 (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) NIL) (($ $ $) 54 (|has| (-501) (-1012))) (($ $ (-1068 |#1| |#2| |#3|)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-256 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|))) (|has| |#1| (-331))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|))) NIL (|has| |#1| (-331))) (($ $ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) (-701)) NIL (|has| |#1| (-331))) (($ $ (-1145 |#2|)) 51) (($ $ (-701)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 50 (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3307 (($ $) NIL (|has| |#1| (-331)))) (-2949 (((-1068 |#1| |#2| |#3|) $) 41 (|has| |#1| (-331)))) (-1201 (((-501) $) 37)) (-3991 (($ $) 113 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 89 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 109 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 85 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 105 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 81 (|has| |#1| (-37 (-375 (-501)))))) (-1248 (((-490) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-556 (-490))) (|has| |#1| (-331)))) (((-346) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-933)) (|has| |#1| (-331)))) (((-199) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-933)) (|has| |#1| (-331)))) (((-810 (-346)) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-556 (-810 (-346)))) (|has| |#1| (-331)))) (((-810 (-501)) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-556 (-810 (-501)))) (|has| |#1| (-331))))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) 149) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1068 |#1| |#2| |#3|)) 27) (($ (-1145 |#2|)) 23) (($ (-1070)) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (($ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508)))) (($ (-375 (-501))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))) (|has| |#1| (-37 (-375 (-501))))))) (-2495 ((|#1| $ (-501)) 68)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-132)) (|has| |#1| (-331))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 12)) (-2803 (((-1068 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-4003 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 95 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-3995 (($ $) 115 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 91 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 99 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 101 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 97 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 117 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 93 (|has| |#1| (-37 (-375 (-501)))))) (-1720 (($ $) NIL (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 20 T CONST)) (-1925 (($) 16 T CONST)) (-3584 (($ $ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|))) NIL (|has| |#1| (-331))) (($ $ (-1 (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) (-701)) NIL (|has| |#1| (-331))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3778 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3768 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3762 (((-107) $ $) NIL (-1405 (-12 (|has| (-1068 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1068 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) 44 (|has| |#1| (-331))) (($ (-1068 |#1| |#2| |#3|) (-1068 |#1| |#2| |#3|)) 45 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 21)) (** (($ $ (-839)) NIL) (($ $ (-701)) 53) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) 74 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 128 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1068 |#1| |#2| |#3|)) 43 (|has| |#1| (-331))) (($ (-1068 |#1| |#2| |#3|) $) 42 (|has| |#1| (-331))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-1061 |#1| |#2| |#3|) (-13 (-1113 |#1| (-1068 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1061))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))))
-(-13 (-1113 |#1| (-1068 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|)))
-((-4063 ((|#2| |#2| (-993 |#2|)) 26) ((|#2| |#2| (-1070)) 28)))
-(((-1062 |#1| |#2|) (-10 -7 (-15 -4063 (|#2| |#2| (-1070))) (-15 -4063 (|#2| |#2| (-993 |#2|)))) (-13 (-508) (-777) (-950 (-501)) (-577 (-501))) (-13 (-389 |#1|) (-145) (-27) (-1090))) (T -1062))
-((-4063 (*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-13 (-389 *4) (-145) (-27) (-1090))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1062 *4 *2)))) (-4063 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1062 *4 *2)) (-4 *2 (-13 (-389 *4) (-145) (-27) (-1090))))))
-(-10 -7 (-15 -4063 (|#2| |#2| (-1070))) (-15 -4063 (|#2| |#2| (-993 |#2|))))
-((-4063 (((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-993 (-375 (-866 |#1|)))) 30) (((-375 (-866 |#1|)) (-866 |#1|) (-993 (-866 |#1|))) 44) (((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-1070)) 32) (((-375 (-866 |#1|)) (-866 |#1|) (-1070)) 36)))
-(((-1063 |#1|) (-10 -7 (-15 -4063 ((-375 (-866 |#1|)) (-866 |#1|) (-1070))) (-15 -4063 ((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-1070))) (-15 -4063 ((-375 (-866 |#1|)) (-866 |#1|) (-993 (-866 |#1|)))) (-15 -4063 ((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-993 (-375 (-866 |#1|)))))) (-13 (-508) (-777) (-950 (-501)))) (T -1063))
-((-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-3 *3 (-282 *5))) (-5 *1 (-1063 *5)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-993 (-866 *5))) (-5 *3 (-866 *5)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-375 *3)) (-5 *1 (-1063 *5)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-3 (-375 (-866 *5)) (-282 *5))) (-5 *1 (-1063 *5)) (-5 *3 (-375 (-866 *5))))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-375 (-866 *5))) (-5 *1 (-1063 *5)) (-5 *3 (-866 *5)))))
-(-10 -7 (-15 -4063 ((-375 (-866 |#1|)) (-866 |#1|) (-1070))) (-15 -4063 ((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-1070))) (-15 -4063 ((-375 (-866 |#1|)) (-866 |#1|) (-993 (-866 |#1|)))) (-15 -4063 ((-3 (-375 (-866 |#1|)) (-282 |#1|)) (-375 (-866 |#1|)) (-993 (-375 (-866 |#1|))))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 30)) (-3077 (((-1148 |#1|) $ (-701)) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3081 (($ (-1064 |#1|)) NIL)) (-3728 (((-1064 $) $ (-986)) 59) (((-1064 |#1|) $) 48)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) 132 (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1855 (($ $ $) 126 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) 72 (|has| |#1| (-830)))) (-3676 (($ $) NIL (|has| |#1| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 92 (|has| |#1| (-830)))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3643 (($ $ (-701)) 42)) (-2222 (($ $ (-701)) 43)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-419)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#1| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-986) "failed") $) NIL)) (-3490 ((|#1| $) NIL) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-986) $) NIL)) (-1749 (($ $ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $ $) 128 (|has| |#1| (-156)))) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) 57)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) NIL) (((-621 |#1|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-4094 (($ $ $) 104)) (-3470 (($ $ $) NIL (|has| |#1| (-508)))) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-3533 (($ $) 133 (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-701) $) 46)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3317 (((-786) $ (-786)) 117)) (-3169 (((-701) $ $) NIL (|has| |#1| (-508)))) (-1355 (((-107) $) 32)) (-3706 (((-701) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#1| (-1046)))) (-3794 (($ (-1064 |#1|) (-986)) 50) (($ (-1064 $) (-986)) 66)) (-2917 (($ $ (-701)) 34)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) 64) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) NIL) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 121)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1704 (((-1064 |#1|) $) NIL)) (-2752 (((-3 (-986) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) 53)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) NIL (|has| |#1| (-419)))) (-3460 (((-1053) $) NIL)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) 41)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) 33)) (-3841 ((|#1| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 80 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-419))) (($ $ $) 135 (|has| |#1| (-419)))) (-4138 (($ $ (-701) |#1| $) 99)) (-2305 (((-373 (-1064 $)) (-1064 $)) 78 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 77 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 85 (|has| |#1| (-830)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#1|) NIL) (($ $ (-578 (-986)) (-578 |#1|)) NIL) (($ $ (-986) $) NIL) (($ $ (-578 (-986)) (-578 $)) NIL)) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-375 $) (-375 $) (-375 $)) NIL (|has| |#1| (-508))) ((|#1| (-375 $) |#1|) NIL (|has| |#1| (-331))) (((-375 $) $ (-375 $)) NIL (|has| |#1| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) 37)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 137 (|has| |#1| (-331)))) (-2532 (($ $ (-986)) NIL (|has| |#1| (-156))) ((|#1| $) 124 (|has| |#1| (-156)))) (-2596 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1201 (((-701) $) 55) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) 130 (|has| |#1| (-419))) (($ $ (-986)) NIL (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-830))))) (-3913 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508))) (((-3 (-375 $) "failed") (-375 $) $) NIL (|has| |#1| (-508)))) (-3691 (((-786) $) 118) (($ (-501)) NIL) (($ |#1|) 54) (($ (-986)) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) 28 (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 15) (($ $ (-701)) 16)) (-1850 (($) 17 T CONST)) (-1925 (($) 18 T CONST)) (-3584 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) 97)) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 138 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 67)) (** (($ $ (-839)) 14) (($ $ (-701)) 12)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 27) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1064 |#1|) (-13 (-1125 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-786))) (-15 -4138 ($ $ (-701) |#1| $)))) (-959)) (T -1064))
-((-3317 (*1 *2 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-1064 *3)) (-4 *3 (-959)))) (-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1064 *3)) (-4 *3 (-959)))))
-(-13 (-1125 |#1|) (-10 -8 (-15 -3317 ((-786) $ (-786))) (-15 -4138 ($ $ (-701) |#1| $))))
-((-1212 (((-1064 |#2|) (-1 |#2| |#1|) (-1064 |#1|)) 13)))
-(((-1065 |#1| |#2|) (-10 -7 (-15 -1212 ((-1064 |#2|) (-1 |#2| |#1|) (-1064 |#1|)))) (-959) (-959)) (T -1065))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1064 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-1064 *6)) (-5 *1 (-1065 *5 *6)))))
-(-10 -7 (-15 -1212 ((-1064 |#2|) (-1 |#2| |#1|) (-1064 |#1|))))
-((-1559 (((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|))) 50)) (-3739 (((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|))) 51)))
-(((-1066 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3739 ((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|)))) (-15 -1559 ((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|))))) (-723) (-777) (-419) (-870 |#3| |#1| |#2|)) (T -1066))
-((-1559 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-419)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 (-375 *7)))) (-5 *1 (-1066 *4 *5 *6 *7)) (-5 *3 (-1064 (-375 *7))))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-419)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 (-375 *7)))) (-5 *1 (-1066 *4 *5 *6 *7)) (-5 *3 (-1064 (-375 *7))))))
-(-10 -7 (-15 -3739 ((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|)))) (-15 -1559 ((-373 (-1064 (-375 |#4|))) (-1064 (-375 |#4|)))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 11)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) NIL) (($ $ (-375 (-501)) (-375 (-501))) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1061 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1068 |#1| |#2| |#3|) "failed") $) 35)) (-3490 (((-1061 |#1| |#2| |#3|) $) NIL) (((-1068 |#1| |#2| |#3|) $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2169 (((-375 (-501)) $) 55)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3826 (($ (-375 (-501)) (-1061 |#1| |#2| |#3|)) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) NIL) (((-375 (-501)) $ (-375 (-501))) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL) (($ $ (-375 (-501))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) 19) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-1418 (((-1061 |#1| |#2| |#3|) $) 40)) (-3064 (((-3 (-1061 |#1| |#2| |#3|) "failed") $) NIL)) (-3822 (((-1061 |#1| |#2| |#3|) $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 38 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 39 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) NIL) (($ $ $) NIL (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $ (-1145 |#2|)) 37)) (-1201 (((-375 (-501)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) 58) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1061 |#1| |#2| |#3|)) 29) (($ (-1068 |#1| |#2| |#3|)) 30) (($ (-1145 |#2|)) 25) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 12)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 21 T CONST)) (-1925 (($) 16 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 23)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-1067 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1061 |#1| |#2| |#3|)) (-950 (-1068 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1067))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))))
-(-13 (-1134 |#1| (-1061 |#1| |#2| |#3|)) (-950 (-1068 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 124)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 115)) (-1562 (((-1118 |#2| |#1|) $ (-701)) 62)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-701)) 78) (($ $ (-701) (-701)) 75)) (-1395 (((-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|))) $) 101)) (-3978 (($ $) 168 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) 164 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|)))) 114) (($ (-1048 |#1|)) 109)) (-3984 (($ $) 172 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 148 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) 23)) (-1338 (($ $) 26)) (-3430 (((-866 |#1|) $ (-701)) 74) (((-866 |#1|) $ (-701) (-701)) 76)) (-3331 (((-107) $) 119)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $) 121) (((-701) $ (-701)) 123)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL)) (-3608 (($ (-1 |#1| (-501)) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) 13) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3188 (($ $) 128 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 129 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3718 (($ $ (-701)) 15)) (-3694 (((-3 $ "failed") $ $) 24 (|has| |#1| (-508)))) (-1989 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-701)))))) (-2007 ((|#1| $ (-701)) 118) (($ $ $) 127 (|has| (-701) (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $ (-1145 |#2|)) 29)) (-1201 (((-701) $) NIL)) (-3991 (($ $) 174 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 150 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 170 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 146 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 166 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) 200) (($ (-501)) NIL) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) 125 (|has| |#1| (-156))) (($ (-1118 |#2| |#1|)) 50) (($ (-1145 |#2|)) 32)) (-1303 (((-1048 |#1|) $) 97)) (-2495 ((|#1| $ (-701)) 117)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 53)) (-4003 (($ $) 180 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 156 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 176 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 152 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 184 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 160 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-701)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-701)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 186 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 162 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 182 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 158 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 178 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 154 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 17 T CONST)) (-1925 (($) 19 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) 193)) (-3790 (($ $ $) 31)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ |#1|) 197 (|has| |#1| (-331))) (($ $ $) 133 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 136 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-1068 |#1| |#2| |#3|) (-13 (-1142 |#1|) (-10 -8 (-15 -3691 ($ (-1118 |#2| |#1|))) (-15 -1562 ((-1118 |#2| |#1|) $ (-701))) (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1068))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1118 *4 *3)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-1068 *3 *4 *5)))) (-1562 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1118 *5 *4)) (-5 *1 (-1068 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-1070)) (-14 *6 *4))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))))
-(-13 (-1142 |#1|) (-10 -8 (-15 -3691 ($ (-1118 |#2| |#1|))) (-15 -1562 ((-1118 |#2| |#1|) $ (-701))) (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|)))
-((-3691 (((-786) $) 22) (($ (-1070)) 24)) (-1405 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 35)) (-1397 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 28) (($ $) 29)) (-4011 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 30)) (-1888 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 32)) (-4135 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 31)) (-1249 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 33)) (-2373 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $))) 34)))
-(((-1069) (-13 (-555 (-786)) (-10 -8 (-15 -3691 ($ (-1070))) (-15 -4011 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -4135 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1888 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1249 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1405 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -2373 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1397 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1397 ($ $))))) (T -1069))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1069)))) (-4011 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-4135 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1888 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1249 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1405 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-2373 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))) (-1397 (*1 *1 *1) (-5 *1 (-1069))))
-(-13 (-555 (-786)) (-10 -8 (-15 -3691 ($ (-1070))) (-15 -4011 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -4135 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1888 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1249 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1405 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -2373 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)) (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1397 ($ (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| $)))) (-15 -1397 ($ $))))
-((-3736 (((-107) $ $) NIL)) (-2478 (($ $ (-578 (-786))) 58)) (-2836 (($ $ (-578 (-786))) 56)) (-2011 (((-1053) $) 82)) (-4147 (((-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))) $) 85)) (-1394 (((-107) $) 21)) (-2989 (($ $ (-578 (-578 (-786)))) 54) (($ $ (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) 80)) (-2540 (($) 122 T CONST)) (-3204 (((-1154)) 103)) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 65) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 71)) (-3634 (($) 92) (($ $) 98)) (-3986 (($ $) 81)) (-4111 (($ $ $) NIL)) (-1323 (($ $ $) NIL)) (-3143 (((-578 $) $) 104)) (-3460 (((-1053) $) 87)) (-3708 (((-1018) $) NIL)) (-2007 (($ $ (-578 (-786))) 57)) (-1248 (((-490) $) 45) (((-1070) $) 46) (((-810 (-501)) $) 75) (((-810 (-346)) $) 73)) (-3691 (((-786) $) 52) (($ (-1053)) 47)) (-1544 (($ $ (-578 (-786))) 59)) (-3671 (((-1053) $) 33) (((-1053) $ (-107)) 34) (((-1154) (-753) $) 35) (((-1154) (-753) $ (-107)) 36)) (-3778 (((-107) $ $) NIL)) (-3768 (((-107) $ $) NIL)) (-3751 (((-107) $ $) 48)) (-3773 (((-107) $ $) NIL)) (-3762 (((-107) $ $) 49)))
-(((-1070) (-13 (-777) (-556 (-490)) (-751) (-556 (-1070)) (-556 (-810 (-501))) (-556 (-810 (-346))) (-806 (-501)) (-806 (-346)) (-10 -8 (-15 -3634 ($)) (-15 -3634 ($ $)) (-15 -3204 ((-1154))) (-15 -3691 ($ (-1053))) (-15 -3986 ($ $)) (-15 -1394 ((-107) $)) (-15 -4147 ((-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))) $)) (-15 -2989 ($ $ (-578 (-578 (-786))))) (-15 -2989 ($ $ (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))))) (-15 -2836 ($ $ (-578 (-786)))) (-15 -2478 ($ $ (-578 (-786)))) (-15 -1544 ($ $ (-578 (-786)))) (-15 -2007 ($ $ (-578 (-786)))) (-15 -2011 ((-1053) $)) (-15 -3143 ((-578 $) $)) (-15 -2540 ($) -3897)))) (T -1070))
-((-3634 (*1 *1) (-5 *1 (-1070))) (-3634 (*1 *1 *1) (-5 *1 (-1070))) (-3204 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1070)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1070)))) (-3986 (*1 *1 *1) (-5 *1 (-1070))) (-1394 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1070)))) (-4147 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) (-5 *1 (-1070)))) (-2989 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 (-786)))) (-5 *1 (-1070)))) (-2989 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) (-5 *1 (-1070)))) (-2836 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) (-2478 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) (-1544 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1070)))) (-3143 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1070)))) (-2540 (*1 *1) (-5 *1 (-1070))))
-(-13 (-777) (-556 (-490)) (-751) (-556 (-1070)) (-556 (-810 (-501))) (-556 (-810 (-346))) (-806 (-501)) (-806 (-346)) (-10 -8 (-15 -3634 ($)) (-15 -3634 ($ $)) (-15 -3204 ((-1154))) (-15 -3691 ($ (-1053))) (-15 -3986 ($ $)) (-15 -1394 ((-107) $)) (-15 -4147 ((-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))) $)) (-15 -2989 ($ $ (-578 (-578 (-786))))) (-15 -2989 ($ $ (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786)))))) (-15 -2836 ($ $ (-578 (-786)))) (-15 -2478 ($ $ (-578 (-786)))) (-15 -1544 ($ $ (-578 (-786)))) (-15 -2007 ($ $ (-578 (-786)))) (-15 -2011 ((-1053) $)) (-15 -3143 ((-578 $) $)) (-15 -2540 ($) -3897)))
-((-1959 (((-1148 |#1|) |#1| (-839)) 16) (((-1148 |#1|) (-578 |#1|)) 20)))
-(((-1071 |#1|) (-10 -7 (-15 -1959 ((-1148 |#1|) (-578 |#1|))) (-15 -1959 ((-1148 |#1|) |#1| (-839)))) (-959)) (T -1071))
-((-1959 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-1148 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-959)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-959)) (-5 *2 (-1148 *4)) (-5 *1 (-1071 *4)))))
-(-10 -7 (-15 -1959 ((-1148 |#1|) (-578 |#1|))) (-15 -1959 ((-1148 |#1|) |#1| (-839))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| |#1| (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#1| (-950 (-375 (-501))))) (((-3 |#1| "failed") $) NIL)) (-3490 (((-501) $) NIL (|has| |#1| (-950 (-501)))) (((-375 (-501)) $) NIL (|has| |#1| (-950 (-375 (-501))))) ((|#1| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3533 (($ $) NIL (|has| |#1| (-419)))) (-3503 (($ $ |#1| (-886) $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-886)) NIL)) (-2285 (((-886) $) NIL)) (-3515 (($ (-1 (-886) (-886)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#1| $) NIL)) (-4138 (($ $ (-886) |#1| $) NIL (-12 (|has| (-886) (-123)) (|has| |#1| (-508))))) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-508)))) (-1201 (((-886) $) NIL)) (-1734 ((|#1| $) NIL (|has| |#1| (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) NIL) (($ (-375 (-501))) NIL (-1405 (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-950 (-375 (-501))))))) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ (-886)) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#1| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 9 T CONST)) (-1925 (($) 14 T CONST)) (-3751 (((-107) $ $) 16)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 19)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-1072 |#1|) (-13 (-294 |#1| (-886)) (-10 -8 (IF (|has| |#1| (-508)) (IF (|has| (-886) (-123)) (-15 -4138 ($ $ (-886) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|))) (-959)) (T -1072))
-((-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-886)) (-4 *2 (-123)) (-5 *1 (-1072 *3)) (-4 *3 (-508)) (-4 *3 (-959)))))
-(-13 (-294 |#1| (-886)) (-10 -8 (IF (|has| |#1| (-508)) (IF (|has| (-886) (-123)) (-15 -4138 ($ $ (-886) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|)))
-((-2928 (((-1074) (-1070) $) 24)) (-3408 (($) 28)) (-1601 (((-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-1070) $) 21)) (-3087 (((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")) $) 40) (((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) 41) (((-1154) (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) 42)) (-2450 (((-1154) (-1070)) 57)) (-2843 (((-1154) (-1070) $) 54) (((-1154) (-1070)) 55) (((-1154)) 56)) (-2227 (((-1154) (-1070)) 36)) (-1269 (((-1070)) 35)) (-3122 (($) 33)) (-4010 (((-404) (-1070) (-404) (-1070) $) 44) (((-404) (-578 (-1070)) (-404) (-1070) $) 48) (((-404) (-1070) (-404)) 45) (((-404) (-1070) (-404) (-1070)) 49)) (-2868 (((-1070)) 34)) (-3691 (((-786) $) 27)) (-2244 (((-1154)) 29) (((-1154) (-1070)) 32)) (-3888 (((-578 (-1070)) (-1070) $) 23)) (-3304 (((-1154) (-1070) (-578 (-1070)) $) 37) (((-1154) (-1070) (-578 (-1070))) 38) (((-1154) (-578 (-1070))) 39)))
-(((-1073) (-13 (-555 (-786)) (-10 -8 (-15 -3408 ($)) (-15 -2244 ((-1154))) (-15 -2244 ((-1154) (-1070))) (-15 -4010 ((-404) (-1070) (-404) (-1070) $)) (-15 -4010 ((-404) (-578 (-1070)) (-404) (-1070) $)) (-15 -4010 ((-404) (-1070) (-404))) (-15 -4010 ((-404) (-1070) (-404) (-1070))) (-15 -2227 ((-1154) (-1070))) (-15 -2868 ((-1070))) (-15 -1269 ((-1070))) (-15 -3304 ((-1154) (-1070) (-578 (-1070)) $)) (-15 -3304 ((-1154) (-1070) (-578 (-1070)))) (-15 -3304 ((-1154) (-578 (-1070)))) (-15 -3087 ((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")) $)) (-15 -3087 ((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")))) (-15 -3087 ((-1154) (-3 (|:| |fst| (-402)) (|:| -2645 "void")))) (-15 -2843 ((-1154) (-1070) $)) (-15 -2843 ((-1154) (-1070))) (-15 -2843 ((-1154))) (-15 -2450 ((-1154) (-1070))) (-15 -3122 ($)) (-15 -1601 ((-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-1070) $)) (-15 -3888 ((-578 (-1070)) (-1070) $)) (-15 -2928 ((-1074) (-1070) $))))) (T -1073))
-((-3408 (*1 *1) (-5 *1 (-1073))) (-2244 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-4010 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) (-4010 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-404)) (-5 *3 (-578 (-1070))) (-5 *4 (-1070)) (-5 *1 (-1073)))) (-4010 (*1 *2 *3 *2) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) (-4010 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2868 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1073)))) (-1269 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1073)))) (-3304 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3304 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3087 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1070)) (-5 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3087 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2843 (*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2843 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2843 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1073)))) (-2450 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) (-3122 (*1 *1) (-5 *1 (-1073))) (-1601 (*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *1 (-1073)))) (-3888 (*1 *2 *3 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1073)) (-5 *3 (-1070)))) (-2928 (*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-1074)) (-5 *1 (-1073)))))
-(-13 (-555 (-786)) (-10 -8 (-15 -3408 ($)) (-15 -2244 ((-1154))) (-15 -2244 ((-1154) (-1070))) (-15 -4010 ((-404) (-1070) (-404) (-1070) $)) (-15 -4010 ((-404) (-578 (-1070)) (-404) (-1070) $)) (-15 -4010 ((-404) (-1070) (-404))) (-15 -4010 ((-404) (-1070) (-404) (-1070))) (-15 -2227 ((-1154) (-1070))) (-15 -2868 ((-1070))) (-15 -1269 ((-1070))) (-15 -3304 ((-1154) (-1070) (-578 (-1070)) $)) (-15 -3304 ((-1154) (-1070) (-578 (-1070)))) (-15 -3304 ((-1154) (-578 (-1070)))) (-15 -3087 ((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")) $)) (-15 -3087 ((-1154) (-1070) (-3 (|:| |fst| (-402)) (|:| -2645 "void")))) (-15 -3087 ((-1154) (-3 (|:| |fst| (-402)) (|:| -2645 "void")))) (-15 -2843 ((-1154) (-1070) $)) (-15 -2843 ((-1154) (-1070))) (-15 -2843 ((-1154))) (-15 -2450 ((-1154) (-1070))) (-15 -3122 ($)) (-15 -1601 ((-3 (|:| |fst| (-402)) (|:| -2645 "void")) (-1070) $)) (-15 -3888 ((-578 (-1070)) (-1070) $)) (-15 -2928 ((-1074) (-1070) $))))
-((-3801 (((-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) $) 57)) (-1569 (((-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))) (-402) $) 40)) (-2488 (($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404))))) 15)) (-2450 (((-1154) $) 65)) (-2240 (((-578 (-1070)) $) 20)) (-3831 (((-1003) $) 53)) (-2215 (((-404) (-1070) $) 27)) (-3078 (((-578 (-1070)) $) 30)) (-3122 (($) 17)) (-4010 (((-404) (-578 (-1070)) (-404) $) 25) (((-404) (-1070) (-404) $) 24)) (-3691 (((-786) $) 9) (((-1077 (-1070) (-404)) $) 11)))
-(((-1074) (-13 (-555 (-786)) (-10 -8 (-15 -3691 ((-1077 (-1070) (-404)) $)) (-15 -3122 ($)) (-15 -4010 ((-404) (-578 (-1070)) (-404) $)) (-15 -4010 ((-404) (-1070) (-404) $)) (-15 -2215 ((-404) (-1070) $)) (-15 -2240 ((-578 (-1070)) $)) (-15 -1569 ((-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))) (-402) $)) (-15 -3078 ((-578 (-1070)) $)) (-15 -3801 ((-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) $)) (-15 -3831 ((-1003) $)) (-15 -2450 ((-1154) $)) (-15 -2488 ($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404))))))))) (T -1074))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-1077 (-1070) (-404))) (-5 *1 (-1074)))) (-3122 (*1 *1) (-5 *1 (-1074))) (-4010 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-404)) (-5 *3 (-578 (-1070))) (-5 *1 (-1074)))) (-4010 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1074)))) (-2215 (*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-404)) (-5 *1 (-1074)))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1074)))) (-1569 (*1 *2 *3 *1) (-12 (-5 *3 (-402)) (-5 *2 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) (-5 *1 (-1074)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1074)))) (-3801 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))))) (-5 *1 (-1074)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-1074)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1074)))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404))))) (-5 *1 (-1074)))))
-(-13 (-555 (-786)) (-10 -8 (-15 -3691 ((-1077 (-1070) (-404)) $)) (-15 -3122 ($)) (-15 -4010 ((-404) (-578 (-1070)) (-404) $)) (-15 -4010 ((-404) (-1070) (-404) $)) (-15 -2215 ((-404) (-1070) $)) (-15 -2240 ((-578 (-1070)) $)) (-15 -1569 ((-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))) (-402) $)) (-15 -3078 ((-578 (-1070)) $)) (-15 -3801 ((-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) $)) (-15 -3831 ((-1003) $)) (-15 -2450 ((-1154) $)) (-15 -2488 ($ (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404))))))))
-((-2777 (((-578 (-578 (-866 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070))) 55)) (-2778 (((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|)))) 66) (((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|))) 62) (((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070)) 67) (((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070)) 61) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|))))) 91) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|)))) 90) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070))) 92) (((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))) (-578 (-1070))) 89)))
-(((-1075 |#1|) (-10 -7 (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))))) (-15 -2777 ((-578 (-578 (-866 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070))))) (-508)) (T -1075))
-((-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-866 *5)))) (-5 *1 (-1075 *5)))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *4))))) (-5 *1 (-1075 *4)) (-5 *3 (-262 (-375 (-866 *4)))))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *4))))) (-5 *1 (-1075 *4)) (-5 *3 (-375 (-866 *4))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-262 (-375 (-866 *5)))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-375 (-866 *5))))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-1075 *4)) (-5 *3 (-578 (-262 (-375 (-866 *4))))))) (-2778 (*1 *2 *3) (-12 (-5 *3 (-578 (-375 (-866 *4)))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-1075 *4)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-1075 *5)) (-5 *3 (-578 (-262 (-375 (-866 *5))))))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-1075 *5)))))
-(-10 -7 (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))) (-578 (-1070)))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-375 (-866 |#1|))))) (-15 -2778 ((-578 (-578 (-262 (-375 (-866 |#1|))))) (-578 (-262 (-375 (-866 |#1|)))))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)) (-1070))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))) (-1070))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-375 (-866 |#1|)))) (-15 -2778 ((-578 (-262 (-375 (-866 |#1|)))) (-262 (-375 (-866 |#1|))))) (-15 -2777 ((-578 (-578 (-866 |#1|))) (-578 (-375 (-866 |#1|))) (-578 (-1070)))))
-((-2092 (((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|)))) 38)) (-3029 (((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|))) 24)) (-1504 (((-1078 (-578 |#1|)) (-578 |#1|)) 34)) (-1672 (((-578 (-578 |#1|)) (-578 |#1|)) 30)) (-4141 (((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|)))) 37)) (-1252 (((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|)))) 36)) (-2260 (((-578 (-578 |#1|)) (-578 (-578 |#1|))) 28)) (-1616 (((-578 |#1|) (-578 |#1|)) 31)) (-2053 (((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|)))) 18)) (-2275 (((-578 (-578 (-578 |#1|))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|)))) 15)) (-1486 (((-2 (|:| |fs| (-107)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|))) 13)) (-2065 (((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|)))) 39)) (-3075 (((-578 (-578 |#1|)) (-1078 (-578 |#1|))) 41)))
-(((-1076 |#1|) (-10 -7 (-15 -1486 ((-2 (|:| |fs| (-107)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|)))) (-15 -2275 ((-578 (-578 (-578 |#1|))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -2053 ((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -2092 ((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -2065 ((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -3075 ((-578 (-578 |#1|)) (-1078 (-578 |#1|)))) (-15 -3029 ((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)))) (-15 -1504 ((-1078 (-578 |#1|)) (-578 |#1|))) (-15 -2260 ((-578 (-578 |#1|)) (-578 (-578 |#1|)))) (-15 -1672 ((-578 (-578 |#1|)) (-578 |#1|))) (-15 -1616 ((-578 |#1|) (-578 |#1|))) (-15 -1252 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))))) (-15 -4141 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|)))))) (-777)) (T -1076))
-((-4141 (*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-2 (|:| |f1| (-578 *4)) (|:| |f2| (-578 (-578 (-578 *4)))) (|:| |f3| (-578 (-578 *4))) (|:| |f4| (-578 (-578 (-578 *4)))))) (-5 *1 (-1076 *4)) (-5 *3 (-578 (-578 (-578 *4)))))) (-1252 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-777)) (-5 *3 (-578 *6)) (-5 *5 (-578 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-578 *5)) (|:| |f3| *5) (|:| |f4| (-578 *5)))) (-5 *1 (-1076 *6)) (-5 *4 (-578 *5)))) (-1616 (*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-1076 *3)))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)) (-5 *3 (-578 *4)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-777)) (-5 *1 (-1076 *3)))) (-1504 (*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-1078 (-578 *4))) (-5 *1 (-1076 *4)) (-5 *3 (-578 *4)))) (-3029 (*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-578 (-578 (-578 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-578 (-578 *4))))) (-3075 (*1 *2 *3) (-12 (-5 *3 (-1078 (-578 *4))) (-4 *4 (-777)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)))) (-2065 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)) (-4 *4 (-777)))) (-2092 (*1 *2 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-4 *4 (-777)) (-5 *1 (-1076 *4)))) (-2053 (*1 *2 *3 *2) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-578 *4)) (-4 *4 (-777)) (-5 *1 (-1076 *4)))) (-2275 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-578 *5)) (-4 *5 (-777)) (-5 *1 (-1076 *5)))) (-1486 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-777)) (-5 *4 (-578 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-578 *4)))) (-5 *1 (-1076 *6)) (-5 *5 (-578 *4)))))
-(-10 -7 (-15 -1486 ((-2 (|:| |fs| (-107)) (|:| |sd| (-578 |#1|)) (|:| |td| (-578 (-578 |#1|)))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 |#1|)))) (-15 -2275 ((-578 (-578 (-578 |#1|))) (-1 (-107) |#1| |#1|) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -2053 ((-578 (-578 (-578 |#1|))) (-578 |#1|) (-578 (-578 (-578 |#1|))))) (-15 -2092 ((-578 (-578 |#1|)) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -2065 ((-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))))) (-15 -3075 ((-578 (-578 |#1|)) (-1078 (-578 |#1|)))) (-15 -3029 ((-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)))) (-15 -1504 ((-1078 (-578 |#1|)) (-578 |#1|))) (-15 -2260 ((-578 (-578 |#1|)) (-578 (-578 |#1|)))) (-15 -1672 ((-578 (-578 |#1|)) (-578 |#1|))) (-15 -1616 ((-578 |#1|) (-578 |#1|))) (-15 -1252 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 |#1|) (-578 (-578 (-578 |#1|))) (-578 (-578 |#1|)) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))) (-578 (-578 (-578 |#1|))))) (-15 -4141 ((-2 (|:| |f1| (-578 |#1|)) (|:| |f2| (-578 (-578 (-578 |#1|)))) (|:| |f3| (-578 (-578 |#1|))) (|:| |f4| (-578 (-578 (-578 |#1|))))) (-578 (-578 (-578 |#1|))))))
-((-3736 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3621 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1991 (((-1154) $ |#1| |#1|) NIL (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#2| $ |#1| |#2|) NIL)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) NIL)) (-2540 (($) NIL T CONST)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) NIL)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) NIL)) (-3627 ((|#1| $) NIL (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-578 |#2|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-1522 ((|#1| $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1500 (((-578 |#1|) $) NIL)) (-3576 (((-107) |#1| $) NIL)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2658 (((-578 |#1|) $) NIL)) (-2852 (((-107) |#1| $) NIL)) (-3708 (((-1018) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-1190 ((|#2| $) NIL (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL)) (-3084 (($ $ |#2|) NIL (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3013 (($) NIL) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) NIL (-12 (|has| $ (-6 -4167)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (((-701) |#2| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001)))) (((-701) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-3691 (((-786) $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) NIL)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) NIL (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) NIL (-1405 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| |#2| (-1001))))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1077 |#1| |#2|) (-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167))) (-1001) (-1001)) (T -1077))
-NIL
-(-13 (-1081 |#1| |#2|) (-10 -7 (-6 -4167)))
-((-3828 (($ (-578 (-578 |#1|))) 9)) (-2237 (((-578 (-578 |#1|)) $) 10)) (-3691 (((-786) $) 25)))
-(((-1078 |#1|) (-10 -8 (-15 -3828 ($ (-578 (-578 |#1|)))) (-15 -2237 ((-578 (-578 |#1|)) $)) (-15 -3691 ((-786) $))) (-1001)) (T -1078))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1078 *3)) (-4 *3 (-1001)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 *3))) (-5 *1 (-1078 *3)) (-4 *3 (-1001)))) (-3828 (*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-1078 *3)))))
-(-10 -8 (-15 -3828 ($ (-578 (-578 |#1|)))) (-15 -2237 ((-578 (-578 |#1|)) $)) (-15 -3691 ((-786) $)))
-((-1501 ((|#1| (-578 |#1|)) 32)) (-2670 ((|#1| |#1| (-501)) 18)) (-3432 (((-1064 |#1|) |#1| (-839)) 15)))
-(((-1079 |#1|) (-10 -7 (-15 -1501 (|#1| (-578 |#1|))) (-15 -3432 ((-1064 |#1|) |#1| (-839))) (-15 -2670 (|#1| |#1| (-501)))) (-331)) (T -1079))
-((-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-1079 *2)) (-4 *2 (-331)))) (-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-1064 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-331)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-1079 *2)) (-4 *2 (-331)))))
-(-10 -7 (-15 -1501 (|#1| (-578 |#1|))) (-15 -3432 ((-1064 |#1|) |#1| (-839))) (-15 -2670 (|#1| |#1| (-501))))
-((-3621 (($) 10) (($ (-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)))) 14)) (-2256 (($ (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2732 (((-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) 39) (((-578 |#3|) $) 41)) (-2519 (($ (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1212 (($ (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1328 (((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 53)) (-4114 (($ (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 16)) (-2658 (((-578 |#2|) $) 19)) (-2852 (((-107) |#2| $) 58)) (-2520 (((-3 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) "failed") (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) 57)) (-1251 (((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) 62)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 65)) (-4137 (((-578 |#3|) $) 43)) (-2007 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) NIL) (((-701) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) $) NIL) (((-701) |#3| $) NIL) (((-701) (-1 (-107) |#3|) $) 66)) (-3691 (((-786) $) 27)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-3751 (((-107) $ $) 48)))
-(((-1080 |#1| |#2| |#3|) (-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -1212 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3621 (|#1| (-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))))) (-15 -3621 (|#1|)) (-15 -1212 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2519 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#3|) |#1|)) (-15 -2732 ((-578 |#3|) |#1|)) (-15 -3713 ((-701) |#3| |#1|)) (-15 -2007 (|#3| |#1| |#2| |#3|)) (-15 -2007 (|#3| |#1| |#2|)) (-15 -4137 ((-578 |#3|) |#1|)) (-15 -2852 ((-107) |#2| |#1|)) (-15 -2658 ((-578 |#2|) |#1|)) (-15 -2256 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2256 (|#1| (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2256 (|#1| (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -2520 ((-3 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) "failed") (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1328 ((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -4114 (|#1| (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -1251 ((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -3713 ((-701) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -2732 ((-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -3713 ((-701) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2369 ((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1200 ((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2519 (|#1| (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1212 (|#1| (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|))) (-1081 |#2| |#3|) (-1001) (-1001)) (T -1080))
-NIL
-(-10 -8 (-15 -3751 ((-107) |#1| |#1|)) (-15 -3691 ((-786) |#1|)) (-15 -1212 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3621 (|#1| (-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))))) (-15 -3621 (|#1|)) (-15 -1212 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2519 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1200 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2369 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3713 ((-701) (-1 (-107) |#3|) |#1|)) (-15 -2732 ((-578 |#3|) |#1|)) (-15 -3713 ((-701) |#3| |#1|)) (-15 -2007 (|#3| |#1| |#2| |#3|)) (-15 -2007 (|#3| |#1| |#2|)) (-15 -4137 ((-578 |#3|) |#1|)) (-15 -2852 ((-107) |#2| |#1|)) (-15 -2658 ((-578 |#2|) |#1|)) (-15 -2256 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2256 (|#1| (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2256 (|#1| (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -2520 ((-3 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) "failed") (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1328 ((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -4114 (|#1| (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -1251 ((-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -3713 ((-701) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) |#1|)) (-15 -2732 ((-578 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -3713 ((-701) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2369 ((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1200 ((-107) (-1 (-107) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -2519 (|#1| (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)) (-15 -1212 (|#1| (-1 (-2 (|:| -3626 |#2|) (|:| -2922 |#3|)) (-2 (|:| -3626 |#2|) (|:| -2922 |#3|))) |#1|)))
-((-3736 (((-107) $ $) 18 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-3621 (($) 72) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 71)) (-1991 (((-1154) $ |#1| |#1|) 99 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#2| $ |#1| |#2|) 73)) (-1221 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 45 (|has| $ (-6 -4167)))) (-1987 (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 55 (|has| $ (-6 -4167)))) (-4019 (((-3 |#2| "failed") |#1| $) 61)) (-2540 (($) 7 T CONST)) (-2673 (($ $) 58 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167))))) (-2256 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 47 (|has| $ (-6 -4167))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 46 (|has| $ (-6 -4167))) (((-3 |#2| "failed") |#1| $) 62)) (-1526 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 54 (|has| $ (-6 -4167)))) (-3547 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 56 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 53 (|has| $ (-6 -4167))) (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 52 (|has| $ (-6 -4167)))) (-2156 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4168)))) (-1905 ((|#2| $ |#1|) 88)) (-2732 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 30 (|has| $ (-6 -4167))) (((-578 |#2|) $) 79 (|has| $ (-6 -4167)))) (-3379 (((-107) $ (-701)) 9)) (-3627 ((|#1| $) 96 (|has| |#1| (-777)))) (-3380 (((-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 29 (|has| $ (-6 -4167))) (((-578 |#2|) $) 80 (|has| $ (-6 -4167)))) (-2211 (((-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167))))) (-1522 ((|#1| $) 95 (|has| |#1| (-777)))) (-2519 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 34 (|has| $ (-6 -4168))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4168)))) (-1212 (($ (-1 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3155 (((-107) $ (-701)) 10)) (-3460 (((-1053) $) 22 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1500 (((-578 |#1|) $) 63)) (-3576 (((-107) |#1| $) 64)) (-1328 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 39)) (-4114 (($ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 40)) (-2658 (((-578 |#1|) $) 93)) (-2852 (((-107) |#1| $) 92)) (-3708 (((-1018) $) 21 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-1190 ((|#2| $) 97 (|has| |#1| (-777)))) (-2520 (((-3 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) "failed") (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 51)) (-3084 (($ $ |#2|) 98 (|has| $ (-6 -4168)))) (-1251 (((-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 41)) (-2369 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 32 (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))))) 26 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-262 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 25 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) 24 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 23 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)))) (($ $ (-578 |#2|) (-578 |#2|)) 86 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-262 |#2|)) 84 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001)))) (($ $ (-578 (-262 |#2|))) 83 (-12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4167)) (|has| |#2| (-1001))))) (-4137 (((-578 |#2|) $) 91)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3013 (($) 49) (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 48)) (-3713 (((-701) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 31 (|has| $ (-6 -4167))) (((-701) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001)) (|has| $ (-6 -4167)))) (((-701) |#2| $) 81 (-12 (|has| |#2| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4167)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 59 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))))) (-3699 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 50)) (-3691 (((-786) $) 20 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-2866 (($ (-578 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) 42)) (-1200 (((-107) (-1 (-107) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) $) 33 (|has| $ (-6 -4167))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (-1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-1081 |#1| |#2|) (-1180) (-1001) (-1001)) (T -1081))
-((-3754 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) (-3621 (*1 *1) (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) (-3621 (*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 *3) (|:| -2922 *4)))) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *1 (-1081 *3 *4)))) (-1212 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1081 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(-13 (-552 |t#1| |t#2|) (-548 |t#1| |t#2|) (-10 -8 (-15 -3754 (|t#2| $ |t#1| |t#2|)) (-15 -3621 ($)) (-15 -3621 ($ (-578 (-2 (|:| -3626 |t#1|) (|:| -2922 |t#2|))))) (-15 -1212 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-102 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-97) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-555 (-786)) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-138 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-556 (-490)) |has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-556 (-490))) ((-202 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-208 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-256 |#1| |#2|) . T) ((-258 |#1| |#2|) . T) ((-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-278 |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-454 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) . T) ((-454 |#2|) . T) ((-548 |#1| |#2|) . T) ((-476 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-2 (|:| -3626 |#1|) (|:| -2922 |#2|))) -12 (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-278 (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)))) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-476 |#2| |#2|) -12 (|has| |#2| (-278 |#2|)) (|has| |#2| (-1001))) ((-552 |#1| |#2|) . T) ((-1001) -1405 (|has| |#2| (-1001)) (|has| (-2 (|:| -3626 |#1|) (|:| -2922 |#2|)) (-1001))) ((-1104) . T))
-((-3353 (((-107)) 24)) (-1211 (((-1154) (-1053)) 26)) (-1391 (((-107)) 36)) (-2834 (((-1154)) 34)) (-1227 (((-1154) (-1053) (-1053)) 25)) (-3230 (((-107)) 37)) (-4114 (((-1154) |#1| |#2|) 44)) (-3932 (((-1154)) 20)) (-2299 (((-3 |#2| "failed") |#1|) 42)) (-1606 (((-1154)) 35)))
-(((-1082 |#1| |#2|) (-10 -7 (-15 -3932 ((-1154))) (-15 -1227 ((-1154) (-1053) (-1053))) (-15 -1211 ((-1154) (-1053))) (-15 -2834 ((-1154))) (-15 -1606 ((-1154))) (-15 -3353 ((-107))) (-15 -1391 ((-107))) (-15 -3230 ((-107))) (-15 -2299 ((-3 |#2| "failed") |#1|)) (-15 -4114 ((-1154) |#1| |#2|))) (-1001) (-1001)) (T -1082))
-((-4114 (*1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-2299 (*1 *2 *3) (|partial| -12 (-4 *2 (-1001)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1001)))) (-3230 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-1391 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-3353 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-1606 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-2834 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) (-1211 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)))) (-1227 (*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)))) (-3932 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(-10 -7 (-15 -3932 ((-1154))) (-15 -1227 ((-1154) (-1053) (-1053))) (-15 -1211 ((-1154) (-1053))) (-15 -2834 ((-1154))) (-15 -1606 ((-1154))) (-15 -3353 ((-107))) (-15 -1391 ((-107))) (-15 -3230 ((-107))) (-15 -2299 ((-3 |#2| "failed") |#1|)) (-15 -4114 ((-1154) |#1| |#2|)))
-((-2327 (((-1053) (-1053)) 18)) (-3688 (((-50) (-1053)) 21)))
-(((-1083) (-10 -7 (-15 -3688 ((-50) (-1053))) (-15 -2327 ((-1053) (-1053))))) (T -1083))
-((-2327 (*1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1083)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-1083)))))
-(-10 -7 (-15 -3688 ((-50) (-1053))) (-15 -2327 ((-1053) (-1053))))
-((-3736 (((-107) $ $) NIL)) (-3006 (((-578 (-1053)) $) 33)) (-2360 (((-578 (-1053)) $ (-578 (-1053))) 36)) (-4103 (((-578 (-1053)) $ (-578 (-1053))) 35)) (-3232 (((-578 (-1053)) $ (-578 (-1053))) 37)) (-3615 (((-578 (-1053)) $) 32)) (-3634 (($) 22)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2680 (((-578 (-1053)) $) 34)) (-2125 (((-1154) $ (-501)) 29) (((-1154) $) 30)) (-1248 (($ (-786) (-501)) 26) (($ (-786) (-501) (-786)) NIL)) (-3691 (((-786) $) 39) (($ (-786)) 24)) (-3751 (((-107) $ $) NIL)))
-(((-1084) (-13 (-1001) (-10 -8 (-15 -3691 ($ (-786))) (-15 -1248 ($ (-786) (-501))) (-15 -1248 ($ (-786) (-501) (-786))) (-15 -2125 ((-1154) $ (-501))) (-15 -2125 ((-1154) $)) (-15 -2680 ((-578 (-1053)) $)) (-15 -3006 ((-578 (-1053)) $)) (-15 -3634 ($)) (-15 -3615 ((-578 (-1053)) $)) (-15 -3232 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -2360 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -4103 ((-578 (-1053)) $ (-578 (-1053))))))) (T -1084))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-1084)))) (-1248 (*1 *1 *2 *3) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-1084)))) (-1248 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-1084)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1084)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1084)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-3634 (*1 *1) (-5 *1 (-1084))) (-3615 (*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-3232 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-2360 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))) (-4103 (*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))))
-(-13 (-1001) (-10 -8 (-15 -3691 ($ (-786))) (-15 -1248 ($ (-786) (-501))) (-15 -1248 ($ (-786) (-501) (-786))) (-15 -2125 ((-1154) $ (-501))) (-15 -2125 ((-1154) $)) (-15 -2680 ((-578 (-1053)) $)) (-15 -3006 ((-578 (-1053)) $)) (-15 -3634 ($)) (-15 -3615 ((-578 (-1053)) $)) (-15 -3232 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -2360 ((-578 (-1053)) $ (-578 (-1053)))) (-15 -4103 ((-578 (-1053)) $ (-578 (-1053))))))
-((-3691 (((-1084) |#1|) 11)))
-(((-1085 |#1|) (-10 -7 (-15 -3691 ((-1084) |#1|))) (-1001)) (T -1085))
-((-3691 (*1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *1 (-1085 *3)) (-4 *3 (-1001)))))
-(-10 -7 (-15 -3691 ((-1084) |#1|)))
-((-3736 (((-107) $ $) NIL)) (-4123 (((-1053) $ (-1053)) 15) (((-1053) $) 14)) (-2186 (((-1053) $ (-1053)) 13)) (-1998 (($ $ (-1053)) NIL)) (-3951 (((-3 (-1053) "failed") $) 11)) (-3526 (((-1053) $) 8)) (-1225 (((-3 (-1053) "failed") $) 12)) (-3505 (((-1053) $) 9)) (-2342 (($ (-356)) NIL) (($ (-356) (-1053)) NIL)) (-3986 (((-356) $) NIL)) (-3460 (((-1053) $) NIL)) (-3947 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3451 (((-107) $) 17)) (-3691 (((-786) $) NIL)) (-3371 (($ $) NIL)) (-3751 (((-107) $ $) NIL)))
-(((-1086) (-13 (-333 (-356) (-1053)) (-10 -8 (-15 -4123 ((-1053) $ (-1053))) (-15 -4123 ((-1053) $)) (-15 -3526 ((-1053) $)) (-15 -3951 ((-3 (-1053) "failed") $)) (-15 -1225 ((-3 (-1053) "failed") $)) (-15 -3451 ((-107) $))))) (T -1086))
-((-4123 (*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-4123 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-3951 (*1 *2 *1) (|partial| -12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-1225 (*1 *2 *1) (|partial| -12 (-5 *2 (-1053)) (-5 *1 (-1086)))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1086)))))
-(-13 (-333 (-356) (-1053)) (-10 -8 (-15 -4123 ((-1053) $ (-1053))) (-15 -4123 ((-1053) $)) (-15 -3526 ((-1053) $)) (-15 -3951 ((-3 (-1053) "failed") $)) (-15 -1225 ((-3 (-1053) "failed") $)) (-15 -3451 ((-107) $))))
-((-1417 (((-3 (-501) "failed") |#1|) 19)) (-2686 (((-3 (-501) "failed") |#1|) 13)) (-2600 (((-501) (-1053)) 28)))
-(((-1087 |#1|) (-10 -7 (-15 -1417 ((-3 (-501) "failed") |#1|)) (-15 -2686 ((-3 (-501) "failed") |#1|)) (-15 -2600 ((-501) (-1053)))) (-959)) (T -1087))
-((-2600 (*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-501)) (-5 *1 (-1087 *4)) (-4 *4 (-959)))) (-2686 (*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-1087 *3)) (-4 *3 (-959)))) (-1417 (*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-1087 *3)) (-4 *3 (-959)))))
-(-10 -7 (-15 -1417 ((-3 (-501) "failed") |#1|)) (-15 -2686 ((-3 (-501) "failed") |#1|)) (-15 -2600 ((-501) (-1053))))
-((-3673 (((-1031 (-199))) 8)))
-(((-1088) (-10 -7 (-15 -3673 ((-1031 (-199)))))) (T -1088))
-((-3673 (*1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1088)))))
-(-10 -7 (-15 -3673 ((-1031 (-199)))))
-((-2003 (($) 11)) (-4003 (($ $) 35)) (-3995 (($ $) 33)) (-3952 (($ $) 25)) (-4013 (($ $) 17)) (-3550 (($ $) 15)) (-4008 (($ $) 19)) (-3961 (($ $) 30)) (-3999 (($ $) 34)) (-3955 (($ $) 29)))
-(((-1089 |#1|) (-10 -8 (-15 -2003 (|#1|)) (-15 -4003 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3955 (|#1| |#1|))) (-1090)) (T -1089))
-NIL
-(-10 -8 (-15 -2003 (|#1|)) (-15 -4003 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)))
-((-3978 (($ $) 26)) (-3937 (($ $) 11)) (-3970 (($ $) 27)) (-3929 (($ $) 10)) (-3984 (($ $) 28)) (-3945 (($ $) 9)) (-2003 (($) 16)) (-1635 (($ $) 19)) (-1989 (($ $) 18)) (-3991 (($ $) 29)) (-3949 (($ $) 8)) (-3981 (($ $) 30)) (-3940 (($ $) 7)) (-3975 (($ $) 31)) (-3933 (($ $) 6)) (-4003 (($ $) 20)) (-3958 (($ $) 32)) (-3995 (($ $) 21)) (-3952 (($ $) 33)) (-4013 (($ $) 22)) (-3964 (($ $) 34)) (-3550 (($ $) 23)) (-3967 (($ $) 35)) (-4008 (($ $) 24)) (-3961 (($ $) 36)) (-3999 (($ $) 25)) (-3955 (($ $) 37)) (** (($ $ $) 17)))
-(((-1090) (-1180)) (T -1090))
-((-2003 (*1 *1) (-4 *1 (-1090))))
-(-13 (-1093) (-91) (-456) (-34) (-254) (-10 -8 (-15 -2003 ($))))
-(((-34) . T) ((-91) . T) ((-254) . T) ((-456) . T) ((-1093) . T))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2150 ((|#1| $) 17)) (-3645 (($ |#1| (-578 $)) 23) (($ (-578 |#1|)) 27) (($ |#1|) 25)) (-2997 (((-107) $ (-701)) 46)) (-1594 ((|#1| $ |#1|) 14 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 13 (|has| $ (-6 -4168)))) (-2540 (($) NIL T CONST)) (-2732 (((-578 |#1|) $) 50 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 41)) (-3201 (((-107) $ $) 32 (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) 39)) (-3380 (((-578 |#1|) $) 51 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 49 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2519 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 22)) (-3155 (((-107) $ (-701)) 38)) (-3386 (((-578 |#1|) $) 36)) (-2341 (((-107) $) 35)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-2369 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 73)) (-1407 (((-107) $) 9)) (-3122 (($) 10)) (-2007 ((|#1| $ "value") NIL)) (-1932 (((-501) $ $) 31)) (-1608 (((-578 $) $) 57)) (-3242 (((-107) $ $) 75)) (-3390 (((-578 $) $) 70)) (-2128 (($ $) 71)) (-2622 (((-107) $) 54)) (-3713 (((-701) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4167))) (((-701) |#1| $) 16 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-3764 (($ $) 56)) (-3691 (((-786) $) 59 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 12)) (-2970 (((-107) $ $) 29 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 47 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 28 (|has| |#1| (-1001)))) (-3581 (((-701) $) 37 (|has| $ (-6 -4167)))))
-(((-1091 |#1|) (-13 (-924 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3645 ($ |#1| (-578 $))) (-15 -3645 ($ (-578 |#1|))) (-15 -3645 ($ |#1|)) (-15 -2622 ((-107) $)) (-15 -2128 ($ $)) (-15 -3390 ((-578 $) $)) (-15 -3242 ((-107) $ $)) (-15 -1608 ((-578 $) $)))) (-1001)) (T -1091))
-((-2622 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1091 *2))) (-5 *1 (-1091 *2)) (-4 *2 (-1001)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-1091 *3)))) (-3645 (*1 *1 *2) (-12 (-5 *1 (-1091 *2)) (-4 *2 (-1001)))) (-2128 (*1 *1 *1) (-12 (-5 *1 (-1091 *2)) (-4 *2 (-1001)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-578 (-1091 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))) (-3242 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))) (-1608 (*1 *2 *1) (-12 (-5 *2 (-578 (-1091 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))))
-(-13 (-924 |#1|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3645 ($ |#1| (-578 $))) (-15 -3645 ($ (-578 |#1|))) (-15 -3645 ($ |#1|)) (-15 -2622 ((-107) $)) (-15 -2128 ($ $)) (-15 -3390 ((-578 $) $)) (-15 -3242 ((-107) $ $)) (-15 -1608 ((-578 $) $))))
-((-3937 (($ $) 15)) (-3945 (($ $) 12)) (-3949 (($ $) 10)) (-3940 (($ $) 17)))
-(((-1092 |#1|) (-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3937 (|#1| |#1|))) (-1093)) (T -1092))
-NIL
-(-10 -8 (-15 -3940 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3937 (|#1| |#1|)))
-((-3937 (($ $) 11)) (-3929 (($ $) 10)) (-3945 (($ $) 9)) (-3949 (($ $) 8)) (-3940 (($ $) 7)) (-3933 (($ $) 6)))
-(((-1093) (-1180)) (T -1093))
-((-3937 (*1 *1 *1) (-4 *1 (-1093))) (-3929 (*1 *1 *1) (-4 *1 (-1093))) (-3945 (*1 *1 *1) (-4 *1 (-1093))) (-3949 (*1 *1 *1) (-4 *1 (-1093))) (-3940 (*1 *1 *1) (-4 *1 (-1093))) (-3933 (*1 *1 *1) (-4 *1 (-1093))))
-(-13 (-10 -8 (-15 -3933 ($ $)) (-15 -3940 ($ $)) (-15 -3949 ($ $)) (-15 -3945 ($ $)) (-15 -3929 ($ $)) (-15 -3937 ($ $))))
-((-3471 ((|#2| |#2|) 85)) (-4133 (((-107) |#2|) 25)) (-3749 ((|#2| |#2|) 29)) (-3755 ((|#2| |#2|) 31)) (-2209 ((|#2| |#2| (-1070)) 79) ((|#2| |#2|) 80)) (-3585 (((-152 |#2|) |#2|) 27)) (-1433 ((|#2| |#2| (-1070)) 81) ((|#2| |#2|) 82)))
-(((-1094 |#1| |#2|) (-10 -7 (-15 -2209 (|#2| |#2|)) (-15 -2209 (|#2| |#2| (-1070))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1070))) (-15 -3471 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -4133 ((-107) |#2|)) (-15 -3585 ((-152 |#2|) |#2|))) (-13 (-419) (-777) (-950 (-501)) (-577 (-501))) (-13 (-27) (-1090) (-389 |#1|))) (T -1094))
-((-3585 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-152 *3)) (-5 *1 (-1094 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-107)) (-5 *1 (-1094 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) (-3755 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-3471 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-1433 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-1433 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) (-2209 (*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))))
-(-10 -7 (-15 -2209 (|#2| |#2|)) (-15 -2209 (|#2| |#2| (-1070))) (-15 -1433 (|#2| |#2|)) (-15 -1433 (|#2| |#2| (-1070))) (-15 -3471 (|#2| |#2|)) (-15 -3749 (|#2| |#2|)) (-15 -3755 (|#2| |#2|)) (-15 -4133 ((-107) |#2|)) (-15 -3585 ((-152 |#2|) |#2|)))
-((-1582 ((|#4| |#4| |#1|) 27)) (-3957 ((|#4| |#4| |#1|) 28)))
-(((-1095 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1582 (|#4| |#4| |#1|)) (-15 -3957 (|#4| |#4| |#1|))) (-508) (-340 |#1|) (-340 |#1|) (-618 |#1| |#2| |#3|)) (T -1095))
-((-3957 (*1 *2 *2 *3) (-12 (-4 *3 (-508)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) (-1582 (*1 *2 *2 *3) (-12 (-4 *3 (-508)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(-10 -7 (-15 -1582 (|#4| |#4| |#1|)) (-15 -3957 (|#4| |#4| |#1|)))
-((-3234 ((|#2| |#2|) 132)) (-2385 ((|#2| |#2|) 129)) (-2380 ((|#2| |#2|) 120)) (-1739 ((|#2| |#2|) 117)) (-3022 ((|#2| |#2|) 125)) (-2641 ((|#2| |#2|) 113)) (-2076 ((|#2| |#2|) 42)) (-1951 ((|#2| |#2|) 93)) (-1780 ((|#2| |#2|) 73)) (-2740 ((|#2| |#2|) 127)) (-1203 ((|#2| |#2|) 115)) (-2181 ((|#2| |#2|) 137)) (-3497 ((|#2| |#2|) 135)) (-3616 ((|#2| |#2|) 136)) (-2461 ((|#2| |#2|) 134)) (-2310 ((|#2| |#2|) 146)) (-1434 ((|#2| |#2|) 30 (-12 (|has| |#2| (-556 (-810 |#1|))) (|has| |#2| (-806 |#1|)) (|has| |#1| (-556 (-810 |#1|))) (|has| |#1| (-806 |#1|))))) (-3541 ((|#2| |#2|) 74)) (-3859 ((|#2| |#2|) 138)) (-1967 ((|#2| |#2|) 139)) (-3366 ((|#2| |#2|) 126)) (-2080 ((|#2| |#2|) 114)) (-2764 ((|#2| |#2|) 133)) (-1941 ((|#2| |#2|) 131)) (-2784 ((|#2| |#2|) 121)) (-3102 ((|#2| |#2|) 119)) (-3502 ((|#2| |#2|) 123)) (-2460 ((|#2| |#2|) 111)))
-(((-1096 |#1| |#2|) (-10 -7 (-15 -1967 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2080 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -1203 (|#2| |#2|)) (-15 -2740 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3616 (|#2| |#2|)) (-15 -2181 (|#2| |#2|)) (IF (|has| |#1| (-806 |#1|)) (IF (|has| |#1| (-556 (-810 |#1|))) (IF (|has| |#2| (-556 (-810 |#1|))) (IF (|has| |#2| (-806 |#1|)) (-15 -1434 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-13 (-777) (-419)) (-13 (-389 |#1|) (-1090))) (T -1096))
-((-1434 (*1 *2 *2) (-12 (-4 *3 (-556 (-810 *3))) (-4 *3 (-806 *3)) (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-556 (-810 *3))) (-4 *2 (-806 *3)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2181 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3616 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2461 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1941 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2385 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1739 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3234 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2380 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3022 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2641 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2740 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1203 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3366 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2080 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2784 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3859 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2076 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1951 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-2310 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1780 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) (-1967 (*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(-10 -7 (-15 -1967 (|#2| |#2|)) (-15 -1780 (|#2| |#2|)) (-15 -2310 (|#2| |#2|)) (-15 -1951 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3859 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3502 (|#2| |#2|)) (-15 -2784 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2080 (|#2| |#2|)) (-15 -3366 (|#2| |#2|)) (-15 -1203 (|#2| |#2|)) (-15 -2740 (|#2| |#2|)) (-15 -2641 (|#2| |#2|)) (-15 -3022 (|#2| |#2|)) (-15 -2380 (|#2| |#2|)) (-15 -3234 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -2385 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -1941 (|#2| |#2|)) (-15 -2461 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -3616 (|#2| |#2|)) (-15 -2181 (|#2| |#2|)) (IF (|has| |#1| (-806 |#1|)) (IF (|has| |#1| (-556 (-810 |#1|))) (IF (|has| |#2| (-556 (-810 |#1|))) (IF (|has| |#2| (-806 |#1|)) (-15 -1434 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-1070)) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3430 (((-866 |#1|) $ (-701)) 16) (((-866 |#1|) $ (-701) (-701)) NIL)) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $ (-1070)) NIL) (((-701) $ (-1070) (-701)) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2706 (((-107) $) NIL)) (-3787 (($ $ (-578 (-1070)) (-578 (-487 (-1070)))) NIL) (($ $ (-1070) (-487 (-1070))) NIL) (($ |#1| (-487 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3188 (($ $ (-1070)) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070) |#1|) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3517 (($ (-1 $) (-1070) |#1|) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3718 (($ $ (-701)) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (($ $ (-1070) $) NIL) (($ $ (-578 (-1070)) (-578 $)) NIL) (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL)) (-2596 (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-1201 (((-487 (-1070)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-508))) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-1070)) NIL) (($ (-866 |#1|)) NIL)) (-2495 ((|#1| $ (-487 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (((-866 |#1|) $ (-701)) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) NIL T CONST)) (-3584 (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1097 |#1|) (-13 (-671 |#1| (-1070)) (-10 -8 (-15 -2495 ((-866 |#1|) $ (-701))) (-15 -3691 ($ (-1070))) (-15 -3691 ($ (-866 |#1|))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ (-1070) |#1|)) (-15 -3517 ($ (-1 $) (-1070) |#1|))) |noBranch|))) (-959)) (T -1097))
-((-2495 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-866 *4)) (-5 *1 (-1097 *4)) (-4 *4 (-959)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1097 *3)) (-4 *3 (-959)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-5 *1 (-1097 *3)))) (-3188 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *1 (-1097 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))) (-3517 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1097 *4))) (-5 *3 (-1070)) (-5 *1 (-1097 *4)) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959)))))
-(-13 (-671 |#1| (-1070)) (-10 -8 (-15 -2495 ((-866 |#1|) $ (-701))) (-15 -3691 ($ (-1070))) (-15 -3691 ($ (-866 |#1|))) (IF (|has| |#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $ (-1070) |#1|)) (-15 -3517 ($ (-1 $) (-1070) |#1|))) |noBranch|)))
-((-1549 (((-107) |#5| $) 59) (((-107) $) 101)) (-2599 ((|#5| |#5| $) 74)) (-1987 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-4113 (((-578 |#5|) (-578 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 72)) (-3765 (((-3 $ "failed") (-578 |#5|)) 125)) (-1199 (((-3 $ "failed") $) 111)) (-1778 ((|#5| |#5| $) 93)) (-2130 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 30)) (-1379 ((|#5| |#5| $) 97)) (-3547 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 68)) (-1577 (((-2 (|:| -2109 (-578 |#5|)) (|:| -2342 (-578 |#5|))) $) 54)) (-1964 (((-107) |#5| $) 57) (((-107) $) 102)) (-2361 ((|#4| $) 107)) (-1383 (((-3 |#5| "failed") $) 109)) (-3574 (((-578 |#5|) $) 48)) (-1590 (((-107) |#5| $) 66) (((-107) $) 106)) (-1762 ((|#5| |#5| $) 80)) (-3523 (((-107) $ $) 26)) (-2667 (((-107) |#5| $) 62) (((-107) $) 104)) (-3618 ((|#5| |#5| $) 77)) (-1190 (((-3 |#5| "failed") $) 108)) (-3718 (($ $ |#5|) 126)) (-1201 (((-701) $) 51)) (-3699 (($ (-578 |#5|)) 123)) (-1638 (($ $ |#4|) 121)) (-2482 (($ $ |#4|) 120)) (-1218 (($ $) 119)) (-3691 (((-786) $) NIL) (((-578 |#5|) $) 112)) (-4104 (((-701) $) 129)) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 44)) (-2560 (((-107) $ (-1 (-107) |#5| (-578 |#5|))) 99)) (-2617 (((-578 |#4|) $) 114)) (-2659 (((-107) |#4| $) 117)) (-3751 (((-107) $ $) 19)))
-(((-1098 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4104 ((-701) |#1|)) (-15 -3718 (|#1| |#1| |#5|)) (-15 -1987 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2659 ((-107) |#4| |#1|)) (-15 -2617 ((-578 |#4|) |#1|)) (-15 -1199 ((-3 |#1| "failed") |#1|)) (-15 -1383 ((-3 |#5| "failed") |#1|)) (-15 -1190 ((-3 |#5| "failed") |#1|)) (-15 -1379 (|#5| |#5| |#1|)) (-15 -1218 (|#1| |#1|)) (-15 -1778 (|#5| |#5| |#1|)) (-15 -1762 (|#5| |#5| |#1|)) (-15 -3618 (|#5| |#5| |#1|)) (-15 -2599 (|#5| |#5| |#1|)) (-15 -4113 ((-578 |#5|) (-578 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3547 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1590 ((-107) |#1|)) (-15 -2667 ((-107) |#1|)) (-15 -1549 ((-107) |#1|)) (-15 -2560 ((-107) |#1| (-1 (-107) |#5| (-578 |#5|)))) (-15 -1590 ((-107) |#5| |#1|)) (-15 -2667 ((-107) |#5| |#1|)) (-15 -1549 ((-107) |#5| |#1|)) (-15 -2130 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1964 ((-107) |#1|)) (-15 -1964 ((-107) |#5| |#1|)) (-15 -1577 ((-2 (|:| -2109 (-578 |#5|)) (|:| -2342 (-578 |#5|))) |#1|)) (-15 -1201 ((-701) |#1|)) (-15 -3574 ((-578 |#5|) |#1|)) (-15 -1596 ((-3 (-2 (|:| |bas| |#1|) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1596 ((-3 (-2 (|:| |bas| |#1|) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3523 ((-107) |#1| |#1|)) (-15 -1638 (|#1| |#1| |#4|)) (-15 -2482 (|#1| |#1| |#4|)) (-15 -2361 (|#4| |#1|)) (-15 -3765 ((-3 |#1| "failed") (-578 |#5|))) (-15 -3691 ((-578 |#5|) |#1|)) (-15 -3699 (|#1| (-578 |#5|))) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1987 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|))) (-1099 |#2| |#3| |#4| |#5|) (-508) (-723) (-777) (-972 |#2| |#3| |#4|)) (T -1098))
-NIL
-(-10 -8 (-15 -4104 ((-701) |#1|)) (-15 -3718 (|#1| |#1| |#5|)) (-15 -1987 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2659 ((-107) |#4| |#1|)) (-15 -2617 ((-578 |#4|) |#1|)) (-15 -1199 ((-3 |#1| "failed") |#1|)) (-15 -1383 ((-3 |#5| "failed") |#1|)) (-15 -1190 ((-3 |#5| "failed") |#1|)) (-15 -1379 (|#5| |#5| |#1|)) (-15 -1218 (|#1| |#1|)) (-15 -1778 (|#5| |#5| |#1|)) (-15 -1762 (|#5| |#5| |#1|)) (-15 -3618 (|#5| |#5| |#1|)) (-15 -2599 (|#5| |#5| |#1|)) (-15 -4113 ((-578 |#5|) (-578 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3547 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -1590 ((-107) |#1|)) (-15 -2667 ((-107) |#1|)) (-15 -1549 ((-107) |#1|)) (-15 -2560 ((-107) |#1| (-1 (-107) |#5| (-578 |#5|)))) (-15 -1590 ((-107) |#5| |#1|)) (-15 -2667 ((-107) |#5| |#1|)) (-15 -1549 ((-107) |#5| |#1|)) (-15 -2130 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1964 ((-107) |#1|)) (-15 -1964 ((-107) |#5| |#1|)) (-15 -1577 ((-2 (|:| -2109 (-578 |#5|)) (|:| -2342 (-578 |#5|))) |#1|)) (-15 -1201 ((-701) |#1|)) (-15 -3574 ((-578 |#5|) |#1|)) (-15 -1596 ((-3 (-2 (|:| |bas| |#1|) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1596 ((-3 (-2 (|:| |bas| |#1|) (|:| -2425 (-578 |#5|))) "failed") (-578 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3523 ((-107) |#1| |#1|)) (-15 -1638 (|#1| |#1| |#4|)) (-15 -2482 (|#1| |#1| |#4|)) (-15 -2361 (|#4| |#1|)) (-15 -3765 ((-3 |#1| "failed") (-578 |#5|))) (-15 -3691 ((-578 |#5|) |#1|)) (-15 -3699 (|#1| (-578 |#5|))) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1987 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3547 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3691 ((-786) |#1|)) (-15 -3751 ((-107) |#1| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) 85)) (-2073 (((-578 $) (-578 |#4|)) 86)) (-3800 (((-578 |#3|) $) 33)) (-3482 (((-107) $) 26)) (-1189 (((-107) $) 17 (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) 101) (((-107) $) 97)) (-2599 ((|#4| |#4| $) 92)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) 27)) (-2997 (((-107) $ (-701)) 44)) (-1987 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) 79)) (-2540 (($) 45 T CONST)) (-2772 (((-107) $) 22 (|has| |#1| (-508)))) (-2606 (((-107) $ $) 24 (|has| |#1| (-508)))) (-1408 (((-107) $ $) 23 (|has| |#1| (-508)))) (-1662 (((-107) $) 25 (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-4110 (((-578 |#4|) (-578 |#4|) $) 18 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) 19 (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) 36)) (-3490 (($ (-578 |#4|)) 35)) (-1199 (((-3 $ "failed") $) 82)) (-1778 ((|#4| |#4| $) 89)) (-2673 (($ $) 68 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#4| $) 67 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-1379 ((|#4| |#4| $) 87)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) 105)) (-2732 (((-578 |#4|) $) 52 (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) 104) (((-107) $) 103)) (-2361 ((|#3| $) 34)) (-3379 (((-107) $ (-701)) 43)) (-3380 (((-578 |#4|) $) 53 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) 47)) (-3453 (((-578 |#3|) $) 32)) (-1479 (((-107) |#3| $) 31)) (-3155 (((-107) $ (-701)) 42)) (-3460 (((-1053) $) 9)) (-1383 (((-3 |#4| "failed") $) 83)) (-3574 (((-578 |#4|) $) 107)) (-1590 (((-107) |#4| $) 99) (((-107) $) 95)) (-1762 ((|#4| |#4| $) 90)) (-3523 (((-107) $ $) 110)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) 100) (((-107) $) 96)) (-3618 ((|#4| |#4| $) 91)) (-3708 (((-1018) $) 10)) (-1190 (((-3 |#4| "failed") $) 84)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-3478 (((-3 $ "failed") $ |#4|) 78)) (-3718 (($ $ |#4|) 77)) (-2369 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) 59 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) 57 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) 56 (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) 38)) (-1407 (((-107) $) 41)) (-3122 (($) 40)) (-1201 (((-701) $) 106)) (-3713 (((-701) |#4| $) 54 (-12 (|has| |#4| (-1001)) (|has| $ (-6 -4167)))) (((-701) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4167)))) (-3764 (($ $) 39)) (-1248 (((-490) $) 69 (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) 60)) (-1638 (($ $ |#3|) 28)) (-2482 (($ $ |#3|) 30)) (-1218 (($ $) 88)) (-3737 (($ $ |#3|) 29)) (-3691 (((-786) $) 11) (((-578 |#4|) $) 37)) (-4104 (((-701) $) 76 (|has| |#3| (-336)))) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) 98)) (-1200 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) 81)) (-2659 (((-107) |#3| $) 80)) (-3751 (((-107) $ $) 6)) (-3581 (((-701) $) 46 (|has| $ (-6 -4167)))))
-(((-1099 |#1| |#2| |#3| |#4|) (-1180) (-508) (-723) (-777) (-972 |t#1| |t#2| |t#3|)) (T -1099))
-((-3523 (*1 *2 *1 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-1596 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2425 (-578 *8)))) (-5 *3 (-578 *8)) (-4 *1 (-1099 *5 *6 *7 *8)))) (-1596 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2425 (-578 *9)))) (-5 *3 (-578 *9)) (-4 *1 (-1099 *6 *7 *8 *9)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *6)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-701)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-2 (|:| -2109 (-578 *6)) (|:| -2342 (-578 *6)))))) (-1964 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-2130 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1099 *5 *6 *7 *3)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)))) (-1549 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-2667 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1590 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-2560 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-578 *7))) (-4 *1 (-1099 *4 *5 *6 *7)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) (-3547 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1099 *5 *6 *7 *2)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *2 (-972 *5 *6 *7)))) (-4113 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1099 *5 *6 *7 *8)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)))) (-2599 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-3618 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1762 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1778 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1218 (*1 *1 *1) (-12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *2 (-508)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-972 *2 *3 *4)))) (-1379 (*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-2073 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-1099 *4 *5 *6 *7)))) (-3016 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| -2109 *1) (|:| -2342 (-578 *7))))) (-5 *3 (-578 *7)) (-4 *1 (-1099 *4 *5 *6 *7)))) (-1190 (*1 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1383 (*1 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-1199 (*1 *1 *1) (|partial| -12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *2 (-508)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-972 *2 *3 *4)))) (-2617 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))) (-2659 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *3 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-107)))) (-1987 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1099 *4 *5 *3 *2)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *2 (-972 *4 *5 *3)))) (-3478 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-3718 (*1 *1 *1 *2) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *5 (-336)) (-5 *2 (-701)))))
-(-13 (-891 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4167) (-6 -4168) (-15 -3523 ((-107) $ $)) (-15 -1596 ((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |t#4|))) "failed") (-578 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1596 ((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |t#4|))) "failed") (-578 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -3574 ((-578 |t#4|) $)) (-15 -1201 ((-701) $)) (-15 -1577 ((-2 (|:| -2109 (-578 |t#4|)) (|:| -2342 (-578 |t#4|))) $)) (-15 -1964 ((-107) |t#4| $)) (-15 -1964 ((-107) $)) (-15 -2130 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -1549 ((-107) |t#4| $)) (-15 -2667 ((-107) |t#4| $)) (-15 -1590 ((-107) |t#4| $)) (-15 -2560 ((-107) $ (-1 (-107) |t#4| (-578 |t#4|)))) (-15 -1549 ((-107) $)) (-15 -2667 ((-107) $)) (-15 -1590 ((-107) $)) (-15 -3547 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -4113 ((-578 |t#4|) (-578 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2599 (|t#4| |t#4| $)) (-15 -3618 (|t#4| |t#4| $)) (-15 -1762 (|t#4| |t#4| $)) (-15 -1778 (|t#4| |t#4| $)) (-15 -1218 ($ $)) (-15 -1379 (|t#4| |t#4| $)) (-15 -2073 ((-578 $) (-578 |t#4|))) (-15 -3016 ((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |t#4|)))) (-578 |t#4|))) (-15 -1190 ((-3 |t#4| "failed") $)) (-15 -1383 ((-3 |t#4| "failed") $)) (-15 -1199 ((-3 $ "failed") $)) (-15 -2617 ((-578 |t#3|) $)) (-15 -2659 ((-107) |t#3| $)) (-15 -1987 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3478 ((-3 $ "failed") $ |t#4|)) (-15 -3718 ($ $ |t#4|)) (IF (|has| |t#3| (-336)) (-15 -4104 ((-701) $)) |noBranch|)))
-(((-33) . T) ((-97) . T) ((-555 (-578 |#4|)) . T) ((-555 (-786)) . T) ((-138 |#4|) . T) ((-556 (-490)) |has| |#4| (-556 (-490))) ((-278 |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-454 |#4|) . T) ((-476 |#4| |#4|) -12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))) ((-891 |#1| |#2| |#3| |#4|) . T) ((-1001) . T) ((-1104) . T))
-((-2810 (($ |#1| (-578 (-578 (-863 (-199)))) (-107)) 15)) (-3183 (((-107) $ (-107)) 14)) (-2954 (((-107) $) 13)) (-2785 (((-578 (-578 (-863 (-199)))) $) 10)) (-1459 ((|#1| $) 8)) (-3340 (((-107) $) 12)))
-(((-1100 |#1|) (-10 -8 (-15 -1459 (|#1| $)) (-15 -2785 ((-578 (-578 (-863 (-199)))) $)) (-15 -3340 ((-107) $)) (-15 -2954 ((-107) $)) (-15 -3183 ((-107) $ (-107))) (-15 -2810 ($ |#1| (-578 (-578 (-863 (-199)))) (-107)))) (-889)) (T -1100))
-((-2810 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-107)) (-5 *1 (-1100 *2)) (-4 *2 (-889)))) (-3183 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889)))) (-2954 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889)))) (-3340 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-1100 *3)) (-4 *3 (-889)))) (-1459 (*1 *2 *1) (-12 (-5 *1 (-1100 *2)) (-4 *2 (-889)))))
-(-10 -8 (-15 -1459 (|#1| $)) (-15 -2785 ((-578 (-578 (-863 (-199)))) $)) (-15 -3340 ((-107) $)) (-15 -2954 ((-107) $)) (-15 -3183 ((-107) $ (-107))) (-15 -2810 ($ |#1| (-578 (-578 (-863 (-199)))) (-107))))
-((-1822 (((-863 (-199)) (-863 (-199))) 25)) (-1801 (((-863 (-199)) (-199) (-199) (-199) (-199)) 10)) (-3187 (((-578 (-863 (-199))) (-863 (-199)) (-863 (-199)) (-863 (-199)) (-199) (-578 (-578 (-199)))) 35)) (-1293 (((-199) (-863 (-199)) (-863 (-199))) 21)) (-2220 (((-863 (-199)) (-863 (-199)) (-863 (-199))) 22)) (-1700 (((-578 (-578 (-199))) (-501)) 31)) (-3797 (((-863 (-199)) (-863 (-199)) (-863 (-199))) 20)) (-3790 (((-863 (-199)) (-863 (-199)) (-863 (-199))) 19)) (* (((-863 (-199)) (-199) (-863 (-199))) 18)))
-(((-1101) (-10 -7 (-15 -1801 ((-863 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-863 (-199)) (-199) (-863 (-199)))) (-15 -3790 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -3797 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -1293 ((-199) (-863 (-199)) (-863 (-199)))) (-15 -2220 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -1822 ((-863 (-199)) (-863 (-199)))) (-15 -1700 ((-578 (-578 (-199))) (-501))) (-15 -3187 ((-578 (-863 (-199))) (-863 (-199)) (-863 (-199)) (-863 (-199)) (-199) (-578 (-578 (-199))))))) (T -1101))
-((-3187 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-578 (-578 (-199)))) (-5 *4 (-199)) (-5 *2 (-578 (-863 *4))) (-5 *1 (-1101)) (-5 *3 (-863 *4)))) (-1700 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-578 (-578 (-199)))) (-5 *1 (-1101)))) (-1822 (*1 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) (-2220 (*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) (-1293 (*1 *2 *3 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-199)) (-5 *1 (-1101)))) (-3797 (*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) (-3790 (*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-863 (-199))) (-5 *3 (-199)) (-5 *1 (-1101)))) (-1801 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)) (-5 *3 (-199)))))
-(-10 -7 (-15 -1801 ((-863 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-863 (-199)) (-199) (-863 (-199)))) (-15 -3790 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -3797 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -1293 ((-199) (-863 (-199)) (-863 (-199)))) (-15 -2220 ((-863 (-199)) (-863 (-199)) (-863 (-199)))) (-15 -1822 ((-863 (-199)) (-863 (-199)))) (-15 -1700 ((-578 (-578 (-199))) (-501))) (-15 -3187 ((-578 (-863 (-199))) (-863 (-199)) (-863 (-199)) (-863 (-199)) (-199) (-578 (-578 (-199))))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-1987 ((|#1| $ (-701)) 13)) (-4139 (((-701) $) 12)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-3691 (((-877 |#1|) $) 10) (($ (-877 |#1|)) 9) (((-786) $) 23 (|has| |#1| (-1001)))) (-3751 (((-107) $ $) 16 (|has| |#1| (-1001)))))
-(((-1102 |#1|) (-13 (-555 (-877 |#1|)) (-10 -8 (-15 -3691 ($ (-877 |#1|))) (-15 -1987 (|#1| $ (-701))) (-15 -4139 ((-701) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|))) (-1104)) (T -1102))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1104)) (-5 *1 (-1102 *3)))) (-1987 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-1102 *2)) (-4 *2 (-1104)))) (-4139 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1102 *3)) (-4 *3 (-1104)))))
-(-13 (-555 (-877 |#1|)) (-10 -8 (-15 -3691 ($ (-877 |#1|))) (-15 -1987 (|#1| $ (-701))) (-15 -4139 ((-701) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|)))
-((-4131 (((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)) (-501)) 79)) (-1846 (((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|))) 73)) (-3082 (((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|))) 58)))
-(((-1103 |#1|) (-10 -7 (-15 -1846 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)))) (-15 -3082 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)))) (-15 -4131 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)) (-501)))) (-318)) (T -1103))
-((-4131 (*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *5 (-318)) (-5 *2 (-373 (-1064 (-1064 *5)))) (-5 *1 (-1103 *5)) (-5 *3 (-1064 (-1064 *5))))) (-3082 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 (-1064 (-1064 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-1064 (-1064 *4))))) (-1846 (*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 (-1064 (-1064 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-1064 (-1064 *4))))))
-(-10 -7 (-15 -1846 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)))) (-15 -3082 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)))) (-15 -4131 ((-373 (-1064 (-1064 |#1|))) (-1064 (-1064 |#1|)) (-501))))
-NIL
-(((-1104) (-1180)) (T -1104))
-NIL
-(-13 (-10 -7 (-6 -2951)))
-((-2501 (((-107)) 14)) (-1702 (((-1154) (-578 |#1|) (-578 |#1|)) 18) (((-1154) (-578 |#1|)) 19)) (-3379 (((-107) |#1| |#1|) 30 (|has| |#1| (-777)))) (-3155 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 26) (((-3 (-107) "failed") |#1| |#1|) 24)) (-2807 ((|#1| (-578 |#1|)) 31 (|has| |#1| (-777))) ((|#1| (-578 |#1|) (-1 (-107) |#1| |#1|)) 27)) (-1772 (((-2 (|:| -3014 (-578 |#1|)) (|:| -1647 (-578 |#1|)))) 16)))
-(((-1105 |#1|) (-10 -7 (-15 -1702 ((-1154) (-578 |#1|))) (-15 -1702 ((-1154) (-578 |#1|) (-578 |#1|))) (-15 -1772 ((-2 (|:| -3014 (-578 |#1|)) (|:| -1647 (-578 |#1|))))) (-15 -3155 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3155 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2807 (|#1| (-578 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2501 ((-107))) (IF (|has| |#1| (-777)) (PROGN (-15 -2807 (|#1| (-578 |#1|))) (-15 -3379 ((-107) |#1| |#1|))) |noBranch|)) (-1001)) (T -1105))
-((-3379 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-777)) (-4 *3 (-1001)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-777)) (-5 *1 (-1105 *2)))) (-2501 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-1001)))) (-3155 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1001)) (-5 *2 (-107)) (-5 *1 (-1105 *3)))) (-3155 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))) (-1772 (*1 *2) (-12 (-5 *2 (-2 (|:| -3014 (-578 *3)) (|:| -1647 (-578 *3)))) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))) (-1702 (*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-5 *2 (-1154)) (-5 *1 (-1105 *4)))) (-1702 (*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-5 *2 (-1154)) (-5 *1 (-1105 *4)))))
-(-10 -7 (-15 -1702 ((-1154) (-578 |#1|))) (-15 -1702 ((-1154) (-578 |#1|) (-578 |#1|))) (-15 -1772 ((-2 (|:| -3014 (-578 |#1|)) (|:| -1647 (-578 |#1|))))) (-15 -3155 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3155 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -2807 (|#1| (-578 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2501 ((-107))) (IF (|has| |#1| (-777)) (PROGN (-15 -2807 (|#1| (-578 |#1|))) (-15 -3379 ((-107) |#1| |#1|))) |noBranch|))
-((-3791 (((-1154) (-578 (-1070)) (-578 (-1070))) 12) (((-1154) (-578 (-1070))) 10)) (-1761 (((-1154)) 13)) (-3593 (((-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070))))) 17)))
-(((-1106) (-10 -7 (-15 -3791 ((-1154) (-578 (-1070)))) (-15 -3791 ((-1154) (-578 (-1070)) (-578 (-1070)))) (-15 -3593 ((-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070)))))) (-15 -1761 ((-1154))))) (T -1106))
-((-1761 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1106)))) (-3593 (*1 *2) (-12 (-5 *2 (-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070))))) (-5 *1 (-1106)))) (-3791 (*1 *2 *3 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1106)))) (-3791 (*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1106)))))
-(-10 -7 (-15 -3791 ((-1154) (-578 (-1070)))) (-15 -3791 ((-1154) (-578 (-1070)) (-578 (-1070)))) (-15 -3593 ((-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070)))))) (-15 -1761 ((-1154))))
-((-3676 (($ $) 16)) (-1628 (((-107) $) 23)))
-(((-1107 |#1|) (-10 -8 (-15 -3676 (|#1| |#1|)) (-15 -1628 ((-107) |#1|))) (-1108)) (T -1107))
-NIL
-(-10 -8 (-15 -3676 (|#1| |#1|)) (-15 -1628 ((-107) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 51)) (-1559 (((-373 $) $) 52)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1628 (((-107) $) 53)) (-1355 (((-107) $) 31)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 50)) (-3694 (((-3 $ "failed") $ $) 42)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43)) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24)))
-(((-1108) (-1180)) (T -1108))
-((-1628 (*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-107)))) (-1559 (*1 *2 *1) (-12 (-5 *2 (-373 *1)) (-4 *1 (-1108)))) (-3676 (*1 *1 *1) (-4 *1 (-1108))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-373 *1)) (-4 *1 (-1108)))))
-(-13 (-419) (-10 -8 (-15 -1628 ((-107) $)) (-15 -1559 ((-373 $) $)) (-15 -3676 ($ $)) (-15 -3739 ((-373 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-555 (-786)) . T) ((-156) . T) ((-260) . T) ((-419) . T) ((-508) . T) ((-583 $) . T) ((-648 $) . T) ((-657) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-2197 (((-1139 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-276)) (|has| |#1| (-331))))) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 10)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2865 (($ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-1639 (((-107) $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2805 (($ $ (-501)) NIL) (($ $ (-501) (-501)) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) NIL)) (-1488 (((-1139 |#1| |#2| |#3|) $) NIL)) (-1641 (((-3 (-1139 |#1| |#2| |#3|) "failed") $) NIL)) (-3818 (((-1139 |#1| |#2| |#3|) $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1417 (((-501) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1139 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1070) "failed") $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-501) "failed") $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))))) (-3490 (((-1139 |#1| |#2| |#3|) $) NIL) (((-1070) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (((-375 (-501)) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331)))) (((-501) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))))) (-1574 (($ $) NIL) (($ (-501) $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-1139 |#1| |#2| |#3|)) (-621 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-1139 |#1| |#2| |#3|))) (|:| |vec| (-1148 (-1139 |#1| |#2| |#3|)))) (-621 $) (-1148 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-577 (-501))) (|has| |#1| (-331)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-577 (-501))) (|has| |#1| (-331))))) (-2174 (((-3 $ "failed") $) NIL)) (-1880 (((-375 (-866 |#1|)) $ (-501)) NIL (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) NIL (|has| |#1| (-508)))) (-2890 (($) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-2164 (((-107) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3809 (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-806 (-501))) (|has| |#1| (-331)))) (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-806 (-346))) (|has| |#1| (-331))))) (-3169 (((-501) $) NIL) (((-501) $ (-501)) NIL)) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL (|has| |#1| (-331)))) (-2946 (((-1139 |#1| |#2| |#3|) $) NIL (|has| |#1| (-331)))) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3493 (((-3 $ "failed") $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-1046)) (|has| |#1| (-331))))) (-4067 (((-107) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-2917 (($ $ (-839)) NIL)) (-3608 (($ (-1 |#1| (-501)) $) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-501)) 17) (($ $ (-986) (-501)) NIL) (($ $ (-578 (-986)) (-578 (-501))) NIL)) (-4111 (($ $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-1323 (($ $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-331)))) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3822 (($ (-501) (-1139 |#1| |#2| |#3|)) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 25 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 26 (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-1046)) (|has| |#1| (-331))) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-2801 (($ $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-276)) (|has| |#1| (-331))))) (-3383 (((-1139 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-501)) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-501))))) (($ $ (-1070) (-1139 |#1| |#2| |#3|)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-476 (-1070) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 (-1139 |#1| |#2| |#3|))) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-476 (-1070) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-262 (-1139 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-262 (-1139 |#1| |#2| |#3|))) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331)))) (($ $ (-578 (-1139 |#1| |#2| |#3|)) (-578 (-1139 |#1| |#2| |#3|))) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-278 (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) NIL) (($ $ $) NIL (|has| (-501) (-1012))) (($ $ (-1139 |#1| |#2| |#3|)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-256 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) (|has| |#1| (-331))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) NIL (|has| |#1| (-331))) (($ $ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) (-701)) NIL (|has| |#1| (-331))) (($ $ (-1145 |#2|)) 24) (($ $ (-701)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 23 (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3307 (($ $) NIL (|has| |#1| (-331)))) (-2949 (((-1139 |#1| |#2| |#3|) $) NIL (|has| |#1| (-331)))) (-1201 (((-501) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1248 (((-490) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-556 (-490))) (|has| |#1| (-331)))) (((-346) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-933)) (|has| |#1| (-331)))) (((-199) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-933)) (|has| |#1| (-331)))) (((-810 (-346)) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-556 (-810 (-346)))) (|has| |#1| (-331)))) (((-810 (-501)) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-556 (-810 (-501)))) (|has| |#1| (-331))))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1139 |#1| |#2| |#3|)) NIL) (($ (-1145 |#2|)) 22) (($ (-1070)) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-1070))) (|has| |#1| (-331)))) (($ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508)))) (($ (-375 (-501))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-950 (-501))) (|has| |#1| (-331))) (|has| |#1| (-37 (-375 (-501))))))) (-2495 ((|#1| $ (-501)) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-132)) (|has| |#1| (-331))) (|has| |#1| (-132))))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 11)) (-2803 (((-1139 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-500)) (|has| |#1| (-331))))) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-830)) (|has| |#1| (-331))) (|has| |#1| (-508))))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1720 (($ $) NIL (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 19 T CONST)) (-1925 (($) 15 T CONST)) (-3584 (($ $ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|))) NIL (|has| |#1| (-331))) (($ $ (-1 (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) (-701)) NIL (|has| |#1| (-331))) (($ $ (-701)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3778 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3768 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3762 (((-107) $ $) NIL (-1405 (-12 (|has| (-1139 |#1| |#2| |#3|) (-750)) (|has| |#1| (-331))) (-12 (|has| (-1139 |#1| |#2| |#3|) (-777)) (|has| |#1| (-331)))))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331))) (($ (-1139 |#1| |#2| |#3|) (-1139 |#1| |#2| |#3|)) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 20)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1139 |#1| |#2| |#3|)) NIL (|has| |#1| (-331))) (($ (-1139 |#1| |#2| |#3|) $) NIL (|has| |#1| (-331))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-1109 |#1| |#2| |#3|) (-13 (-1113 |#1| (-1139 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1109))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))))
-(-13 (-1113 |#1| (-1139 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|)))
-((-1212 (((-1109 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1109 |#1| |#3| |#5|)) 23)))
-(((-1110 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1212 ((-1109 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1109 |#1| |#3| |#5|)))) (-959) (-959) (-1070) (-1070) |#1| |#2|) (T -1110))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5 *7 *9)) (-4 *5 (-959)) (-4 *6 (-959)) (-14 *7 (-1070)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1109 *6 *8 *10)) (-5 *1 (-1110 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1070)))))
-(-10 -7 (-15 -1212 ((-1109 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1109 |#1| |#3| |#5|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-501)) 100) (($ $ (-501) (-501)) 99)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 107)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 164 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 165 (|has| |#1| (-331)))) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) 155 (|has| |#1| (-331)))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 176)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 159 (|has| |#1| (-331)))) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-1880 (((-375 (-866 |#1|)) $ (-501)) 174 (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) 173 (|has| |#1| (-508)))) (-3034 (($ $ $) 158 (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 153 (|has| |#1| (-331)))) (-1628 (((-107) $) 166 (|has| |#1| (-331)))) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-501) $) 102) (((-501) $ (-501)) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 103)) (-3608 (($ (-1 |#1| (-501)) $) 175)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 162 (|has| |#1| (-331)))) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-501)) 63) (($ $ (-986) (-501)) 78) (($ $ (-578 (-986)) (-578 (-501))) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-1697 (($ (-578 $)) 151 (|has| |#1| (-331))) (($ $ $) 150 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 167 (|has| |#1| (-331)))) (-3188 (($ $) 172 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 171 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 152 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 149 (|has| |#1| (-331))) (($ $ $) 148 (|has| |#1| (-331)))) (-3739 (((-373 $) $) 163 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 161 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 160 (|has| |#1| (-331)))) (-3718 (($ $ (-501)) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 154 (|has| |#1| (-331)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-501)))))) (-1864 (((-701) $) 156 (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) 106) (($ $ $) 83 (|has| (-501) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 157 (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| (-501) |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (-1201 (((-501) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 49 (|has| |#1| (-156))) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508)))) (-2495 ((|#1| $ (-501)) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 168 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| (-501) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331))) (($ $ $) 170 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 169 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501)))))))
-(((-1111 |#1|) (-1180) (-959)) (T -1111))
-((-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-4 *3 (-959)) (-4 *1 (-1111 *3)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *1 (-1111 *3)) (-4 *3 (-959)))) (-1880 (*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-1111 *4)) (-4 *4 (-959)) (-4 *4 (-508)) (-5 *2 (-375 (-866 *4))))) (-1880 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-1111 *4)) (-4 *4 (-959)) (-4 *4 (-508)) (-5 *2 (-375 (-866 *4))))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) (-3188 (*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1111 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1111 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501)))))))))
-(-13 (-1128 |t#1| (-501)) (-10 -8 (-15 -2973 ($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |t#1|))))) (-15 -3608 ($ (-1 |t#1| (-501)) $)) (IF (|has| |t#1| (-508)) (PROGN (-15 -1880 ((-375 (-866 |t#1|)) $ (-501))) (-15 -1880 ((-375 (-866 |t#1|)) $ (-501) (-501)))) |noBranch|) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (IF (|has| |t#1| (-15 -3188 (|t#1| |t#1| (-1070)))) (IF (|has| |t#1| (-15 -3800 ((-578 (-1070)) |t#1|))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1090)) (IF (|has| |t#1| (-879)) (IF (|has| |t#1| (-29 (-501))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) |noBranch|) (-6 (-916)) (-6 (-1090))) |noBranch|) (IF (|has| |t#1| (-331)) (-6 (-331)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-501)) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| (-501) |#1|))) ((-216) |has| |#1| (-331)) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 $ $) |has| (-501) (-1012)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-331) |has| |#1| (-331)) ((-419) |has| |#1| (-331)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| (-501) (-986)) . T) ((-841) |has| |#1| (-331)) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-964 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1108) |has| |#1| (-331)) ((-1128 |#1| (-501)) . T))
-((-3292 (((-107) $) 12)) (-3765 (((-3 |#3| "failed") $) 17) (((-3 (-1070) "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL)) (-3490 ((|#3| $) 14) (((-1070) $) NIL) (((-375 (-501)) $) NIL) (((-501) $) NIL)))
-(((-1112 |#1| |#2| |#3|) (-10 -8 (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3292 ((-107) |#1|))) (-1113 |#2| |#3|) (-959) (-1142 |#2|)) (T -1112))
-NIL
-(-10 -8 (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3490 ((-1070) |#1|)) (-15 -3765 ((-3 (-1070) "failed") |#1|)) (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3292 ((-107) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-2197 ((|#2| $) 233 (-1280 (|has| |#2| (-276)) (|has| |#1| (-331))))) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-501)) 100) (($ $ (-501) (-501)) 99)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 107)) (-1488 ((|#2| $) 269)) (-1641 (((-3 |#2| "failed") $) 265)) (-3818 ((|#2| $) 266)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3324 (((-373 (-1064 $)) (-1064 $)) 242 (-1280 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-3676 (($ $) 164 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 165 (|has| |#1| (-331)))) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 239 (-1280 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-2781 (((-107) $ $) 155 (|has| |#1| (-331)))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-1417 (((-501) $) 251 (-1280 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 176)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#2| "failed") $) 272) (((-3 (-501) "failed") $) 261 (-1280 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-375 (-501)) "failed") $) 259 (-1280 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-1070) "failed") $) 244 (-1280 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331))))) (-3490 ((|#2| $) 271) (((-501) $) 262 (-1280 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-375 (-501)) $) 260 (-1280 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-1070) $) 245 (-1280 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331))))) (-1574 (($ $) 268) (($ (-501) $) 267)) (-3023 (($ $ $) 159 (|has| |#1| (-331)))) (-3858 (($ $) 62)) (-3868 (((-621 |#2|) (-621 $)) 223 (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) 222 (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 221 (-1280 (|has| |#2| (-577 (-501))) (|has| |#1| (-331)))) (((-621 (-501)) (-621 $)) 220 (-1280 (|has| |#2| (-577 (-501))) (|has| |#1| (-331))))) (-2174 (((-3 $ "failed") $) 34)) (-1880 (((-375 (-866 |#1|)) $ (-501)) 174 (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) 173 (|has| |#1| (-508)))) (-2890 (($) 235 (-1280 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-3034 (($ $ $) 158 (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 153 (|has| |#1| (-331)))) (-1628 (((-107) $) 166 (|has| |#1| (-331)))) (-2164 (((-107) $) 249 (-1280 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 227 (-1280 (|has| |#2| (-806 (-346))) (|has| |#1| (-331)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 226 (-1280 (|has| |#2| (-806 (-501))) (|has| |#1| (-331))))) (-3169 (((-501) $) 102) (((-501) $ (-501)) 101)) (-1355 (((-107) $) 31)) (-2117 (($ $) 231 (|has| |#1| (-331)))) (-2946 ((|#2| $) 229 (|has| |#1| (-331)))) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-3493 (((-3 $ "failed") $) 263 (-1280 (|has| |#2| (-1046)) (|has| |#1| (-331))))) (-4067 (((-107) $) 250 (-1280 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-2917 (($ $ (-839)) 103)) (-3608 (($ (-1 |#1| (-501)) $) 175)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 162 (|has| |#1| (-331)))) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-501)) 63) (($ $ (-986) (-501)) 78) (($ $ (-578 (-986)) (-578 (-501))) 77)) (-4111 (($ $ $) 253 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-1323 (($ $ $) 254 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-1212 (($ (-1 |#1| |#1|) $) 65) (($ (-1 |#2| |#2|) $) 215 (|has| |#1| (-331)))) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-1697 (($ (-578 $)) 151 (|has| |#1| (-331))) (($ $ $) 150 (|has| |#1| (-331)))) (-3822 (($ (-501) |#2|) 270)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 167 (|has| |#1| (-331)))) (-3188 (($ $) 172 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 171 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3746 (($) 264 (-1280 (|has| |#2| (-1046)) (|has| |#1| (-331))) CONST)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 152 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 149 (|has| |#1| (-331))) (($ $ $) 148 (|has| |#1| (-331)))) (-2801 (($ $) 234 (-1280 (|has| |#2| (-276)) (|has| |#1| (-331))))) (-3383 ((|#2| $) 237 (-1280 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-2305 (((-373 (-1064 $)) (-1064 $)) 240 (-1280 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-2572 (((-373 (-1064 $)) (-1064 $)) 241 (-1280 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-3739 (((-373 $) $) 163 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 161 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 160 (|has| |#1| (-331)))) (-3718 (($ $ (-501)) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 154 (|has| |#1| (-331)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-501))))) (($ $ (-1070) |#2|) 214 (-1280 (|has| |#2| (-476 (-1070) |#2|)) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 |#2|)) 213 (-1280 (|has| |#2| (-476 (-1070) |#2|)) (|has| |#1| (-331)))) (($ $ (-578 (-262 |#2|))) 212 (-1280 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ (-262 |#2|)) 211 (-1280 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ |#2| |#2|) 210 (-1280 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ (-578 |#2|) (-578 |#2|)) 209 (-1280 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331))))) (-1864 (((-701) $) 156 (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) 106) (($ $ $) 83 (|has| (-501) (-1012))) (($ $ |#2|) 208 (-1280 (|has| |#2| (-256 |#2| |#2|)) (|has| |#1| (-331))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 157 (|has| |#1| (-331)))) (-2596 (($ $ (-1 |#2| |#2|)) 219 (|has| |#1| (-331))) (($ $ (-1 |#2| |#2|) (-701)) 218 (|has| |#1| (-331))) (($ $ (-701)) 86 (-1405 (-1280 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 84 (-1405 (-1280 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) 91 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-1070) (-701)) 90 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-578 (-1070))) 89 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-1070)) 88 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))))) (-3307 (($ $) 232 (|has| |#1| (-331)))) (-2949 ((|#2| $) 230 (|has| |#1| (-331)))) (-1201 (((-501) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1248 (((-199) $) 248 (-1280 (|has| |#2| (-933)) (|has| |#1| (-331)))) (((-346) $) 247 (-1280 (|has| |#2| (-933)) (|has| |#1| (-331)))) (((-490) $) 246 (-1280 (|has| |#2| (-556 (-490))) (|has| |#1| (-331)))) (((-810 (-346)) $) 225 (-1280 (|has| |#2| (-556 (-810 (-346)))) (|has| |#1| (-331)))) (((-810 (-501)) $) 224 (-1280 (|has| |#2| (-556 (-810 (-501)))) (|has| |#1| (-331))))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 238 (-1280 (-1280 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#1| (-331))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 49 (|has| |#1| (-156))) (($ |#2|) 273) (($ (-1070)) 243 (-1280 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331)))) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508)))) (-2495 ((|#1| $ (-501)) 61)) (-1274 (((-3 $ "failed") $) 50 (-1405 (-1280 (-1405 (|has| |#2| (-132)) (-1280 (|has| $ (-132)) (|has| |#2| (-830)))) (|has| |#1| (-331))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-2803 ((|#2| $) 236 (-1280 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-1720 (($ $) 252 (-1280 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 168 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-331))) (($ $ (-1 |#2| |#2|) (-701)) 216 (|has| |#1| (-331))) (($ $ (-701)) 87 (-1405 (-1280 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 85 (-1405 (-1280 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) 95 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-1070) (-701)) 94 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-578 (-1070))) 93 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))))) (($ $ (-1070)) 92 (-1405 (-1280 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))))) (-3778 (((-107) $ $) 256 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3768 (((-107) $ $) 257 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 255 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3762 (((-107) $ $) 258 (-1280 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331))) (($ $ $) 170 (|has| |#1| (-331))) (($ |#2| |#2|) 228 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 169 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ $ |#2|) 207 (|has| |#1| (-331))) (($ |#2| $) 206 (|has| |#1| (-331))) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501)))))))
-(((-1113 |#1| |#2|) (-1180) (-959) (-1142 |t#1|)) (T -1113))
-((-1201 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1142 *3)) (-5 *2 (-501)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-1113 *3 *2)) (-4 *2 (-1142 *3)))) (-3822 (*1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *4 (-959)) (-4 *1 (-1113 *4 *3)) (-4 *3 (-1142 *4)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3)))) (-1574 (*1 *1 *1) (-12 (-4 *1 (-1113 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1142 *2)))) (-1574 (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-1113 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1142 *3)))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3)))) (-1641 (*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3)))))
-(-13 (-1111 |t#1|) (-950 |t#2|) (-10 -8 (-15 -3822 ($ (-501) |t#2|)) (-15 -1201 ((-501) $)) (-15 -1488 (|t#2| $)) (-15 -1574 ($ $)) (-15 -1574 ($ (-501) $)) (-15 -3691 ($ |t#2|)) (-15 -3818 (|t#2| $)) (-15 -1641 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-331)) (-6 (-906 |t#2|)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-501)) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-331)) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-331)) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-556 (-199)) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) ((-556 (-346)) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) ((-556 (-490)) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| |#1| (-331)) (|has| |#2| (-556 (-810 (-501))))) ((-204 |#2|) |has| |#1| (-331)) ((-206) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-206))) (|has| |#1| (-15 * (|#1| (-501) |#1|)))) ((-216) |has| |#1| (-331)) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 |#2| $) -12 (|has| |#1| (-331)) (|has| |#2| (-256 |#2| |#2|))) ((-256 $ $) |has| (-501) (-1012)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-278 |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-278 |#2|))) ((-331) |has| |#1| (-331)) ((-306 |#2|) |has| |#1| (-331)) ((-345 |#2|) |has| |#1| (-331)) ((-368 |#2|) |has| |#1| (-331)) ((-419) |has| |#1| (-331)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-476 (-1070) |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-476 (-1070) |#2|))) ((-476 |#2| |#2|) -12 (|has| |#1| (-331)) (|has| |#2| (-278 |#2|))) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-583 |#1|) . T) ((-583 |#2|) |has| |#1| (-331)) ((-583 $) . T) ((-577 (-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-577 (-501)))) ((-577 |#2|) |has| |#1| (-331)) ((-648 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-648 |#1|) |has| |#1| (-156)) ((-648 |#2|) |has| |#1| (-331)) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-657) . T) ((-721) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-722) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-724) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-727) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-750) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-775) -12 (|has| |#1| (-331)) (|has| |#2| (-750))) ((-777) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-777))) (-12 (|has| |#1| (-331)) (|has| |#2| (-750)))) ((-820 (-1070)) -1405 (-12 (|has| |#1| (-331)) (|has| |#2| (-820 (-1070)))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))) ((-806 (-346)) -12 (|has| |#1| (-331)) (|has| |#2| (-806 (-346)))) ((-806 (-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-806 (-501)))) ((-804 |#2|) |has| |#1| (-331)) ((-830) -12 (|has| |#1| (-331)) (|has| |#2| (-830))) ((-888 |#1| (-501) (-986)) . T) ((-841) |has| |#1| (-331)) ((-906 |#2|) |has| |#1| (-331)) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-933) -12 (|has| |#1| (-331)) (|has| |#2| (-933))) ((-950 (-375 (-501))) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-501)))) ((-950 (-501)) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-501)))) ((-950 (-1070)) -12 (|has| |#1| (-331)) (|has| |#2| (-950 (-1070)))) ((-950 |#2|) . T) ((-964 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-964 |#1|) . T) ((-964 |#2|) |has| |#1| (-331)) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) -12 (|has| |#1| (-331)) (|has| |#2| (-1046))) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1104) |has| |#1| (-331)) ((-1108) |has| |#1| (-331)) ((-1111 |#1|) . T) ((-1128 |#1| (-501)) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 70)) (-2197 ((|#2| $) NIL (-12 (|has| |#2| (-276)) (|has| |#1| (-331))))) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 88)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-501)) 97) (($ $ (-501) (-501)) 99)) (-1395 (((-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|))) $) 47)) (-1488 ((|#2| $) 11)) (-1641 (((-3 |#2| "failed") $) 30)) (-3818 ((|#2| $) 31)) (-3978 (($ $) 192 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 168 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) 188 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 164 (|has| |#1| (-37 (-375 (-501)))))) (-1417 (((-501) $) NIL (-12 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-2973 (($ (-1048 (-2 (|:| |k| (-501)) (|:| |c| |#1|)))) 57)) (-3984 (($ $) 196 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 172 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) 144) (((-3 (-501) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-375 (-501)) "failed") $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-3 (-1070) "failed") $) NIL (-12 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331))))) (-3490 ((|#2| $) 143) (((-501) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-375 (-501)) $) NIL (-12 (|has| |#2| (-950 (-501))) (|has| |#1| (-331)))) (((-1070) $) NIL (-12 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331))))) (-1574 (($ $) 61) (($ (-501) $) 24)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 |#2|) (-621 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL (|has| |#1| (-331))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#1| (-331)))) (((-621 (-501)) (-621 $)) NIL (-12 (|has| |#2| (-577 (-501))) (|has| |#1| (-331))))) (-2174 (((-3 $ "failed") $) 77)) (-1880 (((-375 (-866 |#1|)) $ (-501)) 112 (|has| |#1| (-508))) (((-375 (-866 |#1|)) $ (-501) (-501)) 114 (|has| |#1| (-508)))) (-2890 (($) NIL (-12 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-2164 (((-107) $) NIL (-12 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-3331 (((-107) $) 64)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| |#2| (-806 (-346))) (|has| |#1| (-331)))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| |#2| (-806 (-501))) (|has| |#1| (-331))))) (-3169 (((-501) $) 93) (((-501) $ (-501)) 95)) (-1355 (((-107) $) NIL)) (-2117 (($ $) NIL (|has| |#1| (-331)))) (-2946 ((|#2| $) 151 (|has| |#1| (-331)))) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3493 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1046)) (|has| |#1| (-331))))) (-4067 (((-107) $) NIL (-12 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-2917 (($ $ (-839)) 136)) (-3608 (($ (-1 |#1| (-501)) $) 132)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-501)) 19) (($ $ (-986) (-501)) NIL) (($ $ (-578 (-986)) (-578 (-501))) NIL)) (-4111 (($ $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-1323 (($ $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-1212 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-331)))) (-1635 (($ $) 162 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3822 (($ (-501) |#2|) 10)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 145 (|has| |#1| (-331)))) (-3188 (($ $) 214 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 219 (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090)))))) (-3746 (($) NIL (-12 (|has| |#2| (-1046)) (|has| |#1| (-331))) CONST)) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-2801 (($ $) NIL (-12 (|has| |#2| (-276)) (|has| |#1| (-331))))) (-3383 ((|#2| $) NIL (-12 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (-12 (|has| |#2| (-830)) (|has| |#1| (-331))))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-501)) 126)) (-3694 (((-3 $ "failed") $ $) 116 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) 160 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-501))))) (($ $ (-1070) |#2|) NIL (-12 (|has| |#2| (-476 (-1070) |#2|)) (|has| |#1| (-331)))) (($ $ (-578 (-1070)) (-578 |#2|)) NIL (-12 (|has| |#2| (-476 (-1070) |#2|)) (|has| |#1| (-331)))) (($ $ (-578 (-262 |#2|))) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ (-262 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331)))) (($ $ (-578 |#2|) (-578 |#2|)) NIL (-12 (|has| |#2| (-278 |#2|)) (|has| |#1| (-331))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-501)) 91) (($ $ $) 79 (|has| (-501) (-1012))) (($ $ |#2|) NIL (-12 (|has| |#2| (-256 |#2| |#2|)) (|has| |#1| (-331))))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-331))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#1| (-331))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) 137 (-1405 (-12 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) 140 (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3307 (($ $) NIL (|has| |#1| (-331)))) (-2949 ((|#2| $) 152 (|has| |#1| (-331)))) (-1201 (((-501) $) 12)) (-3991 (($ $) 198 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 174 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 194 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 170 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 190 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 166 (|has| |#1| (-37 (-375 (-501)))))) (-1248 (((-199) $) NIL (-12 (|has| |#2| (-933)) (|has| |#1| (-331)))) (((-346) $) NIL (-12 (|has| |#2| (-933)) (|has| |#1| (-331)))) (((-490) $) NIL (-12 (|has| |#2| (-556 (-490))) (|has| |#1| (-331)))) (((-810 (-346)) $) NIL (-12 (|has| |#2| (-556 (-810 (-346)))) (|has| |#1| (-331)))) (((-810 (-501)) $) NIL (-12 (|has| |#2| (-556 (-810 (-501)))) (|has| |#1| (-331))))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830)) (|has| |#1| (-331))))) (-1267 (($ $) 124)) (-3691 (((-786) $) 242) (($ (-501)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1070)) NIL (-12 (|has| |#2| (-950 (-1070))) (|has| |#1| (-331)))) (($ (-375 (-501))) 155 (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-501)) 74)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830)) (|has| |#1| (-331))) (-12 (|has| |#2| (-132)) (|has| |#1| (-331))) (|has| |#1| (-132))))) (-3965 (((-701)) 142)) (-2896 ((|#1| $) 90)) (-2803 ((|#2| $) NIL (-12 (|has| |#2| (-500)) (|has| |#1| (-331))))) (-4003 (($ $) 204 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 180 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 200 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 176 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 208 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 184 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-501)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-501)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 210 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 186 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 206 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 182 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 202 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 178 (|has| |#1| (-37 (-375 (-501)))))) (-1720 (($ $) NIL (-12 (|has| |#2| (-750)) (|has| |#1| (-331))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 13 T CONST)) (-1925 (($) 17 T CONST)) (-3584 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-331))) (($ $ (-1 |#2| |#2|) (-701)) NIL (|has| |#1| (-331))) (($ $ (-701)) NIL (-1405 (-12 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $) NIL (-1405 (-12 (|has| |#2| (-206)) (|has| |#1| (-331))) (|has| |#1| (-15 * (|#1| (-501) |#1|))))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070) (-701)) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-578 (-1070))) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070)))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#2| (-820 (-1070))) (|has| |#1| (-331))) (-12 (|has| |#1| (-15 * (|#1| (-501) |#1|))) (|has| |#1| (-820 (-1070))))))) (-3778 (((-107) $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3768 (((-107) $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3751 (((-107) $ $) 63)) (-3773 (((-107) $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3762 (((-107) $ $) NIL (-12 (|has| |#2| (-777)) (|has| |#1| (-331))))) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) 149 (|has| |#1| (-331))) (($ |#2| |#2|) 150 (|has| |#1| (-331)))) (-3797 (($ $) 213) (($ $ $) 68)) (-3790 (($ $ $) 66)) (** (($ $ (-839)) NIL) (($ $ (-701)) 73) (($ $ (-501)) 146 (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 158 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-331))) (($ |#2| $) 147 (|has| |#1| (-331))) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-1114 |#1| |#2|) (-1113 |#1| |#2|) (-959) (-1142 |#1|)) (T -1114))
-NIL
-(-1113 |#1| |#2|)
-((-3120 (((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107)) 10)) (-2452 (((-373 |#1|) |#1|) 21)) (-3739 (((-373 |#1|) |#1|) 20)))
-(((-1115 |#1|) (-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1|)) (-15 -3120 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107)))) (-1125 (-501))) (T -1115))
-((-3120 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501))))) (-2452 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501))))))
-(-10 -7 (-15 -3739 ((-373 |#1|) |#1|)) (-15 -2452 ((-373 |#1|) |#1|)) (-15 -3120 ((-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| |#1|) (|:| -3257 (-501)))))) |#1| (-107))))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-4087 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1212 (((-1048 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-775)))) (-3014 ((|#1| $) 14)) (-4045 ((|#1| $) 10)) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-4053 (((-501) $) 18)) (-1647 ((|#1| $) 17)) (-4060 ((|#1| $) 11)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-4126 (((-107) $) 16)) (-1967 (((-1048 |#1|) $) 38 (|has| |#1| (-775))) (((-1048 |#1|) (-578 $)) 37 (|has| |#1| (-775)))) (-1248 (($ |#1|) 25)) (-3691 (($ (-991 |#1|)) 24) (((-786) $) 34 (|has| |#1| (-1001)))) (-3686 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3005 (($ $ (-501)) 13)) (-3751 (((-107) $ $) 27 (|has| |#1| (-1001)))))
-(((-1116 |#1|) (-13 (-995 |#1|) (-10 -8 (-15 -3686 ($ |#1|)) (-15 -4087 ($ |#1|)) (-15 -3691 ($ (-991 |#1|))) (-15 -4126 ((-107) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-996 |#1| (-1048 |#1|))) |noBranch|))) (-1104)) (T -1116))
-((-3686 (*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1104)))) (-4087 (*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1104)))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-991 *3)) (-4 *3 (-1104)) (-5 *1 (-1116 *3)))) (-4126 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1116 *3)) (-4 *3 (-1104)))))
-(-13 (-995 |#1|) (-10 -8 (-15 -3686 ($ |#1|)) (-15 -4087 ($ |#1|)) (-15 -3691 ($ (-991 |#1|))) (-15 -4126 ((-107) $)) (IF (|has| |#1| (-1001)) (-6 (-1001)) |noBranch|) (IF (|has| |#1| (-775)) (-6 (-996 |#1| (-1048 |#1|))) |noBranch|)))
-((-1212 (((-1048 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 23 (|has| |#1| (-775))) (((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|)) 17)))
-(((-1117 |#1| |#2|) (-10 -7 (-15 -1212 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (IF (|has| |#1| (-775)) (-15 -1212 ((-1048 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) |noBranch|)) (-1104) (-1104)) (T -1117))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-775)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1048 *6)) (-5 *1 (-1117 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1116 *6)) (-5 *1 (-1117 *5 *6)))))
-(-10 -7 (-15 -1212 ((-1116 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) (IF (|has| |#1| (-775)) (-15 -1212 ((-1048 |#2|) (-1 |#2| |#1|) (-1116 |#1|))) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3077 (((-1148 |#2|) $ (-701)) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3081 (($ (-1064 |#2|)) NIL)) (-3728 (((-1064 $) $ (-986)) NIL) (((-1064 |#2|) $) NIL)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#2| (-508)))) (-2865 (($ $) NIL (|has| |#2| (-508)))) (-1639 (((-107) $) NIL (|has| |#2| (-508)))) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-1855 (($ $ $) NIL (|has| |#2| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3676 (($ $) NIL (|has| |#2| (-419)))) (-1559 (((-373 $) $) NIL (|has| |#2| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2781 (((-107) $ $) NIL (|has| |#2| (-331)))) (-3643 (($ $ (-701)) NIL)) (-2222 (($ $ (-701)) NIL)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-419)))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL) (((-3 (-375 (-501)) "failed") $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) NIL (|has| |#2| (-950 (-501)))) (((-3 (-986) "failed") $) NIL)) (-3490 ((|#2| $) NIL) (((-375 (-501)) $) NIL (|has| |#2| (-950 (-375 (-501))))) (((-501) $) NIL (|has| |#2| (-950 (-501)))) (((-986) $) NIL)) (-1749 (($ $ $ (-986)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-3023 (($ $ $) NIL (|has| |#2| (-331)))) (-3858 (($ $) NIL)) (-3868 (((-621 (-501)) (-621 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) NIL (|has| |#2| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#2|)) (|:| |vec| (-1148 |#2|))) (-621 $) (-1148 $)) NIL) (((-621 |#2|) (-621 $)) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-3034 (($ $ $) NIL (|has| |#2| (-331)))) (-4094 (($ $ $) NIL)) (-3470 (($ $ $) NIL (|has| |#2| (-508)))) (-2352 (((-2 (|:| -3189 |#2|) (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#2| (-331)))) (-3533 (($ $) NIL (|has| |#2| (-419))) (($ $ (-986)) NIL (|has| |#2| (-419)))) (-3854 (((-578 $) $) NIL)) (-1628 (((-107) $) NIL (|has| |#2| (-830)))) (-3503 (($ $ |#2| (-701) $) NIL)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) NIL (-12 (|has| (-986) (-806 (-346))) (|has| |#2| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) NIL (-12 (|has| (-986) (-806 (-501))) (|has| |#2| (-806 (-501)))))) (-3169 (((-701) $ $) NIL (|has| |#2| (-508)))) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-3493 (((-3 $ "failed") $) NIL (|has| |#2| (-1046)))) (-3794 (($ (-1064 |#2|) (-986)) NIL) (($ (-1064 $) (-986)) NIL)) (-2917 (($ $ (-701)) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#2| (-331)))) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-3787 (($ |#2| (-701)) 17) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) NIL) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-4111 (($ $ $) NIL (|has| |#2| (-777)))) (-1323 (($ $ $) NIL (|has| |#2| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-1704 (((-1064 |#2|) $) NIL)) (-2752 (((-3 (-986) "failed") $) NIL)) (-3845 (($ $) NIL)) (-3850 ((|#2| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-3460 (((-1053) $) NIL)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) NIL)) (-2948 (((-3 (-578 $) "failed") $) NIL)) (-1285 (((-3 (-578 $) "failed") $) NIL)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) NIL)) (-3188 (($ $) NIL (|has| |#2| (-37 (-375 (-501)))))) (-3746 (($) NIL (|has| |#2| (-1046)) CONST)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 ((|#2| $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#2| (-419)))) (-3664 (($ (-578 $)) NIL (|has| |#2| (-419))) (($ $ $) NIL (|has| |#2| (-419)))) (-4138 (($ $ (-701) |#2| $) NIL)) (-2305 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) NIL (|has| |#2| (-830)))) (-3739 (((-373 $) $) NIL (|has| |#2| (-830)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#2| (-331)))) (-3694 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-508))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#2| (-331)))) (-3195 (($ $ (-578 (-262 $))) NIL) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#2|) NIL) (($ $ (-578 (-986)) (-578 |#2|)) NIL) (($ $ (-986) $) NIL) (($ $ (-578 (-986)) (-578 $)) NIL)) (-1864 (((-701) $) NIL (|has| |#2| (-331)))) (-2007 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-375 $) (-375 $) (-375 $)) NIL (|has| |#2| (-508))) ((|#2| (-375 $) |#2|) NIL (|has| |#2| (-331))) (((-375 $) $ (-375 $)) NIL (|has| |#2| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) NIL)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#2| (-331)))) (-2532 (($ $ (-986)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-2596 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1201 (((-701) $) NIL) (((-701) $ (-986)) NIL) (((-578 (-701)) $ (-578 (-986))) NIL)) (-1248 (((-810 (-346)) $) NIL (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#2| (-556 (-810 (-346)))))) (((-810 (-501)) $) NIL (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#2| (-556 (-810 (-501)))))) (((-490) $) NIL (-12 (|has| (-986) (-556 (-490))) (|has| |#2| (-556 (-490)))))) (-1734 ((|#2| $) NIL (|has| |#2| (-419))) (($ $ (-986)) NIL (|has| |#2| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-830))))) (-3913 (((-3 $ "failed") $ $) NIL (|has| |#2| (-508))) (((-3 (-375 $) "failed") (-375 $) $) NIL (|has| |#2| (-508)))) (-3691 (((-786) $) 13) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-986)) NIL) (($ (-1145 |#1|)) 19) (($ (-375 (-501))) NIL (-1405 (|has| |#2| (-37 (-375 (-501)))) (|has| |#2| (-950 (-375 (-501)))))) (($ $) NIL (|has| |#2| (-508)))) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-701)) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1274 (((-3 $ "failed") $) NIL (-1405 (-12 (|has| $ (-132)) (|has| |#2| (-830))) (|has| |#2| (-132))))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| |#2| (-156)))) (-2442 (((-107) $ $) NIL (|has| |#2| (-508)))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-1925 (($) 14 T CONST)) (-3584 (($ $ (-986)) NIL) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) NIL) (($ $ (-1070)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1070) (-701)) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) NIL (|has| |#2| (-820 (-1070)))) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3778 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3751 (((-107) $ $) NIL)) (-3773 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#2| (-777)))) (-3803 (($ $ |#2|) NIL (|has| |#2| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-375 (-501))) NIL (|has| |#2| (-37 (-375 (-501))))) (($ (-375 (-501)) $) NIL (|has| |#2| (-37 (-375 (-501))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1118 |#1| |#2|) (-13 (-1125 |#2|) (-10 -8 (-15 -3691 ($ (-1145 |#1|))) (-15 -4138 ($ $ (-701) |#2| $)))) (-1070) (-959)) (T -1118))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-14 *3 (-1070)) (-5 *1 (-1118 *3 *4)) (-4 *4 (-959)))) (-4138 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1118 *4 *3)) (-14 *4 (-1070)) (-4 *3 (-959)))))
-(-13 (-1125 |#2|) (-10 -8 (-15 -3691 ($ (-1145 |#1|))) (-15 -4138 ($ $ (-701) |#2| $))))
-((-1212 (((-1118 |#3| |#4|) (-1 |#4| |#2|) (-1118 |#1| |#2|)) 15)))
-(((-1119 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 ((-1118 |#3| |#4|) (-1 |#4| |#2|) (-1118 |#1| |#2|)))) (-1070) (-959) (-1070) (-959)) (T -1119))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1118 *5 *6)) (-14 *5 (-1070)) (-4 *6 (-959)) (-4 *8 (-959)) (-5 *2 (-1118 *7 *8)) (-5 *1 (-1119 *5 *6 *7 *8)) (-14 *7 (-1070)))))
-(-10 -7 (-15 -1212 ((-1118 |#3| |#4|) (-1 |#4| |#2|) (-1118 |#1| |#2|))))
-((-3473 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1644 ((|#1| |#3|) 13)) (-4132 ((|#3| |#3|) 19)))
-(((-1120 |#1| |#2| |#3|) (-10 -7 (-15 -1644 (|#1| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-508) (-906 |#1|) (-1125 |#2|)) (T -1120))
-((-3473 (*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1120 *4 *5 *3)) (-4 *3 (-1125 *5)))) (-4132 (*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *4 (-906 *3)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-1125 *4)))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-1120 *2 *4 *3)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -1644 (|#1| |#3|)) (-15 -4132 (|#3| |#3|)) (-15 -3473 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1722 (((-3 |#2| "failed") |#2| (-701) |#1|) 29)) (-1492 (((-3 |#2| "failed") |#2| (-701)) 30)) (-3726 (((-3 (-2 (|:| -1313 |#2|) (|:| -1320 |#2|)) "failed") |#2|) 42)) (-2335 (((-578 |#2|) |#2|) 44)) (-2967 (((-3 |#2| "failed") |#2| |#2|) 39)))
-(((-1121 |#1| |#2|) (-10 -7 (-15 -1492 ((-3 |#2| "failed") |#2| (-701))) (-15 -1722 ((-3 |#2| "failed") |#2| (-701) |#1|)) (-15 -2967 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3726 ((-3 (-2 (|:| -1313 |#2|) (|:| -1320 |#2|)) "failed") |#2|)) (-15 -2335 ((-578 |#2|) |#2|))) (-13 (-508) (-134)) (-1125 |#1|)) (T -1121))
-((-2335 (*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-134))) (-5 *2 (-578 *3)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-1125 *4)))) (-3726 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-134))) (-5 *2 (-2 (|:| -1313 *3) (|:| -1320 *3))) (-5 *1 (-1121 *4 *3)) (-4 *3 (-1125 *4)))) (-2967 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-1125 *3)))) (-1722 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-1125 *4)))) (-1492 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-1125 *4)))))
-(-10 -7 (-15 -1492 ((-3 |#2| "failed") |#2| (-701))) (-15 -1722 ((-3 |#2| "failed") |#2| (-701) |#1|)) (-15 -2967 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3726 ((-3 (-2 (|:| -1313 |#2|) (|:| -1320 |#2|)) "failed") |#2|)) (-15 -2335 ((-578 |#2|) |#2|)))
-((-3511 (((-3 (-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) "failed") |#2| |#2|) 31)))
-(((-1122 |#1| |#2|) (-10 -7 (-15 -3511 ((-3 (-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) "failed") |#2| |#2|))) (-508) (-1125 |#1|)) (T -1122))
-((-3511 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-1122 *4 *3)) (-4 *3 (-1125 *4)))))
-(-10 -7 (-15 -3511 ((-3 (-2 (|:| -3236 |#2|) (|:| -1852 |#2|)) "failed") |#2| |#2|)))
-((-2956 ((|#2| |#2| |#2|) 19)) (-3459 ((|#2| |#2| |#2|) 30)) (-2880 ((|#2| |#2| |#2| (-701) (-701)) 36)))
-(((-1123 |#1| |#2|) (-10 -7 (-15 -2956 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2| |#2|)) (-15 -2880 (|#2| |#2| |#2| (-701) (-701)))) (-959) (-1125 |#1|)) (T -1123))
-((-2880 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-1123 *4 *2)) (-4 *2 (-1125 *4)))) (-3459 (*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1125 *3)))) (-2956 (*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1125 *3)))))
-(-10 -7 (-15 -2956 (|#2| |#2| |#2|)) (-15 -3459 (|#2| |#2| |#2|)) (-15 -2880 (|#2| |#2| |#2| (-701) (-701))))
-((-3077 (((-1148 |#2|) $ (-701)) 113)) (-3800 (((-578 (-986)) $) 15)) (-3081 (($ (-1064 |#2|)) 66)) (-1699 (((-701) $) NIL) (((-701) $ (-578 (-986))) 18)) (-3324 (((-373 (-1064 $)) (-1064 $)) 183)) (-3676 (($ $) 173)) (-1559 (((-373 $) $) 171)) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 81)) (-3643 (($ $ (-701)) 70)) (-2222 (($ $ (-701)) 72)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-3765 (((-3 |#2| "failed") $) 116) (((-3 (-375 (-501)) "failed") $) NIL) (((-3 (-501) "failed") $) NIL) (((-3 (-986) "failed") $) NIL)) (-3490 ((|#2| $) 114) (((-375 (-501)) $) NIL) (((-501) $) NIL) (((-986) $) NIL)) (-3470 (($ $ $) 150)) (-2352 (((-2 (|:| -3189 |#2|) (|:| -3236 $) (|:| -1852 $)) $ $) 152)) (-3169 (((-701) $ $) 168)) (-3493 (((-3 $ "failed") $) 122)) (-3787 (($ |#2| (-701)) NIL) (($ $ (-986) (-701)) 46) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-2285 (((-701) $) NIL) (((-701) $ (-986)) 41) (((-578 (-701)) $ (-578 (-986))) 42)) (-1704 (((-1064 |#2|) $) 58)) (-2752 (((-3 (-986) "failed") $) 39)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) 69)) (-3188 (($ $) 194)) (-3746 (($) 118)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 180)) (-2305 (((-373 (-1064 $)) (-1064 $)) 87)) (-2572 (((-373 (-1064 $)) (-1064 $)) 85)) (-3739 (((-373 $) $) 105)) (-3195 (($ $ (-578 (-262 $))) 38) (($ $ (-262 $)) NIL) (($ $ $ $) NIL) (($ $ (-578 $) (-578 $)) NIL) (($ $ (-986) |#2|) 31) (($ $ (-578 (-986)) (-578 |#2|)) 28) (($ $ (-986) $) 25) (($ $ (-578 (-986)) (-578 $)) 23)) (-1864 (((-701) $) 186)) (-2007 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-375 $) (-375 $) (-375 $)) 146) ((|#2| (-375 $) |#2|) 185) (((-375 $) $ (-375 $)) 167)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 189)) (-2596 (($ $ (-986)) 139) (($ $ (-578 (-986))) NIL) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL) (($ $ (-701)) NIL) (($ $) 137) (($ $ (-1070)) NIL) (($ $ (-578 (-1070))) NIL) (($ $ (-1070) (-701)) NIL) (($ $ (-578 (-1070)) (-578 (-701))) NIL) (($ $ (-1 |#2| |#2|) (-701)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-1201 (((-701) $) NIL) (((-701) $ (-986)) 16) (((-578 (-701)) $ (-578 (-986))) 20)) (-1734 ((|#2| $) NIL) (($ $ (-986)) 124)) (-3913 (((-3 $ "failed") $ $) 160) (((-3 (-375 $) "failed") (-375 $) $) 156)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#2|) NIL) (($ (-986)) 50) (($ (-375 (-501))) NIL) (($ $) NIL)))
-(((-1124 |#1| |#2|) (-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -2007 ((-375 |#1|) |#1| (-375 |#1|))) (-15 -1864 ((-701) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3188 (|#1| |#1|)) (-15 -2007 (|#2| (-375 |#1|) |#2|)) (-15 -1337 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2352 ((-2 (|:| -3189 |#2|) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -3913 ((-3 (-375 |#1|) "failed") (-375 |#1|) |#1|)) (-15 -3913 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3169 ((-701) |#1| |#1|)) (-15 -2007 ((-375 |#1|) (-375 |#1|) (-375 |#1|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2222 (|#1| |#1| (-701))) (-15 -3643 (|#1| |#1| (-701))) (-15 -3179 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| (-701))) (-15 -3081 (|#1| (-1064 |#2|))) (-15 -1704 ((-1064 |#2|) |#1|)) (-15 -3077 ((-1148 |#2|) |#1| (-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| |#1|)) (-15 -2007 (|#2| |#1| |#2|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3324 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -1734 (|#1| |#1| (-986))) (-15 -3800 ((-578 (-986)) |#1|)) (-15 -1699 ((-701) |#1| (-578 (-986)))) (-15 -1699 ((-701) |#1|)) (-15 -3787 (|#1| |#1| (-578 (-986)) (-578 (-701)))) (-15 -3787 (|#1| |#1| (-986) (-701))) (-15 -2285 ((-578 (-701)) |#1| (-578 (-986)))) (-15 -2285 ((-701) |#1| (-986))) (-15 -2752 ((-3 (-986) "failed") |#1|)) (-15 -1201 ((-578 (-701)) |#1| (-578 (-986)))) (-15 -1201 ((-701) |#1| (-986))) (-15 -3490 ((-986) |#1|)) (-15 -3765 ((-3 (-986) "failed") |#1|)) (-15 -3691 (|#1| (-986))) (-15 -3195 (|#1| |#1| (-578 (-986)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-986) |#1|)) (-15 -3195 (|#1| |#1| (-578 (-986)) (-578 |#2|))) (-15 -3195 (|#1| |#1| (-986) |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -1201 ((-701) |#1|)) (-15 -3787 (|#1| |#2| (-701))) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -2285 ((-701) |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -2596 (|#1| |#1| (-578 (-986)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-986) (-701))) (-15 -2596 (|#1| |#1| (-578 (-986)))) (-15 -2596 (|#1| |#1| (-986))) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|))) (-1125 |#2|) (-959)) (T -1124))
-NIL
-(-10 -8 (-15 -3691 (|#1| |#1|)) (-15 -3424 ((-1064 |#1|) (-1064 |#1|) (-1064 |#1|))) (-15 -1559 ((-373 |#1|) |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3746 (|#1|)) (-15 -3493 ((-3 |#1| "failed") |#1|)) (-15 -2007 ((-375 |#1|) |#1| (-375 |#1|))) (-15 -1864 ((-701) |#1|)) (-15 -2419 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3188 (|#1| |#1|)) (-15 -2007 (|#2| (-375 |#1|) |#2|)) (-15 -1337 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2352 ((-2 (|:| -3189 |#2|) (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| |#1|)) (-15 -3470 (|#1| |#1| |#1|)) (-15 -3913 ((-3 (-375 |#1|) "failed") (-375 |#1|) |#1|)) (-15 -3913 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3169 ((-701) |#1| |#1|)) (-15 -2007 ((-375 |#1|) (-375 |#1|) (-375 |#1|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2222 (|#1| |#1| (-701))) (-15 -3643 (|#1| |#1| (-701))) (-15 -3179 ((-2 (|:| -3236 |#1|) (|:| -1852 |#1|)) |#1| (-701))) (-15 -3081 (|#1| (-1064 |#2|))) (-15 -1704 ((-1064 |#2|) |#1|)) (-15 -3077 ((-1148 |#2|) |#1| (-701))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2596 (|#1| |#1| (-1 |#2| |#2|) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-1070) (-701))) (-15 -2596 (|#1| |#1| (-578 (-1070)))) (-15 -2596 (|#1| |#1| (-1070))) (-15 -2596 (|#1| |#1|)) (-15 -2596 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| |#1|)) (-15 -2007 (|#2| |#1| |#2|)) (-15 -3739 ((-373 |#1|) |#1|)) (-15 -3324 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2572 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -2305 ((-373 (-1064 |#1|)) (-1064 |#1|))) (-15 -4002 ((-3 (-578 (-1064 |#1|)) "failed") (-578 (-1064 |#1|)) (-1064 |#1|))) (-15 -1734 (|#1| |#1| (-986))) (-15 -3800 ((-578 (-986)) |#1|)) (-15 -1699 ((-701) |#1| (-578 (-986)))) (-15 -1699 ((-701) |#1|)) (-15 -3787 (|#1| |#1| (-578 (-986)) (-578 (-701)))) (-15 -3787 (|#1| |#1| (-986) (-701))) (-15 -2285 ((-578 (-701)) |#1| (-578 (-986)))) (-15 -2285 ((-701) |#1| (-986))) (-15 -2752 ((-3 (-986) "failed") |#1|)) (-15 -1201 ((-578 (-701)) |#1| (-578 (-986)))) (-15 -1201 ((-701) |#1| (-986))) (-15 -3490 ((-986) |#1|)) (-15 -3765 ((-3 (-986) "failed") |#1|)) (-15 -3691 (|#1| (-986))) (-15 -3195 (|#1| |#1| (-578 (-986)) (-578 |#1|))) (-15 -3195 (|#1| |#1| (-986) |#1|)) (-15 -3195 (|#1| |#1| (-578 (-986)) (-578 |#2|))) (-15 -3195 (|#1| |#1| (-986) |#2|)) (-15 -3195 (|#1| |#1| (-578 |#1|) (-578 |#1|))) (-15 -3195 (|#1| |#1| |#1| |#1|)) (-15 -3195 (|#1| |#1| (-262 |#1|))) (-15 -3195 (|#1| |#1| (-578 (-262 |#1|)))) (-15 -1201 ((-701) |#1|)) (-15 -3787 (|#1| |#2| (-701))) (-15 -3490 ((-501) |#1|)) (-15 -3765 ((-3 (-501) "failed") |#1|)) (-15 -3490 ((-375 (-501)) |#1|)) (-15 -3765 ((-3 (-375 (-501)) "failed") |#1|)) (-15 -3691 (|#1| |#2|)) (-15 -3765 ((-3 |#2| "failed") |#1|)) (-15 -3490 (|#2| |#1|)) (-15 -2285 ((-701) |#1|)) (-15 -1734 (|#2| |#1|)) (-15 -2596 (|#1| |#1| (-578 (-986)) (-578 (-701)))) (-15 -2596 (|#1| |#1| (-986) (-701))) (-15 -2596 (|#1| |#1| (-578 (-986)))) (-15 -2596 (|#1| |#1| (-986))) (-15 -3691 (|#1| (-501))) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3077 (((-1148 |#1|) $ (-701)) 238)) (-3800 (((-578 (-986)) $) 110)) (-3081 (($ (-1064 |#1|)) 236)) (-3728 (((-1064 $) $ (-986)) 125) (((-1064 |#1|) $) 124)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 87 (|has| |#1| (-508)))) (-2865 (($ $) 88 (|has| |#1| (-508)))) (-1639 (((-107) $) 90 (|has| |#1| (-508)))) (-1699 (((-701) $) 112) (((-701) $ (-578 (-986))) 111)) (-3177 (((-3 $ "failed") $ $) 19)) (-1855 (($ $ $) 223 (|has| |#1| (-508)))) (-3324 (((-373 (-1064 $)) (-1064 $)) 100 (|has| |#1| (-830)))) (-3676 (($ $) 98 (|has| |#1| (-419)))) (-1559 (((-373 $) $) 97 (|has| |#1| (-419)))) (-4002 (((-3 (-578 (-1064 $)) "failed") (-578 (-1064 $)) (-1064 $)) 103 (|has| |#1| (-830)))) (-2781 (((-107) $ $) 208 (|has| |#1| (-331)))) (-3643 (($ $ (-701)) 231)) (-2222 (($ $ (-701)) 230)) (-1337 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-419)))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 164) (((-3 (-375 (-501)) "failed") $) 162 (|has| |#1| (-950 (-375 (-501))))) (((-3 (-501) "failed") $) 160 (|has| |#1| (-950 (-501)))) (((-3 (-986) "failed") $) 136)) (-3490 ((|#1| $) 165) (((-375 (-501)) $) 161 (|has| |#1| (-950 (-375 (-501))))) (((-501) $) 159 (|has| |#1| (-950 (-501)))) (((-986) $) 135)) (-1749 (($ $ $ (-986)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-3023 (($ $ $) 212 (|has| |#1| (-331)))) (-3858 (($ $) 154)) (-3868 (((-621 (-501)) (-621 $)) 134 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 (-501))) (|:| |vec| (-1148 (-501)))) (-621 $) (-1148 $)) 133 (|has| |#1| (-577 (-501)))) (((-2 (|:| -2978 (-621 |#1|)) (|:| |vec| (-1148 |#1|))) (-621 $) (-1148 $)) 132) (((-621 |#1|) (-621 $)) 131)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 211 (|has| |#1| (-331)))) (-4094 (($ $ $) 229)) (-3470 (($ $ $) 220 (|has| |#1| (-508)))) (-2352 (((-2 (|:| -3189 |#1|) (|:| -3236 $) (|:| -1852 $)) $ $) 219 (|has| |#1| (-508)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 206 (|has| |#1| (-331)))) (-3533 (($ $) 176 (|has| |#1| (-419))) (($ $ (-986)) 105 (|has| |#1| (-419)))) (-3854 (((-578 $) $) 109)) (-1628 (((-107) $) 96 (|has| |#1| (-830)))) (-3503 (($ $ |#1| (-701) $) 172)) (-3809 (((-808 (-346) $) $ (-810 (-346)) (-808 (-346) $)) 84 (-12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346))))) (((-808 (-501) $) $ (-810 (-501)) (-808 (-501) $)) 83 (-12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))))) (-3169 (((-701) $ $) 224 (|has| |#1| (-508)))) (-1355 (((-107) $) 31)) (-3706 (((-701) $) 169)) (-3493 (((-3 $ "failed") $) 204 (|has| |#1| (-1046)))) (-3794 (($ (-1064 |#1|) (-986)) 117) (($ (-1064 $) (-986)) 116)) (-2917 (($ $ (-701)) 235)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 215 (|has| |#1| (-331)))) (-2713 (((-578 $) $) 126)) (-2706 (((-107) $) 152)) (-3787 (($ |#1| (-701)) 153) (($ $ (-986) (-701)) 119) (($ $ (-578 (-986)) (-578 (-701))) 118)) (-1554 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $ (-986)) 120) (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 233)) (-2285 (((-701) $) 170) (((-701) $ (-986)) 122) (((-578 (-701)) $ (-578 (-986))) 121)) (-4111 (($ $ $) 79 (|has| |#1| (-777)))) (-1323 (($ $ $) 78 (|has| |#1| (-777)))) (-3515 (($ (-1 (-701) (-701)) $) 171)) (-1212 (($ (-1 |#1| |#1|) $) 151)) (-1704 (((-1064 |#1|) $) 237)) (-2752 (((-3 (-986) "failed") $) 123)) (-3845 (($ $) 149)) (-3850 ((|#1| $) 148)) (-1697 (($ (-578 $)) 94 (|has| |#1| (-419))) (($ $ $) 93 (|has| |#1| (-419)))) (-3460 (((-1053) $) 9)) (-3179 (((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701)) 232)) (-2948 (((-3 (-578 $) "failed") $) 114)) (-1285 (((-3 (-578 $) "failed") $) 115)) (-2551 (((-3 (-2 (|:| |var| (-986)) (|:| -3027 (-701))) "failed") $) 113)) (-3188 (($ $) 216 (|has| |#1| (-37 (-375 (-501)))))) (-3746 (($) 203 (|has| |#1| (-1046)) CONST)) (-3708 (((-1018) $) 10)) (-3837 (((-107) $) 166)) (-3841 ((|#1| $) 167)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 95 (|has| |#1| (-419)))) (-3664 (($ (-578 $)) 92 (|has| |#1| (-419))) (($ $ $) 91 (|has| |#1| (-419)))) (-2305 (((-373 (-1064 $)) (-1064 $)) 102 (|has| |#1| (-830)))) (-2572 (((-373 (-1064 $)) (-1064 $)) 101 (|has| |#1| (-830)))) (-3739 (((-373 $) $) 99 (|has| |#1| (-830)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 213 (|has| |#1| (-331)))) (-3694 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-508))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 207 (|has| |#1| (-331)))) (-3195 (($ $ (-578 (-262 $))) 145) (($ $ (-262 $)) 144) (($ $ $ $) 143) (($ $ (-578 $) (-578 $)) 142) (($ $ (-986) |#1|) 141) (($ $ (-578 (-986)) (-578 |#1|)) 140) (($ $ (-986) $) 139) (($ $ (-578 (-986)) (-578 $)) 138)) (-1864 (((-701) $) 209 (|has| |#1| (-331)))) (-2007 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-375 $) (-375 $) (-375 $)) 225 (|has| |#1| (-508))) ((|#1| (-375 $) |#1|) 217 (|has| |#1| (-331))) (((-375 $) $ (-375 $)) 205 (|has| |#1| (-508)))) (-2158 (((-3 $ "failed") $ (-701)) 234)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 210 (|has| |#1| (-331)))) (-2532 (($ $ (-986)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-2596 (($ $ (-986)) 42) (($ $ (-578 (-986))) 41) (($ $ (-986) (-701)) 40) (($ $ (-578 (-986)) (-578 (-701))) 39) (($ $ (-701)) 253) (($ $) 251) (($ $ (-1070)) 250 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 249 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 248 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 247 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-1201 (((-701) $) 150) (((-701) $ (-986)) 130) (((-578 (-701)) $ (-578 (-986))) 129)) (-1248 (((-810 (-346)) $) 82 (-12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346)))))) (((-810 (-501)) $) 81 (-12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501)))))) (((-490) $) 80 (-12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))))) (-1734 ((|#1| $) 175 (|has| |#1| (-419))) (($ $ (-986)) 106 (|has| |#1| (-419)))) (-2375 (((-3 (-1148 $) "failed") (-621 $)) 104 (-1280 (|has| $ (-132)) (|has| |#1| (-830))))) (-3913 (((-3 $ "failed") $ $) 222 (|has| |#1| (-508))) (((-3 (-375 $) "failed") (-375 $) $) 221 (|has| |#1| (-508)))) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 163) (($ (-986)) 137) (($ (-375 (-501))) 72 (-1405 (|has| |#1| (-950 (-375 (-501)))) (|has| |#1| (-37 (-375 (-501)))))) (($ $) 85 (|has| |#1| (-508)))) (-1303 (((-578 |#1|) $) 168)) (-2495 ((|#1| $ (-701)) 155) (($ $ (-986) (-701)) 128) (($ $ (-578 (-986)) (-578 (-701))) 127)) (-1274 (((-3 $ "failed") $) 73 (-1405 (-1280 (|has| $ (-132)) (|has| |#1| (-830))) (|has| |#1| (-132))))) (-3965 (((-701)) 29)) (-3771 (($ $ $ (-701)) 173 (|has| |#1| (-156)))) (-2442 (((-107) $ $) 89 (|has| |#1| (-508)))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-986)) 38) (($ $ (-578 (-986))) 37) (($ $ (-986) (-701)) 36) (($ $ (-578 (-986)) (-578 (-701))) 35) (($ $ (-701)) 254) (($ $) 252) (($ $ (-1070)) 246 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070))) 245 (|has| |#1| (-820 (-1070)))) (($ $ (-1070) (-701)) 244 (|has| |#1| (-820 (-1070)))) (($ $ (-578 (-1070)) (-578 (-701))) 243 (|has| |#1| (-820 (-1070)))) (($ $ (-1 |#1| |#1|) (-701)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-3778 (((-107) $ $) 76 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 75 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 6)) (-3773 (((-107) $ $) 77 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 74 (|has| |#1| (-777)))) (-3803 (($ $ |#1|) 156 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 158 (|has| |#1| (-37 (-375 (-501))))) (($ (-375 (-501)) $) 157 (|has| |#1| (-37 (-375 (-501))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1125 |#1|) (-1180) (-959)) (T -1125))
-((-3077 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1125 *4)) (-4 *4 (-959)) (-5 *2 (-1148 *4)))) (-1704 (*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-5 *2 (-1064 *3)))) (-3081 (*1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-959)) (-4 *1 (-1125 *3)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-2158 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-1554 (*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *3)))) (-3179 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *4)))) (-3643 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-2222 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-4094 (*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)))) (-2596 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-156)))) (-1749 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-156)))) (-2007 (*1 *2 *2 *2) (-12 (-5 *2 (-375 *1)) (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)))) (-3169 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)) (-5 *2 (-701)))) (-1855 (*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) (-3913 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) (-3913 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-375 *1)) (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)))) (-3470 (*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) (-2352 (*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3189 *3) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *3)))) (-1337 (*1 *2 *1 *1) (-12 (-4 *3 (-419)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1125 *3)))) (-2007 (*1 *2 *3 *2) (-12 (-5 *3 (-375 *1)) (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))))
-(-13 (-870 |t#1| (-701) (-986)) (-256 |t#1| |t#1|) (-256 $ $) (-206) (-204 |t#1|) (-10 -8 (-15 -3077 ((-1148 |t#1|) $ (-701))) (-15 -1704 ((-1064 |t#1|) $)) (-15 -3081 ($ (-1064 |t#1|))) (-15 -2917 ($ $ (-701))) (-15 -2158 ((-3 $ "failed") $ (-701))) (-15 -1554 ((-2 (|:| -3236 $) (|:| -1852 $)) $ $)) (-15 -3179 ((-2 (|:| -3236 $) (|:| -1852 $)) $ (-701))) (-15 -3643 ($ $ (-701))) (-15 -2222 ($ $ (-701))) (-15 -4094 ($ $ $)) (-15 -2596 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1046)) (-6 (-1046)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -2532 (|t#1| $)) (-15 -1749 (|t#1| $ $))) |noBranch|) (IF (|has| |t#1| (-508)) (PROGN (-6 (-256 (-375 $) (-375 $))) (-15 -2007 ((-375 $) (-375 $) (-375 $))) (-15 -3169 ((-701) $ $)) (-15 -1855 ($ $ $)) (-15 -3913 ((-3 $ "failed") $ $)) (-15 -3913 ((-3 (-375 $) "failed") (-375 $) $)) (-15 -3470 ($ $ $)) (-15 -2352 ((-2 (|:| -3189 |t#1|) (|:| -3236 $) (|:| -1852 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-419)) (-15 -1337 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |noBranch|) (IF (|has| |t#1| (-331)) (PROGN (-6 (-276)) (-6 -4163) (-15 -2007 (|t#1| (-375 $) |t#1|))) |noBranch|) (IF (|has| |t#1| (-37 (-375 (-501)))) (-15 -3188 ($ $)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-701)) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-556 (-490)) -12 (|has| (-986) (-556 (-490))) (|has| |#1| (-556 (-490)))) ((-556 (-810 (-346))) -12 (|has| (-986) (-556 (-810 (-346)))) (|has| |#1| (-556 (-810 (-346))))) ((-556 (-810 (-501))) -12 (|has| (-986) (-556 (-810 (-501)))) (|has| |#1| (-556 (-810 (-501))))) ((-204 |#1|) . T) ((-206) . T) ((-256 (-375 $) (-375 $)) |has| |#1| (-508)) ((-256 |#1| |#1|) . T) ((-256 $ $) . T) ((-260) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-278 $) . T) ((-294 |#1| (-701)) . T) ((-345 |#1|) . T) ((-380 |#1|) . T) ((-419) -1405 (|has| |#1| (-830)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-476 (-986) |#1|) . T) ((-476 (-986) $) . T) ((-476 $ $) . T) ((-508) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-577 (-501)) |has| |#1| (-577 (-501))) ((-577 |#1|) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331))) ((-657) . T) ((-777) |has| |#1| (-777)) ((-820 (-986)) . T) ((-820 (-1070)) |has| |#1| (-820 (-1070))) ((-806 (-346)) -12 (|has| (-986) (-806 (-346))) (|has| |#1| (-806 (-346)))) ((-806 (-501)) -12 (|has| (-986) (-806 (-501))) (|has| |#1| (-806 (-501)))) ((-870 |#1| (-701) (-986)) . T) ((-830) |has| |#1| (-830)) ((-841) |has| |#1| (-331)) ((-950 (-375 (-501))) |has| |#1| (-950 (-375 (-501)))) ((-950 (-501)) |has| |#1| (-950 (-501))) ((-950 (-986)) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-830)) (|has| |#1| (-508)) (|has| |#1| (-419)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1046) |has| |#1| (-1046)) ((-1108) |has| |#1| (-830)))
-((-1212 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|))) (-959) (-1125 |#1|) (-959) (-1125 |#3|)) (T -1126))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *2 (-1125 *6)) (-5 *1 (-1126 *5 *4 *6 *2)) (-4 *4 (-1125 *5)))))
-(-10 -7 (-15 -1212 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3800 (((-578 (-986)) $) 28)) (-3858 (($ $) 25)) (-3787 (($ |#2| |#3|) NIL) (($ $ (-986) |#3|) 22) (($ $ (-578 (-986)) (-578 |#3|)) 20)) (-3845 (($ $) 14)) (-3850 ((|#2| $) 12)) (-1201 ((|#3| $) 10)))
-(((-1127 |#1| |#2| |#3|) (-10 -8 (-15 -3800 ((-578 (-986)) |#1|)) (-15 -3787 (|#1| |#1| (-578 (-986)) (-578 |#3|))) (-15 -3787 (|#1| |#1| (-986) |#3|)) (-15 -3858 (|#1| |#1|)) (-15 -3787 (|#1| |#2| |#3|)) (-15 -1201 (|#3| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3850 (|#2| |#1|))) (-1128 |#2| |#3|) (-959) (-722)) (T -1127))
-NIL
-(-10 -8 (-15 -3800 ((-578 (-986)) |#1|)) (-15 -3787 (|#1| |#1| (-578 (-986)) (-578 |#3|))) (-15 -3787 (|#1| |#1| (-986) |#3|)) (-15 -3858 (|#1| |#1|)) (-15 -3787 (|#1| |#2| |#3|)) (-15 -1201 (|#3| |#1|)) (-15 -3845 (|#1| |#1|)) (-15 -3850 (|#2| |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ |#2|) 100) (($ $ |#2| |#2|) 99)) (-1395 (((-1048 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 107)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-3331 (((-107) $) 75)) (-3169 ((|#2| $) 102) ((|#2| $ |#2|) 101)) (-1355 (((-107) $) 31)) (-2917 (($ $ (-839)) 103)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| |#2|) 63) (($ $ (-986) |#2|) 78) (($ $ (-578 (-986)) (-578 |#2|)) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3718 (($ $ |#2|) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-2007 ((|#1| $ |#2|) 106) (($ $ $) 83 (|has| |#2| (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1201 ((|#2| $) 66)) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49 (|has| |#1| (-156)))) (-2495 ((|#1| $ |#2|) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-2391 ((|#1| $ |#2|) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501)))))))
-(((-1128 |#1| |#2|) (-1180) (-959) (-722)) (T -1128))
-((-1395 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-1048 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2007 (*1 *2 *1 *3) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-1070)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) (-3169 (*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-3169 (*1 *2 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-2805 (*1 *1 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-2805 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-2391 (*1 *2 *1 *3) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3691 (*2 (-1070)))) (-4 *2 (-959)))) (-3718 (*1 *1 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) (-3195 (*1 *2 *1 *3) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1048 *3)))))
-(-13 (-888 |t#1| |t#2| (-986)) (-10 -8 (-15 -1395 ((-1048 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2007 (|t#1| $ |t#2|)) (-15 -3484 ((-1070) $)) (-15 -2896 (|t#1| $)) (-15 -2917 ($ $ (-839))) (-15 -3169 (|t#2| $)) (-15 -3169 (|t#2| $ |t#2|)) (-15 -2805 ($ $ |t#2|)) (-15 -2805 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3691 (|t#1| (-1070)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2391 (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (-15 -3718 ($ $ |t#2|)) (IF (|has| |t#2| (-1012)) (-6 (-256 $ $)) |noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-206)) (IF (|has| |t#1| (-820 (-1070))) (-6 (-820 (-1070))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3195 ((-1048 |t#1|) $ |t#1|)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-256 $ $) |has| |#2| (-1012)) ((-260) |has| |#1| (-508)) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| |#2| (-986)) . T) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3676 ((|#2| |#2|) 12)) (-1559 (((-373 |#2|) |#2|) 14)) (-1369 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501)))) 30)))
-(((-1129 |#1| |#2|) (-10 -7 (-15 -1559 ((-373 |#2|) |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -1369 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501)))))) (-508) (-13 (-1125 |#1|) (-508) (-10 -8 (-15 -3664 ($ $ $))))) (T -1129))
-((-1369 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-501)))) (-4 *4 (-13 (-1125 *3) (-508) (-10 -8 (-15 -3664 ($ $ $))))) (-4 *3 (-508)) (-5 *1 (-1129 *3 *4)))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-13 (-1125 *3) (-508) (-10 -8 (-15 -3664 ($ $ $))))))) (-1559 (*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-1129 *4 *3)) (-4 *3 (-13 (-1125 *4) (-508) (-10 -8 (-15 -3664 ($ $ $))))))))
-(-10 -7 (-15 -1559 ((-373 |#2|) |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -1369 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-501))))))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 11)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) NIL) (($ $ (-375 (-501)) (-375 (-501))) NIL)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) NIL)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-1109 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1139 |#1| |#2| |#3|) "failed") $) 22)) (-3490 (((-1109 |#1| |#2| |#3|) $) NIL) (((-1139 |#1| |#2| |#3|) $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2169 (((-375 (-501)) $) 57)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3826 (($ (-375 (-501)) (-1109 |#1| |#2| |#3|)) NIL)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) NIL) (((-375 (-501)) $ (-375 (-501))) NIL)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) NIL) (($ $ (-375 (-501))) NIL)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) 29) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-1418 (((-1109 |#1| |#2| |#3|) $) 60)) (-3064 (((-3 (-1109 |#1| |#2| |#3|) "failed") $) NIL)) (-3822 (((-1109 |#1| |#2| |#3|) $) NIL)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) NIL (|has| |#1| (-331)))) (-3188 (($ $) 38 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) NIL (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 39 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) NIL)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) NIL) (($ $ $) NIL (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $ (-1145 |#2|)) 37)) (-1201 (((-375 (-501)) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) NIL)) (-3691 (((-786) $) 87) (($ (-501)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1109 |#1| |#2| |#3|)) 16) (($ (-1139 |#1| |#2| |#3|)) 17) (($ (-1145 |#2|)) 35) (($ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 12)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 31 T CONST)) (-1925 (($) 26 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 33)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-1130 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1109 |#1| |#2| |#3|)) (-950 (-1139 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1130))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))))
-(-13 (-1134 |#1| (-1109 |#1| |#2| |#3|)) (-950 (-1139 |#1| |#2| |#3|)) (-10 -8 (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|)))
-((-1212 (((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)) 23)))
-(((-1131 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1212 ((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|)))) (-959) (-959) (-1070) (-1070) |#1| |#2|) (T -1131))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-959)) (-4 *6 (-959)) (-14 *7 (-1070)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1070)))))
-(-10 -7 (-15 -1212 ((-1130 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1130 |#1| |#3| |#5|))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) 100) (($ $ (-375 (-501)) (-375 (-501))) 99)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) 107)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 164 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 165 (|has| |#1| (-331)))) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) 155 (|has| |#1| (-331)))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) 174)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3023 (($ $ $) 159 (|has| |#1| (-331)))) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 158 (|has| |#1| (-331)))) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 153 (|has| |#1| (-331)))) (-1628 (((-107) $) 166 (|has| |#1| (-331)))) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) 102) (((-375 (-501)) $ (-375 (-501))) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 103) (($ $ (-375 (-501))) 173)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 162 (|has| |#1| (-331)))) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-375 (-501))) 63) (($ $ (-986) (-375 (-501))) 78) (($ $ (-578 (-986)) (-578 (-375 (-501)))) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-1697 (($ (-578 $)) 151 (|has| |#1| (-331))) (($ $ $) 150 (|has| |#1| (-331)))) (-3460 (((-1053) $) 9)) (-3833 (($ $) 167 (|has| |#1| (-331)))) (-3188 (($ $) 172 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 171 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 152 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 149 (|has| |#1| (-331))) (($ $ $) 148 (|has| |#1| (-331)))) (-3739 (((-373 $) $) 163 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 161 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 160 (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 154 (|has| |#1| (-331)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) 156 (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) 106) (($ $ $) 83 (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 157 (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-1201 (((-375 (-501)) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 49 (|has| |#1| (-156))) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 168 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331))) (($ $ $) 170 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 169 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501)))))))
-(((-1132 |#1|) (-1180) (-959)) (T -1132))
-((-2973 (*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| *4)))) (-4 *4 (-959)) (-4 *1 (-1132 *4)))) (-2917 (*1 *1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-1132 *3)) (-4 *3 (-959)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) (-3188 (*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1132 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1132 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501)))))))))
-(-13 (-1128 |t#1| (-375 (-501))) (-10 -8 (-15 -2973 ($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |t#1|))))) (-15 -2917 ($ $ (-375 (-501)))) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (IF (|has| |t#1| (-15 -3188 (|t#1| |t#1| (-1070)))) (IF (|has| |t#1| (-15 -3800 ((-578 (-1070)) |t#1|))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1090)) (IF (|has| |t#1| (-879)) (IF (|has| |t#1| (-29 (-501))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) |noBranch|) (-6 (-916)) (-6 (-1090))) |noBranch|) (IF (|has| |t#1| (-331)) (-6 (-331)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-375 (-501))) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) ((-216) |has| |#1| (-331)) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 $ $) |has| (-375 (-501)) (-1012)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-331) |has| |#1| (-331)) ((-419) |has| |#1| (-331)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| (-375 (-501)) (-986)) . T) ((-841) |has| |#1| (-331)) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-964 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1108) |has| |#1| (-331)) ((-1128 |#1| (-375 (-501))) . T))
-((-3292 (((-107) $) 12)) (-3765 (((-3 |#3| "failed") $) 17)) (-3490 ((|#3| $) 14)))
-(((-1133 |#1| |#2| |#3|) (-10 -8 (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3292 ((-107) |#1|))) (-1134 |#2| |#3|) (-959) (-1111 |#2|)) (T -1133))
-NIL
-(-10 -8 (-15 -3490 (|#3| |#1|)) (-15 -3765 ((-3 |#3| "failed") |#1|)) (-15 -3292 ((-107) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) 100) (($ $ (-375 (-501)) (-375 (-501))) 99)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) 107)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 164 (|has| |#1| (-331)))) (-1559 (((-373 $) $) 165 (|has| |#1| (-331)))) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) 155 (|has| |#1| (-331)))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) 174)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#2| "failed") $) 185)) (-3490 ((|#2| $) 184)) (-3023 (($ $ $) 159 (|has| |#1| (-331)))) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-2169 (((-375 (-501)) $) 182)) (-3034 (($ $ $) 158 (|has| |#1| (-331)))) (-3826 (($ (-375 (-501)) |#2|) 183)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 153 (|has| |#1| (-331)))) (-1628 (((-107) $) 166 (|has| |#1| (-331)))) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) 102) (((-375 (-501)) $ (-375 (-501))) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 103) (($ $ (-375 (-501))) 173)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 162 (|has| |#1| (-331)))) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-375 (-501))) 63) (($ $ (-986) (-375 (-501))) 78) (($ $ (-578 (-986)) (-578 (-375 (-501)))) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-1697 (($ (-578 $)) 151 (|has| |#1| (-331))) (($ $ $) 150 (|has| |#1| (-331)))) (-1418 ((|#2| $) 181)) (-3064 (((-3 |#2| "failed") $) 179)) (-3822 ((|#2| $) 180)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 167 (|has| |#1| (-331)))) (-3188 (($ $) 172 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 171 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 152 (|has| |#1| (-331)))) (-3664 (($ (-578 $)) 149 (|has| |#1| (-331))) (($ $ $) 148 (|has| |#1| (-331)))) (-3739 (((-373 $) $) 163 (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 161 (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 160 (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 154 (|has| |#1| (-331)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) 156 (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) 106) (($ $ $) 83 (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 157 (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-1201 (((-375 (-501)) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 49 (|has| |#1| (-156))) (($ |#2|) 186) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 168 (|has| |#1| (-331)))) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331))) (($ $ $) 170 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 169 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501)))))))
-(((-1134 |#1| |#2|) (-1180) (-959) (-1111 |t#1|)) (T -1134))
-((-1201 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1111 *3)) (-5 *2 (-375 (-501))))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-1134 *3 *2)) (-4 *2 (-1111 *3)))) (-3826 (*1 *1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-4 *4 (-959)) (-4 *1 (-1134 *4 *3)) (-4 *3 (-1111 *4)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1111 *3)) (-5 *2 (-375 (-501))))) (-1418 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3)))) (-3064 (*1 *2 *1) (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3)))))
-(-13 (-1132 |t#1|) (-950 |t#2|) (-10 -8 (-15 -3826 ($ (-375 (-501)) |t#2|)) (-15 -2169 ((-375 (-501)) $)) (-15 -1418 (|t#2| $)) (-15 -1201 ((-375 (-501)) $)) (-15 -3691 ($ |t#2|)) (-15 -3822 (|t#2| $)) (-15 -3064 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-375 (-501))) . T) ((-25) . T) ((-37 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) ((-216) |has| |#1| (-331)) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 $ $) |has| (-375 (-501)) (-1012)) ((-260) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-276) |has| |#1| (-331)) ((-331) |has| |#1| (-331)) ((-419) |has| |#1| (-331)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-508) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-583 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331))) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| (-375 (-501)) (-986)) . T) ((-841) |has| |#1| (-331)) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-950 |#2|) . T) ((-964 (-375 (-501))) -1405 (|has| |#1| (-331)) (|has| |#1| (-37 (-375 (-501))))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-331)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1108) |has| |#1| (-331)) ((-1128 |#1| (-375 (-501))) . T) ((-1132 |#1|) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 96)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) NIL (|has| |#1| (-508)))) (-2805 (($ $ (-375 (-501))) 106) (($ $ (-375 (-501)) (-375 (-501))) 108)) (-1395 (((-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|))) $) 51)) (-3978 (($ $) 179 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 155 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3676 (($ $) NIL (|has| |#1| (-331)))) (-1559 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2781 (((-107) $ $) NIL (|has| |#1| (-331)))) (-3970 (($ $) 175 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 151 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-701) (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#1|)))) 61)) (-3984 (($ $) 183 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 159 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL)) (-3490 ((|#2| $) NIL)) (-3023 (($ $ $) NIL (|has| |#1| (-331)))) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) 79)) (-2169 (((-375 (-501)) $) 12)) (-3034 (($ $ $) NIL (|has| |#1| (-331)))) (-3826 (($ (-375 (-501)) |#2|) 10)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) NIL (|has| |#1| (-331)))) (-1628 (((-107) $) NIL (|has| |#1| (-331)))) (-3331 (((-107) $) 68)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-375 (-501)) $) 103) (((-375 (-501)) $ (-375 (-501))) 104)) (-1355 (((-107) $) NIL)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 120) (($ $ (-375 (-501))) 118)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-375 (-501))) 31) (($ $ (-986) (-375 (-501))) NIL) (($ $ (-578 (-986)) (-578 (-375 (-501)))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 115)) (-1635 (($ $) 149 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-1697 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-1418 ((|#2| $) 11)) (-3064 (((-3 |#2| "failed") $) 41)) (-3822 ((|#2| $) 42)) (-3460 (((-1053) $) NIL)) (-3833 (($ $) 93 (|has| |#1| (-331)))) (-3188 (($ $) 135 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 140 (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090)))))) (-3708 (((-1018) $) NIL)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) NIL (|has| |#1| (-331)))) (-3664 (($ (-578 $)) NIL (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-331)))) (-3739 (((-373 $) $) NIL (|has| |#1| (-331)))) (-3776 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-331))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) NIL (|has| |#1| (-331)))) (-3718 (($ $ (-375 (-501))) 112)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-2648 (((-3 (-578 $) "failed") (-578 $) $) NIL (|has| |#1| (-331)))) (-1989 (($ $) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))))) (-1864 (((-701) $) NIL (|has| |#1| (-331)))) (-2007 ((|#1| $ (-375 (-501))) 100) (($ $ $) 86 (|has| (-375 (-501)) (-1012)))) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) NIL (|has| |#1| (-331)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) 127 (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-1201 (((-375 (-501)) $) 16)) (-3991 (($ $) 185 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 161 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 181 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 157 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 177 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 153 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 110)) (-3691 (((-786) $) NIL) (($ (-501)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-375 (-501))) 128 (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508)))) (-2495 ((|#1| $ (-375 (-501))) 99)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) 117)) (-2896 ((|#1| $) 98)) (-4003 (($ $) 191 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 167 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) 187 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 163 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 195 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 171 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-375 (-501))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-375 (-501))))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 197 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 173 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 193 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 169 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 189 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 165 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ (-501)) NIL (|has| |#1| (-331)))) (-1850 (($) 21 T CONST)) (-1925 (($) 17 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-375 (-501)) |#1|))))) (-3751 (((-107) $ $) 66)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331))) (($ $ $) 92 (|has| |#1| (-331)))) (-3797 (($ $) 131) (($ $ $) 72)) (-3790 (($ $ $) 70)) (** (($ $ (-839)) NIL) (($ $ (-701)) 76) (($ $ (-501)) 144 (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 145 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-1135 |#1| |#2|) (-1134 |#1| |#2|) (-959) (-1111 |#1|)) (T -1135))
-NIL
-(-1134 |#1| |#2|)
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 32)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL)) (-2865 (($ $) NIL)) (-1639 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 (-501) "failed") $) NIL (|has| (-1130 |#2| |#3| |#4|) (-950 (-501)))) (((-3 (-375 (-501)) "failed") $) NIL (|has| (-1130 |#2| |#3| |#4|) (-950 (-375 (-501))))) (((-3 (-1130 |#2| |#3| |#4|) "failed") $) 20)) (-3490 (((-501) $) NIL (|has| (-1130 |#2| |#3| |#4|) (-950 (-501)))) (((-375 (-501)) $) NIL (|has| (-1130 |#2| |#3| |#4|) (-950 (-375 (-501))))) (((-1130 |#2| |#3| |#4|) $) NIL)) (-3858 (($ $) 33)) (-2174 (((-3 $ "failed") $) 25)) (-3533 (($ $) NIL (|has| (-1130 |#2| |#3| |#4|) (-419)))) (-3503 (($ $ (-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|) $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) 11)) (-2706 (((-107) $) NIL)) (-3787 (($ (-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) 23)) (-2285 (((-287 |#2| |#3| |#4|) $) NIL)) (-3515 (($ (-1 (-287 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) $) NIL)) (-1212 (($ (-1 (-1130 |#2| |#3| |#4|) (-1130 |#2| |#3| |#4|)) $) NIL)) (-2533 (((-3 (-769 |#2|) "failed") $) 72)) (-3845 (($ $) NIL)) (-3850 (((-1130 |#2| |#3| |#4|) $) 18)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3837 (((-107) $) NIL)) (-3841 (((-1130 |#2| |#3| |#4|) $) NIL)) (-3694 (((-3 $ "failed") $ (-1130 |#2| |#3| |#4|)) NIL (|has| (-1130 |#2| |#3| |#4|) (-508))) (((-3 $ "failed") $ $) NIL)) (-2427 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 |#2| |#3| |#4|)) (|:| |%expon| (-287 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#2|)))))) (|:| |%type| (-1053))) "failed") $) 55)) (-1201 (((-287 |#2| |#3| |#4|) $) 14)) (-1734 (((-1130 |#2| |#3| |#4|) $) NIL (|has| (-1130 |#2| |#3| |#4|) (-419)))) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ (-1130 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-375 (-501))) NIL (-1405 (|has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501)))) (|has| (-1130 |#2| |#3| |#4|) (-950 (-375 (-501))))))) (-1303 (((-578 (-1130 |#2| |#3| |#4|)) $) NIL)) (-2495 (((-1130 |#2| |#3| |#4|) $ (-287 |#2| |#3| |#4|)) NIL)) (-1274 (((-3 $ "failed") $) NIL (|has| (-1130 |#2| |#3| |#4|) (-132)))) (-3965 (((-701)) NIL)) (-3771 (($ $ $ (-701)) NIL (|has| (-1130 |#2| |#3| |#4|) (-156)))) (-2442 (((-107) $ $) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 60 T CONST)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ (-1130 |#2| |#3| |#4|)) NIL (|has| (-1130 |#2| |#3| |#4|) (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ (-1130 |#2| |#3| |#4|)) NIL) (($ (-1130 |#2| |#3| |#4|) $) NIL) (($ (-375 (-501)) $) NIL (|has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| (-1130 |#2| |#3| |#4|) (-37 (-375 (-501)))))))
-(((-1136 |#1| |#2| |#3| |#4|) (-13 (-294 (-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) (-508) (-10 -8 (-15 -2533 ((-3 (-769 |#2|) "failed") $)) (-15 -2427 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 |#2| |#3| |#4|)) (|:| |%expon| (-287 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#2|)))))) (|:| |%type| (-1053))) "failed") $)))) (-13 (-777) (-950 (-501)) (-577 (-501)) (-419)) (-13 (-27) (-1090) (-389 |#1|)) (-1070) |#2|) (T -1136))
-((-2533 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-769 *4)) (-5 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4))) (-2427 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 *4 *5 *6)) (|:| |%expon| (-287 *4 *5 *6)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| *4)))))) (|:| |%type| (-1053)))) (-5 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4))))
-(-13 (-294 (-1130 |#2| |#3| |#4|) (-287 |#2| |#3| |#4|)) (-508) (-10 -8 (-15 -2533 ((-3 (-769 |#2|) "failed") $)) (-15 -2427 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 |#2| |#3| |#4|)) (|:| |%expon| (-287 |#2| |#3| |#4|)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| |#2|)))))) (|:| |%type| (-1053))) "failed") $))))
-((-2150 ((|#2| $) 28)) (-2786 ((|#2| $) 18)) (-1511 (($ $) 35)) (-1306 (($ $ (-501)) 63)) (-2997 (((-107) $ (-701)) 32)) (-1594 ((|#2| $ |#2|) 60)) (-2193 ((|#2| $ |#2|) 58)) (-3754 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-1378 (($ $ (-578 $)) 59)) (-1564 ((|#2| $) 17)) (-1199 (($ $) NIL) (($ $ (-701)) 41)) (-3604 (((-578 $) $) 25)) (-3201 (((-107) $ $) 49)) (-3379 (((-107) $ (-701)) 31)) (-3155 (((-107) $ (-701)) 30)) (-2341 (((-107) $) 27)) (-1383 ((|#2| $) 23) (($ $ (-701)) 45)) (-2007 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2622 (((-107) $) 21)) (-1455 (($ $) 38)) (-3873 (($ $) 64)) (-3278 (((-701) $) 40)) (-2787 (($ $) 39)) (-3934 (($ $ $) 57) (($ |#2| $) NIL)) (-1961 (((-578 $) $) 26)) (-3751 (((-107) $ $) 47)) (-3581 (((-701) $) 34)))
-(((-1137 |#1| |#2|) (-10 -8 (-15 -1306 (|#1| |#1| (-501))) (-15 -3754 (|#2| |#1| "last" |#2|)) (-15 -2193 (|#2| |#1| |#2|)) (-15 -3754 (|#1| |#1| "rest" |#1|)) (-15 -3754 (|#2| |#1| "first" |#2|)) (-15 -3873 (|#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -3278 ((-701) |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2786 (|#2| |#1|)) (-15 -1564 (|#2| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1383 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "last")) (-15 -1383 (|#2| |#1|)) (-15 -1199 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| "rest")) (-15 -1199 (|#1| |#1|)) (-15 -2007 (|#2| |#1| "first")) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -1594 (|#2| |#1| |#2|)) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -1378 (|#1| |#1| (-578 |#1|))) (-15 -3201 ((-107) |#1| |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701)))) (-1138 |#2|) (-1104)) (T -1137))
-NIL
-(-10 -8 (-15 -1306 (|#1| |#1| (-501))) (-15 -3754 (|#2| |#1| "last" |#2|)) (-15 -2193 (|#2| |#1| |#2|)) (-15 -3754 (|#1| |#1| "rest" |#1|)) (-15 -3754 (|#2| |#1| "first" |#2|)) (-15 -3873 (|#1| |#1|)) (-15 -1455 (|#1| |#1|)) (-15 -3278 ((-701) |#1|)) (-15 -2787 (|#1| |#1|)) (-15 -2786 (|#2| |#1|)) (-15 -1564 (|#2| |#1|)) (-15 -1511 (|#1| |#1|)) (-15 -1383 (|#1| |#1| (-701))) (-15 -2007 (|#2| |#1| "last")) (-15 -1383 (|#2| |#1|)) (-15 -1199 (|#1| |#1| (-701))) (-15 -2007 (|#1| |#1| "rest")) (-15 -1199 (|#1| |#1|)) (-15 -2007 (|#2| |#1| "first")) (-15 -3934 (|#1| |#2| |#1|)) (-15 -3934 (|#1| |#1| |#1|)) (-15 -1594 (|#2| |#1| |#2|)) (-15 -3754 (|#2| |#1| "value" |#2|)) (-15 -1378 (|#1| |#1| (-578 |#1|))) (-15 -3201 ((-107) |#1| |#1|)) (-15 -2622 ((-107) |#1|)) (-15 -2007 (|#2| |#1| "value")) (-15 -2150 (|#2| |#1|)) (-15 -2341 ((-107) |#1|)) (-15 -3604 ((-578 |#1|) |#1|)) (-15 -1961 ((-578 |#1|) |#1|)) (-15 -3751 ((-107) |#1| |#1|)) (-15 -3581 ((-701) |#1|)) (-15 -2997 ((-107) |#1| (-701))) (-15 -3379 ((-107) |#1| (-701))) (-15 -3155 ((-107) |#1| (-701))))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2150 ((|#1| $) 48)) (-2786 ((|#1| $) 65)) (-1511 (($ $) 67)) (-1306 (($ $ (-501)) 52 (|has| $ (-6 -4168)))) (-2997 (((-107) $ (-701)) 8)) (-1594 ((|#1| $ |#1|) 39 (|has| $ (-6 -4168)))) (-3319 (($ $ $) 56 (|has| $ (-6 -4168)))) (-2193 ((|#1| $ |#1|) 54 (|has| $ (-6 -4168)))) (-2535 ((|#1| $ |#1|) 58 (|has| $ (-6 -4168)))) (-3754 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4168))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4168))) (($ $ "rest" $) 55 (|has| $ (-6 -4168))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4168)))) (-1378 (($ $ (-578 $)) 41 (|has| $ (-6 -4168)))) (-1564 ((|#1| $) 66)) (-2540 (($) 7 T CONST)) (-1199 (($ $) 73) (($ $ (-701)) 71)) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-3604 (((-578 $) $) 50)) (-3201 (((-107) $ $) 42 (|has| |#1| (-1001)))) (-3379 (((-107) $ (-701)) 9)) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35)) (-3155 (((-107) $ (-701)) 10)) (-3386 (((-578 |#1|) $) 45)) (-2341 (((-107) $) 49)) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1383 ((|#1| $) 70) (($ $ (-701)) 68)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 76) (($ $ (-701)) 74)) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-1932 (((-501) $ $) 44)) (-2622 (((-107) $) 46)) (-1455 (($ $) 62)) (-3873 (($ $) 59 (|has| $ (-6 -4168)))) (-3278 (((-701) $) 63)) (-2787 (($ $) 64)) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-3764 (($ $) 13)) (-1186 (($ $ $) 61 (|has| $ (-6 -4168))) (($ $ |#1|) 60 (|has| $ (-6 -4168)))) (-3934 (($ $ $) 78) (($ |#1| $) 77)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1961 (((-578 $) $) 51)) (-2970 (((-107) $ $) 43 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-1138 |#1|) (-1180) (-1104)) (T -1138))
-((-3934 (*1 *1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3934 (*1 *1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1190 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1190 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-1199 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2007 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-1199 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-1383 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1383 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-1511 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2787 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) (-1455 (*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1186 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1186 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3873 (*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-2535 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3319 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3754 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) (-2193 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-3754 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) (-1306 (*1 *1 *1 *2) (-12 (-5 *2 (-501)) (|has| *1 (-6 -4168)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))))
-(-13 (-924 |t#1|) (-10 -8 (-15 -3934 ($ $ $)) (-15 -3934 ($ |t#1| $)) (-15 -1190 (|t#1| $)) (-15 -2007 (|t#1| $ "first")) (-15 -1190 ($ $ (-701))) (-15 -1199 ($ $)) (-15 -2007 ($ $ "rest")) (-15 -1199 ($ $ (-701))) (-15 -1383 (|t#1| $)) (-15 -2007 (|t#1| $ "last")) (-15 -1383 ($ $ (-701))) (-15 -1511 ($ $)) (-15 -1564 (|t#1| $)) (-15 -2786 (|t#1| $)) (-15 -2787 ($ $)) (-15 -3278 ((-701) $)) (-15 -1455 ($ $)) (IF (|has| $ (-6 -4168)) (PROGN (-15 -1186 ($ $ $)) (-15 -1186 ($ $ |t#1|)) (-15 -3873 ($ $)) (-15 -2535 (|t#1| $ |t#1|)) (-15 -3754 (|t#1| $ "first" |t#1|)) (-15 -3319 ($ $ $)) (-15 -3754 ($ $ "rest" $)) (-15 -2193 (|t#1| $ |t#1|)) (-15 -3754 (|t#1| $ "last" |t#1|)) (-15 -1306 ($ $ (-501)))) |noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1001)) ((-555 (-786)) |has| |#1| (-1001)) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-454 |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-924 |#1|) . T) ((-1001) |has| |#1| (-1001)) ((-1104) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3800 (((-578 (-986)) $) NIL)) (-3484 (((-1070) $) 86)) (-1562 (((-1118 |#2| |#1|) $ (-701)) 73)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) NIL (|has| |#1| (-508)))) (-2865 (($ $) NIL (|has| |#1| (-508)))) (-1639 (((-107) $) 135 (|has| |#1| (-508)))) (-2805 (($ $ (-701)) 120) (($ $ (-701) (-701)) 122)) (-1395 (((-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|))) $) 42)) (-3978 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) NIL)) (-3743 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|)))) 53) (($ (-1048 |#1|)) NIL)) (-3984 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) NIL T CONST)) (-3088 (($ $) 126)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-1338 (($ $) 133)) (-3430 (((-866 |#1|) $ (-701)) 63) (((-866 |#1|) $ (-701) (-701)) 65)) (-3331 (((-107) $) NIL)) (-2003 (($) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $) NIL) (((-701) $ (-701)) NIL)) (-1355 (((-107) $) NIL)) (-1247 (($ $) 110)) (-1342 (($ $ (-501)) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3635 (($ (-501) (-501) $) 128)) (-2917 (($ $ (-839)) 132)) (-3608 (($ (-1 |#1| (-501)) $) 104)) (-2706 (((-107) $) NIL)) (-3787 (($ |#1| (-701)) 15) (($ $ (-986) (-701)) NIL) (($ $ (-578 (-986)) (-578 (-701))) NIL)) (-1212 (($ (-1 |#1| |#1|) $) 92)) (-1635 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-4107 (($ $) 108)) (-1942 (($ $) 106)) (-3914 (($ (-501) (-501) $) 130)) (-3188 (($ $) 143 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 149 (-1405 (-12 (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-37 (-375 (-501)))) (|has| |#1| (-879)) (|has| |#1| (-1090))))) (($ $ (-1145 |#2|)) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3708 (((-1018) $) NIL)) (-2059 (($ $ (-501) (-501)) 114)) (-3718 (($ $ (-701)) 116)) (-3694 (((-3 $ "failed") $ $) NIL (|has| |#1| (-508)))) (-1989 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2159 (($ $) 112)) (-3195 (((-1048 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-701)))))) (-2007 ((|#1| $ (-701)) 89) (($ $ $) 124 (|has| (-701) (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) 101 (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $ (-1145 |#2|)) 97)) (-1201 (((-701) $) NIL)) (-3991 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 118)) (-3691 (((-786) $) NIL) (($ (-501)) 24) (($ (-375 (-501))) 141 (|has| |#1| (-37 (-375 (-501))))) (($ $) NIL (|has| |#1| (-508))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1118 |#2| |#1|)) 79) (($ (-1145 |#2|)) 20)) (-1303 (((-1048 |#1|) $) NIL)) (-2495 ((|#1| $ (-701)) 88)) (-1274 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3965 (((-701)) NIL)) (-2896 ((|#1| $) 87)) (-4003 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) NIL (|has| |#1| (-508)))) (-3995 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-701)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-701)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) NIL (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 17 T CONST)) (-1925 (($) 13 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070) (-701)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-578 (-1070))) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-1070)) NIL (-12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070))))) (($ $ (-701)) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (-3751 (((-107) $ $) NIL)) (-3803 (($ $ |#1|) NIL (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) 100)) (-3790 (($ $ $) 18)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ |#1|) 138 (|has| |#1| (-331))) (($ $ $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (-375 (-501)) $) NIL (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) NIL (|has| |#1| (-37 (-375 (-501)))))))
-(((-1139 |#1| |#2| |#3|) (-13 (-1142 |#1|) (-10 -8 (-15 -3691 ($ (-1118 |#2| |#1|))) (-15 -1562 ((-1118 |#2| |#1|) $ (-701))) (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (-15 -1942 ($ $)) (-15 -4107 ($ $)) (-15 -1247 ($ $)) (-15 -2159 ($ $)) (-15 -2059 ($ $ (-501) (-501))) (-15 -3088 ($ $)) (-15 -3635 ($ (-501) (-501) $)) (-15 -3914 ($ (-501) (-501) $)) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|))) (-959) (-1070) |#1|) (T -1139))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-1118 *4 *3)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-1139 *3 *4 *5)))) (-1562 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1118 *5 *4)) (-5 *1 (-1139 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-1070)) (-14 *6 *4))) (-3691 (*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-2596 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) (-1942 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-4107 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-1247 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-2159 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-2059 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3))) (-3088 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))) (-3635 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3))) (-3914 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))))
-(-13 (-1142 |#1|) (-10 -8 (-15 -3691 ($ (-1118 |#2| |#1|))) (-15 -1562 ((-1118 |#2| |#1|) $ (-701))) (-15 -3691 ($ (-1145 |#2|))) (-15 -2596 ($ $ (-1145 |#2|))) (-15 -1942 ($ $)) (-15 -4107 ($ $)) (-15 -1247 ($ $)) (-15 -2159 ($ $)) (-15 -2059 ($ $ (-501) (-501))) (-15 -3088 ($ $)) (-15 -3635 ($ (-501) (-501) $)) (-15 -3914 ($ (-501) (-501) $)) (IF (|has| |#1| (-37 (-375 (-501)))) (-15 -3188 ($ $ (-1145 |#2|))) |noBranch|)))
-((-1212 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1212 (|#4| (-1 |#2| |#1|) |#3|))) (-959) (-959) (-1142 |#1|) (-1142 |#2|)) (T -1140))
-((-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *2 (-1142 *6)) (-5 *1 (-1140 *5 *6 *4 *2)) (-4 *4 (-1142 *5)))))
-(-10 -7 (-15 -1212 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3292 (((-107) $) 15)) (-3978 (($ $) 90)) (-3937 (($ $) 66)) (-3970 (($ $) 86)) (-3929 (($ $) 62)) (-3984 (($ $) 94)) (-3945 (($ $) 70)) (-1635 (($ $) 60)) (-1989 (($ $) 58)) (-3991 (($ $) 96)) (-3949 (($ $) 72)) (-3981 (($ $) 92)) (-3940 (($ $) 68)) (-3975 (($ $) 88)) (-3933 (($ $) 64)) (-3691 (((-786) $) 46) (($ (-501)) NIL) (($ (-375 (-501))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4003 (($ $) 102)) (-3958 (($ $) 78)) (-3995 (($ $) 98)) (-3952 (($ $) 74)) (-4013 (($ $) 106)) (-3964 (($ $) 82)) (-3550 (($ $) 108)) (-3967 (($ $) 84)) (-4008 (($ $) 104)) (-3961 (($ $) 80)) (-3999 (($ $) 100)) (-3955 (($ $) 76)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (-375 (-501))) 56)))
-(((-1141 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -3937 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3967 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839))) (-15 -3292 ((-107) |#1|)) (-15 -3691 ((-786) |#1|))) (-1142 |#2|) (-959)) (T -1141))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-375 (-501)))) (-15 -3937 (|#1| |#1|)) (-15 -3929 (|#1| |#1|)) (-15 -3945 (|#1| |#1|)) (-15 -3949 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -3933 (|#1| |#1|)) (-15 -3955 (|#1| |#1|)) (-15 -3961 (|#1| |#1|)) (-15 -3967 (|#1| |#1|)) (-15 -3964 (|#1| |#1|)) (-15 -3952 (|#1| |#1|)) (-15 -3958 (|#1| |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3981 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -3984 (|#1| |#1|)) (-15 -3970 (|#1| |#1|)) (-15 -3978 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -4008 (|#1| |#1|)) (-15 -3550 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3995 (|#1| |#1|)) (-15 -4003 (|#1| |#1|)) (-15 -1635 (|#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3691 (|#1| |#2|)) (-15 -3691 (|#1| |#1|)) (-15 -3691 (|#1| (-375 (-501)))) (-15 -3691 (|#1| (-501))) (-15 ** (|#1| |#1| (-701))) (-15 ** (|#1| |#1| (-839))) (-15 -3292 ((-107) |#1|)) (-15 -3691 ((-786) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3800 (((-578 (-986)) $) 76)) (-3484 (((-1070) $) 105)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 53 (|has| |#1| (-508)))) (-2865 (($ $) 54 (|has| |#1| (-508)))) (-1639 (((-107) $) 56 (|has| |#1| (-508)))) (-2805 (($ $ (-701)) 100) (($ $ (-701) (-701)) 99)) (-1395 (((-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|))) $) 107)) (-3978 (($ $) 137 (|has| |#1| (-37 (-375 (-501)))))) (-3937 (($ $) 120 (|has| |#1| (-37 (-375 (-501)))))) (-3177 (((-3 $ "failed") $ $) 19)) (-3743 (($ $) 119 (|has| |#1| (-37 (-375 (-501)))))) (-3970 (($ $) 136 (|has| |#1| (-37 (-375 (-501)))))) (-3929 (($ $) 121 (|has| |#1| (-37 (-375 (-501)))))) (-2973 (($ (-1048 (-2 (|:| |k| (-701)) (|:| |c| |#1|)))) 157) (($ (-1048 |#1|)) 155)) (-3984 (($ $) 135 (|has| |#1| (-37 (-375 (-501)))))) (-3945 (($ $) 122 (|has| |#1| (-37 (-375 (-501)))))) (-2540 (($) 17 T CONST)) (-3858 (($ $) 62)) (-2174 (((-3 $ "failed") $) 34)) (-1338 (($ $) 154)) (-3430 (((-866 |#1|) $ (-701)) 152) (((-866 |#1|) $ (-701) (-701)) 151)) (-3331 (((-107) $) 75)) (-2003 (($) 147 (|has| |#1| (-37 (-375 (-501)))))) (-3169 (((-701) $) 102) (((-701) $ (-701)) 101)) (-1355 (((-107) $) 31)) (-1342 (($ $ (-501)) 118 (|has| |#1| (-37 (-375 (-501)))))) (-2917 (($ $ (-839)) 103)) (-3608 (($ (-1 |#1| (-501)) $) 153)) (-2706 (((-107) $) 64)) (-3787 (($ |#1| (-701)) 63) (($ $ (-986) (-701)) 78) (($ $ (-578 (-986)) (-578 (-701))) 77)) (-1212 (($ (-1 |#1| |#1|) $) 65)) (-1635 (($ $) 144 (|has| |#1| (-37 (-375 (-501)))))) (-3845 (($ $) 67)) (-3850 ((|#1| $) 68)) (-3460 (((-1053) $) 9)) (-3188 (($ $) 149 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-1070)) 148 (-1405 (-12 (|has| |#1| (-29 (-501))) (|has| |#1| (-879)) (|has| |#1| (-1090)) (|has| |#1| (-37 (-375 (-501))))) (-12 (|has| |#1| (-15 -3800 ((-578 (-1070)) |#1|))) (|has| |#1| (-15 -3188 (|#1| |#1| (-1070)))) (|has| |#1| (-37 (-375 (-501)))))))) (-3708 (((-1018) $) 10)) (-3718 (($ $ (-701)) 97)) (-3694 (((-3 $ "failed") $ $) 52 (|has| |#1| (-508)))) (-1989 (($ $) 145 (|has| |#1| (-37 (-375 (-501)))))) (-3195 (((-1048 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-701)))))) (-2007 ((|#1| $ (-701)) 106) (($ $ $) 83 (|has| (-701) (-1012)))) (-2596 (($ $ (-578 (-1070)) (-578 (-701))) 91 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-1070) (-701)) 90 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-578 (-1070))) 89 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-1070)) 88 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-701)) 86 (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) 84 (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (-1201 (((-701) $) 66)) (-3991 (($ $) 134 (|has| |#1| (-37 (-375 (-501)))))) (-3949 (($ $) 123 (|has| |#1| (-37 (-375 (-501)))))) (-3981 (($ $) 133 (|has| |#1| (-37 (-375 (-501)))))) (-3940 (($ $) 124 (|has| |#1| (-37 (-375 (-501)))))) (-3975 (($ $) 132 (|has| |#1| (-37 (-375 (-501)))))) (-3933 (($ $) 125 (|has| |#1| (-37 (-375 (-501)))))) (-1267 (($ $) 74)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ (-375 (-501))) 59 (|has| |#1| (-37 (-375 (-501))))) (($ $) 51 (|has| |#1| (-508))) (($ |#1|) 49 (|has| |#1| (-156)))) (-1303 (((-1048 |#1|) $) 156)) (-2495 ((|#1| $ (-701)) 61)) (-1274 (((-3 $ "failed") $) 50 (|has| |#1| (-132)))) (-3965 (((-701)) 29)) (-2896 ((|#1| $) 104)) (-4003 (($ $) 143 (|has| |#1| (-37 (-375 (-501)))))) (-3958 (($ $) 131 (|has| |#1| (-37 (-375 (-501)))))) (-2442 (((-107) $ $) 55 (|has| |#1| (-508)))) (-3995 (($ $) 142 (|has| |#1| (-37 (-375 (-501)))))) (-3952 (($ $) 130 (|has| |#1| (-37 (-375 (-501)))))) (-4013 (($ $) 141 (|has| |#1| (-37 (-375 (-501)))))) (-3964 (($ $) 129 (|has| |#1| (-37 (-375 (-501)))))) (-2391 ((|#1| $ (-701)) 98 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-701)))) (|has| |#1| (-15 -3691 (|#1| (-1070))))))) (-3550 (($ $) 140 (|has| |#1| (-37 (-375 (-501)))))) (-3967 (($ $) 128 (|has| |#1| (-37 (-375 (-501)))))) (-4008 (($ $) 139 (|has| |#1| (-37 (-375 (-501)))))) (-3961 (($ $) 127 (|has| |#1| (-37 (-375 (-501)))))) (-3999 (($ $) 138 (|has| |#1| (-37 (-375 (-501)))))) (-3955 (($ $) 126 (|has| |#1| (-37 (-375 (-501)))))) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3584 (($ $ (-578 (-1070)) (-578 (-701))) 95 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-1070) (-701)) 94 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-578 (-1070))) 93 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-1070)) 92 (-12 (|has| |#1| (-820 (-1070))) (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (($ $ (-701)) 87 (|has| |#1| (-15 * (|#1| (-701) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-701) |#1|))))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 60 (|has| |#1| (-331)))) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ |#1|) 150 (|has| |#1| (-331))) (($ $ $) 146 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 117 (|has| |#1| (-37 (-375 (-501)))))) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 70) (($ |#1| $) 69) (($ (-375 (-501)) $) 58 (|has| |#1| (-37 (-375 (-501))))) (($ $ (-375 (-501))) 57 (|has| |#1| (-37 (-375 (-501)))))))
-(((-1142 |#1|) (-1180) (-959)) (T -1142))
-((-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-701)) (|:| |c| *3)))) (-4 *3 (-959)) (-4 *1 (-1142 *3)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-5 *2 (-1048 *3)))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-4 *1 (-1142 *3)))) (-1338 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)))) (-3608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *1 (-1142 *3)) (-4 *3 (-959)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1142 *4)) (-4 *4 (-959)) (-5 *2 (-866 *4)))) (-3430 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1142 *4)) (-4 *4 (-959)) (-5 *2 (-866 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) (-3188 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) (-3188 (*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501)))))))))
-(-13 (-1128 |t#1| (-701)) (-10 -8 (-15 -2973 ($ (-1048 (-2 (|:| |k| (-701)) (|:| |c| |t#1|))))) (-15 -1303 ((-1048 |t#1|) $)) (-15 -2973 ($ (-1048 |t#1|))) (-15 -1338 ($ $)) (-15 -3608 ($ (-1 |t#1| (-501)) $)) (-15 -3430 ((-866 |t#1|) $ (-701))) (-15 -3430 ((-866 |t#1|) $ (-701) (-701))) (IF (|has| |t#1| (-331)) (-15 ** ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-37 (-375 (-501)))) (PROGN (-15 -3188 ($ $)) (IF (|has| |t#1| (-15 -3188 (|t#1| |t#1| (-1070)))) (IF (|has| |t#1| (-15 -3800 ((-578 (-1070)) |t#1|))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1090)) (IF (|has| |t#1| (-879)) (IF (|has| |t#1| (-29 (-501))) (-15 -3188 ($ $ (-1070))) |noBranch|) |noBranch|) |noBranch|) (-6 (-916)) (-6 (-1090))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| (-701)) . T) ((-25) . T) ((-37 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-508)) ((-34) |has| |#1| (-37 (-375 (-501)))) ((-91) |has| |#1| (-37 (-375 (-501)))) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-206) |has| |#1| (-15 * (|#1| (-701) |#1|))) ((-254) |has| |#1| (-37 (-375 (-501)))) ((-256 $ $) |has| (-701) (-1012)) ((-260) |has| |#1| (-508)) ((-456) |has| |#1| (-37 (-375 (-501)))) ((-508) |has| |#1| (-508)) ((-583 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-648 |#1|) |has| |#1| (-156)) ((-648 $) |has| |#1| (-508)) ((-657) . T) ((-820 (-1070)) -12 (|has| |#1| (-15 * (|#1| (-701) |#1|))) (|has| |#1| (-820 (-1070)))) ((-888 |#1| (-701) (-986)) . T) ((-916) |has| |#1| (-37 (-375 (-501)))) ((-964 (-375 (-501))) |has| |#1| (-37 (-375 (-501)))) ((-964 |#1|) . T) ((-964 $) -1405 (|has| |#1| (-508)) (|has| |#1| (-156))) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1090) |has| |#1| (-37 (-375 (-501)))) ((-1093) |has| |#1| (-37 (-375 (-501)))) ((-1128 |#1| (-701)) . T))
-((-3392 (((-1 (-1048 |#1|) (-578 (-1048 |#1|))) (-1 |#2| (-578 |#2|))) 24)) (-2849 (((-1 (-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1370 (((-1 (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2|)) 13)) (-2684 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1658 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-4037 ((|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|)) 54)) (-4038 (((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|)))) 61)) (-2631 ((|#2| |#2| |#2|) 43)))
-(((-1143 |#1| |#2|) (-10 -7 (-15 -1370 ((-1 (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2|))) (-15 -2849 ((-1 (-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3392 ((-1 (-1048 |#1|) (-578 (-1048 |#1|))) (-1 |#2| (-578 |#2|)))) (-15 -2631 (|#2| |#2| |#2|)) (-15 -1658 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2684 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4037 (|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|))) (-15 -4038 ((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|)))))) (-37 (-375 (-501))) (-1142 |#1|)) (T -1143))
-((-4038 (*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 (-1 *6 (-578 *6)))) (-4 *5 (-37 (-375 (-501)))) (-4 *6 (-1142 *5)) (-5 *2 (-578 *6)) (-5 *1 (-1143 *5 *6)))) (-4037 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-578 *2))) (-5 *4 (-578 *5)) (-4 *5 (-37 (-375 (-501)))) (-4 *2 (-1142 *5)) (-5 *1 (-1143 *5 *2)))) (-2684 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-1143 *4 *2)) (-4 *4 (-37 (-375 (-501)))))) (-1658 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-1143 *4 *2)) (-4 *4 (-37 (-375 (-501)))))) (-2631 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1142 *3)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-578 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-578 (-1048 *4)))) (-5 *1 (-1143 *4 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-1048 *4) (-1048 *4))) (-5 *1 (-1143 *4 *5)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-1048 *4))) (-5 *1 (-1143 *4 *5)))))
-(-10 -7 (-15 -1370 ((-1 (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2|))) (-15 -2849 ((-1 (-1048 |#1|) (-1048 |#1|) (-1048 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3392 ((-1 (-1048 |#1|) (-578 (-1048 |#1|))) (-1 |#2| (-578 |#2|)))) (-15 -2631 (|#2| |#2| |#2|)) (-15 -1658 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2684 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4037 (|#2| (-1 |#2| (-578 |#2|)) (-578 |#1|))) (-15 -4038 ((-578 |#2|) (-578 |#1|) (-578 (-1 |#2| (-578 |#2|))))))
-((-1507 ((|#2| |#4| (-701)) 30)) (-4136 ((|#4| |#2|) 25)) (-1716 ((|#4| (-375 |#2|)) 51 (|has| |#1| (-508)))) (-1927 (((-1 |#4| (-578 |#4|)) |#3|) 45)))
-(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4136 (|#4| |#2|)) (-15 -1507 (|#2| |#4| (-701))) (-15 -1927 ((-1 |#4| (-578 |#4|)) |#3|)) (IF (|has| |#1| (-508)) (-15 -1716 (|#4| (-375 |#2|))) |noBranch|)) (-959) (-1125 |#1|) (-593 |#2|) (-1142 |#1|)) (T -1144))
-((-1716 (*1 *2 *3) (-12 (-5 *3 (-375 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-508)) (-4 *4 (-959)) (-4 *2 (-1142 *4)) (-5 *1 (-1144 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-1125 *4)) (-5 *2 (-1 *6 (-578 *6))) (-5 *1 (-1144 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1142 *4)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-1144 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1142 *5)))) (-4136 (*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *3 (-1125 *4)) (-4 *2 (-1142 *4)) (-5 *1 (-1144 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
-(-10 -7 (-15 -4136 (|#4| |#2|)) (-15 -1507 (|#2| |#4| (-701))) (-15 -1927 ((-1 |#4| (-578 |#4|)) |#3|)) (IF (|has| |#1| (-508)) (-15 -1716 (|#4| (-375 |#2|))) |noBranch|))
-((-3736 (((-107) $ $) NIL)) (-3484 (((-1070)) 12)) (-3460 (((-1053) $) 17)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 11) (((-1070) $) 8)) (-3751 (((-107) $ $) 14)))
-(((-1145 |#1|) (-13 (-1001) (-555 (-1070)) (-10 -8 (-15 -3691 ((-1070) $)) (-15 -3484 ((-1070))))) (-1070)) (T -1145))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1145 *3)) (-14 *3 *2))) (-3484 (*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1145 *3)) (-14 *3 *2))))
-(-13 (-1001) (-555 (-1070)) (-10 -8 (-15 -3691 ((-1070) $)) (-15 -3484 ((-1070)))))
-((-2563 (($ (-701)) 16)) (-2123 (((-621 |#2|) $ $) 37)) (-3203 ((|#2| $) 46)) (-4139 ((|#2| $) 45)) (-1293 ((|#2| $ $) 33)) (-2220 (($ $ $) 42)) (-3797 (($ $) 20) (($ $ $) 26)) (-3790 (($ $ $) 13)) (* (($ (-501) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
-(((-1146 |#1| |#2|) (-10 -8 (-15 -3203 (|#2| |#1|)) (-15 -4139 (|#2| |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -2123 ((-621 |#2|) |#1| |#1|)) (-15 -1293 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2563 (|#1| (-701))) (-15 -3790 (|#1| |#1| |#1|))) (-1147 |#2|) (-1104)) (T -1146))
-NIL
-(-10 -8 (-15 -3203 (|#2| |#1|)) (-15 -4139 (|#2| |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -2123 ((-621 |#2|) |#1| |#1|)) (-15 -1293 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-501) |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1|)) (-15 -2563 (|#1| (-701))) (-15 -3790 (|#1| |#1| |#1|)))
-((-3736 (((-107) $ $) 18 (|has| |#1| (-1001)))) (-2563 (($ (-701)) 112 (|has| |#1| (-23)))) (-1991 (((-1154) $ (-501) (-501)) 40 (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4168))) (($ $) 88 (-12 (|has| |#1| (-777)) (|has| $ (-6 -4168))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) 8)) (-3754 ((|#1| $ (-501) |#1|) 52 (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) 58 (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4167)))) (-2540 (($) 7 T CONST)) (-1375 (($ $) 90 (|has| $ (-6 -4168)))) (-3785 (($ $) 100)) (-2673 (($ $) 78 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1526 (($ |#1| $) 77 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) 53 (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) 51)) (-1934 (((-501) (-1 (-107) |#1|) $) 97) (((-501) |#1| $) 96 (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) 95 (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) 30 (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) 105 (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) 69)) (-3379 (((-107) $ (-701)) 9)) (-3627 (((-501) $) 43 (|has| (-501) (-777)))) (-4111 (($ $ $) 87 (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) 29 (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-1522 (((-501) $) 44 (|has| (-501) (-777)))) (-1323 (($ $ $) 86 (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3203 ((|#1| $) 102 (-12 (|has| |#1| (-959)) (|has| |#1| (-916))))) (-3155 (((-107) $ (-701)) 10)) (-4139 ((|#1| $) 103 (-12 (|has| |#1| (-959)) (|has| |#1| (-916))))) (-3460 (((-1053) $) 22 (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) 60) (($ $ $ (-501)) 59)) (-2658 (((-578 (-501)) $) 46)) (-2852 (((-107) (-501) $) 47)) (-3708 (((-1018) $) 21 (|has| |#1| (-1001)))) (-1190 ((|#1| $) 42 (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-3084 (($ $ |#1|) 41 (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) 26 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) 25 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) 23 (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) 14)) (-2845 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) 48)) (-1407 (((-107) $) 11)) (-3122 (($) 12)) (-2007 ((|#1| $ (-501) |#1|) 50) ((|#1| $ (-501)) 49) (($ $ (-1116 (-501))) 63)) (-1293 ((|#1| $ $) 106 (|has| |#1| (-959)))) (-1468 (($ $ (-501)) 62) (($ $ (-1116 (-501))) 61)) (-2220 (($ $ $) 104 (|has| |#1| (-959)))) (-3713 (((-701) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4167))) (((-701) |#1| $) 28 (-12 (|has| |#1| (-1001)) (|has| $ (-6 -4167))))) (-2355 (($ $ $ (-501)) 91 (|has| $ (-6 -4168)))) (-3764 (($ $) 13)) (-1248 (((-490) $) 79 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 70)) (-3934 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-578 $)) 65)) (-3691 (((-786) $) 20 (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) 84 (|has| |#1| (-777)))) (-3768 (((-107) $ $) 83 (|has| |#1| (-777)))) (-3751 (((-107) $ $) 19 (|has| |#1| (-1001)))) (-3773 (((-107) $ $) 85 (|has| |#1| (-777)))) (-3762 (((-107) $ $) 82 (|has| |#1| (-777)))) (-3797 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-3790 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-501) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-657))) (($ $ |#1|) 107 (|has| |#1| (-657)))) (-3581 (((-701) $) 6 (|has| $ (-6 -4167)))))
-(((-1147 |#1|) (-1180) (-1104)) (T -1147))
-((-3790 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-25)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1147 *3)) (-4 *3 (-23)) (-4 *3 (-1104)))) (-3797 (*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-21)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-1147 *3)) (-4 *3 (-1104)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) (-1293 (*1 *2 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))) (-2123 (*1 *2 *1 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1104)) (-4 *3 (-959)) (-5 *2 (-621 *3)))) (-2220 (*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-916)) (-4 *2 (-959)))) (-3203 (*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-916)) (-4 *2 (-959)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3790 ($ $ $)) |noBranch|) (IF (|has| |t#1| (-23)) (-15 -2563 ($ (-701))) |noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3797 ($ $)) (-15 -3797 ($ $ $)) (-15 * ($ (-501) $))) |noBranch|) (IF (|has| |t#1| (-657)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-959)) (PROGN (-15 -1293 (|t#1| $ $)) (-15 -2123 ((-621 |t#1|) $ $)) (-15 -2220 ($ $ $))) |noBranch|) (IF (|has| |t#1| (-916)) (IF (|has| |t#1| (-959)) (PROGN (-15 -4139 (|t#1| $)) (-15 -3203 (|t#1| $))) |noBranch|) |noBranch|)))
-(((-33) . T) ((-97) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-555 (-786)) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-138 |#1|) . T) ((-556 (-490)) |has| |#1| (-556 (-490))) ((-256 (-501) |#1|) . T) ((-258 (-501) |#1|) . T) ((-278 |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-340 |#1|) . T) ((-454 |#1|) . T) ((-548 (-501) |#1|) . T) ((-476 |#1| |#1|) -12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))) ((-586 |#1|) . T) ((-19 |#1|) . T) ((-777) |has| |#1| (-777)) ((-1001) -1405 (|has| |#1| (-1001)) (|has| |#1| (-777))) ((-1104) . T))
-((-3736 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-2563 (($ (-701)) NIL (|has| |#1| (-23)))) (-2613 (($ (-578 |#1|)) 9)) (-1991 (((-1154) $ (-501) (-501)) NIL (|has| $ (-6 -4168)))) (-2045 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-777)))) (-3441 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4168))) (($ $) NIL (-12 (|has| $ (-6 -4168)) (|has| |#1| (-777))))) (-2861 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-777)))) (-2997 (((-107) $ (-701)) NIL)) (-3754 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168))) ((|#1| $ (-1116 (-501)) |#1|) NIL (|has| $ (-6 -4168)))) (-1987 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-2540 (($) NIL T CONST)) (-1375 (($ $) NIL (|has| $ (-6 -4168)))) (-3785 (($ $) NIL)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1526 (($ |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3547 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4167))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4167)))) (-2156 ((|#1| $ (-501) |#1|) NIL (|has| $ (-6 -4168)))) (-1905 ((|#1| $ (-501)) NIL)) (-1934 (((-501) (-1 (-107) |#1|) $) NIL) (((-501) |#1| $) NIL (|has| |#1| (-1001))) (((-501) |#1| $ (-501)) NIL (|has| |#1| (-1001)))) (-2732 (((-578 |#1|) $) 15 (|has| $ (-6 -4167)))) (-2123 (((-621 |#1|) $ $) NIL (|has| |#1| (-959)))) (-3634 (($ (-701) |#1|) NIL)) (-3379 (((-107) $ (-701)) NIL)) (-3627 (((-501) $) NIL (|has| (-501) (-777)))) (-4111 (($ $ $) NIL (|has| |#1| (-777)))) (-3216 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-777)))) (-3380 (((-578 |#1|) $) NIL (|has| $ (-6 -4167)))) (-2211 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-1522 (((-501) $) NIL (|has| (-501) (-777)))) (-1323 (($ $ $) NIL (|has| |#1| (-777)))) (-2519 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3203 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3155 (((-107) $ (-701)) NIL)) (-4139 ((|#1| $) NIL (-12 (|has| |#1| (-916)) (|has| |#1| (-959))))) (-3460 (((-1053) $) NIL (|has| |#1| (-1001)))) (-1473 (($ |#1| $ (-501)) NIL) (($ $ $ (-501)) NIL)) (-2658 (((-578 (-501)) $) NIL)) (-2852 (((-107) (-501) $) NIL)) (-3708 (((-1018) $) NIL (|has| |#1| (-1001)))) (-1190 ((|#1| $) NIL (|has| (-501) (-777)))) (-2520 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3084 (($ $ |#1|) NIL (|has| $ (-6 -4168)))) (-2369 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 (-262 |#1|))) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-262 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001)))) (($ $ (-578 |#1|) (-578 |#1|)) NIL (-12 (|has| |#1| (-278 |#1|)) (|has| |#1| (-1001))))) (-1262 (((-107) $ $) NIL)) (-2845 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-4137 (((-578 |#1|) $) NIL)) (-1407 (((-107) $) NIL)) (-3122 (($) NIL)) (-2007 ((|#1| $ (-501) |#1|) NIL) ((|#1| $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-1293 ((|#1| $ $) NIL (|has| |#1| (-959)))) (-1468 (($ $ (-501)) NIL) (($ $ (-1116 (-501))) NIL)) (-2220 (($ $ $) NIL (|has| |#1| (-959)))) (-3713 (((-701) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167))) (((-701) |#1| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#1| (-1001))))) (-2355 (($ $ $ (-501)) NIL (|has| $ (-6 -4168)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) 19 (|has| |#1| (-556 (-490))))) (-3699 (($ (-578 |#1|)) 8)) (-3934 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-578 $)) NIL)) (-3691 (((-786) $) NIL (|has| |#1| (-1001)))) (-1200 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4167)))) (-3778 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3768 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3751 (((-107) $ $) NIL (|has| |#1| (-1001)))) (-3773 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3762 (((-107) $ $) NIL (|has| |#1| (-777)))) (-3797 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3790 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-501) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-657))) (($ $ |#1|) NIL (|has| |#1| (-657)))) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1148 |#1|) (-13 (-1147 |#1|) (-10 -8 (-15 -2613 ($ (-578 |#1|))))) (-1104)) (T -1148))
-((-2613 (*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1148 *3)))))
-(-13 (-1147 |#1|) (-10 -8 (-15 -2613 ($ (-578 |#1|)))))
-((-3162 (((-1148 |#2|) (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|) 13)) (-3547 ((|#2| (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|) 15)) (-1212 (((-3 (-1148 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1148 |#1|)) 28) (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 18)))
-(((-1149 |#1| |#2|) (-10 -7 (-15 -3162 ((-1148 |#2|) (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|)) (-15 -1212 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (-15 -1212 ((-3 (-1148 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1148 |#1|)))) (-1104) (-1104)) (T -1149))
-((-1212 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) (-1212 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) (-3547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-1149 *5 *2)))) (-3162 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1148 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1148 *5)) (-5 *1 (-1149 *6 *5)))))
-(-10 -7 (-15 -3162 ((-1148 |#2|) (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|)) (-15 -3547 (|#2| (-1 |#2| |#1| |#2|) (-1148 |#1|) |#2|)) (-15 -1212 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (-15 -1212 ((-3 (-1148 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1148 |#1|))))
-((-2972 (((-435) (-578 (-578 (-863 (-199)))) (-578 (-232))) 17) (((-435) (-578 (-578 (-863 (-199))))) 16) (((-435) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232))) 15)) (-2008 (((-1151) (-578 (-578 (-863 (-199)))) (-578 (-232))) 23) (((-1151) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232))) 22)) (-3691 (((-1151) (-435)) 34)))
-(((-1150) (-10 -7 (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232)))) (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))))) (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))) (-578 (-232)))) (-15 -2008 ((-1151) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232)))) (-15 -2008 ((-1151) (-578 (-578 (-863 (-199)))) (-578 (-232)))) (-15 -3691 ((-1151) (-435))))) (T -1150))
-((-3691 (*1 *2 *3) (-12 (-5 *3 (-435)) (-5 *2 (-1151)) (-5 *1 (-1150)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-1150)))) (-2008 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *6 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-1150)))) (-2972 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-578 (-232))) (-5 *2 (-435)) (-5 *1 (-1150)))) (-2972 (*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-435)) (-5 *1 (-1150)))) (-2972 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *6 (-578 (-232))) (-5 *2 (-435)) (-5 *1 (-1150)))))
-(-10 -7 (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232)))) (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))))) (-15 -2972 ((-435) (-578 (-578 (-863 (-199)))) (-578 (-232)))) (-15 -2008 ((-1151) (-578 (-578 (-863 (-199)))) (-795) (-795) (-839) (-578 (-232)))) (-15 -2008 ((-1151) (-578 (-578 (-863 (-199)))) (-578 (-232)))) (-15 -3691 ((-1151) (-435))))
-((-3736 (((-107) $ $) NIL)) (-3000 (((-1053) $ (-1053)) 87) (((-1053) $ (-1053) (-1053)) 85) (((-1053) $ (-1053) (-578 (-1053))) 84)) (-3065 (($) 56)) (-1243 (((-1154) $ (-435) (-839)) 42)) (-3876 (((-1154) $ (-839) (-1053)) 70) (((-1154) $ (-839) (-795)) 71)) (-2953 (((-1154) $ (-839) (-346) (-346)) 45)) (-3971 (((-1154) $ (-1053)) 66)) (-2203 (((-1154) $ (-839) (-1053)) 75)) (-3487 (((-1154) $ (-839) (-346) (-346)) 46)) (-3559 (((-1154) $ (-839) (-839)) 43)) (-2996 (((-1154) $) 67)) (-3274 (((-1154) $ (-839) (-1053)) 74)) (-2518 (((-1154) $ (-435) (-839)) 30)) (-1654 (((-1154) $ (-839) (-1053)) 73)) (-1477 (((-578 (-232)) $) 22) (($ $ (-578 (-232))) 23)) (-2364 (((-1154) $ (-701) (-701)) 40)) (-2914 (($ $) 57) (($ (-435) (-578 (-232))) 58)) (-3460 (((-1053) $) NIL)) (-3626 (((-501) $) 37)) (-3708 (((-1018) $) NIL)) (-3146 (((-1148 (-3 (-435) "undefined")) $) 36)) (-1691 (((-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501)))) $) 35)) (-3624 (((-1154) $ (-839) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-795) (-501) (-795) (-501)) 65)) (-2056 (((-578 (-863 (-199))) $) NIL)) (-3442 (((-435) $ (-839)) 32)) (-3399 (((-1154) $ (-701) (-701) (-839) (-839)) 39)) (-3586 (((-1154) $ (-1053)) 76)) (-2473 (((-1154) $ (-839) (-1053)) 72)) (-3691 (((-786) $) 82)) (-2109 (((-1154) $) 77)) (-1184 (((-1154) $ (-839) (-1053)) 68) (((-1154) $ (-839) (-795)) 69)) (-3751 (((-107) $ $) NIL)))
-(((-1151) (-13 (-1001) (-10 -8 (-15 -2056 ((-578 (-863 (-199))) $)) (-15 -3065 ($)) (-15 -2914 ($ $)) (-15 -1477 ((-578 (-232)) $)) (-15 -1477 ($ $ (-578 (-232)))) (-15 -2914 ($ (-435) (-578 (-232)))) (-15 -3624 ((-1154) $ (-839) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-795) (-501) (-795) (-501))) (-15 -1691 ((-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501)))) $)) (-15 -3146 ((-1148 (-3 (-435) "undefined")) $)) (-15 -3971 ((-1154) $ (-1053))) (-15 -2518 ((-1154) $ (-435) (-839))) (-15 -3442 ((-435) $ (-839))) (-15 -1184 ((-1154) $ (-839) (-1053))) (-15 -1184 ((-1154) $ (-839) (-795))) (-15 -3876 ((-1154) $ (-839) (-1053))) (-15 -3876 ((-1154) $ (-839) (-795))) (-15 -1654 ((-1154) $ (-839) (-1053))) (-15 -3274 ((-1154) $ (-839) (-1053))) (-15 -2473 ((-1154) $ (-839) (-1053))) (-15 -3586 ((-1154) $ (-1053))) (-15 -2109 ((-1154) $)) (-15 -3399 ((-1154) $ (-701) (-701) (-839) (-839))) (-15 -3487 ((-1154) $ (-839) (-346) (-346))) (-15 -2953 ((-1154) $ (-839) (-346) (-346))) (-15 -2203 ((-1154) $ (-839) (-1053))) (-15 -2364 ((-1154) $ (-701) (-701))) (-15 -1243 ((-1154) $ (-435) (-839))) (-15 -3559 ((-1154) $ (-839) (-839))) (-15 -3000 ((-1053) $ (-1053))) (-15 -3000 ((-1053) $ (-1053) (-1053))) (-15 -3000 ((-1053) $ (-1053) (-578 (-1053)))) (-15 -2996 ((-1154) $)) (-15 -3626 ((-501) $)) (-15 -3691 ((-786) $))))) (T -1151))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1151)))) (-2056 (*1 *2 *1) (-12 (-5 *2 (-578 (-863 (-199)))) (-5 *1 (-1151)))) (-3065 (*1 *1) (-5 *1 (-1151))) (-2914 (*1 *1 *1) (-5 *1 (-1151))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1151)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1151)))) (-2914 (*1 *1 *2 *3) (-12 (-5 *2 (-435)) (-5 *3 (-578 (-232))) (-5 *1 (-1151)))) (-3624 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-839)) (-5 *4 (-199)) (-5 *5 (-501)) (-5 *6 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501))))) (-5 *1 (-1151)))) (-3146 (*1 *2 *1) (-12 (-5 *2 (-1148 (-3 (-435) "undefined"))) (-5 *1 (-1151)))) (-3971 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2518 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-435)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3442 (*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-5 *2 (-435)) (-5 *1 (-1151)))) (-1184 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-1184 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3876 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3876 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-1654 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3274 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2473 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3586 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3399 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-701)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3487 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-839)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2953 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-839)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2203 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-2364 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-1243 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-435)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3559 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3000 (*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1151)))) (-3000 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1151)))) (-3000 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-1151)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1151)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1151)))))
-(-13 (-1001) (-10 -8 (-15 -2056 ((-578 (-863 (-199))) $)) (-15 -3065 ($)) (-15 -2914 ($ $)) (-15 -1477 ((-578 (-232)) $)) (-15 -1477 ($ $ (-578 (-232)))) (-15 -2914 ($ (-435) (-578 (-232)))) (-15 -3624 ((-1154) $ (-839) (-199) (-199) (-199) (-199) (-501) (-501) (-501) (-501) (-795) (-501) (-795) (-501))) (-15 -1691 ((-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501)))) $)) (-15 -3146 ((-1148 (-3 (-435) "undefined")) $)) (-15 -3971 ((-1154) $ (-1053))) (-15 -2518 ((-1154) $ (-435) (-839))) (-15 -3442 ((-435) $ (-839))) (-15 -1184 ((-1154) $ (-839) (-1053))) (-15 -1184 ((-1154) $ (-839) (-795))) (-15 -3876 ((-1154) $ (-839) (-1053))) (-15 -3876 ((-1154) $ (-839) (-795))) (-15 -1654 ((-1154) $ (-839) (-1053))) (-15 -3274 ((-1154) $ (-839) (-1053))) (-15 -2473 ((-1154) $ (-839) (-1053))) (-15 -3586 ((-1154) $ (-1053))) (-15 -2109 ((-1154) $)) (-15 -3399 ((-1154) $ (-701) (-701) (-839) (-839))) (-15 -3487 ((-1154) $ (-839) (-346) (-346))) (-15 -2953 ((-1154) $ (-839) (-346) (-346))) (-15 -2203 ((-1154) $ (-839) (-1053))) (-15 -2364 ((-1154) $ (-701) (-701))) (-15 -1243 ((-1154) $ (-435) (-839))) (-15 -3559 ((-1154) $ (-839) (-839))) (-15 -3000 ((-1053) $ (-1053))) (-15 -3000 ((-1053) $ (-1053) (-1053))) (-15 -3000 ((-1053) $ (-1053) (-578 (-1053)))) (-15 -2996 ((-1154) $)) (-15 -3626 ((-501) $)) (-15 -3691 ((-786) $))))
-((-3736 (((-107) $ $) NIL)) (-2857 (((-1154) $ (-346)) 138) (((-1154) $ (-346) (-346) (-346)) 139)) (-3000 (((-1053) $ (-1053)) 146) (((-1053) $ (-1053) (-1053)) 144) (((-1053) $ (-1053) (-578 (-1053))) 143)) (-1595 (($) 49)) (-4009 (((-1154) $ (-346) (-346) (-346) (-346) (-346)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1154) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1154) $ (-501) (-501) (-346) (-346) (-346)) 115) (((-1154) $ (-346) (-346)) 116) (((-1154) $ (-346) (-346) (-346)) 123)) (-1904 (((-346)) 96) (((-346) (-346)) 97)) (-1449 (((-346)) 91) (((-346) (-346)) 93)) (-1723 (((-346)) 94) (((-346) (-346)) 95)) (-3853 (((-346)) 100) (((-346) (-346)) 101)) (-1841 (((-346)) 98) (((-346) (-346)) 99)) (-2953 (((-1154) $ (-346) (-346)) 140)) (-3971 (((-1154) $ (-1053)) 124)) (-1446 (((-1031 (-199)) $) 50) (($ $ (-1031 (-199))) 51)) (-2300 (((-1154) $ (-1053)) 152)) (-2661 (((-1154) $ (-1053)) 153)) (-2411 (((-1154) $ (-346) (-346)) 122) (((-1154) $ (-501) (-501)) 137)) (-3559 (((-1154) $ (-839) (-839)) 130)) (-2996 (((-1154) $) 110)) (-2500 (((-1154) $ (-1053)) 151)) (-2864 (((-1154) $ (-1053)) 107)) (-1477 (((-578 (-232)) $) 52) (($ $ (-578 (-232))) 53)) (-2364 (((-1154) $ (-701) (-701)) 129)) (-1671 (((-1154) $ (-701) (-863 (-199))) 158)) (-2386 (($ $) 56) (($ (-1031 (-199)) (-1053)) 57) (($ (-1031 (-199)) (-578 (-232))) 58)) (-3163 (((-1154) $ (-346) (-346) (-346)) 104)) (-3460 (((-1053) $) NIL)) (-3626 (((-501) $) 102)) (-3824 (((-1154) $ (-346)) 141)) (-2509 (((-1154) $ (-346)) 156)) (-3708 (((-1018) $) NIL)) (-1975 (((-1154) $ (-346)) 155)) (-2230 (((-1154) $ (-1053)) 109)) (-3399 (((-1154) $ (-701) (-701) (-839) (-839)) 128)) (-1560 (((-1154) $ (-1053)) 106)) (-3586 (((-1154) $ (-1053)) 108)) (-1663 (((-1154) $ (-142) (-142)) 127)) (-3691 (((-786) $) 135)) (-2109 (((-1154) $) 111)) (-4047 (((-1154) $ (-1053)) 154)) (-1184 (((-1154) $ (-1053)) 105)) (-3751 (((-107) $ $) NIL)))
-(((-1152) (-13 (-1001) (-10 -8 (-15 -1449 ((-346))) (-15 -1449 ((-346) (-346))) (-15 -1723 ((-346))) (-15 -1723 ((-346) (-346))) (-15 -1904 ((-346))) (-15 -1904 ((-346) (-346))) (-15 -1841 ((-346))) (-15 -1841 ((-346) (-346))) (-15 -3853 ((-346))) (-15 -3853 ((-346) (-346))) (-15 -1595 ($)) (-15 -2386 ($ $)) (-15 -2386 ($ (-1031 (-199)) (-1053))) (-15 -2386 ($ (-1031 (-199)) (-578 (-232)))) (-15 -1446 ((-1031 (-199)) $)) (-15 -1446 ($ $ (-1031 (-199)))) (-15 -1671 ((-1154) $ (-701) (-863 (-199)))) (-15 -1477 ((-578 (-232)) $)) (-15 -1477 ($ $ (-578 (-232)))) (-15 -2364 ((-1154) $ (-701) (-701))) (-15 -3559 ((-1154) $ (-839) (-839))) (-15 -3971 ((-1154) $ (-1053))) (-15 -3399 ((-1154) $ (-701) (-701) (-839) (-839))) (-15 -4009 ((-1154) $ (-346) (-346) (-346) (-346) (-346))) (-15 -4009 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -4009 ((-1154) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4009 ((-1154) $ (-501) (-501) (-346) (-346) (-346))) (-15 -4009 ((-1154) $ (-346) (-346))) (-15 -4009 ((-1154) $ (-346) (-346) (-346))) (-15 -3586 ((-1154) $ (-1053))) (-15 -1184 ((-1154) $ (-1053))) (-15 -1560 ((-1154) $ (-1053))) (-15 -2864 ((-1154) $ (-1053))) (-15 -2230 ((-1154) $ (-1053))) (-15 -2411 ((-1154) $ (-346) (-346))) (-15 -2411 ((-1154) $ (-501) (-501))) (-15 -2857 ((-1154) $ (-346))) (-15 -2857 ((-1154) $ (-346) (-346) (-346))) (-15 -2953 ((-1154) $ (-346) (-346))) (-15 -2500 ((-1154) $ (-1053))) (-15 -1975 ((-1154) $ (-346))) (-15 -2509 ((-1154) $ (-346))) (-15 -2300 ((-1154) $ (-1053))) (-15 -2661 ((-1154) $ (-1053))) (-15 -4047 ((-1154) $ (-1053))) (-15 -3163 ((-1154) $ (-346) (-346) (-346))) (-15 -3824 ((-1154) $ (-346))) (-15 -2996 ((-1154) $)) (-15 -1663 ((-1154) $ (-142) (-142))) (-15 -3000 ((-1053) $ (-1053))) (-15 -3000 ((-1053) $ (-1053) (-1053))) (-15 -3000 ((-1053) $ (-1053) (-578 (-1053)))) (-15 -2109 ((-1154) $)) (-15 -3626 ((-501) $))))) (T -1152))
-((-1449 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1723 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1723 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1904 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1904 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1841 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-3853 (*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) (-1595 (*1 *1) (-5 *1 (-1152))) (-2386 (*1 *1 *1) (-5 *1 (-1152))) (-2386 (*1 *1 *2 *3) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-1053)) (-5 *1 (-1152)))) (-2386 (*1 *1 *2 *3) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-578 (-232))) (-5 *1 (-1152)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1152)))) (-1446 (*1 *1 *1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1152)))) (-1671 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1477 (*1 *2 *1) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1152)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1152)))) (-2364 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3559 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3971 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3399 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-701)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-501)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4009 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3586 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1184 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1560 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2864 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2230 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2411 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2411 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2857 (*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2857 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2953 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2500 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1975 (*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2509 (*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2300 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2661 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3163 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3824 (*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-2996 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1152)))) (-1663 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3000 (*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1152)))) (-3000 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1152)))) (-3000 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-1152)))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1152)))) (-3626 (*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1152)))))
-(-13 (-1001) (-10 -8 (-15 -1449 ((-346))) (-15 -1449 ((-346) (-346))) (-15 -1723 ((-346))) (-15 -1723 ((-346) (-346))) (-15 -1904 ((-346))) (-15 -1904 ((-346) (-346))) (-15 -1841 ((-346))) (-15 -1841 ((-346) (-346))) (-15 -3853 ((-346))) (-15 -3853 ((-346) (-346))) (-15 -1595 ($)) (-15 -2386 ($ $)) (-15 -2386 ($ (-1031 (-199)) (-1053))) (-15 -2386 ($ (-1031 (-199)) (-578 (-232)))) (-15 -1446 ((-1031 (-199)) $)) (-15 -1446 ($ $ (-1031 (-199)))) (-15 -1671 ((-1154) $ (-701) (-863 (-199)))) (-15 -1477 ((-578 (-232)) $)) (-15 -1477 ($ $ (-578 (-232)))) (-15 -2364 ((-1154) $ (-701) (-701))) (-15 -3559 ((-1154) $ (-839) (-839))) (-15 -3971 ((-1154) $ (-1053))) (-15 -3399 ((-1154) $ (-701) (-701) (-839) (-839))) (-15 -4009 ((-1154) $ (-346) (-346) (-346) (-346) (-346))) (-15 -4009 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -4009 ((-1154) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -4009 ((-1154) $ (-501) (-501) (-346) (-346) (-346))) (-15 -4009 ((-1154) $ (-346) (-346))) (-15 -4009 ((-1154) $ (-346) (-346) (-346))) (-15 -3586 ((-1154) $ (-1053))) (-15 -1184 ((-1154) $ (-1053))) (-15 -1560 ((-1154) $ (-1053))) (-15 -2864 ((-1154) $ (-1053))) (-15 -2230 ((-1154) $ (-1053))) (-15 -2411 ((-1154) $ (-346) (-346))) (-15 -2411 ((-1154) $ (-501) (-501))) (-15 -2857 ((-1154) $ (-346))) (-15 -2857 ((-1154) $ (-346) (-346) (-346))) (-15 -2953 ((-1154) $ (-346) (-346))) (-15 -2500 ((-1154) $ (-1053))) (-15 -1975 ((-1154) $ (-346))) (-15 -2509 ((-1154) $ (-346))) (-15 -2300 ((-1154) $ (-1053))) (-15 -2661 ((-1154) $ (-1053))) (-15 -4047 ((-1154) $ (-1053))) (-15 -3163 ((-1154) $ (-346) (-346) (-346))) (-15 -3824 ((-1154) $ (-346))) (-15 -2996 ((-1154) $)) (-15 -1663 ((-1154) $ (-142) (-142))) (-15 -3000 ((-1053) $ (-1053))) (-15 -3000 ((-1053) $ (-1053) (-1053))) (-15 -3000 ((-1053) $ (-1053) (-578 (-1053)))) (-15 -2109 ((-1154) $)) (-15 -3626 ((-501) $))))
-((-1471 (((-578 (-1053)) (-578 (-1053))) 94) (((-578 (-1053))) 89)) (-2632 (((-578 (-1053))) 87)) (-1372 (((-578 (-839)) (-578 (-839))) 62) (((-578 (-839))) 59)) (-1817 (((-578 (-701)) (-578 (-701))) 56) (((-578 (-701))) 52)) (-2920 (((-1154)) 64)) (-3268 (((-839) (-839)) 80) (((-839)) 79)) (-3389 (((-839) (-839)) 78) (((-839)) 77)) (-2553 (((-795) (-795)) 74) (((-795)) 73)) (-3903 (((-199)) 84) (((-199) (-346)) 86)) (-2723 (((-839)) 81) (((-839) (-839)) 82)) (-3617 (((-839) (-839)) 76) (((-839)) 75)) (-3377 (((-795) (-795)) 68) (((-795)) 66)) (-2179 (((-795) (-795)) 70) (((-795)) 69)) (-2904 (((-795) (-795)) 72) (((-795)) 71)))
-(((-1153) (-10 -7 (-15 -3377 ((-795))) (-15 -3377 ((-795) (-795))) (-15 -2179 ((-795))) (-15 -2179 ((-795) (-795))) (-15 -2904 ((-795))) (-15 -2904 ((-795) (-795))) (-15 -2553 ((-795))) (-15 -2553 ((-795) (-795))) (-15 -3617 ((-839))) (-15 -3617 ((-839) (-839))) (-15 -1817 ((-578 (-701)))) (-15 -1817 ((-578 (-701)) (-578 (-701)))) (-15 -1372 ((-578 (-839)))) (-15 -1372 ((-578 (-839)) (-578 (-839)))) (-15 -2920 ((-1154))) (-15 -1471 ((-578 (-1053)))) (-15 -1471 ((-578 (-1053)) (-578 (-1053)))) (-15 -2632 ((-578 (-1053)))) (-15 -3389 ((-839))) (-15 -3268 ((-839))) (-15 -3389 ((-839) (-839))) (-15 -3268 ((-839) (-839))) (-15 -2723 ((-839) (-839))) (-15 -2723 ((-839))) (-15 -3903 ((-199) (-346))) (-15 -3903 ((-199))))) (T -1153))
-((-3903 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1153)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-199)) (-5 *1 (-1153)))) (-2723 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-2723 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3268 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3389 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3268 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3389 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-2632 (*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))) (-1471 (*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))) (-1471 (*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))) (-2920 (*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1153)))) (-1372 (*1 *2 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1153)))) (-1372 (*1 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1153)))) (-1817 (*1 *2 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1153)))) (-1817 (*1 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1153)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-3617 (*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) (-2553 (*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2553 (*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2904 (*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2904 (*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2179 (*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-2179 (*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-3377 (*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) (-3377 (*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))))
-(-10 -7 (-15 -3377 ((-795))) (-15 -3377 ((-795) (-795))) (-15 -2179 ((-795))) (-15 -2179 ((-795) (-795))) (-15 -2904 ((-795))) (-15 -2904 ((-795) (-795))) (-15 -2553 ((-795))) (-15 -2553 ((-795) (-795))) (-15 -3617 ((-839))) (-15 -3617 ((-839) (-839))) (-15 -1817 ((-578 (-701)))) (-15 -1817 ((-578 (-701)) (-578 (-701)))) (-15 -1372 ((-578 (-839)))) (-15 -1372 ((-578 (-839)) (-578 (-839)))) (-15 -2920 ((-1154))) (-15 -1471 ((-578 (-1053)))) (-15 -1471 ((-578 (-1053)) (-578 (-1053)))) (-15 -2632 ((-578 (-1053)))) (-15 -3389 ((-839))) (-15 -3268 ((-839))) (-15 -3389 ((-839) (-839))) (-15 -3268 ((-839) (-839))) (-15 -2723 ((-839) (-839))) (-15 -2723 ((-839))) (-15 -3903 ((-199) (-346))) (-15 -3903 ((-199))))
-((-2645 (($) 7)) (-3691 (((-786) $) 10)))
-(((-1154) (-10 -8 (-15 -2645 ($)) (-15 -3691 ((-786) $)))) (T -1154))
-((-3691 (*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1154)))) (-2645 (*1 *1) (-5 *1 (-1154))))
-(-10 -8 (-15 -2645 ($)) (-15 -3691 ((-786) $)))
-((-3803 (($ $ |#2|) 10)))
-(((-1155 |#1| |#2|) (-10 -8 (-15 -3803 (|#1| |#1| |#2|))) (-1156 |#2|) (-331)) (T -1155))
-NIL
-(-10 -8 (-15 -3803 (|#1| |#1| |#2|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3613 (((-125)) 29)) (-3691 (((-786) $) 11)) (-1850 (($) 18 T CONST)) (-3751 (((-107) $ $) 6)) (-3803 (($ $ |#1|) 30)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ |#1| $) 24) (($ $ |#1|) 27)))
-(((-1156 |#1|) (-1180) (-331)) (T -1156))
-((-3803 (*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-331)))) (-3613 (*1 *2) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-331)) (-5 *2 (-125)))))
-(-13 (-648 |t#1|) (-10 -8 (-15 -3803 ($ $ |t#1|)) (-15 -3613 ((-125)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-648 |#1|) . T) ((-964 |#1|) . T) ((-1001) . T))
-((-2326 (((-578 (-1097 |#1|)) (-1070) (-1097 |#1|)) 78)) (-2074 (((-1048 (-1048 (-866 |#1|))) (-1070) (-1048 (-866 |#1|))) 57)) (-1781 (((-1 (-1048 (-1097 |#1|)) (-1048 (-1097 |#1|))) (-701) (-1097 |#1|) (-1048 (-1097 |#1|))) 68)) (-3738 (((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701)) 59)) (-1713 (((-1 (-1064 (-866 |#1|)) (-866 |#1|)) (-1070)) 27)) (-1883 (((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701)) 58)))
-(((-1157 |#1|) (-10 -7 (-15 -3738 ((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701))) (-15 -1883 ((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701))) (-15 -2074 ((-1048 (-1048 (-866 |#1|))) (-1070) (-1048 (-866 |#1|)))) (-15 -1713 ((-1 (-1064 (-866 |#1|)) (-866 |#1|)) (-1070))) (-15 -2326 ((-578 (-1097 |#1|)) (-1070) (-1097 |#1|))) (-15 -1781 ((-1 (-1048 (-1097 |#1|)) (-1048 (-1097 |#1|))) (-701) (-1097 |#1|) (-1048 (-1097 |#1|))))) (-331)) (T -1157))
-((-1781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-701)) (-4 *6 (-331)) (-5 *4 (-1097 *6)) (-5 *2 (-1 (-1048 *4) (-1048 *4))) (-5 *1 (-1157 *6)) (-5 *5 (-1048 *4)))) (-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-4 *5 (-331)) (-5 *2 (-578 (-1097 *5))) (-5 *1 (-1157 *5)) (-5 *4 (-1097 *5)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 (-1064 (-866 *4)) (-866 *4))) (-5 *1 (-1157 *4)) (-4 *4 (-331)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-4 *5 (-331)) (-5 *2 (-1048 (-1048 (-866 *5)))) (-5 *1 (-1157 *5)) (-5 *4 (-1048 (-866 *5))))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-1048 (-866 *4)) (-1048 (-866 *4)))) (-5 *1 (-1157 *4)) (-4 *4 (-331)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-1048 (-866 *4)) (-1048 (-866 *4)))) (-5 *1 (-1157 *4)) (-4 *4 (-331)))))
-(-10 -7 (-15 -3738 ((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701))) (-15 -1883 ((-1 (-1048 (-866 |#1|)) (-1048 (-866 |#1|))) (-701))) (-15 -2074 ((-1048 (-1048 (-866 |#1|))) (-1070) (-1048 (-866 |#1|)))) (-15 -1713 ((-1 (-1064 (-866 |#1|)) (-866 |#1|)) (-1070))) (-15 -2326 ((-578 (-1097 |#1|)) (-1070) (-1097 |#1|))) (-15 -1781 ((-1 (-1048 (-1097 |#1|)) (-1048 (-1097 |#1|))) (-701) (-1097 |#1|) (-1048 (-1097 |#1|)))))
-((-3819 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|) 74)) (-1897 (((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|)))) 73)))
-(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|))) (-318) (-1125 |#1|) (-1125 |#2|) (-378 |#2| |#3|)) (T -1158))
-((-3819 (*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-1158 *4 *3 *5 *6)) (-4 *6 (-378 *3 *5)))) (-1897 (*1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -4119 (-621 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-621 *4)))) (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *6 (-378 *4 *5)))))
-(-10 -7 (-15 -1897 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))))) (-15 -3819 ((-2 (|:| -4119 (-621 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-621 |#2|))) |#2|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 41)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-3691 (((-786) $) 62) (($ (-501)) NIL) ((|#4| $) 52) (($ |#4|) 47) (($ |#1|) NIL (|has| |#1| (-156)))) (-3965 (((-701)) NIL)) (-1333 (((-1154) (-701)) 16)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 26 T CONST)) (-1925 (($) 65 T CONST)) (-3751 (((-107) $ $) 67)) (-3803 (((-3 $ "failed") $ $) NIL (|has| |#1| (-331)))) (-3797 (($ $) 69) (($ $ $) NIL)) (-3790 (($ $ $) 45)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 71) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
-(((-1159 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-959) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -3691 (|#4| $)) (IF (|has| |#1| (-331)) (-15 -3803 ((-3 $ "failed") $ $)) |noBranch|) (-15 -3691 ($ |#4|)) (-15 -1333 ((-1154) (-701))))) (-959) (-777) (-723) (-870 |#1| |#3| |#2|) (-578 |#2|) (-578 (-701)) (-701)) (T -1159))
-((-3691 (*1 *2 *1) (-12 (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-1159 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-14 *6 (-578 *4)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) (-3803 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-331)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-723)) (-14 *6 (-578 *3)) (-5 *1 (-1159 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-870 *2 *4 *3)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) (-3691 (*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-14 *6 (-578 *4)) (-5 *1 (-1159 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-870 *3 *5 *4)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) (-1333 (*1 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-14 *8 (-578 *5)) (-5 *2 (-1154)) (-5 *1 (-1159 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-870 *4 *6 *5)) (-14 *9 (-578 *3)) (-14 *10 *3))))
-(-13 (-959) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -3691 (|#4| $)) (IF (|has| |#1| (-331)) (-15 -3803 ((-3 $ "failed") $ $)) |noBranch|) (-15 -3691 ($ |#4|)) (-15 -1333 ((-1154) (-701)))))
-((-3736 (((-107) $ $) NIL)) (-3016 (((-578 (-2 (|:| -2109 $) (|:| -2342 (-578 |#4|)))) (-578 |#4|)) NIL)) (-2073 (((-578 $) (-578 |#4|)) 87)) (-3800 (((-578 |#3|) $) NIL)) (-3482 (((-107) $) NIL)) (-1189 (((-107) $) NIL (|has| |#1| (-508)))) (-1549 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2599 ((|#4| |#4| $) NIL)) (-2861 (((-2 (|:| |under| $) (|:| -3383 $) (|:| |upper| $)) $ |#3|) NIL)) (-2997 (((-107) $ (-701)) NIL)) (-1987 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2540 (($) NIL T CONST)) (-2772 (((-107) $) NIL (|has| |#1| (-508)))) (-2606 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1408 (((-107) $ $) NIL (|has| |#1| (-508)))) (-1662 (((-107) $) NIL (|has| |#1| (-508)))) (-4113 (((-578 |#4|) (-578 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 27)) (-4110 (((-578 |#4|) (-578 |#4|) $) 24 (|has| |#1| (-508)))) (-2339 (((-578 |#4|) (-578 |#4|) $) NIL (|has| |#1| (-508)))) (-3765 (((-3 $ "failed") (-578 |#4|)) NIL)) (-3490 (($ (-578 |#4|)) NIL)) (-1199 (((-3 $ "failed") $) 69)) (-1778 ((|#4| |#4| $) 74)) (-2673 (($ $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-1526 (($ |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-1852 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2130 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-1379 ((|#4| |#4| $) NIL)) (-3547 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4167))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4167))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1577 (((-2 (|:| -2109 (-578 |#4|)) (|:| -2342 (-578 |#4|))) $) NIL)) (-2732 (((-578 |#4|) $) NIL (|has| $ (-6 -4167)))) (-1964 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2361 ((|#3| $) 75)) (-3379 (((-107) $ (-701)) NIL)) (-3380 (((-578 |#4|) $) 28 (|has| $ (-6 -4167)))) (-2211 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001))))) (-2814 (((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-578 |#4|)) 34)) (-2519 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4168)))) (-1212 (($ (-1 |#4| |#4|) $) NIL)) (-3453 (((-578 |#3|) $) NIL)) (-1479 (((-107) |#3| $) NIL)) (-3155 (((-107) $ (-701)) NIL)) (-3460 (((-1053) $) NIL)) (-1383 (((-3 |#4| "failed") $) NIL)) (-3574 (((-578 |#4|) $) 49)) (-1590 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1762 ((|#4| |#4| $) 73)) (-3523 (((-107) $ $) 84)) (-2200 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-508)))) (-2667 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3618 ((|#4| |#4| $) NIL)) (-3708 (((-1018) $) NIL)) (-1190 (((-3 |#4| "failed") $) 68)) (-2520 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-3478 (((-3 $ "failed") $ |#4|) NIL)) (-3718 (($ $ |#4|) NIL)) (-2369 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3195 (($ $ (-578 |#4|) (-578 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-262 |#4|)) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001)))) (($ $ (-578 (-262 |#4|))) NIL (-12 (|has| |#4| (-278 |#4|)) (|has| |#4| (-1001))))) (-1262 (((-107) $ $) NIL)) (-1407 (((-107) $) 66)) (-3122 (($) 41)) (-1201 (((-701) $) NIL)) (-3713 (((-701) |#4| $) NIL (-12 (|has| $ (-6 -4167)) (|has| |#4| (-1001)))) (((-701) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-3764 (($ $) NIL)) (-1248 (((-490) $) NIL (|has| |#4| (-556 (-490))))) (-3699 (($ (-578 |#4|)) NIL)) (-1638 (($ $ |#3|) NIL)) (-2482 (($ $ |#3|) NIL)) (-1218 (($ $) NIL)) (-3737 (($ $ |#3|) NIL)) (-3691 (((-786) $) NIL) (((-578 |#4|) $) 56)) (-4104 (((-701) $) NIL (|has| |#3| (-336)))) (-3805 (((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 39) (((-3 $ "failed") (-578 |#4|)) 40)) (-3367 (((-578 $) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 64) (((-578 $) (-578 |#4|)) 65)) (-1596 (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4| |#4|)) 23) (((-3 (-2 (|:| |bas| $) (|:| -2425 (-578 |#4|))) "failed") (-578 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2560 (((-107) $ (-1 (-107) |#4| (-578 |#4|))) NIL)) (-1200 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4167)))) (-2617 (((-578 |#3|) $) NIL)) (-2659 (((-107) |#3| $) NIL)) (-3751 (((-107) $ $) NIL)) (-3581 (((-701) $) NIL (|has| $ (-6 -4167)))))
-(((-1160 |#1| |#2| |#3| |#4|) (-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2814 ((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2814 ((-3 $ "failed") (-578 |#4|))) (-15 -3805 ((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3805 ((-3 $ "failed") (-578 |#4|))) (-15 -3367 ((-578 $) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3367 ((-578 $) (-578 |#4|))))) (-508) (-723) (-777) (-972 |#1| |#2| |#3|)) (T -1160))
-((-2814 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1160 *5 *6 *7 *8)))) (-2814 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1160 *3 *4 *5 *6)))) (-3805 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1160 *5 *6 *7 *8)))) (-3805 (*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1160 *3 *4 *5 *6)))) (-3367 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-578 (-1160 *6 *7 *8 *9))) (-5 *1 (-1160 *6 *7 *8 *9)))) (-3367 (*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-1160 *4 *5 *6 *7))) (-5 *1 (-1160 *4 *5 *6 *7)))))
-(-13 (-1099 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2814 ((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2814 ((-3 $ "failed") (-578 |#4|))) (-15 -3805 ((-3 $ "failed") (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3805 ((-3 $ "failed") (-578 |#4|))) (-15 -3367 ((-578 $) (-578 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3367 ((-578 $) (-578 |#4|)))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3177 (((-3 $ "failed") $ $) 19)) (-2540 (($) 17 T CONST)) (-2174 (((-3 $ "failed") $) 34)) (-1355 (((-107) $) 31)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#1|) 40)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ |#1|) 42) (($ |#1| $) 41)))
-(((-1161 |#1|) (-1180) (-959)) (T -1161))
-((-3691 (*1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-959)))))
-(-13 (-959) (-106 |t#1| |t#1|) (-10 -8 (-15 -3691 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 |#1|) |has| |#1| (-156)) ((-657) . T) ((-964 |#1|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 |#1|) $) 45)) (-2055 (($ $ (-701)) 39)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $ (-701)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-2540 (($) NIL T CONST)) (-2194 (($ $ $) 61) (($ $ (-749 |#1|)) 48) (($ $ |#1|) 52)) (-3765 (((-3 (-749 |#1|) "failed") $) NIL)) (-3490 (((-749 |#1|) $) NIL)) (-3858 (($ $) 32)) (-2174 (((-3 $ "failed") $) NIL)) (-2083 (((-107) $) NIL)) (-2957 (($ $) NIL)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-749 |#1|) |#2|) 31)) (-3660 (($ $) 33)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) 11)) (-2344 (((-749 |#1|) $) NIL)) (-3295 (((-749 |#1|) $) 34)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3049 (($ $ $) 60) (($ $ (-749 |#1|)) 50) (($ $ |#1|) 54)) (-3950 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3845 (((-749 |#1|) $) 28)) (-3850 ((|#2| $) 30)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1201 (((-701) $) 36)) (-2490 (((-107) $) 40)) (-3897 ((|#2| $) NIL)) (-3691 (((-786) $) NIL) (($ (-749 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-501)) NIL)) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-749 |#1|)) NIL)) (-3189 ((|#2| $ $) 63) ((|#2| $ (-749 |#1|)) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (-1850 (($) 12 T CONST)) (-1925 (($) 14 T CONST)) (-1914 (((-578 (-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3751 (((-107) $ $) 38)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 21)) (** (($ $ (-701)) NIL) (($ $ (-839)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (-749 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1162 |#1| |#2|) (-13 (-352 |#2| (-749 |#1|)) (-1169 |#1| |#2|)) (-777) (-959)) (T -1162))
-NIL
-(-13 (-352 |#2| (-749 |#1|)) (-1169 |#1| |#2|))
-((-1635 ((|#3| |#3| (-701)) 23)) (-1989 ((|#3| |#3| (-701)) 28)) (-2472 ((|#3| |#3| |#3| (-701)) 29)))
-(((-1163 |#1| |#2| |#3|) (-10 -7 (-15 -1989 (|#3| |#3| (-701))) (-15 -1635 (|#3| |#3| (-701))) (-15 -2472 (|#3| |#3| |#3| (-701)))) (-13 (-959) (-648 (-375 (-501)))) (-777) (-1169 |#2| |#1|)) (T -1163))
-((-2472 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))) (-1635 (*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))) (-1989 (*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))))
-(-10 -7 (-15 -1989 (|#3| |#3| (-701))) (-15 -1635 (|#3| |#3| (-701))) (-15 -2472 (|#3| |#3| |#3| (-701))))
-((-3590 (((-107) $) 13)) (-2659 (((-107) $) 12)) (-3184 (($ $) 17) (($ $ (-701)) 18)))
-(((-1164 |#1| |#2|) (-10 -8 (-15 -3184 (|#1| |#1| (-701))) (-15 -3184 (|#1| |#1|)) (-15 -3590 ((-107) |#1|)) (-15 -2659 ((-107) |#1|))) (-1165 |#2|) (-331)) (T -1164))
-NIL
-(-10 -8 (-15 -3184 (|#1| |#1| (-701))) (-15 -3184 (|#1| |#1|)) (-15 -3590 ((-107) |#1|)) (-15 -2659 ((-107) |#1|)))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-1516 (((-2 (|:| -1738 $) (|:| -4154 $) (|:| |associate| $)) $) 41)) (-2865 (($ $) 40)) (-1639 (((-107) $) 38)) (-3590 (((-107) $) 95)) (-1732 (((-701)) 91)) (-3177 (((-3 $ "failed") $ $) 19)) (-3676 (($ $) 73)) (-1559 (((-373 $) $) 72)) (-2781 (((-107) $ $) 59)) (-2540 (($) 17 T CONST)) (-3765 (((-3 |#1| "failed") $) 102)) (-3490 ((|#1| $) 101)) (-3023 (($ $ $) 55)) (-2174 (((-3 $ "failed") $) 34)) (-3034 (($ $ $) 56)) (-3730 (((-2 (|:| -3189 (-578 $)) (|:| -3987 $)) (-578 $)) 51)) (-3067 (($ $ (-701)) 88 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336)))) (($ $) 87 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1628 (((-107) $) 71)) (-3169 (((-762 (-839)) $) 85 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-1355 (((-107) $) 31)) (-1234 (((-3 (-578 $) "failed") (-578 $) $) 52)) (-1697 (($ $ $) 46) (($ (-578 $)) 45)) (-3460 (((-1053) $) 9)) (-3833 (($ $) 70)) (-2255 (((-107) $) 94)) (-3708 (((-1018) $) 10)) (-3424 (((-1064 $) (-1064 $) (-1064 $)) 44)) (-3664 (($ $ $) 48) (($ (-578 $)) 47)) (-3739 (((-373 $) $) 74)) (-2906 (((-762 (-839))) 92)) (-3776 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3987 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3694 (((-3 $ "failed") $ $) 42)) (-2648 (((-3 (-578 $) "failed") (-578 $) $) 50)) (-1864 (((-701) $) 58)) (-2419 (((-2 (|:| -3236 $) (|:| -1852 $)) $ $) 57)) (-1984 (((-3 (-701) "failed") $ $) 86 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3613 (((-125)) 100)) (-1201 (((-762 (-839)) $) 93)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ $) 43) (($ (-375 (-501))) 65) (($ |#1|) 103)) (-1274 (((-3 $ "failed") $) 84 (-1405 (|has| |#1| (-132)) (|has| |#1| (-336))))) (-3965 (((-701)) 29)) (-2442 (((-107) $ $) 39)) (-2659 (((-107) $) 96)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33) (($ $ (-501)) 69)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3184 (($ $) 90 (|has| |#1| (-336))) (($ $ (-701)) 89 (|has| |#1| (-336)))) (-3751 (((-107) $ $) 6)) (-3803 (($ $ $) 64) (($ $ |#1|) 99)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32) (($ $ (-501)) 68)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ $ (-375 (-501))) 67) (($ (-375 (-501)) $) 66) (($ $ |#1|) 98) (($ |#1| $) 97)))
-(((-1165 |#1|) (-1180) (-331)) (T -1165))
-((-2659 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-762 (-839))))) (-2906 (*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-762 (-839))))) (-1732 (*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-701)))) (-3184 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-331)) (-4 *2 (-336)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-4 *3 (-336)))))
-(-13 (-331) (-950 |t#1|) (-1156 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-370)) |noBranch|) (-15 -2659 ((-107) $)) (-15 -3590 ((-107) $)) (-15 -2255 ((-107) $)) (-15 -1201 ((-762 (-839)) $)) (-15 -2906 ((-762 (-839)))) (-15 -1732 ((-701))) (IF (|has| |t#1| (-336)) (PROGN (-6 (-370)) (-15 -3184 ($ $)) (-15 -3184 ($ $ (-701)))) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-375 (-501))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-375 (-501)) (-375 (-501))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -1405 (|has| |#1| (-336)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-555 (-786)) . T) ((-156) . T) ((-216) . T) ((-260) . T) ((-276) . T) ((-331) . T) ((-370) -1405 (|has| |#1| (-336)) (|has| |#1| (-132))) ((-419) . T) ((-508) . T) ((-583 (-375 (-501))) . T) ((-583 |#1|) . T) ((-583 $) . T) ((-648 (-375 (-501))) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-657) . T) ((-841) . T) ((-950 |#1|) . T) ((-964 (-375 (-501))) . T) ((-964 |#1|) . T) ((-964 $) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1108) . T) ((-1156 |#1|) . T))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3514 (((-578 |#1|) $) 42)) (-3177 (((-3 $ "failed") $ $) 19)) (-3321 (($ $ $) 45 (|has| |#2| (-156))) (($ $ (-701)) 44 (|has| |#2| (-156)))) (-2540 (($) 17 T CONST)) (-2194 (($ $ |#1|) 56) (($ $ (-749 |#1|)) 55) (($ $ $) 54)) (-3765 (((-3 (-749 |#1|) "failed") $) 66)) (-3490 (((-749 |#1|) $) 65)) (-2174 (((-3 $ "failed") $) 34)) (-2083 (((-107) $) 47)) (-2957 (($ $) 46)) (-1355 (((-107) $) 31)) (-2706 (((-107) $) 52)) (-2607 (($ (-749 |#1|) |#2|) 53)) (-3660 (($ $) 51)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) 62)) (-2344 (((-749 |#1|) $) 63)) (-1212 (($ (-1 |#2| |#2|) $) 43)) (-3049 (($ $ |#1|) 59) (($ $ (-749 |#1|)) 58) (($ $ $) 57)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-2490 (((-107) $) 49)) (-3897 ((|#2| $) 48)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#2|) 70) (($ (-749 |#1|)) 67) (($ |#1|) 50)) (-3189 ((|#2| $ (-749 |#1|)) 61) ((|#2| $ $) 60)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ |#2| $) 69) (($ $ |#2|) 68) (($ |#1| $) 64)))
-(((-1166 |#1| |#2|) (-1180) (-777) (-959)) (T -1166))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2344 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-749 *3)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-2 (|:| |k| (-749 *3)) (|:| |c| *4))))) (-3189 (*1 *2 *1 *3) (-12 (-5 *3 (-749 *4)) (-4 *1 (-1166 *4 *2)) (-4 *4 (-777)) (-4 *2 (-959)))) (-3189 (*1 *2 *1 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) (-3049 (*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-3049 (*1 *1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) (-3049 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2194 (*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2194 (*1 *1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) (-2194 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2607 (*1 *1 *2 *3) (-12 (-5 *2 (-749 *4)) (-4 *4 (-777)) (-4 *1 (-1166 *4 *3)) (-4 *3 (-959)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) (-3660 (*1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-3691 (*1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-2490 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) (-3897 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) (-2083 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) (-2957 (*1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) (-3321 (*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)) (-4 *3 (-156)))) (-3321 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-4 *4 (-156)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) (-3514 (*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-578 *3)))))
-(-13 (-959) (-1161 |t#2|) (-950 (-749 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2344 ((-749 |t#1|) $)) (-15 -3622 ((-2 (|:| |k| (-749 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3189 (|t#2| $ (-749 |t#1|))) (-15 -3189 (|t#2| $ $)) (-15 -3049 ($ $ |t#1|)) (-15 -3049 ($ $ (-749 |t#1|))) (-15 -3049 ($ $ $)) (-15 -2194 ($ $ |t#1|)) (-15 -2194 ($ $ (-749 |t#1|))) (-15 -2194 ($ $ $)) (-15 -2607 ($ (-749 |t#1|) |t#2|)) (-15 -2706 ((-107) $)) (-15 -3660 ($ $)) (-15 -3691 ($ |t#1|)) (-15 -2490 ((-107) $)) (-15 -3897 (|t#2| $)) (-15 -2083 ((-107) $)) (-15 -2957 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -3321 ($ $ $)) (-15 -3321 ($ $ (-701)))) |noBranch|) (-15 -1212 ($ (-1 |t#2| |t#2|) $)) (-15 -3514 ((-578 |t#1|) $)) (IF (|has| |t#2| (-6 -4160)) (-6 -4160) |noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-648 |#2|) |has| |#2| (-156)) ((-657) . T) ((-950 (-749 |#1|)) . T) ((-964 |#2|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1161 |#2|) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 |#1|) $) 84)) (-2055 (($ $ (-701)) 87)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-701)) NIL (|has| |#2| (-156)))) (-2540 (($) NIL T CONST)) (-2194 (($ $ |#1|) NIL) (($ $ (-749 |#1|)) NIL) (($ $ $) NIL)) (-3765 (((-3 (-749 |#1|) "failed") $) NIL) (((-3 (-813 |#1|) "failed") $) NIL)) (-3490 (((-749 |#1|) $) NIL) (((-813 |#1|) $) NIL)) (-3858 (($ $) 86)) (-2174 (((-3 $ "failed") $) NIL)) (-2083 (((-107) $) 75)) (-2957 (($ $) 79)) (-1758 (($ $ $ (-701)) 88)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-749 |#1|) |#2|) NIL) (($ (-813 |#1|) |#2|) 25)) (-3660 (($ $) 101)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2344 (((-749 |#1|) $) NIL)) (-3295 (((-749 |#1|) $) NIL)) (-1212 (($ (-1 |#2| |#2|) $) NIL)) (-3049 (($ $ |#1|) NIL) (($ $ (-749 |#1|)) NIL) (($ $ $) NIL)) (-1635 (($ $ (-701)) 95 (|has| |#2| (-648 (-375 (-501)))))) (-3950 (((-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3845 (((-813 |#1|) $) 69)) (-3850 ((|#2| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1989 (($ $ (-701)) 92 (|has| |#2| (-648 (-375 (-501)))))) (-1201 (((-701) $) 85)) (-2490 (((-107) $) 70)) (-3897 ((|#2| $) 74)) (-3691 (((-786) $) 56) (($ (-501)) NIL) (($ |#2|) 50) (($ (-749 |#1|)) NIL) (($ |#1|) 58) (($ (-813 |#1|)) NIL) (($ (-599 |#1| |#2|)) 42) (((-1162 |#1| |#2|) $) 63) (((-1171 |#1| |#2|) $) 68)) (-1303 (((-578 |#2|) $) NIL)) (-2495 ((|#2| $ (-813 |#1|)) NIL)) (-3189 ((|#2| $ (-749 |#1|)) NIL) ((|#2| $ $) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 21 T CONST)) (-1925 (($) 24 T CONST)) (-1914 (((-578 (-2 (|:| |k| (-813 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1832 (((-3 (-599 |#1| |#2|) "failed") $) 100)) (-3751 (((-107) $ $) 64)) (-3797 (($ $) 94) (($ $ $) 93)) (-3790 (($ $ $) 20)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-813 |#1|)) NIL)))
-(((-1167 |#1| |#2|) (-13 (-1169 |#1| |#2|) (-352 |#2| (-813 |#1|)) (-10 -8 (-15 -3691 ($ (-599 |#1| |#2|))) (-15 -3691 ((-1162 |#1| |#2|) $)) (-15 -3691 ((-1171 |#1| |#2|) $)) (-15 -1832 ((-3 (-599 |#1| |#2|) "failed") $)) (-15 -1758 ($ $ $ (-701))) (IF (|has| |#2| (-648 (-375 (-501)))) (PROGN (-15 -1989 ($ $ (-701))) (-15 -1635 ($ $ (-701)))) |noBranch|))) (-777) (-156)) (T -1167))
-((-3691 (*1 *1 *2) (-12 (-5 *2 (-599 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *1 (-1167 *3 *4)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-1832 (*1 *2 *1) (|partial| -12 (-5 *2 (-599 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-1758 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) (-1989 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *4 (-648 (-375 (-501)))) (-4 *3 (-777)) (-4 *4 (-156)))) (-1635 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *4 (-648 (-375 (-501)))) (-4 *3 (-777)) (-4 *4 (-156)))))
-(-13 (-1169 |#1| |#2|) (-352 |#2| (-813 |#1|)) (-10 -8 (-15 -3691 ($ (-599 |#1| |#2|))) (-15 -3691 ((-1162 |#1| |#2|) $)) (-15 -3691 ((-1171 |#1| |#2|) $)) (-15 -1832 ((-3 (-599 |#1| |#2|) "failed") $)) (-15 -1758 ($ $ $ (-701))) (IF (|has| |#2| (-648 (-375 (-501)))) (PROGN (-15 -1989 ($ $ (-701))) (-15 -1635 ($ $ (-701)))) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 (-1070)) $) NIL)) (-1538 (($ (-1162 (-1070) |#1|)) NIL)) (-2055 (($ $ (-701)) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-701)) NIL (|has| |#1| (-156)))) (-2540 (($) NIL T CONST)) (-2194 (($ $ (-1070)) NIL) (($ $ (-749 (-1070))) NIL) (($ $ $) NIL)) (-3765 (((-3 (-749 (-1070)) "failed") $) NIL)) (-3490 (((-749 (-1070)) $) NIL)) (-2174 (((-3 $ "failed") $) NIL)) (-2083 (((-107) $) NIL)) (-2957 (($ $) NIL)) (-1355 (((-107) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-749 (-1070)) |#1|) NIL)) (-3660 (($ $) NIL)) (-3622 (((-2 (|:| |k| (-749 (-1070))) (|:| |c| |#1|)) $) NIL)) (-2344 (((-749 (-1070)) $) NIL)) (-3295 (((-749 (-1070)) $) NIL)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3049 (($ $ (-1070)) NIL) (($ $ (-749 (-1070))) NIL) (($ $ $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1967 (((-1162 (-1070) |#1|) $) NIL)) (-1201 (((-701) $) NIL)) (-2490 (((-107) $) NIL)) (-3897 ((|#1| $) NIL)) (-3691 (((-786) $) NIL) (($ (-501)) NIL) (($ |#1|) NIL) (($ (-749 (-1070))) NIL) (($ (-1070)) NIL)) (-3189 ((|#1| $ (-749 (-1070))) NIL) ((|#1| $ $) NIL)) (-3965 (((-701)) NIL)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) NIL T CONST)) (-2912 (((-578 (-2 (|:| |k| (-1070)) (|:| |c| $))) $) NIL)) (-1925 (($) NIL T CONST)) (-3751 (((-107) $ $) NIL)) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) NIL)) (** (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1070) $) NIL)))
-(((-1168 |#1|) (-13 (-1169 (-1070) |#1|) (-10 -8 (-15 -1967 ((-1162 (-1070) |#1|) $)) (-15 -1538 ($ (-1162 (-1070) |#1|))) (-15 -2912 ((-578 (-2 (|:| |k| (-1070)) (|:| |c| $))) $)))) (-959)) (T -1168))
-((-1967 (*1 *2 *1) (-12 (-5 *2 (-1162 (-1070) *3)) (-5 *1 (-1168 *3)) (-4 *3 (-959)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1162 (-1070) *3)) (-4 *3 (-959)) (-5 *1 (-1168 *3)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-1070)) (|:| |c| (-1168 *3))))) (-5 *1 (-1168 *3)) (-4 *3 (-959)))))
-(-13 (-1169 (-1070) |#1|) (-10 -8 (-15 -1967 ((-1162 (-1070) |#1|) $)) (-15 -1538 ($ (-1162 (-1070) |#1|))) (-15 -2912 ((-578 (-2 (|:| |k| (-1070)) (|:| |c| $))) $))))
-((-3736 (((-107) $ $) 7)) (-3292 (((-107) $) 16)) (-3514 (((-578 |#1|) $) 42)) (-2055 (($ $ (-701)) 75)) (-3177 (((-3 $ "failed") $ $) 19)) (-3321 (($ $ $) 45 (|has| |#2| (-156))) (($ $ (-701)) 44 (|has| |#2| (-156)))) (-2540 (($) 17 T CONST)) (-2194 (($ $ |#1|) 56) (($ $ (-749 |#1|)) 55) (($ $ $) 54)) (-3765 (((-3 (-749 |#1|) "failed") $) 66)) (-3490 (((-749 |#1|) $) 65)) (-2174 (((-3 $ "failed") $) 34)) (-2083 (((-107) $) 47)) (-2957 (($ $) 46)) (-1355 (((-107) $) 31)) (-2706 (((-107) $) 52)) (-2607 (($ (-749 |#1|) |#2|) 53)) (-3660 (($ $) 51)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) 62)) (-2344 (((-749 |#1|) $) 63)) (-3295 (((-749 |#1|) $) 77)) (-1212 (($ (-1 |#2| |#2|) $) 43)) (-3049 (($ $ |#1|) 59) (($ $ (-749 |#1|)) 58) (($ $ $) 57)) (-3460 (((-1053) $) 9)) (-3708 (((-1018) $) 10)) (-1201 (((-701) $) 76)) (-2490 (((-107) $) 49)) (-3897 ((|#2| $) 48)) (-3691 (((-786) $) 11) (($ (-501)) 28) (($ |#2|) 70) (($ (-749 |#1|)) 67) (($ |#1|) 50)) (-3189 ((|#2| $ (-749 |#1|)) 61) ((|#2| $ $) 60)) (-3965 (((-701)) 29)) (-3948 (($ $ (-839)) 26) (($ $ (-701)) 33)) (-1850 (($) 18 T CONST)) (-1925 (($) 30 T CONST)) (-3751 (((-107) $ $) 6)) (-3797 (($ $) 22) (($ $ $) 21)) (-3790 (($ $ $) 14)) (** (($ $ (-839)) 25) (($ $ (-701)) 32)) (* (($ (-839) $) 13) (($ (-701) $) 15) (($ (-501) $) 20) (($ $ $) 24) (($ |#2| $) 69) (($ $ |#2|) 68) (($ |#1| $) 64)))
-(((-1169 |#1| |#2|) (-1180) (-777) (-959)) (T -1169))
-((-3295 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-749 *3)))) (-1201 (*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-701)))) (-2055 (*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))))
-(-13 (-1166 |t#1| |t#2|) (-10 -8 (-15 -3295 ((-749 |t#1|) $)) (-15 -1201 ((-701) $)) (-15 -2055 ($ $ (-701)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-555 (-786)) . T) ((-583 |#2|) . T) ((-583 $) . T) ((-648 |#2|) |has| |#2| (-156)) ((-657) . T) ((-950 (-749 |#1|)) . T) ((-964 |#2|) . T) ((-959) . T) ((-965) . T) ((-1012) . T) ((-1001) . T) ((-1161 |#2|) . T) ((-1166 |#1| |#2|) . T))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3177 (((-3 $ "failed") $ $) NIL)) (-2540 (($) NIL T CONST)) (-3765 (((-3 |#2| "failed") $) NIL)) (-3490 ((|#2| $) NIL)) (-3858 (($ $) NIL)) (-2174 (((-3 $ "failed") $) 34)) (-2083 (((-107) $) 29)) (-2957 (($ $) 30)) (-1355 (((-107) $) NIL)) (-3706 (((-701) $) NIL)) (-2713 (((-578 $) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ |#2| |#1|) NIL)) (-2344 ((|#2| $) 19)) (-3295 ((|#2| $) 16)) (-1212 (($ (-1 |#1| |#1|) $) NIL)) (-3950 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3845 ((|#2| $) NIL)) (-3850 ((|#1| $) NIL)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-2490 (((-107) $) 27)) (-3897 ((|#1| $) 28)) (-3691 (((-786) $) 53) (($ (-501)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (-1303 (((-578 |#1|) $) NIL)) (-2495 ((|#1| $ |#2|) NIL)) (-3189 ((|#1| $ |#2|) 24)) (-3965 (((-701)) 14)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 25 T CONST)) (-1925 (($) 11 T CONST)) (-1914 (((-578 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3751 (((-107) $ $) 26)) (-3803 (($ $ |#1|) 55 (|has| |#1| (-331)))) (-3797 (($ $) NIL) (($ $ $) NIL)) (-3790 (($ $ $) 42)) (** (($ $ (-839)) NIL) (($ $ (-701)) 44)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3581 (((-701) $) 15)))
-(((-1170 |#1| |#2|) (-13 (-959) (-1161 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3581 ((-701) $)) (-15 -3691 ($ |#2|)) (-15 -3295 (|#2| $)) (-15 -2344 (|#2| $)) (-15 -3858 ($ $)) (-15 -3189 (|#1| $ |#2|)) (-15 -2490 ((-107) $)) (-15 -3897 (|#1| $)) (-15 -2083 ((-107) $)) (-15 -2957 ($ $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-331)) (-15 -3803 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4160)) (-6 -4160) |noBranch|) (IF (|has| |#1| (-6 -4164)) (-6 -4164) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|))) (-959) (-773)) (T -1170))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773)))) (-3858 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773)))) (-1212 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-1170 *3 *4)) (-4 *4 (-773)))) (-3691 (*1 *1 *2) (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)) (-4 *2 (-773)))) (-3581 (*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773)))) (-3295 (*1 *2 *1) (-12 (-4 *2 (-773)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)))) (-2344 (*1 *2 *1) (-12 (-4 *2 (-773)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)))) (-3189 (*1 *2 *1 *3) (-12 (-4 *2 (-959)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-773)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773)))) (-3897 (*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-773)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773)))) (-2957 (*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773)))) (-3803 (*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-331)) (-4 *2 (-959)) (-4 *3 (-773)))))
-(-13 (-959) (-1161 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3581 ((-701) $)) (-15 -3691 ($ |#2|)) (-15 -3295 (|#2| $)) (-15 -2344 (|#2| $)) (-15 -3858 ($ $)) (-15 -3189 (|#1| $ |#2|)) (-15 -2490 ((-107) $)) (-15 -3897 (|#1| $)) (-15 -2083 ((-107) $)) (-15 -2957 ($ $)) (-15 -1212 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-331)) (-15 -3803 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4160)) (-6 -4160) |noBranch|) (IF (|has| |#1| (-6 -4164)) (-6 -4164) |noBranch|) (IF (|has| |#1| (-6 -4165)) (-6 -4165) |noBranch|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) NIL)) (-3514 (((-578 |#1|) $) 119)) (-1538 (($ (-1162 |#1| |#2|)) 43)) (-2055 (($ $ (-701)) 31)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $ $) 47 (|has| |#2| (-156))) (($ $ (-701)) 45 (|has| |#2| (-156)))) (-2540 (($) NIL T CONST)) (-2194 (($ $ |#1|) 101) (($ $ (-749 |#1|)) 102) (($ $ $) 25)) (-3765 (((-3 (-749 |#1|) "failed") $) NIL)) (-3490 (((-749 |#1|) $) NIL)) (-2174 (((-3 $ "failed") $) 109)) (-2083 (((-107) $) 104)) (-2957 (($ $) 105)) (-1355 (((-107) $) NIL)) (-2706 (((-107) $) NIL)) (-2607 (($ (-749 |#1|) |#2|) 19)) (-3660 (($ $) NIL)) (-3622 (((-2 (|:| |k| (-749 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2344 (((-749 |#1|) $) 110)) (-3295 (((-749 |#1|) $) 113)) (-1212 (($ (-1 |#2| |#2|) $) 118)) (-3049 (($ $ |#1|) 99) (($ $ (-749 |#1|)) 100) (($ $ $) 55)) (-3460 (((-1053) $) NIL)) (-3708 (((-1018) $) NIL)) (-1967 (((-1162 |#1| |#2|) $) 83)) (-1201 (((-701) $) 116)) (-2490 (((-107) $) 69)) (-3897 ((|#2| $) 27)) (-3691 (((-786) $) 62) (($ (-501)) 76) (($ |#2|) 73) (($ (-749 |#1|)) 17) (($ |#1|) 72)) (-3189 ((|#2| $ (-749 |#1|)) 103) ((|#2| $ $) 26)) (-3965 (((-701)) 107)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 14 T CONST)) (-2912 (((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 52)) (-1925 (($) 28 T CONST)) (-3751 (((-107) $ $) 13)) (-3797 (($ $) 87) (($ $ $) 90)) (-3790 (($ $ $) 54)) (** (($ $ (-839)) NIL) (($ $ (-701)) 48)) (* (($ (-839) $) NIL) (($ (-701) $) 46) (($ (-501) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81)))
-(((-1171 |#1| |#2|) (-13 (-1169 |#1| |#2|) (-10 -8 (-15 -1967 ((-1162 |#1| |#2|) $)) (-15 -1538 ($ (-1162 |#1| |#2|))) (-15 -2912 ((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-777) (-959)) (T -1171))
-((-1967 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *1 (-1171 *3 *4)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| *3) (|:| |c| (-1171 *3 *4))))) (-5 *1 (-1171 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))))
-(-13 (-1169 |#1| |#2|) (-10 -8 (-15 -1967 ((-1162 |#1| |#2|) $)) (-15 -1538 ($ (-1162 |#1| |#2|))) (-15 -2912 ((-578 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-1893 (((-578 (-1048 |#1|)) (-1 (-578 (-1048 |#1|)) (-578 (-1048 |#1|))) (-501)) 15) (((-1048 |#1|) (-1 (-1048 |#1|) (-1048 |#1|))) 11)))
-(((-1172 |#1|) (-10 -7 (-15 -1893 ((-1048 |#1|) (-1 (-1048 |#1|) (-1048 |#1|)))) (-15 -1893 ((-578 (-1048 |#1|)) (-1 (-578 (-1048 |#1|)) (-578 (-1048 |#1|))) (-501)))) (-1104)) (T -1172))
-((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 (-1048 *5)) (-578 (-1048 *5)))) (-5 *4 (-501)) (-5 *2 (-578 (-1048 *5))) (-5 *1 (-1172 *5)) (-4 *5 (-1104)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-1 (-1048 *4) (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-1104)))))
-(-10 -7 (-15 -1893 ((-1048 |#1|) (-1 (-1048 |#1|) (-1048 |#1|)))) (-15 -1893 ((-578 (-1048 |#1|)) (-1 (-578 (-1048 |#1|)) (-578 (-1048 |#1|))) (-501))))
-((-1617 (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|))) 145) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107)) 144) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107)) 143) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107) (-107)) 142) (((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-956 |#1| |#2|)) 127)) (-1625 (((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|))) 70) (((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107)) 69) (((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107) (-107)) 68)) (-1559 (((-578 (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))) (-956 |#1| |#2|)) 59)) (-2679 (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|))) 112) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107)) 111) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107)) 110) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107) (-107)) 109) (((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|)) 104)) (-1634 (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|))) 117) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107)) 116) (((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107)) 115) (((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|)) 114)) (-1248 (((-578 (-710 |#1| (-787 |#3|))) (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))) 96) (((-1064 (-937 (-375 |#1|))) (-1064 |#1|)) 87) (((-866 (-937 (-375 |#1|))) (-710 |#1| (-787 |#3|))) 94) (((-866 (-937 (-375 |#1|))) (-866 |#1|)) 92) (((-710 |#1| (-787 |#3|)) (-710 |#1| (-787 |#2|))) 32)))
-(((-1173 |#1| |#2| |#3|) (-10 -7 (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107))) (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-956 |#1| |#2|))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)))) (-15 -1559 ((-578 (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))) (-956 |#1| |#2|))) (-15 -1248 ((-710 |#1| (-787 |#3|)) (-710 |#1| (-787 |#2|)))) (-15 -1248 ((-866 (-937 (-375 |#1|))) (-866 |#1|))) (-15 -1248 ((-866 (-937 (-375 |#1|))) (-710 |#1| (-787 |#3|)))) (-15 -1248 ((-1064 (-937 (-375 |#1|))) (-1064 |#1|))) (-15 -1248 ((-578 (-710 |#1| (-787 |#3|))) (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))))) (-13 (-775) (-276) (-134) (-933)) (-578 (-1070)) (-578 (-1070))) (T -1173))
-((-1248 (*1 *2 *3) (-12 (-5 *3 (-1041 *4 (-487 (-787 *6)) (-787 *6) (-710 *4 (-787 *6)))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-710 *4 (-787 *6)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-1064 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-710 *4 (-787 *6))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *6 (-578 (-1070))) (-5 *2 (-866 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-866 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1248 (*1 *2 *3) (-12 (-5 *3 (-710 *4 (-787 *5))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-710 *4 (-787 *6))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-1041 *4 (-487 (-787 *6)) (-787 *6) (-710 *4 (-787 *6))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1634 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1634 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-2679 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-2679 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-2679 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-1617 (*1 *2 *3) (-12 (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-1173 *4 *5 *6)) (-5 *3 (-578 (-866 *4))) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1617 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1617 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1617 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) (-1625 (*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *4 *5))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) (-1625 (*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) (-1625 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))))
-(-10 -7 (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)) (-107))) (-15 -1625 ((-578 (-956 |#1| |#2|)) (-578 (-866 |#1|)))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-956 |#1| |#2|))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)) (-107))) (-15 -1617 ((-578 (-2 (|:| -1717 (-1064 |#1|)) (|:| -2085 (-578 (-866 |#1|))))) (-578 (-866 |#1|)))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107))) (-15 -2679 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-956 |#1| |#2|))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107) (-107))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)) (-107))) (-15 -1634 ((-578 (-578 (-937 (-375 |#1|)))) (-578 (-866 |#1|)))) (-15 -1559 ((-578 (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|)))) (-956 |#1| |#2|))) (-15 -1248 ((-710 |#1| (-787 |#3|)) (-710 |#1| (-787 |#2|)))) (-15 -1248 ((-866 (-937 (-375 |#1|))) (-866 |#1|))) (-15 -1248 ((-866 (-937 (-375 |#1|))) (-710 |#1| (-787 |#3|)))) (-15 -1248 ((-1064 (-937 (-375 |#1|))) (-1064 |#1|))) (-15 -1248 ((-578 (-710 |#1| (-787 |#3|))) (-1041 |#1| (-487 (-787 |#3|)) (-787 |#3|) (-710 |#1| (-787 |#3|))))))
-((-2800 (((-3 (-1148 (-375 (-501))) "failed") (-1148 |#1|) |#1|) 17)) (-2738 (((-107) (-1148 |#1|)) 11)) (-1585 (((-3 (-1148 (-501)) "failed") (-1148 |#1|)) 14)))
-(((-1174 |#1|) (-10 -7 (-15 -2738 ((-107) (-1148 |#1|))) (-15 -1585 ((-3 (-1148 (-501)) "failed") (-1148 |#1|))) (-15 -2800 ((-3 (-1148 (-375 (-501))) "failed") (-1148 |#1|) |#1|))) (-577 (-501))) (T -1174))
-((-2800 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-1148 (-375 (-501)))) (-5 *1 (-1174 *4)))) (-1585 (*1 *2 *3) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-1148 (-501))) (-5 *1 (-1174 *4)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-107)) (-5 *1 (-1174 *4)))))
-(-10 -7 (-15 -2738 ((-107) (-1148 |#1|))) (-15 -1585 ((-3 (-1148 (-501)) "failed") (-1148 |#1|))) (-15 -2800 ((-3 (-1148 (-375 (-501))) "failed") (-1148 |#1|) |#1|)))
-((-3736 (((-107) $ $) NIL)) (-3292 (((-107) $) 11)) (-3177 (((-3 $ "failed") $ $) NIL)) (-3796 (((-701)) 8)) (-2540 (($) NIL T CONST)) (-2174 (((-3 $ "failed") $) 43)) (-2890 (($) 36)) (-1355 (((-107) $) NIL)) (-3493 (((-3 $ "failed") $) 29)) (-3104 (((-839) $) 15)) (-3460 (((-1053) $) NIL)) (-3746 (($) 25 T CONST)) (-3506 (($ (-839)) 37)) (-3708 (((-1018) $) NIL)) (-1248 (((-501) $) 13)) (-3691 (((-786) $) 22) (($ (-501)) 19)) (-3965 (((-701)) 9)) (-3948 (($ $ (-839)) NIL) (($ $ (-701)) NIL)) (-1850 (($) 23 T CONST)) (-1925 (($) 24 T CONST)) (-3751 (((-107) $ $) 27)) (-3797 (($ $) 38) (($ $ $) 35)) (-3790 (($ $ $) 26)) (** (($ $ (-839)) NIL) (($ $ (-701)) 40)) (* (($ (-839) $) NIL) (($ (-701) $) NIL) (($ (-501) $) 32) (($ $ $) 31)))
-(((-1175 |#1|) (-13 (-156) (-336) (-556 (-501)) (-1046)) (-839)) (T -1175))
-NIL
-(-13 (-156) (-336) (-556 (-501)) (-1046))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-1180 3116125 3116130 3116135 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3116110 3116115 3116120 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3116095 3116100 3116105 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3116080 3116085 3116090 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3116065 3116070 3116075 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1175 3115195 3115940 3116017 "ZMOD" 3116022 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1174 3114305 3114469 3114678 "ZLINDEP" 3115027 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1173 3103709 3105454 3107406 "ZDSOLVE" 3112454 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1172 3102955 3103096 3103285 "YSTREAM" 3103555 NIL YSTREAM (NIL T) -7 NIL NIL) (-1171 3100724 3102260 3102463 "XRPOLY" 3102798 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1170 3097194 3098523 3099101 "XPR" 3100192 NIL XPR (NIL T T) -8 NIL NIL) (-1169 3095007 3096385 3096440 "XPOLYC" 3096725 NIL XPOLYC (NIL T T) -9 NIL 3096838) (-1168 3092721 3094342 3094545 "XPOLY" 3094838 NIL XPOLY (NIL T) -8 NIL NIL) (-1167 3089095 3091240 3091627 "XPBWPOLY" 3092380 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1166 3084476 3085775 3085830 "XFALG" 3087978 NIL XFALG (NIL T T) -9 NIL 3088763) (-1165 3080358 3082672 3082715 "XF" 3083336 NIL XF (NIL T) -9 NIL 3083732) (-1164 3079979 3080067 3080236 "XF-" 3080241 NIL XF- (NIL T T) -8 NIL NIL) (-1163 3079116 3079220 3079424 "XEXPPKG" 3079871 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1162 3077214 3078967 3079062 "XDPOLY" 3079067 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1161 3076093 3076703 3076746 "XALG" 3076808 NIL XALG (NIL T) -9 NIL 3076926) (-1160 3069569 3074077 3074570 "WUTSET" 3075685 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1159 3067385 3068192 3068541 "WP" 3069353 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1158 3066271 3066469 3066764 "WFFINTBS" 3067182 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1157 3064175 3064602 3065064 "WEIER" 3065843 NIL WEIER (NIL T) -7 NIL NIL) (-1156 3063323 3063747 3063790 "VSPACE" 3063926 NIL VSPACE (NIL T) -9 NIL 3064000) (-1155 3063161 3063188 3063279 "VSPACE-" 3063284 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1154 3062907 3062950 3063021 "VOID" 3063112 T VOID (NIL) -8 NIL NIL) (-1153 3059332 3059970 3060707 "VIEWDEF" 3062192 T VIEWDEF (NIL) -7 NIL NIL) (-1152 3048671 3050880 3053053 "VIEW3D" 3057181 T VIEW3D (NIL) -8 NIL NIL) (-1151 3040953 3042582 3044161 "VIEW2D" 3047114 T VIEW2D (NIL) -8 NIL NIL) (-1150 3039089 3039448 3039854 "VIEW" 3040569 T VIEW (NIL) -7 NIL NIL) (-1149 3037666 3037925 3038243 "VECTOR2" 3038819 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1148 3033081 3037436 3037528 "VECTOR" 3037609 NIL VECTOR (NIL T) -8 NIL NIL) (-1147 3026657 3030903 3030947 "VECTCAT" 3031935 NIL VECTCAT (NIL T) -9 NIL 3032512) (-1146 3025671 3025925 3026315 "VECTCAT-" 3026320 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1145 3025152 3025322 3025442 "VARIABLE" 3025586 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1144 3023989 3024143 3024403 "UTSODETL" 3024979 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1143 3021429 3021889 3022413 "UTSODE" 3023530 NIL UTSODE (NIL T T) -7 NIL NIL) (-1142 3012732 3018096 3018139 "UTSCAT" 3019240 NIL UTSCAT (NIL T) -9 NIL 3019990) (-1141 3010088 3010803 3011791 "UTSCAT-" 3011796 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1140 3009719 3009762 3009893 "UTS2" 3010039 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1139 3001569 3007361 3007848 "UTS" 3009289 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1138 2995886 2998445 2998489 "URAGG" 3000559 NIL URAGG (NIL T) -9 NIL 3001280) (-1137 2992825 2993688 2994811 "URAGG-" 2994816 NIL URAGG- (NIL T T) -8 NIL NIL) (-1136 2988511 2991442 2991913 "UPXSSING" 2992489 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1135 2981543 2988416 2988487 "UPXSCONS" 2988492 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1134 2971769 2978598 2978660 "UPXSCCA" 2979309 NIL UPXSCCA (NIL T T) -9 NIL 2979550) (-1133 2971408 2971493 2971666 "UPXSCCA-" 2971671 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1132 2961563 2968165 2968208 "UPXSCAT" 2968851 NIL UPXSCAT (NIL T) -9 NIL 2969452) (-1131 2960997 2961076 2961253 "UPXS2" 2961478 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1130 2952893 2960120 2960399 "UPXS" 2960775 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1129 2951547 2951800 2952151 "UPSQFREE" 2952636 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1128 2945399 2948453 2948508 "UPSCAT" 2949657 NIL UPSCAT (NIL T T) -9 NIL 2950424) (-1127 2944613 2944817 2945140 "UPSCAT-" 2945145 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1126 2944244 2944287 2944418 "UPOLYC2" 2944564 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1125 2930323 2938320 2938363 "UPOLYC" 2940441 NIL UPOLYC (NIL T) -9 NIL 2941655) (-1124 2921716 2924120 2927245 "UPOLYC-" 2927250 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1123 2921059 2921166 2921329 "UPMP" 2921605 NIL UPMP (NIL T T) -7 NIL NIL) (-1122 2920612 2920693 2920832 "UPDIVP" 2920972 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1121 2919180 2919429 2919745 "UPDECOMP" 2920361 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1120 2918415 2918527 2918712 "UPCDEN" 2919064 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1119 2917938 2918007 2918154 "UP2" 2918340 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1118 2909397 2917507 2917644 "UP" 2917848 NIL UP (NIL NIL T) -8 NIL NIL) (-1117 2908614 2908741 2908945 "UNISEG2" 2909241 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1116 2907143 2907829 2908101 "UNISEG" 2908377 NIL UNISEG (NIL T) -8 NIL NIL) (-1115 2906203 2906383 2906609 "UNIFACT" 2906959 NIL UNIFACT (NIL T) -7 NIL NIL) (-1114 2894171 2906108 2906179 "ULSCONS" 2906184 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1113 2876873 2888885 2888947 "ULSCCAT" 2889659 NIL ULSCCAT (NIL T T) -9 NIL 2889954) (-1112 2875924 2876169 2876556 "ULSCCAT-" 2876561 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1111 2865873 2872389 2872432 "ULSCAT" 2873288 NIL ULSCAT (NIL T) -9 NIL 2874010) (-1110 2865307 2865386 2865563 "ULS2" 2865788 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1109 2849208 2864490 2864739 "ULS" 2865115 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1108 2847605 2848572 2848603 "UFD" 2848815 T UFD (NIL) -9 NIL 2848929) (-1107 2847399 2847445 2847540 "UFD-" 2847545 NIL UFD- (NIL T) -8 NIL NIL) (-1106 2846481 2846664 2846880 "UDVO" 2847205 T UDVO (NIL) -7 NIL NIL) (-1105 2844299 2844708 2845178 "UDPO" 2846046 NIL UDPO (NIL T) -7 NIL NIL) (-1104 2844231 2844236 2844267 "TYPE" 2844272 T TYPE (NIL) -9 NIL NIL) (-1103 2843202 2843404 2843644 "TWOFACT" 2844025 NIL TWOFACT (NIL T) -7 NIL NIL) (-1102 2842274 2842605 2842804 "TUPLE" 2843038 NIL TUPLE (NIL T) -8 NIL NIL) (-1101 2839965 2840484 2841023 "TUBETOOL" 2841757 T TUBETOOL (NIL) -7 NIL NIL) (-1100 2838814 2839019 2839260 "TUBE" 2839758 NIL TUBE (NIL T) -8 NIL NIL) (-1099 2827518 2831610 2831707 "TSETCAT" 2836941 NIL TSETCAT (NIL T T T T) -9 NIL 2838471) (-1098 2822254 2823851 2825741 "TSETCAT-" 2825746 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1097 2816980 2821234 2821515 "TS" 2822007 NIL TS (NIL T) -8 NIL NIL) (-1096 2811251 2812097 2813035 "TRMANIP" 2816120 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1095 2810692 2810755 2810918 "TRIMAT" 2811183 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1094 2808498 2808735 2809098 "TRIGMNIP" 2810441 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1093 2808017 2808130 2808161 "TRIGCAT" 2808374 T TRIGCAT (NIL) -9 NIL NIL) (-1092 2807686 2807765 2807906 "TRIGCAT-" 2807911 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1091 2804591 2806546 2806826 "TREE" 2807441 NIL TREE (NIL T) -8 NIL NIL) (-1090 2803864 2804392 2804423 "TRANFUN" 2804458 T TRANFUN (NIL) -9 NIL 2804524) (-1089 2803143 2803334 2803614 "TRANFUN-" 2803619 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1088 2802947 2802979 2803040 "TOPSP" 2803104 T TOPSP (NIL) -7 NIL NIL) (-1087 2802299 2802414 2802567 "TOOLSIGN" 2802828 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1086 2800960 2801476 2801715 "TEXTFILE" 2802082 T TEXTFILE (NIL) -8 NIL NIL) (-1085 2800741 2800772 2800844 "TEX1" 2800923 NIL TEX1 (NIL T) -7 NIL NIL) (-1084 2798606 2799120 2799558 "TEX" 2800325 T TEX (NIL) -8 NIL NIL) (-1083 2798254 2798317 2798407 "TEMUTL" 2798538 T TEMUTL (NIL) -7 NIL NIL) (-1082 2796408 2796688 2797013 "TBCMPPK" 2797977 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1081 2788154 2794414 2794471 "TBAGG" 2794871 NIL TBAGG (NIL T T) -9 NIL 2795082) (-1080 2783224 2784712 2786466 "TBAGG-" 2786471 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1079 2782608 2782715 2782860 "TANEXP" 2783113 NIL TANEXP (NIL T) -7 NIL NIL) (-1078 2782021 2782119 2782257 "TABLEAU" 2782505 NIL TABLEAU (NIL T) -8 NIL NIL) (-1077 2775534 2781878 2781971 "TABLE" 2781976 NIL TABLE (NIL T T) -8 NIL NIL) (-1076 2770142 2771362 2772610 "TABLBUMP" 2774320 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1075 2766605 2767300 2768083 "SYSSOLP" 2769393 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1074 2763739 2764347 2764985 "SYMTAB" 2765989 T SYMTAB (NIL) -8 NIL NIL) (-1073 2758988 2759890 2760873 "SYMS" 2762778 T SYMS (NIL) -8 NIL NIL) (-1072 2756227 2758454 2758680 "SYMPOLY" 2758796 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1071 2755747 2755822 2755944 "SYMFUNC" 2756139 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1070 2751725 2752984 2753806 "SYMBOL" 2754947 T SYMBOL (NIL) -8 NIL NIL) (-1069 2745264 2746953 2748673 "SWITCH" 2750027 T SWITCH (NIL) -8 NIL NIL) (-1068 2738499 2744093 2744394 "SUTS" 2745020 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1067 2730394 2737622 2737901 "SUPXS" 2738277 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1066 2729553 2729680 2729897 "SUPFRACF" 2730262 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1065 2729178 2729237 2729348 "SUP2" 2729488 NIL SUP2 (NIL T T) -7 NIL NIL) (-1064 2720711 2728799 2728924 "SUP" 2729087 NIL SUP (NIL T) -8 NIL NIL) (-1063 2719137 2719409 2719769 "SUMRF" 2720412 NIL SUMRF (NIL T) -7 NIL NIL) (-1062 2718458 2718523 2718720 "SUMFS" 2719059 NIL SUMFS (NIL T T) -7 NIL NIL) (-1061 2702399 2717641 2717890 "SULS" 2718266 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1060 2701721 2701924 2702064 "SUCH" 2702307 NIL SUCH (NIL T T) -8 NIL NIL) (-1059 2695648 2696660 2697618 "SUBSPACE" 2700809 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1058 2695080 2695170 2695333 "SUBRESP" 2695537 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1057 2689253 2690373 2691520 "STTFNC" 2693980 NIL STTFNC (NIL T) -7 NIL NIL) (-1056 2682622 2683918 2685229 "STTF" 2687989 NIL STTF (NIL T) -7 NIL NIL) (-1055 2673977 2675844 2677635 "STTAYLOR" 2680865 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1054 2667233 2673841 2673924 "STRTBL" 2673929 NIL STRTBL (NIL T) -8 NIL NIL) (-1053 2662624 2667188 2667219 "STRING" 2667224 T STRING (NIL) -8 NIL NIL) (-1052 2657482 2661967 2661998 "STRICAT" 2662057 T STRICAT (NIL) -9 NIL 2662119) (-1051 2656992 2657069 2657213 "STREAM3" 2657399 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1050 2655974 2656157 2656392 "STREAM2" 2656805 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1049 2655662 2655714 2655807 "STREAM1" 2655916 NIL STREAM1 (NIL T) -7 NIL NIL) (-1048 2648389 2653189 2653807 "STREAM" 2655079 NIL STREAM (NIL T) -8 NIL NIL) (-1047 2647405 2647586 2647817 "STINPROD" 2648205 NIL STINPROD (NIL T) -7 NIL NIL) (-1046 2646983 2647167 2647198 "STEP" 2647278 T STEP (NIL) -9 NIL 2647356) (-1045 2640538 2646882 2646959 "STBL" 2646964 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1044 2635751 2639792 2639836 "STAGG" 2639989 NIL STAGG (NIL T) -9 NIL 2640078) (-1043 2633453 2634055 2634927 "STAGG-" 2634932 NIL STAGG- (NIL T T) -8 NIL NIL) (-1042 2631651 2633223 2633315 "STACK" 2633396 NIL STACK (NIL T) -8 NIL NIL) (-1041 2624382 2629798 2630253 "SREGSET" 2631281 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1040 2616822 2618190 2619702 "SRDCMPK" 2622988 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1039 2609794 2614261 2614292 "SRAGG" 2615595 T SRAGG (NIL) -9 NIL 2616203) (-1038 2608811 2609066 2609445 "SRAGG-" 2609450 NIL SRAGG- (NIL T) -8 NIL NIL) (-1037 2603268 2607738 2608161 "SQMATRIX" 2608434 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1036 2597026 2599988 2600714 "SPLTREE" 2602614 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1035 2593016 2593682 2594328 "SPLNODE" 2596452 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1034 2592062 2592295 2592326 "SPFCAT" 2592770 T SPFCAT (NIL) -9 NIL NIL) (-1033 2590799 2591009 2591273 "SPECOUT" 2591820 T SPECOUT (NIL) -7 NIL NIL) (-1032 2582821 2584568 2584611 "SPACEC" 2588934 NIL SPACEC (NIL T) -9 NIL 2590750) (-1031 2580993 2582754 2582802 "SPACE3" 2582807 NIL SPACE3 (NIL T) -8 NIL NIL) (-1030 2579747 2579918 2580208 "SORTPAK" 2580799 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1029 2577803 2578106 2578524 "SOLVETRA" 2579411 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1028 2576814 2577036 2577310 "SOLVESER" 2577576 NIL SOLVESER (NIL T) -7 NIL NIL) (-1027 2572034 2572915 2573917 "SOLVERAD" 2575866 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1026 2567849 2568458 2569187 "SOLVEFOR" 2571401 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1025 2562148 2567200 2567297 "SNTSCAT" 2567302 NIL SNTSCAT (NIL T T T T) -9 NIL 2567372) (-1024 2556255 2560481 2560870 "SMTS" 2561839 NIL SMTS (NIL T T T) -8 NIL NIL) (-1023 2550665 2556144 2556220 "SMP" 2556225 NIL SMP (NIL T T) -8 NIL NIL) (-1022 2548824 2549125 2549523 "SMITH" 2550362 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1021 2541791 2545987 2546090 "SMATCAT" 2547430 NIL SMATCAT (NIL NIL T T T) -9 NIL 2547976) (-1020 2538732 2539555 2540732 "SMATCAT-" 2540737 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1019 2536486 2538003 2538047 "SKAGG" 2538308 NIL SKAGG (NIL T) -9 NIL 2538443) (-1018 2532544 2535590 2535868 "SINT" 2536230 T SINT (NIL) -8 NIL NIL) (-1017 2532316 2532354 2532420 "SIMPAN" 2532500 T SIMPAN (NIL) -7 NIL NIL) (-1016 2531154 2531375 2531650 "SIGNRF" 2532075 NIL SIGNRF (NIL T) -7 NIL NIL) (-1015 2529963 2530114 2530404 "SIGNEF" 2530983 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1014 2527655 2528109 2528614 "SHP" 2529505 NIL SHP (NIL T NIL) -7 NIL NIL) (-1013 2521514 2527556 2527632 "SHDP" 2527637 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1012 2521003 2521195 2521226 "SGROUP" 2521378 T SGROUP (NIL) -9 NIL 2521465) (-1011 2520773 2520825 2520929 "SGROUP-" 2520934 NIL SGROUP- (NIL T) -8 NIL NIL) (-1010 2517609 2518306 2519029 "SGCF" 2520072 T SGCF (NIL) -7 NIL NIL) (-1009 2512007 2517059 2517156 "SFRTCAT" 2517161 NIL SFRTCAT (NIL T T T T) -9 NIL 2517199) (-1008 2505467 2506482 2507616 "SFRGCD" 2510990 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1007 2498633 2499704 2500888 "SFQCMPK" 2504400 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1006 2498255 2498344 2498454 "SFORT" 2498574 NIL SFORT (NIL T T) -8 NIL NIL) (-1005 2497400 2498095 2498216 "SEXOF" 2498221 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1004 2492176 2492865 2492961 "SEXCAT" 2496732 NIL SEXCAT (NIL T T T T T) -9 NIL 2497351) (-1003 2491310 2492057 2492125 "SEX" 2492130 T SEX (NIL) -8 NIL NIL) (-1002 2489561 2490023 2490328 "SETMN" 2491051 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1001 2489168 2489294 2489325 "SETCAT" 2489442 T SETCAT (NIL) -9 NIL 2489526) (-1000 2488948 2489000 2489099 "SETCAT-" 2489104 NIL SETCAT- (NIL T) -8 NIL NIL) (-999 2485350 2487424 2487466 "SETAGG" 2488323 NIL SETAGG (NIL T) -9 NIL 2488663) (-998 2484811 2484927 2485161 "SETAGG-" 2485166 NIL SETAGG- (NIL T T) -8 NIL NIL) (-997 2481993 2484747 2484793 "SET" 2484798 NIL SET (NIL T) -8 NIL NIL) (-996 2481203 2481496 2481556 "SEGXCAT" 2481839 NIL SEGXCAT (NIL T T) -9 NIL 2481958) (-995 2480120 2480333 2480375 "SEGCAT" 2480948 NIL SEGCAT (NIL T) -9 NIL 2481186) (-994 2479752 2479809 2479918 "SEGBIND2" 2480057 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-993 2478816 2479144 2479339 "SEGBIND" 2479590 NIL SEGBIND (NIL T) -8 NIL NIL) (-992 2478053 2478176 2478374 "SEG2" 2478664 NIL SEG2 (NIL T T) -7 NIL NIL) (-991 2477119 2477729 2477905 "SEG" 2477910 NIL SEG (NIL T) -8 NIL NIL) (-990 2476558 2477056 2477101 "SDVAR" 2477106 NIL SDVAR (NIL T) -8 NIL NIL) (-989 2468864 2476337 2476461 "SDPOL" 2476466 NIL SDPOL (NIL T) -8 NIL NIL) (-988 2467463 2467729 2468046 "SCPKG" 2468579 NIL SCPKG (NIL T) -7 NIL NIL) (-987 2466690 2466823 2467000 "SCACHE" 2467318 NIL SCACHE (NIL T) -7 NIL NIL) (-986 2466133 2466454 2466537 "SAOS" 2466627 T SAOS (NIL) -8 NIL NIL) (-985 2465701 2465736 2465907 "SAERFFC" 2466092 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-984 2465297 2465332 2465489 "SAEFACT" 2465660 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-983 2459193 2465196 2465274 "SAE" 2465279 NIL SAE (NIL T T NIL) -8 NIL NIL) (-982 2457519 2457833 2458232 "RURPK" 2458859 NIL RURPK (NIL T NIL) -7 NIL NIL) (-981 2456172 2456449 2456756 "RULESET" 2457355 NIL RULESET (NIL T T T) -8 NIL NIL) (-980 2455814 2455969 2456050 "RULECOLD" 2456124 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-979 2453022 2453525 2453986 "RULE" 2455496 NIL RULE (NIL T T T) -8 NIL NIL) (-978 2447914 2448708 2449624 "RSETGCD" 2452221 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-977 2437228 2442280 2442375 "RSETCAT" 2446440 NIL RSETCAT (NIL T T T T) -9 NIL 2447537) (-976 2435159 2435698 2436518 "RSETCAT-" 2436523 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-975 2427589 2428964 2430480 "RSDCMPK" 2433758 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-974 2425606 2426047 2426120 "RRCC" 2427196 NIL RRCC (NIL T T) -9 NIL 2427540) (-973 2424960 2425134 2425410 "RRCC-" 2425415 NIL RRCC- (NIL T T T) -8 NIL NIL) (-972 2399290 2408915 2408980 "RPOLCAT" 2419482 NIL RPOLCAT (NIL T T T) -9 NIL 2422629) (-971 2390794 2393132 2396250 "RPOLCAT-" 2396255 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-970 2381872 2389024 2389504 "ROUTINE" 2390334 T ROUTINE (NIL) -8 NIL NIL) (-969 2378577 2381428 2381575 "ROMAN" 2381745 T ROMAN (NIL) -8 NIL NIL) (-968 2376863 2377448 2377705 "ROIRC" 2378383 NIL ROIRC (NIL T T) -8 NIL NIL) (-967 2373211 2375524 2375553 "RNS" 2375849 T RNS (NIL) -9 NIL 2376119) (-966 2371725 2372108 2372639 "RNS-" 2372712 NIL RNS- (NIL T) -8 NIL NIL) (-965 2371150 2371558 2371587 "RNG" 2371592 T RNG (NIL) -9 NIL 2371613) (-964 2370547 2370909 2370950 "RMODULE" 2371010 NIL RMODULE (NIL T) -9 NIL 2371052) (-963 2369399 2369493 2369823 "RMCAT2" 2370448 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-962 2366117 2368586 2368905 "RMATRIX" 2369136 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-961 2359118 2361352 2361465 "RMATCAT" 2364774 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2365751) (-960 2358497 2358644 2358947 "RMATCAT-" 2358952 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-959 2357547 2358111 2358140 "RING" 2358250 T RING (NIL) -9 NIL 2358344) (-958 2357342 2357386 2357480 "RING-" 2357485 NIL RING- (NIL T) -8 NIL NIL) (-957 2356194 2356430 2356685 "RIDIST" 2357107 T RIDIST (NIL) -7 NIL NIL) (-956 2347516 2355668 2355871 "RGCHAIN" 2356043 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-955 2347165 2347228 2347329 "RFFACTOR" 2347447 NIL RFFACTOR (NIL T) -7 NIL NIL) (-954 2346893 2346928 2347023 "RFFACT" 2347124 NIL RFFACT (NIL T) -7 NIL NIL) (-953 2345023 2345387 2345767 "RFDIST" 2346533 T RFDIST (NIL) -7 NIL NIL) (-952 2342028 2342642 2343310 "RF" 2344387 NIL RF (NIL T) -7 NIL NIL) (-951 2341486 2341578 2341738 "RETSOL" 2341930 NIL RETSOL (NIL T T) -7 NIL NIL) (-950 2341078 2341158 2341200 "RETRACT" 2341390 NIL RETRACT (NIL T) -9 NIL NIL) (-949 2340930 2340955 2341039 "RETRACT-" 2341044 NIL RETRACT- (NIL T T) -8 NIL NIL) (-948 2333800 2340587 2340712 "RESULT" 2340825 T RESULT (NIL) -8 NIL NIL) (-947 2332385 2333074 2333271 "RESRING" 2333703 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-946 2332025 2332074 2332170 "RESLATC" 2332322 NIL RESLATC (NIL T) -7 NIL NIL) (-945 2331734 2331768 2331873 "REPSQ" 2331984 NIL REPSQ (NIL T) -7 NIL NIL) (-944 2331435 2331469 2331578 "REPDB" 2331693 NIL REPDB (NIL T) -7 NIL NIL) (-943 2325388 2326767 2327983 "REP2" 2330251 NIL REP2 (NIL T) -7 NIL NIL) (-942 2321798 2322479 2323282 "REP1" 2324617 NIL REP1 (NIL T) -7 NIL NIL) (-941 2319229 2319809 2320409 "REP" 2321218 T REP (NIL) -7 NIL NIL) (-940 2311975 2317390 2317842 "REGSET" 2318860 NIL REGSET (NIL T T T T) -8 NIL NIL) (-939 2310798 2311133 2311380 "REF" 2311761 NIL REF (NIL T) -8 NIL NIL) (-938 2310179 2310282 2310447 "REDORDER" 2310682 NIL REDORDER (NIL T T) -7 NIL NIL) (-937 2306148 2309413 2309634 "RECLOS" 2310010 NIL RECLOS (NIL T) -8 NIL NIL) (-936 2305205 2305386 2305599 "REALSOLV" 2305955 T REALSOLV (NIL) -7 NIL NIL) (-935 2301696 2302498 2303380 "REAL0Q" 2304370 NIL REAL0Q (NIL T) -7 NIL NIL) (-934 2297307 2298295 2299354 "REAL0" 2300677 NIL REAL0 (NIL T) -7 NIL NIL) (-933 2297154 2297195 2297224 "REAL" 2297229 T REAL (NIL) -9 NIL 2297264) (-932 2296562 2296634 2296839 "RDIV" 2297076 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-931 2295639 2295812 2296022 "RDIST" 2296385 NIL RDIST (NIL T) -7 NIL NIL) (-930 2294243 2294530 2294899 "RDETRS" 2295347 NIL RDETRS (NIL T T) -7 NIL NIL) (-929 2292064 2292518 2293053 "RDETR" 2293785 NIL RDETR (NIL T T) -7 NIL NIL) (-928 2290680 2290958 2291359 "RDEEFS" 2291780 NIL RDEEFS (NIL T T) -7 NIL NIL) (-927 2289180 2289486 2289915 "RDEEF" 2290368 NIL RDEEF (NIL T T) -7 NIL NIL) (-926 2283403 2286337 2286366 "RCFIELD" 2287643 T RCFIELD (NIL) -9 NIL 2288373) (-925 2281472 2281976 2282669 "RCFIELD-" 2282742 NIL RCFIELD- (NIL T) -8 NIL NIL) (-924 2277846 2279625 2279667 "RCAGG" 2280738 NIL RCAGG (NIL T) -9 NIL 2281201) (-923 2277477 2277571 2277731 "RCAGG-" 2277736 NIL RCAGG- (NIL T T) -8 NIL NIL) (-922 2276822 2276933 2277095 "RATRET" 2277361 NIL RATRET (NIL T) -7 NIL NIL) (-921 2276379 2276446 2276565 "RATFACT" 2276750 NIL RATFACT (NIL T) -7 NIL NIL) (-920 2275694 2275814 2275964 "RANDSRC" 2276249 T RANDSRC (NIL) -7 NIL NIL) (-919 2275431 2275475 2275546 "RADUTIL" 2275643 T RADUTIL (NIL) -7 NIL NIL) (-918 2268438 2274174 2274491 "RADIX" 2275146 NIL RADIX (NIL NIL) -8 NIL NIL) (-917 2260008 2268282 2268410 "RADFF" 2268415 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-916 2259659 2259734 2259763 "RADCAT" 2259920 T RADCAT (NIL) -9 NIL NIL) (-915 2259444 2259492 2259589 "RADCAT-" 2259594 NIL RADCAT- (NIL T) -8 NIL NIL) (-914 2257601 2259219 2259308 "QUEUE" 2259388 NIL QUEUE (NIL T) -8 NIL NIL) (-913 2257239 2257282 2257409 "QUATCT2" 2257552 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-912 2250993 2254373 2254414 "QUATCAT" 2255193 NIL QUATCAT (NIL T) -9 NIL 2255950) (-911 2247137 2248174 2249561 "QUATCAT-" 2249655 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-910 2243634 2247074 2247119 "QUAT" 2247124 NIL QUAT (NIL T) -8 NIL NIL) (-909 2241195 2242753 2242795 "QUAGG" 2243170 NIL QUAGG (NIL T) -9 NIL 2243345) (-908 2240120 2240593 2240765 "QFORM" 2241067 NIL QFORM (NIL NIL T) -8 NIL NIL) (-907 2239758 2239801 2239928 "QFCAT2" 2240071 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-906 2231019 2236277 2236318 "QFCAT" 2236976 NIL QFCAT (NIL T) -9 NIL 2237957) (-905 2226591 2227792 2229383 "QFCAT-" 2229477 NIL QFCAT- (NIL T T) -8 NIL NIL) (-904 2226051 2226161 2226291 "QEQUAT" 2226481 T QEQUAT (NIL) -8 NIL NIL) (-903 2219237 2220308 2221490 "QCMPACK" 2224984 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-902 2218482 2218656 2218888 "QALGSET2" 2219057 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-901 2216062 2216483 2216909 "QALGSET" 2218139 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-900 2214753 2214976 2215293 "PWFFINTB" 2215835 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-899 2212941 2213109 2213462 "PUSHVAR" 2214567 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-898 2208858 2209912 2209954 "PTRANFN" 2211838 NIL PTRANFN (NIL T) -9 NIL NIL) (-897 2207270 2207561 2207882 "PTPACK" 2208569 NIL PTPACK (NIL T) -7 NIL NIL) (-896 2206906 2206963 2207070 "PTFUNC2" 2207207 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-895 2201412 2205747 2205788 "PTCAT" 2206156 NIL PTCAT (NIL T) -9 NIL 2206318) (-894 2201070 2201105 2201229 "PSQFR" 2201371 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-893 2199665 2199963 2200297 "PSEUDLIN" 2200768 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-892 2186479 2188843 2191163 "PSETPK" 2197428 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-891 2179566 2182280 2182375 "PSETCAT" 2185356 NIL PSETCAT (NIL T T T T) -9 NIL 2186169) (-890 2177404 2178038 2178857 "PSETCAT-" 2178862 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-889 2176761 2176923 2176952 "PSCURVE" 2177217 T PSCURVE (NIL) -9 NIL 2177381) (-888 2173165 2174691 2174756 "PSCAT" 2175592 NIL PSCAT (NIL T T T) -9 NIL 2175832) (-887 2172229 2172445 2172844 "PSCAT-" 2172849 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-886 2170882 2171514 2171728 "PRTITION" 2172035 T PRTITION (NIL) -8 NIL NIL) (-885 2159982 2162188 2164375 "PRS" 2168745 NIL PRS (NIL T T) -7 NIL NIL) (-884 2157881 2159367 2159408 "PRQAGG" 2159591 NIL PRQAGG (NIL T) -9 NIL 2159693) (-883 2151687 2156079 2156883 "PRODUCT" 2157123 NIL PRODUCT (NIL T T) -8 NIL NIL) (-882 2151483 2151515 2151574 "PRINT" 2151648 T PRINT (NIL) -7 NIL NIL) (-881 2150823 2150940 2151092 "PRIMES" 2151363 NIL PRIMES (NIL T) -7 NIL NIL) (-880 2148888 2149289 2149755 "PRIMELT" 2150402 NIL PRIMELT (NIL T) -7 NIL NIL) (-879 2148619 2148667 2148696 "PRIMCAT" 2148819 T PRIMCAT (NIL) -9 NIL NIL) (-878 2147626 2147804 2148032 "PRIMARR2" 2148437 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-877 2143793 2147564 2147609 "PRIMARR" 2147614 NIL PRIMARR (NIL T) -8 NIL NIL) (-876 2143436 2143492 2143603 "PREASSOC" 2143731 NIL PREASSOC (NIL T T) -7 NIL NIL) (-875 2140718 2142902 2143132 "PR" 2143250 NIL PR (NIL T T) -8 NIL NIL) (-874 2140198 2140329 2140358 "PPCURVE" 2140561 T PPCURVE (NIL) -9 NIL 2140695) (-873 2137559 2137958 2138549 "POLYROOT" 2139780 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-872 2136944 2137002 2137235 "POLYLIFT" 2137495 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-871 2133229 2133678 2134306 "POLYCATQ" 2136489 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-870 2120235 2125634 2125699 "POLYCAT" 2129184 NIL POLYCAT (NIL T T T) -9 NIL 2131096) (-869 2113686 2115547 2117930 "POLYCAT-" 2117935 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-868 2113275 2113343 2113462 "POLY2UP" 2113612 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-867 2112911 2112968 2113075 "POLY2" 2113212 NIL POLY2 (NIL T T) -7 NIL NIL) (-866 2106819 2112519 2112677 "POLY" 2112785 NIL POLY (NIL T) -8 NIL NIL) (-865 2105506 2105745 2106020 "POLUTIL" 2106594 NIL POLUTIL (NIL T T) -7 NIL NIL) (-864 2103868 2104145 2104475 "POLTOPOL" 2105228 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-863 2099397 2103805 2103850 "POINT" 2103855 NIL POINT (NIL T) -8 NIL NIL) (-862 2097584 2097941 2098316 "PNTHEORY" 2099042 T PNTHEORY (NIL) -7 NIL NIL) (-861 2096012 2096309 2096718 "PMTOOLS" 2097282 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-860 2095605 2095683 2095800 "PMSYM" 2095928 NIL PMSYM (NIL T) -7 NIL NIL) (-859 2095115 2095184 2095358 "PMQFCAT" 2095530 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-858 2094511 2094597 2094758 "PMPREDFS" 2095016 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-857 2093866 2093976 2094132 "PMPRED" 2094388 NIL PMPRED (NIL T) -7 NIL NIL) (-856 2092514 2092722 2093105 "PMPLCAT" 2093629 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-855 2092046 2092125 2092277 "PMLSAGG" 2092429 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-854 2091523 2091599 2091779 "PMKERNEL" 2091964 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-853 2091140 2091215 2091328 "PMINS" 2091442 NIL PMINS (NIL T) -7 NIL NIL) (-852 2090570 2090639 2090854 "PMFS" 2091065 NIL PMFS (NIL T T T) -7 NIL NIL) (-851 2089801 2089919 2090123 "PMDOWN" 2090447 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-850 2089075 2089186 2089349 "PMASSFS" 2089687 NIL PMASSFS (NIL T T) -7 NIL NIL) (-849 2088238 2088397 2088579 "PMASS" 2088913 T PMASS (NIL) -7 NIL NIL) (-848 2087897 2087964 2088057 "PLOTTOOL" 2088165 T PLOTTOOL (NIL) -7 NIL NIL) (-847 2083770 2084785 2085690 "PLOT3D" 2087012 T PLOT3D (NIL) -8 NIL NIL) (-846 2082694 2082868 2083100 "PLOT1" 2083577 NIL PLOT1 (NIL T) -7 NIL NIL) (-845 2077395 2078561 2079688 "PLOT" 2081587 T PLOT (NIL) -8 NIL NIL) (-844 2053386 2057990 2062768 "PLEQN" 2072734 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-843 2053079 2053126 2053229 "PINTERPA" 2053333 NIL PINTERPA (NIL T T) -7 NIL NIL) (-842 2052397 2052519 2052699 "PINTERP" 2052944 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-841 2050788 2051773 2051802 "PID" 2051984 T PID (NIL) -9 NIL 2052118) (-840 2050513 2050550 2050638 "PICOERCE" 2050745 NIL PICOERCE (NIL T) -7 NIL NIL) (-839 2049740 2050307 2050400 "PI" 2050440 T PI (NIL) -8 NIL NIL) (-838 2049061 2049199 2049375 "PGROEB" 2049596 NIL PGROEB (NIL T) -7 NIL NIL) (-837 2044648 2045462 2046367 "PGE" 2048176 T PGE (NIL) -7 NIL NIL) (-836 2042772 2043018 2043384 "PGCD" 2044365 NIL PGCD (NIL T T T T) -7 NIL NIL) (-835 2042110 2042213 2042374 "PFRPAC" 2042656 NIL PFRPAC (NIL T) -7 NIL NIL) (-834 2038725 2040658 2041011 "PFR" 2041789 NIL PFR (NIL T) -8 NIL NIL) (-833 2037114 2037358 2037683 "PFOTOOLS" 2038472 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-832 2035647 2035886 2036237 "PFOQ" 2036871 NIL PFOQ (NIL T T T) -7 NIL NIL) (-831 2034124 2034336 2034698 "PFO" 2035431 NIL PFO (NIL T T T T T) -7 NIL NIL) (-830 2031553 2032834 2032863 "PFECAT" 2033448 T PFECAT (NIL) -9 NIL 2033831) (-829 2030998 2031152 2031366 "PFECAT-" 2031371 NIL PFECAT- (NIL T) -8 NIL NIL) (-828 2029602 2029853 2030154 "PFBRU" 2030747 NIL PFBRU (NIL T T) -7 NIL NIL) (-827 2027469 2027820 2028252 "PFBR" 2029253 NIL PFBR (NIL T T T T) -7 NIL NIL) (-826 2023992 2027358 2027427 "PF" 2027432 NIL PF (NIL NIL) -8 NIL NIL) (-825 2019291 2020223 2021085 "PERMGRP" 2023163 NIL PERMGRP (NIL T) -8 NIL NIL) (-824 2017366 2018358 2018400 "PERMCAT" 2018845 NIL PERMCAT (NIL T) -9 NIL 2019147) (-823 2017021 2017062 2017185 "PERMAN" 2017319 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-822 2012886 2014407 2015079 "PERM" 2016382 NIL PERM (NIL T) -8 NIL NIL) (-821 2010332 2012455 2012586 "PENDTREE" 2012788 NIL PENDTREE (NIL T) -8 NIL NIL) (-820 2008404 2009182 2009224 "PDRING" 2009881 NIL PDRING (NIL T) -9 NIL 2010166) (-819 2007507 2007725 2008087 "PDRING-" 2008092 NIL PDRING- (NIL T T) -8 NIL NIL) (-818 2004649 2005399 2006090 "PDEPROB" 2006836 T PDEPROB (NIL) -8 NIL NIL) (-817 2002220 2002716 2003265 "PDEPACK" 2004120 T PDEPACK (NIL) -7 NIL NIL) (-816 2001132 2001322 2001573 "PDECOMP" 2002019 NIL PDECOMP (NIL T T) -7 NIL NIL) (-815 1998743 1999558 1999587 "PDECAT" 2000372 T PDECAT (NIL) -9 NIL 2001083) (-814 1998496 1998529 1998618 "PCOMP" 1998704 NIL PCOMP (NIL T T) -7 NIL NIL) (-813 1996703 1997299 1997595 "PBWLB" 1998226 NIL PBWLB (NIL T) -8 NIL NIL) (-812 1996335 1996392 1996501 "PATTERN2" 1996640 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-811 1994092 1994480 1994937 "PATTERN1" 1995924 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-810 1986601 1988169 1989505 "PATTERN" 1992777 NIL PATTERN (NIL T) -8 NIL NIL) (-809 1986165 1986232 1986364 "PATRES2" 1986528 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-808 1983560 1984114 1984595 "PATRES" 1985730 NIL PATRES (NIL T T) -8 NIL NIL) (-807 1981457 1981857 1982262 "PATMATCH" 1983229 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-806 1980993 1981176 1981218 "PATMAB" 1981325 NIL PATMAB (NIL T) -9 NIL 1981408) (-805 1979538 1979847 1980105 "PATLRES" 1980798 NIL PATLRES (NIL T T T) -8 NIL NIL) (-804 1979085 1979208 1979250 "PATAB" 1979255 NIL PATAB (NIL T) -9 NIL 1979425) (-803 1976566 1977098 1977671 "PARTPERM" 1978532 T PARTPERM (NIL) -7 NIL NIL) (-802 1976187 1976250 1976352 "PARSURF" 1976497 NIL PARSURF (NIL T) -8 NIL NIL) (-801 1975819 1975876 1975985 "PARSU2" 1976124 NIL PARSU2 (NIL T T) -7 NIL NIL) (-800 1975440 1975503 1975605 "PARSCURV" 1975750 NIL PARSCURV (NIL T) -8 NIL NIL) (-799 1975072 1975129 1975238 "PARSC2" 1975377 NIL PARSC2 (NIL T T) -7 NIL NIL) (-798 1974711 1974769 1974866 "PARPCURV" 1975008 NIL PARPCURV (NIL T) -8 NIL NIL) (-797 1974343 1974400 1974509 "PARPC2" 1974648 NIL PARPC2 (NIL T T) -7 NIL NIL) (-796 1973863 1973949 1974068 "PAN2EXPR" 1974244 T PAN2EXPR (NIL) -7 NIL NIL) (-795 1972669 1972984 1973212 "PALETTE" 1973655 T PALETTE (NIL) -8 NIL NIL) (-794 1966519 1971928 1972122 "PADICRC" 1972524 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-793 1959727 1965865 1966049 "PADICRAT" 1966367 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-792 1956931 1958505 1958546 "PADICCT" 1959127 NIL PADICCT (NIL NIL) -9 NIL 1959409) (-791 1955235 1956868 1956913 "PADIC" 1956918 NIL PADIC (NIL NIL) -8 NIL NIL) (-790 1954192 1954392 1954660 "PADEPAC" 1955022 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-789 1953404 1953537 1953743 "PADE" 1954054 NIL PADE (NIL T T T) -7 NIL NIL) (-788 1951419 1952251 1952564 "OWP" 1953174 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-787 1950528 1951024 1951196 "OVAR" 1951287 NIL OVAR (NIL NIL) -8 NIL NIL) (-786 1939574 1941753 1943923 "OUTFORM" 1948378 T OUTFORM (NIL) -8 NIL NIL) (-785 1938838 1938959 1939120 "OUT" 1939433 T OUT (NIL) -7 NIL NIL) (-784 1938246 1938567 1938656 "OSI" 1938769 T OSI (NIL) -8 NIL NIL) (-783 1936993 1937220 1937504 "ORTHPOL" 1937994 NIL ORTHPOL (NIL T) -7 NIL NIL) (-782 1934364 1936654 1936792 "OREUP" 1936936 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-781 1931760 1934057 1934183 "ORESUP" 1934306 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-780 1929299 1929799 1930357 "OREPCTO" 1931251 NIL OREPCTO (NIL T T) -7 NIL NIL) (-779 1923212 1925418 1925459 "OREPCAT" 1927780 NIL OREPCAT (NIL T) -9 NIL 1928879) (-778 1920360 1921142 1922199 "OREPCAT-" 1922204 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-777 1919537 1919809 1919838 "ORDSET" 1920147 T ORDSET (NIL) -9 NIL 1920311) (-776 1919056 1919178 1919371 "ORDSET-" 1919376 NIL ORDSET- (NIL T) -8 NIL NIL) (-775 1917669 1918470 1918499 "ORDRING" 1918701 T ORDRING (NIL) -9 NIL 1918825) (-774 1917314 1917408 1917552 "ORDRING-" 1917557 NIL ORDRING- (NIL T) -8 NIL NIL) (-773 1916689 1917170 1917199 "ORDMON" 1917204 T ORDMON (NIL) -9 NIL 1917225) (-772 1915851 1915998 1916193 "ORDFUNS" 1916538 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-771 1915362 1915721 1915750 "ORDFIN" 1915755 T ORDFIN (NIL) -9 NIL 1915776) (-770 1914628 1914755 1914941 "ORDCOMP2" 1915222 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-769 1911146 1913220 1913626 "ORDCOMP" 1914255 NIL ORDCOMP (NIL T) -8 NIL NIL) (-768 1907654 1908536 1909373 "OPTPROB" 1910329 T OPTPROB (NIL) -8 NIL NIL) (-767 1904496 1905125 1905819 "OPTPACK" 1906980 T OPTPACK (NIL) -7 NIL NIL) (-766 1902221 1902957 1902986 "OPTCAT" 1903801 T OPTCAT (NIL) -9 NIL 1904447) (-765 1901989 1902028 1902094 "OPQUERY" 1902175 T OPQUERY (NIL) -7 NIL NIL) (-764 1899131 1900322 1900819 "OP" 1901524 NIL OP (NIL T) -8 NIL NIL) (-763 1898436 1898551 1898725 "ONECOMP2" 1899003 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-762 1895207 1897239 1897605 "ONECOMP" 1898103 NIL ONECOMP (NIL T) -8 NIL NIL) (-761 1894626 1894732 1894862 "OMSERVER" 1895097 T OMSERVER (NIL) -7 NIL NIL) (-760 1891515 1894067 1894108 "OMSAGG" 1894169 NIL OMSAGG (NIL T) -9 NIL 1894233) (-759 1890138 1890401 1890683 "OMPKG" 1891253 T OMPKG (NIL) -7 NIL NIL) (-758 1888679 1889692 1889859 "OMLO" 1890020 NIL OMLO (NIL T T) -8 NIL NIL) (-757 1887609 1887756 1887982 "OMEXPR" 1888505 NIL OMEXPR (NIL T) -7 NIL NIL) (-756 1886787 1887030 1887190 "OMERRK" 1887469 T OMERRK (NIL) -8 NIL NIL) (-755 1886105 1886333 1886469 "OMERR" 1886671 T OMERR (NIL) -8 NIL NIL) (-754 1885583 1885782 1885890 "OMENC" 1886017 T OMENC (NIL) -8 NIL NIL) (-753 1879478 1880663 1881834 "OMDEV" 1884432 T OMDEV (NIL) -8 NIL NIL) (-752 1878547 1878718 1878912 "OMCONN" 1879304 T OMCONN (NIL) -8 NIL NIL) (-751 1877976 1878079 1878108 "OM" 1878407 T OM (NIL) -9 NIL NIL) (-750 1876591 1877577 1877606 "OINTDOM" 1877611 T OINTDOM (NIL) -9 NIL 1877632) (-749 1872353 1873583 1874298 "OFMONOID" 1875908 NIL OFMONOID (NIL T) -8 NIL NIL) (-748 1871791 1872290 1872335 "ODVAR" 1872340 NIL ODVAR (NIL T) -8 NIL NIL) (-747 1868918 1871290 1871474 "ODR" 1871667 NIL ODR (NIL T T NIL) -8 NIL NIL) (-746 1861224 1868697 1868821 "ODPOL" 1868826 NIL ODPOL (NIL T) -8 NIL NIL) (-745 1855053 1861096 1861201 "ODP" 1861206 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-744 1853819 1854034 1854309 "ODETOOLS" 1854827 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-743 1850788 1851444 1852160 "ODESYS" 1853152 NIL ODESYS (NIL T T) -7 NIL NIL) (-742 1845694 1846602 1847624 "ODERTRIC" 1849864 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-741 1845120 1845202 1845396 "ODERED" 1845606 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-740 1842022 1842570 1843245 "ODERAT" 1844543 NIL ODERAT (NIL T T) -7 NIL NIL) (-739 1838990 1839454 1840050 "ODEPRRIC" 1841551 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-738 1836861 1837428 1837937 "ODEPROB" 1838501 T ODEPROB (NIL) -8 NIL NIL) (-737 1833393 1833876 1834522 "ODEPRIM" 1836340 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-736 1832646 1832748 1833006 "ODEPAL" 1833285 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-735 1828848 1829629 1830483 "ODEPACK" 1831812 T ODEPACK (NIL) -7 NIL NIL) (-734 1827885 1827992 1828220 "ODEINT" 1828737 NIL ODEINT (NIL T T) -7 NIL NIL) (-733 1821986 1823411 1824858 "ODEIFTBL" 1826458 T ODEIFTBL (NIL) -8 NIL NIL) (-732 1817330 1818116 1819074 "ODEEF" 1821145 NIL ODEEF (NIL T T) -7 NIL NIL) (-731 1816667 1816756 1816985 "ODECONST" 1817235 NIL ODECONST (NIL T T T) -7 NIL NIL) (-730 1814824 1815457 1815486 "ODECAT" 1816089 T ODECAT (NIL) -9 NIL 1816618) (-729 1814462 1814505 1814632 "OCTCT2" 1814775 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-728 1811334 1814174 1814293 "OCT" 1814375 NIL OCT (NIL T) -8 NIL NIL) (-727 1810712 1811154 1811183 "OCAMON" 1811188 T OCAMON (NIL) -9 NIL 1811209) (-726 1805553 1807991 1808032 "OC" 1809128 NIL OC (NIL T) -9 NIL 1809977) (-725 1802780 1803528 1804518 "OC-" 1804612 NIL OC- (NIL T T) -8 NIL NIL) (-724 1802233 1802640 1802669 "OASGP" 1802674 T OASGP (NIL) -9 NIL 1802694) (-723 1801520 1801983 1802012 "OAMONS" 1802052 T OAMONS (NIL) -9 NIL 1802095) (-722 1800960 1801367 1801396 "OAMON" 1801401 T OAMON (NIL) -9 NIL 1801421) (-721 1800264 1800756 1800785 "OAGROUP" 1800790 T OAGROUP (NIL) -9 NIL 1800810) (-720 1799954 1800004 1800092 "NUMTUBE" 1800208 NIL NUMTUBE (NIL T) -7 NIL NIL) (-719 1793527 1795045 1796581 "NUMQUAD" 1798438 T NUMQUAD (NIL) -7 NIL NIL) (-718 1789283 1790271 1791296 "NUMODE" 1792522 T NUMODE (NIL) -7 NIL NIL) (-717 1786698 1787540 1787569 "NUMINT" 1788482 T NUMINT (NIL) -9 NIL 1789234) (-716 1785646 1785843 1786061 "NUMFMT" 1786500 T NUMFMT (NIL) -7 NIL NIL) (-715 1772044 1774978 1777500 "NUMERIC" 1783163 NIL NUMERIC (NIL T) -7 NIL NIL) (-714 1766444 1771496 1771591 "NTSCAT" 1771596 NIL NTSCAT (NIL T T T T) -9 NIL 1771634) (-713 1765640 1765805 1765997 "NTPOLFN" 1766284 NIL NTPOLFN (NIL T) -7 NIL NIL) (-712 1765276 1765333 1765440 "NSUP2" 1765577 NIL NSUP2 (NIL T T) -7 NIL NIL) (-711 1753134 1762120 1762929 "NSUP" 1764499 NIL NSUP (NIL T) -8 NIL NIL) (-710 1743096 1752913 1753043 "NSMP" 1753048 NIL NSMP (NIL T T) -8 NIL NIL) (-709 1741528 1741829 1742186 "NREP" 1742784 NIL NREP (NIL T) -7 NIL NIL) (-708 1740119 1740371 1740729 "NPCOEF" 1741271 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-707 1739185 1739300 1739516 "NORMRETR" 1740000 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-706 1737238 1737528 1737935 "NORMPK" 1738893 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-705 1736923 1736951 1737075 "NORMMA" 1737204 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-704 1736712 1736741 1736810 "NONE1" 1736887 NIL NONE1 (NIL T) -7 NIL NIL) (-703 1736539 1736669 1736698 "NONE" 1736703 T NONE (NIL) -8 NIL NIL) (-702 1736024 1736086 1736271 "NODE1" 1736471 NIL NODE1 (NIL T T) -7 NIL NIL) (-701 1734318 1735187 1735442 "NNI" 1735789 T NNI (NIL) -8 NIL NIL) (-700 1732738 1733051 1733415 "NLINSOL" 1733986 NIL NLINSOL (NIL T) -7 NIL NIL) (-699 1728930 1729891 1730807 "NIPROB" 1731842 T NIPROB (NIL) -8 NIL NIL) (-698 1727687 1727921 1728223 "NFINTBAS" 1728692 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-697 1726395 1726626 1726907 "NCODIV" 1727455 NIL NCODIV (NIL T T) -7 NIL NIL) (-696 1726157 1726194 1726269 "NCNTFRAC" 1726352 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-695 1724337 1724701 1725121 "NCEP" 1725782 NIL NCEP (NIL T) -7 NIL NIL) (-694 1723248 1723987 1724016 "NASRING" 1724126 T NASRING (NIL) -9 NIL 1724200) (-693 1723043 1723087 1723181 "NASRING-" 1723186 NIL NASRING- (NIL T) -8 NIL NIL) (-692 1722196 1722695 1722724 "NARNG" 1722841 T NARNG (NIL) -9 NIL 1722932) (-691 1721888 1721955 1722089 "NARNG-" 1722094 NIL NARNG- (NIL T) -8 NIL NIL) (-690 1720767 1720974 1721209 "NAGSP" 1721673 T NAGSP (NIL) -7 NIL NIL) (-689 1712191 1713837 1715472 "NAGS" 1719152 T NAGS (NIL) -7 NIL NIL) (-688 1710755 1711059 1711386 "NAGF07" 1711884 T NAGF07 (NIL) -7 NIL NIL) (-687 1705337 1706617 1707913 "NAGF04" 1709479 T NAGF04 (NIL) -7 NIL NIL) (-686 1698369 1699967 1701584 "NAGF02" 1703740 T NAGF02 (NIL) -7 NIL NIL) (-685 1693633 1694723 1695830 "NAGF01" 1697282 T NAGF01 (NIL) -7 NIL NIL) (-684 1687293 1688851 1690428 "NAGE04" 1692076 T NAGE04 (NIL) -7 NIL NIL) (-683 1678534 1680637 1682749 "NAGE02" 1685201 T NAGE02 (NIL) -7 NIL NIL) (-682 1674527 1675464 1676418 "NAGE01" 1677600 T NAGE01 (NIL) -7 NIL NIL) (-681 1672334 1672865 1673420 "NAGD03" 1673992 T NAGD03 (NIL) -7 NIL NIL) (-680 1664120 1666039 1667984 "NAGD02" 1670409 T NAGD02 (NIL) -7 NIL NIL) (-679 1657979 1659392 1660820 "NAGD01" 1662712 T NAGD01 (NIL) -7 NIL NIL) (-678 1654236 1655046 1655871 "NAGC06" 1657174 T NAGC06 (NIL) -7 NIL NIL) (-677 1652713 1653042 1653395 "NAGC05" 1653903 T NAGC05 (NIL) -7 NIL NIL) (-676 1652097 1652214 1652356 "NAGC02" 1652591 T NAGC02 (NIL) -7 NIL NIL) (-675 1651158 1651715 1651756 "NAALG" 1651835 NIL NAALG (NIL T) -9 NIL 1651896) (-674 1650993 1651022 1651112 "NAALG-" 1651117 NIL NAALG- (NIL T T) -8 NIL NIL) (-673 1644943 1646051 1647238 "MULTSQFR" 1649889 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-672 1644262 1644337 1644521 "MULTFACT" 1644855 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-671 1637397 1641315 1641368 "MTSCAT" 1642428 NIL MTSCAT (NIL T T) -9 NIL 1642941) (-670 1637109 1637163 1637255 "MTHING" 1637337 NIL MTHING (NIL T) -7 NIL NIL) (-669 1636901 1636934 1636994 "MSYSCMD" 1637069 T MSYSCMD (NIL) -7 NIL NIL) (-668 1633998 1636464 1636506 "MSETAGG" 1636511 NIL MSETAGG (NIL T) -9 NIL 1636544) (-667 1630110 1632753 1633073 "MSET" 1633711 NIL MSET (NIL T) -8 NIL NIL) (-666 1625978 1627520 1628255 "MRING" 1629419 NIL MRING (NIL T T) -8 NIL NIL) (-665 1625548 1625615 1625744 "MRF2" 1625905 NIL MRF2 (NIL T T T) -7 NIL NIL) (-664 1625166 1625201 1625345 "MRATFAC" 1625507 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-663 1622778 1623073 1623504 "MPRFF" 1624871 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-662 1616798 1622633 1622729 "MPOLY" 1622734 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-661 1616288 1616323 1616531 "MPCPF" 1616757 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-660 1615804 1615847 1616030 "MPC3" 1616239 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-659 1615005 1615086 1615305 "MPC2" 1615719 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-658 1613306 1613643 1614033 "MONOTOOL" 1614665 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-657 1612430 1612765 1612794 "MONOID" 1613071 T MONOID (NIL) -9 NIL 1613243) (-656 1611808 1611971 1612214 "MONOID-" 1612219 NIL MONOID- (NIL T) -8 NIL NIL) (-655 1602744 1608730 1608790 "MONOGEN" 1609464 NIL MONOGEN (NIL T T) -9 NIL 1609917) (-654 1599962 1600697 1601697 "MONOGEN-" 1601816 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-653 1598821 1599241 1599270 "MONADWU" 1599662 T MONADWU (NIL) -9 NIL 1599900) (-652 1598193 1598352 1598600 "MONADWU-" 1598605 NIL MONADWU- (NIL T) -8 NIL NIL) (-651 1597578 1597796 1597825 "MONAD" 1598032 T MONAD (NIL) -9 NIL 1598144) (-650 1597263 1597341 1597473 "MONAD-" 1597478 NIL MONAD- (NIL T) -8 NIL NIL) (-649 1595514 1596176 1596455 "MOEBIUS" 1597016 NIL MOEBIUS (NIL T) -8 NIL NIL) (-648 1594907 1595285 1595326 "MODULE" 1595331 NIL MODULE (NIL T) -9 NIL 1595357) (-647 1594475 1594571 1594761 "MODULE-" 1594766 NIL MODULE- (NIL T T) -8 NIL NIL) (-646 1592146 1592841 1593167 "MODRING" 1594300 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-645 1589108 1590273 1590787 "MODOP" 1591681 NIL MODOP (NIL T T) -8 NIL NIL) (-644 1587295 1587747 1588088 "MODMONOM" 1588907 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-643 1577017 1585503 1585923 "MODMON" 1586925 NIL MODMON (NIL T T) -8 NIL NIL) (-642 1574143 1575861 1576137 "MODFIELD" 1576892 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-641 1573669 1573712 1573891 "MMAP" 1574094 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-640 1571906 1572683 1572724 "MLO" 1573141 NIL MLO (NIL T) -9 NIL 1573381) (-639 1569273 1569788 1570390 "MLIFT" 1571387 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-638 1568664 1568748 1568902 "MKUCFUNC" 1569184 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-637 1568263 1568333 1568456 "MKRECORD" 1568587 NIL MKRECORD (NIL T T) -7 NIL NIL) (-636 1567311 1567472 1567700 "MKFUNC" 1568074 NIL MKFUNC (NIL T) -7 NIL NIL) (-635 1566699 1566803 1566959 "MKFLCFN" 1567194 NIL MKFLCFN (NIL T) -7 NIL NIL) (-634 1566125 1566492 1566581 "MKCHSET" 1566643 NIL MKCHSET (NIL T) -8 NIL NIL) (-633 1565402 1565504 1565689 "MKBCFUNC" 1566018 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-632 1562086 1564956 1565092 "MINT" 1565286 T MINT (NIL) -8 NIL NIL) (-631 1560898 1561141 1561418 "MHROWRED" 1561841 NIL MHROWRED (NIL T) -7 NIL NIL) (-630 1556169 1559343 1559767 "MFLOAT" 1560494 T MFLOAT (NIL) -8 NIL NIL) (-629 1555526 1555602 1555773 "MFINFACT" 1556081 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-628 1551873 1552712 1553587 "MESH" 1554671 T MESH (NIL) -7 NIL NIL) (-627 1550263 1550575 1550928 "MDDFACT" 1551560 NIL MDDFACT (NIL T) -7 NIL NIL) (-626 1547146 1549457 1549499 "MDAGG" 1549754 NIL MDAGG (NIL T) -9 NIL 1549897) (-625 1536844 1546439 1546646 "MCMPLX" 1546959 T MCMPLX (NIL) -8 NIL NIL) (-624 1535985 1536131 1536331 "MCDEN" 1536693 NIL MCDEN (NIL T T) -7 NIL NIL) (-623 1533875 1534145 1534525 "MCALCFN" 1535715 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-622 1531497 1532020 1532581 "MATSTOR" 1533346 NIL MATSTOR (NIL T) -7 NIL NIL) (-621 1527515 1530876 1531121 "MATRIX" 1531284 NIL MATRIX (NIL T) -8 NIL NIL) (-620 1523291 1523994 1524727 "MATLIN" 1526875 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-619 1521893 1522046 1522377 "MATCAT2" 1523126 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1512137 1515269 1515346 "MATCAT" 1520184 NIL MATCAT (NIL T T T) -9 NIL 1521595) (-617 1508502 1509515 1510870 "MATCAT-" 1510875 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-616 1506614 1506938 1507322 "MAPPKG3" 1508177 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-615 1505595 1505768 1505990 "MAPPKG2" 1506438 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-614 1504094 1504378 1504705 "MAPPKG1" 1505301 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-613 1503705 1503763 1503886 "MAPHACK3" 1504030 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-612 1503297 1503358 1503472 "MAPHACK2" 1503637 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-611 1502735 1502838 1502980 "MAPHACK1" 1503188 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-610 1500843 1501437 1501740 "MAGMA" 1502464 NIL MAGMA (NIL T) -8 NIL NIL) (-609 1497326 1499089 1499548 "M3D" 1500417 NIL M3D (NIL T) -8 NIL NIL) (-608 1491519 1495728 1495770 "LZSTAGG" 1496552 NIL LZSTAGG (NIL T) -9 NIL 1496847) (-607 1487493 1488650 1490107 "LZSTAGG-" 1490112 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-606 1484609 1485386 1485872 "LWORD" 1487039 NIL LWORD (NIL T) -8 NIL NIL) (-605 1477769 1484380 1484514 "LSQM" 1484519 NIL LSQM (NIL NIL T) -8 NIL NIL) (-604 1476993 1477132 1477360 "LSPP" 1477624 NIL LSPP (NIL T T T T) -7 NIL NIL) (-603 1473772 1474446 1475176 "LSMP1" 1476295 NIL LSMP1 (NIL T) -7 NIL NIL) (-602 1471584 1471885 1472341 "LSMP" 1473461 NIL LSMP (NIL T T T T) -7 NIL NIL) (-601 1465540 1470776 1470818 "LSAGG" 1470880 NIL LSAGG (NIL T) -9 NIL 1470958) (-600 1462235 1463159 1464372 "LSAGG-" 1464377 NIL LSAGG- (NIL T T) -8 NIL NIL) (-599 1459861 1461379 1461628 "LPOLY" 1462030 NIL LPOLY (NIL T T) -8 NIL NIL) (-598 1459443 1459528 1459651 "LPEFRAC" 1459770 NIL LPEFRAC (NIL T) -7 NIL NIL) (-597 1459096 1459208 1459237 "LOGIC" 1459348 T LOGIC (NIL) -9 NIL 1459428) (-596 1458958 1458981 1459052 "LOGIC-" 1459057 NIL LOGIC- (NIL T) -8 NIL NIL) (-595 1458151 1458291 1458484 "LODOOPS" 1458814 NIL LODOOPS (NIL T T) -7 NIL NIL) (-594 1456699 1456934 1457284 "LODOF" 1457899 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1453119 1455555 1455596 "LODOCAT" 1456028 NIL LODOCAT (NIL T) -9 NIL 1456238) (-592 1452853 1452911 1453037 "LODOCAT-" 1453042 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1450167 1452694 1452812 "LODO2" 1452817 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1447596 1450104 1450149 "LODO1" 1450154 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1445014 1447513 1447578 "LODO" 1447583 NIL LODO (NIL T NIL) -8 NIL NIL) (-588 1443877 1444042 1444353 "LODEEF" 1444837 NIL LODEEF (NIL T T T) -7 NIL NIL) (-587 1442226 1442973 1443225 "LO" 1443710 NIL LO (NIL T T T) -8 NIL NIL) (-586 1437551 1440389 1440431 "LNAGG" 1441378 NIL LNAGG (NIL T) -9 NIL 1441821) (-585 1436698 1436912 1437254 "LNAGG-" 1437259 NIL LNAGG- (NIL T T) -8 NIL NIL) (-584 1432863 1433625 1434263 "LMOPS" 1436114 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-583 1432260 1432622 1432663 "LMODULE" 1432723 NIL LMODULE (NIL T) -9 NIL 1432765) (-582 1429512 1431905 1432028 "LMDICT" 1432170 NIL LMDICT (NIL T) -8 NIL NIL) (-581 1429037 1429111 1429250 "LIST3" 1429432 NIL LIST3 (NIL T T T) -7 NIL NIL) (-580 1427171 1427483 1427882 "LIST2MAP" 1428684 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1426178 1426356 1426584 "LIST2" 1426989 NIL LIST2 (NIL T T) -7 NIL NIL) (-578 1419415 1425128 1425424 "LIST" 1425915 NIL LIST (NIL T) -8 NIL NIL) (-577 1418127 1418807 1418848 "LINEXP" 1419101 NIL LINEXP (NIL T) -9 NIL 1419249) (-576 1416774 1417034 1417331 "LINDEP" 1417879 NIL LINDEP (NIL T T) -7 NIL NIL) (-575 1413541 1414260 1415037 "LIMITRF" 1416029 NIL LIMITRF (NIL T) -7 NIL NIL) (-574 1411822 1412116 1412531 "LIMITPS" 1413236 NIL LIMITPS (NIL T T) -7 NIL NIL) (-573 1410873 1411316 1411357 "LIECAT" 1411497 NIL LIECAT (NIL T) -9 NIL 1411647) (-572 1410714 1410741 1410829 "LIECAT-" 1410834 NIL LIECAT- (NIL T T) -8 NIL NIL) (-571 1405173 1410229 1410455 "LIE" 1410537 NIL LIE (NIL T T) -8 NIL NIL) (-570 1397797 1404622 1404787 "LIB" 1405028 T LIB (NIL) -8 NIL NIL) (-569 1393434 1394315 1395250 "LGROBP" 1396914 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-568 1392274 1392965 1392994 "LFCAT" 1393201 T LFCAT (NIL) -9 NIL 1393340) (-567 1390144 1390417 1390778 "LF" 1391996 NIL LF (NIL T T) -7 NIL NIL) (-566 1387056 1387682 1388368 "LEXTRIPK" 1389510 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-565 1383762 1384626 1385129 "LEXP" 1386636 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-564 1382160 1382473 1382874 "LEADCDET" 1383444 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-563 1381356 1381430 1381657 "LAZM3PK" 1382081 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-562 1376279 1379441 1379975 "LAUPOL" 1380872 NIL LAUPOL (NIL T T) -8 NIL NIL) (-561 1375846 1375890 1376057 "LAPLACE" 1376229 NIL LAPLACE (NIL T T) -7 NIL NIL) (-560 1374908 1375502 1375543 "LALG" 1375604 NIL LALG (NIL T) -9 NIL 1375662) (-559 1374623 1374682 1374817 "LALG-" 1374822 NIL LALG- (NIL T T) -8 NIL NIL) (-558 1372553 1373726 1373976 "LA" 1374457 NIL LA (NIL T T T) -8 NIL NIL) (-557 1371463 1371650 1371947 "KOVACIC" 1372353 NIL KOVACIC (NIL T T) -7 NIL NIL) (-556 1371297 1371321 1371363 "KONVERT" 1371425 NIL KONVERT (NIL T) -9 NIL NIL) (-555 1371131 1371155 1371197 "KOERCE" 1371259 NIL KOERCE (NIL T) -9 NIL NIL) (-554 1370633 1370714 1370844 "KERNEL2" 1371045 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-553 1368369 1369129 1369521 "KERNEL" 1370273 NIL KERNEL (NIL T) -8 NIL NIL) (-552 1362053 1366735 1366790 "KDAGG" 1367167 NIL KDAGG (NIL T T) -9 NIL 1367373) (-551 1361582 1361706 1361911 "KDAGG-" 1361916 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-550 1354757 1361243 1361398 "KAFILE" 1361460 NIL KAFILE (NIL T) -8 NIL NIL) (-549 1349216 1354272 1354498 "JORDAN" 1354580 NIL JORDAN (NIL T T) -8 NIL NIL) (-548 1345560 1347460 1347515 "IXAGG" 1348444 NIL IXAGG (NIL T T) -9 NIL 1348899) (-547 1344479 1344785 1345204 "IXAGG-" 1345209 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-546 1340070 1344401 1344460 "IVECTOR" 1344465 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-545 1338836 1339073 1339339 "ITUPLE" 1339837 NIL ITUPLE (NIL T) -8 NIL NIL) (-544 1337272 1337449 1337755 "ITRIGMNP" 1338658 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-543 1336017 1336221 1336504 "ITFUN3" 1337048 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-542 1335649 1335706 1335815 "ITFUN2" 1335954 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-541 1333453 1334524 1334820 "ITAYLOR" 1335385 NIL ITAYLOR (NIL T) -8 NIL NIL) (-540 1322447 1327641 1328799 "ISUPS" 1332327 NIL ISUPS (NIL T) -8 NIL NIL) (-539 1321555 1321694 1321929 "ISUMP" 1322295 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-538 1316825 1321356 1321435 "ISTRING" 1321508 NIL ISTRING (NIL NIL) -8 NIL NIL) (-537 1316038 1316119 1316334 "IRURPK" 1316739 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-536 1314974 1315175 1315415 "IRSN" 1315818 T IRSN (NIL) -7 NIL NIL) (-535 1313011 1313366 1313800 "IRRF2F" 1314613 NIL IRRF2F (NIL T) -7 NIL NIL) (-534 1312758 1312796 1312872 "IRREDFFX" 1312967 NIL IRREDFFX (NIL T) -7 NIL NIL) (-533 1311373 1311632 1311931 "IROOT" 1312491 NIL IROOT (NIL T) -7 NIL NIL) (-532 1310449 1310562 1310782 "IR2F" 1311256 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1308062 1308557 1309123 "IR2" 1309927 NIL IR2 (NIL T T) -7 NIL NIL) (-530 1304704 1305755 1306443 "IR" 1307406 NIL IR (NIL T) -8 NIL NIL) (-529 1304495 1304529 1304589 "IPRNTPK" 1304664 T IPRNTPK (NIL) -7 NIL NIL) (-528 1301049 1304384 1304453 "IPF" 1304458 NIL IPF (NIL NIL) -8 NIL NIL) (-527 1299366 1300974 1301031 "IPADIC" 1301036 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-526 1298865 1298923 1299112 "INVLAPLA" 1299302 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-525 1288514 1290867 1293253 "INTTR" 1296529 NIL INTTR (NIL T T) -7 NIL NIL) (-524 1284876 1285617 1286473 "INTTOOLS" 1287707 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-523 1284462 1284553 1284670 "INTSLPE" 1284779 T INTSLPE (NIL) -7 NIL NIL) (-522 1282412 1284385 1284444 "INTRVL" 1284449 NIL INTRVL (NIL T) -8 NIL NIL) (-521 1280019 1280531 1281105 "INTRF" 1281897 NIL INTRF (NIL T) -7 NIL NIL) (-520 1279434 1279531 1279672 "INTRET" 1279917 NIL INTRET (NIL T) -7 NIL NIL) (-519 1277436 1277825 1278294 "INTRAT" 1279042 NIL INTRAT (NIL T T) -7 NIL NIL) (-518 1274677 1275260 1275881 "INTPM" 1276925 NIL INTPM (NIL T T) -7 NIL NIL) (-517 1271388 1271987 1272730 "INTPAF" 1274064 NIL INTPAF (NIL T T T) -7 NIL NIL) (-516 1266671 1267607 1268632 "INTPACK" 1270383 T INTPACK (NIL) -7 NIL NIL) (-515 1265923 1266075 1266283 "INTHERTR" 1266513 NIL INTHERTR (NIL T T) -7 NIL NIL) (-514 1265362 1265442 1265630 "INTHERAL" 1265837 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-513 1263208 1263651 1264108 "INTHEORY" 1264925 T INTHEORY (NIL) -7 NIL NIL) (-512 1254533 1256153 1257930 "INTG0" 1261561 NIL INTG0 (NIL T T T) -7 NIL NIL) (-511 1235130 1239914 1244718 "INTFTBL" 1249749 T INTFTBL (NIL) -8 NIL NIL) (-510 1234379 1234517 1234690 "INTFACT" 1234989 NIL INTFACT (NIL T) -7 NIL NIL) (-509 1231770 1232216 1232779 "INTEF" 1233933 NIL INTEF (NIL T T) -7 NIL NIL) (-508 1230231 1230980 1231009 "INTDOM" 1231310 T INTDOM (NIL) -9 NIL 1231517) (-507 1229600 1229774 1230016 "INTDOM-" 1230021 NIL INTDOM- (NIL T) -8 NIL NIL) (-506 1226092 1228024 1228079 "INTCAT" 1228878 NIL INTCAT (NIL T) -9 NIL 1229197) (-505 1225565 1225667 1225795 "INTBIT" 1225984 T INTBIT (NIL) -7 NIL NIL) (-504 1224240 1224394 1224707 "INTALG" 1225410 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-503 1223697 1223787 1223957 "INTAF" 1224144 NIL INTAF (NIL T T) -7 NIL NIL) (-502 1217163 1223507 1223647 "INTABL" 1223652 NIL INTABL (NIL T T T) -8 NIL NIL) (-501 1214017 1216892 1217019 "INT" 1217056 T INT (NIL) -8 NIL NIL) (-500 1208952 1211696 1211725 "INS" 1212693 T INS (NIL) -9 NIL 1213374) (-499 1206192 1206963 1207937 "INS-" 1208010 NIL INS- (NIL T) -8 NIL NIL) (-498 1204971 1205198 1205495 "INPSIGN" 1205945 NIL INPSIGN (NIL T T) -7 NIL NIL) (-497 1204089 1204206 1204403 "INPRODPF" 1204851 NIL INPRODPF (NIL T T) -7 NIL NIL) (-496 1202983 1203100 1203337 "INPRODFF" 1203969 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-495 1201983 1202135 1202395 "INNMFACT" 1202819 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-494 1201180 1201277 1201465 "INMODGCD" 1201882 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-493 1199689 1199933 1200257 "INFSP" 1200925 NIL INFSP (NIL T T T) -7 NIL NIL) (-492 1198873 1198990 1199173 "INFPROD0" 1199569 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-491 1198483 1198543 1198641 "INFORM1" 1198808 NIL INFORM1 (NIL T) -7 NIL NIL) (-490 1195493 1196652 1197143 "INFORM" 1198000 T INFORM (NIL) -8 NIL NIL) (-489 1195016 1195105 1195219 "INFINITY" 1195399 T INFINITY (NIL) -7 NIL NIL) (-488 1193634 1193882 1194203 "INEP" 1194764 NIL INEP (NIL T T T) -7 NIL NIL) (-487 1192910 1193531 1193596 "INDE" 1193601 NIL INDE (NIL T) -8 NIL NIL) (-486 1192474 1192542 1192659 "INCRMAPS" 1192837 NIL INCRMAPS (NIL T) -7 NIL NIL) (-485 1187785 1188710 1189654 "INBFF" 1191562 NIL INBFF (NIL T) -7 NIL NIL) (-484 1184286 1187630 1187733 "IMATRIX" 1187738 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-483 1183000 1183123 1183437 "IMATQF" 1184143 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-482 1181222 1181449 1181785 "IMATLIN" 1182757 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-481 1175854 1181146 1181204 "ILIST" 1181209 NIL ILIST (NIL T NIL) -8 NIL NIL) (-480 1173813 1175714 1175827 "IIARRAY2" 1175832 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-479 1169181 1173724 1173788 "IFF" 1173793 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-478 1164230 1168473 1168661 "IFARRAY" 1169038 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-477 1163437 1164134 1164207 "IFAMON" 1164212 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-476 1163020 1163085 1163140 "IEVALAB" 1163347 NIL IEVALAB (NIL T T) -9 NIL NIL) (-475 1162695 1162763 1162923 "IEVALAB-" 1162928 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-474 1161972 1162584 1162659 "IDPOAMS" 1162664 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-473 1161306 1161861 1161936 "IDPOAM" 1161941 NIL IDPOAM (NIL T T) -8 NIL NIL) (-472 1160964 1161220 1161283 "IDPO" 1161288 NIL IDPO (NIL T T) -8 NIL NIL) (-471 1160049 1160299 1160353 "IDPC" 1160766 NIL IDPC (NIL T T) -9 NIL 1160915) (-470 1159545 1159941 1160014 "IDPAM" 1160019 NIL IDPAM (NIL T T) -8 NIL NIL) (-469 1158948 1159437 1159510 "IDPAG" 1159515 NIL IDPAG (NIL T T) -8 NIL NIL) (-468 1155203 1156051 1156946 "IDECOMP" 1158105 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-467 1148079 1149128 1150174 "IDEAL" 1154240 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-466 1147243 1147355 1147554 "ICDEN" 1147963 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-465 1146342 1146723 1146870 "ICARD" 1147116 T ICARD (NIL) -8 NIL NIL) (-464 1144414 1144727 1145130 "IBPTOOLS" 1146019 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-463 1140028 1144034 1144147 "IBITS" 1144333 NIL IBITS (NIL NIL) -8 NIL NIL) (-462 1136751 1137327 1138022 "IBATOOL" 1139445 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-461 1134531 1134992 1135525 "IBACHIN" 1136286 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-460 1132414 1134377 1134480 "IARRAY2" 1134485 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-459 1128573 1132340 1132397 "IARRAY1" 1132402 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-458 1122513 1126991 1127469 "IAN" 1128115 T IAN (NIL) -8 NIL NIL) (-457 1122024 1122081 1122254 "IALGFACT" 1122450 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-456 1121551 1121664 1121693 "HYPCAT" 1121900 T HYPCAT (NIL) -9 NIL NIL) (-455 1121089 1121206 1121392 "HYPCAT-" 1121397 NIL HYPCAT- (NIL T) -8 NIL NIL) (-454 1117879 1119204 1119246 "HOAGG" 1120227 NIL HOAGG (NIL T) -9 NIL 1120836) (-453 1116473 1116872 1117398 "HOAGG-" 1117403 NIL HOAGG- (NIL T T) -8 NIL NIL) (-452 1110304 1115914 1116080 "HEXADEC" 1116327 T HEXADEC (NIL) -8 NIL NIL) (-451 1109052 1109274 1109537 "HEUGCD" 1110081 NIL HEUGCD (NIL T) -7 NIL NIL) (-450 1108155 1108889 1109019 "HELLFDIV" 1109024 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-449 1106389 1107932 1108020 "HEAP" 1108099 NIL HEAP (NIL T) -8 NIL NIL) (-448 1100262 1106304 1106366 "HDP" 1106371 NIL HDP (NIL NIL T) -8 NIL NIL) (-447 1093974 1099899 1100050 "HDMP" 1100163 NIL HDMP (NIL NIL T) -8 NIL NIL) (-446 1093299 1093438 1093602 "HB" 1093830 T HB (NIL) -7 NIL NIL) (-445 1086808 1093145 1093249 "HASHTBL" 1093254 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-444 1084561 1086436 1086615 "HACKPI" 1086649 T HACKPI (NIL) -8 NIL NIL) (-443 1080257 1084415 1084527 "GTSET" 1084532 NIL GTSET (NIL T T T T) -8 NIL NIL) (-442 1073795 1080135 1080233 "GSTBL" 1080238 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-441 1066033 1072833 1073096 "GSERIES" 1073587 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-440 1065055 1065508 1065537 "GROUP" 1065798 T GROUP (NIL) -9 NIL 1065957) (-439 1064171 1064394 1064738 "GROUP-" 1064743 NIL GROUP- (NIL T) -8 NIL NIL) (-438 1062540 1062859 1063246 "GROEBSOL" 1063848 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-437 1061480 1061742 1061794 "GRMOD" 1062323 NIL GRMOD (NIL T T) -9 NIL 1062491) (-436 1061248 1061284 1061412 "GRMOD-" 1061417 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-435 1056588 1057610 1058607 "GRIMAGE" 1060271 T GRIMAGE (NIL) -8 NIL NIL) (-434 1055055 1055315 1055639 "GRDEF" 1056284 T GRDEF (NIL) -7 NIL NIL) (-433 1054499 1054615 1054756 "GRAY" 1054934 T GRAY (NIL) -7 NIL NIL) (-432 1053732 1054112 1054164 "GRALG" 1054317 NIL GRALG (NIL T T) -9 NIL 1054409) (-431 1053393 1053466 1053629 "GRALG-" 1053634 NIL GRALG- (NIL T T T) -8 NIL NIL) (-430 1050201 1052982 1053158 "GPOLSET" 1053300 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-429 1049557 1049614 1049871 "GOSPER" 1050138 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-428 1045316 1045995 1046521 "GMODPOL" 1049256 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-427 1044321 1044505 1044743 "GHENSEL" 1045128 NIL GHENSEL (NIL T T) -7 NIL NIL) (-426 1038387 1039230 1040256 "GENUPS" 1043405 NIL GENUPS (NIL T T) -7 NIL NIL) (-425 1038084 1038135 1038224 "GENUFACT" 1038330 NIL GENUFACT (NIL T) -7 NIL NIL) (-424 1037496 1037573 1037738 "GENPGCD" 1038002 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-423 1036970 1037005 1037218 "GENMFACT" 1037455 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-422 1035538 1035793 1036100 "GENEEZ" 1036713 NIL GENEEZ (NIL T T) -7 NIL NIL) (-421 1029412 1035151 1035312 "GDMP" 1035461 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-420 1018796 1023185 1024290 "GCNAALG" 1028396 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-419 1017217 1018089 1018118 "GCDDOM" 1018373 T GCDDOM (NIL) -9 NIL 1018530) (-418 1016687 1016814 1017029 "GCDDOM-" 1017034 NIL GCDDOM- (NIL T) -8 NIL NIL) (-417 1005307 1007633 1010025 "GBINTERN" 1014378 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-416 1003144 1003436 1003857 "GBF" 1004982 NIL GBF (NIL T T T T) -7 NIL NIL) (-415 1001925 1002090 1002357 "GBEUCLID" 1002960 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-414 1000599 1000784 1001087 "GB" 1001705 NIL GB (NIL T T T T) -7 NIL NIL) (-413 999948 1000073 1000222 "GAUSSFAC" 1000470 T GAUSSFAC (NIL) -7 NIL NIL) (-412 998327 998629 998941 "GALUTIL" 999668 NIL GALUTIL (NIL T) -7 NIL NIL) (-411 996644 996918 997241 "GALPOLYU" 998054 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-410 994033 994323 994728 "GALFACTU" 996341 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-409 985843 987341 988948 "GALFACT" 992466 NIL GALFACT (NIL T) -7 NIL NIL) (-408 983230 983888 983917 "FVFUN" 985073 T FVFUN (NIL) -9 NIL 985793) (-407 982495 982677 982706 "FVC" 982997 T FVC (NIL) -9 NIL 983180) (-406 982137 982292 982373 "FUNCTION" 982447 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-405 980955 981438 981641 "FTEM" 981954 T FTEM (NIL) -8 NIL NIL) (-404 978625 979176 979665 "FT" 980486 T FT (NIL) -8 NIL NIL) (-403 976892 977180 977581 "FSUPFACT" 978318 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-402 975289 975578 975910 "FST" 976580 T FST (NIL) -8 NIL NIL) (-401 974464 974570 974764 "FSRED" 975171 NIL FSRED (NIL T T) -7 NIL NIL) (-400 973145 973400 973753 "FSPRMELT" 974180 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-399 970230 970668 971167 "FSPECF" 972708 NIL FSPECF (NIL T T) -7 NIL NIL) (-398 969746 969800 969976 "FSINT" 970171 NIL FSINT (NIL T T) -7 NIL NIL) (-397 968031 968743 969044 "FSERIES" 969527 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 967049 967165 967395 "FSCINT" 967911 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 966091 966234 966461 "FSAGG2" 966902 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-394 962329 965039 965081 "FSAGG" 965451 NIL FSAGG (NIL T) -9 NIL 965707) (-393 960091 960692 961488 "FSAGG-" 961583 NIL FSAGG- (NIL T T) -8 NIL NIL) (-392 957750 958029 958582 "FS2UPS" 959809 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 956610 956781 957089 "FS2EXPXP" 957575 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-390 956196 956239 956392 "FS2" 956561 NIL FS2 (NIL T T T T) -7 NIL NIL) (-389 938533 947090 947131 "FS" 950969 NIL FS (NIL T) -9 NIL 953240) (-388 927183 930173 934229 "FS-" 934526 NIL FS- (NIL T T) -8 NIL NIL) (-387 926609 926724 926876 "FRUTIL" 927063 NIL FRUTIL (NIL T) -7 NIL NIL) (-386 921686 924329 924370 "FRNAALG" 925766 NIL FRNAALG (NIL T) -9 NIL 926372) (-385 917365 918435 919710 "FRNAALG-" 920460 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-384 917003 917046 917173 "FRNAAF2" 917316 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-383 915370 915862 916155 "FRMOD" 916817 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-382 914569 914656 914943 "FRIDEAL2" 915277 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 912292 912960 913276 "FRIDEAL" 914360 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-380 911551 911959 912001 "FRETRCT" 912006 NIL FRETRCT (NIL T) -9 NIL 912175) (-379 910663 910894 911245 "FRETRCT-" 911250 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-378 907872 909092 909152 "FRAMALG" 910034 NIL FRAMALG (NIL T T) -9 NIL 910326) (-377 906005 906461 907091 "FRAMALG-" 907314 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-376 905641 905698 905805 "FRAC2" 905942 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 899553 905126 905397 "FRAC" 905402 NIL FRAC (NIL T) -8 NIL NIL) (-374 899189 899246 899353 "FR2" 899490 NIL FR2 (NIL T T) -7 NIL NIL) (-373 890626 894704 896052 "FR" 897873 NIL FR (NIL T) -8 NIL NIL) (-372 885255 888168 888197 "FPS" 889316 T FPS (NIL) -9 NIL 889869) (-371 884704 884813 884977 "FPS-" 885123 NIL FPS- (NIL T) -8 NIL NIL) (-370 882105 883802 883831 "FPC" 884056 T FPC (NIL) -9 NIL 884198) (-369 881898 881938 882035 "FPC-" 882040 NIL FPC- (NIL T) -8 NIL NIL) (-368 880778 881388 881430 "FPATMAB" 881435 NIL FPATMAB (NIL T) -9 NIL 881585) (-367 878478 878954 879380 "FPARFRAC" 880415 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-366 873873 874370 875052 "FORTRAN" 877910 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-365 871548 872110 872139 "FORTFN" 873199 T FORTFN (NIL) -9 NIL 873823) (-364 871311 871361 871390 "FORTCAT" 871449 T FORTCAT (NIL) -9 NIL 871511) (-363 869027 869527 870066 "FORT" 870792 T FORT (NIL) -7 NIL NIL) (-362 868815 868845 868914 "FORMULA1" 868991 NIL FORMULA1 (NIL T) -7 NIL NIL) (-361 866875 867358 867757 "FORMULA" 868436 T FORMULA (NIL) -8 NIL NIL) (-360 866398 866450 866623 "FORDER" 866817 NIL FORDER (NIL T T T T) -7 NIL NIL) (-359 865494 865658 865851 "FOP" 866225 T FOP (NIL) -7 NIL NIL) (-358 864102 864774 864948 "FNLA" 865376 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-357 862770 863159 863188 "FNCAT" 863760 T FNCAT (NIL) -9 NIL 864053) (-356 862336 862729 862757 "FNAME" 862762 T FNAME (NIL) -8 NIL NIL) (-355 860995 861968 861997 "FMTC" 862002 T FMTC (NIL) -9 NIL 862037) (-354 857315 858522 859149 "FMONOID" 860401 NIL FMONOID (NIL T) -8 NIL NIL) (-353 854738 855384 855413 "FMFUN" 856557 T FMFUN (NIL) -9 NIL 857265) (-352 851968 852802 852856 "FMCAT" 854038 NIL FMCAT (NIL T T) -9 NIL 854531) (-351 851236 851417 851446 "FMC" 851736 T FMC (NIL) -9 NIL 851918) (-350 850131 851004 851103 "FM1" 851181 NIL FM1 (NIL T T) -8 NIL NIL) (-349 849353 849876 850023 "FM" 850028 NIL FM (NIL T T) -8 NIL NIL) (-348 847127 847543 848037 "FLOATRP" 848904 NIL FLOATRP (NIL T) -7 NIL NIL) (-347 844565 845065 845643 "FLOATCP" 846594 NIL FLOATCP (NIL T) -7 NIL NIL) (-346 838053 842221 842851 "FLOAT" 843955 T FLOAT (NIL) -8 NIL NIL) (-345 836842 837690 837731 "FLINEXP" 837736 NIL FLINEXP (NIL T) -9 NIL 837828) (-344 835997 836232 836559 "FLINEXP-" 836564 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-343 835073 835217 835441 "FLASORT" 835849 NIL FLASORT (NIL T T) -7 NIL NIL) (-342 832291 833133 833186 "FLALG" 834413 NIL FLALG (NIL T T) -9 NIL 834880) (-341 831333 831476 831703 "FLAGG2" 832144 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 825151 828847 828889 "FLAGG" 830151 NIL FLAGG (NIL T) -9 NIL 830799) (-339 823877 824216 824706 "FLAGG-" 824711 NIL FLAGG- (NIL T T) -8 NIL NIL) (-338 820852 821870 821930 "FINRALG" 823058 NIL FINRALG (NIL T T) -9 NIL 823563) (-337 820012 820241 820580 "FINRALG-" 820585 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-336 819418 819631 819660 "FINITE" 819856 T FINITE (NIL) -9 NIL 819963) (-335 811878 814039 814080 "FINAALG" 817747 NIL FINAALG (NIL T) -9 NIL 819199) (-334 807219 808260 809404 "FINAALG-" 810783 NIL FINAALG- (NIL T T) -8 NIL NIL) (-333 805903 806215 806270 "FILECAT" 806954 NIL FILECAT (NIL T T) -9 NIL 807170) (-332 805298 805658 805761 "FILE" 805833 NIL FILE (NIL T) -8 NIL NIL) (-331 803113 804669 804698 "FIELD" 804738 T FIELD (NIL) -9 NIL 804818) (-330 801733 802118 802629 "FIELD-" 802634 NIL FIELD- (NIL T) -8 NIL NIL) (-329 799548 800370 800716 "FGROUP" 801420 NIL FGROUP (NIL T) -8 NIL NIL) (-328 798638 798802 799022 "FGLMICPK" 799380 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-327 794440 798563 798620 "FFX" 798625 NIL FFX (NIL T NIL) -8 NIL NIL) (-326 794041 794102 794237 "FFSLPE" 794373 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-325 793545 793581 793790 "FFPOLY2" 793999 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-324 789541 790317 791113 "FFPOLY" 792781 NIL FFPOLY (NIL T) -7 NIL NIL) (-323 785363 789460 789523 "FFP" 789528 NIL FFP (NIL T NIL) -8 NIL NIL) (-322 780459 784706 784896 "FFNBX" 785217 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-321 775369 779594 779852 "FFNBP" 780313 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-320 769972 774653 774864 "FFNB" 775202 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-319 768804 769002 769317 "FFINTBAS" 769769 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-318 764980 767220 767249 "FFIELDC" 767869 T FFIELDC (NIL) -9 NIL 768245) (-317 763643 764013 764510 "FFIELDC-" 764515 NIL FFIELDC- (NIL T) -8 NIL NIL) (-316 763213 763258 763382 "FFHOM" 763585 NIL FFHOM (NIL T T T) -7 NIL NIL) (-315 760911 761395 761912 "FFF" 762728 NIL FFF (NIL T) -7 NIL NIL) (-314 756499 760653 760754 "FFCGX" 760854 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-313 752101 756231 756338 "FFCGP" 756442 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-312 747254 751828 751936 "FFCG" 752037 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-311 746665 746708 746943 "FFCAT2" 747205 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-310 728464 737587 737674 "FFCAT" 742839 NIL FFCAT (NIL T T T) -9 NIL 744324) (-309 723662 724709 726023 "FFCAT-" 727253 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-308 719030 723573 723637 "FF" 723642 NIL FF (NIL NIL NIL) -8 NIL NIL) (-307 708234 712024 713239 "FEXPR" 717887 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-306 707236 707671 707713 "FEVALAB" 707797 NIL FEVALAB (NIL T) -9 NIL 708055) (-305 706395 706605 706943 "FEVALAB-" 706948 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-304 703461 704176 704292 "FDIVCAT" 705860 NIL FDIVCAT (NIL T T T T) -9 NIL 706297) (-303 703223 703250 703420 "FDIVCAT-" 703425 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-302 702443 702530 702807 "FDIV2" 703130 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-301 701036 701826 702029 "FDIV" 702342 NIL FDIV (NIL T T T T) -8 NIL NIL) (-300 699729 699986 700273 "FCPAK1" 700769 T FCPAK1 (NIL) -7 NIL NIL) (-299 698857 699229 699370 "FCOMP" 699620 NIL FCOMP (NIL T) -8 NIL NIL) (-298 682497 685909 689469 "FC" 695317 T FC (NIL) -8 NIL NIL) (-297 675045 679092 679133 "FAXF" 680935 NIL FAXF (NIL T) -9 NIL 681625) (-296 672324 672979 673804 "FAXF-" 674269 NIL FAXF- (NIL T T) -8 NIL NIL) (-295 667430 671700 671876 "FARRAY" 672181 NIL FARRAY (NIL T) -8 NIL NIL) (-294 662776 664847 664900 "FAMR" 665912 NIL FAMR (NIL T T) -9 NIL 666369) (-293 661667 661969 662403 "FAMR-" 662408 NIL FAMR- (NIL T T T) -8 NIL NIL) (-292 660863 661589 661642 "FAMONOID" 661647 NIL FAMONOID (NIL T) -8 NIL NIL) (-291 658696 659380 659434 "FAMONC" 660375 NIL FAMONC (NIL T T) -9 NIL 660759) (-290 657390 658452 658588 "FAGROUP" 658593 NIL FAGROUP (NIL T) -8 NIL NIL) (-289 655193 655512 655914 "FACUTIL" 657071 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-288 654292 654477 654699 "FACTFUNC" 655003 NIL FACTFUNC (NIL T) -7 NIL NIL) (-287 646615 653543 653755 "EXPUPXS" 654148 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-286 644114 644650 645232 "EXPRTUBE" 646053 T EXPRTUBE (NIL) -7 NIL NIL) (-285 640308 640900 641637 "EXPRODE" 643453 NIL EXPRODE (NIL T T) -7 NIL NIL) (-284 634736 635323 636135 "EXPR2UPS" 639606 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-283 634372 634429 634536 "EXPR2" 634673 NIL EXPR2 (NIL T T) -7 NIL NIL) (-282 619540 633037 633460 "EXPR" 633981 NIL EXPR (NIL T) -8 NIL NIL) (-281 610894 618677 618972 "EXPEXPAN" 619378 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-280 610721 610851 610880 "EXIT" 610885 T EXIT (NIL) -8 NIL NIL) (-279 610348 610410 610523 "EVALCYC" 610653 NIL EVALCYC (NIL T) -7 NIL NIL) (-278 609888 610006 610048 "EVALAB" 610218 NIL EVALAB (NIL T) -9 NIL 610322) (-277 609369 609491 609712 "EVALAB-" 609717 NIL EVALAB- (NIL T T) -8 NIL NIL) (-276 606831 608143 608172 "EUCDOM" 608727 T EUCDOM (NIL) -9 NIL 609077) (-275 605236 605678 606268 "EUCDOM-" 606273 NIL EUCDOM- (NIL T) -8 NIL NIL) (-274 604872 604929 605036 "ESTOOLS2" 605173 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-273 604623 604665 604745 "ESTOOLS1" 604824 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-272 592236 594975 597706 "ESTOOLS" 601912 T ESTOOLS (NIL) -7 NIL NIL) (-271 591981 592013 592095 "ESCONT1" 592198 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-270 588388 589140 589912 "ESCONT" 591229 T ESCONT (NIL) -7 NIL NIL) (-269 588063 588113 588213 "ES2" 588332 NIL ES2 (NIL T T) -7 NIL NIL) (-268 587693 587751 587860 "ES1" 587999 NIL ES1 (NIL T T) -7 NIL NIL) (-267 581632 583356 583385 "ES" 586149 T ES (NIL) -9 NIL 587553) (-266 576580 577866 579683 "ES-" 579847 NIL ES- (NIL T) -8 NIL NIL) (-265 575796 575925 576101 "ERROR" 576424 T ERROR (NIL) -7 NIL NIL) (-264 569311 575655 575746 "EQTBL" 575751 NIL EQTBL (NIL T T) -8 NIL NIL) (-263 568943 569000 569109 "EQ2" 569248 NIL EQ2 (NIL T T) -7 NIL NIL) (-262 561408 564289 565722 "EQ" 567543 NIL -2373 (NIL T) -8 NIL NIL) (-261 556700 557746 558839 "EP" 560347 NIL EP (NIL T) -7 NIL NIL) (-260 555859 556423 556452 "ENTIRER" 556457 T ENTIRER (NIL) -9 NIL 556502) (-259 552315 553814 554184 "EMR" 555658 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-258 551459 551644 551699 "ELTAGG" 552079 NIL ELTAGG (NIL T T) -9 NIL 552289) (-257 551178 551240 551381 "ELTAGG-" 551386 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-256 550966 550995 551050 "ELTAB" 551134 NIL ELTAB (NIL T T) -9 NIL NIL) (-255 550092 550238 550437 "ELFUTS" 550817 NIL ELFUTS (NIL T T) -7 NIL NIL) (-254 549833 549889 549918 "ELEMFUN" 550023 T ELEMFUN (NIL) -9 NIL NIL) (-253 549703 549724 549792 "ELEMFUN-" 549797 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-252 544634 547837 547879 "ELAGG" 548819 NIL ELAGG (NIL T) -9 NIL 549280) (-251 542919 543353 544016 "ELAGG-" 544021 NIL ELAGG- (NIL T T) -8 NIL NIL) (-250 535789 537588 538414 "EFUPXS" 542196 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-249 529241 531042 531851 "EFULS" 535066 NIL EFULS (NIL T T T) -8 NIL NIL) (-248 526672 527030 527508 "EFSTRUC" 528873 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-247 515744 517309 518869 "EF" 525187 NIL EF (NIL T T) -7 NIL NIL) (-246 514845 515229 515378 "EAB" 515615 T EAB (NIL) -8 NIL NIL) (-245 514058 514804 514832 "E04UCFA" 514837 T E04UCFA (NIL) -8 NIL NIL) (-244 513271 514017 514045 "E04NAFA" 514050 T E04NAFA (NIL) -8 NIL NIL) (-243 512484 513230 513258 "E04MBFA" 513263 T E04MBFA (NIL) -8 NIL NIL) (-242 511697 512443 512471 "E04JAFA" 512476 T E04JAFA (NIL) -8 NIL NIL) (-241 510912 511656 511684 "E04GCFA" 511689 T E04GCFA (NIL) -8 NIL NIL) (-240 510127 510871 510899 "E04FDFA" 510904 T E04FDFA (NIL) -8 NIL NIL) (-239 509340 510086 510114 "E04DGFA" 510119 T E04DGFA (NIL) -8 NIL NIL) (-238 503526 504870 506232 "E04AGNT" 507998 T E04AGNT (NIL) -7 NIL NIL) (-237 502252 502732 502773 "DVARCAT" 503248 NIL DVARCAT (NIL T) -9 NIL 503446) (-236 501456 501668 501982 "DVARCAT-" 501987 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-235 494318 501258 501385 "DSMP" 501390 NIL DSMP (NIL T T T) -8 NIL NIL) (-234 493983 494042 494140 "DROPT1" 494253 NIL DROPT1 (NIL T) -7 NIL NIL) (-233 489105 490229 491364 "DROPT0" 492868 T DROPT0 (NIL) -7 NIL NIL) (-232 483931 485062 486126 "DROPT" 488061 T DROPT (NIL) -8 NIL NIL) (-231 482276 482601 482987 "DRAWPT" 483565 T DRAWPT (NIL) -7 NIL NIL) (-230 481917 481968 482084 "DRAWHACK" 482219 NIL DRAWHACK (NIL T) -7 NIL NIL) (-229 480662 480927 481214 "DRAWCX" 481650 T DRAWCX (NIL) -7 NIL NIL) (-228 480180 480248 480398 "DRAWCURV" 480588 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-227 470784 472706 474785 "DRAWCFUN" 478121 T DRAWCFUN (NIL) -7 NIL NIL) (-226 465459 466358 467413 "DRAW" 469782 NIL DRAW (NIL T) -7 NIL NIL) (-225 462313 464189 464231 "DQAGG" 464860 NIL DQAGG (NIL T) -9 NIL 465133) (-224 450773 457511 457594 "DPOLCAT" 459432 NIL DPOLCAT (NIL T T T T) -9 NIL 459975) (-223 445613 446959 448916 "DPOLCAT-" 448921 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-222 439697 445475 445572 "DPMO" 445577 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-221 433684 439478 439644 "DPMM" 439649 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-220 427396 433321 433472 "DMP" 433585 NIL DMP (NIL NIL T) -8 NIL NIL) (-219 426996 427052 427196 "DLP" 427334 NIL DLP (NIL T) -7 NIL NIL) (-218 420646 426097 426324 "DLIST" 426801 NIL DLIST (NIL T) -8 NIL NIL) (-217 417534 419537 419579 "DLAGG" 420129 NIL DLAGG (NIL T) -9 NIL 420357) (-216 416196 416888 416917 "DIVRING" 417067 T DIVRING (NIL) -9 NIL 417175) (-215 415184 415437 415830 "DIVRING-" 415835 NIL DIVRING- (NIL T) -8 NIL NIL) (-214 413286 413643 414049 "DISPLAY" 414798 T DISPLAY (NIL) -7 NIL NIL) (-213 412134 412337 412602 "DIRPROD2" 413079 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 406029 412048 412111 "DIRPROD" 412116 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-211 395700 401699 401753 "DIRPCAT" 402161 NIL DIRPCAT (NIL NIL T) -9 NIL 402977) (-210 393026 393668 394549 "DIRPCAT-" 394886 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-209 392313 392473 392659 "DIOSP" 392860 T DIOSP (NIL) -7 NIL NIL) (-208 389057 391261 391303 "DIOPS" 391737 NIL DIOPS (NIL T) -9 NIL 391965) (-207 388606 388720 388911 "DIOPS-" 388916 NIL DIOPS- (NIL T T) -8 NIL NIL) (-206 387477 388115 388144 "DIFRING" 388331 T DIFRING (NIL) -9 NIL 388440) (-205 387123 387200 387352 "DIFRING-" 387357 NIL DIFRING- (NIL T) -8 NIL NIL) (-204 384914 386196 386237 "DIFEXT" 386596 NIL DIFEXT (NIL T) -9 NIL 386887) (-203 383200 383628 384293 "DIFEXT-" 384298 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-202 380563 382767 382809 "DIAGG" 382814 NIL DIAGG (NIL T) -9 NIL 382834) (-201 379947 380104 380356 "DIAGG-" 380361 NIL DIAGG- (NIL T T) -8 NIL NIL) (-200 375559 376468 377478 "DFSFUN" 378957 T DFSFUN (NIL) -7 NIL NIL) (-199 370493 374389 374724 "DFLOAT" 375244 T DFLOAT (NIL) -8 NIL NIL) (-198 368726 369007 369402 "DFINTTLS" 370201 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 365759 366761 367159 "DERHAM" 368393 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363614 365534 365623 "DEQUEUE" 365703 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 362832 362965 363160 "DEGRED" 363476 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 359248 359989 360837 "DEFINTRF" 362064 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 356787 357254 357850 "DEFINTEF" 358769 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350618 356228 356394 "DECIMAL" 356641 T DECIMAL (NIL) -8 NIL NIL) (-191 348130 348588 349094 "DDFACT" 350162 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 347726 347769 347920 "DBLRESP" 348081 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 345436 345770 346139 "DBASE" 347484 NIL DBASE (NIL T) -8 NIL NIL) (-188 344571 345395 345423 "D03FAFA" 345428 T D03FAFA (NIL) -8 NIL NIL) (-187 343707 344530 344558 "D03EEFA" 344563 T D03EEFA (NIL) -8 NIL NIL) (-186 341657 342123 342612 "D03AGNT" 343238 T D03AGNT (NIL) -7 NIL NIL) (-185 340975 341616 341644 "D02EJFA" 341649 T D02EJFA (NIL) -8 NIL NIL) (-184 340293 340934 340962 "D02CJFA" 340967 T D02CJFA (NIL) -8 NIL NIL) (-183 339611 340252 340280 "D02BHFA" 340285 T D02BHFA (NIL) -8 NIL NIL) (-182 338929 339570 339598 "D02BBFA" 339603 T D02BBFA (NIL) -8 NIL NIL) (-181 332128 333715 335321 "D02AGNT" 337343 T D02AGNT (NIL) -7 NIL NIL) (-180 329909 330428 330971 "D01WGTS" 331605 T D01WGTS (NIL) -7 NIL NIL) (-179 329016 329868 329896 "D01TRNS" 329901 T D01TRNS (NIL) -8 NIL NIL) (-178 328123 328975 329003 "D01GBFA" 329008 T D01GBFA (NIL) -8 NIL NIL) (-177 327230 328082 328110 "D01FCFA" 328115 T D01FCFA (NIL) -8 NIL NIL) (-176 326337 327189 327217 "D01ASFA" 327222 T D01ASFA (NIL) -8 NIL NIL) (-175 325444 326296 326324 "D01AQFA" 326329 T D01AQFA (NIL) -8 NIL NIL) (-174 324551 325403 325431 "D01APFA" 325436 T D01APFA (NIL) -8 NIL NIL) (-173 323658 324510 324538 "D01ANFA" 324543 T D01ANFA (NIL) -8 NIL NIL) (-172 322765 323617 323645 "D01AMFA" 323650 T D01AMFA (NIL) -8 NIL NIL) (-171 321872 322724 322752 "D01ALFA" 322757 T D01ALFA (NIL) -8 NIL NIL) (-170 320979 321831 321859 "D01AKFA" 321864 T D01AKFA (NIL) -8 NIL NIL) (-169 320086 320938 320966 "D01AJFA" 320971 T D01AJFA (NIL) -8 NIL NIL) (-168 313418 314960 316512 "D01AGNT" 318554 T D01AGNT (NIL) -7 NIL NIL) (-167 312755 312883 313035 "CYCLOTOM" 313286 T CYCLOTOM (NIL) -7 NIL NIL) (-166 309490 310203 310930 "CYCLES" 312048 T CYCLES (NIL) -7 NIL NIL) (-165 308802 308936 309107 "CVMP" 309351 NIL CVMP (NIL T) -7 NIL NIL) (-164 306584 306841 307216 "CTRIGMNP" 308530 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 305958 306057 306210 "CSTTOOLS" 306481 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 301757 302414 303172 "CRFP" 305270 NIL CRFP (NIL T T) -7 NIL NIL) (-161 300804 300989 301217 "CRAPACK" 301561 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 300190 300291 300494 "CPMATCH" 300681 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 299915 299943 300049 "CPIMA" 300156 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 296279 296951 297669 "COORDSYS" 299250 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 292140 294282 294774 "CONTFRAC" 295819 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 291293 291857 291886 "COMRING" 291891 T COMRING (NIL) -9 NIL 291942) (-155 290374 290651 290835 "COMPPROP" 291129 T COMPPROP (NIL) -8 NIL NIL) (-154 290035 290070 290198 "COMPLPAT" 290333 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 289671 289728 289835 "COMPLEX2" 289972 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-152 279654 289482 289590 "COMPLEX" 289595 NIL COMPLEX (NIL T) -8 NIL NIL) (-151 279372 279407 279505 "COMPFACT" 279613 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263652 273946 273987 "COMPCAT" 274989 NIL COMPCAT (NIL T) -9 NIL 276365) (-149 253168 256091 259718 "COMPCAT-" 260074 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 252899 252927 253029 "COMMUPC" 253134 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252694 252727 252786 "COMMONOP" 252860 T COMMONOP (NIL) -7 NIL NIL) (-146 252277 252445 252532 "COMM" 252627 T COMM (NIL) -8 NIL NIL) (-145 251531 251723 251752 "COMBOPC" 252088 T COMBOPC (NIL) -9 NIL 252261) (-144 250427 250637 250879 "COMBINAT" 251321 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246633 247204 247842 "COMBF" 249851 NIL COMBF (NIL T T) -7 NIL NIL) (-142 245419 245749 245984 "COLOR" 246418 T COLOR (NIL) -8 NIL NIL) (-141 245059 245106 245231 "CMPLXRT" 245366 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240617 241631 242697 "CLIP" 244013 T CLIP (NIL) -7 NIL NIL) (-139 238955 239725 239963 "CLIF" 240445 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 235221 237139 237181 "CLAGG" 238110 NIL CLAGG (NIL T) -9 NIL 238643) (-137 233643 234100 234683 "CLAGG-" 234688 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 233187 233272 233412 "CINTSLPE" 233552 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230688 231159 231707 "CHVAR" 232715 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 229910 230474 230503 "CHARZ" 230508 T CHARZ (NIL) -9 NIL 230522) (-133 229664 229704 229782 "CHARPOL" 229864 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 228770 229367 229396 "CHARNZ" 229443 T CHARNZ (NIL) -9 NIL 229498) (-131 226793 227460 227795 "CHAR" 228455 T CHAR (NIL) -8 NIL NIL) (-130 226518 226579 226608 "CFCAT" 226719 T CFCAT (NIL) -9 NIL NIL) (-129 225763 225874 226056 "CDEN" 226402 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 221755 224916 225196 "CCLASS" 225503 T CCLASS (NIL) -8 NIL NIL) (-127 220863 221011 221232 "CARTEN2" 221602 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-126 215916 216892 217645 "CARTEN" 220166 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-125 214213 215068 215324 "CARD" 215680 T CARD (NIL) -8 NIL NIL) (-124 213585 213913 213942 "CACHSET" 214074 T CACHSET (NIL) -9 NIL 214151) (-123 213081 213377 213406 "CABMON" 213456 T CABMON (NIL) -9 NIL 213512) (-122 210644 212773 212880 "BTREE" 213007 NIL BTREE (NIL T) -8 NIL NIL) (-121 208148 210292 210414 "BTOURN" 210554 NIL BTOURN (NIL T) -8 NIL NIL) (-120 205607 207654 207696 "BTCAT" 207764 NIL BTCAT (NIL T) -9 NIL 207841) (-119 205274 205354 205503 "BTCAT-" 205508 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 200464 204335 204364 "BTAGG" 204620 T BTAGG (NIL) -9 NIL 204799) (-117 199887 200031 200261 "BTAGG-" 200266 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 196937 199165 199380 "BSTREE" 199704 NIL BSTREE (NIL T) -8 NIL NIL) (-115 196075 196201 196385 "BRILL" 196793 NIL BRILL (NIL T) -7 NIL NIL) (-114 192818 194839 194881 "BRAGG" 195530 NIL BRAGG (NIL T) -9 NIL 195786) (-113 191347 191753 192308 "BRAGG-" 192313 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 184555 190693 190877 "BPADICRT" 191195 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 182859 184492 184537 "BPADIC" 184542 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 182559 182589 182702 "BOUNDZRO" 182823 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 180182 180626 181145 "BOP1" 182073 NIL BOP1 (NIL T) -7 NIL NIL) (-108 175697 176788 177655 "BOP" 179335 T BOP (NIL) -8 NIL NIL) (-107 174050 174740 175034 "BOOLEAN" 175423 T BOOLEAN (NIL) -8 NIL NIL) (-106 173416 173794 173847 "BMODULE" 173852 NIL BMODULE (NIL T T) -9 NIL 173916) (-105 169226 173214 173287 "BITS" 173363 T BITS (NIL) -8 NIL NIL) (-104 168323 168758 168910 "BINFILE" 169094 T BINFILE (NIL) -8 NIL NIL) (-103 162158 167767 167932 "BINARY" 168178 T BINARY (NIL) -8 NIL NIL) (-102 160026 161448 161490 "BGAGG" 161750 NIL BGAGG (NIL T) -9 NIL 161887) (-101 159857 159889 159980 "BGAGG-" 159985 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158955 159241 159446 "BFUNCT" 159672 T BFUNCT (NIL) -8 NIL NIL) (-99 157658 157836 158120 "BEZOUT" 158780 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154189 156518 156846 "BBTREE" 157361 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153926 153979 154006 "BASTYPE" 154123 T BASTYPE (NIL) -9 NIL NIL) (-96 153782 153810 153880 "BASTYPE-" 153885 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153220 153296 153446 "BALFACT" 153693 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 152042 152639 152824 "AUTOMOR" 153065 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151767 151772 151799 "ATTREG" 151804 T ATTREG (NIL) -9 NIL NIL) (-92 150046 150464 150816 "ATTRBUT" 151433 T ATTRBUT (NIL) -8 NIL NIL) (-91 149581 149694 149721 "ATRIG" 149922 T ATRIG (NIL) -9 NIL NIL) (-90 149390 149431 149518 "ATRIG-" 149523 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147593 149166 149254 "ASTACK" 149333 NIL ASTACK (NIL T) -8 NIL NIL) (-88 146100 146397 146761 "ASSOCEQ" 147276 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 145132 145759 145883 "ASP9" 146007 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144002 144737 144879 "ASP80" 145021 NIL ASP80 (NIL NIL) -8 NIL NIL) (-85 143766 143950 143989 "ASP8" 143994 NIL ASP8 (NIL NIL) -8 NIL NIL) (-84 142722 143443 143561 "ASP78" 143679 NIL ASP78 (NIL NIL) -8 NIL NIL) (-83 141693 142402 142519 "ASP77" 142636 NIL ASP77 (NIL NIL) -8 NIL NIL) (-82 140608 141331 141462 "ASP74" 141593 NIL ASP74 (NIL NIL) -8 NIL NIL) (-81 139509 140243 140375 "ASP73" 140507 NIL ASP73 (NIL NIL) -8 NIL NIL) (-80 138408 139144 139276 "ASP7" 139408 NIL ASP7 (NIL NIL) -8 NIL NIL) (-79 137363 138085 138203 "ASP6" 138321 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136312 137040 137158 "ASP55" 137276 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135262 135986 136105 "ASP50" 136224 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134350 134963 135073 "ASP49" 135183 NIL ASP49 (NIL NIL) -8 NIL NIL) (-75 133135 133889 134057 "ASP42" 134239 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-74 131913 132668 132838 "ASP41" 133022 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-73 131001 131614 131724 "ASP4" 131834 NIL ASP4 (NIL NIL) -8 NIL NIL) (-72 129953 130678 130796 "ASP35" 130914 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129718 129901 129940 "ASP34" 129945 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129455 129522 129598 "ASP33" 129673 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128351 129090 129222 "ASP31" 129354 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 128116 128299 128338 "ASP30" 128343 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127851 127920 127996 "ASP29" 128071 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127616 127799 127838 "ASP28" 127843 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127381 127564 127603 "ASP27" 127608 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126465 127079 127190 "ASP24" 127301 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125382 126106 126236 "ASP20" 126366 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124326 125056 125175 "ASP19" 125294 NIL ASP19 (NIL NIL) -8 NIL NIL) (-61 124063 124130 124206 "ASP12" 124281 NIL ASP12 (NIL NIL) -8 NIL NIL) (-60 122916 123662 123806 "ASP10" 123950 NIL ASP10 (NIL NIL) -8 NIL NIL) (-59 122004 122617 122727 "ASP1" 122837 NIL ASP1 (NIL NIL) -8 NIL NIL) (-58 119909 121848 121939 "ARRAY2" 121944 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 118941 119114 119335 "ARRAY12" 119732 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-56 114763 118589 118703 "ARRAY1" 118858 NIL ARRAY1 (NIL T) -8 NIL NIL) (-55 109163 111028 111104 "ARR2CAT" 113734 NIL ARR2CAT (NIL T T T) -9 NIL 114492) (-54 106597 107341 108295 "ARR2CAT-" 108300 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105357 105507 105810 "APPRULE" 106435 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 105010 105058 105176 "APPLYORE" 105303 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 104288 104411 104568 "ANY1" 104884 NIL ANY1 (NIL T) -7 NIL NIL) (-50 103262 103553 103748 "ANY" 104111 T ANY (NIL) -8 NIL NIL) (-49 100794 101712 102037 "ANTISYM" 102987 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100621 100753 100780 "ANON" 100785 T ANON (NIL) -8 NIL NIL) (-47 94698 99166 99617 "AN" 100188 T AN (NIL) -8 NIL NIL) (-46 91010 92408 92459 "AMR" 93198 NIL AMR (NIL T T) -9 NIL 93791) (-45 90123 90344 90706 "AMR-" 90711 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74685 90040 90101 "ALIST" 90106 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71522 74279 74448 "ALGSC" 74603 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 68080 68634 69240 "ALGPKG" 70963 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 67357 67458 67642 "ALGMFACT" 67966 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 63115 63795 64445 "ALGMANIP" 66885 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 54434 62741 62891 "ALGFF" 63048 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53630 53761 53940 "ALGFACT" 54292 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52620 53230 53269 "ALGEBRA" 53329 NIL ALGEBRA (NIL T) -9 NIL 53387) (-36 52338 52397 52529 "ALGEBRA-" 52534 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34147 49872 49925 "ALAGG" 50061 NIL ALAGG (NIL T T) -9 NIL 50222) (-34 33682 33795 33822 "AHYP" 34023 T AHYP (NIL) -9 NIL NIL) (-33 32613 32861 32888 "AGG" 33387 T AGG (NIL) -9 NIL 33665) (-32 32047 32209 32423 "AGG-" 32428 NIL AGG- (NIL T) -8 NIL NIL) (-31 29736 30154 30570 "AF" 31691 NIL AF (NIL T T) -7 NIL NIL) (-30 29014 29268 29422 "ACPLOT" 29600 T ACPLOT (NIL) -8 NIL NIL) (-29 18433 26379 26431 "ACFS" 27142 NIL ACFS (NIL T) -9 NIL 27381) (-28 16447 16937 17712 "ACFS-" 17717 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12667 14623 14650 "ACF" 15529 T ACF (NIL) -9 NIL 15941) (-26 11371 11705 12198 "ACF-" 12203 NIL ACF- (NIL T) -8 NIL NIL) (-25 10969 11138 11165 "ABELSG" 11257 T ABELSG (NIL) -9 NIL 11322) (-24 10836 10861 10927 "ABELSG-" 10932 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10205 10466 10493 "ABELMON" 10663 T ABELMON (NIL) -9 NIL 10775) (-22 9869 9953 10091 "ABELMON-" 10096 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9203 9549 9576 "ABELGRP" 9701 T ABELGRP (NIL) -9 NIL 9783) (-20 8666 8795 9011 "ABELGRP-" 9016 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8029 8069 "A1AGG" 8074 NIL A1AGG (NIL T) -9 NIL 8114) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 26)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-968) (-1184)) (T -968))
+NIL
+(-13 (-21) (-1015))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-123) . T) ((-557 (-787)) . T) ((-1015) . T) ((-1003) . T))
+((-1974 (($ $) 16)) (-2531 (($ $) 22)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 49)) (-1506 (($ $) 24)) (-1927 (($ $) 11)) (-2597 (($ $) 38)) (-3645 (((-349) $) NIL) (((-199) $) NIL) (((-814 (-349)) $) 33)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL) (($ (-377 (-517))) 28) (($ (-517)) NIL) (($ (-377 (-517))) 28)) (-2961 (((-703)) 8)) (-1949 (($ $) 39)))
+(((-969 |#1|) (-10 -8 (-15 -2531 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2597 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|))) (-970)) (T -969))
+((-2961 (*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970)))))
+(-10 -8 (-15 -2531 (|#1| |#1|)) (-15 -1974 (|#1| |#1|)) (-15 -1927 (|#1| |#1|)) (-15 -2597 (|#1| |#1|)) (-15 -1949 (|#1| |#1|)) (-15 -1506 (|#1| |#1|)) (-15 -4057 ((-811 (-349) |#1|) |#1| (-814 (-349)) (-811 (-349) |#1|))) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 -3645 ((-199) |#1|)) (-15 -3645 ((-349) |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2961 ((-703))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 (((-517) $) 89)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-1974 (($ $) 87)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-3766 (($ $) 97)) (-1707 (((-107) $ $) 59)) (-3709 (((-517) $) 114)) (-3092 (($) 17 T CONST)) (-2531 (($ $) 86)) (-1772 (((-3 (-517) "failed") $) 102) (((-3 (-377 (-517)) "failed") $) 99)) (-3189 (((-517) $) 101) (((-377 (-517)) $) 98)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-3849 (((-107) $) 71)) (-3556 (((-107) $) 112)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 93)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 96)) (-1506 (($ $) 92)) (-2475 (((-107) $) 113)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-2967 (($ $ $) 111)) (-3099 (($ $ $) 110)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-1927 (($ $) 88)) (-2597 (($ $) 90)) (-3755 (((-388 $) $) 74)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-3645 (((-349) $) 105) (((-199) $) 104) (((-814 (-349)) $) 94)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ (-517)) 103) (($ (-377 (-517))) 100)) (-2961 (((-703)) 29)) (-1949 (($ $) 91)) (-3329 (((-107) $ $) 39)) (-3710 (($ $) 115)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1606 (((-107) $ $) 108)) (-1583 (((-107) $ $) 107)) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 109)) (-1572 (((-107) $ $) 106)) (-1667 (($ $ $) 64)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68) (($ $ (-377 (-517))) 95)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66)))
+(((-970) (-1184)) (T -970))
+((-3710 (*1 *1 *1) (-4 *1 (-970))) (-1506 (*1 *1 *1) (-4 *1 (-970))) (-1949 (*1 *1 *1) (-4 *1 (-970))) (-2597 (*1 *1 *1) (-4 *1 (-970))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517)))) (-1927 (*1 *1 *1) (-4 *1 (-970))) (-1974 (*1 *1 *1) (-4 *1 (-970))) (-2531 (*1 *1 *1) (-4 *1 (-970))))
+(-13 (-333) (-777) (-937) (-952 (-517)) (-952 (-377 (-517))) (-918) (-558 (-814 (-349))) (-808 (-349)) (-134) (-10 -8 (-15 -1506 ($ $)) (-15 -1949 ($ $)) (-15 -2597 ($ $)) (-15 -2668 ((-517) $)) (-15 -1927 ($ $)) (-15 -1974 ($ $)) (-15 -2531 ($ $)) (-15 -3710 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 $ $) . T) ((-123) . T) ((-134) . T) ((-557 (-787)) . T) ((-156) . T) ((-558 (-199)) . T) ((-558 (-349)) . T) ((-558 (-814 (-349))) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 $) . T) ((-659) . T) ((-723) . T) ((-724) . T) ((-726) . T) ((-727) . T) ((-777) . T) ((-779) . T) ((-808 (-349)) . T) ((-842) . T) ((-918) . T) ((-937) . T) ((-952 (-377 (-517))) . T) ((-952 (-517)) . T) ((-967 (-377 (-517))) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) |#2| $) 23)) (-1611 ((|#1| $) 10)) (-3709 (((-517) |#2| $) 88)) (-3267 (((-3 $ "failed") |#2| (-843)) 58)) (-3652 ((|#1| $) 28)) (-2002 ((|#1| |#2| $ |#1|) 37)) (-3437 (($ $) 25)) (-3621 (((-3 |#2| "failed") |#2| $) 87)) (-3556 (((-107) |#2| $) NIL)) (-2475 (((-107) |#2| $) NIL)) (-2046 (((-107) |#2| $) 24)) (-2270 ((|#1| $) 89)) (-3639 ((|#1| $) 27)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2135 ((|#2| $) 79)) (-2256 (((-787) $) 71)) (-3383 ((|#1| |#2| $ |#1|) 38)) (-3995 (((-583 $) |#2|) 60)) (-1547 (((-107) $ $) 74)))
+(((-971 |#1| |#2|) (-13 (-977 |#1| |#2|) (-10 -8 (-15 -3639 (|#1| $)) (-15 -3652 (|#1| $)) (-15 -1611 (|#1| $)) (-15 -2270 (|#1| $)) (-15 -3437 ($ $)) (-15 -2046 ((-107) |#2| $)) (-15 -2002 (|#1| |#2| $ |#1|)))) (-13 (-777) (-333)) (-1130 |#1|)) (T -971))
+((-2002 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-3639 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-3652 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-1611 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-2270 (*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-3437 (*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) (-2046 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1130 *4)))))
+(-13 (-977 |#1| |#2|) (-10 -8 (-15 -3639 (|#1| $)) (-15 -3652 (|#1| $)) (-15 -1611 (|#1| $)) (-15 -2270 (|#1| $)) (-15 -3437 ($ $)) (-15 -2046 ((-107) |#2| $)) (-15 -2002 (|#1| |#2| $ |#1|))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) NIL)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) NIL)) (-3092 (($) NIL T CONST)) (-4011 (($ (-1073)) 10) (($ (-517)) 7)) (-1772 (((-3 (-517) "failed") $) NIL)) (-3189 (((-517) $) NIL)) (-2518 (($ $ $) NIL)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-623 (-517)) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($) NIL) (($ $) NIL)) (-2497 (($ $ $) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) NIL)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) NIL)) (-1769 (((-107) $) NIL)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) NIL)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1522 (($ $) NIL)) (-2195 (($ $) NIL)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) NIL)) (-3206 (((-1021) $) NIL) (($ $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-2789 (($ $) NIL)) (-2433 (($ $) NIL)) (-3645 (((-517) $) 16) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL) (($ (-1073)) 9)) (-2256 (((-787) $) 20) (($ (-517)) 6) (($ $) NIL) (($ (-517)) 6)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) NIL)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) NIL)) (-3710 (($ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) NIL)) (-1654 (($ $) 19) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL)))
+(((-972) (-13 (-502) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3645 ($ (-1073))) (-15 -4011 ($ (-1073))) (-15 -4011 ($ (-517)))))) (T -972))
+((-3645 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))) (-4011 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972)))))
+(-13 (-502) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3645 ($ (-1073))) (-15 -4011 ($ (-1073))) (-15 -4011 ($ (-517)))))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-1668 (((-1158) $ (-1073) (-1073)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2872 (($) 9)) (-2411 (((-51) $ (-1073) (-51)) NIL)) (-1936 (($ $) 23)) (-2014 (($ $) 21)) (-1688 (($ $) 20)) (-1835 (($ $) 22)) (-3172 (($ $) 25)) (-2375 (($ $) 26)) (-3699 (($ $) 19)) (-2263 (($ $) 24)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) 18 (|has| $ (-6 -4180)))) (-3254 (((-3 (-51) "failed") (-1073) $) 34)) (-3092 (($) NIL T CONST)) (-2665 (($) 7)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) 46 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-3 (-51) "failed") (-1073) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180)))) (-2381 (((-3 (-1056) "failed") $ (-1056) (-517)) 59)) (-1445 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -4181)))) (-1377 (((-51) $ (-1073)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1073) $) NIL (|has| (-1073) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) 28 (|has| $ (-6 -4180))) (((-583 (-51)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-3482 (((-1073) $) NIL (|has| (-1073) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4181))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2274 (((-583 (-1073)) $) NIL)) (-2793 (((-107) (-1073) $) NIL)) (-3309 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) 37)) (-1857 (((-583 (-1073)) $) NIL)) (-4088 (((-107) (-1073) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-3947 (((-349) $ (-1073)) 45)) (-2000 (((-583 (-1056)) $ (-1056)) 60)) (-1647 (((-51) $) NIL (|has| (-1073) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) "failed") (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL)) (-2565 (($ $ (-51)) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL (-12 (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-280 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (($ $ (-583 (-51)) (-583 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-265 (-51))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003)))) (($ $ (-583 (-265 (-51)))) NIL (-12 (|has| (-51) (-280 (-51))) (|has| (-51) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003))))) (-1941 (((-583 (-51)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-51) $ (-1073)) NIL) (((-51) $ (-1073) (-51)) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3468 (($ $ (-1073)) 47)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003)))) (((-703) (-51) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-51) (-1003)))) (((-703) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) 30)) (-2452 (($ $ $) 31)) (-2256 (((-787) $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-4129 (($ $ (-1073) (-349)) 43)) (-3219 (($ $ (-1073) (-349)) 44)) (-1222 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1073)) (|:| -1257 (-51)))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) (-51)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-51) (-1003)) (|has| (-2 (|:| -3435 (-1073)) (|:| -1257 (-51))) (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-973) (-13 (-1085 (-1073) (-51)) (-10 -8 (-15 -2452 ($ $ $)) (-15 -2665 ($)) (-15 -3699 ($ $)) (-15 -1688 ($ $)) (-15 -2014 ($ $)) (-15 -1835 ($ $)) (-15 -2263 ($ $)) (-15 -1936 ($ $)) (-15 -3172 ($ $)) (-15 -2375 ($ $)) (-15 -4129 ($ $ (-1073) (-349))) (-15 -3219 ($ $ (-1073) (-349))) (-15 -3947 ((-349) $ (-1073))) (-15 -2000 ((-583 (-1056)) $ (-1056))) (-15 -3468 ($ $ (-1073))) (-15 -2872 ($)) (-15 -2381 ((-3 (-1056) "failed") $ (-1056) (-517))) (-6 -4180)))) (T -973))
+((-2452 (*1 *1 *1 *1) (-5 *1 (-973))) (-2665 (*1 *1) (-5 *1 (-973))) (-3699 (*1 *1 *1) (-5 *1 (-973))) (-1688 (*1 *1 *1) (-5 *1 (-973))) (-2014 (*1 *1 *1) (-5 *1 (-973))) (-1835 (*1 *1 *1) (-5 *1 (-973))) (-2263 (*1 *1 *1) (-5 *1 (-973))) (-1936 (*1 *1 *1) (-5 *1 (-973))) (-3172 (*1 *1 *1) (-5 *1 (-973))) (-2375 (*1 *1 *1) (-5 *1 (-973))) (-4129 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))) (-3219 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))) (-3947 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-349)) (-5 *1 (-973)))) (-2000 (*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-973)) (-5 *3 (-1056)))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-973)))) (-2872 (*1 *1) (-5 *1 (-973))) (-2381 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-973)))))
+(-13 (-1085 (-1073) (-51)) (-10 -8 (-15 -2452 ($ $ $)) (-15 -2665 ($)) (-15 -3699 ($ $)) (-15 -1688 ($ $)) (-15 -2014 ($ $)) (-15 -1835 ($ $)) (-15 -2263 ($ $)) (-15 -1936 ($ $)) (-15 -3172 ($ $)) (-15 -2375 ($ $)) (-15 -4129 ($ $ (-1073) (-349))) (-15 -3219 ($ $ (-1073) (-349))) (-15 -3947 ((-349) $ (-1073))) (-15 -2000 ((-583 (-1056)) $ (-1056))) (-15 -3468 ($ $ (-1073))) (-15 -2872 ($)) (-15 -2381 ((-3 (-1056) "failed") $ (-1056) (-517))) (-6 -4180)))
+((-2779 (($ $) 45)) (-2421 (((-107) $ $) 74)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-874 (-377 (-517)))) 226) (((-3 $ "failed") (-874 (-517))) 225) (((-3 $ "failed") (-874 |#2|)) 228)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL) ((|#4| $) NIL) (($ (-874 (-377 (-517)))) 214) (($ (-874 (-517))) 210) (($ (-874 |#2|)) 230)) (-1212 (($ $) NIL) (($ $ |#4|) 43)) (-3283 (((-107) $ $) 111) (((-107) $ (-583 $)) 112)) (-1869 (((-107) $) 56)) (-1874 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 106)) (-4083 (($ $) 137)) (-2557 (($ $) 133)) (-1454 (($ $) 132)) (-1440 (($ $ $) 79) (($ $ $ |#4|) 84)) (-2489 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1497 (((-107) $ $) 120) (((-107) $ (-583 $)) 121)) (-1976 ((|#4| $) 33)) (-1439 (($ $ $) 109)) (-4156 (((-107) $) 55)) (-2401 (((-703) $) 35)) (-3074 (($ $) 151)) (-1923 (($ $) 148)) (-1726 (((-583 $) $) 68)) (-2070 (($ $) 57)) (-3622 (($ $) 144)) (-2235 (((-583 $) $) 65)) (-3839 (($ $) 59)) (-1191 ((|#2| $) NIL) (($ $ |#4|) 38)) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $) 110)) (-2669 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 107) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |#4|) 108)) (-2915 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $) 103) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |#4|) 104)) (-3692 (($ $ $) 89) (($ $ $ |#4|) 94)) (-2928 (($ $ $) 90) (($ $ $ |#4|) 95)) (-1628 (((-583 $) $) 51)) (-3852 (((-107) $ $) 117) (((-107) $ (-583 $)) 118)) (-3522 (($ $ $) 102)) (-2836 (($ $) 37)) (-3411 (((-107) $ $) 72)) (-1959 (((-107) $ $) 113) (((-107) $ (-583 $)) 115)) (-3183 (($ $ $) 100)) (-3059 (($ $) 40)) (-1401 ((|#2| |#2| $) 141) (($ (-583 $)) NIL) (($ $ $) NIL)) (-3716 (($ $ |#2|) NIL) (($ $ $) 130)) (-3068 (($ $ |#2|) 125) (($ $ $) 128)) (-2451 (($ $) 48)) (-3443 (($ $) 52)) (-3645 (((-814 (-349)) $) NIL) (((-814 (-517)) $) NIL) (((-493) $) NIL) (($ (-874 (-377 (-517)))) 216) (($ (-874 (-517))) 212) (($ (-874 |#2|)) 227) (((-1056) $) 249) (((-874 |#2|) $) 161)) (-2256 (((-787) $) 30) (($ (-517)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-874 |#2|) $) 162) (($ (-377 (-517))) NIL) (($ $) NIL)) (-2791 (((-3 (-107) "failed") $ $) 71)))
+(((-974 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1401 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 ((-874 |#2|) |#1|)) (-15 -3645 ((-874 |#2|) |#1|)) (-15 -3645 ((-1056) |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -1401 (|#2| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3068 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3068 (|#1| |#1| |#2|)) (-15 -2557 (|#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3645 (|#1| (-874 |#2|))) (-15 -3189 (|#1| (-874 |#2|))) (-15 -1772 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3645 (|#1| (-874 (-517)))) (-15 -3189 (|#1| (-874 (-517)))) (-15 -1772 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3645 (|#1| (-874 (-377 (-517))))) (-15 -3189 (|#1| (-874 (-377 (-517))))) (-15 -1772 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -3522 (|#1| |#1| |#1|)) (-15 -3183 (|#1| |#1| |#1|)) (-15 -3634 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1349 (-703))) |#1| |#1|)) (-15 -1439 (|#1| |#1| |#1|)) (-15 -1874 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1| |#4|)) (-15 -3692 (|#1| |#1| |#1| |#4|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -3692 (|#1| |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1| |#4|)) (-15 -1440 (|#1| |#1| |#1| |#4|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1497 ((-107) |#1| (-583 |#1|))) (-15 -1497 ((-107) |#1| |#1|)) (-15 -3852 ((-107) |#1| (-583 |#1|))) (-15 -3852 ((-107) |#1| |#1|)) (-15 -1959 ((-107) |#1| (-583 |#1|))) (-15 -1959 ((-107) |#1| |#1|)) (-15 -3283 ((-107) |#1| (-583 |#1|))) (-15 -3283 ((-107) |#1| |#1|)) (-15 -2421 ((-107) |#1| |#1|)) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2791 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1726 ((-583 |#1|) |#1|)) (-15 -2235 ((-583 |#1|) |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -1869 ((-107) |#1|)) (-15 -4156 ((-107) |#1|)) (-15 -1212 (|#1| |#1| |#4|)) (-15 -1191 (|#1| |#1| |#4|)) (-15 -3443 (|#1| |#1|)) (-15 -1628 ((-583 |#1|) |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3059 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2401 ((-703) |#1|)) (-15 -1976 (|#4| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -1191 (|#2| |#1|)) (-15 -1212 (|#1| |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-975 |#2| |#3| |#4|) (-961) (-725) (-779)) (T -974))
+NIL
+(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1401 (|#1| |#1| |#1|)) (-15 -1401 (|#1| (-583 |#1|))) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 ((-874 |#2|) |#1|)) (-15 -3645 ((-874 |#2|) |#1|)) (-15 -3645 ((-1056) |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -1923 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -4083 (|#1| |#1|)) (-15 -1401 (|#2| |#2| |#1|)) (-15 -3716 (|#1| |#1| |#1|)) (-15 -3068 (|#1| |#1| |#1|)) (-15 -3716 (|#1| |#1| |#2|)) (-15 -3068 (|#1| |#1| |#2|)) (-15 -2557 (|#1| |#1|)) (-15 -1454 (|#1| |#1|)) (-15 -3645 (|#1| (-874 |#2|))) (-15 -3189 (|#1| (-874 |#2|))) (-15 -1772 ((-3 |#1| "failed") (-874 |#2|))) (-15 -3645 (|#1| (-874 (-517)))) (-15 -3189 (|#1| (-874 (-517)))) (-15 -1772 ((-3 |#1| "failed") (-874 (-517)))) (-15 -3645 (|#1| (-874 (-377 (-517))))) (-15 -3189 (|#1| (-874 (-377 (-517))))) (-15 -1772 ((-3 |#1| "failed") (-874 (-377 (-517))))) (-15 -3522 (|#1| |#1| |#1|)) (-15 -3183 (|#1| |#1| |#1|)) (-15 -3634 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1349 (-703))) |#1| |#1|)) (-15 -1439 (|#1| |#1| |#1|)) (-15 -1874 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2669 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1| |#4|)) (-15 -2915 ((-2 (|:| -1931 |#1|) (|:| |gap| (-703)) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -2928 (|#1| |#1| |#1| |#4|)) (-15 -3692 (|#1| |#1| |#1| |#4|)) (-15 -2928 (|#1| |#1| |#1|)) (-15 -3692 (|#1| |#1| |#1|)) (-15 -2489 (|#1| |#1| |#1| |#4|)) (-15 -1440 (|#1| |#1| |#1| |#4|)) (-15 -2489 (|#1| |#1| |#1|)) (-15 -1440 (|#1| |#1| |#1|)) (-15 -1497 ((-107) |#1| (-583 |#1|))) (-15 -1497 ((-107) |#1| |#1|)) (-15 -3852 ((-107) |#1| (-583 |#1|))) (-15 -3852 ((-107) |#1| |#1|)) (-15 -1959 ((-107) |#1| (-583 |#1|))) (-15 -1959 ((-107) |#1| |#1|)) (-15 -3283 ((-107) |#1| (-583 |#1|))) (-15 -3283 ((-107) |#1| |#1|)) (-15 -2421 ((-107) |#1| |#1|)) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2791 ((-3 (-107) "failed") |#1| |#1|)) (-15 -1726 ((-583 |#1|) |#1|)) (-15 -2235 ((-583 |#1|) |#1|)) (-15 -3839 (|#1| |#1|)) (-15 -2070 (|#1| |#1|)) (-15 -1869 ((-107) |#1|)) (-15 -4156 ((-107) |#1|)) (-15 -1212 (|#1| |#1| |#4|)) (-15 -1191 (|#1| |#1| |#4|)) (-15 -3443 (|#1| |#1|)) (-15 -1628 ((-583 |#1|) |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -3059 (|#1| |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -2401 ((-703) |#1|)) (-15 -1976 (|#4| |#1|)) (-15 -3645 ((-493) |#1|)) (-15 -3645 ((-814 (-517)) |#1|)) (-15 -3645 ((-814 (-349)) |#1|)) (-15 -3189 (|#4| |#1|)) (-15 -1772 ((-3 |#4| "failed") |#1|)) (-15 -2256 (|#1| |#4|)) (-15 -1191 (|#2| |#1|)) (-15 -1212 (|#1| |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 |#3|) $) 110)) (-2352 (((-1069 $) $ |#3|) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 |#3|)) 111)) (-2779 (($ $) 271)) (-2421 (((-107) $ $) 257)) (-4038 (((-3 $ "failed") $ $) 19)) (-3081 (($ $ $) 216 (|has| |#1| (-509)))) (-2788 (((-583 $) $ $) 211 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-874 (-377 (-517)))) 231 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))) (((-3 $ "failed") (-874 (-517))) 228 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073)))))) (((-3 $ "failed") (-874 |#1|)) 225 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-502))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))))) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) ((|#3| $) 135) (($ (-874 (-377 (-517)))) 230 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))) (($ (-874 (-517))) 227 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073)))))) (($ (-874 |#1|)) 224 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (-2630 (|has| |#1| (-37 (-517)))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-502))) (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (-2630 (|has| |#1| (-909 (-517)))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))))) (-3388 (($ $ $ |#3|) 108 (|has| |#1| (-156))) (($ $ $) 212 (|has| |#1| (-509)))) (-1212 (($ $) 154) (($ $ |#3|) 266)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3283 (((-107) $ $) 256) (((-107) $ (-583 $)) 255)) (-3621 (((-3 $ "failed") $) 34)) (-1869 (((-107) $) 264)) (-1874 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 236)) (-4083 (($ $) 205 (|has| |#1| (-421)))) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ |#3|) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-2557 (($ $) 221 (|has| |#1| (-509)))) (-1454 (($ $) 222 (|has| |#1| (-509)))) (-1440 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2489 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1436 (($ $ |#1| |#2| $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| |#3| (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| |#3| (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1497 (((-107) $ $) 250) (((-107) $ (-583 $)) 249)) (-3239 (($ $ $ $ $) 207 (|has| |#1| (-509)))) (-1976 ((|#3| $) 275)) (-1350 (($ (-1069 |#1|) |#3|) 117) (($ (-1069 $) |#3|) 116)) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| |#2|) 153) (($ $ |#3| (-703)) 119) (($ $ (-583 |#3|) (-583 (-703))) 118)) (-1439 (($ $ $) 235)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 120)) (-4156 (((-107) $) 265)) (-2349 ((|#2| $) 170) (((-703) $ |#3|) 122) (((-583 (-703)) $ (-583 |#3|)) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-2401 (((-703) $) 274)) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 |#2| |#2|) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-1409 (((-3 |#3| "failed") $) 123)) (-3074 (($ $) 202 (|has| |#1| (-421)))) (-1923 (($ $) 203 (|has| |#1| (-421)))) (-1726 (((-583 $) $) 260)) (-2070 (($ $) 263)) (-3622 (($ $) 204 (|has| |#1| (-421)))) (-2235 (((-583 $) $) 261)) (-3839 (($ $) 262)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148) (($ $ |#3|) 267)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3634 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $) 234)) (-2669 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $) 238) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |#3|) 237)) (-2915 (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $) 240) (((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |#3|) 239)) (-3692 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2928 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3985 (((-1056) $) 9)) (-1855 (($ $ $) 210 (|has| |#1| (-509)))) (-1628 (((-583 $) $) 269)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| |#3|) (|:| -2077 (-703))) "failed") $) 113)) (-3852 (((-107) $ $) 252) (((-107) $ (-583 $)) 251)) (-3522 (($ $ $) 232)) (-2836 (($ $) 273)) (-3411 (((-107) $ $) 258)) (-1959 (((-107) $ $) 254) (((-107) $ (-583 $)) 253)) (-3183 (($ $ $) 233)) (-3059 (($ $) 272)) (-3206 (((-1021) $) 10)) (-3704 (((-2 (|:| -1401 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-509)))) (-3224 (((-2 (|:| -1401 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-509)))) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 ((|#1| |#1| $) 206 (|has| |#1| (-421))) (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-1478 (((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-509)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-3716 (($ $ |#1|) 219 (|has| |#1| (-509))) (($ $ $) 217 (|has| |#1| (-509)))) (-3068 (($ $ |#1|) 220 (|has| |#1| (-509))) (($ $ $) 218 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-583 |#3|) (-583 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-583 |#3|) (-583 $)) 138)) (-3010 (($ $ |#3|) 107 (|has| |#1| (-156)))) (-3127 (($ $ |#3|) 42) (($ $ (-583 |#3|)) 41) (($ $ |#3| (-703)) 40) (($ $ (-583 |#3|) (-583 (-703))) 39)) (-3688 ((|#2| $) 150) (((-703) $ |#3|) 130) (((-583 (-703)) $ (-583 |#3|)) 129)) (-2451 (($ $) 270)) (-3443 (($ $) 268)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| |#3| (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| |#3| (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| |#3| (-558 (-493))) (|has| |#1| (-558 (-493))))) (($ (-874 (-377 (-517)))) 229 (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073))))) (($ (-874 (-517))) 226 (-3807 (-12 (-2630 (|has| |#1| (-37 (-377 (-517))))) (|has| |#1| (-37 (-517))) (|has| |#3| (-558 (-1073)))) (-12 (|has| |#1| (-37 (-377 (-517)))) (|has| |#3| (-558 (-1073)))))) (($ (-874 |#1|)) 223 (|has| |#3| (-558 (-1073)))) (((-1056) $) 201 (-12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1073))))) (((-874 |#1|) $) 200 (|has| |#3| (-558 (-1073))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ |#3|) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-874 |#1|) $) 199 (|has| |#3| (-558 (-1073)))) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ |#2|) 155) (($ $ |#3| (-703)) 128) (($ $ (-583 |#3|) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2791 (((-3 (-107) "failed") $ $) 259)) (-2409 (($) 30 T CONST)) (-3872 (($ $ $ $ (-703)) 208 (|has| |#1| (-509)))) (-3051 (($ $ $ (-703)) 209 (|has| |#1| (-509)))) (-2731 (($ $ |#3|) 38) (($ $ (-583 |#3|)) 37) (($ $ |#3| (-703)) 36) (($ $ (-583 |#3|) (-583 (-703))) 35)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-975 |#1| |#2| |#3|) (-1184) (-961) (-725) (-779)) (T -975))
+((-1976 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2401 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))) (-2836 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3059 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2451 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1628 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-3443 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1191 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-1212 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2070 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3839 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2235 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-1726 (*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-2791 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3411 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-2421 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3283 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3283 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1959 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1959 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-3852 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1497 (*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) (-1497 (*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) (-1440 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2489 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1440 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2489 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-3692 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-2928 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3692 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2928 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) (-2915 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) (-2915 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) (-2669 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) (-2669 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) (-1874 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) (-1439 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3634 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1349 (-703)))) (-4 *1 (-975 *3 *4 *5)))) (-3183 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-3522 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) (-1772 (*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) (-1772 (*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3189 (*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3645 (*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) (-1772 (*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3189 (*1 *1 *2) (-3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1073))) (-4 *4 (-725)) (-4 *5 (-779)))) (-1454 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2557 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3068 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3716 (*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3068 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3716 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1478 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3224 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3704 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))) (-3388 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-2788 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))) (-1855 (*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-3051 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-3872 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))) (-3239 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) (-1401 (*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-4083 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3622 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-1923 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) (-3074 (*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(-13 (-871 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1976 (|t#3| $)) (-15 -2401 ((-703) $)) (-15 -2836 ($ $)) (-15 -3059 ($ $)) (-15 -2779 ($ $)) (-15 -2451 ($ $)) (-15 -1628 ((-583 $) $)) (-15 -3443 ($ $)) (-15 -1191 ($ $ |t#3|)) (-15 -1212 ($ $ |t#3|)) (-15 -4156 ((-107) $)) (-15 -1869 ((-107) $)) (-15 -2070 ($ $)) (-15 -3839 ($ $)) (-15 -2235 ((-583 $) $)) (-15 -1726 ((-583 $) $)) (-15 -2791 ((-3 (-107) "failed") $ $)) (-15 -3411 ((-107) $ $)) (-15 -2421 ((-107) $ $)) (-15 -3283 ((-107) $ $)) (-15 -3283 ((-107) $ (-583 $))) (-15 -1959 ((-107) $ $)) (-15 -1959 ((-107) $ (-583 $))) (-15 -3852 ((-107) $ $)) (-15 -3852 ((-107) $ (-583 $))) (-15 -1497 ((-107) $ $)) (-15 -1497 ((-107) $ (-583 $))) (-15 -1440 ($ $ $)) (-15 -2489 ($ $ $)) (-15 -1440 ($ $ $ |t#3|)) (-15 -2489 ($ $ $ |t#3|)) (-15 -3692 ($ $ $)) (-15 -2928 ($ $ $)) (-15 -3692 ($ $ $ |t#3|)) (-15 -2928 ($ $ $ |t#3|)) (-15 -2915 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $)) (-15 -2915 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3060 $)) $ $ |t#3|)) (-15 -2669 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -2669 ((-2 (|:| -1931 $) (|:| |gap| (-703)) (|:| -3425 $) (|:| -3060 $)) $ $ |t#3|)) (-15 -1874 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -1439 ($ $ $)) (-15 -3634 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1349 (-703))) $ $)) (-15 -3183 ($ $ $)) (-15 -3522 ($ $ $)) (IF (|has| |t#3| (-558 (-1073))) (PROGN (-6 (-557 (-874 |t#1|))) (-6 (-558 (-874 |t#1|))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -1772 ((-3 $ "failed") (-874 (-377 (-517))))) (-15 -3189 ($ (-874 (-377 (-517))))) (-15 -3645 ($ (-874 (-377 (-517))))) (-15 -1772 ((-3 $ "failed") (-874 (-517)))) (-15 -3189 ($ (-874 (-517)))) (-15 -3645 ($ (-874 (-517)))) (IF (|has| |t#1| (-909 (-517))) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 |t#1|))) (-15 -3189 ($ (-874 |t#1|)))))) |noBranch|) (IF (|has| |t#1| (-37 (-517))) (IF (|has| |t#1| (-37 (-377 (-517)))) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 (-517)))) (-15 -3189 ($ (-874 (-517)))) (-15 -3645 ($ (-874 (-517)))) (IF (|has| |t#1| (-502)) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 |t#1|))) (-15 -3189 ($ (-874 |t#1|))))))) |noBranch|) (IF (|has| |t#1| (-37 (-517))) |noBranch| (IF (|has| |t#1| (-37 (-377 (-517)))) |noBranch| (PROGN (-15 -1772 ((-3 $ "failed") (-874 |t#1|))) (-15 -3189 ($ (-874 |t#1|)))))) (-15 -3645 ($ (-874 |t#1|))) (IF (|has| |t#1| (-952 (-517))) (-6 (-558 (-1056))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-15 -1454 ($ $)) (-15 -2557 ($ $)) (-15 -3068 ($ $ |t#1|)) (-15 -3716 ($ $ |t#1|)) (-15 -3068 ($ $ $)) (-15 -3716 ($ $ $)) (-15 -3081 ($ $ $)) (-15 -1478 ((-2 (|:| -1401 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3224 ((-2 (|:| -1401 $) (|:| |coef1| $)) $ $)) (-15 -3704 ((-2 (|:| -1401 $) (|:| |coef2| $)) $ $)) (-15 -3388 ($ $ $)) (-15 -2788 ((-583 $) $ $)) (-15 -1855 ($ $ $)) (-15 -3051 ($ $ $ (-703))) (-15 -3872 ($ $ $ $ (-703))) (-15 -3239 ($ $ $ $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (PROGN (-15 -1401 (|t#1| |t#1| $)) (-15 -4083 ($ $)) (-15 -3622 ($ $)) (-15 -1923 ($ $)) (-15 -3074 ($ $))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-557 (-874 |#1|)) |has| |#3| (-558 (-1073))) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| |#1| (-558 (-493))) (|has| |#3| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#3| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#3| (-558 (-814 (-517))))) ((-558 (-874 |#1|)) |has| |#3| (-558 (-1073))) ((-558 (-1056)) -12 (|has| |#1| (-952 (-517))) (|has| |#3| (-558 (-1073)))) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-280 $) . T) ((-296 |#1| |#2|) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421))) ((-478 |#3| |#1|) . T) ((-478 |#3| $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 |#3|) . T) ((-808 (-349)) -12 (|has| |#1| (-808 (-349))) (|has| |#3| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-808 (-517))) (|has| |#3| (-808 (-517)))) ((-871 |#1| |#2| |#3|) . T) ((-831) |has| |#1| (-831)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 |#1|) . T) ((-952 |#3|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) |has| |#1| (-831)))
+((-2814 (((-107) |#3| $) 13)) (-3267 (((-3 $ "failed") |#3| (-843)) 23)) (-3621 (((-3 |#3| "failed") |#3| $) 37)) (-3556 (((-107) |#3| $) 16)) (-2475 (((-107) |#3| $) 14)))
+(((-976 |#1| |#2| |#3|) (-10 -8 (-15 -3267 ((-3 |#1| "failed") |#3| (-843))) (-15 -3621 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3556 ((-107) |#3| |#1|)) (-15 -2475 ((-107) |#3| |#1|)) (-15 -2814 ((-107) |#3| |#1|))) (-977 |#2| |#3|) (-13 (-777) (-333)) (-1130 |#2|)) (T -976))
+NIL
+(-10 -8 (-15 -3267 ((-3 |#1| "failed") |#3| (-843))) (-15 -3621 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3556 ((-107) |#3| |#1|)) (-15 -2475 ((-107) |#3| |#1|)) (-15 -2814 ((-107) |#3| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) |#2| $) 21)) (-3709 (((-517) |#2| $) 22)) (-3267 (((-3 $ "failed") |#2| (-843)) 15)) (-2002 ((|#1| |#2| $ |#1|) 13)) (-3621 (((-3 |#2| "failed") |#2| $) 18)) (-3556 (((-107) |#2| $) 19)) (-2475 (((-107) |#2| $) 20)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2135 ((|#2| $) 17)) (-2256 (((-787) $) 11)) (-3383 ((|#1| |#2| $ |#1|) 14)) (-3995 (((-583 $) |#2|) 16)) (-1547 (((-107) $ $) 6)))
+(((-977 |#1| |#2|) (-1184) (-13 (-777) (-333)) (-1130 |t#1|)) (T -977))
+((-3709 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-517)))) (-2814 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))) (-2475 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))) (-3556 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))) (-3621 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))) (-2135 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))) (-3995 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3)))) (-3267 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1130 *4)))) (-3383 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))) (-2002 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))))
+(-13 (-1003) (-10 -8 (-15 -3709 ((-517) |t#2| $)) (-15 -2814 ((-107) |t#2| $)) (-15 -2475 ((-107) |t#2| $)) (-15 -3556 ((-107) |t#2| $)) (-15 -3621 ((-3 |t#2| "failed") |t#2| $)) (-15 -2135 (|t#2| $)) (-15 -3995 ((-583 $) |t#2|)) (-15 -3267 ((-3 $ "failed") |t#2| (-843))) (-15 -3383 (|t#1| |t#2| $ |t#1|)) (-15 -2002 (|t#1| |t#2| $ |t#1|))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-3047 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703)) 95)) (-1770 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 55)) (-3830 (((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)) 87)) (-2016 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2567 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 58) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 57) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107)) 59)) (-2132 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 78) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 79)) (-3645 (((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 82)) (-3282 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-107)) 54)) (-3800 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
+(((-978 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-107))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -978))
+((-3830 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) (-3047 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) (-2132 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-2132 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-2567 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2567 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2567 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3282 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-107))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703))))
+((-4063 (((-107) |#5| $) 20)) (-1829 (((-107) |#5| $) 23)) (-1538 (((-107) |#5| $) 16) (((-107) $) 44)) (-1812 (((-583 $) |#5| $) NIL) (((-583 $) (-583 |#5|) $) 76) (((-583 $) (-583 |#5|) (-583 $)) 74) (((-583 $) |#5| (-583 $)) 77)) (-1672 (($ $ |#5|) NIL) (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 59) (((-583 $) (-583 |#5|) $) 61) (((-583 $) (-583 |#5|) (-583 $)) 63)) (-3596 (((-583 $) |#5| $) NIL) (((-583 $) |#5| (-583 $)) 53) (((-583 $) (-583 |#5|) $) 55) (((-583 $) (-583 |#5|) (-583 $)) 57)) (-2119 (((-107) |#5| $) 26)))
+(((-979 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1672 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1672 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1672 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1672 ((-583 |#1|) |#5| |#1|)) (-15 -3596 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3596 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3596 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3596 ((-583 |#1|) |#5| |#1|)) (-15 -1812 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1812 ((-583 |#1|) |#5| |#1|)) (-15 -1829 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#1|)) (-15 -2119 ((-107) |#5| |#1|)) (-15 -4063 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#5| |#1|)) (-15 -1672 (|#1| |#1| |#5|))) (-980 |#2| |#3| |#4| |#5|) (-421) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -979))
+NIL
+(-10 -8 (-15 -1672 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1672 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1672 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1672 ((-583 |#1|) |#5| |#1|)) (-15 -3596 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -3596 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -3596 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -3596 ((-583 |#1|) |#5| |#1|)) (-15 -1812 ((-583 |#1|) |#5| (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) (-583 |#1|))) (-15 -1812 ((-583 |#1|) (-583 |#5|) |#1|)) (-15 -1812 ((-583 |#1|) |#5| |#1|)) (-15 -1829 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#1|)) (-15 -2119 ((-107) |#5| |#1|)) (-15 -4063 ((-107) |#5| |#1|)) (-15 -1538 ((-107) |#5| |#1|)) (-15 -1672 (|#1| |#1| |#5|)))
+((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
+(((-980 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -980))
+((-1538 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-4063 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2119 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1829 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2834 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-3802 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-3802 (*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2117 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-3955 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))) (-1855 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-2535 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) (-1812 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-1812 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-1812 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-1812 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-3596 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-3596 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-3596 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-3596 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-2474 (*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2474 (*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) (-1672 (*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) (-1672 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) (-1672 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) (-1672 (*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) (-4029 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8)))))
+(-13 (-1102 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1538 ((-107) |t#4| $)) (-15 -4063 ((-107) |t#4| $)) (-15 -2119 ((-107) |t#4| $)) (-15 -1538 ((-107) $)) (-15 -1829 ((-107) |t#4| $)) (-15 -2834 ((-3 (-107) (-583 $)) |t#4| $)) (-15 -3802 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |t#4| $)) (-15 -3802 ((-107) |t#4| $)) (-15 -2117 ((-583 $) |t#4| $)) (-15 -3955 ((-3 |t#4| (-583 $)) |t#4| |t#4| $)) (-15 -1855 ((-583 (-2 (|:| |val| |t#4|) (|:| -3726 $))) |t#4| |t#4| $)) (-15 -2535 ((-583 (-2 (|:| |val| |t#4|) (|:| -3726 $))) |t#4| $)) (-15 -1812 ((-583 $) |t#4| $)) (-15 -1812 ((-583 $) (-583 |t#4|) $)) (-15 -1812 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -1812 ((-583 $) |t#4| (-583 $))) (-15 -3596 ((-583 $) |t#4| $)) (-15 -3596 ((-583 $) |t#4| (-583 $))) (-15 -3596 ((-583 $) (-583 |t#4|) $)) (-15 -3596 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -2474 ($ |t#4| $)) (-15 -2474 ($ (-583 |t#4|) $)) (-15 -1672 ((-583 $) |t#4| $)) (-15 -1672 ((-583 $) |t#4| (-583 $))) (-15 -1672 ((-583 $) (-583 |t#4|) $)) (-15 -1672 ((-583 $) (-583 |t#4|) (-583 $))) (-15 -4029 ((-583 $) (-583 |t#4|) (-107)))))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T))
+((-3932 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|) 81)) (-2193 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 112)) (-3135 (((-583 |#5|) |#4| |#5|) 70)) (-3770 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-1588 (((-1158)) 35)) (-3615 (((-1158)) 25)) (-1448 (((-1158) (-1056) (-1056) (-1056)) 31)) (-2183 (((-1158) (-1056) (-1056) (-1056)) 20)) (-2031 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|) 95)) (-1719 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107)) 106) (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-3782 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 101)))
+(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -2031 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3782 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2193 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -3770 ((-107) |#4| |#5|)) (-15 -3770 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3135 ((-583 |#5|) |#4| |#5|)) (-15 -3932 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -981))
+((-3932 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3135 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2193 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3782 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1719 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9)))) (-1719 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-2031 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1588 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1448 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-2183 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -2031 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -1719 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3782 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2193 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -3770 ((-107) |#4| |#5|)) (-15 -3770 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3135 ((-583 |#5|) |#4| |#5|)) (-15 -3932 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)))
+((-2750 (((-107) $ $) NIL)) (-1207 (((-1073) $) 8)) (-3985 (((-1056) $) 16)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 13)))
+(((-982 |#1|) (-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $)))) (-1073)) (T -982))
+((-1207 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-982 *3)) (-14 *3 *2))))
+(-13 (-1003) (-10 -8 (-15 -1207 ((-1073) $))))
+((-2750 (((-107) $ $) NIL)) (-3820 (($ $ (-583 (-1073)) (-1 (-107) (-583 |#3|))) 29)) (-2631 (($ |#3| |#3|) 21) (($ |#3| |#3| (-583 (-1073))) 19)) (-3616 ((|#3| $) 13)) (-1772 (((-3 (-265 |#3|) "failed") $) 56)) (-3189 (((-265 |#3|) $) NIL)) (-2876 (((-583 (-1073)) $) 15)) (-2185 (((-814 |#1|) $) 11)) (-3603 ((|#3| $) 12)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1449 ((|#3| $ |#3|) 25) ((|#3| $ |#3| (-843)) 36)) (-2256 (((-787) $) 84) (($ (-265 |#3|)) 20)) (-1547 (((-107) $ $) 33)))
+(((-983 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2631 ($ |#3| |#3|)) (-15 -2631 ($ |#3| |#3| (-583 (-1073)))) (-15 -3820 ($ $ (-583 (-1073)) (-1 (-107) (-583 |#3|)))) (-15 -2185 ((-814 |#1|) $)) (-15 -3603 (|#3| $)) (-15 -3616 (|#3| $)) (-15 -1449 (|#3| $ |#3| (-843))) (-15 -2876 ((-583 (-1073)) $)))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -983))
+((-2631 (*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-2631 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-3820 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6)))) (-2185 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 *2))) (-5 *2 (-814 *3)) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 *2))))) (-3603 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-3616 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) (-1449 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) (-2876 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1073))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
+(-13 (-1003) (-258 |#3| |#3|) (-952 (-265 |#3|)) (-10 -8 (-15 -2631 ($ |#3| |#3|)) (-15 -2631 ($ |#3| |#3| (-583 (-1073)))) (-15 -3820 ($ $ (-583 (-1073)) (-1 (-107) (-583 |#3|)))) (-15 -2185 ((-814 |#1|) $)) (-15 -3603 (|#3| $)) (-15 -3616 (|#3| $)) (-15 -1449 (|#3| $ |#3| (-843))) (-15 -2876 ((-583 (-1073)) $))))
+((-2750 (((-107) $ $) NIL)) (-3788 (($ (-583 (-983 |#1| |#2| |#3|))) 12)) (-3455 (((-583 (-983 |#1| |#2| |#3|)) $) 19)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-1449 ((|#3| $ |#3|) 22) ((|#3| $ |#3| (-843)) 25)) (-2256 (((-787) $) 15)) (-1547 (((-107) $ $) 18)))
+(((-984 |#1| |#2| |#3|) (-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -3788 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3455 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1449 (|#3| $ |#3| (-843))))) (-1003) (-13 (-961) (-808 |#1|) (-779) (-558 (-814 |#1|))) (-13 (-400 |#2|) (-808 |#1|) (-558 (-814 |#1|)))) (T -984))
+((-3788 (*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5)))) (-3455 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-983 *3 *4 *5))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))) (-1449 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))))
+(-13 (-1003) (-258 |#3| |#3|) (-10 -8 (-15 -3788 ($ (-583 (-983 |#1| |#2| |#3|)))) (-15 -3455 ((-583 (-983 |#1| |#2| |#3|)) $)) (-15 -1449 (|#3| $ |#3| (-843)))))
+((-4064 (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 73) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 75) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 74)))
+(((-985 |#1| |#2|) (-10 -7 (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)))) (-13 (-278) (-134)) (-583 (-1073))) (T -985))
+((-4064 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))) (-4064 (*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))))) (-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))))
+(-10 -7 (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -4064 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))))
+((-3755 (((-388 |#3|) |#3|) 16)))
+(((-986 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-388 |#3|) |#3|))) (-1130 (-377 (-517))) (-13 (-333) (-134) (-657 (-377 (-517)) |#1|)) (-1130 |#2|)) (T -986))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1130 *5)))))
+(-10 -7 (-15 -3755 ((-388 |#3|) |#3|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 125)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-333)))) (-1213 (($ $) NIL (|has| |#1| (-333)))) (-2454 (((-107) $) NIL (|has| |#1| (-333)))) (-3055 (((-623 |#1|) (-1153 $)) NIL) (((-623 |#1|)) 115)) (-1472 ((|#1| $) 119)) (-1926 (((-1082 (-843) (-703)) (-517)) NIL (|has| |#1| (-319)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1611 (((-703)) 40 (|has| |#1| (-338)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1967 (($ (-1153 |#1|) (-1153 $)) NIL) (($ (-1153 |#1|)) 43)) (-2174 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-319)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-2410 (((-623 |#1|) $ (-1153 $)) NIL) (((-623 |#1|) $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 106) (((-623 |#1|) (-623 $)) 100)) (-3225 (($ |#2|) 61) (((-3 $ "failed") (-377 |#2|)) NIL (|has| |#1| (-333)))) (-3621 (((-3 $ "failed") $) NIL)) (-2261 (((-843)) 77)) (-3209 (($) 44 (|has| |#1| (-338)))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3442 (($) NIL (|has| |#1| (-319)))) (-3391 (((-107) $) NIL (|has| |#1| (-319)))) (-2378 (($ $ (-703)) NIL (|has| |#1| (-319))) (($ $) NIL (|has| |#1| (-319)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3972 (((-843) $) NIL (|has| |#1| (-319))) (((-765 (-843)) $) NIL (|has| |#1| (-319)))) (-3848 (((-107) $) NIL)) (-1506 ((|#1| $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-319)))) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3777 ((|#2| $) 84 (|has| |#1| (-333)))) (-1549 (((-843) $) 129 (|has| |#1| (-338)))) (-3216 ((|#2| $) 58)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-2836 (($) NIL (|has| |#1| (-319)) CONST)) (-3448 (($ (-843)) 124 (|has| |#1| (-338)))) (-3206 (((-1021) $) NIL)) (-3220 (($) 121)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1226 (((-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))) NIL (|has| |#1| (-319)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3010 ((|#1| (-1153 $)) NIL) ((|#1|) 109)) (-1620 (((-703) $) NIL (|has| |#1| (-319))) (((-3 (-703) "failed") $ $) NIL (|has| |#1| (-319)))) (-3127 (($ $) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2970 (((-623 |#1|) (-1153 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-2135 ((|#2|) 73)) (-1766 (($) NIL (|has| |#1| (-319)))) (-4114 (((-1153 |#1|) $ (-1153 $)) 89) (((-623 |#1|) (-1153 $) (-1153 $)) NIL) (((-1153 |#1|) $) 71) (((-623 |#1|) (-1153 $)) 85)) (-3645 (((-1153 |#1|) $) NIL) (($ (-1153 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (|has| |#1| (-319)))) (-2256 (((-787) $) 57) (($ (-517)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-333))) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-333)) (|has| |#1| (-952 (-377 (-517))))))) (-1328 (($ $) NIL (|has| |#1| (-319))) (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-3669 ((|#2| $) 82)) (-2961 (((-703)) 75)) (-1753 (((-1153 $)) 81)) (-3329 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 30 T CONST)) (-2409 (($) 19 T CONST)) (-2731 (($ $) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#1| (-207)) (|has| |#1| (-333))) (|has| |#1| (-319)))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-333)) (|has| |#1| (-822 (-1073))))) (($ $ (-1 |#1| |#1|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-333)))) (-1547 (((-107) $ $) 63)) (-1667 (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) 67) (($ $ $) NIL)) (-1642 (($ $ $) 65)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-377 (-517)) $) NIL (|has| |#1| (-333))) (($ $ (-377 (-517))) NIL (|has| |#1| (-333)))))
+(((-987 |#1| |#2| |#3|) (-657 |#1| |#2|) (-156) (-1130 |#1|) |#2|) (T -987))
+NIL
+(-657 |#1| |#2|)
+((-3755 (((-388 |#3|) |#3|) 16)))
+(((-988 |#1| |#2| |#3|) (-10 -7 (-15 -3755 ((-388 |#3|) |#3|))) (-1130 (-377 (-874 (-517)))) (-13 (-333) (-134) (-657 (-377 (-874 (-517))) |#1|)) (-1130 |#2|)) (T -988))
+((-3755 (*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1130 *5)))))
+(-10 -7 (-15 -3755 ((-388 |#3|) |#3|)))
+((-2750 (((-107) $ $) NIL)) (-2967 (($ $ $) 14)) (-3099 (($ $ $) 15)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3764 (($) 6)) (-3645 (((-1073) $) 18)) (-2256 (((-787) $) 12)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 13)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 8)))
+(((-989) (-13 (-779) (-10 -8 (-15 -3764 ($)) (-15 -3645 ((-1073) $))))) (T -989))
+((-3764 (*1 *1) (-5 *1 (-989))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-989)))))
+(-13 (-779) (-10 -8 (-15 -3764 ($)) (-15 -3645 ((-1073) $))))
+((-1599 ((|#1| |#1| (-1 (-517) |#1| |#1|)) 21) ((|#1| |#1| (-1 (-107) |#1|)) 18)) (-1396 (((-1158)) 15)) (-2062 (((-583 |#1|)) 9)))
+(((-990 |#1|) (-10 -7 (-15 -1396 ((-1158))) (-15 -2062 ((-583 |#1|))) (-15 -1599 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1599 (|#1| |#1| (-1 (-517) |#1| |#1|)))) (-124)) (T -990))
+((-1599 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-1599 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) (-2062 (*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124)))) (-1396 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
+(-10 -7 (-15 -1396 ((-1158))) (-15 -2062 ((-583 |#1|))) (-15 -1599 (|#1| |#1| (-1 (-107) |#1|))) (-15 -1599 (|#1| |#1| (-1 (-517) |#1| |#1|))))
+((-3533 (((-1153 (-623 |#1|)) (-583 (-623 |#1|))) 41) (((-1153 (-623 (-874 |#1|))) (-583 (-1073)) (-623 (-874 |#1|))) 60) (((-1153 (-623 (-377 (-874 |#1|)))) (-583 (-1073)) (-623 (-377 (-874 |#1|)))) 76)) (-4114 (((-1153 |#1|) (-623 |#1|) (-583 (-623 |#1|))) 35)))
+(((-991 |#1|) (-10 -7 (-15 -3533 ((-1153 (-623 (-377 (-874 |#1|)))) (-583 (-1073)) (-623 (-377 (-874 |#1|))))) (-15 -3533 ((-1153 (-623 (-874 |#1|))) (-583 (-1073)) (-623 (-874 |#1|)))) (-15 -3533 ((-1153 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -4114 ((-1153 |#1|) (-623 |#1|) (-583 (-623 |#1|))))) (-333)) (T -991))
+((-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1153 *5)) (-5 *1 (-991 *5)))) (-3533 (*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-991 *4)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) (-3533 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
+(-10 -7 (-15 -3533 ((-1153 (-623 (-377 (-874 |#1|)))) (-583 (-1073)) (-623 (-377 (-874 |#1|))))) (-15 -3533 ((-1153 (-623 (-874 |#1|))) (-583 (-1073)) (-623 (-874 |#1|)))) (-15 -3533 ((-1153 (-623 |#1|)) (-583 (-623 |#1|)))) (-15 -4114 ((-1153 |#1|) (-623 |#1|) (-583 (-623 |#1|)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3469 (((-583 (-703)) $) NIL) (((-583 (-703)) $ (-1073)) NIL)) (-2932 (((-703) $) NIL) (((-703) $ (-1073)) NIL)) (-1364 (((-583 (-993 (-1073))) $) NIL)) (-2352 (((-1069 $) $ (-993 (-1073))) NIL) (((-1069 |#1|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-993 (-1073)))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3960 (($ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-993 (-1073)) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL) (((-3 (-1026 |#1| (-1073)) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-993 (-1073)) $) NIL) (((-1073) $) NIL) (((-1026 |#1| (-1073)) $) NIL)) (-3388 (($ $ $ (-993 (-1073))) NIL (|has| |#1| (-156)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1073))) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 (-993 (-1073))) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-993 (-1073)) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-993 (-1073)) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ (-1073)) NIL) (((-703) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1350 (($ (-1069 |#1|) (-993 (-1073))) NIL) (($ (-1069 $) (-993 (-1073))) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-489 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-993 (-1073))) NIL)) (-2349 (((-489 (-993 (-1073))) $) NIL) (((-703) $ (-993 (-1073))) NIL) (((-583 (-703)) $ (-583 (-993 (-1073)))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 (-993 (-1073))) (-489 (-993 (-1073)))) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2656 (((-1 $ (-703)) (-1073)) NIL) (((-1 $ (-703)) $) NIL (|has| |#1| (-207)))) (-1409 (((-3 (-993 (-1073)) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-2133 (((-993 (-1073)) $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-2982 (((-107) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-993 (-1073))) (|:| -2077 (-703))) "failed") $) NIL)) (-2604 (($ $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-993 (-1073)) |#1|) NIL) (($ $ (-583 (-993 (-1073))) (-583 |#1|)) NIL) (($ $ (-993 (-1073)) $) NIL) (($ $ (-583 (-993 (-1073))) (-583 $)) NIL) (($ $ (-1073) $) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 $)) NIL (|has| |#1| (-207))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-207))) (($ $ (-583 (-1073)) (-583 |#1|)) NIL (|has| |#1| (-207)))) (-3010 (($ $ (-993 (-1073))) NIL (|has| |#1| (-156)))) (-3127 (($ $ (-993 (-1073))) NIL) (($ $ (-583 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1890 (((-583 (-1073)) $) NIL)) (-3688 (((-489 (-993 (-1073))) $) NIL) (((-703) $ (-993 (-1073))) NIL) (((-583 (-703)) $ (-583 (-993 (-1073)))) NIL) (((-703) $ (-1073)) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-993 (-1073)) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-993 (-1073)) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-993 (-1073)) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) NIL (|has| |#1| (-421))) (($ $ (-993 (-1073))) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-993 (-1073))) NIL) (($ (-1073)) NIL) (($ (-1026 |#1| (-1073))) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-489 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-993 (-1073))) NIL) (($ $ (-583 (-993 (-1073)))) NIL) (($ $ (-993 (-1073)) (-703)) NIL) (($ $ (-583 (-993 (-1073))) (-583 (-703))) NIL) (($ $) NIL (|has| |#1| (-207))) (($ $ (-703)) NIL (|has| |#1| (-207))) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-992 |#1|) (-13 (-226 |#1| (-1073) (-993 (-1073)) (-489 (-993 (-1073)))) (-952 (-1026 |#1| (-1073)))) (-961)) (T -992))
+NIL
+(-13 (-226 |#1| (-1073) (-993 (-1073)) (-489 (-993 (-1073)))) (-952 (-1026 |#1| (-1073))))
+((-2750 (((-107) $ $) NIL)) (-2932 (((-703) $) NIL)) (-1638 ((|#1| $) 10)) (-1772 (((-3 |#1| "failed") $) NIL)) (-3189 ((|#1| $) NIL)) (-3972 (((-703) $) 11)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-2656 (($ |#1| (-703)) 9)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3127 (($ $) NIL) (($ $ (-703)) NIL)) (-2256 (((-787) $) NIL) (($ |#1|) NIL)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 15)))
+(((-993 |#1|) (-239 |#1|) (-779)) (T -993))
+NIL
+(-239 |#1|)
+((-1893 (((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 23 (|has| |#1| (-777))) (((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|)) 14)))
+(((-994 |#1| |#2|) (-10 -7 (-15 -1893 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |noBranch|)) (-1108) (-1108)) (T -994))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6)))))
+(-10 -7 (-15 -1893 ((-998 |#2|) (-1 |#2| |#1|) (-998 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-583 |#2|) (-1 |#2| |#1|) (-998 |#1|))) |noBranch|))
+((-1893 (((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)) 19)))
+(((-995 |#1| |#2|) (-10 -7 (-15 -1893 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|)))) (-1108) (-1108)) (T -995))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6)))))
+(-10 -7 (-15 -1893 ((-996 |#2|) (-1 |#2| |#1|) (-996 |#1|))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1638 (((-1073) $) 11)) (-2515 (((-998 |#1|) $) 12)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2126 (($ (-1073) (-998 |#1|)) 10)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1547 (((-107) $ $) 15 (|has| |#1| (-1003)))))
+(((-996 |#1|) (-13 (-1108) (-10 -8 (-15 -2126 ($ (-1073) (-998 |#1|))) (-15 -1638 ((-1073) $)) (-15 -2515 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1108)) (T -996))
+((-2126 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-998 *4)) (-4 *4 (-1108)) (-5 *1 (-996 *4)))) (-1638 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))))
+(-13 (-1108) (-10 -8 (-15 -2126 ($ (-1073) (-998 |#1|))) (-15 -1638 ((-1073) $)) (-15 -2515 ((-998 |#1|) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|)))
+((-2515 (($ |#1| |#1|) 7)) (-3100 ((|#1| $) 10)) (-3310 ((|#1| $) 12)) (-3320 (((-517) $) 8)) (-3521 ((|#1| $) 9)) (-3330 ((|#1| $) 11)) (-3645 (($ |#1|) 6)) (-2881 (($ |#1| |#1|) 14)) (-1321 (($ $ (-517)) 13)))
+(((-997 |#1|) (-1184) (-1108)) (T -997))
+((-2881 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-1321 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1108)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3100 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3320 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))) (-2515 (*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
+(-13 (-1108) (-10 -8 (-15 -2881 ($ |t#1| |t#1|)) (-15 -1321 ($ $ (-517))) (-15 -3310 (|t#1| $)) (-15 -3330 (|t#1| $)) (-15 -3100 (|t#1| $)) (-15 -3521 (|t#1| $)) (-15 -3320 ((-517) $)) (-15 -2515 ($ |t#1| |t#1|)) (-15 -3645 ($ |t#1|))))
+(((-1108) . T))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2515 (($ |#1| |#1|) 15)) (-1893 (((-583 |#1|) (-1 |#1| |#1|) $) 37 (|has| |#1| (-777)))) (-3100 ((|#1| $) 10)) (-3310 ((|#1| $) 9)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3320 (((-517) $) 14)) (-3521 ((|#1| $) 12)) (-3330 ((|#1| $) 11)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3502 (((-583 |#1|) $) 35 (|has| |#1| (-777))) (((-583 |#1|) (-583 $)) 34 (|has| |#1| (-777)))) (-3645 (($ |#1|) 26)) (-2256 (((-787) $) 25 (|has| |#1| (-1003)))) (-2881 (($ |#1| |#1|) 8)) (-1321 (($ $ (-517)) 16)) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))))
+(((-998 |#1|) (-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-583 |#1|))) |noBranch|))) (-1108)) (T -998))
+NIL
+(-13 (-997 |#1|) (-10 -7 (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-583 |#1|))) |noBranch|)))
+((-2515 (($ |#1| |#1|) 7)) (-1893 ((|#2| (-1 |#1| |#1|) $) 16)) (-3100 ((|#1| $) 10)) (-3310 ((|#1| $) 12)) (-3320 (((-517) $) 8)) (-3521 ((|#1| $) 9)) (-3330 ((|#1| $) 11)) (-3502 ((|#2| (-583 $)) 18) ((|#2| $) 17)) (-3645 (($ |#1|) 6)) (-2881 (($ |#1| |#1|) 14)) (-1321 (($ $ (-517)) 13)))
+(((-999 |#1| |#2|) (-1184) (-777) (-1047 |t#1|)) (T -999))
+((-3502 (*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))) (-3502 (*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1047 *3)))) (-1893 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))))
+(-13 (-997 |t#1|) (-10 -8 (-15 -3502 (|t#2| (-583 $))) (-15 -3502 (|t#2| $)) (-15 -1893 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-997 |#1|) . T) ((-1108) . T))
+((-1413 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3245 (($ $ $) 10)) (-3170 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1000 |#1| |#2|) (-10 -8 (-15 -1413 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3170 (|#1| |#1| |#1|))) (-1001 |#2|) (-1003)) (T -1000))
+NIL
+(-10 -8 (-15 -1413 (|#1| |#2| |#1|)) (-15 -1413 (|#1| |#1| |#2|)) (-15 -1413 (|#1| |#1| |#1|)) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3170 (|#1| |#1| |#2|)) (-15 -3170 (|#1| |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-1413 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3245 (($ $ $) 20)) (-3009 (((-107) $ $) 19)) (-2953 (((-107) $ (-703)) 35)) (-1362 (($) 25) (($ (-583 |#1|)) 24)) (-3536 (($ (-1 (-107) |#1|) $) 56 (|has| $ (-6 -4180)))) (-3092 (($) 36 T CONST)) (-1679 (($ $) 59 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 58 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 55 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4180)))) (-1536 (((-583 |#1|) $) 43 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 34)) (-2560 (((-583 |#1|) $) 44 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 46 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 38)) (-3847 (((-107) $ (-703)) 33)) (-3985 (((-1056) $) 9)) (-1812 (($ $ $) 23)) (-3206 (((-1021) $) 10)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 52)) (-2048 (((-107) (-1 (-107) |#1|) $) 41 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#1|) (-583 |#1|)) 50 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 48 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) 47 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 29)) (-3619 (((-107) $) 32)) (-1746 (($) 31)) (-3170 (($ $ $) 22) (($ $ |#1|) 21)) (-3217 (((-703) |#1| $) 45 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#1|) $) 42 (|has| $ (-6 -4180)))) (-2433 (($ $) 30)) (-3645 (((-493) $) 60 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 51)) (-2256 (((-787) $) 11)) (-3167 (($) 27) (($ (-583 |#1|)) 26)) (-3675 (((-107) (-1 (-107) |#1|) $) 40 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 6)) (-1572 (((-107) $ $) 28)) (-2296 (((-703) $) 37 (|has| $ (-6 -4180)))))
+(((-1001 |#1|) (-1184) (-1003)) (T -1001))
+((-1572 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-3167 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3167 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-1362 (*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) (-1812 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3170 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3170 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3245 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) (-1413 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1413 (*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) (-1413 (*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(-13 (-1003) (-138 |t#1|) (-10 -8 (-6 -4170) (-15 -1572 ((-107) $ $)) (-15 -3167 ($)) (-15 -3167 ($ (-583 |t#1|))) (-15 -1362 ($)) (-15 -1362 ($ (-583 |t#1|))) (-15 -1812 ($ $ $)) (-15 -3170 ($ $ $)) (-15 -3170 ($ $ |t#1|)) (-15 -3245 ($ $ $)) (-15 -3009 ((-107) $ $)) (-15 -1413 ($ $ $)) (-15 -1413 ($ $ |t#1|)) (-15 -1413 ($ |t#1| $))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) . T) ((-1108) . T))
+((-3985 (((-1056) $) 10)) (-3206 (((-1021) $) 8)))
+(((-1002 |#1|) (-10 -8 (-15 -3985 ((-1056) |#1|)) (-15 -3206 ((-1021) |#1|))) (-1003)) (T -1002))
+NIL
+(-10 -8 (-15 -3985 ((-1056) |#1|)) (-15 -3206 ((-1021) |#1|)))
+((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
+(((-1003) (-1184)) (T -1003))
+((-3206 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1021)))) (-3985 (*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1056)))))
+(-13 (-97) (-557 (-787)) (-10 -8 (-15 -3206 ((-1021) $)) (-15 -3985 ((-1056) $))))
+(((-97) . T) ((-557 (-787)) . T))
+((-2750 (((-107) $ $) NIL)) (-1611 (((-703)) 30)) (-4126 (($ (-583 (-843))) 52)) (-1842 (((-3 $ "failed") $ (-843) (-843)) 57)) (-3209 (($) 32)) (-2787 (((-107) (-843) $) 35)) (-1549 (((-843) $) 50)) (-3985 (((-1056) $) NIL)) (-3448 (($ (-843)) 31)) (-4030 (((-3 $ "failed") $ (-843)) 55)) (-3206 (((-1021) $) NIL)) (-2260 (((-1153 $)) 40)) (-2175 (((-583 (-843)) $) 23)) (-1330 (((-703) $ (-843) (-843)) 56)) (-2256 (((-787) $) 29)) (-1547 (((-107) $ $) 21)))
+(((-1004 |#1| |#2|) (-13 (-338) (-10 -8 (-15 -4030 ((-3 $ "failed") $ (-843))) (-15 -1842 ((-3 $ "failed") $ (-843) (-843))) (-15 -2175 ((-583 (-843)) $)) (-15 -4126 ($ (-583 (-843)))) (-15 -2260 ((-1153 $))) (-15 -2787 ((-107) (-843) $)) (-15 -1330 ((-703) $ (-843) (-843))))) (-843) (-843)) (T -1004))
+((-4030 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1842 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2260 (*1 *2) (-12 (-5 *2 (-1153 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) (-2787 (*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1330 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-338) (-10 -8 (-15 -4030 ((-3 $ "failed") $ (-843))) (-15 -1842 ((-3 $ "failed") $ (-843) (-843))) (-15 -2175 ((-583 (-843)) $)) (-15 -4126 ($ (-583 (-843)))) (-15 -2260 ((-1153 $))) (-15 -2787 ((-107) (-843) $)) (-15 -1330 ((-703) $ (-843) (-843)))))
+((-2750 (((-107) $ $) NIL)) (-3416 (($) NIL (|has| |#1| (-338)))) (-1413 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 73)) (-3245 (($ $ $) 71)) (-3009 (((-107) $ $) 72)) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#1| (-338)))) (-1362 (($ (-583 |#1|)) NIL) (($) 13)) (-2337 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3212 (($ |#1| $) 67 (|has| $ (-6 -4180))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4180)))) (-3209 (($) NIL (|has| |#1| (-338)))) (-1536 (((-583 |#1|) $) 19 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2967 ((|#1| $) 57 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 66 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3099 ((|#1| $) 55 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 34)) (-1549 (((-843) $) NIL (|has| |#1| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-1812 (($ $ $) 69)) (-3309 ((|#1| $) 25)) (-1710 (($ |#1| $) 65)) (-3448 (($ (-843)) NIL (|has| |#1| (-338)))) (-3206 (((-1021) $) NIL)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 31)) (-4006 ((|#1| $) 27)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 21)) (-1746 (($) 11)) (-3170 (($ $ |#1|) NIL) (($ $ $) 70)) (-3089 (($) NIL) (($ (-583 |#1|)) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 16)) (-3645 (((-493) $) 52 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 61)) (-1819 (($ $) NIL (|has| |#1| (-338)))) (-2256 (((-787) $) NIL)) (-2201 (((-703) $) NIL)) (-3167 (($ (-583 |#1|)) NIL) (($) 12)) (-1222 (($ (-583 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 54)) (-1572 (((-107) $ $) NIL)) (-2296 (((-703) $) 10 (|has| $ (-6 -4180)))))
+(((-1005 |#1|) (-395 |#1|) (-1003)) (T -1005))
+NIL
+(-395 |#1|)
+((-2750 (((-107) $ $) 7)) (-2710 (((-107) $) 32)) (-3881 ((|#2| $) 27)) (-2347 (((-107) $) 33)) (-3890 ((|#1| $) 28)) (-1533 (((-107) $) 35)) (-2636 (((-107) $) 37)) (-3567 (((-107) $) 34)) (-3985 (((-1056) $) 9)) (-1973 (((-107) $) 31)) (-3912 ((|#3| $) 26)) (-3206 (((-1021) $) 10)) (-2056 (((-107) $) 30)) (-4005 ((|#4| $) 25)) (-1556 ((|#5| $) 24)) (-2131 (((-107) $ $) 38)) (-1449 (($ $ (-517)) 14) (($ $ (-583 (-517))) 13)) (-3814 (((-583 $) $) 29)) (-3645 (($ (-583 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2256 (((-787) $) 11)) (-2705 (($ $) 16)) (-2694 (($ $) 17)) (-1491 (((-107) $) 36)) (-1547 (((-107) $ $) 6)) (-2296 (((-517) $) 15)))
+(((-1006 |#1| |#2| |#3| |#4| |#5|) (-1184) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1006))
+((-2131 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1533 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))) (-3814 (*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3881 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) (-3645 (*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) (-2694 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -2131 ((-107) $ $)) (-15 -2636 ((-107) $)) (-15 -1491 ((-107) $)) (-15 -1533 ((-107) $)) (-15 -3567 ((-107) $)) (-15 -2347 ((-107) $)) (-15 -2710 ((-107) $)) (-15 -1973 ((-107) $)) (-15 -2056 ((-107) $)) (-15 -3814 ((-583 $) $)) (-15 -3890 (|t#1| $)) (-15 -3881 (|t#2| $)) (-15 -3912 (|t#3| $)) (-15 -4005 (|t#4| $)) (-15 -1556 (|t#5| $)) (-15 -3645 ($ (-583 $))) (-15 -3645 ($ |t#1|)) (-15 -3645 ($ |t#2|)) (-15 -3645 ($ |t#3|)) (-15 -3645 ($ |t#4|)) (-15 -3645 ($ |t#5|)) (-15 -2694 ($ $)) (-15 -2705 ($ $)) (-15 -2296 ((-517) $)) (-15 -1449 ($ $ (-517))) (-15 -1449 ($ $ (-583 (-517))))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2710 (((-107) $) NIL)) (-3881 (((-1073) $) NIL)) (-2347 (((-107) $) NIL)) (-3890 (((-1056) $) NIL)) (-1533 (((-107) $) NIL)) (-2636 (((-107) $) NIL)) (-3567 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-1973 (((-107) $) NIL)) (-3912 (((-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-2056 (((-107) $) NIL)) (-4005 (((-199) $) NIL)) (-1556 (((-787) $) NIL)) (-2131 (((-107) $ $) NIL)) (-1449 (($ $ (-517)) NIL) (($ $ (-583 (-517))) NIL)) (-3814 (((-583 $) $) NIL)) (-3645 (($ (-583 $)) NIL) (($ (-1056)) NIL) (($ (-1073)) NIL) (($ (-517)) NIL) (($ (-199)) NIL) (($ (-787)) NIL)) (-2256 (((-787) $) NIL)) (-2705 (($ $) NIL)) (-2694 (($ $) NIL)) (-1491 (((-107) $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-517) $) NIL)))
+(((-1007) (-1006 (-1056) (-1073) (-517) (-199) (-787))) (T -1007))
+NIL
+(-1006 (-1056) (-1073) (-517) (-199) (-787))
+((-2750 (((-107) $ $) NIL)) (-2710 (((-107) $) 37)) (-3881 ((|#2| $) 41)) (-2347 (((-107) $) 36)) (-3890 ((|#1| $) 40)) (-1533 (((-107) $) 34)) (-2636 (((-107) $) 14)) (-3567 (((-107) $) 35)) (-3985 (((-1056) $) NIL)) (-1973 (((-107) $) 38)) (-3912 ((|#3| $) 43)) (-3206 (((-1021) $) NIL)) (-2056 (((-107) $) 39)) (-4005 ((|#4| $) 42)) (-1556 ((|#5| $) 44)) (-2131 (((-107) $ $) 33)) (-1449 (($ $ (-517)) 55) (($ $ (-583 (-517))) 57)) (-3814 (((-583 $) $) 21)) (-3645 (($ (-583 $)) 45) (($ |#1|) 46) (($ |#2|) 47) (($ |#3|) 48) (($ |#4|) 49) (($ |#5|) 50)) (-2256 (((-787) $) 22)) (-2705 (($ $) 20)) (-2694 (($ $) 51)) (-1491 (((-107) $) 18)) (-1547 (((-107) $ $) 32)) (-2296 (((-517) $) 53)))
+(((-1008 |#1| |#2| |#3| |#4| |#5|) (-1006 |#1| |#2| |#3| |#4| |#5|) (-1003) (-1003) (-1003) (-1003) (-1003)) (T -1008))
+NIL
+(-1006 |#1| |#2| |#3| |#4| |#5|)
+((-4155 (((-1158) $) 23)) (-2231 (($ (-1073) (-404) |#2|) 11)) (-2256 (((-787) $) 16)))
+(((-1009 |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2231 ($ (-1073) (-404) |#2|)))) (-779) (-400 |#1|)) (T -1009))
+((-2231 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5)))))
+(-13 (-365) (-10 -8 (-15 -2231 ($ (-1073) (-404) |#2|))))
+((-3471 (((-107) |#5| |#5|) 37)) (-1331 (((-107) |#5| |#5|) 51)) (-3499 (((-107) |#5| (-583 |#5|)) 74) (((-107) |#5| |#5|) 60)) (-2254 (((-107) (-583 |#4|) (-583 |#4|)) 57)) (-1837 (((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 62)) (-4034 (((-1158)) 33)) (-1882 (((-1158) (-1056) (-1056) (-1056)) 29)) (-3694 (((-583 |#5|) (-583 |#5|)) 81)) (-2197 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) 79)) (-2871 (((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107)) 101)) (-3576 (((-107) |#5| |#5|) 46)) (-2954 (((-3 (-107) "failed") |#5| |#5|) 70)) (-3506 (((-107) (-583 |#4|) (-583 |#4|)) 56)) (-1451 (((-107) (-583 |#4|) (-583 |#4|)) 58)) (-3411 (((-107) (-583 |#4|) (-583 |#4|)) 59)) (-3444 (((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)) 97)) (-1634 (((-583 |#5|) (-583 |#5|)) 42)))
+(((-1010 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1010))
+((-3444 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) (-2871 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) (-2197 (*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-1837 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))) (-3694 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))) (-3499 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-2954 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3411 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1451 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3506 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-2254 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-1331 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-3576 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))) (-3471 (*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) (-4034 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1882 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1882 ((-1158) (-1056) (-1056) (-1056))) (-15 -4034 ((-1158))) (-15 -3471 ((-107) |#5| |#5|)) (-15 -1634 ((-583 |#5|) (-583 |#5|))) (-15 -3576 ((-107) |#5| |#5|)) (-15 -1331 ((-107) |#5| |#5|)) (-15 -2254 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3506 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -1451 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -3411 ((-107) (-583 |#4|) (-583 |#4|))) (-15 -2954 ((-3 (-107) "failed") |#5| |#5|)) (-15 -3499 ((-107) |#5| |#5|)) (-15 -3499 ((-107) |#5| (-583 |#5|))) (-15 -3694 ((-583 |#5|) (-583 |#5|))) (-15 -1837 ((-107) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -2197 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-15 -2871 ((-583 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|)))) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -3444 ((-3 (-2 (|:| -2131 (-583 |#4|)) (|:| -3726 |#5|) (|:| |ineq| (-583 |#4|))) "failed") (-583 |#4|) |#5| (-583 |#4|) (-107) (-107) (-107) (-107) (-107))))
+((-3990 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|) 94)) (-3305 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|) 70)) (-1806 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 88)) (-1824 (((-583 |#5|) |#4| |#5|) 109)) (-3575 (((-583 |#5|) |#4| |#5|) 116)) (-2290 (((-583 |#5|) |#4| |#5|) 117)) (-2487 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 95)) (-1258 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 115)) (-1517 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|) 44) (((-107) |#4| |#5|) 52)) (-2395 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107)) 82) (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107)) 49)) (-3918 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|) 77)) (-1588 (((-1158)) 35)) (-3615 (((-1158)) 25)) (-1448 (((-1158) (-1056) (-1056) (-1056)) 31)) (-2183 (((-1158) (-1056) (-1056) (-1056)) 20)))
+(((-1011 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -3305 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3918 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1806 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1517 ((-107) |#4| |#5|)) (-15 -2487 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -1824 ((-583 |#5|) |#4| |#5|)) (-15 -1258 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3575 ((-583 |#5|) |#4| |#5|)) (-15 -1517 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -2290 ((-583 |#5|) |#4| |#5|)) (-15 -3990 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-980 |#1| |#2| |#3| |#4|)) (T -1011))
+((-3990 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2290 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1517 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3575 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1258 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1824 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2487 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1517 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1806 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-3918 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-2395 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))) (-2395 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) (-3305 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) (-1588 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-1448 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) (-3615 (*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) (-2183 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2183 ((-1158) (-1056) (-1056) (-1056))) (-15 -3615 ((-1158))) (-15 -1448 ((-1158) (-1056) (-1056) (-1056))) (-15 -1588 ((-1158))) (-15 -3305 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5| (-107) (-107))) (-15 -2395 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) |#3| (-107))) (-15 -3918 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1806 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#4| |#5|)) (-15 -1517 ((-107) |#4| |#5|)) (-15 -2487 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -1824 ((-583 |#5|) |#4| |#5|)) (-15 -1258 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -3575 ((-583 |#5|) |#4| |#5|)) (-15 -1517 ((-583 (-2 (|:| |val| (-107)) (|:| -3726 |#5|))) |#4| |#5|)) (-15 -2290 ((-583 |#5|) |#4| |#5|)) (-15 -3990 ((-583 (-2 (|:| |val| |#4|) (|:| -3726 |#5|))) |#4| |#5|)))
+((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
+(((-1012 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1012))
+NIL
+(-13 (-980 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T))
+((-2291 (((-583 (-517)) (-517) (-517) (-517)) 20)) (-2080 (((-583 (-517)) (-517) (-517) (-517)) 12)) (-1762 (((-583 (-517)) (-517) (-517) (-517)) 16)) (-3031 (((-517) (-517) (-517)) 9)) (-3235 (((-1153 (-517)) (-583 (-517)) (-1153 (-517)) (-517)) 44) (((-1153 (-517)) (-1153 (-517)) (-1153 (-517)) (-517)) 39)) (-2772 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107)) 26)) (-3431 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 43)) (-3101 (((-623 (-517)) (-583 (-517)) (-583 (-517))) 31)) (-2893 (((-583 (-623 (-517))) (-583 (-517))) 33)) (-2004 (((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517))) 46)) (-3763 (((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517))) 54)))
+(((-1013) (-10 -7 (-15 -3763 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2004 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2893 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3101 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3431 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2772 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3235 ((-1153 (-517)) (-1153 (-517)) (-1153 (-517)) (-517))) (-15 -3235 ((-1153 (-517)) (-583 (-517)) (-1153 (-517)) (-517))) (-15 -3031 ((-517) (-517) (-517))) (-15 -1762 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2080 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2291 ((-583 (-517)) (-517) (-517) (-517))))) (T -1013))
+((-2291 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-2080 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-1762 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013)))) (-3235 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013)))) (-3235 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) (-2772 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013)))) (-3431 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013)))) (-3101 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))) (-2893 (*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013)))) (-2004 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013)))) (-3763 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
+(-10 -7 (-15 -3763 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -2004 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2893 ((-583 (-623 (-517))) (-583 (-517)))) (-15 -3101 ((-623 (-517)) (-583 (-517)) (-583 (-517)))) (-15 -3431 ((-623 (-517)) (-583 (-517)) (-583 (-517)) (-623 (-517)))) (-15 -2772 ((-583 (-517)) (-583 (-517)) (-583 (-517)) (-107))) (-15 -3235 ((-1153 (-517)) (-1153 (-517)) (-1153 (-517)) (-517))) (-15 -3235 ((-1153 (-517)) (-583 (-517)) (-1153 (-517)) (-517))) (-15 -3031 ((-517) (-517) (-517))) (-15 -1762 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2080 ((-583 (-517)) (-517) (-517) (-517))) (-15 -2291 ((-583 (-517)) (-517) (-517) (-517))))
+((-2207 (($ $ (-843)) 12)) (** (($ $ (-843)) 10)))
+(((-1014 |#1|) (-10 -8 (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843)))) (-1015)) (T -1014))
+NIL
+(-10 -8 (-15 -2207 (|#1| |#1| (-843))) (-15 ** (|#1| |#1| (-843))))
+((-2750 (((-107) $ $) 7)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-2207 (($ $ (-843)) 13)) (-1547 (((-107) $ $) 6)) (** (($ $ (-843)) 14)) (* (($ $ $) 15)))
+(((-1015) (-1184)) (T -1015))
+((* (*1 *1 *1 *1) (-4 *1 (-1015))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) (-2207 (*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))))
+(-13 (-1003) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-843))) (-15 -2207 ($ $ (-843)))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-2814 (((-107) $) NIL (|has| |#3| (-123)))) (-2847 (($ (-843)) NIL (|has| |#3| (-961)))) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1640 (($ $ $) NIL (|has| |#3| (-725)))) (-4038 (((-3 $ "failed") $ $) NIL (|has| |#3| (-123)))) (-2953 (((-107) $ (-703)) NIL)) (-1611 (((-703)) NIL (|has| |#3| (-338)))) (-3709 (((-517) $) NIL (|has| |#3| (-777)))) (-2411 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1003)))) (-3189 (((-517) $) NIL (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003)))) (((-377 (-517)) $) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) ((|#3| $) NIL (|has| |#3| (-1003)))) (-3355 (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#3| (-579 (-517))) (|has| |#3| (-961)))) (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) NIL (|has| |#3| (-961))) (((-623 |#3|) (-623 $)) NIL (|has| |#3| (-961)))) (-3621 (((-3 $ "failed") $) NIL (|has| |#3| (-961)))) (-3209 (($) NIL (|has| |#3| (-338)))) (-1445 ((|#3| $ (-517) |#3|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#3| $ (-517)) 12)) (-3556 (((-107) $) NIL (|has| |#3| (-777)))) (-1536 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL (|has| |#3| (-961)))) (-2475 (((-107) $) NIL (|has| |#3| (-777)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-2560 (((-583 |#3|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1433 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#3| |#3|) $) NIL)) (-1549 (((-843) $) NIL (|has| |#3| (-338)))) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#3| (-1003)))) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3448 (($ (-843)) NIL (|has| |#3| (-338)))) (-3206 (((-1021) $) NIL (|has| |#3| (-1003)))) (-1647 ((|#3| $) NIL (|has| (-517) (-779)))) (-2565 (($ $ |#3|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#3|))) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-265 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003)))) (($ $ (-583 |#3|) (-583 |#3|)) NIL (-12 (|has| |#3| (-280 |#3|)) (|has| |#3| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-1941 (((-583 |#3|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#3| $ (-517) |#3|) NIL) ((|#3| $ (-517)) NIL)) (-3501 ((|#3| $ $) NIL (|has| |#3| (-961)))) (-3794 (($ (-1153 |#3|)) NIL)) (-3141 (((-125)) NIL (|has| |#3| (-333)))) (-3127 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-3217 (((-703) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180))) (((-703) |#3| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#3| (-1003))))) (-2433 (($ $) NIL)) (-2256 (((-1153 |#3|) $) NIL) (((-787) $) NIL (|has| |#3| (-1003))) (($ (-517)) NIL (-3807 (-12 (|has| |#3| (-952 (-517))) (|has| |#3| (-1003))) (|has| |#3| (-961)))) (($ (-377 (-517))) NIL (-12 (|has| |#3| (-952 (-377 (-517)))) (|has| |#3| (-1003)))) (($ |#3|) NIL (|has| |#3| (-1003)))) (-2961 (((-703)) NIL (|has| |#3| (-961)))) (-3675 (((-107) (-1 (-107) |#3|) $) NIL (|has| $ (-6 -4180)))) (-3710 (($ $) NIL (|has| |#3| (-777)))) (-2207 (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (-2396 (($) NIL (|has| |#3| (-123)) CONST)) (-2409 (($) NIL (|has| |#3| (-961)) CONST)) (-2731 (($ $) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-703)) NIL (-12 (|has| |#3| (-207)) (|has| |#3| (-961)))) (($ $ (-1073)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#3| (-822 (-1073))) (|has| |#3| (-961)))) (($ $ (-1 |#3| |#3|) (-703)) NIL (|has| |#3| (-961))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-961)))) (-1606 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1583 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1547 (((-107) $ $) NIL (|has| |#3| (-1003)))) (-1595 (((-107) $ $) NIL (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1572 (((-107) $ $) 17 (-3807 (|has| |#3| (-725)) (|has| |#3| (-777))))) (-1667 (($ $ |#3|) NIL (|has| |#3| (-333)))) (-1654 (($ $ $) NIL (|has| |#3| (-961))) (($ $) NIL (|has| |#3| (-961)))) (-1642 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-703)) NIL (|has| |#3| (-961))) (($ $ (-843)) NIL (|has| |#3| (-961)))) (* (($ $ $) NIL (|has| |#3| (-961))) (($ (-517) $) NIL (|has| |#3| (-961))) (($ $ |#3|) NIL (|has| |#3| (-659))) (($ |#3| $) NIL (|has| |#3| (-659))) (($ (-703) $) NIL (|has| |#3| (-123))) (($ (-843) $) NIL (|has| |#3| (-25)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1016 |#1| |#2| |#3|) (-212 |#1| |#3|) (-703) (-703) (-725)) (T -1016))
+NIL
+(-212 |#1| |#3|)
+((-2384 (((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 36)) (-3279 (((-517) (-1127 |#2| |#1|)) 68 (|has| |#1| (-421)))) (-2653 (((-517) (-1127 |#2| |#1|)) 53)) (-1715 (((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 44)) (-3207 (((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 67 (|has| |#1| (-421)))) (-1262 (((-583 |#1|) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 47)) (-2938 (((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|)) 52)))
+(((-1017 |#1| |#2|) (-10 -7 (-15 -2384 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1715 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1262 ((-583 |#1|) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2938 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2653 ((-517) (-1127 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3207 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -3279 ((-517) (-1127 |#2| |#1|)))) |noBranch|)) (-752) (-1073)) (T -1017))
+((-3279 (*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-3207 (*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-2938 (*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))) (-1262 (*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5)))) (-1715 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4)))) (-2384 (*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4)))))
+(-10 -7 (-15 -2384 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1715 ((-583 (-1127 |#2| |#1|)) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -1262 ((-583 |#1|) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2938 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -2653 ((-517) (-1127 |#2| |#1|))) (IF (|has| |#1| (-421)) (PROGN (-15 -3207 ((-517) (-1127 |#2| |#1|) (-1127 |#2| |#1|))) (-15 -3279 ((-517) (-1127 |#2| |#1|)))) |noBranch|))
+((-3709 (((-3 (-517) "failed") |#2| (-1073) |#2| (-1056)) 16) (((-3 (-517) "failed") |#2| (-1073) (-772 |#2|)) 14) (((-3 (-517) "failed") |#2|) 51)))
+(((-1018 |#1| |#2|) (-10 -7 (-15 -3709 ((-3 (-517) "failed") |#2|)) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) (-772 |#2|))) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) |#2| (-1056)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1094) (-400 |#1|))) (T -1018))
+((-3709 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))))) (-3709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) (-3709 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))))
+(-10 -7 (-15 -3709 ((-3 (-517) "failed") |#2|)) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) (-772 |#2|))) (-15 -3709 ((-3 (-517) "failed") |#2| (-1073) |#2| (-1056))))
+((-3709 (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)) (-1056)) 34) (((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-772 (-377 (-874 |#1|)))) 29) (((-3 (-517) "failed") (-377 (-874 |#1|))) 12)))
+(((-1019 |#1|) (-10 -7 (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-772 (-377 (-874 |#1|))))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)) (-1056)))) (-421)) (T -1019))
+((-3709 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-3709 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4)))))
+(-10 -7 (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-772 (-377 (-874 |#1|))))) (-15 -3709 ((-3 (-517) "failed") (-377 (-874 |#1|)) (-1073) (-377 (-874 |#1|)) (-1056))))
+((-3670 (((-286 (-517)) (-47)) 11)))
+(((-1020) (-10 -7 (-15 -3670 ((-286 (-517)) (-47))))) (T -1020))
+((-3670 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020)))))
+(-10 -7 (-15 -3670 ((-286 (-517)) (-47))))
+((-2750 (((-107) $ $) NIL)) (-1460 (($ $) 41)) (-2814 (((-107) $) 65)) (-2775 (($ $ $) 48)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 84)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-2635 (($ $ $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3548 (($ $ $ $) 74)) (-2535 (($ $) NIL)) (-2759 (((-388 $) $) NIL)) (-1707 (((-107) $ $) NIL)) (-3709 (((-517) $) NIL)) (-1363 (($ $ $) 71)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL)) (-3189 (((-517) $) NIL)) (-2518 (($ $ $) 59)) (-3355 (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 78) (((-623 (-517)) (-623 $)) 28)) (-3621 (((-3 $ "failed") $) NIL)) (-1256 (((-3 (-377 (-517)) "failed") $) NIL)) (-1355 (((-107) $) NIL)) (-3364 (((-377 (-517)) $) NIL)) (-3209 (($) 81) (($ $) 82)) (-2497 (($ $ $) 58)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL)) (-3849 (((-107) $) NIL)) (-4113 (($ $ $ $) NIL)) (-1756 (($ $ $) 79)) (-3556 (((-107) $) NIL)) (-3647 (($ $ $) NIL)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL)) (-3848 (((-107) $) 66)) (-1769 (((-107) $) 64)) (-2630 (($ $) 42)) (-1319 (((-3 $ "failed") $) NIL)) (-2475 (((-107) $) 75)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-1813 (($ $ $ $) 72)) (-2967 (($ $ $) 68) (($) 39)) (-3099 (($ $ $) 67) (($) 38)) (-1522 (($ $) NIL)) (-2195 (($ $) 70)) (-1365 (($ $ $) NIL) (($ (-583 $)) NIL)) (-3985 (((-1056) $) NIL)) (-1997 (($ $ $) NIL)) (-2836 (($) NIL T CONST)) (-3251 (($ $) 50)) (-3206 (((-1021) $) NIL) (($ $) 69)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL)) (-1401 (($ $ $) 62) (($ (-583 $)) NIL)) (-3663 (($ $) NIL)) (-3755 (((-388 $) $) NIL)) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL)) (-2476 (((-3 $ "failed") $ $) NIL)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL)) (-3998 (((-107) $) NIL)) (-3146 (((-703) $) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 61)) (-3127 (($ $ (-703)) NIL) (($ $) NIL)) (-2789 (($ $) 51)) (-2433 (($ $) NIL)) (-3645 (((-517) $) 32) (((-493) $) NIL) (((-814 (-517)) $) NIL) (((-349) $) NIL) (((-199) $) NIL)) (-2256 (((-787) $) 31) (($ (-517)) 80) (($ $) NIL) (($ (-517)) 80)) (-2961 (((-703)) NIL)) (-2746 (((-107) $ $) NIL)) (-1270 (($ $ $) NIL)) (-2372 (($) 37)) (-3329 (((-107) $ $) NIL)) (-1917 (($ $ $ $) 73)) (-3710 (($ $) 63)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2391 (($ $ $) 44)) (-2396 (($) 35 T CONST)) (-3555 (($ $ $) 47)) (-2409 (($) 36 T CONST)) (-2482 (((-1056) $) 21) (((-1056) $ (-107)) 23) (((-1158) (-754) $) 24) (((-1158) (-754) $ (-107)) 25)) (-3563 (($ $) 45)) (-2731 (($ $ (-703)) NIL) (($ $) NIL)) (-3545 (($ $ $) 46)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 40)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 49)) (-2382 (($ $ $) 43)) (-1654 (($ $) 52) (($ $ $) 54)) (-1642 (($ $ $) 53)) (** (($ $ (-843)) NIL) (($ $ (-703)) 57)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 34) (($ $ $) 55)))
+(((-1021) (-13 (-502) (-598) (-760) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3099 ($)) (-15 -2967 ($)) (-15 -2630 ($ $)) (-15 -1460 ($ $)) (-15 -2382 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -3563 ($ $)) (-15 -3545 ($ $ $)) (-15 -3555 ($ $ $))))) (T -1021))
+((-2391 (*1 *1 *1 *1) (-5 *1 (-1021))) (-2382 (*1 *1 *1 *1) (-5 *1 (-1021))) (-1460 (*1 *1 *1) (-5 *1 (-1021))) (-3099 (*1 *1) (-5 *1 (-1021))) (-2967 (*1 *1) (-5 *1 (-1021))) (-2630 (*1 *1 *1) (-5 *1 (-1021))) (-2775 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3563 (*1 *1 *1) (-5 *1 (-1021))) (-3545 (*1 *1 *1 *1) (-5 *1 (-1021))) (-3555 (*1 *1 *1 *1) (-5 *1 (-1021))))
+(-13 (-502) (-598) (-760) (-10 -8 (-6 -4167) (-6 -4172) (-6 -4168) (-15 -3099 ($)) (-15 -2967 ($)) (-15 -2630 ($ $)) (-15 -1460 ($ $)) (-15 -2382 ($ $ $)) (-15 -2391 ($ $ $)) (-15 -2775 ($ $ $)) (-15 -3563 ($ $)) (-15 -3545 ($ $ $)) (-15 -3555 ($ $ $))))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-4139 ((|#1| $) 44)) (-2953 (((-107) $ (-703)) 8)) (-3092 (($) 7 T CONST)) (-2886 ((|#1| |#1| $) 46)) (-1200 ((|#1| $) 45)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-3309 ((|#1| $) 39)) (-1710 (($ |#1| $) 40)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-4006 ((|#1| $) 41)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1694 (((-703) $) 43)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) 42)) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-1022 |#1|) (-1184) (-1108)) (T -1022))
+((-2886 (*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))) (-1200 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))) (-4139 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))) (-1694 (*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4180) (-15 -2886 (|t#1| |t#1| $)) (-15 -1200 (|t#1| $)) (-15 -4139 (|t#1| $)) (-15 -1694 ((-703) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-1472 ((|#3| $) 76)) (-1772 (((-3 (-517) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3189 (((-517) $) NIL) (((-377 (-517)) $) NIL) ((|#3| $) 37)) (-3355 (((-623 (-517)) (-623 $)) NIL) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL) (((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 $) (-1153 $)) 73) (((-623 |#3|) (-623 $)) 65)) (-3127 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073)) NIL) (($ $ (-703)) NIL) (($ $) NIL)) (-2671 ((|#3| $) 78)) (-2803 ((|#4| $) 32)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ |#3|) 16)) (** (($ $ (-843)) NIL) (($ $ (-703)) 15) (($ $ (-517)) 82)))
+(((-1023 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2671 (|#3| |#1|)) (-15 -1472 (|#3| |#1|)) (-15 -2803 (|#4| |#1|)) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2256 ((-787) |#1|))) (-1024 |#2| |#3| |#4| |#5|) (-703) (-961) (-212 |#2| |#3|) (-212 |#2| |#3|)) (T -1023))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-517))) (-15 -2671 (|#3| |#1|)) (-15 -1472 (|#3| |#1|)) (-15 -2803 (|#4| |#1|)) (-15 -3355 ((-623 |#3|) (-623 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 |#3|)) (|:| |vec| (-1153 |#3|))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 |#1|) (-1153 |#1|))) (-15 -3355 ((-623 (-517)) (-623 |#1|))) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2256 (|#1| |#3|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-517) |#1|)) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|) (-703))) (-15 -3127 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1472 ((|#2| $) 72)) (-2818 (((-107) $) 112)) (-4038 (((-3 $ "failed") $ $) 19)) (-3213 (((-107) $) 110)) (-2953 (((-107) $ (-703)) 102)) (-3487 (($ |#2|) 75)) (-3092 (($) 17 T CONST)) (-2468 (($ $) 129 (|has| |#2| (-278)))) (-1939 ((|#3| $ (-517)) 124)) (-1772 (((-3 (-517) "failed") $) 86 (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) 84 (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) 81)) (-3189 (((-517) $) 87 (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) 85 (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) 80)) (-3355 (((-623 (-517)) (-623 $)) 79 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 78 (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 77) (((-623 |#2|) (-623 $)) 76)) (-3621 (((-3 $ "failed") $) 34)) (-2261 (((-703) $) 130 (|has| |#2| (-509)))) (-1377 ((|#2| $ (-517) (-517)) 122)) (-1536 (((-583 |#2|) $) 95 (|has| $ (-6 -4180)))) (-3848 (((-107) $) 31)) (-1948 (((-703) $) 131 (|has| |#2| (-509)))) (-3706 (((-583 |#4|) $) 132 (|has| |#2| (-509)))) (-1477 (((-703) $) 118)) (-1486 (((-703) $) 119)) (-2550 (((-107) $ (-703)) 103)) (-2757 ((|#2| $) 67 (|has| |#2| (-6 (-4182 "*"))))) (-2813 (((-517) $) 114)) (-1338 (((-517) $) 116)) (-2560 (((-583 |#2|) $) 94 (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) 92 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2718 (((-517) $) 115)) (-1307 (((-517) $) 117)) (-1840 (($ (-583 (-583 |#2|))) 109)) (-1433 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3035 (((-583 (-583 |#2|)) $) 120)) (-3847 (((-107) $ (-703)) 104)) (-3985 (((-1056) $) 9)) (-2104 (((-3 $ "failed") $) 66 (|has| |#2| (-333)))) (-3206 (((-1021) $) 10)) (-2476 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-509)))) (-2048 (((-107) (-1 (-107) |#2|) $) 97 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) 91 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 90 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 88 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 108)) (-3619 (((-107) $) 105)) (-1746 (($) 106)) (-1449 ((|#2| $ (-517) (-517) |#2|) 123) ((|#2| $ (-517) (-517)) 121)) (-3127 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-703)) 51) (($ $ (-583 (-1073)) (-583 (-703))) 44 (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) 43 (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) 42 (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) 41 (|has| |#2| (-822 (-1073)))) (($ $ (-703)) 39 (|has| |#2| (-207))) (($ $) 37 (|has| |#2| (-207)))) (-2671 ((|#2| $) 71)) (-1879 (($ (-583 |#2|)) 74)) (-1516 (((-107) $) 111)) (-2803 ((|#3| $) 73)) (-3057 ((|#2| $) 68 (|has| |#2| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#2|) $) 96 (|has| $ (-6 -4180))) (((-703) |#2| $) 93 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 107)) (-3728 ((|#4| $ (-517)) 125)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 83 (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) 82)) (-2961 (((-703)) 29)) (-3675 (((-107) (-1 (-107) |#2|) $) 98 (|has| $ (-6 -4180)))) (-1683 (((-107) $) 113)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-703)) 49) (($ $ (-583 (-1073)) (-583 (-703))) 48 (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) 47 (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) 46 (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) 45 (|has| |#2| (-822 (-1073)))) (($ $ (-703)) 40 (|has| |#2| (-207))) (($ $) 38 (|has| |#2| (-207)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#2|) 128 (|has| |#2| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 65 (|has| |#2| (-333)))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-2296 (((-703) $) 101 (|has| $ (-6 -4180)))))
+(((-1024 |#1| |#2| |#3| |#4|) (-1184) (-703) (-961) (-212 |t#1| |t#2|) (-212 |t#1| |t#2|)) (T -1024))
+((-3487 (*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (-1472 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2757 (*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) (-2104 (*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))))
+(-13 (-205 |t#2|) (-106 |t#2| |t#2|) (-964 |t#1| |t#1| |t#2| |t#3| |t#4|) (-381 |t#2|) (-347 |t#2|) (-10 -8 (IF (|has| |t#2| (-156)) (-6 (-650 |t#2|)) |noBranch|) (-15 -3487 ($ |t#2|)) (-15 -1879 ($ (-583 |t#2|))) (-15 -2803 (|t#3| $)) (-15 -1472 (|t#2| $)) (-15 -2671 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4182 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3057 (|t#2| $)) (-15 -2757 (|t#2| $))) |noBranch|) (IF (|has| |t#2| (-333)) (PROGN (-15 -2104 ((-3 $ "failed") $)) (-15 ** ($ $ (-517)))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4182 "*"))) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-205 |#2|) . T) ((-207) |has| |#2| (-207)) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-347 |#2|) . T) ((-381 |#2|) . T) ((-456 |#2|) . T) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-585 |#2|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#2| (-579 (-517))) ((-579 |#2|) . T) ((-650 |#2|) -3807 (|has| |#2| (-156)) (|has| |#2| (-6 (-4182 "*")))) ((-659) . T) ((-822 (-1073)) |has| |#2| (-822 (-1073))) ((-964 |#1| |#1| |#2| |#3| |#4|) . T) ((-952 (-377 (-517))) |has| |#2| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#2| (-952 (-517))) ((-952 |#2|) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1108) . T))
+((-3458 ((|#4| |#4|) 67)) (-3682 ((|#4| |#4|) 62)) (-1194 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|) 75)) (-2165 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 66)) (-3145 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 64)))
+(((-1025 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3682 (|#4| |#4|)) (-15 -3145 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3458 (|#4| |#4|)) (-15 -2165 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1194 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|))) (-278) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1025))
+((-1194 (*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) (-2165 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3458 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-3145 (*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) (-3682 (*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -3682 (|#4| |#4|)) (-15 -3145 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3458 (|#4| |#4|)) (-15 -2165 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1194 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1753 (-583 |#3|))) |#4| |#3|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 17)) (-1364 (((-583 |#2|) $) 160)) (-2352 (((-1069 $) $ |#2|) 54) (((-1069 |#1|) $) 43)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 110 (|has| |#1| (-509)))) (-1213 (($ $) 112 (|has| |#1| (-509)))) (-2454 (((-107) $) 114 (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 |#2|)) 193)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) 157) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 |#2| "failed") $) NIL)) (-3189 ((|#1| $) 155) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) ((|#2| $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-156)))) (-1212 (($ $) 197)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 82)) (-3534 (($ $) NIL (|has| |#1| (-421))) (($ $ |#2|) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-489 |#2|) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#1| (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#1| (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3848 (((-107) $) 19)) (-1577 (((-703) $) 26)) (-1350 (($ (-1069 |#1|) |#2|) 48) (($ (-1069 $) |#2|) 64)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) 31)) (-1339 (($ |#1| (-489 |#2|)) 71) (($ $ |#2| (-703)) 52) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ |#2|) NIL)) (-2349 (((-489 |#2|) $) 187) (((-703) $ |#2|) 188) (((-583 (-703)) $ (-583 |#2|)) 189)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-489 |#2|) (-489 |#2|)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 122)) (-1409 (((-3 |#2| "failed") $) 162)) (-4152 (($ $) 196)) (-1191 ((|#1| $) 37)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| |#2|) (|:| -2077 (-703))) "failed") $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 32)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 140 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 145 (|has| |#1| (-421))) (($ $ $) 132 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#1| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-831)))) (-2476 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-509)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ |#2| |#1|) 165) (($ $ (-583 |#2|) (-583 |#1|)) 178) (($ $ |#2| $) 164) (($ $ (-583 |#2|) (-583 $)) 177)) (-3010 (($ $ |#2|) NIL (|has| |#1| (-156)))) (-3127 (($ $ |#2|) 195) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3688 (((-489 |#2|) $) 183) (((-703) $ |#2|) 179) (((-583 (-703)) $ (-583 |#2|)) 181)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| |#1| (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| |#1| (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| |#1| (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#1| $) 128 (|has| |#1| (-421))) (($ $ |#2|) 131 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-2256 (((-787) $) 151) (($ (-517)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1311 (((-583 |#1|) $) 154)) (-2720 ((|#1| $ (-489 |#2|)) 73) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 79)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) 117 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 102) (($ $ (-703)) 104)) (-2396 (($) 12 T CONST)) (-2409 (($) 14 T CONST)) (-2731 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 97)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 126 (|has| |#1| (-333)))) (-1654 (($ $) 85) (($ $ $) 95)) (-1642 (($ $ $) 49)) (** (($ $ (-843)) 103) (($ $ (-703)) 100)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 88) (($ $ $) 65) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+(((-1026 |#1| |#2|) (-871 |#1| (-489 |#2|) |#2|) (-961) (-779)) (T -1026))
+NIL
+(-871 |#1| (-489 |#2|) |#2|)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1865 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1887 (($ $) 145 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3520 (((-874 |#1|) $ (-703)) NIL) (((-874 |#1|) $ (-703) (-703)) NIL)) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $ |#2|) NIL) (((-703) $ |#2| (-703)) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4031 (((-107) $) NIL)) (-1339 (($ $ (-583 |#2|) (-583 (-489 |#2|))) NIL) (($ $ |#2| (-489 |#2|)) NIL) (($ |#1| (-489 |#2|)) NIL) (($ $ |#2| (-703)) 57) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $ |#2|) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ |#2| |#1|) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-3352 (($ (-1 $) |#2| |#1|) 163 (|has| |#1| (-37 (-377 (-517)))))) (-1672 (($ $ (-703)) 15)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2624 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (($ $ |#2| $) 95) (($ $ (-583 |#2|) (-583 $)) 88) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-3127 (($ $ |#2|) 98) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-3688 (((-489 |#2|) $) NIL)) (-2265 (((-1 (-1054 |#3|) |#3|) (-583 |#2|) (-583 (-1054 |#3|))) 78)) (-1898 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 17)) (-2256 (((-787) $) 179) (($ (-517)) NIL) (($ |#1|) 44 (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#2|) 64) (($ |#3|) 62)) (-2720 ((|#1| $ (-489 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL) ((|#3| $ (-703)) 42)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3707 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1492 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 18 T CONST)) (-2409 (($) 10 T CONST)) (-2731 (($ $ |#2|) NIL) (($ $ (-583 |#2|)) NIL) (($ $ |#2| (-703)) NIL) (($ $ (-583 |#2|) (-583 (-703))) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) 181 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 60)) (** (($ $ (-843)) NIL) (($ $ (-703)) 69) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 101 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 59) (($ $ (-377 (-517))) 106 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 104 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1027 |#1| |#2| |#3|) (-13 (-673 |#1| |#2|) (-10 -8 (-15 -2720 (|#3| $ (-703))) (-15 -2256 ($ |#2|)) (-15 -2256 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2265 ((-1 (-1054 |#3|) |#3|) (-583 |#2|) (-583 (-1054 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ |#2| |#1|)) (-15 -3352 ($ (-1 $) |#2| |#1|))) |noBranch|))) (-961) (-779) (-871 |#1| (-489 |#2|) |#2|)) (T -1027))
+((-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) (-2265 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1054 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1054 *7) *7)) (-5 *1 (-1027 *5 *6 *7)))) (-4151 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) (-3352 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3)))))
+(-13 (-673 |#1| |#2|) (-10 -8 (-15 -2720 (|#3| $ (-703))) (-15 -2256 ($ |#2|)) (-15 -2256 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2265 ((-1 (-1054 |#3|) |#3|) (-583 |#2|) (-583 (-1054 |#3|)))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ |#2| |#1|)) (-15 -3352 ($ (-1 $) |#2| |#1|))) |noBranch|)))
+((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86) (((-583 $) (-583 |#4|) (-107)) 111)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 126)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-4063 (((-107) |#4| $) 136)) (-1829 (((-107) |#4| $) 133)) (-1538 (((-107) |#4| $) 137) (((-107) $) 134)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) 128)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 127)) (-2068 (((-3 |#4| "failed") $) 83)) (-2117 (((-583 $) |#4| $) 129)) (-2834 (((-3 (-107) (-583 $)) |#4| $) 132)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 131) (((-107) |#4| $) 130)) (-1812 (((-583 $) |#4| $) 125) (((-583 $) (-583 |#4|) $) 124) (((-583 $) (-583 |#4|) (-583 $)) 123) (((-583 $) |#4| (-583 $)) 122)) (-2474 (($ |#4| $) 117) (($ (-583 |#4|) $) 116)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77) (((-583 $) |#4| $) 115) (((-583 $) |#4| (-583 $)) 114) (((-583 $) (-583 |#4|) $) 113) (((-583 $) (-583 |#4|) (-583 $)) 112)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3596 (((-583 $) |#4| $) 121) (((-583 $) |#4| (-583 $)) 120) (((-583 $) (-583 |#4|) $) 119) (((-583 $) (-583 |#4|) (-583 $)) 118)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-2119 (((-107) |#4| $) 135)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
+(((-1028 |#1| |#2| |#3| |#4|) (-1184) (-421) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1028))
+NIL
+(-13 (-1012 |t#1| |t#2| |t#3| |t#4|) (-716 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-716 |#1| |#2| |#3| |#4|) . T) ((-893 |#1| |#2| |#3| |#4|) . T) ((-980 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1012 |#1| |#2| |#3| |#4|) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1108) . T))
+((-1674 (((-583 |#2|) |#1|) 12)) (-2573 (((-583 |#2|) |#2| |#2| |#2| |#2| |#2|) 37) (((-583 |#2|) |#1|) 47)) (-3334 (((-583 |#2|) |#2| |#2| |#2|) 35) (((-583 |#2|) |#1|) 45)) (-2679 ((|#2| |#1|) 42)) (-2934 (((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 16)) (-3497 (((-583 |#2|) |#2| |#2|) 34) (((-583 |#2|) |#1|) 44)) (-1190 (((-583 |#2|) |#2| |#2| |#2| |#2|) 36) (((-583 |#2|) |#1|) 46)) (-1989 ((|#2| |#2| |#2| |#2| |#2| |#2|) 41)) (-2049 ((|#2| |#2| |#2| |#2|) 39)) (-2416 ((|#2| |#2| |#2|) 38)) (-3635 ((|#2| |#2| |#2| |#2| |#2|) 40)))
+(((-1029 |#1| |#2|) (-10 -7 (-15 -1674 ((-583 |#2|) |#1|)) (-15 -2679 (|#2| |#1|)) (-15 -2934 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3497 ((-583 |#2|) |#1|)) (-15 -3334 ((-583 |#2|) |#1|)) (-15 -1190 ((-583 |#2|) |#1|)) (-15 -2573 ((-583 |#2|) |#1|)) (-15 -3497 ((-583 |#2|) |#2| |#2|)) (-15 -3334 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -1190 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2573 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -2049 (|#2| |#2| |#2| |#2|)) (-15 -3635 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1989 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1130 |#2|) (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (T -1029))
+((-1989 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-3635 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-2049 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-2416 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-2573 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-1190 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-3334 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-3497 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))) (-2573 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-1190 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-3334 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-3497 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) (-2934 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1130 *5)))) (-2679 (*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -1674 ((-583 |#2|) |#1|)) (-15 -2679 (|#2| |#1|)) (-15 -2934 ((-2 (|:| |solns| (-583 |#2|)) (|:| |maps| (-583 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3497 ((-583 |#2|) |#1|)) (-15 -3334 ((-583 |#2|) |#1|)) (-15 -1190 ((-583 |#2|) |#1|)) (-15 -2573 ((-583 |#2|) |#1|)) (-15 -3497 ((-583 |#2|) |#2| |#2|)) (-15 -3334 ((-583 |#2|) |#2| |#2| |#2|)) (-15 -1190 ((-583 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2573 ((-583 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2416 (|#2| |#2| |#2|)) (-15 -2049 (|#2| |#2| |#2| |#2|)) (-15 -3635 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1989 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-2501 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|))))) 94) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073))) 93) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|)))) 91) (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 89) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|)))) 75) (((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1073)) 76) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|))) 70) (((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1073)) 59)) (-2606 (((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 87) (((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1073)) 43)) (-1483 (((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1073)) 97) (((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073)) 96)))
+(((-1030 |#1|) (-10 -7 (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2606 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2606 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1073)))) (-13 (-278) (-779) (-134))) (T -1030))
+((-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-1483 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) (-2501 (*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) (-2501 (*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))))
+(-10 -7 (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-377 (-874 |#1|)))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -2501 ((-583 (-265 (-286 |#1|))) (-265 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-377 (-874 |#1|))))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -2501 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -2606 ((-583 (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2606 ((-583 (-583 (-286 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1483 ((-1063 (-583 (-286 |#1|)) (-583 (-265 (-286 |#1|)))) (-377 (-874 |#1|)) (-1073))))
+((-2464 (((-377 (-1069 (-286 |#1|))) (-1153 (-286 |#1|)) (-377 (-1069 (-286 |#1|))) (-517)) 27)) (-3249 (((-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|)))) 39)))
+(((-1031 |#1|) (-10 -7 (-15 -3249 ((-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))))) (-15 -2464 ((-377 (-1069 (-286 |#1|))) (-1153 (-286 |#1|)) (-377 (-1069 (-286 |#1|))) (-517)))) (-13 (-509) (-779))) (T -1031))
+((-2464 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1069 (-286 *5)))) (-5 *3 (-1153 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5)))) (-3249 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1069 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3)))))
+(-10 -7 (-15 -3249 ((-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))) (-377 (-1069 (-286 |#1|))))) (-15 -2464 ((-377 (-1069 (-286 |#1|))) (-1153 (-286 |#1|)) (-377 (-1069 (-286 |#1|))) (-517))))
+((-1674 (((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1073))) 216) (((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1073)) 20) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1073)) 26) (((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|))) 25) (((-583 (-265 (-286 |#1|))) (-286 |#1|)) 21)))
+(((-1032 |#1|) (-10 -7 (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1073))) (-15 -1674 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1073))))) (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (T -1032))
+((-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4)))))
+(-10 -7 (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-265 (-286 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-286 |#1|))) (-286 |#1|) (-1073))) (-15 -1674 ((-583 (-583 (-265 (-286 |#1|)))) (-583 (-265 (-286 |#1|))) (-583 (-1073)))))
+((-2891 ((|#2| |#2|) 20 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 16)) (-1318 ((|#2| |#2|) 19 (|has| |#1| (-779))) ((|#2| |#2| (-1 (-107) |#1| |#1|)) 15)))
+(((-1033 |#1| |#2|) (-10 -7 (-15 -1318 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2891 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -1318 (|#2| |#2|)) (-15 -2891 (|#2| |#2|))) |noBranch|)) (-1108) (-13 (-550 (-517) |#1|) (-10 -7 (-6 -4180) (-6 -4181)))) (T -1033))
+((-2891 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))) (-1318 (*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))) (-2891 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))) (-1318 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))))
+(-10 -7 (-15 -1318 (|#2| |#2| (-1 (-107) |#1| |#1|))) (-15 -2891 (|#2| |#2| (-1 (-107) |#1| |#1|))) (IF (|has| |#1| (-779)) (PROGN (-15 -1318 (|#2| |#2|)) (-15 -2891 (|#2| |#2|))) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-2467 (((-1062 3 |#1|) $) 105)) (-4061 (((-107) $) 72)) (-1347 (($ $ (-583 (-865 |#1|))) 20) (($ $ (-583 (-583 |#1|))) 75) (($ (-583 (-865 |#1|))) 74) (((-583 (-865 |#1|)) $) 73)) (-2178 (((-107) $) 41)) (-2889 (($ $ (-865 |#1|)) 46) (($ $ (-583 |#1|)) 51) (($ $ (-703)) 53) (($ (-865 |#1|)) 47) (((-865 |#1|) $) 45)) (-2364 (((-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 103)) (-1592 (((-703) $) 26)) (-1790 (((-703) $) 25)) (-3347 (($ $ (-703) (-865 |#1|)) 39)) (-1818 (((-107) $) 82)) (-1552 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 89) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 91) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 85) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 93) (($ (-583 (-583 (-865 |#1|)))) 86) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 87) (((-583 (-583 (-865 |#1|))) $) 84)) (-3237 (($ (-583 $)) 28) (($ $ $) 29)) (-3215 (((-583 (-155)) $) 101)) (-2927 (((-583 (-865 |#1|)) $) 96)) (-2830 (((-583 (-583 (-155))) $) 100)) (-2266 (((-583 (-583 (-583 (-865 |#1|)))) $) NIL)) (-1767 (((-583 (-583 (-583 (-703)))) $) 98)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2334 (((-703) $ (-583 (-865 |#1|))) 37)) (-2681 (((-107) $) 54)) (-2689 (($ $ (-583 (-865 |#1|))) 56) (($ $ (-583 (-583 |#1|))) 62) (($ (-583 (-865 |#1|))) 57) (((-583 (-865 |#1|)) $) 55)) (-2734 (($) 23) (($ (-1062 3 |#1|)) 24)) (-2433 (($ $) 35)) (-3547 (((-583 $) $) 34)) (-3793 (($ (-583 $)) 31)) (-2146 (((-583 $) $) 33)) (-2256 (((-787) $) 109)) (-2067 (((-107) $) 64)) (-2243 (($ $ (-583 (-865 |#1|))) 66) (($ $ (-583 (-583 |#1|))) 69) (($ (-583 (-865 |#1|))) 67) (((-583 (-865 |#1|)) $) 65)) (-3823 (($ $) 104)) (-1547 (((-107) $ $) NIL)))
+(((-1034 |#1|) (-1035 |#1|) (-961)) (T -1034))
+NIL
+(-1035 |#1|)
+((-2750 (((-107) $ $) 7)) (-2467 (((-1062 3 |#1|) $) 13)) (-4061 (((-107) $) 29)) (-1347 (($ $ (-583 (-865 |#1|))) 33) (($ $ (-583 (-583 |#1|))) 32) (($ (-583 (-865 |#1|))) 31) (((-583 (-865 |#1|)) $) 30)) (-2178 (((-107) $) 44)) (-2889 (($ $ (-865 |#1|)) 49) (($ $ (-583 |#1|)) 48) (($ $ (-703)) 47) (($ (-865 |#1|)) 46) (((-865 |#1|) $) 45)) (-2364 (((-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $) 15)) (-1592 (((-703) $) 58)) (-1790 (((-703) $) 59)) (-3347 (($ $ (-703) (-865 |#1|)) 50)) (-1818 (((-107) $) 21)) (-1552 (($ $ (-583 (-583 (-865 |#1|))) (-583 (-155)) (-155)) 28) (($ $ (-583 (-583 (-583 |#1|))) (-583 (-155)) (-155)) 27) (($ $ (-583 (-583 (-865 |#1|))) (-107) (-107)) 26) (($ $ (-583 (-583 (-583 |#1|))) (-107) (-107)) 25) (($ (-583 (-583 (-865 |#1|)))) 24) (($ (-583 (-583 (-865 |#1|))) (-107) (-107)) 23) (((-583 (-583 (-865 |#1|))) $) 22)) (-3237 (($ (-583 $)) 57) (($ $ $) 56)) (-3215 (((-583 (-155)) $) 16)) (-2927 (((-583 (-865 |#1|)) $) 20)) (-2830 (((-583 (-583 (-155))) $) 17)) (-2266 (((-583 (-583 (-583 (-865 |#1|)))) $) 18)) (-1767 (((-583 (-583 (-583 (-703)))) $) 19)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2334 (((-703) $ (-583 (-865 |#1|))) 51)) (-2681 (((-107) $) 39)) (-2689 (($ $ (-583 (-865 |#1|))) 43) (($ $ (-583 (-583 |#1|))) 42) (($ (-583 (-865 |#1|))) 41) (((-583 (-865 |#1|)) $) 40)) (-2734 (($) 61) (($ (-1062 3 |#1|)) 60)) (-2433 (($ $) 52)) (-3547 (((-583 $) $) 53)) (-3793 (($ (-583 $)) 55)) (-2146 (((-583 $) $) 54)) (-2256 (((-787) $) 11)) (-2067 (((-107) $) 34)) (-2243 (($ $ (-583 (-865 |#1|))) 38) (($ $ (-583 (-583 |#1|))) 37) (($ (-583 (-865 |#1|))) 36) (((-583 (-865 |#1|)) $) 35)) (-3823 (($ $) 14)) (-1547 (((-107) $ $) 6)))
+(((-1035 |#1|) (-1184) (-961)) (T -1035))
+((-2256 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) (-2734 (*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2734 (*1 *1 *2) (-12 (-5 *2 (-1062 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-1592 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-3237 (*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-3793 (*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2146 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-3547 (*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))) (-2433 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2334 (*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703)))) (-3347 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2889 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2889 (*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2689 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2689 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2689 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2689 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-2681 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2243 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2243 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-2243 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-2067 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1347 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) (-1347 (*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-1552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-1552 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) (-1552 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1552 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) (-1552 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) (-1552 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) (-1552 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703))))))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3))))))) (-2830 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155)))))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155))))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))) (-3823 (*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1062 3 *3)))))
+(-13 (-1003) (-10 -8 (-15 -2734 ($)) (-15 -2734 ($ (-1062 3 |t#1|))) (-15 -1790 ((-703) $)) (-15 -1592 ((-703) $)) (-15 -3237 ($ (-583 $))) (-15 -3237 ($ $ $)) (-15 -3793 ($ (-583 $))) (-15 -2146 ((-583 $) $)) (-15 -3547 ((-583 $) $)) (-15 -2433 ($ $)) (-15 -2334 ((-703) $ (-583 (-865 |t#1|)))) (-15 -3347 ($ $ (-703) (-865 |t#1|))) (-15 -2889 ($ $ (-865 |t#1|))) (-15 -2889 ($ $ (-583 |t#1|))) (-15 -2889 ($ $ (-703))) (-15 -2889 ($ (-865 |t#1|))) (-15 -2889 ((-865 |t#1|) $)) (-15 -2178 ((-107) $)) (-15 -2689 ($ $ (-583 (-865 |t#1|)))) (-15 -2689 ($ $ (-583 (-583 |t#1|)))) (-15 -2689 ($ (-583 (-865 |t#1|)))) (-15 -2689 ((-583 (-865 |t#1|)) $)) (-15 -2681 ((-107) $)) (-15 -2243 ($ $ (-583 (-865 |t#1|)))) (-15 -2243 ($ $ (-583 (-583 |t#1|)))) (-15 -2243 ($ (-583 (-865 |t#1|)))) (-15 -2243 ((-583 (-865 |t#1|)) $)) (-15 -2067 ((-107) $)) (-15 -1347 ($ $ (-583 (-865 |t#1|)))) (-15 -1347 ($ $ (-583 (-583 |t#1|)))) (-15 -1347 ($ (-583 (-865 |t#1|)))) (-15 -1347 ((-583 (-865 |t#1|)) $)) (-15 -4061 ((-107) $)) (-15 -1552 ($ $ (-583 (-583 (-865 |t#1|))) (-583 (-155)) (-155))) (-15 -1552 ($ $ (-583 (-583 (-583 |t#1|))) (-583 (-155)) (-155))) (-15 -1552 ($ $ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -1552 ($ $ (-583 (-583 (-583 |t#1|))) (-107) (-107))) (-15 -1552 ($ (-583 (-583 (-865 |t#1|))))) (-15 -1552 ($ (-583 (-583 (-865 |t#1|))) (-107) (-107))) (-15 -1552 ((-583 (-583 (-865 |t#1|))) $)) (-15 -1818 ((-107) $)) (-15 -2927 ((-583 (-865 |t#1|)) $)) (-15 -1767 ((-583 (-583 (-583 (-703)))) $)) (-15 -2266 ((-583 (-583 (-583 (-865 |t#1|)))) $)) (-15 -2830 ((-583 (-583 (-155))) $)) (-15 -3215 ((-583 (-155)) $)) (-15 -2364 ((-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703))) $)) (-15 -3823 ($ $)) (-15 -2467 ((-1062 3 |t#1|) $)) (-15 -2256 ((-787) $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-2766 (((-1158) (-583 (-787))) 23) (((-1158) (-787)) 22)) (-3111 (((-1158) (-583 (-787))) 21) (((-1158) (-787)) 20)) (-4155 (((-1158) (-583 (-787))) 19) (((-1158) (-787)) 11) (((-1158) (-1056) (-787)) 17)))
+(((-1036) (-10 -7 (-15 -4155 ((-1158) (-1056) (-787))) (-15 -4155 ((-1158) (-787))) (-15 -3111 ((-1158) (-787))) (-15 -2766 ((-1158) (-787))) (-15 -4155 ((-1158) (-583 (-787)))) (-15 -3111 ((-1158) (-583 (-787)))) (-15 -2766 ((-1158) (-583 (-787)))))) (T -1036))
+((-2766 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-4155 (*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) (-4155 (*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))))
+(-10 -7 (-15 -4155 ((-1158) (-1056) (-787))) (-15 -4155 ((-1158) (-787))) (-15 -3111 ((-1158) (-787))) (-15 -2766 ((-1158) (-787))) (-15 -4155 ((-1158) (-583 (-787)))) (-15 -3111 ((-1158) (-583 (-787)))) (-15 -2766 ((-1158) (-583 (-787)))))
+((-1264 (($ $ $) 10)) (-2150 (($ $) 9)) (-2570 (($ $ $) 13)) (-2480 (($ $ $) 15)) (-3233 (($ $ $) 12)) (-1324 (($ $ $) 14)) (-3312 (($ $) 17)) (-1730 (($ $) 16)) (-3710 (($ $) 6)) (-1564 (($ $ $) 11) (($ $) 7)) (-2350 (($ $ $) 8)))
+(((-1037) (-1184)) (T -1037))
+((-3312 (*1 *1 *1) (-4 *1 (-1037))) (-1730 (*1 *1 *1) (-4 *1 (-1037))) (-2480 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1324 (*1 *1 *1 *1) (-4 *1 (-1037))) (-2570 (*1 *1 *1 *1) (-4 *1 (-1037))) (-3233 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1564 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1264 (*1 *1 *1 *1) (-4 *1 (-1037))) (-2150 (*1 *1 *1) (-4 *1 (-1037))) (-2350 (*1 *1 *1 *1) (-4 *1 (-1037))) (-1564 (*1 *1 *1) (-4 *1 (-1037))) (-3710 (*1 *1 *1) (-4 *1 (-1037))))
+(-13 (-10 -8 (-15 -3710 ($ $)) (-15 -1564 ($ $)) (-15 -2350 ($ $ $)) (-15 -2150 ($ $)) (-15 -1264 ($ $ $)) (-15 -1564 ($ $ $)) (-15 -3233 ($ $ $)) (-15 -2570 ($ $ $)) (-15 -1324 ($ $ $)) (-15 -2480 ($ $ $)) (-15 -1730 ($ $)) (-15 -3312 ($ $))))
+((-2750 (((-107) $ $) 41)) (-3199 ((|#1| $) 15)) (-2670 (((-107) $ $ (-1 (-107) |#2| |#2|)) 36)) (-2324 (((-107) $) 17)) (-3948 (($ $ |#1|) 28)) (-1799 (($ $ (-107)) 30)) (-1617 (($ $) 31)) (-1961 (($ $ |#2|) 29)) (-3985 (((-1056) $) NIL)) (-2130 (((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|)) 35)) (-3206 (((-1021) $) NIL)) (-3619 (((-107) $) 14)) (-1746 (($) 10)) (-2433 (($ $) 27)) (-2276 (($ |#1| |#2| (-107)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) 21) (((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|)))) 24) (((-583 $) |#1| (-583 |#2|)) 26)) (-3476 ((|#2| $) 16)) (-2256 (((-787) $) 50)) (-1547 (((-107) $ $) 39)))
+(((-1038 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1746 ($)) (-15 -3619 ((-107) $)) (-15 -3199 (|#1| $)) (-15 -3476 (|#2| $)) (-15 -2324 ((-107) $)) (-15 -2276 ($ |#1| |#2| (-107))) (-15 -2276 ($ |#1| |#2|)) (-15 -2276 ($ (-2 (|:| |val| |#1|) (|:| -3726 |#2|)))) (-15 -2276 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))))) (-15 -2276 ((-583 $) |#1| (-583 |#2|))) (-15 -2433 ($ $)) (-15 -3948 ($ $ |#1|)) (-15 -1961 ($ $ |#2|)) (-15 -1799 ($ $ (-107))) (-15 -1617 ($ $)) (-15 -2130 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2670 ((-107) $ $ (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1038))
+((-1746 (*1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3619 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3199 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-13 (-1003) (-33))))) (-3476 (*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))))) (-2324 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3726 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *4)))) (-2276 (*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3726 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *4 *5))) (-5 *1 (-1038 *4 *5)))) (-2276 (*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *3 *5))) (-5 *1 (-1038 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) (-2433 (*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3948 (*1 *1 *1 *2) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-1961 (*1 *1 *1 *2) (-12 (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33))))) (-1799 (*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-1617 (*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2130 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *5 *6)))) (-2670 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))))))
+(-13 (-1003) (-10 -8 (-15 -1746 ($)) (-15 -3619 ((-107) $)) (-15 -3199 (|#1| $)) (-15 -3476 (|#2| $)) (-15 -2324 ((-107) $)) (-15 -2276 ($ |#1| |#2| (-107))) (-15 -2276 ($ |#1| |#2|)) (-15 -2276 ($ (-2 (|:| |val| |#1|) (|:| -3726 |#2|)))) (-15 -2276 ((-583 $) (-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))))) (-15 -2276 ((-583 $) |#1| (-583 |#2|))) (-15 -2433 ($ $)) (-15 -3948 ($ $ |#1|)) (-15 -1961 ($ $ |#2|)) (-15 -1799 ($ $ (-107))) (-15 -1617 ($ $)) (-15 -2130 ((-107) $ $ (-1 (-107) |#1| |#1|) (-1 (-107) |#2| |#2|))) (-15 -2670 ((-107) $ $ (-1 (-107) |#2| |#2|)))))
+((-2750 (((-107) $ $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-3199 (((-1038 |#1| |#2|) $) 25)) (-3585 (($ $) 75)) (-1958 (((-107) (-1038 |#1| |#2|) $ (-1 (-107) |#2| |#2|)) 84)) (-3294 (($ $ $ (-583 (-1038 |#1| |#2|))) 89) (($ $ $ (-583 (-1038 |#1| |#2|)) (-1 (-107) |#2| |#2|)) 90)) (-2953 (((-107) $ (-703)) NIL)) (-1918 (((-1038 |#1| |#2|) $ (-1038 |#1| |#2|)) 42 (|has| $ (-6 -4181)))) (-2411 (((-1038 |#1| |#2|) $ "value" (-1038 |#1| |#2|)) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 40 (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-3569 (((-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) $) 79)) (-3212 (($ (-1038 |#1| |#2|) $) 38)) (-2052 (($ (-1038 |#1| |#2|) $) 30)) (-1536 (((-583 (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1894 (((-107) (-1038 |#1| |#2|) $) 81)) (-1272 (((-107) $ $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 (-1038 |#1| |#2|)) $) 54 (|has| $ (-6 -4180)))) (-2787 (((-107) (-1038 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-1038 |#1| |#2|) (-1003))))) (-1433 (($ (-1 (-1038 |#1| |#2|) (-1038 |#1| |#2|)) $) 46 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-1038 |#1| |#2|) (-1038 |#1| |#2|)) $) 45)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 (-1038 |#1| |#2|)) $) 52)) (-1763 (((-107) $) 41)) (-3985 (((-1056) $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-3206 (((-1021) $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-1290 (((-3 $ "failed") $) 74)) (-2048 (((-107) (-1 (-107) (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-1038 |#1| |#2|)))) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003)))) (($ $ (-265 (-1038 |#1| |#2|))) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003)))) (($ $ (-1038 |#1| |#2|) (-1038 |#1| |#2|)) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003)))) (($ $ (-583 (-1038 |#1| |#2|)) (-583 (-1038 |#1| |#2|))) NIL (-12 (|has| (-1038 |#1| |#2|) (-280 (-1038 |#1| |#2|))) (|has| (-1038 |#1| |#2|) (-1003))))) (-3792 (((-107) $ $) 49)) (-3619 (((-107) $) 22)) (-1746 (($) 24)) (-1449 (((-1038 |#1| |#2|) $ "value") NIL)) (-2459 (((-517) $ $) NIL)) (-2655 (((-107) $) 43)) (-3217 (((-703) (-1 (-107) (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180))) (((-703) (-1038 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-1038 |#1| |#2|) (-1003))))) (-2433 (($ $) 48)) (-2276 (($ (-1038 |#1| |#2|)) 9) (($ |#1| |#2| (-583 $)) 12) (($ |#1| |#2| (-583 (-1038 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-583 |#2|)) 17)) (-2225 (((-583 |#2|) $) 80)) (-2256 (((-787) $) 72 (|has| (-1038 |#1| |#2|) (-1003)))) (-1479 (((-583 $) $) 28)) (-2732 (((-107) $ $) NIL (|has| (-1038 |#1| |#2|) (-1003)))) (-3675 (((-107) (-1 (-107) (-1038 |#1| |#2|)) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 63 (|has| (-1038 |#1| |#2|) (-1003)))) (-2296 (((-703) $) 57 (|has| $ (-6 -4180)))))
+(((-1039 |#1| |#2|) (-13 (-926 (-1038 |#1| |#2|)) (-10 -8 (-6 -4181) (-6 -4180) (-15 -1290 ((-3 $ "failed") $)) (-15 -3585 ($ $)) (-15 -2276 ($ (-1038 |#1| |#2|))) (-15 -2276 ($ |#1| |#2| (-583 $))) (-15 -2276 ($ |#1| |#2| (-583 (-1038 |#1| |#2|)))) (-15 -2276 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2225 ((-583 |#2|) $)) (-15 -3569 ((-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) $)) (-15 -1894 ((-107) (-1038 |#1| |#2|) $)) (-15 -1958 ((-107) (-1038 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -2052 ($ (-1038 |#1| |#2|) $)) (-15 -3212 ($ (-1038 |#1| |#2|) $)) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)))) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)) (-1 (-107) |#2| |#2|))))) (-13 (-1003) (-33)) (-13 (-1003) (-33))) (T -1039))
+((-1290 (*1 *1 *1) (|partial| -12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-3585 (*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) (-2276 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1038 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)))) (-2276 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-3569 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))) (-1894 (*1 *2 *3 *1) (-12 (-5 *3 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5)))) (-1958 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1038 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6)))) (-2052 (*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-3212 (*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-3294 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1038 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) (-3294 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1038 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1039 *4 *5)))))
+(-13 (-926 (-1038 |#1| |#2|)) (-10 -8 (-6 -4181) (-6 -4180) (-15 -1290 ((-3 $ "failed") $)) (-15 -3585 ($ $)) (-15 -2276 ($ (-1038 |#1| |#2|))) (-15 -2276 ($ |#1| |#2| (-583 $))) (-15 -2276 ($ |#1| |#2| (-583 (-1038 |#1| |#2|)))) (-15 -2276 ($ |#1| |#2| |#1| (-583 |#2|))) (-15 -2225 ((-583 |#2|) $)) (-15 -3569 ((-583 (-2 (|:| |val| |#1|) (|:| -3726 |#2|))) $)) (-15 -1894 ((-107) (-1038 |#1| |#2|) $)) (-15 -1958 ((-107) (-1038 |#1| |#2|) $ (-1 (-107) |#2| |#2|))) (-15 -2052 ($ (-1038 |#1| |#2|) $)) (-15 -3212 ($ (-1038 |#1| |#2|) $)) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)))) (-15 -3294 ($ $ $ (-583 (-1038 |#1| |#2|)) (-1 (-107) |#2| |#2|)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2033 (($ $) NIL)) (-1472 ((|#2| $) NIL)) (-2818 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-2461 (($ (-623 |#2|)) 45)) (-3213 (((-107) $) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3487 (($ |#2|) 9)) (-3092 (($) NIL T CONST)) (-2468 (($ $) 58 (|has| |#2| (-278)))) (-1939 (((-214 |#1| |#2|) $ (-517)) 31)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 |#2| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) ((|#2| $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) 72)) (-2261 (((-703) $) 60 (|has| |#2| (-509)))) (-1377 ((|#2| $ (-517) (-517)) NIL)) (-1536 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-3848 (((-107) $) NIL)) (-1948 (((-703) $) 62 (|has| |#2| (-509)))) (-3706 (((-583 (-214 |#1| |#2|)) $) 66 (|has| |#2| (-509)))) (-1477 (((-703) $) NIL)) (-1486 (((-703) $) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-2757 ((|#2| $) 56 (|has| |#2| (-6 (-4182 "*"))))) (-2813 (((-517) $) NIL)) (-1338 (((-517) $) NIL)) (-2560 (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2718 (((-517) $) NIL)) (-1307 (((-517) $) NIL)) (-1840 (($ (-583 (-583 |#2|))) 26)) (-1433 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3035 (((-583 (-583 |#2|)) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2104 (((-3 $ "failed") $) 69 (|has| |#2| (-333)))) (-3206 (((-1021) $) NIL)) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509)))) (-2048 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ (-517) (-517) |#2|) NIL) ((|#2| $ (-517) (-517)) NIL)) (-3127 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-2671 ((|#2| $) NIL)) (-1879 (($ (-583 |#2|)) 40)) (-1516 (((-107) $) NIL)) (-2803 (((-214 |#1| |#2|) $) NIL)) (-3057 ((|#2| $) 54 (|has| |#2| (-6 (-4182 "*"))))) (-3217 (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 81 (|has| |#2| (-558 (-493))))) (-3728 (((-214 |#1| |#2|) $ (-517)) 33)) (-2256 (((-787) $) 36) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#2| (-952 (-377 (-517))))) (($ |#2|) NIL) (((-623 |#2|) $) 42)) (-2961 (((-703)) 17)) (-3675 (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1683 (((-107) $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 11 T CONST)) (-2409 (($) 14 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-703)) NIL (|has| |#2| (-207))) (($ $) NIL (|has| |#2| (-207)))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) 52) (($ $ (-517)) 71 (|has| |#2| (-333)))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-214 |#1| |#2|) $ (-214 |#1| |#2|)) 48) (((-214 |#1| |#2|) (-214 |#1| |#2|) $) 50)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1040 |#1| |#2|) (-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -2033 ($ $)) (-15 -2461 ($ (-623 |#2|))) (-15 -2256 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4182 "*"))) (-6 -4169) |noBranch|) (IF (|has| |#2| (-6 (-4182 "*"))) (IF (|has| |#2| (-6 -4177)) (-6 -4177) |noBranch|) |noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |noBranch|))) (-703) (-961)) (T -1040))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) (-2033 (*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961)))) (-2461 (*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)))))
+(-13 (-1024 |#1| |#2| (-214 |#1| |#2|) (-214 |#1| |#2|)) (-557 (-623 |#2|)) (-10 -8 (-15 -2033 ($ $)) (-15 -2461 ($ (-623 |#2|))) (-15 -2256 ((-623 |#2|) $)) (IF (|has| |#2| (-6 (-4182 "*"))) (-6 -4169) |noBranch|) (IF (|has| |#2| (-6 (-4182 "*"))) (IF (|has| |#2| (-6 -4177)) (-6 -4177) |noBranch|) |noBranch|) (IF (|has| |#2| (-558 (-493))) (-6 (-558 (-493))) |noBranch|)))
+((-3132 (($ $) 19)) (-3672 (($ $ (-131)) 10) (($ $ (-128)) 14)) (-1459 (((-107) $ $) 24)) (-1285 (($ $) 17)) (-1449 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1121 (-517))) NIL) (($ $ $) 29)) (-2256 (($ (-131)) 27) (((-787) $) NIL)))
+(((-1041 |#1|) (-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -3672 (|#1| |#1| (-128))) (-15 -3672 (|#1| |#1| (-131))) (-15 -2256 (|#1| (-131))) (-15 -1459 ((-107) |#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1449 ((-131) |#1| (-517))) (-15 -1449 ((-131) |#1| (-517) (-131)))) (-1042)) (T -1041))
+NIL
+(-10 -8 (-15 -2256 ((-787) |#1|)) (-15 -1449 (|#1| |#1| |#1|)) (-15 -3672 (|#1| |#1| (-128))) (-15 -3672 (|#1| |#1| (-131))) (-15 -2256 (|#1| (-131))) (-15 -1459 ((-107) |#1| |#1|)) (-15 -3132 (|#1| |#1|)) (-15 -1285 (|#1| |#1|)) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -1449 ((-131) |#1| (-517))) (-15 -1449 ((-131) |#1| (-517) (-131))))
+((-2750 (((-107) $ $) 18 (|has| (-131) (-1003)))) (-3880 (($ $) 120)) (-3132 (($ $) 121)) (-3672 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) 118)) (-1414 (((-107) $ $ (-517)) 117)) (-1313 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3346 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-3610 (($ $ (-1121 (-517)) $) 114)) (-1679 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) 51)) (-1459 (((-107) $ $) 119)) (-2607 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1536 (((-583 (-131)) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) 115)) (-2237 (((-703) $ $ (-131)) 116)) (-1433 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3006 (($ $) 122)) (-1285 (($ $) 123)) (-3847 (((-107) $ (-703)) 10)) (-3359 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3985 (((-1056) $) 22 (|has| (-131) (-1003)))) (-2620 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| (-131) (-1003)))) (-1647 (((-131) $) 42 (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2565 (($ $ (-131)) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1121 (-517))) 63) (($ $ $) 102)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4180))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) 70)) (-2452 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (($ (-131)) 111) (((-787) $) 20 (|has| (-131) (-1003)))) (-3675 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1583 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1547 (((-107) $ $) 19 (|has| (-131) (-1003)))) (-1595 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-1042) (-1184)) (T -1042))
+((-1285 (*1 *1 *1) (-4 *1 (-1042))) (-3006 (*1 *1 *1) (-4 *1 (-1042))) (-3132 (*1 *1 *1) (-4 *1 (-1042))) (-3880 (*1 *1 *1) (-4 *1 (-1042))) (-1459 (*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))) (-1437 (*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))) (-1414 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-517)) (-5 *2 (-107)))) (-2237 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-703)))) (-1309 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-107)))) (-3610 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1121 (-517))))) (-2607 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)))) (-2607 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)) (-5 *3 (-128)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1042)))) (-1313 (*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))) (-1313 (*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))) (-3672 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))) (-3672 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) (-3359 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))) (-3359 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) (-3346 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))) (-3346 (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) (-1449 (*1 *1 *1 *1) (-4 *1 (-1042))))
+(-13 (-19 (-131)) (-10 -8 (-15 -1285 ($ $)) (-15 -3006 ($ $)) (-15 -3132 ($ $)) (-15 -3880 ($ $)) (-15 -1459 ((-107) $ $)) (-15 -1437 ((-107) $ $)) (-15 -1414 ((-107) $ $ (-517))) (-15 -2237 ((-703) $ $ (-131))) (-15 -1309 ((-107) $ $ (-131))) (-15 -3610 ($ $ (-1121 (-517)) $)) (-15 -2607 ((-517) $ $ (-517))) (-15 -2607 ((-517) (-128) $ (-517))) (-15 -2256 ($ (-131))) (-15 -1313 ((-583 $) $ (-131))) (-15 -1313 ((-583 $) $ (-128))) (-15 -3672 ($ $ (-131))) (-15 -3672 ($ $ (-128))) (-15 -3359 ($ $ (-131))) (-15 -3359 ($ $ (-128))) (-15 -3346 ($ $ (-131))) (-15 -3346 ($ $ (-128))) (-15 -1449 ($ $ $))))
+(((-33) . T) ((-97) -3807 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-557 (-787)) -3807 (|has| (-131) (-1003)) (|has| (-131) (-779)) (|has| (-131) (-557 (-787)))) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-779) |has| (-131) (-779)) ((-1003) -3807 (|has| (-131) (-1003)) (|has| (-131) (-779))) ((-1108) . T))
+((-3047 (((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703)) 93)) (-1770 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 54) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 53)) (-3830 (((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)) 85)) (-2016 (((-703) (-583 |#4|) (-583 |#5|)) 27)) (-2567 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 56) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703)) 55) (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107)) 57)) (-2132 (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107)) 76) (((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107)) 77)) (-3645 (((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) 80)) (-3282 (((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|) 52)) (-3800 (((-703) (-583 |#4|) (-583 |#5|)) 19)))
+(((-1043 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703)))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|) (-1012 |#1| |#2| |#3| |#4|)) (T -1043))
+((-3830 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) (-3047 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))) (-2132 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-2132 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-2567 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-2567 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-2567 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) (-1770 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-1770 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) (-3282 (*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3800 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -2016 ((-703) (-583 |#4|) (-583 |#5|))) (-15 -3282 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -1770 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703) (-107))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5| (-703))) (-15 -2567 ((-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) |#4| |#5|)) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107))) (-15 -2132 ((-583 |#5|) (-583 |#4|) (-583 |#5|) (-107) (-107) (-107) (-107) (-107))) (-15 -3047 ((-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-583 |#4|) (-583 |#5|) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-2 (|:| |done| (-583 |#5|)) (|:| |todo| (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))))) (-703))) (-15 -3645 ((-1056) (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|)))) (-15 -3830 ((-1158) (-583 (-2 (|:| |val| (-583 |#4|)) (|:| -3726 |#5|))) (-703))))
+((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) 109) (((-583 $) (-583 |#4|) (-107)) 110) (((-583 $) (-583 |#4|) (-107) (-107)) 108) (((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107)) 111)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-2535 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| $) 83)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 61)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) 26 (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-1677 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 39)) (-3659 ((|#4| |#4| $) 64)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 77 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-4063 (((-107) |#4| $) NIL)) (-1829 (((-107) |#4| $) NIL)) (-1538 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2865 (((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)) 123)) (-1536 (((-583 |#4|) $) 16 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 33)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 17 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 25 (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-1433 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 21)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-3955 (((-3 |#4| (-583 $)) |#4| |#4| $) NIL)) (-1855 (((-583 (-2 (|:| |val| |#4|) (|:| -3726 $))) |#4| |#4| $) 102)) (-2068 (((-3 |#4| "failed") $) 37)) (-2117 (((-583 $) |#4| $) 87)) (-2834 (((-3 (-107) (-583 $)) |#4| $) NIL)) (-3802 (((-583 (-2 (|:| |val| (-107)) (|:| -3726 $))) |#4| $) 97) (((-107) |#4| $) 52)) (-1812 (((-583 $) |#4| $) 106) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 107) (((-583 $) |#4| (-583 $)) NIL)) (-3160 (((-583 $) (-583 |#4|) (-107) (-107) (-107)) 118)) (-2474 (($ |#4| $) 74) (($ (-583 |#4|) $) 75) (((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107)) 73)) (-2774 (((-583 |#4|) $) NIL)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) NIL)) (-3411 (((-107) $ $) NIL)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 35)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) 47)) (-1672 (($ $ |#4|) NIL) (((-583 $) |#4| $) 89) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) 85)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 13)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) 12)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 20)) (-2442 (($ $ |#3|) 42)) (-3759 (($ $ |#3|) 43)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) 31) (((-583 |#4|) $) 40)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3596 (((-583 $) |#4| $) 53) (((-583 $) |#4| (-583 $)) NIL) (((-583 $) (-583 |#4|) $) NIL) (((-583 $) (-583 |#4|) (-583 $)) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-2119 (((-107) |#4| $) NIL)) (-1871 (((-107) |#3| $) 60)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1044 |#1| |#2| |#3| |#4|) (-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107))))) (-421) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1044))
+((-2474 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) (-4029 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-4029 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) (-2865 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1044 *5 *6 *7 *8))))) (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(-13 (-1012 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2474 ((-583 $) |#4| $ (-107) (-107) (-107) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107))) (-15 -4029 ((-583 $) (-583 |#4|) (-107) (-107) (-107) (-107))) (-15 -3160 ((-583 $) (-583 |#4|) (-107) (-107) (-107))) (-15 -2865 ((-2 (|:| |val| (-583 |#4|)) (|:| |towers| (-583 $))) (-583 |#4|) (-107) (-107)))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-4139 ((|#1| $) 28)) (-2335 (($ (-583 |#1|)) 33)) (-2953 (((-107) $ (-703)) NIL)) (-3092 (($) NIL T CONST)) (-2886 ((|#1| |#1| $) 30)) (-1200 ((|#1| $) 26)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3309 ((|#1| $) 29)) (-1710 (($ |#1| $) 31)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-4006 ((|#1| $) 27)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 24)) (-1746 (($) 32)) (-1694 (((-703) $) 22)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 20)) (-2256 (((-787) $) 17 (|has| |#1| (-1003)))) (-1222 (($ (-583 |#1|)) NIL)) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 12 (|has| |#1| (-1003)))) (-2296 (((-703) $) 23 (|has| $ (-6 -4180)))))
+(((-1045 |#1|) (-13 (-1022 |#1|) (-10 -8 (-15 -2335 ($ (-583 |#1|))))) (-1003)) (T -1045))
+((-2335 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1045 *3)))))
+(-13 (-1022 |#1|) (-10 -8 (-15 -2335 ($ (-583 |#1|)))))
+((-2411 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1121 (-517)) |#2|) 43) ((|#2| $ (-517) |#2|) 40)) (-3811 (((-107) $) 11)) (-1433 (($ (-1 |#2| |#2|) $) 38)) (-1647 ((|#2| $) NIL) (($ $ (-703)) 16)) (-2565 (($ $ |#2|) 39)) (-2348 (((-107) $) 10)) (-1449 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1121 (-517))) 30) ((|#2| $ (-517)) 22) ((|#2| $ (-517) |#2|) NIL)) (-2568 (($ $ $) 46) (($ $ |#2|) NIL)) (-2452 (($ $ $) 32) (($ |#2| $) NIL) (($ (-583 $)) 35) (($ $ |#2|) NIL)))
+(((-1046 |#1| |#2|) (-10 -8 (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| "last")) (-15 -1449 (|#1| |#1| "rest")) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|))) (-1047 |#2|) (-1108)) (T -1046))
+NIL
+(-10 -8 (-15 -3811 ((-107) |#1|)) (-15 -2348 ((-107) |#1|)) (-15 -2411 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517) |#2|)) (-15 -1449 (|#2| |#1| (-517))) (-15 -2565 (|#1| |#1| |#2|)) (-15 -2452 (|#1| |#1| |#2|)) (-15 -2452 (|#1| (-583 |#1|))) (-15 -1449 (|#1| |#1| (-1121 (-517)))) (-15 -2411 (|#2| |#1| (-1121 (-517)) |#2|)) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -2568 (|#1| |#1| |#2|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| "last")) (-15 -1449 (|#1| |#1| "rest")) (-15 -1647 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "first")) (-15 -1647 (|#2| |#1|)) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -1449 (|#2| |#1| "value")) (-15 -1433 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1668 (((-1158) $ (-517) (-517)) 97 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 117 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 86 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 102 (|has| $ (-6 -4180)))) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-1679 (($ $) 99 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-1 (-107) |#1|) $) 103 (|has| $ (-6 -4180))) (($ |#1| $) 100 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1445 ((|#1| $ (-517) |#1|) 85 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 87)) (-3811 (((-107) $) 83)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) 108)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 95 (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 94 (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-2620 (($ $ $ (-517)) 116) (($ |#1| $ (-517)) 115)) (-1857 (((-583 (-517)) $) 92)) (-4088 (((-107) (-517) $) 91)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 106)) (-2565 (($ $ |#1|) 96 (|has| $ (-6 -4181)))) (-2348 (((-107) $) 84)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 93 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 90)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1121 (-517))) 112) ((|#1| $ (-517)) 89) ((|#1| $ (-517) |#1|) 88)) (-2459 (((-517) $ $) 44)) (-3750 (($ $ (-1121 (-517))) 114) (($ $ (-517)) 113)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-3645 (((-493) $) 98 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 107)) (-2568 (($ $ $) 61 (|has| $ (-6 -4181))) (($ $ |#1|) 60 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 78) (($ |#1| $) 77) (($ (-583 $)) 110) (($ $ |#1|) 109)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-1047 |#1|) (-1184) (-1108)) (T -1047))
+((-2348 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
+(-13 (-1142 |t#1|) (-588 |t#1|) (-10 -8 (-15 -2348 ((-107) $)) (-15 -3811 ((-107) $))))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T) ((-1142 |#1|) . T))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1048 |#1| |#2| |#3|) (-1085 |#1| |#2|) (-1003) (-1003) |#2|) (T -1048))
+NIL
+(-1085 |#1| |#2|)
+((-2750 (((-107) $ $) 7)) (-1319 (((-3 $ "failed") $) 13)) (-3985 (((-1056) $) 9)) (-2836 (($) 14 T CONST)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11)) (-1547 (((-107) $ $) 6)))
+(((-1049) (-1184)) (T -1049))
+((-2836 (*1 *1) (-4 *1 (-1049))) (-1319 (*1 *1 *1) (|partial| -4 *1 (-1049))))
+(-13 (-1003) (-10 -8 (-15 -2836 ($) -1619) (-15 -1319 ((-3 $ "failed") $))))
+(((-97) . T) ((-557 (-787)) . T) ((-1003) . T))
+((-4076 (((-1054 |#1|) (-1054 |#1|)) 17)) (-3599 (((-1054 |#1|) (-1054 |#1|)) 13)) (-2667 (((-1054 |#1|) (-1054 |#1|) (-517) (-517)) 20)) (-2825 (((-1054 |#1|) (-1054 |#1|)) 15)))
+(((-1050 |#1|) (-10 -7 (-15 -3599 ((-1054 |#1|) (-1054 |#1|))) (-15 -2825 ((-1054 |#1|) (-1054 |#1|))) (-15 -4076 ((-1054 |#1|) (-1054 |#1|))) (-15 -2667 ((-1054 |#1|) (-1054 |#1|) (-517) (-517)))) (-13 (-509) (-134))) (T -1050))
+((-2667 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1050 *4)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))) (-2825 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))) (-3599 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))))
+(-10 -7 (-15 -3599 ((-1054 |#1|) (-1054 |#1|))) (-15 -2825 ((-1054 |#1|) (-1054 |#1|))) (-15 -4076 ((-1054 |#1|) (-1054 |#1|))) (-15 -2667 ((-1054 |#1|) (-1054 |#1|) (-517) (-517))))
+((-2452 (((-1054 |#1|) (-1054 (-1054 |#1|))) 15)))
+(((-1051 |#1|) (-10 -7 (-15 -2452 ((-1054 |#1|) (-1054 (-1054 |#1|))))) (-1108)) (T -1051))
+((-2452 (*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1051 *4)) (-4 *4 (-1108)))))
+(-10 -7 (-15 -2452 ((-1054 |#1|) (-1054 (-1054 |#1|)))))
+((-3905 (((-1054 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)) 25)) (-3225 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)) 26)) (-1893 (((-1054 |#2|) (-1 |#2| |#1|) (-1054 |#1|)) 16)))
+(((-1052 |#1| |#2|) (-10 -7 (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1054 |#1|))) (-15 -3905 ((-1054 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|))) (-15 -3225 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|)))) (-1108) (-1108)) (T -1052))
+((-3225 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1052 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1054 *6)) (-4 *6 (-1108)) (-4 *3 (-1108)) (-5 *2 (-1054 *3)) (-5 *1 (-1052 *6 *3)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1052 *5 *6)))))
+(-10 -7 (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1054 |#1|))) (-15 -3905 ((-1054 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|))) (-15 -3225 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1054 |#1|))))
+((-1893 (((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-1054 |#2|)) 21)))
+(((-1053 |#1| |#2| |#3|) (-10 -7 (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-1054 |#2|)))) (-1108) (-1108) (-1108)) (T -1053))
+((-1893 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-1053 *6 *7 *8)))))
+(-10 -7 (-15 -1893 ((-1054 |#3|) (-1 |#3| |#1| |#2|) (-1054 |#1|) (-1054 |#2|))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) NIL)) (-3005 ((|#1| $) NIL)) (-2779 (($ $) 50)) (-1668 (((-1158) $ (-517) (-517)) 75 (|has| $ (-6 -4181)))) (-1345 (($ $ (-517)) 109 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-1268 (((-787) $) 40 (|has| |#1| (-1003)))) (-2253 (((-107)) 39 (|has| |#1| (-1003)))) (-1918 ((|#1| $ |#1|) NIL (|has| $ (-6 -4181)))) (-3096 (($ $ $) 97 (|has| $ (-6 -4181))) (($ $ (-517) $) 120)) (-3781 ((|#1| $ |#1|) 106 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 101 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 103 (|has| $ (-6 -4181))) (($ $ "rest" $) 105 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 108 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 88 (|has| $ (-6 -4181))) ((|#1| $ (-517) |#1|) 54 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 57)) (-2993 ((|#1| $) NIL)) (-3092 (($) NIL T CONST)) (-3861 (($ $) 14)) (-1660 (($ $) 28) (($ $ (-703)) 87)) (-2192 (((-107) (-583 |#1|) $) 114 (|has| |#1| (-1003)))) (-2566 (($ (-583 |#1|)) 111)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) 56)) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-3811 (((-107) $) NIL)) (-1536 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2088 (((-1158) (-517) $) 119 (|has| |#1| (-1003)))) (-4097 (((-703) $) 116)) (-3063 (((-583 $) $) NIL)) (-1272 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 72 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 62) (($ (-1 |#1| |#1| |#1|) $ $) 66)) (-3847 (((-107) $ (-703)) NIL)) (-3992 (((-583 |#1|) $) NIL)) (-1763 (((-107) $) NIL)) (-3258 (($ $) 89)) (-2202 (((-107) $) 13)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2068 ((|#1| $) NIL) (($ $ (-703)) NIL)) (-2620 (($ $ $ (-517)) NIL) (($ |#1| $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) 73)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-3464 (($ (-1 |#1|)) 122) (($ (-1 |#1| |#1|) |#1|) 123)) (-2279 ((|#1| $) 10)) (-1647 ((|#1| $) 27) (($ $ (-703)) 48)) (-4130 (((-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703))) (-703) $) 24)) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-3513 (($ (-1 (-107) |#1|) $) 124)) (-3525 (($ (-1 (-107) |#1|) $) 125)) (-2565 (($ $ |#1|) 67 (|has| $ (-6 -4181)))) (-1672 (($ $ (-517)) 31)) (-2348 (((-107) $) 71)) (-3980 (((-107) $) 12)) (-3660 (((-107) $) 115)) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 20)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) 15)) (-1746 (($) 42)) (-1449 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1121 (-517))) NIL) ((|#1| $ (-517)) 53) ((|#1| $ (-517) |#1|) NIL)) (-2459 (((-517) $ $) 47)) (-3750 (($ $ (-1121 (-517))) NIL) (($ $ (-517)) NIL)) (-2640 (($ (-1 $)) 46)) (-2655 (((-107) $) 68)) (-2552 (($ $) 69)) (-3406 (($ $) 98 (|has| $ (-6 -4181)))) (-2691 (((-703) $) NIL)) (-1761 (($ $) NIL)) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 43)) (-3645 (((-493) $) NIL (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 52)) (-1540 (($ |#1| $) 96)) (-2568 (($ $ $) 99 (|has| $ (-6 -4181))) (($ $ |#1|) 100 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 77) (($ |#1| $) 44) (($ (-583 $)) 82) (($ $ |#1|) 76)) (-1545 (($ $) 49)) (-2256 (((-787) $) 41 (|has| |#1| (-1003))) (($ (-583 |#1|)) 110)) (-1479 (((-583 $) $) NIL)) (-2732 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 113 (|has| |#1| (-1003)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1054 |#1|) (-13 (-610 |#1|) (-10 -8 (-6 -4181) (-15 -2256 ($ (-583 |#1|))) (-15 -2566 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -2192 ((-107) (-583 |#1|) $)) |noBranch|) (-15 -4130 ((-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -2640 ($ (-1 $))) (-15 -1540 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2088 ((-1158) (-517) $)) (-15 -1268 ((-787) $)) (-15 -2253 ((-107)))) |noBranch|) (-15 -3096 ($ $ (-517) $)) (-15 -3464 ($ (-1 |#1|))) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $)))) (-1108)) (T -1054))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-2192 (*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)) (-5 *1 (-1054 *4)))) (-4130 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703)))) (-5 *1 (-1054 *4)) (-4 *4 (-1108)) (-5 *3 (-703)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-1 (-1054 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))) (-1540 (*1 *1 *2 *1) (-12 (-5 *1 (-1054 *2)) (-4 *2 (-1108)))) (-2088 (*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1054 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)))) (-1268 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))) (-2253 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))) (-3096 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-3464 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
+(-13 (-610 |#1|) (-10 -8 (-6 -4181) (-15 -2256 ($ (-583 |#1|))) (-15 -2566 ($ (-583 |#1|))) (IF (|has| |#1| (-1003)) (-15 -2192 ((-107) (-583 |#1|) $)) |noBranch|) (-15 -4130 ((-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703))) (-703) $)) (-15 -2640 ($ (-1 $))) (-15 -1540 ($ |#1| $)) (IF (|has| |#1| (-1003)) (PROGN (-15 -2088 ((-1158) (-517) $)) (-15 -1268 ((-787) $)) (-15 -2253 ((-107)))) |noBranch|) (-15 -3096 ($ $ (-517) $)) (-15 -3464 ($ (-1 |#1|))) (-15 -3464 ($ (-1 |#1| |#1|) |#1|)) (-15 -3513 ($ (-1 (-107) |#1|) $)) (-15 -3525 ($ (-1 (-107) |#1|) $))))
+((-2750 (((-107) $ $) 18)) (-3880 (($ $) 120)) (-3132 (($ $) 121)) (-3672 (($ $ (-131)) 108) (($ $ (-128)) 107)) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) 118)) (-1414 (((-107) $ $ (-517)) 117)) (-3890 (($ (-517)) 127)) (-1313 (((-583 $) $ (-131)) 110) (((-583 $) $ (-128)) 109)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) 98) (((-107) $) 92 (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| (-131) (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) 99) (($ $) 93 (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 (((-131) $ (-517) (-131)) 52 (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-3346 (($ $ (-131)) 104) (($ $ (-128)) 103)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-3610 (($ $ (-1121 (-517)) $) 114)) (-1679 (($ $) 78 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ (-131) $) 77 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-131)) $) 74 (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) 76 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) 73 (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) 72 (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) 53 (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) 51)) (-1459 (((-107) $ $) 119)) (-2607 (((-517) (-1 (-107) (-131)) $) 97) (((-517) (-131) $) 96 (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) 95 (|has| (-131) (-1003))) (((-517) $ $ (-517)) 113) (((-517) (-128) $ (-517)) 112)) (-1536 (((-583 (-131)) $) 30 (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) 101) (($ $ $) 94 (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) 27 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) 115)) (-2237 (((-703) $ $ (-131)) 116)) (-1433 (($ (-1 (-131) (-131)) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) 35) (($ (-1 (-131) (-131) (-131)) $ $) 64)) (-3006 (($ $) 122)) (-1285 (($ $) 123)) (-3847 (((-107) $ (-703)) 10)) (-3359 (($ $ (-131)) 106) (($ $ (-128)) 105)) (-3985 (((-1056) $) 22)) (-2620 (($ (-131) $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21)) (-1647 (((-131) $) 42 (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) 71)) (-2565 (($ $ (-131)) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) 26 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) 25 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) 24 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) 23 (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) (-131) $) 45 (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 (((-131) $ (-517) (-131)) 50) (((-131) $ (-517)) 49) (($ $ (-1121 (-517))) 63) (($ $ $) 102)) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-3217 (((-703) (-1 (-107) (-131)) $) 31 (|has| $ (-6 -4180))) (((-703) (-131) $) 28 (-12 (|has| (-131) (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) 70)) (-2452 (($ $ (-131)) 68) (($ (-131) $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (($ (-131)) 111) (((-787) $) 20)) (-3675 (((-107) (-1 (-107) (-131)) $) 33 (|has| $ (-6 -4180)))) (-2482 (((-1056) $) 131) (((-1056) $ (-107)) 130) (((-1158) (-754) $) 129) (((-1158) (-754) $ (-107)) 128)) (-1606 (((-107) $ $) 84 (|has| (-131) (-779)))) (-1583 (((-107) $ $) 83 (|has| (-131) (-779)))) (-1547 (((-107) $ $) 19)) (-1595 (((-107) $ $) 85 (|has| (-131) (-779)))) (-1572 (((-107) $ $) 82 (|has| (-131) (-779)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-1055) (-1184)) (T -1055))
+((-3890 (*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1055)))))
+(-13 (-1042) (-1003) (-760) (-10 -8 (-15 -3890 ($ (-517)))))
+(((-33) . T) ((-97) . T) ((-557 (-787)) . T) ((-138 (-131)) . T) ((-558 (-493)) |has| (-131) (-558 (-493))) ((-258 (-517) (-131)) . T) ((-260 (-517) (-131)) . T) ((-280 (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-343 (-131)) . T) ((-456 (-131)) . T) ((-550 (-517) (-131)) . T) ((-478 (-131) (-131)) -12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))) ((-588 (-131)) . T) ((-19 (-131)) . T) ((-760) . T) ((-779) |has| (-131) (-779)) ((-1003) . T) ((-1042) . T) ((-1108) . T))
+((-2750 (((-107) $ $) NIL)) (-3880 (($ $) NIL)) (-3132 (($ $) NIL)) (-3672 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-1437 (((-107) $ $) NIL)) (-1414 (((-107) $ $ (-517)) NIL)) (-3890 (($ (-517)) 7)) (-1313 (((-583 $) $ (-131)) NIL) (((-583 $) $ (-128)) NIL)) (-2044 (((-107) (-1 (-107) (-131) (-131)) $) NIL) (((-107) $) NIL (|has| (-131) (-779)))) (-2034 (($ (-1 (-107) (-131) (-131)) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| (-131) (-779))))) (-3166 (($ (-1 (-107) (-131) (-131)) $) NIL) (($ $) NIL (|has| (-131) (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4181))) (((-131) $ (-1121 (-517)) (-131)) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-3346 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-3610 (($ $ (-1121 (-517)) $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-2052 (($ (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (($ (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-131) (-1 (-131) (-131) (-131)) $ (-131) (-131)) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003)))) (((-131) (-1 (-131) (-131) (-131)) $ (-131)) NIL (|has| $ (-6 -4180))) (((-131) (-1 (-131) (-131) (-131)) $) NIL (|has| $ (-6 -4180)))) (-1445 (((-131) $ (-517) (-131)) NIL (|has| $ (-6 -4181)))) (-1377 (((-131) $ (-517)) NIL)) (-1459 (((-107) $ $) NIL)) (-2607 (((-517) (-1 (-107) (-131)) $) NIL) (((-517) (-131) $) NIL (|has| (-131) (-1003))) (((-517) (-131) $ (-517)) NIL (|has| (-131) (-1003))) (((-517) $ $ (-517)) NIL) (((-517) (-128) $ (-517)) NIL)) (-1536 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-3462 (($ (-703) (-131)) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| (-131) (-779)))) (-3237 (($ (-1 (-107) (-131) (-131)) $ $) NIL) (($ $ $) NIL (|has| (-131) (-779)))) (-2560 (((-583 (-131)) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| (-131) (-779)))) (-1309 (((-107) $ $ (-131)) NIL)) (-2237 (((-703) $ $ (-131)) NIL)) (-1433 (($ (-1 (-131) (-131)) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-131) (-131)) $) NIL) (($ (-1 (-131) (-131) (-131)) $ $) NIL)) (-3006 (($ $) NIL)) (-1285 (($ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3359 (($ $ (-131)) NIL) (($ $ (-128)) NIL)) (-3985 (((-1056) $) NIL)) (-2620 (($ (-131) $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-131) $) NIL (|has| (-517) (-779)))) (-2887 (((-3 (-131) "failed") (-1 (-107) (-131)) $) NIL)) (-2565 (($ $ (-131)) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-131)))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-265 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-131) (-131)) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003)))) (($ $ (-583 (-131)) (-583 (-131))) NIL (-12 (|has| (-131) (-280 (-131))) (|has| (-131) (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1941 (((-583 (-131)) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 (((-131) $ (-517) (-131)) NIL) (((-131) $ (-517)) NIL) (($ $ (-1121 (-517))) NIL) (($ $ $) NIL)) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3217 (((-703) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180))) (((-703) (-131) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-131) (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-131) (-558 (-493))))) (-2276 (($ (-583 (-131))) NIL)) (-2452 (($ $ (-131)) NIL) (($ (-131) $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (($ (-131)) NIL) (((-787) $) NIL)) (-3675 (((-107) (-1 (-107) (-131)) $) NIL (|has| $ (-6 -4180)))) (-2482 (((-1056) $) 18) (((-1056) $ (-107)) 20) (((-1158) (-754) $) 21) (((-1158) (-754) $ (-107)) 22)) (-1606 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1583 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| (-131) (-779)))) (-1572 (((-107) $ $) NIL (|has| (-131) (-779)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1056) (-1055)) (T -1056))
+NIL
+(-1055)
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-1668 (((-1158) $ (-1056) (-1056)) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-1056) |#1|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#1| "failed") (-1056) $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#1| "failed") (-1056) $) NIL)) (-2052 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-1056) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-1056)) NIL)) (-1536 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-1056) $) NIL (|has| (-1056) (-779)))) (-2560 (((-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-1056) $) NIL (|has| (-1056) (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2274 (((-583 (-1056)) $) NIL)) (-2793 (((-107) (-1056) $) NIL)) (-3309 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-1857 (((-583 (-1056)) $) NIL)) (-4088 (((-107) (-1056) $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-1647 ((|#1| $) NIL (|has| (-1056) (-779)))) (-2887 (((-3 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) "failed") (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL (-12 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-280 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-1056)) NIL) ((|#1| $ (-1056) |#1|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 (-1056)) (|:| -1257 |#1|)) (-1003)) (|has| |#1| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1057 |#1|) (-13 (-1085 (-1056) |#1|) (-10 -7 (-6 -4180))) (-1003)) (T -1057))
+NIL
+(-13 (-1085 (-1056) |#1|) (-10 -7 (-6 -4180)))
+((-2600 (((-1054 |#1|) (-1054 |#1|)) 77)) (-3621 (((-3 (-1054 |#1|) "failed") (-1054 |#1|)) 37)) (-1831 (((-1054 |#1|) (-377 (-517)) (-1054 |#1|)) 118 (|has| |#1| (-37 (-377 (-517)))))) (-1349 (((-1054 |#1|) |#1| (-1054 |#1|)) 123 (|has| |#1| (-333)))) (-3821 (((-1054 |#1|) (-1054 |#1|)) 90)) (-1277 (((-1054 (-517)) (-517)) 57)) (-1937 (((-1054 |#1|) (-1054 (-1054 |#1|))) 109 (|has| |#1| (-37 (-377 (-517)))))) (-2161 (((-1054 |#1|) (-517) (-517) (-1054 |#1|)) 95)) (-3419 (((-1054 |#1|) |#1| (-517)) 45)) (-3325 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 60)) (-4105 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 121 (|has| |#1| (-333)))) (-3459 (((-1054 |#1|) |#1| (-1 (-1054 |#1|))) 108 (|has| |#1| (-37 (-377 (-517)))))) (-1473 (((-1054 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1054 |#1|))) 122 (|has| |#1| (-333)))) (-1641 (((-1054 |#1|) (-1054 |#1|)) 89)) (-2533 (((-1054 |#1|) (-1054 |#1|)) 76)) (-3804 (((-1054 |#1|) (-517) (-517) (-1054 |#1|)) 96)) (-4151 (((-1054 |#1|) |#1| (-1054 |#1|)) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1666 (((-1054 (-517)) (-517)) 56)) (-2612 (((-1054 |#1|) |#1|) 59)) (-3926 (((-1054 |#1|) (-1054 |#1|) (-517) (-517)) 92)) (-2912 (((-1054 |#1|) (-1 |#1| (-517)) (-1054 |#1|)) 66)) (-2476 (((-3 (-1054 |#1|) "failed") (-1054 |#1|) (-1054 |#1|)) 35)) (-3515 (((-1054 |#1|) (-1054 |#1|)) 91)) (-2051 (((-1054 |#1|) (-1054 |#1|) |#1|) 71)) (-2643 (((-1054 |#1|) (-1054 |#1|)) 62)) (-1775 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 72)) (-2256 (((-1054 |#1|) |#1|) 67)) (-1501 (((-1054 |#1|) (-1054 (-1054 |#1|))) 82)) (-1667 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 36)) (-1654 (((-1054 |#1|) (-1054 |#1|)) 21) (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 23)) (-1642 (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 17)) (* (((-1054 |#1|) (-1054 |#1|) |#1|) 29) (((-1054 |#1|) |#1| (-1054 |#1|)) 26) (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 27)))
+(((-1058 |#1|) (-10 -7 (-15 -1642 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -2476 ((-3 (-1054 |#1|) "failed") (-1054 |#1|) (-1054 |#1|))) (-15 -1667 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3621 ((-3 (-1054 |#1|) "failed") (-1054 |#1|))) (-15 -3419 ((-1054 |#1|) |#1| (-517))) (-15 -1666 ((-1054 (-517)) (-517))) (-15 -1277 ((-1054 (-517)) (-517))) (-15 -2612 ((-1054 |#1|) |#1|)) (-15 -3325 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2643 ((-1054 |#1|) (-1054 |#1|))) (-15 -2912 ((-1054 |#1|) (-1 |#1| (-517)) (-1054 |#1|))) (-15 -2256 ((-1054 |#1|) |#1|)) (-15 -2051 ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -1775 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2533 ((-1054 |#1|) (-1054 |#1|))) (-15 -2600 ((-1054 |#1|) (-1054 |#1|))) (-15 -1501 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1641 ((-1054 |#1|) (-1054 |#1|))) (-15 -3821 ((-1054 |#1|) (-1054 |#1|))) (-15 -3515 ((-1054 |#1|) (-1054 |#1|))) (-15 -3926 ((-1054 |#1|) (-1054 |#1|) (-517) (-517))) (-15 -2161 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (-15 -3804 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 -3459 ((-1054 |#1|) |#1| (-1 (-1054 |#1|)))) (-15 -1937 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1831 ((-1054 |#1|) (-377 (-517)) (-1054 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -4105 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1473 ((-1054 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1054 |#1|)))) (-15 -1349 ((-1054 |#1|) |#1| (-1054 |#1|)))) |noBranch|)) (-961)) (T -1058))
+((-1349 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1473 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1054 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)))) (-4105 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1831 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1058 *4)))) (-1937 (*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1054 *3))) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-4151 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-3804 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-2161 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-3926 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-3821 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1641 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-961)))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2533 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1775 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2051 (*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2256 (*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) (-2912 (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) (-2643 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-3325 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2612 (*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) (-1277 (*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-1666 (*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) (-3621 (*1 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1667 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-2476 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1654 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1654 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) (-1642 (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
+(-10 -7 (-15 -1642 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1654 ((-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 * ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 * ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -2476 ((-3 (-1054 |#1|) "failed") (-1054 |#1|) (-1054 |#1|))) (-15 -1667 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3621 ((-3 (-1054 |#1|) "failed") (-1054 |#1|))) (-15 -3419 ((-1054 |#1|) |#1| (-517))) (-15 -1666 ((-1054 (-517)) (-517))) (-15 -1277 ((-1054 (-517)) (-517))) (-15 -2612 ((-1054 |#1|) |#1|)) (-15 -3325 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2643 ((-1054 |#1|) (-1054 |#1|))) (-15 -2912 ((-1054 |#1|) (-1 |#1| (-517)) (-1054 |#1|))) (-15 -2256 ((-1054 |#1|) |#1|)) (-15 -2051 ((-1054 |#1|) (-1054 |#1|) |#1|)) (-15 -1775 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -2533 ((-1054 |#1|) (-1054 |#1|))) (-15 -2600 ((-1054 |#1|) (-1054 |#1|))) (-15 -1501 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1641 ((-1054 |#1|) (-1054 |#1|))) (-15 -3821 ((-1054 |#1|) (-1054 |#1|))) (-15 -3515 ((-1054 |#1|) (-1054 |#1|))) (-15 -3926 ((-1054 |#1|) (-1054 |#1|) (-517) (-517))) (-15 -2161 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (-15 -3804 ((-1054 |#1|) (-517) (-517) (-1054 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ((-1054 |#1|) |#1| (-1054 |#1|))) (-15 -3459 ((-1054 |#1|) |#1| (-1 (-1054 |#1|)))) (-15 -1937 ((-1054 |#1|) (-1054 (-1054 |#1|)))) (-15 -1831 ((-1054 |#1|) (-377 (-517)) (-1054 |#1|)))) |noBranch|) (IF (|has| |#1| (-333)) (PROGN (-15 -4105 ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1473 ((-1054 |#1|) (-1 |#1| (-517)) |#1| (-1 (-1054 |#1|)))) (-15 -1349 ((-1054 |#1|) |#1| (-1054 |#1|)))) |noBranch|))
+((-1865 (((-1054 |#1|) (-1054 |#1|)) 57)) (-1721 (((-1054 |#1|) (-1054 |#1|)) 39)) (-1839 (((-1054 |#1|) (-1054 |#1|)) 53)) (-1701 (((-1054 |#1|) (-1054 |#1|)) 35)) (-1887 (((-1054 |#1|) (-1054 |#1|)) 60)) (-1743 (((-1054 |#1|) (-1054 |#1|)) 42)) (-1867 (((-1054 |#1|) (-1054 |#1|)) 31)) (-2624 (((-1054 |#1|) (-1054 |#1|)) 27)) (-1898 (((-1054 |#1|) (-1054 |#1|)) 61)) (-1754 (((-1054 |#1|) (-1054 |#1|)) 43)) (-1876 (((-1054 |#1|) (-1054 |#1|)) 58)) (-1732 (((-1054 |#1|) (-1054 |#1|)) 40)) (-1853 (((-1054 |#1|) (-1054 |#1|)) 55)) (-1711 (((-1054 |#1|) (-1054 |#1|)) 37)) (-3707 (((-1054 |#1|) (-1054 |#1|)) 65)) (-1788 (((-1054 |#1|) (-1054 |#1|)) 47)) (-3683 (((-1054 |#1|) (-1054 |#1|)) 63)) (-1765 (((-1054 |#1|) (-1054 |#1|)) 45)) (-3731 (((-1054 |#1|) (-1054 |#1|)) 68)) (-1814 (((-1054 |#1|) (-1054 |#1|)) 50)) (-1492 (((-1054 |#1|) (-1054 |#1|)) 69)) (-1827 (((-1054 |#1|) (-1054 |#1|)) 51)) (-3719 (((-1054 |#1|) (-1054 |#1|)) 67)) (-1802 (((-1054 |#1|) (-1054 |#1|)) 49)) (-3695 (((-1054 |#1|) (-1054 |#1|)) 66)) (-1777 (((-1054 |#1|) (-1054 |#1|)) 48)) (** (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 33)))
+(((-1059 |#1|) (-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|)))) (-37 (-377 (-517)))) (T -1059))
+((-1492 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3731 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1898 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1887 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1743 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))))
+(-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|))))
+((-1865 (((-1054 |#1|) (-1054 |#1|)) 100)) (-1721 (((-1054 |#1|) (-1054 |#1|)) 64)) (-3460 (((-2 (|:| -1839 (-1054 |#1|)) (|:| -1853 (-1054 |#1|))) (-1054 |#1|)) 96)) (-1839 (((-1054 |#1|) (-1054 |#1|)) 97)) (-3423 (((-2 (|:| -1701 (-1054 |#1|)) (|:| -1711 (-1054 |#1|))) (-1054 |#1|)) 53)) (-1701 (((-1054 |#1|) (-1054 |#1|)) 54)) (-1887 (((-1054 |#1|) (-1054 |#1|)) 102)) (-1743 (((-1054 |#1|) (-1054 |#1|)) 71)) (-1867 (((-1054 |#1|) (-1054 |#1|)) 39)) (-2624 (((-1054 |#1|) (-1054 |#1|)) 36)) (-1898 (((-1054 |#1|) (-1054 |#1|)) 103)) (-1754 (((-1054 |#1|) (-1054 |#1|)) 72)) (-1876 (((-1054 |#1|) (-1054 |#1|)) 101)) (-1732 (((-1054 |#1|) (-1054 |#1|)) 67)) (-1853 (((-1054 |#1|) (-1054 |#1|)) 98)) (-1711 (((-1054 |#1|) (-1054 |#1|)) 55)) (-3707 (((-1054 |#1|) (-1054 |#1|)) 111)) (-1788 (((-1054 |#1|) (-1054 |#1|)) 86)) (-3683 (((-1054 |#1|) (-1054 |#1|)) 105)) (-1765 (((-1054 |#1|) (-1054 |#1|)) 82)) (-3731 (((-1054 |#1|) (-1054 |#1|)) 115)) (-1814 (((-1054 |#1|) (-1054 |#1|)) 90)) (-1492 (((-1054 |#1|) (-1054 |#1|)) 117)) (-1827 (((-1054 |#1|) (-1054 |#1|)) 92)) (-3719 (((-1054 |#1|) (-1054 |#1|)) 113)) (-1802 (((-1054 |#1|) (-1054 |#1|)) 88)) (-3695 (((-1054 |#1|) (-1054 |#1|)) 107)) (-1777 (((-1054 |#1|) (-1054 |#1|)) 84)) (** (((-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) 40)))
+(((-1060 |#1|) (-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3423 ((-2 (|:| -1701 (-1054 |#1|)) (|:| -1711 (-1054 |#1|))) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -3460 ((-2 (|:| -1839 (-1054 |#1|)) (|:| -1853 (-1054 |#1|))) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|)))) (-37 (-377 (-517)))) (T -1060))
+((-1492 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3731 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3707 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3695 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1898 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1887 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1876 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1865 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1853 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1839 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3460 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1839 (-1054 *4)) (|:| -1853 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))) (-1827 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1802 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1788 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1777 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1765 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1754 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1743 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1721 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1701 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-3423 (*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1701 (-1054 *4)) (|:| -1711 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-1867 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(-10 -7 (-15 -2624 ((-1054 |#1|) (-1054 |#1|))) (-15 -1867 ((-1054 |#1|) (-1054 |#1|))) (-15 ** ((-1054 |#1|) (-1054 |#1|) (-1054 |#1|))) (-15 -3423 ((-2 (|:| -1701 (-1054 |#1|)) (|:| -1711 (-1054 |#1|))) (-1054 |#1|))) (-15 -1701 ((-1054 |#1|) (-1054 |#1|))) (-15 -1711 ((-1054 |#1|) (-1054 |#1|))) (-15 -1721 ((-1054 |#1|) (-1054 |#1|))) (-15 -1732 ((-1054 |#1|) (-1054 |#1|))) (-15 -1743 ((-1054 |#1|) (-1054 |#1|))) (-15 -1754 ((-1054 |#1|) (-1054 |#1|))) (-15 -1765 ((-1054 |#1|) (-1054 |#1|))) (-15 -1777 ((-1054 |#1|) (-1054 |#1|))) (-15 -1788 ((-1054 |#1|) (-1054 |#1|))) (-15 -1802 ((-1054 |#1|) (-1054 |#1|))) (-15 -1814 ((-1054 |#1|) (-1054 |#1|))) (-15 -1827 ((-1054 |#1|) (-1054 |#1|))) (-15 -3460 ((-2 (|:| -1839 (-1054 |#1|)) (|:| -1853 (-1054 |#1|))) (-1054 |#1|))) (-15 -1839 ((-1054 |#1|) (-1054 |#1|))) (-15 -1853 ((-1054 |#1|) (-1054 |#1|))) (-15 -1865 ((-1054 |#1|) (-1054 |#1|))) (-15 -1876 ((-1054 |#1|) (-1054 |#1|))) (-15 -1887 ((-1054 |#1|) (-1054 |#1|))) (-15 -1898 ((-1054 |#1|) (-1054 |#1|))) (-15 -3683 ((-1054 |#1|) (-1054 |#1|))) (-15 -3695 ((-1054 |#1|) (-1054 |#1|))) (-15 -3707 ((-1054 |#1|) (-1054 |#1|))) (-15 -3719 ((-1054 |#1|) (-1054 |#1|))) (-15 -3731 ((-1054 |#1|) (-1054 |#1|))) (-15 -1492 ((-1054 |#1|) (-1054 |#1|))))
+((-2310 (((-879 |#2|) |#2| |#2|) 35)) (-3534 ((|#2| |#2| |#1|) 19 (|has| |#1| (-278)))))
+(((-1061 |#1| |#2|) (-10 -7 (-15 -2310 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -3534 (|#2| |#2| |#1|)) |noBranch|)) (-509) (-1130 |#1|)) (T -1061))
+((-3534 (*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-1130 *3)))) (-2310 (*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1061 *4 *3)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -2310 ((-879 |#2|) |#2| |#2|)) (IF (|has| |#1| (-278)) (-15 -3534 (|#2| |#2| |#1|)) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-2144 (($ $ (-583 (-703))) 66)) (-2467 (($) 25)) (-3500 (($ $) 41)) (-2316 (((-583 $) $) 50)) (-2950 (((-107) $) 16)) (-3014 (((-583 (-865 |#2|)) $) 73)) (-2248 (($ $) 67)) (-4160 (((-703) $) 36)) (-3462 (($) 24)) (-3061 (($ $ (-583 (-703)) (-865 |#2|)) 59) (($ $ (-583 (-703)) (-703)) 60) (($ $ (-703) (-865 |#2|)) 62)) (-3237 (($ $ $) 47) (($ (-583 $)) 49)) (-2926 (((-703) $) 74)) (-1763 (((-107) $) 15)) (-3985 (((-1056) $) NIL)) (-3842 (((-107) $) 17)) (-3206 (((-1021) $) NIL)) (-2264 (((-155) $) 72)) (-3287 (((-865 |#2|) $) 68)) (-1900 (((-703) $) 69)) (-2682 (((-107) $) 71)) (-2294 (($ $ (-583 (-703)) (-155)) 65)) (-3557 (($ $) 42)) (-2256 (((-787) $) 84)) (-1733 (($ $ (-583 (-703)) (-107)) 64)) (-1479 (((-583 $) $) 11)) (-2571 (($ $ (-703)) 35)) (-2353 (($ $) 31)) (-1508 (($ $ $ (-865 |#2|) (-703)) 55)) (-2741 (($ $ (-865 |#2|)) 54)) (-2393 (($ $ (-583 (-703)) (-865 |#2|)) 53) (($ $ (-583 (-703)) (-703)) 57) (((-703) $ (-865 |#2|)) 58)) (-1547 (((-107) $ $) 78)))
+(((-1062 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -1763 ((-107) $)) (-15 -2950 ((-107) $)) (-15 -3842 ((-107) $)) (-15 -3462 ($)) (-15 -2467 ($)) (-15 -2353 ($ $)) (-15 -2571 ($ $ (-703))) (-15 -1479 ((-583 $) $)) (-15 -4160 ((-703) $)) (-15 -3500 ($ $)) (-15 -3557 ($ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ (-583 $))) (-15 -2316 ((-583 $) $)) (-15 -2393 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2741 ($ $ (-865 |#2|))) (-15 -1508 ($ $ $ (-865 |#2|) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2393 ($ $ (-583 (-703)) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-703))) (-15 -2393 ((-703) $ (-865 |#2|))) (-15 -3061 ($ $ (-703) (-865 |#2|))) (-15 -1733 ($ $ (-583 (-703)) (-107))) (-15 -2294 ($ $ (-583 (-703)) (-155))) (-15 -2144 ($ $ (-583 (-703)))) (-15 -3287 ((-865 |#2|) $)) (-15 -1900 ((-703) $)) (-15 -2682 ((-107) $)) (-15 -2264 ((-155) $)) (-15 -2926 ((-703) $)) (-15 -2248 ($ $)) (-15 -3014 ((-583 (-865 |#2|)) $)))) (-843) (-961)) (T -1062))
+((-1763 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3462 (*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2467 (*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2353 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-2571 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1479 (*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3500 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3557 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3237 (*1 *1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3237 (*1 *1 *2) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-2741 (*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)))) (-1508 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-2393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2393 (*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) (-1733 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) (-2144 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(-13 (-1003) (-10 -8 (-15 -1763 ((-107) $)) (-15 -2950 ((-107) $)) (-15 -3842 ((-107) $)) (-15 -3462 ($)) (-15 -2467 ($)) (-15 -2353 ($ $)) (-15 -2571 ($ $ (-703))) (-15 -1479 ((-583 $) $)) (-15 -4160 ((-703) $)) (-15 -3500 ($ $)) (-15 -3557 ($ $)) (-15 -3237 ($ $ $)) (-15 -3237 ($ (-583 $))) (-15 -2316 ((-583 $) $)) (-15 -2393 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2741 ($ $ (-865 |#2|))) (-15 -1508 ($ $ $ (-865 |#2|) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-865 |#2|))) (-15 -2393 ($ $ (-583 (-703)) (-703))) (-15 -3061 ($ $ (-583 (-703)) (-703))) (-15 -2393 ((-703) $ (-865 |#2|))) (-15 -3061 ($ $ (-703) (-865 |#2|))) (-15 -1733 ($ $ (-583 (-703)) (-107))) (-15 -2294 ($ $ (-583 (-703)) (-155))) (-15 -2144 ($ $ (-583 (-703)))) (-15 -3287 ((-865 |#2|) $)) (-15 -1900 ((-703) $)) (-15 -2682 ((-107) $)) (-15 -2264 ((-155) $)) (-15 -2926 ((-703) $)) (-15 -2248 ($ $)) (-15 -3014 ((-583 (-865 |#2|)) $))))
+((-2750 (((-107) $ $) NIL)) (-3616 ((|#2| $) 11)) (-3603 ((|#1| $) 10)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2276 (($ |#1| |#2|) 9)) (-2256 (((-787) $) 16)) (-1547 (((-107) $ $) NIL)))
+(((-1063 |#1| |#2|) (-13 (-1003) (-10 -8 (-15 -2276 ($ |#1| |#2|)) (-15 -3603 (|#1| $)) (-15 -3616 (|#2| $)))) (-1003) (-1003)) (T -1063))
+((-2276 (*1 *1 *2 *3) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3603 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1003)))) (-3616 (*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *3 *2)) (-4 *3 (-1003)))))
+(-13 (-1003) (-10 -8 (-15 -2276 ($ |#1| |#2|)) (-15 -3603 (|#1| $)) (-15 -3616 (|#2| $))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-1071 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1213 (($ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2454 (((-107) $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1974 (($ $ (-517)) NIL) (($ $ (-517) (-517)) 66)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1880 (((-1071 |#1| |#2| |#3|) $) 36)) (-2477 (((-3 (-1071 |#1| |#2| |#3|) "failed") $) 29)) (-1590 (((-1071 |#1| |#2| |#3|) $) 30)) (-1865 (($ $) 107 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 83 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) 103 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 79 (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) 111 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 87 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1071 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1073) "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3189 (((-1071 |#1| |#2| |#3|) $) 131) (((-1073) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2869 (($ $) 34) (($ (-517) $) 35)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-1071 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-1071 |#1| |#2| |#3|))) (|:| |vec| (-1153 (-1071 |#1| |#2| |#3|)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) 48)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 65 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 67 (|has| |#1| (-509)))) (-3209 (($) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3556 (((-107) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) 25)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-3972 (((-517) $) NIL) (((-517) $ (-517)) 24)) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL (|has| |#1| (-333)))) (-1787 (((-1071 |#1| |#2| |#3|) $) 38 (|has| |#1| (-333)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) NIL)) (-3103 (($ (-1 |#1| (-517)) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-517)) 18) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-2967 (($ $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3099 (($ $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1867 (($ $) 72 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1601 (($ (-517) (-1071 |#1| |#2| |#3|)) 33)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 70 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 71 (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1927 (($ $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2597 (((-1071 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 145)) (-2476 (((-3 $ "failed") $ $) 49 (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) 73 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) (-1071 |#1| |#2| |#3|)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-478 (-1073) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-1071 |#1| |#2| |#3|))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-478 (-1073) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1071 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1071 |#1| |#2| |#3|))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1071 |#1| |#2| |#3|)) (-583 (-1071 |#1| |#2| |#3|))) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-280 (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) NIL) (($ $ $) 54 (|has| (-517) (-1015))) (($ $ (-1071 |#1| |#2| |#3|)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-258 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1149 |#2|)) 51) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 50 (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-2971 (($ $) NIL (|has| |#1| (-333)))) (-1800 (((-1071 |#1| |#2| |#3|) $) 41 (|has| |#1| (-333)))) (-3688 (((-517) $) 37)) (-1898 (($ $) 113 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 89 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 109 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 85 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 105 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 81 (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-493) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 149) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1071 |#1| |#2| |#3|)) 27) (($ (-1149 |#2|)) 23) (($ (-1073)) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (($ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-2720 ((|#1| $ (-517)) 68)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 12)) (-1949 (((-1071 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3707 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 95 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3683 (($ $) 115 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 91 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 99 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 101 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 97 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 93 (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) NIL (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 20 T CONST)) (-2409 (($) 16 T CONST)) (-2731 (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-1606 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1583 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL (-3807 (-12 (|has| (-1071 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1071 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 44 (|has| |#1| (-333))) (($ (-1071 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3|)) 45 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 21)) (** (($ $ (-843)) NIL) (($ $ (-703)) 53) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) 74 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1071 |#1| |#2| |#3|)) 43 (|has| |#1| (-333))) (($ (-1071 |#1| |#2| |#3|) $) 42 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1064 |#1| |#2| |#3|) (-13 (-1116 |#1| (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1064))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1116 |#1| (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
+((-2541 ((|#2| |#2| (-996 |#2|)) 26) ((|#2| |#2| (-1073)) 28)))
+(((-1065 |#1| |#2|) (-10 -7 (-15 -2541 (|#2| |#2| (-1073))) (-15 -2541 (|#2| |#2| (-996 |#2|)))) (-13 (-509) (-779) (-952 (-517)) (-579 (-517))) (-13 (-400 |#1|) (-145) (-27) (-1094))) (T -1065))
+((-2541 (*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)))) (-2541 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))))))
+(-10 -7 (-15 -2541 (|#2| |#2| (-1073))) (-15 -2541 (|#2| |#2| (-996 |#2|))))
+((-2541 (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))) 30) (((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|))) 44) (((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1073)) 32) (((-377 (-874 |#1|)) (-874 |#1|) (-1073)) 36)))
+(((-1066 |#1|) (-10 -7 (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-1073))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|)))))) (-13 (-509) (-779) (-952 (-517)))) (T -1066))
+((-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1066 *5)))) (-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1066 *5)))) (-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-377 (-874 *5))))) (-2541 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-874 *5)))))
+(-10 -7 (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-1073))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-1073))) (-15 -2541 ((-377 (-874 |#1|)) (-874 |#1|) (-996 (-874 |#1|)))) (-15 -2541 ((-3 (-377 (-874 |#1|)) (-286 |#1|)) (-377 (-874 |#1|)) (-996 (-377 (-874 |#1|))))))
+((-1893 (((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)) 13)))
+(((-1067 |#1| |#2|) (-10 -7 (-15 -1893 ((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|)))) (-961) (-961)) (T -1067))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-1067 *5 *6)))))
+(-10 -7 (-15 -1893 ((-1069 |#2|) (-1 |#2| |#1|) (-1069 |#1|))))
+((-2759 (((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))) 50)) (-3755 (((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))) 51)))
+(((-1068 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3755 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|)))) (-15 -2759 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|))))) (-725) (-779) (-421) (-871 |#3| |#1| |#2|)) (T -1068))
+((-2759 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))))
+(-10 -7 (-15 -3755 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|)))) (-15 -2759 ((-388 (-1069 (-377 |#4|))) (-1069 (-377 |#4|)))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 30)) (-2490 (((-1153 |#1|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#1|)) NIL)) (-2352 (((-1069 $) $ (-989)) 59) (((-1069 |#1|) $) 48)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) 132 (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) 126 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) 72 (|has| |#1| (-831)))) (-2535 (($ $) NIL (|has| |#1| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 92 (|has| |#1| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-2241 (($ $ (-703)) 42)) (-2882 (($ $ (-703)) 43)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#1| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#1| $) NIL) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-989) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $ $) 128 (|has| |#1| (-156)))) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) 57)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) NIL) (((-623 |#1|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-2704 (($ $ $) 104)) (-4080 (($ $ $) NIL (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3534 (($ $) 133 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-703) $) 46)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3078 (((-787) $ (-787)) 117)) (-3972 (((-703) $ $) NIL (|has| |#1| (-509)))) (-3848 (((-107) $) 32)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) 50) (($ (-1069 $) (-989)) 66)) (-3430 (($ $ (-703)) 34)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 64) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 121)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1548 (((-1069 |#1|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) 53)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) NIL (|has| |#1| (-421)))) (-3985 (((-1056) $) NIL)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) 41)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) 33)) (-4141 ((|#1| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 80 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-421))) (($ $ $) 135 (|has| |#1| (-421)))) (-1953 (($ $ (-703) |#1| $) 99)) (-2561 (((-388 (-1069 $)) (-1069 $)) 78 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 77 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 85 (|has| |#1| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#1|) NIL) (($ $ (-583 (-989)) (-583 |#1|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) NIL (|has| |#1| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) 37)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 137 (|has| |#1| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#1| (-156))) ((|#1| $) 124 (|has| |#1| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3688 (((-703) $) 55) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 130 (|has| |#1| (-421))) (($ $ (-989)) NIL (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#1| (-831))))) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#1| (-509)))) (-2256 (((-787) $) 118) (($ (-517)) NIL) (($ |#1|) 54) (($ (-989)) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) 28 (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 15) (($ $ (-703)) 16)) (-2396 (($) 17 T CONST)) (-2409 (($) 18 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) 97)) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 138 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 67)) (** (($ $ (-843)) 14) (($ $ (-703)) 12)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 27) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1069 |#1|) (-13 (-1130 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))) (-15 -1953 ($ $ (-703) |#1| $)))) (-961)) (T -1069))
+((-3078 (*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))) (-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))))
+(-13 (-1130 |#1|) (-10 -8 (-15 -3078 ((-787) $ (-787))) (-15 -1953 ($ $ (-703) |#1| $))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1064 |#1| |#2| |#3|) "failed") $) 32) (((-3 (-1071 |#1| |#2| |#3|) "failed") $) 35)) (-3189 (((-1064 |#1| |#2| |#3|) $) NIL) (((-1071 |#1| |#2| |#3|) $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3598 (((-377 (-517)) $) 55)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) (-1064 |#1| |#2| |#3|)) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) 19) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3721 (((-1064 |#1| |#2| |#3|) $) 40)) (-2354 (((-3 (-1064 |#1| |#2| |#3|) "failed") $) NIL)) (-1601 (((-1064 |#1| |#2| |#3|) $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1149 |#2|)) 37)) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 58) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1064 |#1| |#2| |#3|)) 29) (($ (-1071 |#1| |#2| |#3|)) 30) (($ (-1149 |#2|)) 25) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 12)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 21 T CONST)) (-2409 (($) 16 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 23)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1070 |#1| |#2| |#3|) (-13 (-1137 |#1| (-1064 |#1| |#2| |#3|)) (-952 (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1070))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1137 |#1| (-1064 |#1| |#2| |#3|)) (-952 (-1071 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 124)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 115)) (-2784 (((-1127 |#2| |#1|) $ (-703)) 62)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-703)) 78) (($ $ (-703) (-703)) 75)) (-2223 (((-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 101)) (-1865 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 144 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 114) (($ (-1054 |#1|)) 109)) (-1887 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 148 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) 23)) (-2328 (($ $) 26)) (-3520 (((-874 |#1|) $ (-703)) 74) (((-874 |#1|) $ (-703) (-703)) 76)) (-3201 (((-107) $) 119)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $) 121) (((-703) $ (-703)) 123)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL)) (-3103 (($ (-1 |#1| (-517)) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 13) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1672 (($ $ (-703)) 15)) (-2476 (((-3 $ "failed") $ $) 24 (|has| |#1| (-509)))) (-2624 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1449 ((|#1| $ (-703)) 118) (($ $ $) 127 (|has| (-703) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1149 |#2|)) 29)) (-3688 (((-703) $) NIL)) (-1898 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 150 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 146 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 200) (($ (-517)) NIL) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 125 (|has| |#1| (-156))) (($ (-1127 |#2| |#1|)) 50) (($ (-1149 |#2|)) 32)) (-1311 (((-1054 |#1|) $) 97)) (-2720 ((|#1| $ (-703)) 117)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 53)) (-3707 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 156 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 152 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-703)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 158 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 154 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 17 T CONST)) (-2409 (($) 19 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 193)) (-1642 (($ $ $) 31)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 197 (|has| |#1| (-333))) (($ $ $) 133 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 136 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 131) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1071 |#1| |#2| |#3|) (-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1071))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1071 *3 *4 *5)))) (-2784 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1071 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
+((-2256 (((-787) $) 22) (($ (-1073)) 24)) (-3807 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 35)) (-3797 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 28) (($ $) 29)) (-4111 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 30)) (-4100 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 32)) (-4089 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 31)) (-4079 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 33)) (-3128 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 36)) (-12 (($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $))) 34)))
+(((-1072) (-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -4111 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4089 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4100 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4079 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3807 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3128 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ $))))) (T -1072))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1072)))) (-4111 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-4089 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-4100 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-4079 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3807 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3128 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3797 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))) (-3797 (*1 *1 *1) (-5 *1 (-1072))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2256 ($ (-1073))) (-15 -4111 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4089 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4100 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -4079 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3807 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3128 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)) (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| $)))) (-15 -3797 ($ $))))
+((-2750 (((-107) $ $) NIL)) (-3718 (($ $ (-583 (-787))) 58)) (-3975 (($ $ (-583 (-787))) 56)) (-3890 (((-1056) $) 82)) (-2206 (((-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))) $) 85)) (-2213 (((-107) $) 21)) (-3736 (($ $ (-583 (-583 (-787)))) 54) (($ $ (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) 80)) (-3092 (($) 122 T CONST)) (-1302 (((-1158)) 103)) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 65) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 71)) (-3462 (($) 92) (($ $) 98)) (-1207 (($ $) 81)) (-2967 (($ $ $) NIL)) (-3099 (($ $ $) NIL)) (-1529 (((-583 $) $) 104)) (-3985 (((-1056) $) 87)) (-3206 (((-1021) $) NIL)) (-1449 (($ $ (-583 (-787))) 57)) (-3645 (((-493) $) 45) (((-1073) $) 46) (((-814 (-517)) $) 75) (((-814 (-349)) $) 73)) (-2256 (((-787) $) 52) (($ (-1056)) 47)) (-2712 (($ $ (-583 (-787))) 59)) (-2482 (((-1056) $) 33) (((-1056) $ (-107)) 34) (((-1158) (-754) $) 35) (((-1158) (-754) $ (-107)) 36)) (-1606 (((-107) $ $) NIL)) (-1583 (((-107) $ $) NIL)) (-1547 (((-107) $ $) 48)) (-1595 (((-107) $ $) NIL)) (-1572 (((-107) $ $) 49)))
+(((-1073) (-13 (-779) (-558 (-493)) (-760) (-558 (-1073)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3462 ($)) (-15 -3462 ($ $)) (-15 -1302 ((-1158))) (-15 -2256 ($ (-1056))) (-15 -1207 ($ $)) (-15 -2213 ((-107) $)) (-15 -2206 ((-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -3736 ($ $ (-583 (-583 (-787))))) (-15 -3736 ($ $ (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -3975 ($ $ (-583 (-787)))) (-15 -3718 ($ $ (-583 (-787)))) (-15 -2712 ($ $ (-583 (-787)))) (-15 -1449 ($ $ (-583 (-787)))) (-15 -3890 ((-1056) $)) (-15 -1529 ((-583 $) $)) (-15 -3092 ($) -1619)))) (T -1073))
+((-3462 (*1 *1) (-5 *1 (-1073))) (-3462 (*1 *1 *1) (-5 *1 (-1073))) (-1302 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1073)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))) (-1207 (*1 *1 *1) (-5 *1 (-1073))) (-2213 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1073)))) (-2206 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))) (-3736 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1073)))) (-3736 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))) (-3975 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-2712 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))) (-1529 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1073)))) (-3092 (*1 *1) (-5 *1 (-1073))))
+(-13 (-779) (-558 (-493)) (-760) (-558 (-1073)) (-558 (-814 (-517))) (-558 (-814 (-349))) (-808 (-517)) (-808 (-349)) (-10 -8 (-15 -3462 ($)) (-15 -3462 ($ $)) (-15 -1302 ((-1158))) (-15 -2256 ($ (-1056))) (-15 -1207 ($ $)) (-15 -2213 ((-107) $)) (-15 -2206 ((-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))) $)) (-15 -3736 ($ $ (-583 (-583 (-787))))) (-15 -3736 ($ $ (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787)))))) (-15 -3975 ($ $ (-583 (-787)))) (-15 -3718 ($ $ (-583 (-787)))) (-15 -2712 ($ $ (-583 (-787)))) (-15 -1449 ($ $ (-583 (-787)))) (-15 -3890 ((-1056) $)) (-15 -1529 ((-583 $) $)) (-15 -3092 ($) -1619)))
+((-1463 (((-1153 |#1|) |#1| (-843)) 16) (((-1153 |#1|) (-583 |#1|)) 20)))
+(((-1074 |#1|) (-10 -7 (-15 -1463 ((-1153 |#1|) (-583 |#1|))) (-15 -1463 ((-1153 |#1|) |#1| (-843)))) (-961)) (T -1074))
+((-1463 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1153 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)) (-5 *1 (-1074 *4)))))
+(-10 -7 (-15 -1463 ((-1153 |#1|) (-583 |#1|))) (-15 -1463 ((-1153 |#1|) |#1| (-843))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| |#1| (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#1| (-952 (-377 (-517))))) (((-3 |#1| "failed") $) NIL)) (-3189 (((-517) $) NIL (|has| |#1| (-952 (-517)))) (((-377 (-517)) $) NIL (|has| |#1| (-952 (-377 (-517))))) ((|#1| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3534 (($ $) NIL (|has| |#1| (-421)))) (-1436 (($ $ |#1| (-888) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-888)) NIL)) (-2349 (((-888) $) NIL)) (-3328 (($ (-1 (-888) (-888)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#1| $) NIL)) (-1953 (($ $ (-888) |#1| $) NIL (-12 (|has| (-888) (-123)) (|has| |#1| (-509))))) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-509)))) (-3688 (((-888) $) NIL)) (-3266 ((|#1| $) NIL (|has| |#1| (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) NIL) (($ (-377 (-517))) NIL (-3807 (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-952 (-377 (-517))))))) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ (-888)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#1| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 9 T CONST)) (-2409 (($) 14 T CONST)) (-1547 (((-107) $ $) 16)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 19)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1075 |#1|) (-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -1953 ($ $ (-888) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) (-961)) (T -1075))
+((-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1075 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(-13 (-296 |#1| (-888)) (-10 -8 (IF (|has| |#1| (-509)) (IF (|has| (-888) (-123)) (-15 -1953 ($ $ (-888) |#1| $)) |noBranch|) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|)))
+((-3542 (((-1077) (-1073) $) 24)) (-1676 (($) 28)) (-1999 (((-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-1073) $) 21)) (-2588 (((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) $) 40) (((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) 41) (((-1158) (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) 42)) (-3410 (((-1158) (-1073)) 57)) (-4022 (((-1158) (-1073) $) 54) (((-1158) (-1073)) 55) (((-1158)) 56)) (-2929 (((-1158) (-1073)) 36)) (-1629 (((-1073)) 35)) (-1746 (($) 33)) (-2373 (((-407) (-1073) (-407) (-1073) $) 44) (((-407) (-583 (-1073)) (-407) (-1073) $) 48) (((-407) (-1073) (-407)) 45) (((-407) (-1073) (-407) (-1073)) 49)) (-1233 (((-1073)) 34)) (-2256 (((-787) $) 27)) (-3108 (((-1158)) 29) (((-1158) (-1073)) 32)) (-3558 (((-583 (-1073)) (-1073) $) 23)) (-2940 (((-1158) (-1073) (-583 (-1073)) $) 37) (((-1158) (-1073) (-583 (-1073))) 38) (((-1158) (-583 (-1073))) 39)))
+(((-1076) (-13 (-557 (-787)) (-10 -8 (-15 -1676 ($)) (-15 -3108 ((-1158))) (-15 -3108 ((-1158) (-1073))) (-15 -2373 ((-407) (-1073) (-407) (-1073) $)) (-15 -2373 ((-407) (-583 (-1073)) (-407) (-1073) $)) (-15 -2373 ((-407) (-1073) (-407))) (-15 -2373 ((-407) (-1073) (-407) (-1073))) (-15 -2929 ((-1158) (-1073))) (-15 -1233 ((-1073))) (-15 -1629 ((-1073))) (-15 -2940 ((-1158) (-1073) (-583 (-1073)) $)) (-15 -2940 ((-1158) (-1073) (-583 (-1073)))) (-15 -2940 ((-1158) (-583 (-1073)))) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -2588 ((-1158) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -4022 ((-1158) (-1073) $)) (-15 -4022 ((-1158) (-1073))) (-15 -4022 ((-1158))) (-15 -3410 ((-1158) (-1073))) (-15 -1746 ($)) (-15 -1999 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-1073) $)) (-15 -3558 ((-583 (-1073)) (-1073) $)) (-15 -3542 ((-1077) (-1073) $))))) (T -1076))
+((-1676 (*1 *1) (-5 *1 (-1076))) (-3108 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *4 (-1073)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) (-2373 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) (-2929 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-1233 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))) (-1629 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))) (-2940 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2588 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-4022 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-4022 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))) (-3410 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) (-1746 (*1 *1) (-5 *1 (-1076))) (-1999 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-1076)))) (-3558 (*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1076)) (-5 *3 (-1073)))) (-3542 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1077)) (-5 *1 (-1076)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -1676 ($)) (-15 -3108 ((-1158))) (-15 -3108 ((-1158) (-1073))) (-15 -2373 ((-407) (-1073) (-407) (-1073) $)) (-15 -2373 ((-407) (-583 (-1073)) (-407) (-1073) $)) (-15 -2373 ((-407) (-1073) (-407))) (-15 -2373 ((-407) (-1073) (-407) (-1073))) (-15 -2929 ((-1158) (-1073))) (-15 -1233 ((-1073))) (-15 -1629 ((-1073))) (-15 -2940 ((-1158) (-1073) (-583 (-1073)) $)) (-15 -2940 ((-1158) (-1073) (-583 (-1073)))) (-15 -2940 ((-1158) (-583 (-1073)))) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")) $)) (-15 -2588 ((-1158) (-1073) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -2588 ((-1158) (-3 (|:| |fst| (-404)) (|:| -2677 "void")))) (-15 -4022 ((-1158) (-1073) $)) (-15 -4022 ((-1158) (-1073))) (-15 -4022 ((-1158))) (-15 -3410 ((-1158) (-1073))) (-15 -1746 ($)) (-15 -1999 ((-3 (|:| |fst| (-404)) (|:| -2677 "void")) (-1073) $)) (-15 -3558 ((-583 (-1073)) (-1073) $)) (-15 -3542 ((-1077) (-1073) $))))
+((-4000 (((-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) $) 57)) (-2832 (((-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))) (-404) $) 40)) (-4107 (($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))) 15)) (-3410 (((-1158) $) 65)) (-3067 (((-583 (-1073)) $) 20)) (-1274 (((-1007) $) 53)) (-2815 (((-407) (-1073) $) 27)) (-2500 (((-583 (-1073)) $) 30)) (-1746 (($) 17)) (-2373 (((-407) (-583 (-1073)) (-407) $) 25) (((-407) (-1073) (-407) $) 24)) (-2256 (((-787) $) 9) (((-1082 (-1073) (-407)) $) 11)))
+(((-1077) (-13 (-557 (-787)) (-10 -8 (-15 -2256 ((-1082 (-1073) (-407)) $)) (-15 -1746 ($)) (-15 -2373 ((-407) (-583 (-1073)) (-407) $)) (-15 -2373 ((-407) (-1073) (-407) $)) (-15 -2815 ((-407) (-1073) $)) (-15 -3067 ((-583 (-1073)) $)) (-15 -2832 ((-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -2500 ((-583 (-1073)) $)) (-15 -4000 ((-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) $)) (-15 -1274 ((-1007) $)) (-15 -3410 ((-1158) $)) (-15 -4107 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))))))) (T -1077))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-1082 (-1073) (-407))) (-5 *1 (-1077)))) (-1746 (*1 *1) (-5 *1 (-1077))) (-2373 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *1 (-1077)))) (-2373 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1077)))) (-2815 (*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-407)) (-5 *1 (-1077)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))) (-2832 (*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) (-5 *1 (-1077)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1077)))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1077)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1077)))) (-4107 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))) (-5 *1 (-1077)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -2256 ((-1082 (-1073) (-407)) $)) (-15 -1746 ($)) (-15 -2373 ((-407) (-583 (-1073)) (-407) $)) (-15 -2373 ((-407) (-1073) (-407) $)) (-15 -2815 ((-407) (-1073) $)) (-15 -3067 ((-583 (-1073)) $)) (-15 -2832 ((-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))) (-404) $)) (-15 -2500 ((-583 (-1073)) $)) (-15 -4000 ((-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) $)) (-15 -1274 ((-1007) $)) (-15 -3410 ((-1158) $)) (-15 -4107 ($ (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))))))
+((-3341 (((-3 (-517) (-199) (-1073) (-1056) (-583 $)) $) 36)) (-3354 (((-583 $) $) 39)) (-3645 (((-1007) $) 6) (($ (-1007)) 7) (($ (-517)) 10) (($ (-199)) 13) (($ (-1073)) 16) (($ (-1056)) 19)) (-2256 (((-787) $) NIL)) (-3365 (($ (-1073) (-583 $)) 23)))
+(((-1078) (-13 (-557 (-787)) (-10 -8 (-15 -3645 ((-1007) $)) (-15 -3645 ($ (-1007))) (-15 -3645 ($ (-517))) (-15 -3645 ($ (-199))) (-15 -3645 ($ (-1073))) (-15 -3645 ($ (-1056))) (-15 -3365 ($ (-1073) (-583 $))) (-15 -3341 ((-3 (-517) (-199) (-1073) (-1056) (-583 $)) $)) (-15 -3354 ((-583 $) $))))) (T -1078))
+((-3645 (*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1078)))) (-3645 (*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1078)))) (-3365 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-1078))) (-5 *1 (-1078)))) (-3341 (*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1073) (-1056) (-583 (-1078)))) (-5 *1 (-1078)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-583 (-1078))) (-5 *1 (-1078)))))
+(-13 (-557 (-787)) (-10 -8 (-15 -3645 ((-1007) $)) (-15 -3645 ($ (-1007))) (-15 -3645 ($ (-517))) (-15 -3645 ($ (-199))) (-15 -3645 ($ (-1073))) (-15 -3645 ($ (-1056))) (-15 -3365 ($ (-1073) (-583 $))) (-15 -3341 ((-3 (-517) (-199) (-1073) (-1056) (-583 $)) $)) (-15 -3354 ((-583 $) $))))
+((-1663 (((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 55)) (-1674 (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|)))) 66) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|))) 62) (((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073)) 67) (((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073)) 61) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|))))) 91) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|)))) 90) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073))) 92) (((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1073))) 89)))
+(((-1079 |#1|) (-10 -7 (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -1663 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073))))) (-509)) (T -1079))
+((-1663 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1079 *5)))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-265 (-377 (-874 *4)))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-377 (-874 *4))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-377 (-874 *5))))) (-1674 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)))) (-1674 (*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) (-1674 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)))))
+(-10 -7 (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))) (-583 (-1073)))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-377 (-874 |#1|))))) (-15 -1674 ((-583 (-583 (-265 (-377 (-874 |#1|))))) (-583 (-265 (-377 (-874 |#1|)))))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))) (-1073))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-377 (-874 |#1|)))) (-15 -1674 ((-583 (-265 (-377 (-874 |#1|)))) (-265 (-377 (-874 |#1|))))) (-15 -1663 ((-583 (-583 (-874 |#1|))) (-583 (-377 (-874 |#1|))) (-583 (-1073)))))
+((-1197 (((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 38)) (-2090 (((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|))) 24)) (-2910 (((-1081 (-583 |#1|)) (-583 |#1|)) 34)) (-3360 (((-583 (-583 |#1|)) (-583 |#1|)) 30)) (-2589 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))) 37)) (-4016 (((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|)))) 36)) (-2103 (((-583 (-583 |#1|)) (-583 (-583 |#1|))) 28)) (-2104 (((-583 |#1|) (-583 |#1|)) 31)) (-3873 (((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 18)) (-2244 (((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|)))) 15)) (-1856 (((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|))) 13)) (-3964 (((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|)))) 39)) (-2469 (((-583 (-583 |#1|)) (-1081 (-583 |#1|))) 41)))
+(((-1080 |#1|) (-10 -7 (-15 -1856 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2244 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3873 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1197 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3964 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2469 ((-583 (-583 |#1|)) (-1081 (-583 |#1|)))) (-15 -2090 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -2910 ((-1081 (-583 |#1|)) (-583 |#1|))) (-15 -2103 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3360 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2104 ((-583 |#1|) (-583 |#1|))) (-15 -4016 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2589 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|)))))) (-779)) (T -1080))
+((-2589 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 (-583 *4)))))) (-4016 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1080 *6)) (-5 *4 (-583 *5)))) (-2104 (*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1080 *3)))) (-3360 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))) (-2103 (*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1080 *3)))) (-2910 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1081 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 *4))))) (-2469 (*1 *2 *3) (-12 (-5 *3 (-1081 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-4 *4 (-779)))) (-1197 (*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1080 *4)))) (-3873 (*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1080 *4)))) (-2244 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1080 *5)))) (-1856 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1080 *6)) (-5 *5 (-583 *4)))))
+(-10 -7 (-15 -1856 ((-2 (|:| |fs| (-107)) (|:| |sd| (-583 |#1|)) (|:| |td| (-583 (-583 |#1|)))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 |#1|)))) (-15 -2244 ((-583 (-583 (-583 |#1|))) (-1 (-107) |#1| |#1|) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -3873 ((-583 (-583 (-583 |#1|))) (-583 |#1|) (-583 (-583 (-583 |#1|))))) (-15 -1197 ((-583 (-583 |#1|)) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -3964 ((-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))))) (-15 -2469 ((-583 (-583 |#1|)) (-1081 (-583 |#1|)))) (-15 -2090 ((-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)))) (-15 -2910 ((-1081 (-583 |#1|)) (-583 |#1|))) (-15 -2103 ((-583 (-583 |#1|)) (-583 (-583 |#1|)))) (-15 -3360 ((-583 (-583 |#1|)) (-583 |#1|))) (-15 -2104 ((-583 |#1|) (-583 |#1|))) (-15 -4016 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 |#1|) (-583 (-583 (-583 |#1|))) (-583 (-583 |#1|)) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))) (-583 (-583 (-583 |#1|))))) (-15 -2589 ((-2 (|:| |f1| (-583 |#1|)) (|:| |f2| (-583 (-583 (-583 |#1|)))) (|:| |f3| (-583 (-583 |#1|))) (|:| |f4| (-583 (-583 (-583 |#1|))))) (-583 (-583 (-583 |#1|))))))
+((-1241 (($ (-583 (-583 |#1|))) 9)) (-3035 (((-583 (-583 |#1|)) $) 10)) (-2256 (((-787) $) 25)))
+(((-1081 |#1|) (-10 -8 (-15 -1241 ($ (-583 (-583 |#1|)))) (-15 -3035 ((-583 (-583 |#1|)) $)) (-15 -2256 ((-787) $))) (-1003)) (T -1081))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))) (-1241 (*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1081 *3)))))
+(-10 -8 (-15 -1241 ($ (-583 (-583 |#1|)))) (-15 -3035 ((-583 (-583 |#1|)) $)) (-15 -2256 ((-787) $)))
+((-2750 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-3422 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-1668 (((-1158) $ |#1| |#1|) NIL (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#2| $ |#1| |#2|) NIL)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) NIL)) (-3092 (($) NIL T CONST)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) NIL)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) NIL)) (-3243 ((|#1| $) NIL (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-583 |#2|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-3482 ((|#1| $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2274 (((-583 |#1|) $) NIL)) (-2793 (((-107) |#1| $) NIL)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-1857 (((-583 |#1|) $) NIL)) (-4088 (((-107) |#1| $) NIL)) (-3206 (((-1021) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1647 ((|#2| $) NIL (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL)) (-2565 (($ $ |#2|) NIL (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3089 (($) NIL) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) NIL (-12 (|has| $ (-6 -4180)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (((-703) |#2| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003)))) (((-703) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-2256 (((-787) $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) NIL)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) NIL (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) NIL (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) NIL (-3807 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| |#2| (-1003))))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1082 |#1| |#2|) (-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180))) (-1003) (-1003)) (T -1082))
+NIL
+(-13 (-1085 |#1| |#2|) (-10 -7 (-6 -4180)))
+((-2333 ((|#1| (-583 |#1|)) 32)) (-1994 ((|#1| |#1| (-517)) 18)) (-1940 (((-1069 |#1|) |#1| (-843)) 15)))
+(((-1083 |#1|) (-10 -7 (-15 -2333 (|#1| (-583 |#1|))) (-15 -1940 ((-1069 |#1|) |#1| (-843))) (-15 -1994 (|#1| |#1| (-517)))) (-333)) (T -1083))
+((-1994 (*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1083 *2)) (-4 *2 (-333)))) (-1940 (*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1069 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-333)))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1083 *2)) (-4 *2 (-333)))))
+(-10 -7 (-15 -2333 (|#1| (-583 |#1|))) (-15 -1940 ((-1069 |#1|) |#1| (-843))) (-15 -1994 (|#1| |#1| (-517))))
+((-3422 (($) 10) (($ (-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)))) 14)) (-3212 (($ (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 60) (($ (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1536 (((-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 39) (((-583 |#3|) $) 41)) (-1433 (($ (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 52) (($ (-1 |#3| |#3|) $) 33)) (-1893 (($ (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 50) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3309 (((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 53)) (-1710 (($ (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 16)) (-1857 (((-583 |#2|) $) 19)) (-4088 (((-107) |#2| $) 58)) (-2887 (((-3 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) "failed") (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) 57)) (-4006 (((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) 62)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 65)) (-1941 (((-583 |#3|) $) 43)) (-1449 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-703) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) $) NIL) (((-703) |#3| $) NIL) (((-703) (-1 (-107) |#3|) $) 66)) (-2256 (((-787) $) 27)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) $) NIL) (((-107) (-1 (-107) |#3|) $) 64)) (-1547 (((-107) $ $) 48)))
+(((-1084 |#1| |#2| |#3|) (-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3422 (|#1| (-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))))) (-15 -3422 (|#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1536 ((-583 |#3|) |#1|)) (-15 -3217 ((-703) |#3| |#1|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -4088 ((-107) |#2| |#1|)) (-15 -1857 ((-583 |#2|) |#1|)) (-15 -3212 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3212 (|#1| (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3212 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -2887 ((-3 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) "failed") (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3309 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1710 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -4006 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -3217 ((-703) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1536 ((-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3217 ((-703) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -2048 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3675 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1433 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1893 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|))) (-1085 |#2| |#3|) (-1003) (-1003)) (T -1084))
+NIL
+(-10 -8 (-15 -1547 ((-107) |#1| |#1|)) (-15 -2256 ((-787) |#1|)) (-15 -1893 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3422 (|#1| (-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))))) (-15 -3422 (|#1|)) (-15 -1893 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1433 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3675 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -2048 ((-107) (-1 (-107) |#3|) |#1|)) (-15 -3217 ((-703) (-1 (-107) |#3|) |#1|)) (-15 -1536 ((-583 |#3|) |#1|)) (-15 -3217 ((-703) |#3| |#1|)) (-15 -1449 (|#3| |#1| |#2| |#3|)) (-15 -1449 (|#3| |#1| |#2|)) (-15 -1941 ((-583 |#3|) |#1|)) (-15 -4088 ((-107) |#2| |#1|)) (-15 -1857 ((-583 |#2|) |#1|)) (-15 -3212 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3212 (|#1| (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3212 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -2887 ((-3 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) "failed") (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3309 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1710 (|#1| (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -4006 ((-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -3217 ((-703) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) |#1|)) (-15 -1536 ((-583 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3217 ((-703) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -2048 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -3675 ((-107) (-1 (-107) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1433 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)) (-15 -1893 (|#1| (-1 (-2 (|:| -3435 |#2|) (|:| -1257 |#3|)) (-2 (|:| -3435 |#2|) (|:| -1257 |#3|))) |#1|)))
+((-2750 (((-107) $ $) 18 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-3422 (($) 72) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 71)) (-1668 (((-1158) $ |#1| |#1|) 99 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#2| $ |#1| |#2|) 73)) (-2337 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 45 (|has| $ (-6 -4180)))) (-3536 (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 55 (|has| $ (-6 -4180)))) (-3254 (((-3 |#2| "failed") |#1| $) 61)) (-3092 (($) 7 T CONST)) (-1679 (($ $) 58 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180))))) (-3212 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 47 (|has| $ (-6 -4180))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 46 (|has| $ (-6 -4180))) (((-3 |#2| "failed") |#1| $) 62)) (-2052 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 54 (|has| $ (-6 -4180)))) (-3225 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 56 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 53 (|has| $ (-6 -4180))) (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 52 (|has| $ (-6 -4180)))) (-1445 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4181)))) (-1377 ((|#2| $ |#1|) 88)) (-1536 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 30 (|has| $ (-6 -4180))) (((-583 |#2|) $) 79 (|has| $ (-6 -4180)))) (-2550 (((-107) $ (-703)) 9)) (-3243 ((|#1| $) 96 (|has| |#1| (-779)))) (-2560 (((-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 29 (|has| $ (-6 -4180))) (((-583 |#2|) $) 80 (|has| $ (-6 -4180)))) (-2787 (((-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-107) |#2| $) 82 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180))))) (-3482 ((|#1| $) 95 (|has| |#1| (-779)))) (-1433 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 34 (|has| $ (-6 -4181))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4181)))) (-1893 (($ (-1 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3847 (((-107) $ (-703)) 10)) (-3985 (((-1056) $) 22 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-2274 (((-583 |#1|) $) 63)) (-2793 (((-107) |#1| $) 64)) (-3309 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 39)) (-1710 (($ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 40)) (-1857 (((-583 |#1|) $) 93)) (-4088 (((-107) |#1| $) 92)) (-3206 (((-1021) $) 21 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1647 ((|#2| $) 97 (|has| |#1| (-779)))) (-2887 (((-3 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) "failed") (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 51)) (-2565 (($ $ |#2|) 98 (|has| $ (-6 -4181)))) (-4006 (((-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 41)) (-2048 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 32 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 77 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))))) 26 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-265 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 25 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) 24 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 23 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)))) (($ $ (-583 |#2|) (-583 |#2|)) 86 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-265 |#2|)) 84 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003)))) (($ $ (-583 (-265 |#2|))) 83 (-12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#2| $) 94 (-12 (|has| $ (-6 -4180)) (|has| |#2| (-1003))))) (-1941 (((-583 |#2|) $) 91)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3089 (($) 49) (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 48)) (-3217 (((-703) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 31 (|has| $ (-6 -4180))) (((-703) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| $ (-6 -4180)))) (((-703) |#2| $) 81 (-12 (|has| |#2| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#2|) $) 78 (|has| $ (-6 -4180)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 59 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))))) (-2276 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 50)) (-2256 (((-787) $) 20 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-1222 (($ (-583 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) 42)) (-3675 (((-107) (-1 (-107) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) $) 33 (|has| $ (-6 -4180))) (((-107) (-1 (-107) |#2|) $) 76 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 19 (-3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-1085 |#1| |#2|) (-1184) (-1003) (-1003)) (T -1085))
+((-2411 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) (-3422 (*1 *1) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) (-3422 (*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 *3) (|:| -1257 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1085 *3 *4)))) (-1893 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1085 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(-13 (-554 |t#1| |t#2|) (-550 |t#1| |t#2|) (-10 -8 (-15 -2411 (|t#2| $ |t#1| |t#2|)) (-15 -3422 ($)) (-15 -3422 ($ (-583 (-2 (|:| -3435 |t#1|) (|:| -1257 |t#2|))))) (-15 -1893 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-102 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-97) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-557 (-787)) -3807 (|has| |#2| (-1003)) (|has| |#2| (-557 (-787))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-557 (-787)))) ((-138 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-558 (-493)) |has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-558 (-493))) ((-203 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-209 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-258 |#1| |#2|) . T) ((-260 |#1| |#2|) . T) ((-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-280 |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-456 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) . T) ((-456 |#2|) . T) ((-550 |#1| |#2|) . T) ((-478 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-2 (|:| -3435 |#1|) (|:| -1257 |#2|))) -12 (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-280 (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)))) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-478 |#2| |#2|) -12 (|has| |#2| (-280 |#2|)) (|has| |#2| (-1003))) ((-554 |#1| |#2|) . T) ((-1003) -3807 (|has| |#2| (-1003)) (|has| (-2 (|:| -3435 |#1|) (|:| -1257 |#2|)) (-1003))) ((-1108) . T))
+((-2272 (((-107)) 24)) (-3304 (((-1158) (-1056)) 26)) (-2181 (((-107)) 36)) (-3967 (((-1158)) 34)) (-4086 (((-1158) (-1056) (-1056)) 25)) (-3367 (((-107)) 37)) (-1710 (((-1158) |#1| |#2|) 44)) (-2770 (((-1158)) 20)) (-2495 (((-3 |#2| "failed") |#1|) 42)) (-2036 (((-1158)) 35)))
+(((-1086 |#1| |#2|) (-10 -7 (-15 -2770 ((-1158))) (-15 -4086 ((-1158) (-1056) (-1056))) (-15 -3304 ((-1158) (-1056))) (-15 -3967 ((-1158))) (-15 -2036 ((-1158))) (-15 -2272 ((-107))) (-15 -2181 ((-107))) (-15 -3367 ((-107))) (-15 -2495 ((-3 |#2| "failed") |#1|)) (-15 -1710 ((-1158) |#1| |#2|))) (-1003) (-1003)) (T -1086))
+((-1710 (*1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2495 (*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1086 *3 *2)) (-4 *3 (-1003)))) (-3367 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2181 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2272 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-2036 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3967 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-4086 (*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))) (-2770 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(-10 -7 (-15 -2770 ((-1158))) (-15 -4086 ((-1158) (-1056) (-1056))) (-15 -3304 ((-1158) (-1056))) (-15 -3967 ((-1158))) (-15 -2036 ((-1158))) (-15 -2272 ((-107))) (-15 -2181 ((-107))) (-15 -3367 ((-107))) (-15 -2495 ((-3 |#2| "failed") |#1|)) (-15 -1710 ((-1158) |#1| |#2|)))
+((-1604 (((-1056) (-1056)) 18)) (-2644 (((-51) (-1056)) 21)))
+(((-1087) (-10 -7 (-15 -2644 ((-51) (-1056))) (-15 -1604 ((-1056) (-1056))))) (T -1087))
+((-1604 (*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1087)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-1087)))))
+(-10 -7 (-15 -2644 ((-51) (-1056))) (-15 -1604 ((-1056) (-1056))))
+((-2256 (((-1089) |#1|) 11)))
+(((-1088 |#1|) (-10 -7 (-15 -2256 ((-1089) |#1|))) (-1003)) (T -1088))
+((-2256 (*1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1088 *3)) (-4 *3 (-1003)))))
+(-10 -7 (-15 -2256 ((-1089) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-3765 (((-583 (-1056)) $) 33)) (-1963 (((-583 (-1056)) $ (-583 (-1056))) 36)) (-1594 (((-583 (-1056)) $ (-583 (-1056))) 35)) (-3385 (((-583 (-1056)) $ (-583 (-1056))) 37)) (-3157 (((-583 (-1056)) $) 32)) (-3462 (($) 22)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2054 (((-583 (-1056)) $) 34)) (-1242 (((-1158) $ (-517)) 29) (((-1158) $) 30)) (-3645 (($ (-787) (-517)) 26) (($ (-787) (-517) (-787)) NIL)) (-2256 (((-787) $) 39) (($ (-787)) 24)) (-1547 (((-107) $ $) NIL)))
+(((-1089) (-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -3645 ($ (-787) (-517) (-787))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -3765 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1963 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))) (T -1089))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1089)))) (-3645 (*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) (-3645 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) (-1242 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1089)))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1089)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-3765 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-3462 (*1 *1) (-5 *1 (-1089))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-3385 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-1963 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))) (-1594 (*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
+(-13 (-1003) (-10 -8 (-15 -2256 ($ (-787))) (-15 -3645 ($ (-787) (-517))) (-15 -3645 ($ (-787) (-517) (-787))) (-15 -1242 ((-1158) $ (-517))) (-15 -1242 ((-1158) $)) (-15 -2054 ((-583 (-1056)) $)) (-15 -3765 ((-583 (-1056)) $)) (-15 -3462 ($)) (-15 -3157 ((-583 (-1056)) $)) (-15 -3385 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1963 ((-583 (-1056)) $ (-583 (-1056)))) (-15 -1594 ((-583 (-1056)) $ (-583 (-1056))))))
+((-2750 (((-107) $ $) NIL)) (-1801 (((-1056) $ (-1056)) 15) (((-1056) $) 14)) (-3733 (((-1056) $ (-1056)) 13)) (-1723 (($ $ (-1056)) NIL)) (-2863 (((-3 (-1056) "failed") $) 11)) (-3446 (((-1056) $) 8)) (-2595 (((-3 (-1056) "failed") $) 12)) (-1457 (((-1056) $) 9)) (-1513 (($ (-358)) NIL) (($ (-358) (-1056)) NIL)) (-1207 (((-358) $) NIL)) (-3985 (((-1056) $) NIL)) (-2845 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3900 (((-107) $) 17)) (-2256 (((-787) $) NIL)) (-2463 (($ $) NIL)) (-1547 (((-107) $ $) NIL)))
+(((-1090) (-13 (-334 (-358) (-1056)) (-10 -8 (-15 -1801 ((-1056) $ (-1056))) (-15 -1801 ((-1056) $)) (-15 -3446 ((-1056) $)) (-15 -2863 ((-3 (-1056) "failed") $)) (-15 -2595 ((-3 (-1056) "failed") $)) (-15 -3900 ((-107) $))))) (T -1090))
+((-1801 (*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-3446 (*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-2863 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-2595 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1090)))))
+(-13 (-334 (-358) (-1056)) (-10 -8 (-15 -1801 ((-1056) $ (-1056))) (-15 -1801 ((-1056) $)) (-15 -3446 ((-1056) $)) (-15 -2863 ((-3 (-1056) "failed") $)) (-15 -2595 ((-3 (-1056) "failed") $)) (-15 -3900 ((-107) $))))
+((-3709 (((-3 (-517) "failed") |#1|) 19)) (-2092 (((-3 (-517) "failed") |#1|) 13)) (-2448 (((-517) (-1056)) 28)))
+(((-1091 |#1|) (-10 -7 (-15 -3709 ((-3 (-517) "failed") |#1|)) (-15 -2092 ((-3 (-517) "failed") |#1|)) (-15 -2448 ((-517) (-1056)))) (-961)) (T -1091))
+((-2448 (*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-1091 *4)) (-4 *4 (-961)))) (-2092 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))) (-3709 (*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))))
+(-10 -7 (-15 -3709 ((-3 (-517) "failed") |#1|)) (-15 -2092 ((-3 (-517) "failed") |#1|)) (-15 -2448 ((-517) (-1056))))
+((-2502 (((-1034 (-199))) 8)))
+(((-1092) (-10 -7 (-15 -2502 ((-1034 (-199)))))) (T -1092))
+((-2502 (*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1092)))))
+(-10 -7 (-15 -2502 ((-1034 (-199)))))
+((-2645 (($) 11)) (-3707 (($ $) 35)) (-3683 (($ $) 33)) (-1765 (($ $) 25)) (-3731 (($ $) 17)) (-1492 (($ $) 15)) (-3719 (($ $) 19)) (-1802 (($ $) 30)) (-3695 (($ $) 34)) (-1777 (($ $) 29)))
+(((-1093 |#1|) (-10 -8 (-15 -2645 (|#1|)) (-15 -3707 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1777 (|#1| |#1|))) (-1094)) (T -1093))
+NIL
+(-10 -8 (-15 -2645 (|#1|)) (-15 -3707 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)))
+((-1865 (($ $) 26)) (-1721 (($ $) 11)) (-1839 (($ $) 27)) (-1701 (($ $) 10)) (-1887 (($ $) 28)) (-1743 (($ $) 9)) (-2645 (($) 16)) (-1867 (($ $) 19)) (-2624 (($ $) 18)) (-1898 (($ $) 29)) (-1754 (($ $) 8)) (-1876 (($ $) 30)) (-1732 (($ $) 7)) (-1853 (($ $) 31)) (-1711 (($ $) 6)) (-3707 (($ $) 20)) (-1788 (($ $) 32)) (-3683 (($ $) 21)) (-1765 (($ $) 33)) (-3731 (($ $) 22)) (-1814 (($ $) 34)) (-1492 (($ $) 23)) (-1827 (($ $) 35)) (-3719 (($ $) 24)) (-1802 (($ $) 36)) (-3695 (($ $) 25)) (-1777 (($ $) 37)) (** (($ $ $) 17)))
+(((-1094) (-1184)) (T -1094))
+((-2645 (*1 *1) (-4 *1 (-1094))))
+(-13 (-1097) (-91) (-458) (-34) (-256) (-10 -8 (-15 -2645 ($))))
+(((-34) . T) ((-91) . T) ((-256) . T) ((-458) . T) ((-1097) . T))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3199 ((|#1| $) 17)) (-3433 (($ |#1| (-583 $)) 23) (($ (-583 |#1|)) 27) (($ |#1|) 25)) (-2953 (((-107) $ (-703)) 46)) (-1918 ((|#1| $ |#1|) 14 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 13 (|has| $ (-6 -4181)))) (-3092 (($) NIL T CONST)) (-1536 (((-583 |#1|) $) 50 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 41)) (-1272 (((-107) $ $) 32 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 39)) (-2560 (((-583 |#1|) $) 51 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 49 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1433 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 22)) (-3847 (((-107) $ (-703)) 38)) (-3992 (((-583 |#1|) $) 36)) (-1763 (((-107) $) 35)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2048 (((-107) (-1 (-107) |#1|) $) 48 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 73)) (-3619 (((-107) $) 9)) (-1746 (($) 10)) (-1449 ((|#1| $ "value") NIL)) (-2459 (((-517) $ $) 31)) (-2050 (((-583 $) $) 57)) (-3491 (((-107) $ $) 75)) (-1476 (((-583 $) $) 70)) (-3272 (($ $) 71)) (-2655 (((-107) $) 54)) (-3217 (((-703) (-1 (-107) |#1|) $) 20 (|has| $ (-6 -4180))) (((-703) |#1| $) 16 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2433 (($ $) 56)) (-2256 (((-787) $) 59 (|has| |#1| (-1003)))) (-1479 (((-583 $) $) 12)) (-2732 (((-107) $ $) 29 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 47 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 28 (|has| |#1| (-1003)))) (-2296 (((-703) $) 37 (|has| $ (-6 -4180)))))
+(((-1095 |#1|) (-13 (-926 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -3433 ($ |#1| (-583 $))) (-15 -3433 ($ (-583 |#1|))) (-15 -3433 ($ |#1|)) (-15 -2655 ((-107) $)) (-15 -3272 ($ $)) (-15 -1476 ((-583 $) $)) (-15 -3491 ((-107) $ $)) (-15 -2050 ((-583 $) $)))) (-1003)) (T -1095))
+((-2655 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) (-3433 (*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1095 *2))) (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) (-3433 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1095 *3)))) (-3433 (*1 *1 *2) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) (-3272 (*1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) (-1476 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) (-3491 (*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
+(-13 (-926 |#1|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -3433 ($ |#1| (-583 $))) (-15 -3433 ($ (-583 |#1|))) (-15 -3433 ($ |#1|)) (-15 -2655 ((-107) $)) (-15 -3272 ($ $)) (-15 -1476 ((-583 $) $)) (-15 -3491 ((-107) $ $)) (-15 -2050 ((-583 $) $))))
+((-1721 (($ $) 15)) (-1743 (($ $) 12)) (-1754 (($ $) 10)) (-1732 (($ $) 17)))
+(((-1096 |#1|) (-10 -8 (-15 -1732 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1721 (|#1| |#1|))) (-1097)) (T -1096))
+NIL
+(-10 -8 (-15 -1732 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1721 (|#1| |#1|)))
+((-1721 (($ $) 11)) (-1701 (($ $) 10)) (-1743 (($ $) 9)) (-1754 (($ $) 8)) (-1732 (($ $) 7)) (-1711 (($ $) 6)))
+(((-1097) (-1184)) (T -1097))
+((-1721 (*1 *1 *1) (-4 *1 (-1097))) (-1701 (*1 *1 *1) (-4 *1 (-1097))) (-1743 (*1 *1 *1) (-4 *1 (-1097))) (-1754 (*1 *1 *1) (-4 *1 (-1097))) (-1732 (*1 *1 *1) (-4 *1 (-1097))) (-1711 (*1 *1 *1) (-4 *1 (-1097))))
+(-13 (-10 -8 (-15 -1711 ($ $)) (-15 -1732 ($ $)) (-15 -1754 ($ $)) (-15 -1743 ($ $)) (-15 -1701 ($ $)) (-15 -1721 ($ $))))
+((-4090 ((|#2| |#2|) 85)) (-1908 (((-107) |#2|) 25)) (-3775 ((|#2| |#2|) 29)) (-3785 ((|#2| |#2|) 31)) (-2769 ((|#2| |#2| (-1073)) 79) ((|#2| |#2|) 80)) (-2858 (((-153 |#2|) |#2|) 27)) (-2637 ((|#2| |#2| (-1073)) 81) ((|#2| |#2|) 82)))
+(((-1098 |#1| |#2|) (-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -4090 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -2858 ((-153 |#2|) |#2|))) (-13 (-421) (-779) (-952 (-517)) (-579 (-517))) (-13 (-27) (-1094) (-400 |#1|))) (T -1098))
+((-2858 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) (-3785 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-2637 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) (-2769 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
+(-10 -7 (-15 -2769 (|#2| |#2|)) (-15 -2769 (|#2| |#2| (-1073))) (-15 -2637 (|#2| |#2|)) (-15 -2637 (|#2| |#2| (-1073))) (-15 -4090 (|#2| |#2|)) (-15 -3775 (|#2| |#2|)) (-15 -3785 (|#2| |#2|)) (-15 -1908 ((-107) |#2|)) (-15 -2858 ((-153 |#2|) |#2|)))
+((-2948 ((|#4| |#4| |#1|) 27)) (-2904 ((|#4| |#4| |#1|) 28)))
+(((-1099 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2948 (|#4| |#4| |#1|)) (-15 -2904 (|#4| |#4| |#1|))) (-509) (-343 |#1|) (-343 |#1|) (-621 |#1| |#2| |#3|)) (T -1099))
+((-2904 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) (-2948 (*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(-10 -7 (-15 -2948 (|#4| |#4| |#1|)) (-15 -2904 (|#4| |#4| |#1|)))
+((-3404 ((|#2| |#2|) 132)) (-3969 ((|#2| |#2|) 129)) (-3922 ((|#2| |#2|) 120)) (-3306 ((|#2| |#2|) 117)) (-3173 ((|#2| |#2|) 125)) (-1671 ((|#2| |#2|) 113)) (-4047 ((|#2| |#2|) 42)) (-2590 ((|#2| |#2|) 93)) (-3670 ((|#2| |#2|) 73)) (-1407 ((|#2| |#2|) 127)) (-3712 ((|#2| |#2|) 115)) (-3677 ((|#2| |#2|) 137)) (-1368 ((|#2| |#2|) 135)) (-3165 ((|#2| |#2|) 136)) (-3535 ((|#2| |#2|) 134)) (-2609 ((|#2| |#2|) 146)) (-2647 ((|#2| |#2|) 30 (-12 (|has| |#2| (-558 (-814 |#1|))) (|has| |#2| (-808 |#1|)) (|has| |#1| (-558 (-814 |#1|))) (|has| |#1| (-808 |#1|))))) (-3604 ((|#2| |#2|) 74)) (-1482 ((|#2| |#2|) 138)) (-3502 ((|#2| |#2|) 139)) (-2405 ((|#2| |#2|) 126)) (-4073 ((|#2| |#2|) 114)) (-1519 ((|#2| |#2|) 133)) (-2522 ((|#2| |#2|) 131)) (-1739 ((|#2| |#2|) 121)) (-1527 ((|#2| |#2|) 119)) (-1427 ((|#2| |#2|) 123)) (-3524 ((|#2| |#2|) 111)))
+(((-1100 |#1| |#2|) (-10 -7 (-15 -3502 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -2522 (|#2| |#2|)) (-15 -3535 (|#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -2647 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|)) (-13 (-779) (-421)) (-13 (-400 |#1|) (-1094))) (T -1100))
+((-2647 (*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3677 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3165 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1368 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3535 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2522 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3306 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3404 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1407 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3712 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2405 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1739 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1427 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3524 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-4047 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) (-3502 (*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(-10 -7 (-15 -3502 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4047 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3524 (|#2| |#2|)) (-15 -1427 (|#2| |#2|)) (-15 -1739 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -2405 (|#2| |#2|)) (-15 -3712 (|#2| |#2|)) (-15 -1407 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -3404 (|#2| |#2|)) (-15 -3306 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -1527 (|#2| |#2|)) (-15 -2522 (|#2| |#2|)) (-15 -3535 (|#2| |#2|)) (-15 -1368 (|#2| |#2|)) (-15 -3165 (|#2| |#2|)) (-15 -3677 (|#2| |#2|)) (IF (|has| |#1| (-808 |#1|)) (IF (|has| |#1| (-558 (-814 |#1|))) (IF (|has| |#2| (-558 (-814 |#1|))) (IF (|has| |#2| (-808 |#1|)) (-15 -2647 (|#2| |#2|)) |noBranch|) |noBranch|) |noBranch|) |noBranch|))
+((-3939 (((-107) |#5| $) 59) (((-107) $) 101)) (-2437 ((|#5| |#5| $) 74)) (-3536 (($ (-1 (-107) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 118)) (-1700 (((-583 |#5|) (-583 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 72)) (-1772 (((-3 $ "failed") (-583 |#5|)) 125)) (-1660 (((-3 $ "failed") $) 111)) (-3659 ((|#5| |#5| $) 93)) (-3283 (((-107) |#5| $ (-1 (-107) |#5| |#5|)) 30)) (-4049 ((|#5| |#5| $) 97)) (-3225 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|)) 68)) (-2901 (((-2 (|:| -1210 (-583 |#5|)) (|:| -1513 (-583 |#5|))) $) 54)) (-1497 (((-107) |#5| $) 57) (((-107) $) 102)) (-1976 ((|#4| $) 107)) (-2068 (((-3 |#5| "failed") $) 109)) (-2774 (((-583 |#5|) $) 48)) (-3852 (((-107) |#5| $) 66) (((-107) $) 106)) (-3522 ((|#5| |#5| $) 80)) (-3411 (((-107) $ $) 26)) (-1959 (((-107) |#5| $) 62) (((-107) $) 104)) (-3183 ((|#5| |#5| $) 77)) (-1647 (((-3 |#5| "failed") $) 108)) (-1672 (($ $ |#5|) 126)) (-3688 (((-703) $) 51)) (-2276 (($ (-583 |#5|)) 123)) (-2442 (($ $ |#4|) 121)) (-3759 (($ $ |#4|) 120)) (-2303 (($ $) 119)) (-2256 (((-787) $) NIL) (((-583 |#5|) $) 112)) (-1605 (((-703) $) 129)) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|)) 42) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|)) 44)) (-2114 (((-107) $ (-1 (-107) |#5| (-583 |#5|))) 99)) (-2614 (((-583 |#4|) $) 114)) (-1871 (((-107) |#4| $) 117)) (-1547 (((-107) $ $) 19)))
+(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1605 ((-703) |#1|)) (-15 -1672 (|#1| |#1| |#5|)) (-15 -3536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1871 ((-107) |#4| |#1|)) (-15 -2614 ((-583 |#4|) |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2068 ((-3 |#5| "failed") |#1|)) (-15 -1647 ((-3 |#5| "failed") |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -3659 (|#5| |#5| |#1|)) (-15 -3522 (|#5| |#5| |#1|)) (-15 -3183 (|#5| |#5| |#1|)) (-15 -2437 (|#5| |#5| |#1|)) (-15 -1700 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3225 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3852 ((-107) |#1|)) (-15 -1959 ((-107) |#1|)) (-15 -3939 ((-107) |#1|)) (-15 -2114 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -3852 ((-107) |#5| |#1|)) (-15 -1959 ((-107) |#5| |#1|)) (-15 -3939 ((-107) |#5| |#1|)) (-15 -3283 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1497 ((-107) |#1|)) (-15 -1497 ((-107) |#5| |#1|)) (-15 -2901 ((-2 (|:| -1210 (-583 |#5|)) (|:| -1513 (-583 |#5|))) |#1|)) (-15 -3688 ((-703) |#1|)) (-15 -2774 ((-583 |#5|) |#1|)) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1976 (|#4| |#1|)) (-15 -1772 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2256 ((-583 |#5|) |#1|)) (-15 -2276 (|#1| (-583 |#5|))) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3536 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|))) (-1102 |#2| |#3| |#4| |#5|) (-509) (-725) (-779) (-975 |#2| |#3| |#4|)) (T -1101))
+NIL
+(-10 -8 (-15 -1605 ((-703) |#1|)) (-15 -1672 (|#1| |#1| |#5|)) (-15 -3536 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1871 ((-107) |#4| |#1|)) (-15 -2614 ((-583 |#4|) |#1|)) (-15 -1660 ((-3 |#1| "failed") |#1|)) (-15 -2068 ((-3 |#5| "failed") |#1|)) (-15 -1647 ((-3 |#5| "failed") |#1|)) (-15 -4049 (|#5| |#5| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -3659 (|#5| |#5| |#1|)) (-15 -3522 (|#5| |#5| |#1|)) (-15 -3183 (|#5| |#5| |#1|)) (-15 -2437 (|#5| |#5| |#1|)) (-15 -1700 ((-583 |#5|) (-583 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3225 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-107) |#5| |#5|))) (-15 -3852 ((-107) |#1|)) (-15 -1959 ((-107) |#1|)) (-15 -3939 ((-107) |#1|)) (-15 -2114 ((-107) |#1| (-1 (-107) |#5| (-583 |#5|)))) (-15 -3852 ((-107) |#5| |#1|)) (-15 -1959 ((-107) |#5| |#1|)) (-15 -3939 ((-107) |#5| |#1|)) (-15 -3283 ((-107) |#5| |#1| (-1 (-107) |#5| |#5|))) (-15 -1497 ((-107) |#1|)) (-15 -1497 ((-107) |#5| |#1|)) (-15 -2901 ((-2 (|:| -1210 (-583 |#5|)) (|:| -1513 (-583 |#5|))) |#1|)) (-15 -3688 ((-703) |#1|)) (-15 -2774 ((-583 |#5|) |#1|)) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5|) (-1 (-107) |#5| |#5|))) (-15 -1942 ((-3 (-2 (|:| |bas| |#1|) (|:| -4139 (-583 |#5|))) "failed") (-583 |#5|) (-1 (-107) |#5| |#5|))) (-15 -3411 ((-107) |#1| |#1|)) (-15 -2442 (|#1| |#1| |#4|)) (-15 -3759 (|#1| |#1| |#4|)) (-15 -1976 (|#4| |#1|)) (-15 -1772 ((-3 |#1| "failed") (-583 |#5|))) (-15 -2256 ((-583 |#5|) |#1|)) (-15 -2276 (|#1| (-583 |#5|))) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3536 (|#1| (-1 (-107) |#5|) |#1|)) (-15 -3225 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2256 ((-787) |#1|)) (-15 -1547 ((-107) |#1| |#1|)))
+((-2750 (((-107) $ $) 7)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) 85)) (-4029 (((-583 $) (-583 |#4|)) 86)) (-1364 (((-583 |#3|) $) 33)) (-1235 (((-107) $) 26)) (-3586 (((-107) $) 17 (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) 101) (((-107) $) 97)) (-2437 ((|#4| |#4| $) 92)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) 27)) (-2953 (((-107) $ (-703)) 44)) (-3536 (($ (-1 (-107) |#4|) $) 65 (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) 79)) (-3092 (($) 45 T CONST)) (-1615 (((-107) $) 22 (|has| |#1| (-509)))) (-2512 (((-107) $ $) 24 (|has| |#1| (-509)))) (-3630 (((-107) $ $) 23 (|has| |#1| (-509)))) (-2703 (((-107) $) 25 (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 93)) (-1677 (((-583 |#4|) (-583 |#4|) $) 18 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) 19 (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) 36)) (-3189 (($ (-583 |#4|)) 35)) (-1660 (((-3 $ "failed") $) 82)) (-3659 ((|#4| |#4| $) 89)) (-1679 (($ $) 68 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#4| $) 67 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#4|) $) 64 (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) 102)) (-4049 ((|#4| |#4| $) 87)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 94)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) 105)) (-1536 (((-583 |#4|) $) 52 (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) 104) (((-107) $) 103)) (-1976 ((|#3| $) 34)) (-2550 (((-107) $ (-703)) 43)) (-2560 (((-583 |#4|) $) 53 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) 55 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) 47)) (-3921 (((-583 |#3|) $) 32)) (-1792 (((-107) |#3| $) 31)) (-3847 (((-107) $ (-703)) 42)) (-3985 (((-1056) $) 9)) (-2068 (((-3 |#4| "failed") $) 83)) (-2774 (((-583 |#4|) $) 107)) (-3852 (((-107) |#4| $) 99) (((-107) $) 95)) (-3522 ((|#4| |#4| $) 90)) (-3411 (((-107) $ $) 110)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) 100) (((-107) $) 96)) (-3183 ((|#4| |#4| $) 91)) (-3206 (((-1021) $) 10)) (-1647 (((-3 |#4| "failed") $) 84)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) 61)) (-1195 (((-3 $ "failed") $ |#4|) 78)) (-1672 (($ $ |#4|) 77)) (-2048 (((-107) (-1 (-107) |#4|) $) 50 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) 59 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) 57 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) 56 (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) 38)) (-3619 (((-107) $) 41)) (-1746 (($) 40)) (-3688 (((-703) $) 106)) (-3217 (((-703) |#4| $) 54 (-12 (|has| |#4| (-1003)) (|has| $ (-6 -4180)))) (((-703) (-1 (-107) |#4|) $) 51 (|has| $ (-6 -4180)))) (-2433 (($ $) 39)) (-3645 (((-493) $) 69 (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) 60)) (-2442 (($ $ |#3|) 28)) (-3759 (($ $ |#3|) 30)) (-2303 (($ $) 88)) (-1846 (($ $ |#3|) 29)) (-2256 (((-787) $) 11) (((-583 |#4|) $) 37)) (-1605 (((-703) $) 76 (|has| |#3| (-338)))) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) 108)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) 98)) (-3675 (((-107) (-1 (-107) |#4|) $) 49 (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) 81)) (-1871 (((-107) |#3| $) 80)) (-1547 (((-107) $ $) 6)) (-2296 (((-703) $) 46 (|has| $ (-6 -4180)))))
+(((-1102 |#1| |#2| |#3| |#4|) (-1184) (-509) (-725) (-779) (-975 |t#1| |t#2| |t#3|)) (T -1102))
+((-3411 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1942 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1102 *5 *6 *7 *8)))) (-1942 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1102 *6 *7 *8 *9)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1210 (-583 *6)) (|:| -1513 (-583 *6)))))) (-1497 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3283 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1102 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)))) (-3939 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-1959 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-3852 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-2114 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)))) (-3939 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3852 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) (-3225 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1102 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) (-1700 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1102 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)))) (-2437 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3183 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3522 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-3659 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2303 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-4049 (*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-3120 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1210 *1) (|:| -1513 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-1647 (*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-2068 (*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1660 (*1 *1 *1) (|partial| -12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) (-1871 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) (-3536 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1102 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) (-1195 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1672 (*1 *1 *1 *2) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
+(-13 (-893 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4180) (-6 -4181) (-15 -3411 ((-107) $ $)) (-15 -1942 ((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1942 ((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |t#4|))) "failed") (-583 |t#4|) (-1 (-107) |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2774 ((-583 |t#4|) $)) (-15 -3688 ((-703) $)) (-15 -2901 ((-2 (|:| -1210 (-583 |t#4|)) (|:| -1513 (-583 |t#4|))) $)) (-15 -1497 ((-107) |t#4| $)) (-15 -1497 ((-107) $)) (-15 -3283 ((-107) |t#4| $ (-1 (-107) |t#4| |t#4|))) (-15 -3939 ((-107) |t#4| $)) (-15 -1959 ((-107) |t#4| $)) (-15 -3852 ((-107) |t#4| $)) (-15 -2114 ((-107) $ (-1 (-107) |t#4| (-583 |t#4|)))) (-15 -3939 ((-107) $)) (-15 -1959 ((-107) $)) (-15 -3852 ((-107) $)) (-15 -3225 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -1700 ((-583 |t#4|) (-583 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-107) |t#4| |t#4|))) (-15 -2437 (|t#4| |t#4| $)) (-15 -3183 (|t#4| |t#4| $)) (-15 -3522 (|t#4| |t#4| $)) (-15 -3659 (|t#4| |t#4| $)) (-15 -2303 ($ $)) (-15 -4049 (|t#4| |t#4| $)) (-15 -4029 ((-583 $) (-583 |t#4|))) (-15 -3120 ((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |t#4|)))) (-583 |t#4|))) (-15 -1647 ((-3 |t#4| "failed") $)) (-15 -2068 ((-3 |t#4| "failed") $)) (-15 -1660 ((-3 $ "failed") $)) (-15 -2614 ((-583 |t#3|) $)) (-15 -1871 ((-107) |t#3| $)) (-15 -3536 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1195 ((-3 $ "failed") $ |t#4|)) (-15 -1672 ($ $ |t#4|)) (IF (|has| |t#3| (-338)) (-15 -1605 ((-703) $)) |noBranch|)))
+(((-33) . T) ((-97) . T) ((-557 (-583 |#4|)) . T) ((-557 (-787)) . T) ((-138 |#4|) . T) ((-558 (-493)) |has| |#4| (-558 (-493))) ((-280 |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-456 |#4|) . T) ((-478 |#4| |#4|) -12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))) ((-893 |#1| |#2| |#3| |#4|) . T) ((-1003) . T) ((-1108) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-1073)) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3520 (((-874 |#1|) $ (-703)) 16) (((-874 |#1|) $ (-703) (-703)) NIL)) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $ (-1073)) NIL) (((-703) $ (-1073) (-703)) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4031 (((-107) $) NIL)) (-1339 (($ $ (-583 (-1073)) (-583 (-489 (-1073)))) NIL) (($ $ (-1073) (-489 (-1073))) NIL) (($ |#1| (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-4151 (($ $ (-1073)) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-3352 (($ (-1 $) (-1073) |#1|) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1672 (($ $ (-703)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (($ $ (-1073) $) NIL) (($ $ (-583 (-1073)) (-583 $)) NIL) (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL)) (-3127 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-3688 (((-489 (-1073)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ $) NIL (|has| |#1| (-509))) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-1073)) NIL) (($ (-874 |#1|)) NIL)) (-2720 ((|#1| $ (-489 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (((-874 |#1|) $ (-703)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) NIL T CONST)) (-2731 (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1103 |#1|) (-13 (-673 |#1| (-1073)) (-10 -8 (-15 -2720 ((-874 |#1|) $ (-703))) (-15 -2256 ($ (-1073))) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ (-1073) |#1|)) (-15 -3352 ($ (-1 $) (-1073) |#1|))) |noBranch|))) (-961)) (T -1103))
+((-2720 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1103 *4)) (-4 *4 (-961)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-961)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1103 *3)))) (-4151 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) (-3352 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1103 *4))) (-5 *3 (-1073)) (-5 *1 (-1103 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
+(-13 (-673 |#1| (-1073)) (-10 -8 (-15 -2720 ((-874 |#1|) $ (-703))) (-15 -2256 ($ (-1073))) (-15 -2256 ($ (-874 |#1|))) (IF (|has| |#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $ (-1073) |#1|)) (-15 -3352 ($ (-1 $) (-1073) |#1|))) |noBranch|)))
+((-2018 (($ |#1| (-583 (-583 (-865 (-199)))) (-107)) 15)) (-4091 (((-107) $ (-107)) 14)) (-3738 (((-107) $) 13)) (-1750 (((-583 (-583 (-865 (-199)))) $) 10)) (-2586 ((|#1| $) 8)) (-2145 (((-107) $) 12)))
+(((-1104 |#1|) (-10 -8 (-15 -2586 (|#1| $)) (-15 -1750 ((-583 (-583 (-865 (-199)))) $)) (-15 -2145 ((-107) $)) (-15 -3738 ((-107) $)) (-15 -4091 ((-107) $ (-107))) (-15 -2018 ($ |#1| (-583 (-583 (-865 (-199)))) (-107)))) (-891)) (T -1104))
+((-2018 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1104 *2)) (-4 *2 (-891)))) (-4091 (*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-3738 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-1750 (*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1104 *3)) (-4 *3 (-891)))) (-2586 (*1 *2 *1) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-891)))))
+(-10 -8 (-15 -2586 (|#1| $)) (-15 -1750 ((-583 (-583 (-865 (-199)))) $)) (-15 -2145 ((-107) $)) (-15 -3738 ((-107) $)) (-15 -4091 ((-107) $ (-107))) (-15 -2018 ($ |#1| (-583 (-583 (-865 (-199)))) (-107))))
+((-2847 (((-865 (-199)) (-865 (-199))) 25)) (-2889 (((-865 (-199)) (-199) (-199) (-199) (-199)) 10)) (-4138 (((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199)))) 35)) (-3501 (((-199) (-865 (-199)) (-865 (-199))) 21)) (-2862 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 22)) (-1381 (((-583 (-583 (-199))) (-517)) 31)) (-1654 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 20)) (-1642 (((-865 (-199)) (-865 (-199)) (-865 (-199))) 19)) (* (((-865 (-199)) (-199) (-865 (-199))) 18)))
+(((-1105) (-10 -7 (-15 -2889 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1642 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1654 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -3501 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -2862 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -2847 ((-865 (-199)) (-865 (-199)))) (-15 -1381 ((-583 (-583 (-199))) (-517))) (-15 -4138 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199))))))) (T -1105))
+((-4138 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1105)) (-5 *3 (-865 *4)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1105)))) (-2847 (*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (-2862 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (-3501 (*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1105)))) (-1654 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (-1642 (*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1105)))) (-2889 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)) (-5 *3 (-199)))))
+(-10 -7 (-15 -2889 ((-865 (-199)) (-199) (-199) (-199) (-199))) (-15 * ((-865 (-199)) (-199) (-865 (-199)))) (-15 -1642 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -1654 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -3501 ((-199) (-865 (-199)) (-865 (-199)))) (-15 -2862 ((-865 (-199)) (-865 (-199)) (-865 (-199)))) (-15 -2847 ((-865 (-199)) (-865 (-199)))) (-15 -1381 ((-583 (-583 (-199))) (-517))) (-15 -4138 ((-583 (-865 (-199))) (-865 (-199)) (-865 (-199)) (-865 (-199)) (-199) (-583 (-583 (-199))))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3536 ((|#1| $ (-703)) 13)) (-2195 (((-703) $) 12)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-2256 (((-879 |#1|) $) 10) (($ (-879 |#1|)) 9) (((-787) $) 23 (|has| |#1| (-557 (-787))))) (-1547 (((-107) $ $) 16 (|has| |#1| (-1003)))))
+(((-1106 |#1|) (-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2256 ($ (-879 |#1|))) (-15 -3536 (|#1| $ (-703))) (-15 -2195 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|))) (-1108)) (T -1106))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1108)) (-5 *1 (-1106 *3)))) (-3536 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1106 *2)) (-4 *2 (-1108)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1106 *3)) (-4 *3 (-1108)))))
+(-13 (-557 (-879 |#1|)) (-10 -8 (-15 -2256 ($ (-879 |#1|))) (-15 -3536 (|#1| $ (-703))) (-15 -2195 ((-703) $)) (IF (|has| |#1| (-557 (-787))) (-6 (-557 (-787))) |noBranch|) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|)))
+((-1886 (((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)) (-517)) 79)) (-3018 (((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|))) 73)) (-2545 (((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|))) 58)))
+(((-1107 |#1|) (-10 -7 (-15 -3018 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -2545 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -1886 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)) (-517)))) (-319)) (T -1107))
+((-1886 (*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1069 (-1069 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-1069 (-1069 *5))))) (-2545 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4))))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4))))))
+(-10 -7 (-15 -3018 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -2545 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)))) (-15 -1886 ((-388 (-1069 (-1069 |#1|))) (-1069 (-1069 |#1|)) (-517))))
+NIL
+(((-1108) (-1184)) (T -1108))
+NIL
+(-13 (-10 -7 (-6 -3353)))
+((-2758 (((-107)) 14)) (-1523 (((-1158) (-583 |#1|) (-583 |#1|)) 18) (((-1158) (-583 |#1|)) 19)) (-2550 (((-107) |#1| |#1|) 30 (|has| |#1| (-779)))) (-3847 (((-107) |#1| |#1| (-1 (-107) |#1| |#1|)) 26) (((-3 (-107) "failed") |#1| |#1|) 24)) (-1996 ((|#1| (-583 |#1|)) 31 (|has| |#1| (-779))) ((|#1| (-583 |#1|) (-1 (-107) |#1| |#1|)) 27)) (-3602 (((-2 (|:| -3100 (-583 |#1|)) (|:| -3521 (-583 |#1|)))) 16)))
+(((-1109 |#1|) (-10 -7 (-15 -1523 ((-1158) (-583 |#1|))) (-15 -1523 ((-1158) (-583 |#1|) (-583 |#1|))) (-15 -3602 ((-2 (|:| -3100 (-583 |#1|)) (|:| -3521 (-583 |#1|))))) (-15 -3847 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3847 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -1996 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2758 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -1996 (|#1| (-583 |#1|))) (-15 -2550 ((-107) |#1| |#1|))) |noBranch|)) (-1003)) (T -1109))
+((-2550 (*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1109 *2)))) (-2758 (*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) (-1996 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-1003)))) (-3847 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1109 *3)))) (-3847 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) (-3602 (*1 *2) (-12 (-5 *2 (-2 (|:| -3100 (-583 *3)) (|:| -3521 (-583 *3)))) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) (-1523 (*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))))
+(-10 -7 (-15 -1523 ((-1158) (-583 |#1|))) (-15 -1523 ((-1158) (-583 |#1|) (-583 |#1|))) (-15 -3602 ((-2 (|:| -3100 (-583 |#1|)) (|:| -3521 (-583 |#1|))))) (-15 -3847 ((-3 (-107) "failed") |#1| |#1|)) (-15 -3847 ((-107) |#1| |#1| (-1 (-107) |#1| |#1|))) (-15 -1996 (|#1| (-583 |#1|) (-1 (-107) |#1| |#1|))) (-15 -2758 ((-107))) (IF (|has| |#1| (-779)) (PROGN (-15 -1996 (|#1| (-583 |#1|))) (-15 -2550 ((-107) |#1| |#1|))) |noBranch|))
+((-3957 (((-1158) (-583 (-1073)) (-583 (-1073))) 12) (((-1158) (-583 (-1073))) 10)) (-3510 (((-1158)) 13)) (-2946 (((-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073))))) 17)))
+(((-1110) (-10 -7 (-15 -3957 ((-1158) (-583 (-1073)))) (-15 -3957 ((-1158) (-583 (-1073)) (-583 (-1073)))) (-15 -2946 ((-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073)))))) (-15 -3510 ((-1158))))) (T -1110))
+((-3510 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1110)))) (-2946 (*1 *2) (-12 (-5 *2 (-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073))))) (-5 *1 (-1110)))) (-3957 (*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))) (-3957 (*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))))
+(-10 -7 (-15 -3957 ((-1158) (-583 (-1073)))) (-15 -3957 ((-1158) (-583 (-1073)) (-583 (-1073)))) (-15 -2946 ((-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073)))))) (-15 -3510 ((-1158))))
+((-2535 (($ $) 16)) (-3849 (((-107) $) 23)))
+(((-1111 |#1|) (-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -3849 ((-107) |#1|))) (-1112)) (T -1111))
+NIL
+(-10 -8 (-15 -2535 (|#1| |#1|)) (-15 -3849 ((-107) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 51)) (-2759 (((-388 $) $) 52)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3849 (((-107) $) 53)) (-3848 (((-107) $) 31)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 50)) (-2476 (((-3 $ "failed") $ $) 42)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43)) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24)))
+(((-1112) (-1184)) (T -1112))
+((-3849 (*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-107)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))) (-2535 (*1 *1 *1) (-4 *1 (-1112))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))))
+(-13 (-421) (-10 -8 (-15 -3849 ((-107) $)) (-15 -2759 ((-388 $) $)) (-15 -2535 ($ $)) (-15 -3755 ((-388 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-106 $ $) . T) ((-123) . T) ((-557 (-787)) . T) ((-156) . T) ((-262) . T) ((-421) . T) ((-509) . T) ((-585 $) . T) ((-650 $) . T) ((-659) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-1893 (((-1118 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1118 |#1| |#3| |#5|)) 23)))
+(((-1113 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1893 ((-1118 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1118 |#1| |#3| |#5|)))) (-961) (-961) (-1073) (-1073) |#1| |#2|) (T -1113))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1118 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1118 *6 *8 *10)) (-5 *1 (-1113 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))))
+(-10 -7 (-15 -1893 ((-1118 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1118 |#1| |#3| |#5|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-517) $) 100) (((-517) $ (-517)) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101)) (-3103 (($ (-1 |#1| (-517)) $) 173)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517)))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-3688 (((-517) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-517)) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-517) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1114 |#1|) (-1184) (-961)) (T -1114))
+((-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1114 *3)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1114 *3)) (-4 *3 (-961)))) (-2112 (*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-2112 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-4151 (*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1132 |t#1| (-517)) (-10 -8 (-15 -2925 ($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |t#1|))))) (-15 -3103 ($ (-1 |t#1| (-517)) $)) (IF (|has| |t#1| (-509)) (PROGN (-15 -2112 ((-377 (-874 |t#1|)) $ (-517))) (-15 -2112 ((-377 (-874 |t#1|)) $ (-517) (-517)))) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (IF (|has| |t#1| (-15 -4151 (|t#1| |t#1| (-1073)))) (IF (|has| |t#1| (-15 -1364 ((-583 (-1073)) |t#1|))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1094))) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-517) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1132 |#1| (-517)) . T))
+((-2814 (((-107) $) 12)) (-1772 (((-3 |#3| "failed") $) 17) (((-3 (-1073) "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL)) (-3189 ((|#3| $) 14) (((-1073) $) NIL) (((-377 (-517)) $) NIL) (((-517) $) NIL)))
+(((-1115 |#1| |#2| |#3|) (-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|))) (-1116 |#2| |#3|) (-961) (-1145 |#2|)) (T -1115))
+NIL
+(-10 -8 (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -3189 ((-1073) |#1|)) (-15 -1772 ((-3 (-1073) "failed") |#1|)) (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2668 ((|#2| $) 231 (-4035 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 98) (($ $ (-517) (-517)) 97)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 105)) (-1880 ((|#2| $) 267)) (-2477 (((-3 |#2| "failed") $) 263)) (-1590 ((|#2| $) 264)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-3143 (((-388 (-1069 $)) (-1069 $)) 240 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 237 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) 249 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 174)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#2| "failed") $) 270) (((-3 (-517) "failed") $) 259 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) 257 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1073) "failed") $) 242 (-4035 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-3189 ((|#2| $) 269) (((-517) $) 260 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) 258 (-4035 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1073) $) 243 (-4035 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-2869 (($ $) 266) (($ (-517) $) 265)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3355 (((-623 |#2|) (-623 $)) 221 (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) 220 (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 219 (-4035 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) 218 (-4035 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) 34)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 172 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 171 (|has| |#1| (-509)))) (-3209 (($) 233 (-4035 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3556 (((-107) $) 247 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 225 (-4035 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 224 (-4035 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-3972 (((-517) $) 100) (((-517) $ (-517)) 99)) (-3848 (((-107) $) 31)) (-1405 (($ $) 229 (|has| |#1| (-333)))) (-1787 ((|#2| $) 227 (|has| |#1| (-333)))) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) 261 (-4035 (|has| |#2| (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) 248 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) 101)) (-3103 (($ (-1 |#1| (-517)) $) 173)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-517)) 61) (($ $ (-989) (-517)) 76) (($ $ (-583 (-989)) (-583 (-517))) 75)) (-2967 (($ $ $) 251 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3099 (($ $ $) 252 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1893 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-333)))) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-1601 (($ (-517) |#2|) 268)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-2836 (($) 262 (-4035 (|has| |#2| (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-1927 (($ $) 232 (-4035 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2597 ((|#2| $) 235 (-4035 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) 238 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) 239 (-4035 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) |#2|) 212 (-4035 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 |#2|)) 211 (-4035 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) 210 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) 209 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) 208 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) 207 (-4035 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) 104) (($ $ $) 81 (|has| (-517) (-1015))) (($ $ |#2|) 206 (-4035 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 216 (|has| |#1| (-333))) (($ $ (-703)) 84 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 82 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) 89 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073) (-703)) 88 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1073))) 87 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073)) 86 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-2971 (($ $) 230 (|has| |#1| (-333)))) (-1800 ((|#2| $) 228 (|has| |#1| (-333)))) (-3688 (((-517) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-199) $) 246 (-4035 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) 245 (-4035 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) 244 (-4035 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) 223 (-4035 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) 222 (-4035 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 236 (-4035 (-4035 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#1| (-333))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 271) (($ (-1073)) 241 (-4035 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333)))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-517)) 59)) (-1328 (((-3 $ "failed") $) 48 (-3807 (-4035 (-3807 (|has| |#2| (-132)) (-4035 (|has| $ (-132)) (|has| |#2| (-831)))) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-1949 ((|#2| $) 234 (-4035 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) 250 (-4035 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) 214 (|has| |#1| (-333))) (($ $ (-703)) 85 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 83 (-3807 (-4035 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) 93 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073) (-703)) 92 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-583 (-1073))) 91 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))))) (($ $ (-1073)) 90 (-3807 (-4035 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))))) (-1606 (((-107) $ $) 254 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1583 (((-107) $ $) 255 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 253 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) 256 (-4035 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333))) (($ |#2| |#2|) 226 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-333))) (($ |#2| $) 204 (|has| |#1| (-333))) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1116 |#1| |#2|) (-1184) (-961) (-1145 |t#1|)) (T -1116))
+((-3688 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)) (-5 *2 (-517)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1116 *3 *2)) (-4 *2 (-1145 *3)))) (-1601 (*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1116 *4 *3)) (-4 *3 (-1145 *4)))) (-1880 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))) (-2869 (*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1145 *2)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))) (-2477 (*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))))
+(-13 (-1114 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1601 ($ (-517) |t#2|)) (-15 -3688 ((-517) $)) (-15 -1880 (|t#2| $)) (-15 -2869 ($ $)) (-15 -2869 ($ (-517) $)) (-15 -2256 ($ |t#2|)) (-15 -1590 (|t#2| $)) (-15 -2477 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-333)) (-6 (-909 |t#2|)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-517)) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 |#2|) |has| |#1| (-333)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 |#2| |#2|) |has| |#1| (-333)) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-132))) (|has| |#1| (-132))) ((-134) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-134))) (|has| |#1| (-134))) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-199)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-558 (-493)) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-558 (-814 (-517))))) ((-205 |#2|) |has| |#1| (-333)) ((-207) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-207))) (|has| |#1| (-15 * (|#1| (-517) |#1|)))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 |#2| $) -12 (|has| |#1| (-333)) (|has| |#2| (-258 |#2| |#2|))) ((-258 $ $) |has| (-517) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-333) |has| |#1| (-333)) ((-308 |#2|) |has| |#1| (-333)) ((-347 |#2|) |has| |#1| (-333)) ((-370 |#2|) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-478 (-1073) |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-478 (-1073) |#2|))) ((-478 |#2| |#2|) -12 (|has| |#1| (-333)) (|has| |#2| (-280 |#2|))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 |#2|) |has| |#1| (-333)) ((-585 $) . T) ((-579 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-579 (-517)))) ((-579 |#2|) |has| |#1| (-333)) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 |#2|) |has| |#1| (-333)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-723) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-724) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-726) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-727) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-752) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-777) -12 (|has| |#1| (-333)) (|has| |#2| (-752))) ((-779) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-779))) (-12 (|has| |#1| (-333)) (|has| |#2| (-752)))) ((-822 (-1073)) -3807 (-12 (|has| |#1| (-333)) (|has| |#2| (-822 (-1073)))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))) ((-808 (-349)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-349)))) ((-808 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-808 (-517)))) ((-806 |#2|) |has| |#1| (-333)) ((-831) -12 (|has| |#1| (-333)) (|has| |#2| (-831))) ((-890 |#1| (-517) (-989)) . T) ((-842) |has| |#1| (-333)) ((-909 |#2|) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-937) -12 (|has| |#1| (-333)) (|has| |#2| (-937))) ((-952 (-377 (-517))) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-517)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-517)))) ((-952 (-1073)) -12 (|has| |#1| (-333)) (|has| |#2| (-952 (-1073)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 |#2|) |has| |#1| (-333)) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) -12 (|has| |#1| (-333)) (|has| |#2| (-1049))) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1108) |has| |#1| (-333)) ((-1112) |has| |#1| (-333)) ((-1114 |#1|) . T) ((-1132 |#1| (-517)) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 70)) (-2668 ((|#2| $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 88)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-517)) 97) (($ $ (-517) (-517)) 99)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) 47)) (-1880 ((|#2| $) 11)) (-2477 (((-3 |#2| "failed") $) 30)) (-1590 ((|#2| $) 31)) (-1865 (($ $) 192 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 168 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) 188 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 164 (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) 57)) (-1887 (($ $) 196 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 172 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) 144) (((-3 (-517) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-1073) "failed") $) NIL (-12 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-3189 ((|#2| $) 143) (((-517) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| |#2| (-952 (-517))) (|has| |#1| (-333)))) (((-1073) $) NIL (-12 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333))))) (-2869 (($ $) 61) (($ (-517) $) 24)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 |#2|) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| |#2| (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) 77)) (-2112 (((-377 (-874 |#1|)) $ (-517)) 112 (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) 114 (|has| |#1| (-509)))) (-3209 (($) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3556 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) 64)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| |#2| (-808 (-349))) (|has| |#1| (-333)))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| |#2| (-808 (-517))) (|has| |#1| (-333))))) (-3972 (((-517) $) 93) (((-517) $ (-517)) 95)) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL (|has| |#1| (-333)))) (-1787 ((|#2| $) 151 (|has| |#1| (-333)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) 136)) (-3103 (($ (-1 |#1| (-517)) $) 132)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-517)) 19) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-2967 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-3099 (($ $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1893 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-333)))) (-1867 (($ $) 162 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1601 (($ (-517) |#2|) 10)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 145 (|has| |#1| (-333)))) (-4151 (($ $) 214 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 219 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094)))))) (-2836 (($) NIL (-12 (|has| |#2| (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1927 (($ $) NIL (-12 (|has| |#2| (-278)) (|has| |#1| (-333))))) (-2597 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| |#2| (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-517)) 126)) (-2476 (((-3 $ "failed") $ $) 116 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) 160 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) |#2|) NIL (-12 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 |#2|)) NIL (-12 (|has| |#2| (-478 (-1073) |#2|)) (|has| |#1| (-333)))) (($ $ (-583 (-265 |#2|))) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-265 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333)))) (($ $ (-583 |#2|) (-583 |#2|)) NIL (-12 (|has| |#2| (-280 |#2|)) (|has| |#1| (-333))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) 91) (($ $ $) 79 (|has| (-517) (-1015))) (($ $ |#2|) NIL (-12 (|has| |#2| (-258 |#2| |#2|)) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 137 (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) 140 (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-2971 (($ $) NIL (|has| |#1| (-333)))) (-1800 ((|#2| $) 152 (|has| |#1| (-333)))) (-3688 (((-517) $) 12)) (-1898 (($ $) 198 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 174 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 194 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 170 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 190 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 166 (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-199) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| |#2| (-937)) (|has| |#1| (-333)))) (((-493) $) NIL (-12 (|has| |#2| (-558 (-493))) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| |#2| (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| |#2| (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))))) (-1545 (($ $) 124)) (-2256 (((-787) $) 242) (($ (-517)) 23) (($ |#1|) 21 (|has| |#1| (-156))) (($ |#2|) 20) (($ (-1073)) NIL (-12 (|has| |#2| (-952 (-1073))) (|has| |#1| (-333)))) (($ (-377 (-517))) 155 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-517)) 74)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831)) (|has| |#1| (-333))) (-12 (|has| |#2| (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) 142)) (-2986 ((|#1| $) 90)) (-1949 ((|#2| $) NIL (-12 (|has| |#2| (-502)) (|has| |#1| (-333))))) (-3707 (($ $) 204 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 180 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 200 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 176 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 208 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 184 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 210 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 186 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 206 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 182 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 202 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 178 (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) NIL (-12 (|has| |#2| (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 13 T CONST)) (-2409 (($) 17 T CONST)) (-2731 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-333))) (($ $ (-1 |#2| |#2|) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3807 (-12 (|has| |#2| (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#2| (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-1606 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1583 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1547 (((-107) $ $) 63)) (-1595 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1572 (((-107) $ $) NIL (-12 (|has| |#2| (-779)) (|has| |#1| (-333))))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 149 (|has| |#1| (-333))) (($ |#2| |#2|) 150 (|has| |#1| (-333)))) (-1654 (($ $) 213) (($ $ $) 68)) (-1642 (($ $ $) 66)) (** (($ $ (-843)) NIL) (($ $ (-703)) 73) (($ $ (-517)) 146 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-333))) (($ |#2| $) 147 (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1117 |#1| |#2|) (-1116 |#1| |#2|) (-961) (-1145 |#1|)) (T -1117))
+NIL
+(-1116 |#1| |#2|)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2668 (((-1146 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 10)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1213 (($ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-2454 (((-107) $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1974 (($ $ (-517)) NIL) (($ $ (-517) (-517)) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|))) $) NIL)) (-1880 (((-1146 |#1| |#2| |#3|) $) NIL)) (-2477 (((-3 (-1146 |#1| |#2| |#3|) "failed") $) NIL)) (-1590 (((-1146 |#1| |#2| |#3|) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3709 (((-517) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2925 (($ (-1054 (-2 (|:| |k| (-517)) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1146 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1073) "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-3 (-377 (-517)) "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-3 (-517) "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-3189 (((-1146 |#1| |#2| |#3|) $) NIL) (((-1073) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (((-377 (-517)) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333)))) (((-517) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))))) (-2869 (($ $) NIL) (($ (-517) $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-1146 |#1| |#2| |#3|)) (-623 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-1146 |#1| |#2| |#3|))) (|:| |vec| (-1153 (-1146 |#1| |#2| |#3|)))) (-623 $) (-1153 $)) NIL (|has| |#1| (-333))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333)))) (((-623 (-517)) (-623 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-579 (-517))) (|has| |#1| (-333))))) (-3621 (((-3 $ "failed") $) NIL)) (-2112 (((-377 (-874 |#1|)) $ (-517)) NIL (|has| |#1| (-509))) (((-377 (-874 |#1|)) $ (-517) (-517)) NIL (|has| |#1| (-509)))) (-3209 (($) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3556 (((-107) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4057 (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-808 (-517))) (|has| |#1| (-333)))) (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-808 (-349))) (|has| |#1| (-333))))) (-3972 (((-517) $) NIL) (((-517) $ (-517)) NIL)) (-3848 (((-107) $) NIL)) (-1405 (($ $) NIL (|has| |#1| (-333)))) (-1787 (((-1146 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1319 (((-3 $ "failed") $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))))) (-2475 (((-107) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-3430 (($ $ (-843)) NIL)) (-3103 (($ (-1 |#1| (-517)) $) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-517)) 17) (($ $ (-989) (-517)) NIL) (($ $ (-583 (-989)) (-583 (-517))) NIL)) (-2967 (($ $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-3099 (($ $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-333)))) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1601 (($ (-517) (-1146 |#1| |#2| |#3|)) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 25 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 26 (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-1049)) (|has| |#1| (-333))) CONST)) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1927 (($ $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-278)) (|has| |#1| (-333))))) (-2597 (((-1146 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-517)) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-517))))) (($ $ (-1073) (-1146 |#1| |#2| |#3|)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-478 (-1073) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1073)) (-583 (-1146 |#1| |#2| |#3|))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-478 (-1073) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-265 (-1146 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-265 (-1146 |#1| |#2| |#3|))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333)))) (($ $ (-583 (-1146 |#1| |#2| |#3|)) (-583 (-1146 |#1| |#2| |#3|))) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-280 (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-517)) NIL) (($ $ $) NIL (|has| (-517) (-1015))) (($ $ (-1146 |#1| |#2| |#3|)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-258 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) (|has| |#1| (-333))))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-1149 |#2|)) 24) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) 23 (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-2971 (($ $) NIL (|has| |#1| (-333)))) (-1800 (((-1146 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333)))) (-3688 (((-517) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3645 (((-493) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-558 (-493))) (|has| |#1| (-333)))) (((-349) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-199) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-937)) (|has| |#1| (-333)))) (((-814 (-349)) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-558 (-814 (-349)))) (|has| |#1| (-333)))) (((-814 (-517)) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-558 (-814 (-517)))) (|has| |#1| (-333))))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1146 |#1| |#2| |#3|)) NIL) (($ (-1149 |#2|)) 22) (($ (-1073)) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-1073))) (|has| |#1| (-333)))) (($ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509)))) (($ (-377 (-517))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-952 (-517))) (|has| |#1| (-333))) (|has| |#1| (-37 (-377 (-517))))))) (-2720 ((|#1| $ (-517)) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-132)) (|has| |#1| (-333))) (|has| |#1| (-132))))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 11)) (-1949 (((-1146 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-502)) (|has| |#1| (-333))))) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-831)) (|has| |#1| (-333))) (|has| |#1| (-509))))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-517)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-517)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3710 (($ $) NIL (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 19 T CONST)) (-2409 (($) 15 T CONST)) (-2731 (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|))) NIL (|has| |#1| (-333))) (($ $ (-1 (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) (-703)) NIL (|has| |#1| (-333))) (($ $ (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-207)) (|has| |#1| (-333))) (|has| |#1| (-15 * (|#1| (-517) |#1|))))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073) (-703)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-583 (-1073))) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073)))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-822 (-1073))) (|has| |#1| (-333))) (-12 (|has| |#1| (-15 * (|#1| (-517) |#1|))) (|has| |#1| (-822 (-1073))))))) (-1606 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1583 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1572 (((-107) $ $) NIL (-3807 (-12 (|has| (-1146 |#1| |#2| |#3|) (-752)) (|has| |#1| (-333))) (-12 (|has| (-1146 |#1| |#2| |#3|) (-779)) (|has| |#1| (-333)))))) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333))) (($ (-1146 |#1| |#2| |#3|) (-1146 |#1| |#2| |#3|)) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1146 |#1| |#2| |#3|)) NIL (|has| |#1| (-333))) (($ (-1146 |#1| |#2| |#3|) $) NIL (|has| |#1| (-333))) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1118 |#1| |#2| |#3|) (-13 (-1116 |#1| (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1118))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1116 |#1| (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
+((-1724 (((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)) 10)) (-3432 (((-388 |#1|) |#1|) 21)) (-3755 (((-388 |#1|) |#1|) 20)))
+(((-1119 |#1|) (-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107)))) (-1130 (-517))) (T -1119))
+((-1724 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))) (-3432 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))) (-3755 (*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))))
+(-10 -7 (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3432 ((-388 |#1|) |#1|)) (-15 -1724 ((-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| |#1|) (|:| -3631 (-517)))))) |#1| (-107))))
+((-1893 (((-1054 |#2|) (-1 |#2| |#1|) (-1121 |#1|)) 23 (|has| |#1| (-777))) (((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|)) 17)))
+(((-1120 |#1| |#2|) (-10 -7 (-15 -1893 ((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) |noBranch|)) (-1108) (-1108)) (T -1120))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1120 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1121 *6)) (-5 *1 (-1120 *5 *6)))))
+(-10 -7 (-15 -1893 ((-1121 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) (IF (|has| |#1| (-777)) (-15 -1893 ((-1054 |#2|) (-1 |#2| |#1|) (-1121 |#1|))) |noBranch|))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-2515 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1893 (((-1054 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-777)))) (-3100 ((|#1| $) 14)) (-3310 ((|#1| $) 10)) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-3320 (((-517) $) 18)) (-3521 ((|#1| $) 17)) (-3330 ((|#1| $) 11)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1838 (((-107) $) 16)) (-3502 (((-1054 |#1|) $) 38 (|has| |#1| (-777))) (((-1054 |#1|) (-583 $)) 37 (|has| |#1| (-777)))) (-3645 (($ |#1|) 25)) (-2256 (($ (-998 |#1|)) 24) (((-787) $) 34 (|has| |#1| (-1003)))) (-2881 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1321 (($ $ (-517)) 13)) (-1547 (((-107) $ $) 27 (|has| |#1| (-1003)))))
+(((-1121 |#1|) (-13 (-997 |#1|) (-10 -8 (-15 -2881 ($ |#1|)) (-15 -2515 ($ |#1|)) (-15 -2256 ($ (-998 |#1|))) (-15 -1838 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1054 |#1|))) |noBranch|))) (-1108)) (T -1121))
+((-2881 (*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))) (-2515 (*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1108)) (-5 *1 (-1121 *3)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1121 *3)) (-4 *3 (-1108)))))
+(-13 (-997 |#1|) (-10 -8 (-15 -2881 ($ |#1|)) (-15 -2515 ($ |#1|)) (-15 -2256 ($ (-998 |#1|))) (-15 -1838 ((-107) $)) (IF (|has| |#1| (-1003)) (-6 (-1003)) |noBranch|) (IF (|has| |#1| (-777)) (-6 (-999 |#1| (-1054 |#1|))) |noBranch|)))
+((-1893 (((-1127 |#3| |#4|) (-1 |#4| |#2|) (-1127 |#1| |#2|)) 15)))
+(((-1122 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 ((-1127 |#3| |#4|) (-1 |#4| |#2|) (-1127 |#1| |#2|)))) (-1073) (-961) (-1073) (-961)) (T -1122))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1127 *5 *6)) (-14 *5 (-1073)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1127 *7 *8)) (-5 *1 (-1122 *5 *6 *7 *8)) (-14 *7 (-1073)))))
+(-10 -7 (-15 -1893 ((-1127 |#3| |#4|) (-1 |#4| |#2|) (-1127 |#1| |#2|))))
+((-4112 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3484 ((|#1| |#3|) 13)) (-1897 ((|#3| |#3|) 19)))
+(((-1123 |#1| |#2| |#3|) (-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-509) (-909 |#1|) (-1130 |#2|)) (T -1123))
+((-4112 (*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1123 *4 *5 *3)) (-4 *3 (-1130 *5)))) (-1897 (*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-1130 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1123 *2 *4 *3)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -3484 (|#1| |#3|)) (-15 -1897 (|#3| |#3|)) (-15 -4112 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3722 (((-3 |#2| "failed") |#2| (-703) |#1|) 29)) (-1912 (((-3 |#2| "failed") |#2| (-703)) 30)) (-1748 (((-3 (-2 (|:| -3639 |#2|) (|:| -3652 |#2|)) "failed") |#2|) 42)) (-1699 (((-583 |#2|) |#2|) 44)) (-2708 (((-3 |#2| "failed") |#2| |#2|) 39)))
+(((-1124 |#1| |#2|) (-10 -7 (-15 -1912 ((-3 |#2| "failed") |#2| (-703))) (-15 -3722 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -2708 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1748 ((-3 (-2 (|:| -3639 |#2|) (|:| -3652 |#2|)) "failed") |#2|)) (-15 -1699 ((-583 |#2|) |#2|))) (-13 (-509) (-134)) (-1130 |#1|)) (T -1124))
+((-1699 (*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))) (-1748 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))) (-2708 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-1130 *3)))) (-3722 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4)))) (-1912 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4)))))
+(-10 -7 (-15 -1912 ((-3 |#2| "failed") |#2| (-703))) (-15 -3722 ((-3 |#2| "failed") |#2| (-703) |#1|)) (-15 -2708 ((-3 |#2| "failed") |#2| |#2|)) (-15 -1748 ((-3 (-2 (|:| -3639 |#2|) (|:| -3652 |#2|)) "failed") |#2|)) (-15 -1699 ((-583 |#2|) |#2|)))
+((-3298 (((-3 (-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) "failed") |#2| |#2|) 31)))
+(((-1125 |#1| |#2|) (-10 -7 (-15 -3298 ((-3 (-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) "failed") |#2| |#2|))) (-509) (-1130 |#1|)) (T -1125))
+((-3298 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1130 *4)))))
+(-10 -7 (-15 -3298 ((-3 (-2 (|:| -3425 |#2|) (|:| -3060 |#2|)) "failed") |#2| |#2|)))
+((-3757 ((|#2| |#2| |#2|) 19)) (-3976 ((|#2| |#2| |#2|) 30)) (-1329 ((|#2| |#2| |#2| (-703) (-703)) 36)))
+(((-1126 |#1| |#2|) (-10 -7 (-15 -3757 (|#2| |#2| |#2|)) (-15 -3976 (|#2| |#2| |#2|)) (-15 -1329 (|#2| |#2| |#2| (-703) (-703)))) (-961) (-1130 |#1|)) (T -1126))
+((-1329 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-1130 *4)))) (-3976 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3)))) (-3757 (*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3)))))
+(-10 -7 (-15 -3757 (|#2| |#2| |#2|)) (-15 -3976 (|#2| |#2| |#2|)) (-15 -1329 (|#2| |#2| |#2| (-703) (-703))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-2490 (((-1153 |#2|) $ (-703)) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-2532 (($ (-1069 |#2|)) NIL)) (-2352 (((-1069 $) $ (-989)) NIL) (((-1069 |#2|) $) NIL)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#2| (-509)))) (-1213 (($ $) NIL (|has| |#2| (-509)))) (-2454 (((-107) $) NIL (|has| |#2| (-509)))) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3081 (($ $ $) NIL (|has| |#2| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2535 (($ $) NIL (|has| |#2| (-421)))) (-2759 (((-388 $) $) NIL (|has| |#2| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-1707 (((-107) $ $) NIL (|has| |#2| (-333)))) (-2241 (($ $ (-703)) NIL)) (-2882 (($ $ (-703)) NIL)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-421)))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL) (((-3 (-377 (-517)) "failed") $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) NIL (|has| |#2| (-952 (-517)))) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#2| $) NIL) (((-377 (-517)) $) NIL (|has| |#2| (-952 (-377 (-517))))) (((-517) $) NIL (|has| |#2| (-952 (-517)))) (((-989) $) NIL)) (-3388 (($ $ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $ $) NIL (|has| |#2| (-156)))) (-2518 (($ $ $) NIL (|has| |#2| (-333)))) (-1212 (($ $) NIL)) (-3355 (((-623 (-517)) (-623 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) NIL (|has| |#2| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#2|)) (|:| |vec| (-1153 |#2|))) (-623 $) (-1153 $)) NIL) (((-623 |#2|) (-623 $)) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2497 (($ $ $) NIL (|has| |#2| (-333)))) (-2704 (($ $ $) NIL)) (-4080 (($ $ $) NIL (|has| |#2| (-509)))) (-1874 (((-2 (|:| -1931 |#2|) (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#2| (-333)))) (-3534 (($ $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-1201 (((-583 $) $) NIL)) (-3849 (((-107) $) NIL (|has| |#2| (-831)))) (-1436 (($ $ |#2| (-703) $) NIL)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) NIL (-12 (|has| (-989) (-808 (-349))) (|has| |#2| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) NIL (-12 (|has| (-989) (-808 (-517))) (|has| |#2| (-808 (-517)))))) (-3972 (((-703) $ $) NIL (|has| |#2| (-509)))) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-1319 (((-3 $ "failed") $) NIL (|has| |#2| (-1049)))) (-1350 (($ (-1069 |#2|) (-989)) NIL) (($ (-1069 $) (-989)) NIL)) (-3430 (($ $ (-703)) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-1339 (($ |#2| (-703)) 17) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) NIL) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-2967 (($ $ $) NIL (|has| |#2| (-779)))) (-3099 (($ $ $) NIL (|has| |#2| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-1548 (((-1069 |#2|) $) NIL)) (-1409 (((-3 (-989) "failed") $) NIL)) (-4152 (($ $) NIL)) (-1191 ((|#2| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-3985 (((-1056) $) NIL)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) NIL)) (-3703 (((-3 (-583 $) "failed") $) NIL)) (-3401 (((-3 (-583 $) "failed") $) NIL)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) NIL)) (-4151 (($ $) NIL (|has| |#2| (-37 (-377 (-517)))))) (-2836 (($) NIL (|has| |#2| (-1049)) CONST)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 ((|#2| $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#2| (-421)))) (-1401 (($ (-583 $)) NIL (|has| |#2| (-421))) (($ $ $) NIL (|has| |#2| (-421)))) (-1953 (($ $ (-703) |#2| $) NIL)) (-2561 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) NIL (|has| |#2| (-831)))) (-3755 (((-388 $) $) NIL (|has| |#2| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#2| (-333)))) (-2476 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-509))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#2| (-333)))) (-2051 (($ $ (-583 (-265 $))) NIL) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) NIL) (($ $ (-583 (-989)) (-583 |#2|)) NIL) (($ $ (-989) $) NIL) (($ $ (-583 (-989)) (-583 $)) NIL)) (-3146 (((-703) $) NIL (|has| |#2| (-333)))) (-1449 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) NIL (|has| |#2| (-509))) ((|#2| (-377 $) |#2|) NIL (|has| |#2| (-333))) (((-377 $) $ (-377 $)) NIL (|has| |#2| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) NIL)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#2| (-333)))) (-3010 (($ $ (-989)) NIL (|has| |#2| (-156))) ((|#2| $) NIL (|has| |#2| (-156)))) (-3127 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3688 (((-703) $) NIL) (((-703) $ (-989)) NIL) (((-583 (-703)) $ (-583 (-989))) NIL)) (-3645 (((-814 (-349)) $) NIL (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#2| (-558 (-814 (-349)))))) (((-814 (-517)) $) NIL (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#2| (-558 (-814 (-517)))))) (((-493) $) NIL (-12 (|has| (-989) (-558 (-493))) (|has| |#2| (-558 (-493)))))) (-3266 ((|#2| $) NIL (|has| |#2| (-421))) (($ $ (-989)) NIL (|has| |#2| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) NIL (-12 (|has| $ (-132)) (|has| |#2| (-831))))) (-3793 (((-3 $ "failed") $ $) NIL (|has| |#2| (-509))) (((-3 (-377 $) "failed") (-377 $) $) NIL (|has| |#2| (-509)))) (-2256 (((-787) $) 13) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) NIL) (($ (-1149 |#1|)) 19) (($ (-377 (-517))) NIL (-3807 (|has| |#2| (-37 (-377 (-517)))) (|has| |#2| (-952 (-377 (-517)))))) (($ $) NIL (|has| |#2| (-509)))) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-703)) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1328 (((-3 $ "failed") $) NIL (-3807 (-12 (|has| $ (-132)) (|has| |#2| (-831))) (|has| |#2| (-132))))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| |#2| (-156)))) (-3329 (((-107) $ $) NIL (|has| |#2| (-509)))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-2409 (($) 14 T CONST)) (-2731 (($ $ (-989)) NIL) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) NIL) (($ $ (-1073)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1073) (-703)) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) NIL (|has| |#2| (-822 (-1073)))) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1606 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1547 (((-107) $ $) NIL)) (-1595 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#2| (-779)))) (-1667 (($ $ |#2|) NIL (|has| |#2| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-377 (-517))) NIL (|has| |#2| (-37 (-377 (-517))))) (($ (-377 (-517)) $) NIL (|has| |#2| (-37 (-377 (-517))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1127 |#1| |#2|) (-13 (-1130 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))) (-15 -1953 ($ $ (-703) |#2| $)))) (-1073) (-961)) (T -1127))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-1127 *3 *4)) (-4 *4 (-961)))) (-1953 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1127 *4 *3)) (-14 *4 (-1073)) (-4 *3 (-961)))))
+(-13 (-1130 |#2|) (-10 -8 (-15 -2256 ($ (-1149 |#1|))) (-15 -1953 ($ $ (-703) |#2| $))))
+((-1893 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1128 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|))) (-961) (-1130 |#1|) (-961) (-1130 |#3|)) (T -1128))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1130 *6)) (-5 *1 (-1128 *5 *4 *6 *2)) (-4 *4 (-1130 *5)))))
+(-10 -7 (-15 -1893 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2490 (((-1153 |#2|) $ (-703)) 113)) (-1364 (((-583 (-989)) $) 15)) (-2532 (($ (-1069 |#2|)) 66)) (-1369 (((-703) $) NIL) (((-703) $ (-583 (-989))) 18)) (-3143 (((-388 (-1069 $)) (-1069 $)) 183)) (-2535 (($ $) 173)) (-2759 (((-388 $) $) 171)) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 81)) (-2241 (($ $ (-703)) 70)) (-2882 (($ $ (-703)) 72)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 129)) (-1772 (((-3 |#2| "failed") $) 116) (((-3 (-377 (-517)) "failed") $) NIL) (((-3 (-517) "failed") $) NIL) (((-3 (-989) "failed") $) NIL)) (-3189 ((|#2| $) 114) (((-377 (-517)) $) NIL) (((-517) $) NIL) (((-989) $) NIL)) (-4080 (($ $ $) 150)) (-1874 (((-2 (|:| -1931 |#2|) (|:| -3425 $) (|:| -3060 $)) $ $) 152)) (-3972 (((-703) $ $) 168)) (-1319 (((-3 $ "failed") $) 122)) (-1339 (($ |#2| (-703)) NIL) (($ $ (-989) (-703)) 46) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-2349 (((-703) $) NIL) (((-703) $ (-989)) 41) (((-583 (-703)) $ (-583 (-989))) 42)) (-1548 (((-1069 |#2|) $) 58)) (-1409 (((-3 (-989) "failed") $) 39)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) 69)) (-4151 (($ $) 194)) (-2836 (($) 118)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 180)) (-2561 (((-388 (-1069 $)) (-1069 $)) 87)) (-2209 (((-388 (-1069 $)) (-1069 $)) 85)) (-3755 (((-388 $) $) 105)) (-2051 (($ $ (-583 (-265 $))) 38) (($ $ (-265 $)) NIL) (($ $ $ $) NIL) (($ $ (-583 $) (-583 $)) NIL) (($ $ (-989) |#2|) 31) (($ $ (-583 (-989)) (-583 |#2|)) 28) (($ $ (-989) $) 25) (($ $ (-583 (-989)) (-583 $)) 23)) (-3146 (((-703) $) 186)) (-1449 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-377 $) (-377 $) (-377 $)) 146) ((|#2| (-377 $) |#2|) 185) (((-377 $) $ (-377 $)) 167)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 189)) (-3127 (($ $ (-989)) 139) (($ $ (-583 (-989))) NIL) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL) (($ $ (-703)) NIL) (($ $) 137) (($ $ (-1073)) NIL) (($ $ (-583 (-1073))) NIL) (($ $ (-1073) (-703)) NIL) (($ $ (-583 (-1073)) (-583 (-703))) NIL) (($ $ (-1 |#2| |#2|) (-703)) NIL) (($ $ (-1 |#2| |#2|)) 136) (($ $ (-1 |#2| |#2|) $) 133)) (-3688 (((-703) $) NIL) (((-703) $ (-989)) 16) (((-583 (-703)) $ (-583 (-989))) 20)) (-3266 ((|#2| $) NIL) (($ $ (-989)) 124)) (-3793 (((-3 $ "failed") $ $) 160) (((-3 (-377 $) "failed") (-377 $) $) 156)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#2|) NIL) (($ (-989)) 50) (($ (-377 (-517))) NIL) (($ $) NIL)))
+(((-1129 |#1| |#2|) (-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1449 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -1449 (|#2| (-377 |#1|) |#2|)) (-15 -2316 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1874 ((-2 (|:| -1931 |#2|) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3793 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3972 ((-703) |#1| |#1|)) (-15 -1449 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 (|#1| |#1| (-703))) (-15 -2241 (|#1| |#1| (-703))) (-15 -4055 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| (-703))) (-15 -2532 (|#1| (-1069 |#2|))) (-15 -1548 ((-1069 |#2|) |#1|)) (-15 -2490 ((-1153 |#2|) |#1| (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| |#2|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3143 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3266 (|#1| |#1| (-989))) (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1369 ((-703) |#1| (-583 (-989)))) (-15 -1369 ((-703) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1339 (|#1| |#1| (-989) (-703))) (-15 -2349 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -2349 ((-703) |#1| (-989))) (-15 -1409 ((-3 (-989) "failed") |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3688 ((-703) |#1| (-989))) (-15 -3189 ((-989) |#1|)) (-15 -1772 ((-3 (-989) "failed") |#1|)) (-15 -2256 (|#1| (-989))) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-989) |#1|)) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-989) |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 ((-703) |#1|)) (-15 -1339 (|#1| |#2| (-703))) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2349 ((-703) |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3127 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-989) (-703))) (-15 -3127 (|#1| |#1| (-583 (-989)))) (-15 -3127 (|#1| |#1| (-989))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|))) (-1130 |#2|) (-961)) (T -1129))
+NIL
+(-10 -8 (-15 -2256 (|#1| |#1|)) (-15 -1862 ((-1069 |#1|) (-1069 |#1|) (-1069 |#1|))) (-15 -2759 ((-388 |#1|) |#1|)) (-15 -2535 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2836 (|#1|)) (-15 -1319 ((-3 |#1| "failed") |#1|)) (-15 -1449 ((-377 |#1|) |#1| (-377 |#1|))) (-15 -3146 ((-703) |#1|)) (-15 -1306 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4151 (|#1| |#1|)) (-15 -1449 (|#2| (-377 |#1|) |#2|)) (-15 -2316 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1874 ((-2 (|:| -1931 |#2|) (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -3793 ((-3 (-377 |#1|) "failed") (-377 |#1|) |#1|)) (-15 -3793 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3972 ((-703) |#1| |#1|)) (-15 -1449 ((-377 |#1|) (-377 |#1|) (-377 |#1|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2882 (|#1| |#1| (-703))) (-15 -2241 (|#1| |#1| (-703))) (-15 -4055 ((-2 (|:| -3425 |#1|) (|:| -3060 |#1|)) |#1| (-703))) (-15 -2532 (|#1| (-1069 |#2|))) (-15 -1548 ((-1069 |#2|) |#1|)) (-15 -2490 ((-1153 |#2|) |#1| (-703))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3127 (|#1| |#1| (-1 |#2| |#2|) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-1073) (-703))) (-15 -3127 (|#1| |#1| (-583 (-1073)))) (-15 -3127 (|#1| |#1| (-1073))) (-15 -3127 (|#1| |#1|)) (-15 -3127 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| |#1|)) (-15 -1449 (|#2| |#1| |#2|)) (-15 -3755 ((-388 |#1|) |#1|)) (-15 -3143 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2209 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -2561 ((-388 (-1069 |#1|)) (-1069 |#1|))) (-15 -3179 ((-3 (-583 (-1069 |#1|)) "failed") (-583 (-1069 |#1|)) (-1069 |#1|))) (-15 -3266 (|#1| |#1| (-989))) (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1369 ((-703) |#1| (-583 (-989)))) (-15 -1369 ((-703) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -1339 (|#1| |#1| (-989) (-703))) (-15 -2349 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -2349 ((-703) |#1| (-989))) (-15 -1409 ((-3 (-989) "failed") |#1|)) (-15 -3688 ((-583 (-703)) |#1| (-583 (-989)))) (-15 -3688 ((-703) |#1| (-989))) (-15 -3189 ((-989) |#1|)) (-15 -1772 ((-3 (-989) "failed") |#1|)) (-15 -2256 (|#1| (-989))) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#1|))) (-15 -2051 (|#1| |#1| (-989) |#1|)) (-15 -2051 (|#1| |#1| (-583 (-989)) (-583 |#2|))) (-15 -2051 (|#1| |#1| (-989) |#2|)) (-15 -2051 (|#1| |#1| (-583 |#1|) (-583 |#1|))) (-15 -2051 (|#1| |#1| |#1| |#1|)) (-15 -2051 (|#1| |#1| (-265 |#1|))) (-15 -2051 (|#1| |#1| (-583 (-265 |#1|)))) (-15 -3688 ((-703) |#1|)) (-15 -1339 (|#1| |#2| (-703))) (-15 -3189 ((-517) |#1|)) (-15 -1772 ((-3 (-517) "failed") |#1|)) (-15 -3189 ((-377 (-517)) |#1|)) (-15 -1772 ((-3 (-377 (-517)) "failed") |#1|)) (-15 -2256 (|#1| |#2|)) (-15 -1772 ((-3 |#2| "failed") |#1|)) (-15 -3189 (|#2| |#1|)) (-15 -2349 ((-703) |#1|)) (-15 -3266 (|#2| |#1|)) (-15 -3127 (|#1| |#1| (-583 (-989)) (-583 (-703)))) (-15 -3127 (|#1| |#1| (-989) (-703))) (-15 -3127 (|#1| |#1| (-583 (-989)))) (-15 -3127 (|#1| |#1| (-989))) (-15 -2256 (|#1| (-517))) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2490 (((-1153 |#1|) $ (-703)) 238)) (-1364 (((-583 (-989)) $) 110)) (-2532 (($ (-1069 |#1|)) 236)) (-2352 (((-1069 $) $ (-989)) 125) (((-1069 |#1|) $) 124)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 87 (|has| |#1| (-509)))) (-1213 (($ $) 88 (|has| |#1| (-509)))) (-2454 (((-107) $) 90 (|has| |#1| (-509)))) (-1369 (((-703) $) 112) (((-703) $ (-583 (-989))) 111)) (-4038 (((-3 $ "failed") $ $) 19)) (-3081 (($ $ $) 223 (|has| |#1| (-509)))) (-3143 (((-388 (-1069 $)) (-1069 $)) 100 (|has| |#1| (-831)))) (-2535 (($ $) 98 (|has| |#1| (-421)))) (-2759 (((-388 $) $) 97 (|has| |#1| (-421)))) (-3179 (((-3 (-583 (-1069 $)) "failed") (-583 (-1069 $)) (-1069 $)) 103 (|has| |#1| (-831)))) (-1707 (((-107) $ $) 208 (|has| |#1| (-333)))) (-2241 (($ $ (-703)) 231)) (-2882 (($ $ (-703)) 230)) (-2316 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-421)))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 164) (((-3 (-377 (-517)) "failed") $) 162 (|has| |#1| (-952 (-377 (-517))))) (((-3 (-517) "failed") $) 160 (|has| |#1| (-952 (-517)))) (((-3 (-989) "failed") $) 136)) (-3189 ((|#1| $) 165) (((-377 (-517)) $) 161 (|has| |#1| (-952 (-377 (-517))))) (((-517) $) 159 (|has| |#1| (-952 (-517)))) (((-989) $) 135)) (-3388 (($ $ $ (-989)) 108 (|has| |#1| (-156))) ((|#1| $ $) 226 (|has| |#1| (-156)))) (-2518 (($ $ $) 212 (|has| |#1| (-333)))) (-1212 (($ $) 154)) (-3355 (((-623 (-517)) (-623 $)) 134 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 (-517))) (|:| |vec| (-1153 (-517)))) (-623 $) (-1153 $)) 133 (|has| |#1| (-579 (-517)))) (((-2 (|:| -2790 (-623 |#1|)) (|:| |vec| (-1153 |#1|))) (-623 $) (-1153 $)) 132) (((-623 |#1|) (-623 $)) 131)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 211 (|has| |#1| (-333)))) (-2704 (($ $ $) 229)) (-4080 (($ $ $) 220 (|has| |#1| (-509)))) (-1874 (((-2 (|:| -1931 |#1|) (|:| -3425 $) (|:| -3060 $)) $ $) 219 (|has| |#1| (-509)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 206 (|has| |#1| (-333)))) (-3534 (($ $) 176 (|has| |#1| (-421))) (($ $ (-989)) 105 (|has| |#1| (-421)))) (-1201 (((-583 $) $) 109)) (-3849 (((-107) $) 96 (|has| |#1| (-831)))) (-1436 (($ $ |#1| (-703) $) 172)) (-4057 (((-811 (-349) $) $ (-814 (-349)) (-811 (-349) $)) 84 (-12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349))))) (((-811 (-517) $) $ (-814 (-517)) (-811 (-517) $)) 83 (-12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))))) (-3972 (((-703) $ $) 224 (|has| |#1| (-509)))) (-3848 (((-107) $) 31)) (-1577 (((-703) $) 169)) (-1319 (((-3 $ "failed") $) 204 (|has| |#1| (-1049)))) (-1350 (($ (-1069 |#1|) (-989)) 117) (($ (-1069 $) (-989)) 116)) (-3430 (($ $ (-703)) 235)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 215 (|has| |#1| (-333)))) (-4094 (((-583 $) $) 126)) (-4031 (((-107) $) 152)) (-1339 (($ |#1| (-703)) 153) (($ $ (-989) (-703)) 119) (($ $ (-583 (-989)) (-583 (-703))) 118)) (-2711 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $ (-989)) 120) (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 233)) (-2349 (((-703) $) 170) (((-703) $ (-989)) 122) (((-583 (-703)) $ (-583 (-989))) 121)) (-2967 (($ $ $) 79 (|has| |#1| (-779)))) (-3099 (($ $ $) 78 (|has| |#1| (-779)))) (-3328 (($ (-1 (-703) (-703)) $) 171)) (-1893 (($ (-1 |#1| |#1|) $) 151)) (-1548 (((-1069 |#1|) $) 237)) (-1409 (((-3 (-989) "failed") $) 123)) (-4152 (($ $) 149)) (-1191 ((|#1| $) 148)) (-1365 (($ (-583 $)) 94 (|has| |#1| (-421))) (($ $ $) 93 (|has| |#1| (-421)))) (-3985 (((-1056) $) 9)) (-4055 (((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703)) 232)) (-3703 (((-3 (-583 $) "failed") $) 114)) (-3401 (((-3 (-583 $) "failed") $) 115)) (-3174 (((-3 (-2 (|:| |var| (-989)) (|:| -2077 (-703))) "failed") $) 113)) (-4151 (($ $) 216 (|has| |#1| (-37 (-377 (-517)))))) (-2836 (($) 203 (|has| |#1| (-1049)) CONST)) (-3206 (((-1021) $) 10)) (-4127 (((-107) $) 166)) (-4141 ((|#1| $) 167)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 95 (|has| |#1| (-421)))) (-1401 (($ (-583 $)) 92 (|has| |#1| (-421))) (($ $ $) 91 (|has| |#1| (-421)))) (-2561 (((-388 (-1069 $)) (-1069 $)) 102 (|has| |#1| (-831)))) (-2209 (((-388 (-1069 $)) (-1069 $)) 101 (|has| |#1| (-831)))) (-3755 (((-388 $) $) 99 (|has| |#1| (-831)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 213 (|has| |#1| (-333)))) (-2476 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-509))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 207 (|has| |#1| (-333)))) (-2051 (($ $ (-583 (-265 $))) 145) (($ $ (-265 $)) 144) (($ $ $ $) 143) (($ $ (-583 $) (-583 $)) 142) (($ $ (-989) |#1|) 141) (($ $ (-583 (-989)) (-583 |#1|)) 140) (($ $ (-989) $) 139) (($ $ (-583 (-989)) (-583 $)) 138)) (-3146 (((-703) $) 209 (|has| |#1| (-333)))) (-1449 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-377 $) (-377 $) (-377 $)) 225 (|has| |#1| (-509))) ((|#1| (-377 $) |#1|) 217 (|has| |#1| (-333))) (((-377 $) $ (-377 $)) 205 (|has| |#1| (-509)))) (-3504 (((-3 $ "failed") $ (-703)) 234)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 210 (|has| |#1| (-333)))) (-3010 (($ $ (-989)) 107 (|has| |#1| (-156))) ((|#1| $) 227 (|has| |#1| (-156)))) (-3127 (($ $ (-989)) 42) (($ $ (-583 (-989))) 41) (($ $ (-989) (-703)) 40) (($ $ (-583 (-989)) (-583 (-703))) 39) (($ $ (-703)) 253) (($ $) 251) (($ $ (-1073)) 250 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 249 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 248 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 247 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-3688 (((-703) $) 150) (((-703) $ (-989)) 130) (((-583 (-703)) $ (-583 (-989))) 129)) (-3645 (((-814 (-349)) $) 82 (-12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349)))))) (((-814 (-517)) $) 81 (-12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517)))))) (((-493) $) 80 (-12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))))) (-3266 ((|#1| $) 175 (|has| |#1| (-421))) (($ $ (-989)) 106 (|has| |#1| (-421)))) (-3870 (((-3 (-1153 $) "failed") (-623 $)) 104 (-4035 (|has| $ (-132)) (|has| |#1| (-831))))) (-3793 (((-3 $ "failed") $ $) 222 (|has| |#1| (-509))) (((-3 (-377 $) "failed") (-377 $) $) 221 (|has| |#1| (-509)))) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 163) (($ (-989)) 137) (($ (-377 (-517))) 72 (-3807 (|has| |#1| (-952 (-377 (-517)))) (|has| |#1| (-37 (-377 (-517)))))) (($ $) 85 (|has| |#1| (-509)))) (-1311 (((-583 |#1|) $) 168)) (-2720 ((|#1| $ (-703)) 155) (($ $ (-989) (-703)) 128) (($ $ (-583 (-989)) (-583 (-703))) 127)) (-1328 (((-3 $ "failed") $) 73 (-3807 (-4035 (|has| $ (-132)) (|has| |#1| (-831))) (|has| |#1| (-132))))) (-2961 (((-703)) 29)) (-2053 (($ $ $ (-703)) 173 (|has| |#1| (-156)))) (-3329 (((-107) $ $) 89 (|has| |#1| (-509)))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-989)) 38) (($ $ (-583 (-989))) 37) (($ $ (-989) (-703)) 36) (($ $ (-583 (-989)) (-583 (-703))) 35) (($ $ (-703)) 254) (($ $) 252) (($ $ (-1073)) 246 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073))) 245 (|has| |#1| (-822 (-1073)))) (($ $ (-1073) (-703)) 244 (|has| |#1| (-822 (-1073)))) (($ $ (-583 (-1073)) (-583 (-703))) 243 (|has| |#1| (-822 (-1073)))) (($ $ (-1 |#1| |#1|) (-703)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1606 (((-107) $ $) 76 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 75 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 6)) (-1595 (((-107) $ $) 77 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 74 (|has| |#1| (-779)))) (-1667 (($ $ |#1|) 156 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 158 (|has| |#1| (-37 (-377 (-517))))) (($ (-377 (-517)) $) 157 (|has| |#1| (-37 (-377 (-517))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1130 |#1|) (-1184) (-961)) (T -1130))
+((-2490 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1130 *3)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-3504 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-2711 (*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))) (-4055 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *4)))) (-2241 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-2882 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-2704 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)))) (-3127 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-3388 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))) (-1449 (*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-3972 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) (-3081 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-3793 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-3793 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) (-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) (-1874 (*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1931 *3) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))) (-2316 (*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1130 *3)))) (-1449 (*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))))
+(-13 (-871 |t#1| (-703) (-989)) (-258 |t#1| |t#1|) (-258 $ $) (-207) (-205 |t#1|) (-10 -8 (-15 -2490 ((-1153 |t#1|) $ (-703))) (-15 -1548 ((-1069 |t#1|) $)) (-15 -2532 ($ (-1069 |t#1|))) (-15 -3430 ($ $ (-703))) (-15 -3504 ((-3 $ "failed") $ (-703))) (-15 -2711 ((-2 (|:| -3425 $) (|:| -3060 $)) $ $)) (-15 -4055 ((-2 (|:| -3425 $) (|:| -3060 $)) $ (-703))) (-15 -2241 ($ $ (-703))) (-15 -2882 ($ $ (-703))) (-15 -2704 ($ $ $)) (-15 -3127 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1049)) (-6 (-1049)) |noBranch|) (IF (|has| |t#1| (-156)) (PROGN (-15 -3010 (|t#1| $)) (-15 -3388 (|t#1| $ $))) |noBranch|) (IF (|has| |t#1| (-509)) (PROGN (-6 (-258 (-377 $) (-377 $))) (-15 -1449 ((-377 $) (-377 $) (-377 $))) (-15 -3972 ((-703) $ $)) (-15 -3081 ($ $ $)) (-15 -3793 ((-3 $ "failed") $ $)) (-15 -3793 ((-3 (-377 $) "failed") (-377 $) $)) (-15 -4080 ($ $ $)) (-15 -1874 ((-2 (|:| -1931 |t#1|) (|:| -3425 $) (|:| -3060 $)) $ $))) |noBranch|) (IF (|has| |t#1| (-421)) (-15 -2316 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |noBranch|) (IF (|has| |t#1| (-333)) (PROGN (-6 (-278)) (-6 -4176) (-15 -1449 (|t#1| (-377 $) |t#1|))) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (-15 -4151 ($ $)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-558 (-493)) -12 (|has| (-989) (-558 (-493))) (|has| |#1| (-558 (-493)))) ((-558 (-814 (-349))) -12 (|has| (-989) (-558 (-814 (-349)))) (|has| |#1| (-558 (-814 (-349))))) ((-558 (-814 (-517))) -12 (|has| (-989) (-558 (-814 (-517)))) (|has| |#1| (-558 (-814 (-517))))) ((-205 |#1|) . T) ((-207) . T) ((-258 (-377 $) (-377 $)) |has| |#1| (-509)) ((-258 |#1| |#1|) . T) ((-258 $ $) . T) ((-262) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-280 $) . T) ((-296 |#1| (-703)) . T) ((-347 |#1|) . T) ((-381 |#1|) . T) ((-421) -3807 (|has| |#1| (-831)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-478 (-989) |#1|) . T) ((-478 (-989) $) . T) ((-478 $ $) . T) ((-509) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-579 (-517)) |has| |#1| (-579 (-517))) ((-579 |#1|) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333))) ((-659) . T) ((-779) |has| |#1| (-779)) ((-822 (-989)) . T) ((-822 (-1073)) |has| |#1| (-822 (-1073))) ((-808 (-349)) -12 (|has| (-989) (-808 (-349))) (|has| |#1| (-808 (-349)))) ((-808 (-517)) -12 (|has| (-989) (-808 (-517))) (|has| |#1| (-808 (-517)))) ((-871 |#1| (-703) (-989)) . T) ((-831) |has| |#1| (-831)) ((-842) |has| |#1| (-333)) ((-952 (-377 (-517))) |has| |#1| (-952 (-377 (-517)))) ((-952 (-517)) |has| |#1| (-952 (-517))) ((-952 (-989)) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-831)) (|has| |#1| (-509)) (|has| |#1| (-421)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1049) |has| |#1| (-1049)) ((-1112) |has| |#1| (-831)))
+((-1364 (((-583 (-989)) $) 28)) (-1212 (($ $) 25)) (-1339 (($ |#2| |#3|) NIL) (($ $ (-989) |#3|) 22) (($ $ (-583 (-989)) (-583 |#3|)) 20)) (-4152 (($ $) 14)) (-1191 ((|#2| $) 12)) (-3688 ((|#3| $) 10)))
+(((-1131 |#1| |#2| |#3|) (-10 -8 (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1339 (|#1| |#1| (-989) |#3|)) (-15 -1212 (|#1| |#1|)) (-15 -1339 (|#1| |#2| |#3|)) (-15 -3688 (|#3| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -1191 (|#2| |#1|))) (-1132 |#2| |#3|) (-961) (-724)) (T -1131))
+NIL
+(-10 -8 (-15 -1364 ((-583 (-989)) |#1|)) (-15 -1339 (|#1| |#1| (-583 (-989)) (-583 |#3|))) (-15 -1339 (|#1| |#1| (-989) |#3|)) (-15 -1212 (|#1| |#1|)) (-15 -1339 (|#1| |#2| |#3|)) (-15 -3688 (|#3| |#1|)) (-15 -4152 (|#1| |#1|)) (-15 -1191 (|#2| |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2223 (((-1054 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3201 (((-107) $) 73)) (-3972 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-3848 (((-107) $) 31)) (-3430 (($ $ (-843)) 101)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| |#2|) 61) (($ $ (-989) |#2|) 76) (($ $ (-583 (-989)) (-583 |#2|)) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-1672 (($ $ |#2|) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1449 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3688 ((|#2| $) 64)) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-2720 ((|#1| $ |#2|) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3383 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1132 |#1| |#2|) (-1184) (-961) (-724)) (T -1132))
+((-2223 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1054 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1449 (*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-1638 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1073)))) (-2986 (*1 *2 *1) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) (-3972 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3972 (*1 *2 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1974 (*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-1974 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-3383 (*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2256 (*2 (-1073)))) (-4 *2 (-961)))) (-1672 (*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) (-2051 (*1 *2 *1 *3) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1054 *3)))))
+(-13 (-890 |t#1| |t#2| (-989)) (-10 -8 (-15 -2223 ((-1054 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1449 (|t#1| $ |t#2|)) (-15 -1638 ((-1073) $)) (-15 -2986 (|t#1| $)) (-15 -3430 ($ $ (-843))) (-15 -3972 (|t#2| $)) (-15 -3972 (|t#2| $ |t#2|)) (-15 -1974 ($ $ |t#2|)) (-15 -1974 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2256 (|t#1| (-1073)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3383 (|t#1| $ |t#2|)) |noBranch|) |noBranch|) (-15 -1672 ($ $ |t#2|)) (IF (|has| |t#2| (-1015)) (-6 (-258 $ $)) |noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-207)) (IF (|has| |t#1| (-822 (-1073))) (-6 (-822 (-1073))) |noBranch|)) |noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2051 ((-1054 |t#1|) $ |t#1|)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-258 $ $) |has| |#2| (-1015)) ((-262) |has| |#1| (-509)) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| |#2| (-989)) . T) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2535 ((|#2| |#2|) 12)) (-2759 (((-388 |#2|) |#2|) 14)) (-3971 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))) 30)))
+(((-1133 |#1| |#2|) (-10 -7 (-15 -2759 ((-388 |#2|) |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3971 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517)))))) (-509) (-13 (-1130 |#1|) (-509) (-10 -8 (-15 -1401 ($ $ $))))) (T -1133))
+((-3971 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1133 *3 *4)))) (-2535 (*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1133 *3 *2)) (-4 *2 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1133 *4 *3)) (-4 *3 (-13 (-1130 *4) (-509) (-10 -8 (-15 -1401 ($ $ $))))))))
+(-10 -7 (-15 -2759 ((-388 |#2|) |#2|)) (-15 -2535 (|#2| |#2|)) (-15 -3971 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-517))))))
+((-1893 (((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)) 23)))
+(((-1134 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1893 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|)))) (-961) (-961) (-1073) (-1073) |#1| |#2|) (T -1134))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1134 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))))
+(-10 -7 (-15 -1893 ((-1139 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1139 |#1| |#3| |#5|))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1135 |#1|) (-1184) (-961)) (T -1135))
+((-2925 (*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1135 *4)))) (-3430 (*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1135 *3)) (-4 *3 (-961)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-4151 (*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1132 |t#1| (-377 (-517))) (-10 -8 (-15 -2925 ($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |t#1|))))) (-15 -3430 ($ $ (-377 (-517)))) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (IF (|has| |t#1| (-15 -4151 (|t#1| |t#1| (-1073)))) (IF (|has| |t#1| (-15 -1364 ((-583 (-1073)) |t#1|))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1094))) |noBranch|) (IF (|has| |t#1| (-333)) (-6 (-333)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1132 |#1| (-377 (-517))) . T))
+((-2814 (((-107) $) 12)) (-1772 (((-3 |#3| "failed") $) 17)) (-3189 ((|#3| $) 14)))
+(((-1136 |#1| |#2| |#3|) (-10 -8 (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|))) (-1137 |#2| |#3|) (-961) (-1114 |#2|)) (T -1136))
+NIL
+(-10 -8 (-15 -3189 (|#3| |#1|)) (-15 -1772 ((-3 |#3| "failed") |#1|)) (-15 -2814 ((-107) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) 98) (($ $ (-377 (-517)) (-377 (-517))) 97)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 162 (|has| |#1| (-333)))) (-2759 (((-388 $) $) 163 (|has| |#1| (-333)))) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) 153 (|has| |#1| (-333)))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 172)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#2| "failed") $) 183)) (-3189 ((|#2| $) 182)) (-2518 (($ $ $) 157 (|has| |#1| (-333)))) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-3598 (((-377 (-517)) $) 180)) (-2497 (($ $ $) 156 (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) |#2|) 181)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 151 (|has| |#1| (-333)))) (-3849 (((-107) $) 164 (|has| |#1| (-333)))) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) 100) (((-377 (-517)) $ (-377 (-517))) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101) (($ $ (-377 (-517))) 171)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 160 (|has| |#1| (-333)))) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-377 (-517))) 61) (($ $ (-989) (-377 (-517))) 76) (($ $ (-583 (-989)) (-583 (-377 (-517)))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-1365 (($ (-583 $)) 149 (|has| |#1| (-333))) (($ $ $) 148 (|has| |#1| (-333)))) (-3721 ((|#2| $) 179)) (-2354 (((-3 |#2| "failed") $) 177)) (-1601 ((|#2| $) 178)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 165 (|has| |#1| (-333)))) (-4151 (($ $) 170 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 169 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 150 (|has| |#1| (-333)))) (-1401 (($ (-583 $)) 147 (|has| |#1| (-333))) (($ $ $) 146 (|has| |#1| (-333)))) (-3755 (((-388 $) $) 161 (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 158 (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 152 (|has| |#1| (-333)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) 154 (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) 104) (($ $ $) 81 (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 155 (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 47 (|has| |#1| (-156))) (($ |#2|) 184) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 166 (|has| |#1| (-333)))) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333))) (($ $ $) 168 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 167 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1137 |#1| |#2|) (-1184) (-961) (-1114 |t#1|)) (T -1137))
+((-3688 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1137 *3 *2)) (-4 *2 (-1114 *3)))) (-1613 (*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1137 *4 *3)) (-4 *3 (-1114 *4)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))) (-3721 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))) (-1601 (*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))) (-2354 (*1 *2 *1) (|partial| -12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))))
+(-13 (-1135 |t#1|) (-952 |t#2|) (-10 -8 (-15 -1613 ($ (-377 (-517)) |t#2|)) (-15 -3598 ((-377 (-517)) $)) (-15 -3721 (|t#2| $)) (-15 -3688 ((-377 (-517)) $)) (-15 -2256 ($ |t#2|)) (-15 -1601 (|t#2| $)) (-15 -2354 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-377 (-517))) . T) ((-25) . T) ((-37 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) ((-217) |has| |#1| (-333)) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-377 (-517)) (-1015)) ((-262) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-278) |has| |#1| (-333)) ((-333) |has| |#1| (-333)) ((-421) |has| |#1| (-333)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-585 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333))) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-377 (-517)) (-989)) . T) ((-842) |has| |#1| (-333)) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-952 |#2|) . T) ((-967 (-377 (-517))) -3807 (|has| |#1| (-333)) (|has| |#1| (-37 (-377 (-517))))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-333)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1112) |has| |#1| (-333)) ((-1132 |#1| (-377 (-517))) . T) ((-1135 |#1|) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 96)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) 106) (($ $ (-377 (-517)) (-377 (-517))) 108)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) 51)) (-1865 (($ $) 179 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 155 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) 175 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 151 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) 61)) (-1887 (($ $) 183 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 159 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL)) (-3189 ((|#2| $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) 79)) (-3598 (((-377 (-517)) $) 12)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) |#2|) 10)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) 68)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) 103) (((-377 (-517)) $ (-377 (-517))) 104)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 120) (($ $ (-377 (-517))) 118)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) 31) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 115)) (-1867 (($ $) 149 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3721 ((|#2| $) 11)) (-2354 (((-3 |#2| "failed") $) 41)) (-1601 ((|#2| $) 42)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) 93 (|has| |#1| (-333)))) (-4151 (($ $) 135 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 140 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) 112)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) 147 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) 100) (($ $ $) 86 (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) 127 (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-3688 (((-377 (-517)) $) 16)) (-1898 (($ $) 185 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 161 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 181 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 157 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 177 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 153 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 110)) (-2256 (((-787) $) NIL) (($ (-517)) 35) (($ |#1|) 27 (|has| |#1| (-156))) (($ |#2|) 32) (($ (-377 (-517))) 128 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) 99)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) 117)) (-2986 ((|#1| $) 98)) (-3707 (($ $) 191 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 167 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) 187 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 163 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 195 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 171 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 197 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 173 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 193 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 169 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 189 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 165 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 21 T CONST)) (-2409 (($) 17 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) 66)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) 92 (|has| |#1| (-333)))) (-1654 (($ $) 131) (($ $ $) 72)) (-1642 (($ $ $) 70)) (** (($ $ (-843)) NIL) (($ $ (-703)) 76) (($ $ (-517)) 144 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 145 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1138 |#1| |#2|) (-1137 |#1| |#2|) (-961) (-1114 |#1|)) (T -1138))
+NIL
+(-1137 |#1| |#2|)
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 11)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) NIL (|has| |#1| (-509)))) (-1974 (($ $ (-377 (-517))) NIL) (($ $ (-377 (-517)) (-377 (-517))) NIL)) (-2223 (((-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|))) $) NIL)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-2535 (($ $) NIL (|has| |#1| (-333)))) (-2759 (((-388 $) $) NIL (|has| |#1| (-333)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1707 (((-107) $ $) NIL (|has| |#1| (-333)))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-703) (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#1|)))) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-1118 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1146 |#1| |#2| |#3|) "failed") $) 22)) (-3189 (((-1118 |#1| |#2| |#3|) $) NIL) (((-1146 |#1| |#2| |#3|) $) NIL)) (-2518 (($ $ $) NIL (|has| |#1| (-333)))) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-3598 (((-377 (-517)) $) 57)) (-2497 (($ $ $) NIL (|has| |#1| (-333)))) (-1613 (($ (-377 (-517)) (-1118 |#1| |#2| |#3|)) NIL)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) NIL (|has| |#1| (-333)))) (-3849 (((-107) $) NIL (|has| |#1| (-333)))) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-377 (-517)) $) NIL) (((-377 (-517)) $ (-377 (-517))) NIL)) (-3848 (((-107) $) NIL)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) NIL) (($ $ (-377 (-517))) NIL)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-377 (-517))) 29) (($ $ (-989) (-377 (-517))) NIL) (($ $ (-583 (-989)) (-583 (-377 (-517)))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-1365 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3721 (((-1118 |#1| |#2| |#3|) $) 60)) (-2354 (((-3 (-1118 |#1| |#2| |#3|) "failed") $) NIL)) (-1601 (((-1118 |#1| |#2| |#3|) $) NIL)) (-3985 (((-1056) $) NIL)) (-4118 (($ $) NIL (|has| |#1| (-333)))) (-4151 (($ $) 38 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) NIL (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 39 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) NIL (|has| |#1| (-333)))) (-1401 (($ (-583 $)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-3755 (((-388 $) $) NIL (|has| |#1| (-333)))) (-2069 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-333))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) NIL (|has| |#1| (-333)))) (-1672 (($ $ (-377 (-517))) NIL)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-1737 (((-3 (-583 $) "failed") (-583 $) $) NIL (|has| |#1| (-333)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))))) (-3146 (((-703) $) NIL (|has| |#1| (-333)))) (-1449 ((|#1| $ (-377 (-517))) NIL) (($ $ $) NIL (|has| (-377 (-517)) (-1015)))) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) NIL (|has| |#1| (-333)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) 36 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $ (-1149 |#2|)) 37)) (-3688 (((-377 (-517)) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) NIL)) (-2256 (((-787) $) 87) (($ (-517)) NIL) (($ |#1|) NIL (|has| |#1| (-156))) (($ (-1118 |#1| |#2| |#3|)) 16) (($ (-1146 |#1| |#2| |#3|)) 17) (($ (-1149 |#2|)) 35) (($ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509)))) (-2720 ((|#1| $ (-377 (-517))) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 12)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-377 (-517))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-377 (-517))))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333)))) (-2396 (($) 31 T CONST)) (-2409 (($) 26 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-377 (-517)) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 33)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ (-517)) NIL (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1139 |#1| |#2| |#3|) (-13 (-1137 |#1| (-1118 |#1| |#2| |#3|)) (-952 (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1139))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1137 |#1| (-1118 |#1| |#2| |#3|)) (-952 (-1146 |#1| |#2| |#3|)) (-10 -8 (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 32)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL)) (-1213 (($ $) NIL)) (-2454 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 (-517) "failed") $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-517)))) (((-3 (-377 (-517)) "failed") $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-3 (-1139 |#2| |#3| |#4|) "failed") $) 20)) (-3189 (((-517) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-517)))) (((-377 (-517)) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-952 (-377 (-517))))) (((-1139 |#2| |#3| |#4|) $) NIL)) (-1212 (($ $) 33)) (-3621 (((-3 $ "failed") $) 25)) (-3534 (($ $) NIL (|has| (-1139 |#2| |#3| |#4|) (-421)))) (-1436 (($ $ (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|) $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) 11)) (-4031 (((-107) $) NIL)) (-1339 (($ (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) 23)) (-2349 (((-289 |#2| |#3| |#4|) $) NIL)) (-3328 (($ (-1 (-289 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) $) NIL)) (-1893 (($ (-1 (-1139 |#2| |#3| |#4|) (-1139 |#2| |#3| |#4|)) $) NIL)) (-3020 (((-3 (-772 |#2|) "failed") $) 72)) (-4152 (($ $) NIL)) (-1191 (((-1139 |#2| |#3| |#4|) $) 18)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-4127 (((-107) $) NIL)) (-4141 (((-1139 |#2| |#3| |#4|) $) NIL)) (-2476 (((-3 $ "failed") $ (-1139 |#2| |#3| |#4|)) NIL (|has| (-1139 |#2| |#3| |#4|) (-509))) (((-3 $ "failed") $ $) NIL)) (-1389 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1056))) "failed") $) 55)) (-3688 (((-289 |#2| |#3| |#4|) $) 14)) (-3266 (((-1139 |#2| |#3| |#4|) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-421)))) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ (-1139 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-377 (-517))) NIL (-3807 (|has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))) (|has| (-1139 |#2| |#3| |#4|) (-952 (-377 (-517))))))) (-1311 (((-583 (-1139 |#2| |#3| |#4|)) $) NIL)) (-2720 (((-1139 |#2| |#3| |#4|) $ (-289 |#2| |#3| |#4|)) NIL)) (-1328 (((-3 $ "failed") $) NIL (|has| (-1139 |#2| |#3| |#4|) (-132)))) (-2961 (((-703)) NIL)) (-2053 (($ $ $ (-703)) NIL (|has| (-1139 |#2| |#3| |#4|) (-156)))) (-3329 (((-107) $ $) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 60 T CONST)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ (-1139 |#2| |#3| |#4|)) NIL (|has| (-1139 |#2| |#3| |#4|) (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ (-1139 |#2| |#3| |#4|)) NIL) (($ (-1139 |#2| |#3| |#4|) $) NIL) (($ (-377 (-517)) $) NIL (|has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| (-1139 |#2| |#3| |#4|) (-37 (-377 (-517)))))))
+(((-1140 |#1| |#2| |#3| |#4|) (-13 (-296 (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -1389 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1056))) "failed") $)))) (-13 (-779) (-952 (-517)) (-579 (-517)) (-421)) (-13 (-27) (-1094) (-400 |#1|)) (-1073) |#2|) (T -1140))
+((-3020 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))) (-1389 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1056)))) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))))
+(-13 (-296 (-1139 |#2| |#3| |#4|) (-289 |#2| |#3| |#4|)) (-509) (-10 -8 (-15 -3020 ((-3 (-772 |#2|) "failed") $)) (-15 -1389 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 |#2| |#3| |#4|)) (|:| |%expon| (-289 |#2| |#3| |#4|)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| |#2|)))))) (|:| |%type| (-1056))) "failed") $))))
+((-3199 ((|#2| $) 28)) (-3005 ((|#2| $) 18)) (-2779 (($ $) 35)) (-1345 (($ $ (-517)) 63)) (-2953 (((-107) $ (-703)) 32)) (-1918 ((|#2| $ |#2|) 60)) (-3781 ((|#2| $ |#2|) 58)) (-2411 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 51) (($ $ "rest" $) 55) ((|#2| $ "last" |#2|) 53)) (-4040 (($ $ (-583 $)) 59)) (-2993 ((|#2| $) 17)) (-1660 (($ $) NIL) (($ $ (-703)) 41)) (-3063 (((-583 $) $) 25)) (-1272 (((-107) $ $) 49)) (-2550 (((-107) $ (-703)) 31)) (-3847 (((-107) $ (-703)) 30)) (-1763 (((-107) $) 27)) (-2068 ((|#2| $) 23) (($ $ (-703)) 45)) (-1449 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2655 (((-107) $) 21)) (-2552 (($ $) 38)) (-3406 (($ $) 64)) (-2691 (((-703) $) 40)) (-1761 (($ $) 39)) (-2452 (($ $ $) 57) (($ |#2| $) NIL)) (-1479 (((-583 $) $) 26)) (-1547 (((-107) $ $) 47)) (-2296 (((-703) $) 34)))
+(((-1141 |#1| |#2|) (-10 -8 (-15 -1345 (|#1| |#1| (-517))) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -3781 (|#2| |#1| |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -3406 (|#1| |#1|)) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -3005 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1449 (|#2| |#1| "first")) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -1918 (|#2| |#1| |#2|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -4040 (|#1| |#1| (-583 |#1|))) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703)))) (-1142 |#2|) (-1108)) (T -1141))
+NIL
+(-10 -8 (-15 -1345 (|#1| |#1| (-517))) (-15 -2411 (|#2| |#1| "last" |#2|)) (-15 -3781 (|#2| |#1| |#2|)) (-15 -2411 (|#1| |#1| "rest" |#1|)) (-15 -2411 (|#2| |#1| "first" |#2|)) (-15 -3406 (|#1| |#1|)) (-15 -2552 (|#1| |#1|)) (-15 -2691 ((-703) |#1|)) (-15 -1761 (|#1| |#1|)) (-15 -3005 (|#2| |#1|)) (-15 -2993 (|#2| |#1|)) (-15 -2779 (|#1| |#1|)) (-15 -2068 (|#1| |#1| (-703))) (-15 -1449 (|#2| |#1| "last")) (-15 -2068 (|#2| |#1|)) (-15 -1660 (|#1| |#1| (-703))) (-15 -1449 (|#1| |#1| "rest")) (-15 -1660 (|#1| |#1|)) (-15 -1449 (|#2| |#1| "first")) (-15 -2452 (|#1| |#2| |#1|)) (-15 -2452 (|#1| |#1| |#1|)) (-15 -1918 (|#2| |#1| |#2|)) (-15 -2411 (|#2| |#1| "value" |#2|)) (-15 -4040 (|#1| |#1| (-583 |#1|))) (-15 -1272 ((-107) |#1| |#1|)) (-15 -2655 ((-107) |#1|)) (-15 -1449 (|#2| |#1| "value")) (-15 -3199 (|#2| |#1|)) (-15 -1763 ((-107) |#1|)) (-15 -3063 ((-583 |#1|) |#1|)) (-15 -1479 ((-583 |#1|) |#1|)) (-15 -1547 ((-107) |#1| |#1|)) (-15 -2296 ((-703) |#1|)) (-15 -2953 ((-107) |#1| (-703))) (-15 -2550 ((-107) |#1| (-703))) (-15 -3847 ((-107) |#1| (-703))))
+((-2750 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-3199 ((|#1| $) 48)) (-3005 ((|#1| $) 65)) (-2779 (($ $) 67)) (-1345 (($ $ (-517)) 52 (|has| $ (-6 -4181)))) (-2953 (((-107) $ (-703)) 8)) (-1918 ((|#1| $ |#1|) 39 (|has| $ (-6 -4181)))) (-3096 (($ $ $) 56 (|has| $ (-6 -4181)))) (-3781 ((|#1| $ |#1|) 54 (|has| $ (-6 -4181)))) (-3042 ((|#1| $ |#1|) 58 (|has| $ (-6 -4181)))) (-2411 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4181))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4181))) (($ $ "rest" $) 55 (|has| $ (-6 -4181))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4181)))) (-4040 (($ $ (-583 $)) 41 (|has| $ (-6 -4181)))) (-2993 ((|#1| $) 66)) (-3092 (($) 7 T CONST)) (-1660 (($ $) 73) (($ $ (-703)) 71)) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-3063 (((-583 $) $) 50)) (-1272 (((-107) $ $) 42 (|has| |#1| (-1003)))) (-2550 (((-107) $ (-703)) 9)) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35)) (-3847 (((-107) $ (-703)) 10)) (-3992 (((-583 |#1|) $) 45)) (-1763 (((-107) $) 49)) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2068 ((|#1| $) 70) (($ $ (-703)) 68)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 76) (($ $ (-703)) 74)) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2459 (((-517) $ $) 44)) (-2655 (((-107) $) 46)) (-2552 (($ $) 62)) (-3406 (($ $) 59 (|has| $ (-6 -4181)))) (-2691 (((-703) $) 63)) (-1761 (($ $) 64)) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2433 (($ $) 13)) (-2568 (($ $ $) 61 (|has| $ (-6 -4181))) (($ $ |#1|) 60 (|has| $ (-6 -4181)))) (-2452 (($ $ $) 78) (($ |#1| $) 77)) (-2256 (((-787) $) 18 (|has| |#1| (-557 (-787))))) (-1479 (((-583 $) $) 51)) (-2732 (((-107) $ $) 43 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1547 (((-107) $ $) 20 (|has| |#1| (-1003)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-1142 |#1|) (-1184) (-1108)) (T -1142))
+((-2452 (*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2452 (*1 *1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1647 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-1660 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1449 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-1660 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-2068 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1449 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2068 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-2779 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2993 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1761 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) (-2552 (*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2568 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3406 (*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3042 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-3096 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2411 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) (-3781 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-2411 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) (-1345 (*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))))
+(-13 (-926 |t#1|) (-10 -8 (-15 -2452 ($ $ $)) (-15 -2452 ($ |t#1| $)) (-15 -1647 (|t#1| $)) (-15 -1449 (|t#1| $ "first")) (-15 -1647 ($ $ (-703))) (-15 -1660 ($ $)) (-15 -1449 ($ $ "rest")) (-15 -1660 ($ $ (-703))) (-15 -2068 (|t#1| $)) (-15 -1449 (|t#1| $ "last")) (-15 -2068 ($ $ (-703))) (-15 -2779 ($ $)) (-15 -2993 (|t#1| $)) (-15 -3005 (|t#1| $)) (-15 -1761 ($ $)) (-15 -2691 ((-703) $)) (-15 -2552 ($ $)) (IF (|has| $ (-6 -4181)) (PROGN (-15 -2568 ($ $ $)) (-15 -2568 ($ $ |t#1|)) (-15 -3406 ($ $)) (-15 -3042 (|t#1| $ |t#1|)) (-15 -2411 (|t#1| $ "first" |t#1|)) (-15 -3096 ($ $ $)) (-15 -2411 ($ $ "rest" $)) (-15 -3781 (|t#1| $ |t#1|)) (-15 -2411 (|t#1| $ "last" |t#1|)) (-15 -1345 ($ $ (-517)))) |noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1003)) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-557 (-787)))) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-456 |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-926 |#1|) . T) ((-1003) |has| |#1| (-1003)) ((-1108) . T))
+((-1893 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1143 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|))) (-961) (-961) (-1145 |#1|) (-1145 |#2|)) (T -1143))
+((-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6 *4 *2)) (-4 *4 (-1145 *5)))))
+(-10 -7 (-15 -1893 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2814 (((-107) $) 15)) (-1865 (($ $) 90)) (-1721 (($ $) 66)) (-1839 (($ $) 86)) (-1701 (($ $) 62)) (-1887 (($ $) 94)) (-1743 (($ $) 70)) (-1867 (($ $) 60)) (-2624 (($ $) 58)) (-1898 (($ $) 96)) (-1754 (($ $) 72)) (-1876 (($ $) 92)) (-1732 (($ $) 68)) (-1853 (($ $) 88)) (-1711 (($ $) 64)) (-2256 (((-787) $) 46) (($ (-517)) NIL) (($ (-377 (-517))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3707 (($ $) 102)) (-1788 (($ $) 78)) (-3683 (($ $) 98)) (-1765 (($ $) 74)) (-3731 (($ $) 106)) (-1814 (($ $) 82)) (-1492 (($ $) 108)) (-1827 (($ $) 84)) (-3719 (($ $) 104)) (-1802 (($ $) 80)) (-3695 (($ $) 100)) (-1777 (($ $) 76)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#2|) 50) (($ $ $) 53) (($ $ (-377 (-517))) 56)))
+(((-1144 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2814 ((-107) |#1|)) (-15 -2256 ((-787) |#1|))) (-1145 |#2|) (-961)) (T -1144))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-377 (-517)))) (-15 -1721 (|#1| |#1|)) (-15 -1701 (|#1| |#1|)) (-15 -1743 (|#1| |#1|)) (-15 -1754 (|#1| |#1|)) (-15 -1732 (|#1| |#1|)) (-15 -1711 (|#1| |#1|)) (-15 -1777 (|#1| |#1|)) (-15 -1802 (|#1| |#1|)) (-15 -1827 (|#1| |#1|)) (-15 -1814 (|#1| |#1|)) (-15 -1765 (|#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1876 (|#1| |#1|)) (-15 -1898 (|#1| |#1|)) (-15 -1887 (|#1| |#1|)) (-15 -1839 (|#1| |#1|)) (-15 -1865 (|#1| |#1|)) (-15 -3695 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -1492 (|#1| |#1|)) (-15 -3731 (|#1| |#1|)) (-15 -3683 (|#1| |#1|)) (-15 -3707 (|#1| |#1|)) (-15 -1867 (|#1| |#1|)) (-15 -2624 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2256 (|#1| |#2|)) (-15 -2256 (|#1| |#1|)) (-15 -2256 (|#1| (-377 (-517)))) (-15 -2256 (|#1| (-517))) (-15 ** (|#1| |#1| (-703))) (-15 ** (|#1| |#1| (-843))) (-15 -2814 ((-107) |#1|)) (-15 -2256 ((-787) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-1364 (((-583 (-989)) $) 74)) (-1638 (((-1073) $) 103)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 51 (|has| |#1| (-509)))) (-1213 (($ $) 52 (|has| |#1| (-509)))) (-2454 (((-107) $) 54 (|has| |#1| (-509)))) (-1974 (($ $ (-703)) 98) (($ $ (-703) (-703)) 97)) (-2223 (((-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 105)) (-1865 (($ $) 135 (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) 118 (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) 19)) (-3766 (($ $) 117 (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) 134 (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) 119 (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 155) (($ (-1054 |#1|)) 153)) (-1887 (($ $) 133 (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) 120 (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) 17 T CONST)) (-1212 (($ $) 60)) (-3621 (((-3 $ "failed") $) 34)) (-2328 (($ $) 152)) (-3520 (((-874 |#1|) $ (-703)) 150) (((-874 |#1|) $ (-703) (-703)) 149)) (-3201 (((-107) $) 73)) (-2645 (($) 145 (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $) 100) (((-703) $ (-703)) 99)) (-3848 (((-107) $) 31)) (-3824 (($ $ (-517)) 116 (|has| |#1| (-37 (-377 (-517)))))) (-3430 (($ $ (-843)) 101)) (-3103 (($ (-1 |#1| (-517)) $) 151)) (-4031 (((-107) $) 62)) (-1339 (($ |#1| (-703)) 61) (($ $ (-989) (-703)) 76) (($ $ (-583 (-989)) (-583 (-703))) 75)) (-1893 (($ (-1 |#1| |#1|) $) 63)) (-1867 (($ $) 142 (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) 65)) (-1191 ((|#1| $) 66)) (-3985 (((-1056) $) 9)) (-4151 (($ $) 147 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 146 (-3807 (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-880)) (|has| |#1| (-1094)) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-37 (-377 (-517)))))))) (-3206 (((-1021) $) 10)) (-1672 (($ $ (-703)) 95)) (-2476 (((-3 $ "failed") $ $) 50 (|has| |#1| (-509)))) (-2624 (($ $) 143 (|has| |#1| (-37 (-377 (-517)))))) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1449 ((|#1| $ (-703)) 104) (($ $ $) 81 (|has| (-703) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) 89 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073) (-703)) 88 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1073))) 87 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073)) 86 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 84 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-3688 (((-703) $) 64)) (-1898 (($ $) 132 (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) 121 (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) 131 (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) 122 (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) 130 (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) 123 (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 72)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ (-377 (-517))) 57 (|has| |#1| (-37 (-377 (-517))))) (($ $) 49 (|has| |#1| (-509))) (($ |#1|) 47 (|has| |#1| (-156)))) (-1311 (((-1054 |#1|) $) 154)) (-2720 ((|#1| $ (-703)) 59)) (-1328 (((-3 $ "failed") $) 48 (|has| |#1| (-132)))) (-2961 (((-703)) 29)) (-2986 ((|#1| $) 102)) (-3707 (($ $) 141 (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) 129 (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) 53 (|has| |#1| (-509)))) (-3683 (($ $) 140 (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) 128 (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) 139 (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) 127 (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-703)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) 138 (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) 126 (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) 137 (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) 125 (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) 136 (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) 124 (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) 93 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073) (-703)) 92 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-583 (-1073))) 91 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-1073)) 90 (-12 (|has| |#1| (-822 (-1073))) (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (($ $ (-703)) 85 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 58 (|has| |#1| (-333)))) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ |#1|) 148 (|has| |#1| (-333))) (($ $ $) 144 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 115 (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-377 (-517)) $) 56 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) 55 (|has| |#1| (-37 (-377 (-517)))))))
+(((-1145 |#1|) (-1184) (-961)) (T -1145))
+((-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1145 *3)))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-5 *2 (-1054 *3)))) (-2925 (*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-4 *1 (-1145 *3)))) (-2328 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)))) (-3103 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1145 *3)) (-4 *3 (-961)))) (-3520 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (-3520 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) (-4151 (*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) (-4151 (*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))))
+(-13 (-1132 |t#1| (-703)) (-10 -8 (-15 -2925 ($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |t#1|))))) (-15 -1311 ((-1054 |t#1|) $)) (-15 -2925 ($ (-1054 |t#1|))) (-15 -2328 ($ $)) (-15 -3103 ($ (-1 |t#1| (-517)) $)) (-15 -3520 ((-874 |t#1|) $ (-703))) (-15 -3520 ((-874 |t#1|) $ (-703) (-703))) (IF (|has| |t#1| (-333)) (-15 ** ($ $ |t#1|)) |noBranch|) (IF (|has| |t#1| (-37 (-377 (-517)))) (PROGN (-15 -4151 ($ $)) (IF (|has| |t#1| (-15 -4151 (|t#1| |t#1| (-1073)))) (IF (|has| |t#1| (-15 -1364 ((-583 (-1073)) |t#1|))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-880)) (IF (|has| |t#1| (-29 (-517))) (-15 -4151 ($ $ (-1073))) |noBranch|) |noBranch|) |noBranch|) (-6 (-918)) (-6 (-1094))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| (-703)) . T) ((-25) . T) ((-37 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-37 |#1|) |has| |#1| (-156)) ((-37 $) |has| |#1| (-509)) ((-34) |has| |#1| (-37 (-377 (-517)))) ((-91) |has| |#1| (-37 (-377 (-517)))) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-106 |#1| |#1|) . T) ((-106 $ $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-123) . T) ((-132) |has| |#1| (-132)) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-207) |has| |#1| (-15 * (|#1| (-703) |#1|))) ((-256) |has| |#1| (-37 (-377 (-517)))) ((-258 $ $) |has| (-703) (-1015)) ((-262) |has| |#1| (-509)) ((-458) |has| |#1| (-37 (-377 (-517)))) ((-509) |has| |#1| (-509)) ((-585 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-650 |#1|) |has| |#1| (-156)) ((-650 $) |has| |#1| (-509)) ((-659) . T) ((-822 (-1073)) -12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073)))) ((-890 |#1| (-703) (-989)) . T) ((-918) |has| |#1| (-37 (-377 (-517)))) ((-967 (-377 (-517))) |has| |#1| (-37 (-377 (-517)))) ((-967 |#1|) . T) ((-967 $) -3807 (|has| |#1| (-509)) (|has| |#1| (-156))) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1094) |has| |#1| (-37 (-377 (-517)))) ((-1097) |has| |#1| (-37 (-377 (-517)))) ((-1132 |#1| (-703)) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-1364 (((-583 (-989)) $) NIL)) (-1638 (((-1073) $) 86)) (-2784 (((-1127 |#2| |#1|) $ (-703)) 73)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) NIL (|has| |#1| (-509)))) (-1213 (($ $) NIL (|has| |#1| (-509)))) (-2454 (((-107) $) 135 (|has| |#1| (-509)))) (-1974 (($ $ (-703)) 120) (($ $ (-703) (-703)) 122)) (-2223 (((-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|))) $) 42)) (-1865 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1721 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4038 (((-3 $ "failed") $ $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1839 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1701 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2925 (($ (-1054 (-2 (|:| |k| (-703)) (|:| |c| |#1|)))) 53) (($ (-1054 |#1|)) NIL)) (-1887 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1743 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3092 (($) NIL T CONST)) (-2600 (($ $) 126)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-2328 (($ $) 133)) (-3520 (((-874 |#1|) $ (-703)) 63) (((-874 |#1|) $ (-703) (-703)) 65)) (-3201 (((-107) $) NIL)) (-2645 (($) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3972 (((-703) $) NIL) (((-703) $ (-703)) NIL)) (-3848 (((-107) $) NIL)) (-3821 (($ $) 110)) (-3824 (($ $ (-517)) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2161 (($ (-517) (-517) $) 128)) (-3430 (($ $ (-843)) 132)) (-3103 (($ (-1 |#1| (-517)) $) 104)) (-4031 (((-107) $) NIL)) (-1339 (($ |#1| (-703)) 15) (($ $ (-989) (-703)) NIL) (($ $ (-583 (-989)) (-583 (-703))) NIL)) (-1893 (($ (-1 |#1| |#1|) $) 92)) (-1867 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-4152 (($ $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-1641 (($ $) 108)) (-2533 (($ $) 106)) (-3804 (($ (-517) (-517) $) 130)) (-4151 (($ $) 143 (|has| |#1| (-37 (-377 (-517))))) (($ $ (-1073)) 149 (-3807 (-12 (|has| |#1| (-15 -4151 (|#1| |#1| (-1073)))) (|has| |#1| (-15 -1364 ((-583 (-1073)) |#1|))) (|has| |#1| (-37 (-377 (-517))))) (-12 (|has| |#1| (-29 (-517))) (|has| |#1| (-37 (-377 (-517)))) (|has| |#1| (-880)) (|has| |#1| (-1094))))) (($ $ (-1149 |#2|)) 144 (|has| |#1| (-37 (-377 (-517)))))) (-3206 (((-1021) $) NIL)) (-3926 (($ $ (-517) (-517)) 114)) (-1672 (($ $ (-703)) 116)) (-2476 (((-3 $ "failed") $ $) NIL (|has| |#1| (-509)))) (-2624 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3515 (($ $) 112)) (-2051 (((-1054 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-703)))))) (-1449 ((|#1| $ (-703)) 89) (($ $ $) 124 (|has| (-703) (-1015)))) (-3127 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) 101 (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) 96 (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $ (-1149 |#2|)) 97)) (-3688 (((-703) $) NIL)) (-1898 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1754 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1876 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1732 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1853 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1711 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1545 (($ $) 118)) (-2256 (((-787) $) NIL) (($ (-517)) 24) (($ (-377 (-517))) 141 (|has| |#1| (-37 (-377 (-517))))) (($ $) NIL (|has| |#1| (-509))) (($ |#1|) 23 (|has| |#1| (-156))) (($ (-1127 |#2| |#1|)) 79) (($ (-1149 |#2|)) 20)) (-1311 (((-1054 |#1|) $) NIL)) (-2720 ((|#1| $ (-703)) 88)) (-1328 (((-3 $ "failed") $) NIL (|has| |#1| (-132)))) (-2961 (((-703)) NIL)) (-2986 ((|#1| $) 87)) (-3707 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1788 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3329 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3683 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1765 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3731 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1814 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3383 ((|#1| $ (-703)) 85 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-703)))) (|has| |#1| (-15 -2256 (|#1| (-1073))))))) (-1492 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1827 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3719 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1802 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-3695 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-1777 (($ $) NIL (|has| |#1| (-37 (-377 (-517)))))) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 17 T CONST)) (-2409 (($) 13 T CONST)) (-2731 (($ $ (-583 (-1073)) (-583 (-703))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073) (-703)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-583 (-1073))) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-1073)) NIL (-12 (|has| |#1| (-15 * (|#1| (-703) |#1|))) (|has| |#1| (-822 (-1073))))) (($ $ (-703)) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-703) |#1|))))) (-1547 (((-107) $ $) NIL)) (-1667 (($ $ |#1|) NIL (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) 100)) (-1642 (($ $ $) 18)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL) (($ $ |#1|) 138 (|has| |#1| (-333))) (($ $ $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 99) (($ (-377 (-517)) $) NIL (|has| |#1| (-37 (-377 (-517))))) (($ $ (-377 (-517))) NIL (|has| |#1| (-37 (-377 (-517)))))))
+(((-1146 |#1| |#2| |#3|) (-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (-15 -2533 ($ $)) (-15 -1641 ($ $)) (-15 -3821 ($ $)) (-15 -3515 ($ $)) (-15 -3926 ($ $ (-517) (-517))) (-15 -2600 ($ $)) (-15 -2161 ($ (-517) (-517) $)) (-15 -3804 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|))) (-961) (-1073) |#1|) (T -1146))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1146 *3 *4 *5)))) (-2784 (*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1146 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))) (-2256 (*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-3127 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) (-2533 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-1641 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-3821 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-3515 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-3926 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))) (-2600 (*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))) (-2161 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))) (-3804 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))) (-4151 (*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(-13 (-1145 |#1|) (-10 -8 (-15 -2256 ($ (-1127 |#2| |#1|))) (-15 -2784 ((-1127 |#2| |#1|) $ (-703))) (-15 -2256 ($ (-1149 |#2|))) (-15 -3127 ($ $ (-1149 |#2|))) (-15 -2533 ($ $)) (-15 -1641 ($ $)) (-15 -3821 ($ $)) (-15 -3515 ($ $)) (-15 -3926 ($ $ (-517) (-517))) (-15 -2600 ($ $)) (-15 -2161 ($ (-517) (-517) $)) (-15 -3804 ($ (-517) (-517) $)) (IF (|has| |#1| (-37 (-377 (-517)))) (-15 -4151 ($ $ (-1149 |#2|))) |noBranch|)))
+((-1495 (((-1 (-1054 |#1|) (-583 (-1054 |#1|))) (-1 |#2| (-583 |#2|))) 24)) (-4067 (((-1 (-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3981 (((-1 (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2|)) 13)) (-2079 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3070 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2275 ((|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|)) 54)) (-2285 (((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))) 61)) (-1553 ((|#2| |#2| |#2|) 43)))
+(((-1147 |#1| |#2|) (-10 -7 (-15 -3981 ((-1 (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2|))) (-15 -4067 ((-1 (-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1495 ((-1 (-1054 |#1|) (-583 (-1054 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1553 (|#2| |#2| |#2|)) (-15 -3070 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2079 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2275 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2285 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|)))))) (-37 (-377 (-517))) (-1145 |#1|)) (T -1147))
+((-2285 (*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1145 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1147 *5 *6)))) (-2275 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1145 *5)) (-5 *1 (-1147 *5 *2)))) (-2079 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))) (-1553 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-1145 *3)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-583 (-1054 *4)))) (-5 *1 (-1147 *4 *5)))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5)))))
+(-10 -7 (-15 -3981 ((-1 (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2|))) (-15 -4067 ((-1 (-1054 |#1|) (-1054 |#1|) (-1054 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1495 ((-1 (-1054 |#1|) (-583 (-1054 |#1|))) (-1 |#2| (-583 |#2|)))) (-15 -1553 (|#2| |#2| |#2|)) (-15 -3070 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2079 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2275 (|#2| (-1 |#2| (-583 |#2|)) (-583 |#1|))) (-15 -2285 ((-583 |#2|) (-583 |#1|) (-583 (-1 |#2| (-583 |#2|))))))
+((-2873 ((|#2| |#4| (-703)) 30)) (-1930 ((|#4| |#2|) 25)) (-3665 ((|#4| (-377 |#2|)) 51 (|has| |#1| (-509)))) (-2424 (((-1 |#4| (-583 |#4|)) |#3|) 45)))
+(((-1148 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1930 (|#4| |#2|)) (-15 -2873 (|#2| |#4| (-703))) (-15 -2424 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3665 (|#4| (-377 |#2|))) |noBranch|)) (-961) (-1130 |#1|) (-593 |#2|) (-1145 |#1|)) (T -1148))
+((-3665 (*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *5 *6 *2)) (-4 *6 (-593 *5)))) (-2424 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1130 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1148 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1145 *4)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-1148 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1145 *5)))) (-1930 (*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1130 *4)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
+(-10 -7 (-15 -1930 (|#4| |#2|)) (-15 -2873 (|#2| |#4| (-703))) (-15 -2424 ((-1 |#4| (-583 |#4|)) |#3|)) (IF (|has| |#1| (-509)) (-15 -3665 (|#4| (-377 |#2|))) |noBranch|))
+((-2750 (((-107) $ $) NIL)) (-1638 (((-1073)) 12)) (-3985 (((-1056) $) 17)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 11) (((-1073) $) 8)) (-1547 (((-107) $ $) 14)))
+(((-1149 |#1|) (-13 (-1003) (-557 (-1073)) (-10 -8 (-15 -2256 ((-1073) $)) (-15 -1638 ((-1073))))) (-1073)) (T -1149))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))) (-1638 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))))
+(-13 (-1003) (-557 (-1073)) (-10 -8 (-15 -2256 ((-1073) $)) (-15 -1638 ((-1073)))))
+((-3526 (($ (-703)) 16)) (-2723 (((-623 |#2|) $ $) 37)) (-1292 ((|#2| $) 46)) (-2195 ((|#2| $) 45)) (-3501 ((|#2| $ $) 33)) (-2862 (($ $ $) 42)) (-1654 (($ $) 20) (($ $ $) 26)) (-1642 (($ $ $) 13)) (* (($ (-517) $) 23) (($ |#2| $) 29) (($ $ |#2|) 28)))
+(((-1150 |#1| |#2|) (-10 -8 (-15 -1292 (|#2| |#1|)) (-15 -2195 (|#2| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2723 ((-623 |#2|) |#1| |#1|)) (-15 -3501 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -3526 (|#1| (-703))) (-15 -1642 (|#1| |#1| |#1|))) (-1151 |#2|) (-1108)) (T -1150))
+NIL
+(-10 -8 (-15 -1292 (|#2| |#1|)) (-15 -2195 (|#2| |#1|)) (-15 -2862 (|#1| |#1| |#1|)) (-15 -2723 ((-623 |#2|) |#1| |#1|)) (-15 -3501 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-517) |#1|)) (-15 -1654 (|#1| |#1| |#1|)) (-15 -1654 (|#1| |#1|)) (-15 -3526 (|#1| (-703))) (-15 -1642 (|#1| |#1| |#1|)))
+((-2750 (((-107) $ $) 18 (|has| |#1| (-1003)))) (-3526 (($ (-703)) 112 (|has| |#1| (-23)))) (-1668 (((-1158) $ (-517) (-517)) 40 (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) 98) (((-107) $) 92 (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) 89 (|has| $ (-6 -4181))) (($ $) 88 (-12 (|has| |#1| (-779)) (|has| $ (-6 -4181))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) 8)) (-2411 ((|#1| $ (-517) |#1|) 52 (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) 58 (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) 75 (|has| $ (-6 -4180)))) (-3092 (($) 7 T CONST)) (-4020 (($ $) 90 (|has| $ (-6 -4181)))) (-3093 (($ $) 100)) (-1679 (($ $) 78 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-2052 (($ |#1| $) 77 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) (($ (-1 (-107) |#1|) $) 74 (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) 53 (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) 51)) (-2607 (((-517) (-1 (-107) |#1|) $) 97) (((-517) |#1| $) 96 (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) 95 (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 30 (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) 105 (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) 69)) (-2550 (((-107) $ (-703)) 9)) (-3243 (((-517) $) 43 (|has| (-517) (-779)))) (-2967 (($ $ $) 87 (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) 29 (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) 27 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-3482 (((-517) $) 44 (|has| (-517) (-779)))) (-3099 (($ $ $) 86 (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1292 ((|#1| $) 102 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3847 (((-107) $ (-703)) 10)) (-2195 ((|#1| $) 103 (-12 (|has| |#1| (-961)) (|has| |#1| (-918))))) (-3985 (((-1056) $) 22 (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) 60) (($ $ $ (-517)) 59)) (-1857 (((-583 (-517)) $) 46)) (-4088 (((-107) (-517) $) 47)) (-3206 (((-1021) $) 21 (|has| |#1| (-1003)))) (-1647 ((|#1| $) 42 (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) 71)) (-2565 (($ $ |#1|) 41 (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) 32 (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) 26 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) 25 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) 23 (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) 14)) (-4042 (((-107) |#1| $) 45 (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) 48)) (-3619 (((-107) $) 11)) (-1746 (($) 12)) (-1449 ((|#1| $ (-517) |#1|) 50) ((|#1| $ (-517)) 49) (($ $ (-1121 (-517))) 63)) (-3501 ((|#1| $ $) 106 (|has| |#1| (-961)))) (-3750 (($ $ (-517)) 62) (($ $ (-1121 (-517))) 61)) (-2862 (($ $ $) 104 (|has| |#1| (-961)))) (-3217 (((-703) (-1 (-107) |#1|) $) 31 (|has| $ (-6 -4180))) (((-703) |#1| $) 28 (-12 (|has| |#1| (-1003)) (|has| $ (-6 -4180))))) (-1906 (($ $ $ (-517)) 91 (|has| $ (-6 -4181)))) (-2433 (($ $) 13)) (-3645 (((-493) $) 79 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 70)) (-2452 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-583 $)) 65)) (-2256 (((-787) $) 20 (|has| |#1| (-1003)))) (-3675 (((-107) (-1 (-107) |#1|) $) 33 (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) 84 (|has| |#1| (-779)))) (-1583 (((-107) $ $) 83 (|has| |#1| (-779)))) (-1547 (((-107) $ $) 19 (|has| |#1| (-1003)))) (-1595 (((-107) $ $) 85 (|has| |#1| (-779)))) (-1572 (((-107) $ $) 82 (|has| |#1| (-779)))) (-1654 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1642 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-517) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-659))) (($ $ |#1|) 107 (|has| |#1| (-659)))) (-2296 (((-703) $) 6 (|has| $ (-6 -4180)))))
+(((-1151 |#1|) (-1184) (-1108)) (T -1151))
+((-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-25)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1151 *3)) (-4 *3 (-23)) (-4 *3 (-1108)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))) (-1654 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) (-3501 (*1 *2 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) (-2723 (*1 *2 *1 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-961)) (-5 *2 (-623 *3)))) (-2862 (*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1642 ($ $ $)) |noBranch|) (IF (|has| |t#1| (-23)) (-15 -3526 ($ (-703))) |noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1654 ($ $)) (-15 -1654 ($ $ $)) (-15 * ($ (-517) $))) |noBranch|) (IF (|has| |t#1| (-659)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |noBranch|) (IF (|has| |t#1| (-961)) (PROGN (-15 -3501 (|t#1| $ $)) (-15 -2723 ((-623 |t#1|) $ $)) (-15 -2862 ($ $ $))) |noBranch|) (IF (|has| |t#1| (-918)) (IF (|has| |t#1| (-961)) (PROGN (-15 -2195 (|t#1| $)) (-15 -1292 (|t#1| $))) |noBranch|) |noBranch|)))
+(((-33) . T) ((-97) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-557 (-787)) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779)) (|has| |#1| (-557 (-787)))) ((-138 |#1|) . T) ((-558 (-493)) |has| |#1| (-558 (-493))) ((-258 (-517) |#1|) . T) ((-260 (-517) |#1|) . T) ((-280 |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-343 |#1|) . T) ((-456 |#1|) . T) ((-550 (-517) |#1|) . T) ((-478 |#1| |#1|) -12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))) ((-588 |#1|) . T) ((-19 |#1|) . T) ((-779) |has| |#1| (-779)) ((-1003) -3807 (|has| |#1| (-1003)) (|has| |#1| (-779))) ((-1108) . T))
+((-3905 (((-1153 |#2|) (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|) 13)) (-3225 ((|#2| (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|) 15)) (-1893 (((-3 (-1153 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1153 |#1|)) 28) (((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|)) 18)))
+(((-1152 |#1| |#2|) (-10 -7 (-15 -3905 ((-1153 |#2|) (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -1893 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -1893 ((-3 (-1153 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1153 |#1|)))) (-1108) (-1108)) (T -1152))
+((-1893 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) (-1893 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) (-3225 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1152 *5 *2)))) (-3905 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1153 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1153 *5)) (-5 *1 (-1152 *6 *5)))))
+(-10 -7 (-15 -3905 ((-1153 |#2|) (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -3225 (|#2| (-1 |#2| |#1| |#2|) (-1153 |#1|) |#2|)) (-15 -1893 ((-1153 |#2|) (-1 |#2| |#1|) (-1153 |#1|))) (-15 -1893 ((-3 (-1153 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1153 |#1|))))
+((-2750 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-3526 (($ (-703)) NIL (|has| |#1| (-23)))) (-3118 (($ (-583 |#1|)) 9)) (-1668 (((-1158) $ (-517) (-517)) NIL (|has| $ (-6 -4181)))) (-2044 (((-107) (-1 (-107) |#1| |#1|) $) NIL) (((-107) $) NIL (|has| |#1| (-779)))) (-2034 (($ (-1 (-107) |#1| |#1|) $) NIL (|has| $ (-6 -4181))) (($ $) NIL (-12 (|has| $ (-6 -4181)) (|has| |#1| (-779))))) (-3166 (($ (-1 (-107) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-779)))) (-2953 (((-107) $ (-703)) NIL)) (-2411 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181))) ((|#1| $ (-1121 (-517)) |#1|) NIL (|has| $ (-6 -4181)))) (-3536 (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3092 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| $ (-6 -4181)))) (-3093 (($ $) NIL)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-2052 (($ |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) (($ (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-3225 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4180))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4180)))) (-1445 ((|#1| $ (-517) |#1|) NIL (|has| $ (-6 -4181)))) (-1377 ((|#1| $ (-517)) NIL)) (-2607 (((-517) (-1 (-107) |#1|) $) NIL) (((-517) |#1| $) NIL (|has| |#1| (-1003))) (((-517) |#1| $ (-517)) NIL (|has| |#1| (-1003)))) (-1536 (((-583 |#1|) $) 15 (|has| $ (-6 -4180)))) (-2723 (((-623 |#1|) $ $) NIL (|has| |#1| (-961)))) (-3462 (($ (-703) |#1|) NIL)) (-2550 (((-107) $ (-703)) NIL)) (-3243 (((-517) $) NIL (|has| (-517) (-779)))) (-2967 (($ $ $) NIL (|has| |#1| (-779)))) (-3237 (($ (-1 (-107) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-779)))) (-2560 (((-583 |#1|) $) NIL (|has| $ (-6 -4180)))) (-2787 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-3482 (((-517) $) NIL (|has| (-517) (-779)))) (-3099 (($ $ $) NIL (|has| |#1| (-779)))) (-1433 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1292 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3847 (((-107) $ (-703)) NIL)) (-2195 ((|#1| $) NIL (-12 (|has| |#1| (-918)) (|has| |#1| (-961))))) (-3985 (((-1056) $) NIL (|has| |#1| (-1003)))) (-2620 (($ |#1| $ (-517)) NIL) (($ $ $ (-517)) NIL)) (-1857 (((-583 (-517)) $) NIL)) (-4088 (((-107) (-517) $) NIL)) (-3206 (((-1021) $) NIL (|has| |#1| (-1003)))) (-1647 ((|#1| $) NIL (|has| (-517) (-779)))) (-2887 (((-3 |#1| "failed") (-1 (-107) |#1|) $) NIL)) (-2565 (($ $ |#1|) NIL (|has| $ (-6 -4181)))) (-2048 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 (-265 |#1|))) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-265 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003)))) (($ $ (-583 |#1|) (-583 |#1|)) NIL (-12 (|has| |#1| (-280 |#1|)) (|has| |#1| (-1003))))) (-3792 (((-107) $ $) NIL)) (-4042 (((-107) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1941 (((-583 |#1|) $) NIL)) (-3619 (((-107) $) NIL)) (-1746 (($) NIL)) (-1449 ((|#1| $ (-517) |#1|) NIL) ((|#1| $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-3501 ((|#1| $ $) NIL (|has| |#1| (-961)))) (-3750 (($ $ (-517)) NIL) (($ $ (-1121 (-517))) NIL)) (-2862 (($ $ $) NIL (|has| |#1| (-961)))) (-3217 (((-703) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180))) (((-703) |#1| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#1| (-1003))))) (-1906 (($ $ $ (-517)) NIL (|has| $ (-6 -4181)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) 19 (|has| |#1| (-558 (-493))))) (-2276 (($ (-583 |#1|)) 8)) (-2452 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-583 $)) NIL)) (-2256 (((-787) $) NIL (|has| |#1| (-557 (-787))))) (-3675 (((-107) (-1 (-107) |#1|) $) NIL (|has| $ (-6 -4180)))) (-1606 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1583 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1547 (((-107) $ $) NIL (|has| |#1| (-1003)))) (-1595 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1572 (((-107) $ $) NIL (|has| |#1| (-779)))) (-1654 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1642 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-517) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-659))) (($ $ |#1|) NIL (|has| |#1| (-659)))) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1153 |#1|) (-13 (-1151 |#1|) (-10 -8 (-15 -3118 ($ (-583 |#1|))))) (-1108)) (T -1153))
+((-3118 (*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1153 *3)))))
+(-13 (-1151 |#1|) (-10 -8 (-15 -3118 ($ (-583 |#1|)))))
+((-2750 (((-107) $ $) NIL)) (-2795 (((-1056) $ (-1056)) 87) (((-1056) $ (-1056) (-1056)) 85) (((-1056) $ (-1056) (-583 (-1056))) 84)) (-2361 (($) 56)) (-2529 (((-1158) $ (-437) (-843)) 42)) (-3029 (((-1158) $ (-843) (-1056)) 70) (((-1158) $ (-843) (-797)) 71)) (-2444 (((-1158) $ (-843) (-349) (-349)) 45)) (-4150 (((-1158) $ (-1056)) 66)) (-1455 (((-1158) $ (-843) (-1056)) 75)) (-1278 (((-1158) $ (-843) (-349) (-349)) 46)) (-3779 (((-1158) $ (-843) (-843)) 43)) (-2785 (((-1158) $) 67)) (-3801 (((-1158) $ (-843) (-1056)) 74)) (-2877 (((-1158) $ (-437) (-843)) 30)) (-3038 (((-1158) $ (-843) (-1056)) 73)) (-1525 (((-583 (-236)) $) 22) (($ $ (-583 (-236))) 23)) (-2009 (((-1158) $ (-703) (-703)) 40)) (-3409 (($ $) 57) (($ (-437) (-583 (-236))) 58)) (-3985 (((-1056) $) NIL)) (-3435 (((-517) $) 37)) (-3206 (((-1021) $) NIL)) (-2003 (((-1153 (-3 (-437) "undefined")) $) 36)) (-2162 (((-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $) 35)) (-3227 (((-1158) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517)) 65)) (-3895 (((-583 (-865 (-199))) $) NIL)) (-2042 (((-437) $ (-843)) 32)) (-1570 (((-1158) $ (-703) (-703) (-843) (-843)) 39)) (-2867 (((-1158) $ (-1056)) 76)) (-3661 (((-1158) $ (-843) (-1056)) 72)) (-2256 (((-787) $) 82)) (-1210 (((-1158) $) 77)) (-2547 (((-1158) $ (-843) (-1056)) 68) (((-1158) $ (-843) (-797)) 69)) (-1547 (((-107) $ $) NIL)))
+(((-1154) (-13 (-1003) (-10 -8 (-15 -3895 ((-583 (-865 (-199))) $)) (-15 -2361 ($)) (-15 -3409 ($ $)) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -3409 ($ (-437) (-583 (-236)))) (-15 -3227 ((-1158) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -2162 ((-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2003 ((-1153 (-3 (-437) "undefined")) $)) (-15 -4150 ((-1158) $ (-1056))) (-15 -2877 ((-1158) $ (-437) (-843))) (-15 -2042 ((-437) $ (-843))) (-15 -2547 ((-1158) $ (-843) (-1056))) (-15 -2547 ((-1158) $ (-843) (-797))) (-15 -3029 ((-1158) $ (-843) (-1056))) (-15 -3029 ((-1158) $ (-843) (-797))) (-15 -3038 ((-1158) $ (-843) (-1056))) (-15 -3801 ((-1158) $ (-843) (-1056))) (-15 -3661 ((-1158) $ (-843) (-1056))) (-15 -2867 ((-1158) $ (-1056))) (-15 -1210 ((-1158) $)) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -1278 ((-1158) $ (-843) (-349) (-349))) (-15 -2444 ((-1158) $ (-843) (-349) (-349))) (-15 -1455 ((-1158) $ (-843) (-1056))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -2529 ((-1158) $ (-437) (-843))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -2785 ((-1158) $)) (-15 -3435 ((-517) $)) (-15 -2256 ((-787) $))))) (T -1154))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1154)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1154)))) (-2361 (*1 *1) (-5 *1 (-1154))) (-3409 (*1 *1 *1) (-5 *1 (-1154))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) (-3409 (*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1154)))) (-3227 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1154)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-1153 (-3 (-437) "undefined"))) (-5 *1 (-1154)))) (-4150 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2877 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2042 (*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1154)))) (-2547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2547 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3029 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3038 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3801 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3661 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1570 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1278 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2444 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-1455 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2009 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2529 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3779 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) (-2795 (*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) (-2795 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) (-2795 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1154)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1154)))))
+(-13 (-1003) (-10 -8 (-15 -3895 ((-583 (-865 (-199))) $)) (-15 -2361 ($)) (-15 -3409 ($ $)) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -3409 ($ (-437) (-583 (-236)))) (-15 -3227 ((-1158) $ (-843) (-199) (-199) (-199) (-199) (-517) (-517) (-517) (-517) (-797) (-517) (-797) (-517))) (-15 -2162 ((-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517)))) $)) (-15 -2003 ((-1153 (-3 (-437) "undefined")) $)) (-15 -4150 ((-1158) $ (-1056))) (-15 -2877 ((-1158) $ (-437) (-843))) (-15 -2042 ((-437) $ (-843))) (-15 -2547 ((-1158) $ (-843) (-1056))) (-15 -2547 ((-1158) $ (-843) (-797))) (-15 -3029 ((-1158) $ (-843) (-1056))) (-15 -3029 ((-1158) $ (-843) (-797))) (-15 -3038 ((-1158) $ (-843) (-1056))) (-15 -3801 ((-1158) $ (-843) (-1056))) (-15 -3661 ((-1158) $ (-843) (-1056))) (-15 -2867 ((-1158) $ (-1056))) (-15 -1210 ((-1158) $)) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -1278 ((-1158) $ (-843) (-349) (-349))) (-15 -2444 ((-1158) $ (-843) (-349) (-349))) (-15 -1455 ((-1158) $ (-843) (-1056))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -2529 ((-1158) $ (-437) (-843))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -2785 ((-1158) $)) (-15 -3435 ((-517) $)) (-15 -2256 ((-787) $))))
+((-2750 (((-107) $ $) NIL)) (-4132 (((-1158) $ (-349)) 138) (((-1158) $ (-349) (-349) (-349)) 139)) (-2795 (((-1056) $ (-1056)) 146) (((-1056) $ (-1056) (-1056)) 144) (((-1056) $ (-1056) (-583 (-1056))) 143)) (-1929 (($) 49)) (-3222 (((-1158) $ (-349) (-349) (-349) (-349) (-349)) 114) (((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $) 112) (((-1158) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) 113) (((-1158) $ (-517) (-517) (-349) (-349) (-349)) 115) (((-1158) $ (-349) (-349)) 116) (((-1158) $ (-349) (-349) (-349)) 123)) (-2268 (((-349)) 96) (((-349) (-349)) 97)) (-2488 (((-349)) 91) (((-349) (-349)) 93)) (-3732 (((-349)) 94) (((-349) (-349)) 95)) (-1444 (((-349)) 100) (((-349) (-349)) 101)) (-2974 (((-349)) 98) (((-349) (-349)) 99)) (-2444 (((-1158) $ (-349) (-349)) 140)) (-4150 (((-1158) $ (-1056)) 124)) (-2467 (((-1034 (-199)) $) 50) (($ $ (-1034 (-199))) 51)) (-2505 (((-1158) $ (-1056)) 152)) (-1892 (((-1158) $ (-1056)) 153)) (-1225 (((-1158) $ (-349) (-349)) 122) (((-1158) $ (-517) (-517)) 137)) (-3779 (((-1158) $ (-843) (-843)) 130)) (-2785 (((-1158) $) 110)) (-2749 (((-1158) $ (-1056)) 151)) (-1203 (((-1158) $ (-1056)) 107)) (-1525 (((-583 (-236)) $) 52) (($ $ (-583 (-236))) 53)) (-2009 (((-1158) $ (-703) (-703)) 129)) (-3347 (((-1158) $ (-703) (-865 (-199))) 158)) (-3977 (($ $) 56) (($ (-1034 (-199)) (-1056)) 57) (($ (-1034 (-199)) (-583 (-236))) 58)) (-3916 (((-1158) $ (-349) (-349) (-349)) 104)) (-3985 (((-1056) $) NIL)) (-3435 (((-517) $) 102)) (-1211 (((-1158) $ (-349)) 141)) (-2812 (((-1158) $ (-349)) 156)) (-3206 (((-1021) $) NIL)) (-1551 (((-1158) $ (-349)) 155)) (-2960 (((-1158) $ (-1056)) 109)) (-1570 (((-1158) $ (-703) (-703) (-843) (-843)) 128)) (-2767 (((-1158) $ (-1056)) 106)) (-2867 (((-1158) $ (-1056)) 108)) (-2715 (((-1158) $ (-142) (-142)) 127)) (-2256 (((-787) $) 135)) (-1210 (((-1158) $) 111)) (-2351 (((-1158) $ (-1056)) 154)) (-2547 (((-1158) $ (-1056)) 105)) (-1547 (((-107) $ $) NIL)))
+(((-1155) (-13 (-1003) (-10 -8 (-15 -2488 ((-349))) (-15 -2488 ((-349) (-349))) (-15 -3732 ((-349))) (-15 -3732 ((-349) (-349))) (-15 -2268 ((-349))) (-15 -2268 ((-349) (-349))) (-15 -2974 ((-349))) (-15 -2974 ((-349) (-349))) (-15 -1444 ((-349))) (-15 -1444 ((-349) (-349))) (-15 -1929 ($)) (-15 -3977 ($ $)) (-15 -3977 ($ (-1034 (-199)) (-1056))) (-15 -3977 ($ (-1034 (-199)) (-583 (-236)))) (-15 -2467 ((-1034 (-199)) $)) (-15 -2467 ($ $ (-1034 (-199)))) (-15 -3347 ((-1158) $ (-703) (-865 (-199)))) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -4150 ((-1158) $ (-1056))) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -3222 ((-1158) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3222 ((-1158) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3222 ((-1158) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349) (-349))) (-15 -2867 ((-1158) $ (-1056))) (-15 -2547 ((-1158) $ (-1056))) (-15 -2767 ((-1158) $ (-1056))) (-15 -1203 ((-1158) $ (-1056))) (-15 -2960 ((-1158) $ (-1056))) (-15 -1225 ((-1158) $ (-349) (-349))) (-15 -1225 ((-1158) $ (-517) (-517))) (-15 -4132 ((-1158) $ (-349))) (-15 -4132 ((-1158) $ (-349) (-349) (-349))) (-15 -2444 ((-1158) $ (-349) (-349))) (-15 -2749 ((-1158) $ (-1056))) (-15 -1551 ((-1158) $ (-349))) (-15 -2812 ((-1158) $ (-349))) (-15 -2505 ((-1158) $ (-1056))) (-15 -1892 ((-1158) $ (-1056))) (-15 -2351 ((-1158) $ (-1056))) (-15 -3916 ((-1158) $ (-349) (-349) (-349))) (-15 -1211 ((-1158) $ (-349))) (-15 -2785 ((-1158) $)) (-15 -2715 ((-1158) $ (-142) (-142))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -1210 ((-1158) $)) (-15 -3435 ((-517) $))))) (T -1155))
+((-2488 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2488 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-3732 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-3732 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2268 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2268 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2974 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-2974 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-1444 (*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-1444 (*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) (-1929 (*1 *1) (-5 *1 (-1155))) (-3977 (*1 *1 *1) (-5 *1 (-1155))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1056)) (-5 *1 (-1155)))) (-3977 (*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) (-2467 (*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))) (-2467 (*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))) (-3347 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-1525 (*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) (-2009 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3779 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-4150 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1570 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3222 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2867 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2547 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2767 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1203 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2960 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1225 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1225 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-4132 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-4132 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2444 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2749 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1551 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2812 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2505 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1892 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2351 (*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3916 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-1211 (*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2715 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1158)) (-5 *1 (-1155)))) (-2795 (*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))) (-2795 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))) (-2795 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1155)))) (-1210 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155)))))
+(-13 (-1003) (-10 -8 (-15 -2488 ((-349))) (-15 -2488 ((-349) (-349))) (-15 -3732 ((-349))) (-15 -3732 ((-349) (-349))) (-15 -2268 ((-349))) (-15 -2268 ((-349) (-349))) (-15 -2974 ((-349))) (-15 -2974 ((-349) (-349))) (-15 -1444 ((-349))) (-15 -1444 ((-349) (-349))) (-15 -1929 ($)) (-15 -3977 ($ $)) (-15 -3977 ($ (-1034 (-199)) (-1056))) (-15 -3977 ($ (-1034 (-199)) (-583 (-236)))) (-15 -2467 ((-1034 (-199)) $)) (-15 -2467 ($ $ (-1034 (-199)))) (-15 -3347 ((-1158) $ (-703) (-865 (-199)))) (-15 -1525 ((-583 (-236)) $)) (-15 -1525 ($ $ (-583 (-236)))) (-15 -2009 ((-1158) $ (-703) (-703))) (-15 -3779 ((-1158) $ (-843) (-843))) (-15 -4150 ((-1158) $ (-1056))) (-15 -1570 ((-1158) $ (-703) (-703) (-843) (-843))) (-15 -3222 ((-1158) $ (-349) (-349) (-349) (-349) (-349))) (-15 -3222 ((-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))) $)) (-15 -3222 ((-1158) $ (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199))))) (-15 -3222 ((-1158) $ (-517) (-517) (-349) (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349))) (-15 -3222 ((-1158) $ (-349) (-349) (-349))) (-15 -2867 ((-1158) $ (-1056))) (-15 -2547 ((-1158) $ (-1056))) (-15 -2767 ((-1158) $ (-1056))) (-15 -1203 ((-1158) $ (-1056))) (-15 -2960 ((-1158) $ (-1056))) (-15 -1225 ((-1158) $ (-349) (-349))) (-15 -1225 ((-1158) $ (-517) (-517))) (-15 -4132 ((-1158) $ (-349))) (-15 -4132 ((-1158) $ (-349) (-349) (-349))) (-15 -2444 ((-1158) $ (-349) (-349))) (-15 -2749 ((-1158) $ (-1056))) (-15 -1551 ((-1158) $ (-349))) (-15 -2812 ((-1158) $ (-349))) (-15 -2505 ((-1158) $ (-1056))) (-15 -1892 ((-1158) $ (-1056))) (-15 -2351 ((-1158) $ (-1056))) (-15 -3916 ((-1158) $ (-349) (-349) (-349))) (-15 -1211 ((-1158) $ (-349))) (-15 -2785 ((-1158) $)) (-15 -2715 ((-1158) $ (-142) (-142))) (-15 -2795 ((-1056) $ (-1056))) (-15 -2795 ((-1056) $ (-1056) (-1056))) (-15 -2795 ((-1056) $ (-1056) (-583 (-1056)))) (-15 -1210 ((-1158) $)) (-15 -3435 ((-517) $))))
+((-3904 (((-583 (-1056)) (-583 (-1056))) 94) (((-583 (-1056))) 89)) (-1565 (((-583 (-1056))) 87)) (-3996 (((-583 (-843)) (-583 (-843))) 62) (((-583 (-843))) 59)) (-2810 (((-583 (-703)) (-583 (-703))) 56) (((-583 (-703))) 52)) (-3473 (((-1158)) 64)) (-3744 (((-843) (-843)) 80) (((-843)) 79)) (-2649 (((-843) (-843)) 78) (((-843)) 77)) (-3190 (((-797) (-797)) 74) (((-797)) 73)) (-3714 (((-199)) 84) (((-199) (-349)) 86)) (-1230 (((-843)) 81) (((-843) (-843)) 82)) (-3175 (((-843) (-843)) 76) (((-843)) 75)) (-2528 (((-797) (-797)) 68) (((-797)) 66)) (-3667 (((-797) (-797)) 70) (((-797)) 69)) (-3317 (((-797) (-797)) 72) (((-797)) 71)))
+(((-1156) (-10 -7 (-15 -2528 ((-797))) (-15 -2528 ((-797) (-797))) (-15 -3667 ((-797))) (-15 -3667 ((-797) (-797))) (-15 -3317 ((-797))) (-15 -3317 ((-797) (-797))) (-15 -3190 ((-797))) (-15 -3190 ((-797) (-797))) (-15 -3175 ((-843))) (-15 -3175 ((-843) (-843))) (-15 -2810 ((-583 (-703)))) (-15 -2810 ((-583 (-703)) (-583 (-703)))) (-15 -3996 ((-583 (-843)))) (-15 -3996 ((-583 (-843)) (-583 (-843)))) (-15 -3473 ((-1158))) (-15 -3904 ((-583 (-1056)))) (-15 -3904 ((-583 (-1056)) (-583 (-1056)))) (-15 -1565 ((-583 (-1056)))) (-15 -2649 ((-843))) (-15 -3744 ((-843))) (-15 -2649 ((-843) (-843))) (-15 -3744 ((-843) (-843))) (-15 -1230 ((-843) (-843))) (-15 -1230 ((-843))) (-15 -3714 ((-199) (-349))) (-15 -3714 ((-199))))) (T -1156))
+((-3714 (*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1156)))) (-3714 (*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1156)))) (-1230 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-1230 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-2649 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3744 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-2649 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-1565 (*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) (-3904 (*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) (-3473 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1156)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))) (-3996 (*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))) (-2810 (*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))) (-2810 (*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3175 (*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) (-3190 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3190 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3317 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3667 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-3667 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-2528 (*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) (-2528 (*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
+(-10 -7 (-15 -2528 ((-797))) (-15 -2528 ((-797) (-797))) (-15 -3667 ((-797))) (-15 -3667 ((-797) (-797))) (-15 -3317 ((-797))) (-15 -3317 ((-797) (-797))) (-15 -3190 ((-797))) (-15 -3190 ((-797) (-797))) (-15 -3175 ((-843))) (-15 -3175 ((-843) (-843))) (-15 -2810 ((-583 (-703)))) (-15 -2810 ((-583 (-703)) (-583 (-703)))) (-15 -3996 ((-583 (-843)))) (-15 -3996 ((-583 (-843)) (-583 (-843)))) (-15 -3473 ((-1158))) (-15 -3904 ((-583 (-1056)))) (-15 -3904 ((-583 (-1056)) (-583 (-1056)))) (-15 -1565 ((-583 (-1056)))) (-15 -2649 ((-843))) (-15 -3744 ((-843))) (-15 -2649 ((-843) (-843))) (-15 -3744 ((-843) (-843))) (-15 -1230 ((-843) (-843))) (-15 -1230 ((-843))) (-15 -3714 ((-199) (-349))) (-15 -3714 ((-199))))
+((-2747 (((-437) (-583 (-583 (-865 (-199)))) (-583 (-236))) 17) (((-437) (-583 (-583 (-865 (-199))))) 16) (((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 15)) (-1768 (((-1154) (-583 (-583 (-865 (-199)))) (-583 (-236))) 23) (((-1154) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236))) 22)) (-2256 (((-1154) (-437)) 34)))
+(((-1157) (-10 -7 (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2256 ((-1154) (-437))))) (T -1157))
+((-2256 (*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1154)) (-5 *1 (-1157)))) (-1768 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))) (-1768 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))) (-2747 (*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1157)))) (-2747 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))))
+(-10 -7 (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))))) (-15 -2747 ((-437) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-797) (-797) (-843) (-583 (-236)))) (-15 -1768 ((-1154) (-583 (-583 (-865 (-199)))) (-583 (-236)))) (-15 -2256 ((-1154) (-437))))
+((-2677 (($) 7)) (-2256 (((-787) $) 10)))
+(((-1158) (-10 -8 (-15 -2677 ($)) (-15 -2256 ((-787) $)))) (T -1158))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1158)))) (-2677 (*1 *1) (-5 *1 (-1158))))
+(-10 -8 (-15 -2677 ($)) (-15 -2256 ((-787) $)))
+((-1667 (($ $ |#2|) 10)))
+(((-1159 |#1| |#2|) (-10 -8 (-15 -1667 (|#1| |#1| |#2|))) (-1160 |#2|) (-333)) (T -1159))
+NIL
+(-10 -8 (-15 -1667 (|#1| |#1| |#2|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3141 (((-125)) 28)) (-2256 (((-787) $) 11)) (-2396 (($) 18 T CONST)) (-1547 (((-107) $ $) 6)) (-1667 (($ $ |#1|) 29)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1160 |#1|) (-1184) (-333)) (T -1160))
+((-1667 (*1 *1 *1 *2) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-333)))) (-3141 (*1 *2) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
+(-13 (-650 |t#1|) (-10 -8 (-15 -1667 ($ $ |t#1|)) (-15 -3141 ((-125)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-650 |#1|) . T) ((-967 |#1|) . T) ((-1003) . T))
+((-1593 (((-583 (-1103 |#1|)) (-1073) (-1103 |#1|)) 78)) (-4039 (((-1054 (-1054 (-874 |#1|))) (-1073) (-1054 (-874 |#1|))) 57)) (-3680 (((-1 (-1054 (-1103 |#1|)) (-1054 (-1103 |#1|))) (-703) (-1103 |#1|) (-1054 (-1103 |#1|))) 68)) (-1858 (((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703)) 59)) (-3641 (((-1 (-1069 (-874 |#1|)) (-874 |#1|)) (-1073)) 27)) (-2128 (((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703)) 58)))
+(((-1161 |#1|) (-10 -7 (-15 -1858 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -2128 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -4039 ((-1054 (-1054 (-874 |#1|))) (-1073) (-1054 (-874 |#1|)))) (-15 -3641 ((-1 (-1069 (-874 |#1|)) (-874 |#1|)) (-1073))) (-15 -1593 ((-583 (-1103 |#1|)) (-1073) (-1103 |#1|))) (-15 -3680 ((-1 (-1054 (-1103 |#1|)) (-1054 (-1103 |#1|))) (-703) (-1103 |#1|) (-1054 (-1103 |#1|))))) (-333)) (T -1161))
+((-3680 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1103 *6)) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1161 *6)) (-5 *5 (-1054 *4)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-583 (-1103 *5))) (-5 *1 (-1161 *5)) (-5 *4 (-1103 *5)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 (-1069 (-874 *4)) (-874 *4))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))) (-4039 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-1054 (-1054 (-874 *5)))) (-5 *1 (-1161 *5)) (-5 *4 (-1054 (-874 *5))))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))))
+(-10 -7 (-15 -1858 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -2128 ((-1 (-1054 (-874 |#1|)) (-1054 (-874 |#1|))) (-703))) (-15 -4039 ((-1054 (-1054 (-874 |#1|))) (-1073) (-1054 (-874 |#1|)))) (-15 -3641 ((-1 (-1069 (-874 |#1|)) (-874 |#1|)) (-1073))) (-15 -1593 ((-583 (-1103 |#1|)) (-1073) (-1103 |#1|))) (-15 -3680 ((-1 (-1054 (-1103 |#1|)) (-1054 (-1103 |#1|))) (-703) (-1103 |#1|) (-1054 (-1103 |#1|)))))
+((-4140 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|) 74)) (-2216 (((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|)))) 73)))
+(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|))) (-319) (-1130 |#1|) (-1130 |#2|) (-379 |#2| |#3|)) (T -1162))
+((-4140 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1162 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))) (-2216 (*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1162 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
+(-10 -7 (-15 -2216 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))))) (-15 -4140 ((-2 (|:| -1753 (-623 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-623 |#2|))) |#2|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 41)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) NIL)) (-3848 (((-107) $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2256 (((-787) $) 62) (($ (-517)) NIL) ((|#4| $) 52) (($ |#4|) 47) (($ |#1|) NIL (|has| |#1| (-156)))) (-2961 (((-703)) NIL)) (-2273 (((-1158) (-703)) 16)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 26 T CONST)) (-2409 (($) 65 T CONST)) (-1547 (((-107) $ $) 67)) (-1667 (((-3 $ "failed") $ $) NIL (|has| |#1| (-333)))) (-1654 (($ $) 69) (($ $ $) NIL)) (-1642 (($ $ $) 45)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 71) (($ |#1| $) NIL (|has| |#1| (-156))) (($ $ |#1|) NIL (|has| |#1| (-156)))))
+(((-1163 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2256 ($ |#4|)) (-15 -2273 ((-1158) (-703))))) (-961) (-779) (-725) (-871 |#1| |#3| |#2|) (-583 |#2|) (-583 (-703)) (-703)) (T -1163))
+((-2256 (*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-1667 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1163 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2256 (*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1158)) (-5 *1 (-1163 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
+(-13 (-961) (-10 -8 (IF (|has| |#1| (-156)) (-6 (-37 |#1|)) |noBranch|) (-15 -2256 (|#4| $)) (IF (|has| |#1| (-333)) (-15 -1667 ((-3 $ "failed") $ $)) |noBranch|) (-15 -2256 ($ |#4|)) (-15 -2273 ((-1158) (-703)))))
+((-2750 (((-107) $ $) NIL)) (-3120 (((-583 (-2 (|:| -1210 $) (|:| -1513 (-583 |#4|)))) (-583 |#4|)) NIL)) (-4029 (((-583 $) (-583 |#4|)) 87)) (-1364 (((-583 |#3|) $) NIL)) (-1235 (((-107) $) NIL)) (-3586 (((-107) $) NIL (|has| |#1| (-509)))) (-3939 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-2437 ((|#4| |#4| $) NIL)) (-3166 (((-2 (|:| |under| $) (|:| -2597 $) (|:| |upper| $)) $ |#3|) NIL)) (-2953 (((-107) $ (-703)) NIL)) (-3536 (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3092 (($) NIL T CONST)) (-1615 (((-107) $) NIL (|has| |#1| (-509)))) (-2512 (((-107) $ $) NIL (|has| |#1| (-509)))) (-3630 (((-107) $ $) NIL (|has| |#1| (-509)))) (-2703 (((-107) $) NIL (|has| |#1| (-509)))) (-1700 (((-583 |#4|) (-583 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) 27)) (-1677 (((-583 |#4|) (-583 |#4|) $) 24 (|has| |#1| (-509)))) (-1741 (((-583 |#4|) (-583 |#4|) $) NIL (|has| |#1| (-509)))) (-1772 (((-3 $ "failed") (-583 |#4|)) NIL)) (-3189 (($ (-583 |#4|)) NIL)) (-1660 (((-3 $ "failed") $) 69)) (-3659 ((|#4| |#4| $) 74)) (-1679 (($ $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-2052 (($ |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (($ (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-3060 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-3283 (((-107) |#4| $ (-1 (-107) |#4| |#4|)) NIL)) (-4049 ((|#4| |#4| $) NIL)) (-3225 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4180))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4180))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2901 (((-2 (|:| -1210 (-583 |#4|)) (|:| -1513 (-583 |#4|))) $) NIL)) (-1536 (((-583 |#4|) $) NIL (|has| $ (-6 -4180)))) (-1497 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-1976 ((|#3| $) 75)) (-2550 (((-107) $ (-703)) NIL)) (-2560 (((-583 |#4|) $) 28 (|has| $ (-6 -4180)))) (-2787 (((-107) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003))))) (-3825 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 31) (((-3 $ "failed") (-583 |#4|)) 34)) (-1433 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4181)))) (-1893 (($ (-1 |#4| |#4|) $) NIL)) (-3921 (((-583 |#3|) $) NIL)) (-1792 (((-107) |#3| $) NIL)) (-3847 (((-107) $ (-703)) NIL)) (-3985 (((-1056) $) NIL)) (-2068 (((-3 |#4| "failed") $) NIL)) (-2774 (((-583 |#4|) $) 49)) (-3852 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3522 ((|#4| |#4| $) 73)) (-3411 (((-107) $ $) 84)) (-2690 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-509)))) (-1959 (((-107) |#4| $) NIL) (((-107) $) NIL)) (-3183 ((|#4| |#4| $) NIL)) (-3206 (((-1021) $) NIL)) (-1647 (((-3 |#4| "failed") $) 68)) (-2887 (((-3 |#4| "failed") (-1 (-107) |#4|) $) NIL)) (-1195 (((-3 $ "failed") $ |#4|) NIL)) (-1672 (($ $ |#4|) NIL)) (-2048 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2051 (($ $ (-583 |#4|) (-583 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-265 |#4|)) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003)))) (($ $ (-583 (-265 |#4|))) NIL (-12 (|has| |#4| (-280 |#4|)) (|has| |#4| (-1003))))) (-3792 (((-107) $ $) NIL)) (-3619 (((-107) $) 66)) (-1746 (($) 41)) (-3688 (((-703) $) NIL)) (-3217 (((-703) |#4| $) NIL (-12 (|has| $ (-6 -4180)) (|has| |#4| (-1003)))) (((-703) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2433 (($ $) NIL)) (-3645 (((-493) $) NIL (|has| |#4| (-558 (-493))))) (-2276 (($ (-583 |#4|)) NIL)) (-2442 (($ $ |#3|) NIL)) (-3759 (($ $ |#3|) NIL)) (-2303 (($ $) NIL)) (-1846 (($ $ |#3|) NIL)) (-2256 (((-787) $) NIL) (((-583 |#4|) $) 56)) (-1605 (((-703) $) NIL (|has| |#3| (-338)))) (-4021 (((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 39) (((-3 $ "failed") (-583 |#4|)) 40)) (-2418 (((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|)) 64) (((-583 $) (-583 |#4|)) 65)) (-1942 (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4| |#4|)) 23) (((-3 (-2 (|:| |bas| $) (|:| -4139 (-583 |#4|))) "failed") (-583 |#4|) (-1 (-107) |#4|) (-1 (-107) |#4| |#4|)) NIL)) (-2114 (((-107) $ (-1 (-107) |#4| (-583 |#4|))) NIL)) (-3675 (((-107) (-1 (-107) |#4|) $) NIL (|has| $ (-6 -4180)))) (-2614 (((-583 |#3|) $) NIL)) (-1871 (((-107) |#3| $) NIL)) (-1547 (((-107) $ $) NIL)) (-2296 (((-703) $) NIL (|has| $ (-6 -4180)))))
+(((-1164 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3825 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3825 ((-3 $ "failed") (-583 |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|))) (-15 -2418 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2418 ((-583 $) (-583 |#4|))))) (-509) (-725) (-779) (-975 |#1| |#2| |#3|)) (T -1164))
+((-3825 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))) (-3825 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) (-4021 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))) (-4021 (*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) (-2418 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1164 *6 *7 *8 *9))) (-5 *1 (-1164 *6 *7 *8 *9)))) (-2418 (*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1164 *4 *5 *6 *7))) (-5 *1 (-1164 *4 *5 *6 *7)))))
+(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3825 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3825 ((-3 $ "failed") (-583 |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4021 ((-3 $ "failed") (-583 |#4|))) (-15 -2418 ((-583 $) (-583 |#4|) (-1 (-107) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2418 ((-583 $) (-583 |#4|)))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-4038 (((-3 $ "failed") $ $) 19)) (-3092 (($) 17 T CONST)) (-3621 (((-3 $ "failed") $) 34)) (-3848 (((-107) $) 31)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#1|) 38)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-1165 |#1|) (-1184) (-961)) (T -1165))
+((-2256 (*1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-961)))))
+(-13 (-961) (-106 |t#1| |t#1|) (-10 -8 (-15 -2256 ($ |t#1|)) (IF (|has| |t#1| (-156)) (-6 (-37 |t#1|)) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-156)) ((-97) . T) ((-106 |#1| |#1|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 |#1|) |has| |#1| (-156)) ((-659) . T) ((-967 |#1|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 45)) (-3883 (($ $ (-703)) 39)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ (-703)) 17 (|has| |#2| (-156))) (($ $ $) 18 (|has| |#2| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ $) 61) (($ $ (-751 |#1|)) 48) (($ $ |#1|) 52)) (-1772 (((-3 (-751 |#1|) "failed") $) NIL)) (-3189 (((-751 |#1|) $) NIL)) (-1212 (($ $) 32)) (-3621 (((-3 $ "failed") $) NIL)) (-4092 (((-107) $) NIL)) (-3768 (($ $) NIL)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 |#1|) |#2|) 31)) (-2402 (($ $) 33)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 11)) (-1785 (((-751 |#1|) $) NIL)) (-2844 (((-751 |#1|) $) 34)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-2208 (($ $ $) 60) (($ $ (-751 |#1|)) 50) (($ $ |#1|) 54)) (-2854 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4152 (((-751 |#1|) $) 28)) (-1191 ((|#2| $) 30)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3688 (((-703) $) 36)) (-3819 (((-107) $) 40)) (-1619 ((|#2| $) NIL)) (-2256 (((-787) $) NIL) (($ (-751 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-517)) NIL)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-751 |#1|)) NIL)) (-1931 ((|#2| $ $) 63) ((|#2| $ (-751 |#1|)) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (-2396 (($) 12 T CONST)) (-2409 (($) 14 T CONST)) (-2332 (((-583 (-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1547 (((-107) $ $) 38)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 21)) (** (($ $ (-703)) NIL) (($ $ (-843)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ |#2| $) 20) (($ $ |#2|) 59) (($ |#2| (-751 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1166 |#1| |#2|) (-13 (-352 |#2| (-751 |#1|)) (-1172 |#1| |#2|)) (-779) (-961)) (T -1166))
+NIL
+(-13 (-352 |#2| (-751 |#1|)) (-1172 |#1| |#2|))
+((-1867 ((|#3| |#3| (-703)) 23)) (-2624 ((|#3| |#3| (-703)) 28)) (-3650 ((|#3| |#3| |#3| (-703)) 29)))
+(((-1167 |#1| |#2| |#3|) (-10 -7 (-15 -2624 (|#3| |#3| (-703))) (-15 -1867 (|#3| |#3| (-703))) (-15 -3650 (|#3| |#3| |#3| (-703)))) (-13 (-961) (-650 (-377 (-517)))) (-779) (-1172 |#2| |#1|)) (T -1167))
+((-3650 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) (-1867 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) (-2624 (*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))))
+(-10 -7 (-15 -2624 (|#3| |#3| (-703))) (-15 -1867 (|#3| |#3| (-703))) (-15 -3650 (|#3| |#3| |#3| (-703))))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3463 (((-583 |#1|) $) 40)) (-4038 (((-3 $ "failed") $ $) 19)) (-3116 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3092 (($) 17 T CONST)) (-3791 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1772 (((-3 (-751 |#1|) "failed") $) 64)) (-3189 (((-751 |#1|) $) 63)) (-3621 (((-3 $ "failed") $) 34)) (-4092 (((-107) $) 45)) (-3768 (($ $) 44)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 50)) (-3419 (($ (-751 |#1|) |#2|) 51)) (-2402 (($ $) 49)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-1785 (((-751 |#1|) $) 61)) (-1893 (($ (-1 |#2| |#2|) $) 41)) (-2208 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3819 (((-107) $) 47)) (-1619 ((|#2| $) 46)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1931 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1168 |#1| |#2|) (-1184) (-779) (-961)) (T -1168))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))) (-1931 (*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1168 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) (-1931 (*1 *2 *1 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-2208 (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2208 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-2208 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3791 (*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3791 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3419 (*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1168 *4 *3)) (-4 *3 (-961)))) (-4031 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-2402 (*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-2256 (*1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) (-3768 (*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) (-3116 (*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156)))) (-3116 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-3463 (*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
+(-13 (-961) (-1165 |t#2|) (-952 (-751 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1785 ((-751 |t#1|) $)) (-15 -3208 ((-2 (|:| |k| (-751 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1931 (|t#2| $ (-751 |t#1|))) (-15 -1931 (|t#2| $ $)) (-15 -2208 ($ $ |t#1|)) (-15 -2208 ($ $ (-751 |t#1|))) (-15 -2208 ($ $ $)) (-15 -3791 ($ $ |t#1|)) (-15 -3791 ($ $ (-751 |t#1|))) (-15 -3791 ($ $ $)) (-15 -3419 ($ (-751 |t#1|) |t#2|)) (-15 -4031 ((-107) $)) (-15 -2402 ($ $)) (-15 -2256 ($ |t#1|)) (-15 -3819 ((-107) $)) (-15 -1619 (|t#2| $)) (-15 -4092 ((-107) $)) (-15 -3768 ($ $)) (IF (|has| |t#2| (-156)) (PROGN (-15 -3116 ($ $ $)) (-15 -3116 ($ $ (-703)))) |noBranch|) (-15 -1893 ($ (-1 |t#2| |t#2|) $)) (-15 -3463 ((-583 |t#1|) $)) (IF (|has| |t#2| (-6 -4173)) (-6 -4173) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1165 |#2|) . T))
+((-2909 (((-107) $) 13)) (-1871 (((-107) $) 12)) (-4103 (($ $) 17) (($ $ (-703)) 18)))
+(((-1169 |#1| |#2|) (-10 -8 (-15 -4103 (|#1| |#1| (-703))) (-15 -4103 (|#1| |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|))) (-1170 |#2|) (-333)) (T -1169))
+NIL
+(-10 -8 (-15 -4103 (|#1| |#1| (-703))) (-15 -4103 (|#1| |#1|)) (-15 -2909 ((-107) |#1|)) (-15 -1871 ((-107) |#1|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-2942 (((-2 (|:| -3295 $) (|:| -4167 $) (|:| |associate| $)) $) 41)) (-1213 (($ $) 40)) (-2454 (((-107) $) 38)) (-2909 (((-107) $) 94)) (-3250 (((-703)) 90)) (-4038 (((-3 $ "failed") $ $) 19)) (-2535 (($ $) 73)) (-2759 (((-388 $) $) 72)) (-1707 (((-107) $ $) 59)) (-3092 (($) 17 T CONST)) (-1772 (((-3 |#1| "failed") $) 101)) (-3189 ((|#1| $) 100)) (-2518 (($ $ $) 55)) (-3621 (((-3 $ "failed") $) 34)) (-2497 (($ $ $) 56)) (-1780 (((-2 (|:| -1931 (-583 $)) (|:| -3220 $)) (-583 $)) 51)) (-2378 (($ $ (-703)) 87 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338)))) (($ $) 86 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3849 (((-107) $) 71)) (-3972 (((-765 (-843)) $) 84 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3848 (((-107) $) 31)) (-2377 (((-3 (-583 $) "failed") (-583 $) $) 52)) (-1365 (($ $ $) 46) (($ (-583 $)) 45)) (-3985 (((-1056) $) 9)) (-4118 (($ $) 70)) (-3202 (((-107) $) 93)) (-3206 (((-1021) $) 10)) (-1862 (((-1069 $) (-1069 $) (-1069 $)) 44)) (-1401 (($ $ $) 48) (($ (-583 $)) 47)) (-3755 (((-388 $) $) 74)) (-3327 (((-765 (-843))) 91)) (-2069 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3220 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2476 (((-3 $ "failed") $ $) 42)) (-1737 (((-3 (-583 $) "failed") (-583 $) $) 50)) (-3146 (((-703) $) 58)) (-1306 (((-2 (|:| -3425 $) (|:| -3060 $)) $ $) 57)) (-1620 (((-3 (-703) "failed") $ $) 85 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-3141 (((-125)) 99)) (-3688 (((-765 (-843)) $) 92)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ $) 43) (($ (-377 (-517))) 65) (($ |#1|) 102)) (-1328 (((-3 $ "failed") $) 83 (-3807 (|has| |#1| (-132)) (|has| |#1| (-338))))) (-2961 (((-703)) 29)) (-3329 (((-107) $ $) 39)) (-1871 (((-107) $) 95)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33) (($ $ (-517)) 69)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-4103 (($ $) 89 (|has| |#1| (-338))) (($ $ (-703)) 88 (|has| |#1| (-338)))) (-1547 (((-107) $ $) 6)) (-1667 (($ $ $) 64) (($ $ |#1|) 98)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32) (($ $ (-517)) 68)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ $ (-377 (-517))) 67) (($ (-377 (-517)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-1170 |#1|) (-1184) (-333)) (T -1170))
+((-1871 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-2909 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-3327 (*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) (-3250 (*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-703)))) (-4103 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-333)) (-4 *2 (-338)))) (-4103 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-4 *3 (-338)))))
+(-13 (-333) (-952 |t#1|) (-1160 |t#1|) (-10 -8 (IF (|has| |t#1| (-134)) (-6 (-134)) |noBranch|) (IF (|has| |t#1| (-132)) (-6 (-372)) |noBranch|) (-15 -1871 ((-107) $)) (-15 -2909 ((-107) $)) (-15 -3202 ((-107) $)) (-15 -3688 ((-765 (-843)) $)) (-15 -3327 ((-765 (-843)))) (-15 -3250 ((-703))) (IF (|has| |t#1| (-338)) (PROGN (-6 (-372)) (-15 -4103 ($ $)) (-15 -4103 ($ $ (-703)))) |noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 (-377 (-517))) . T) ((-37 $) . T) ((-97) . T) ((-106 (-377 (-517)) (-377 (-517))) . T) ((-106 |#1| |#1|) . T) ((-106 $ $) . T) ((-123) . T) ((-132) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-134) |has| |#1| (-134)) ((-557 (-787)) . T) ((-156) . T) ((-217) . T) ((-262) . T) ((-278) . T) ((-333) . T) ((-372) -3807 (|has| |#1| (-338)) (|has| |#1| (-132))) ((-421) . T) ((-509) . T) ((-585 (-377 (-517))) . T) ((-585 |#1|) . T) ((-585 $) . T) ((-650 (-377 (-517))) . T) ((-650 |#1|) . T) ((-650 $) . T) ((-659) . T) ((-842) . T) ((-952 |#1|) . T) ((-967 (-377 (-517))) . T) ((-967 |#1|) . T) ((-967 $) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1112) . T) ((-1160 |#1|) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 84)) (-3883 (($ $ (-703)) 87)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ $) NIL (|has| |#2| (-156))) (($ $ (-703)) NIL (|has| |#2| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1772 (((-3 (-751 |#1|) "failed") $) NIL) (((-3 (-815 |#1|) "failed") $) NIL)) (-3189 (((-751 |#1|) $) NIL) (((-815 |#1|) $) NIL)) (-1212 (($ $) 86)) (-3621 (((-3 $ "failed") $) NIL)) (-4092 (((-107) $) 75)) (-3768 (($ $) 79)) (-3485 (($ $ $ (-703)) 88)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 |#1|) |#2|) NIL) (($ (-815 |#1|) |#2|) 25)) (-2402 (($ $) 101)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1785 (((-751 |#1|) $) NIL)) (-2844 (((-751 |#1|) $) NIL)) (-1893 (($ (-1 |#2| |#2|) $) NIL)) (-2208 (($ $ |#1|) NIL) (($ $ (-751 |#1|)) NIL) (($ $ $) NIL)) (-1867 (($ $ (-703)) 95 (|has| |#2| (-650 (-377 (-517)))))) (-2854 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4152 (((-815 |#1|) $) 69)) (-1191 ((|#2| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-2624 (($ $ (-703)) 92 (|has| |#2| (-650 (-377 (-517)))))) (-3688 (((-703) $) 85)) (-3819 (((-107) $) 70)) (-1619 ((|#2| $) 74)) (-2256 (((-787) $) 56) (($ (-517)) NIL) (($ |#2|) 50) (($ (-751 |#1|)) NIL) (($ |#1|) 58) (($ (-815 |#1|)) NIL) (($ (-601 |#1| |#2|)) 42) (((-1166 |#1| |#2|) $) 63) (((-1175 |#1| |#2|) $) 68)) (-1311 (((-583 |#2|) $) NIL)) (-2720 ((|#2| $ (-815 |#1|)) NIL)) (-1931 ((|#2| $ (-751 |#1|)) NIL) ((|#2| $ $) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 21 T CONST)) (-2409 (($) 24 T CONST)) (-2332 (((-583 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2908 (((-3 (-601 |#1| |#2|) "failed") $) 100)) (-1547 (((-107) $ $) 64)) (-1654 (($ $) 94) (($ $ $) 93)) (-1642 (($ $ $) 20)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-815 |#1|)) NIL)))
+(((-1171 |#1| |#2|) (-13 (-1172 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2256 ($ (-601 |#1| |#2|))) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1175 |#1| |#2|) $)) (-15 -2908 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3485 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2624 ($ $ (-703))) (-15 -1867 ($ $ (-703)))) |noBranch|))) (-779) (-156)) (T -1171))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1171 *3 *4)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2908 (*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-3485 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) (-2624 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))) (-1867 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
+(-13 (-1172 |#1| |#2|) (-352 |#2| (-815 |#1|)) (-10 -8 (-15 -2256 ($ (-601 |#1| |#2|))) (-15 -2256 ((-1166 |#1| |#2|) $)) (-15 -2256 ((-1175 |#1| |#2|) $)) (-15 -2908 ((-3 (-601 |#1| |#2|) "failed") $)) (-15 -3485 ($ $ $ (-703))) (IF (|has| |#2| (-650 (-377 (-517)))) (PROGN (-15 -2624 ($ $ (-703))) (-15 -1867 ($ $ (-703)))) |noBranch|)))
+((-2750 (((-107) $ $) 7)) (-2814 (((-107) $) 16)) (-3463 (((-583 |#1|) $) 40)) (-3883 (($ $ (-703)) 73)) (-4038 (((-3 $ "failed") $ $) 19)) (-3116 (($ $ $) 43 (|has| |#2| (-156))) (($ $ (-703)) 42 (|has| |#2| (-156)))) (-3092 (($) 17 T CONST)) (-3791 (($ $ |#1|) 54) (($ $ (-751 |#1|)) 53) (($ $ $) 52)) (-1772 (((-3 (-751 |#1|) "failed") $) 64)) (-3189 (((-751 |#1|) $) 63)) (-3621 (((-3 $ "failed") $) 34)) (-4092 (((-107) $) 45)) (-3768 (($ $) 44)) (-3848 (((-107) $) 31)) (-4031 (((-107) $) 50)) (-3419 (($ (-751 |#1|) |#2|) 51)) (-2402 (($ $) 49)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) 60)) (-1785 (((-751 |#1|) $) 61)) (-2844 (((-751 |#1|) $) 75)) (-1893 (($ (-1 |#2| |#2|) $) 41)) (-2208 (($ $ |#1|) 57) (($ $ (-751 |#1|)) 56) (($ $ $) 55)) (-3985 (((-1056) $) 9)) (-3206 (((-1021) $) 10)) (-3688 (((-703) $) 74)) (-3819 (((-107) $) 47)) (-1619 ((|#2| $) 46)) (-2256 (((-787) $) 11) (($ (-517)) 28) (($ |#2|) 68) (($ (-751 |#1|)) 65) (($ |#1|) 48)) (-1931 ((|#2| $ (-751 |#1|)) 59) ((|#2| $ $) 58)) (-2961 (((-703)) 29)) (-2207 (($ $ (-843)) 26) (($ $ (-703)) 33)) (-2396 (($) 18 T CONST)) (-2409 (($) 30 T CONST)) (-1547 (((-107) $ $) 6)) (-1654 (($ $) 22) (($ $ $) 21)) (-1642 (($ $ $) 14)) (** (($ $ (-843)) 25) (($ $ (-703)) 32)) (* (($ (-843) $) 13) (($ (-703) $) 15) (($ (-517) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1172 |#1| |#2|) (-1184) (-779) (-961)) (T -1172))
+((-2844 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703)))) (-3883 (*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(-13 (-1168 |t#1| |t#2|) (-10 -8 (-15 -2844 ((-751 |t#1|) $)) (-15 -3688 ((-703) $)) (-15 -3883 ($ $ (-703)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-156)) ((-97) . T) ((-106 |#2| |#2|) . T) ((-123) . T) ((-557 (-787)) . T) ((-585 |#2|) . T) ((-585 $) . T) ((-650 |#2|) |has| |#2| (-156)) ((-659) . T) ((-952 (-751 |#1|)) . T) ((-967 |#2|) . T) ((-961) . T) ((-968) . T) ((-1015) . T) ((-1003) . T) ((-1165 |#2|) . T) ((-1168 |#1| |#2|) . T))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 (-1073)) $) NIL)) (-2657 (($ (-1166 (-1073) |#1|)) NIL)) (-3883 (($ $ (-703)) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ $) NIL (|has| |#1| (-156))) (($ $ (-703)) NIL (|has| |#1| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ (-1073)) NIL) (($ $ (-751 (-1073))) NIL) (($ $ $) NIL)) (-1772 (((-3 (-751 (-1073)) "failed") $) NIL)) (-3189 (((-751 (-1073)) $) NIL)) (-3621 (((-3 $ "failed") $) NIL)) (-4092 (((-107) $) NIL)) (-3768 (($ $) NIL)) (-3848 (((-107) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 (-1073)) |#1|) NIL)) (-2402 (($ $) NIL)) (-3208 (((-2 (|:| |k| (-751 (-1073))) (|:| |c| |#1|)) $) NIL)) (-1785 (((-751 (-1073)) $) NIL)) (-2844 (((-751 (-1073)) $) NIL)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2208 (($ $ (-1073)) NIL) (($ $ (-751 (-1073))) NIL) (($ $ $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3502 (((-1166 (-1073) |#1|) $) NIL)) (-3688 (((-703) $) NIL)) (-3819 (((-107) $) NIL)) (-1619 ((|#1| $) NIL)) (-2256 (((-787) $) NIL) (($ (-517)) NIL) (($ |#1|) NIL) (($ (-751 (-1073))) NIL) (($ (-1073)) NIL)) (-1931 ((|#1| $ (-751 (-1073))) NIL) ((|#1| $ $) NIL)) (-2961 (((-703)) NIL)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) NIL T CONST)) (-3389 (((-583 (-2 (|:| |k| (-1073)) (|:| |c| $))) $) NIL)) (-2409 (($) NIL T CONST)) (-1547 (((-107) $ $) NIL)) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) NIL)) (** (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1073) $) NIL)))
+(((-1173 |#1|) (-13 (-1172 (-1073) |#1|) (-10 -8 (-15 -3502 ((-1166 (-1073) |#1|) $)) (-15 -2657 ($ (-1166 (-1073) |#1|))) (-15 -3389 ((-583 (-2 (|:| |k| (-1073)) (|:| |c| $))) $)))) (-961)) (T -1173))
+((-3502 (*1 *2 *1) (-12 (-5 *2 (-1166 (-1073) *3)) (-5 *1 (-1173 *3)) (-4 *3 (-961)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-1166 (-1073) *3)) (-4 *3 (-961)) (-5 *1 (-1173 *3)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1073)) (|:| |c| (-1173 *3))))) (-5 *1 (-1173 *3)) (-4 *3 (-961)))))
+(-13 (-1172 (-1073) |#1|) (-10 -8 (-15 -3502 ((-1166 (-1073) |#1|) $)) (-15 -2657 ($ (-1166 (-1073) |#1|))) (-15 -3389 ((-583 (-2 (|:| |k| (-1073)) (|:| |c| $))) $))))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3092 (($) NIL T CONST)) (-1772 (((-3 |#2| "failed") $) NIL)) (-3189 ((|#2| $) NIL)) (-1212 (($ $) NIL)) (-3621 (((-3 $ "failed") $) 34)) (-4092 (((-107) $) 29)) (-3768 (($ $) 30)) (-3848 (((-107) $) NIL)) (-1577 (((-703) $) NIL)) (-4094 (((-583 $) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ |#2| |#1|) NIL)) (-1785 ((|#2| $) 19)) (-2844 ((|#2| $) 16)) (-1893 (($ (-1 |#1| |#1|) $) NIL)) (-2854 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4152 ((|#2| $) NIL)) (-1191 ((|#1| $) NIL)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3819 (((-107) $) 27)) (-1619 ((|#1| $) 28)) (-2256 (((-787) $) 53) (($ (-517)) 38) (($ |#1|) 33) (($ |#2|) NIL)) (-1311 (((-583 |#1|) $) NIL)) (-2720 ((|#1| $ |#2|) NIL)) (-1931 ((|#1| $ |#2|) 24)) (-2961 (((-703)) 14)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 25 T CONST)) (-2409 (($) 11 T CONST)) (-2332 (((-583 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1547 (((-107) $ $) 26)) (-1667 (($ $ |#1|) 55 (|has| |#1| (-333)))) (-1654 (($ $) NIL) (($ $ $) NIL)) (-1642 (($ $ $) 42)) (** (($ $ (-843)) NIL) (($ $ (-703)) 44)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) NIL) (($ $ $) 43) (($ |#1| $) 39) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2296 (((-703) $) 15)))
+(((-1174 |#1| |#2|) (-13 (-961) (-1165 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2296 ((-703) $)) (-15 -2256 ($ |#2|)) (-15 -2844 (|#2| $)) (-15 -1785 (|#2| $)) (-15 -1212 ($ $)) (-15 -1931 (|#1| $ |#2|)) (-15 -3819 ((-107) $)) (-15 -1619 (|#1| $)) (-15 -4092 ((-107) $)) (-15 -3768 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1667 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4173)) (-6 -4173) |noBranch|) (IF (|has| |#1| (-6 -4177)) (-6 -4177) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|))) (-961) (-775)) (T -1174))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1212 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1893 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-775)))) (-2256 (*1 *1 *2) (-12 (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-2844 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))) (-1785 (*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))) (-1931 (*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-1619 (*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))) (-4092 (*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))) (-1667 (*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(-13 (-961) (-1165 |#1|) (-352 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2296 ((-703) $)) (-15 -2256 ($ |#2|)) (-15 -2844 (|#2| $)) (-15 -1785 (|#2| $)) (-15 -1212 ($ $)) (-15 -1931 (|#1| $ |#2|)) (-15 -3819 ((-107) $)) (-15 -1619 (|#1| $)) (-15 -4092 ((-107) $)) (-15 -3768 ($ $)) (-15 -1893 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-333)) (-15 -1667 ($ $ |#1|)) |noBranch|) (IF (|has| |#1| (-6 -4173)) (-6 -4173) |noBranch|) (IF (|has| |#1| (-6 -4177)) (-6 -4177) |noBranch|) (IF (|has| |#1| (-6 -4178)) (-6 -4178) |noBranch|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) NIL)) (-3463 (((-583 |#1|) $) 119)) (-2657 (($ (-1166 |#1| |#2|)) 43)) (-3883 (($ $ (-703)) 31)) (-4038 (((-3 $ "failed") $ $) NIL)) (-3116 (($ $ $) 47 (|has| |#2| (-156))) (($ $ (-703)) 45 (|has| |#2| (-156)))) (-3092 (($) NIL T CONST)) (-3791 (($ $ |#1|) 101) (($ $ (-751 |#1|)) 102) (($ $ $) 25)) (-1772 (((-3 (-751 |#1|) "failed") $) NIL)) (-3189 (((-751 |#1|) $) NIL)) (-3621 (((-3 $ "failed") $) 109)) (-4092 (((-107) $) 104)) (-3768 (($ $) 105)) (-3848 (((-107) $) NIL)) (-4031 (((-107) $) NIL)) (-3419 (($ (-751 |#1|) |#2|) 19)) (-2402 (($ $) NIL)) (-3208 (((-2 (|:| |k| (-751 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1785 (((-751 |#1|) $) 110)) (-2844 (((-751 |#1|) $) 113)) (-1893 (($ (-1 |#2| |#2|) $) 118)) (-2208 (($ $ |#1|) 99) (($ $ (-751 |#1|)) 100) (($ $ $) 55)) (-3985 (((-1056) $) NIL)) (-3206 (((-1021) $) NIL)) (-3502 (((-1166 |#1| |#2|) $) 83)) (-3688 (((-703) $) 116)) (-3819 (((-107) $) 69)) (-1619 ((|#2| $) 27)) (-2256 (((-787) $) 62) (($ (-517)) 76) (($ |#2|) 73) (($ (-751 |#1|)) 17) (($ |#1|) 72)) (-1931 ((|#2| $ (-751 |#1|)) 103) ((|#2| $ $) 26)) (-2961 (((-703)) 107)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 14 T CONST)) (-3389 (((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 52)) (-2409 (($) 28 T CONST)) (-1547 (((-107) $ $) 13)) (-1654 (($ $) 87) (($ $ $) 90)) (-1642 (($ $ $) 54)) (** (($ $ (-843)) NIL) (($ $ (-703)) 48)) (* (($ (-843) $) NIL) (($ (-703) $) 46) (($ (-517) $) 93) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 81)))
+(((-1175 |#1| |#2|) (-13 (-1172 |#1| |#2|) (-10 -8 (-15 -3502 ((-1166 |#1| |#2|) $)) (-15 -2657 ($ (-1166 |#1| |#2|))) (-15 -3389 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-779) (-961)) (T -1175))
+((-3502 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) (-2657 (*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1175 *3 *4)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1175 *3 *4))))) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(-13 (-1172 |#1| |#2|) (-10 -8 (-15 -3502 ((-1166 |#1| |#2|) $)) (-15 -2657 ($ (-1166 |#1| |#2|))) (-15 -3389 ((-583 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1972 (((-583 (-1054 |#1|)) (-1 (-583 (-1054 |#1|)) (-583 (-1054 |#1|))) (-517)) 15) (((-1054 |#1|) (-1 (-1054 |#1|) (-1054 |#1|))) 11)))
+(((-1176 |#1|) (-10 -7 (-15 -1972 ((-1054 |#1|) (-1 (-1054 |#1|) (-1054 |#1|)))) (-15 -1972 ((-583 (-1054 |#1|)) (-1 (-583 (-1054 |#1|)) (-583 (-1054 |#1|))) (-517)))) (-1108)) (T -1176))
+((-1972 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1054 *5)) (-583 (-1054 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1054 *5))) (-5 *1 (-1176 *5)) (-4 *5 (-1108)))) (-1972 (*1 *2 *3) (-12 (-5 *3 (-1 (-1054 *4) (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1108)))))
+(-10 -7 (-15 -1972 ((-1054 |#1|) (-1 (-1054 |#1|) (-1054 |#1|)))) (-15 -1972 ((-583 (-1054 |#1|)) (-1 (-583 (-1054 |#1|)) (-583 (-1054 |#1|))) (-517))))
+((-2110 (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|))) 145) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107)) 144) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107)) 143) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 142) (((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-958 |#1| |#2|)) 127)) (-3048 (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|))) 70) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107)) 69) (((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107)) 68)) (-2759 (((-583 (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|)) 59)) (-2047 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 112) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 111) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 110) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107)) 109) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 104)) (-2420 (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|))) 117) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107)) 116) (((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107)) 115) (((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|)) 114)) (-3645 (((-583 (-712 |#1| (-789 |#3|))) (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) 96) (((-1069 (-939 (-377 |#1|))) (-1069 |#1|)) 87) (((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|))) 94) (((-874 (-939 (-377 |#1|))) (-874 |#1|)) 92) (((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|))) 32)))
+(((-1177 |#1| |#2| |#3|) (-10 -7 (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2759 ((-583 (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3645 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3645 ((-1069 (-939 (-377 |#1|))) (-1069 |#1|))) (-15 -3645 ((-583 (-712 |#1| (-789 |#3|))) (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))))) (-13 (-777) (-278) (-134) (-937)) (-583 (-1073)) (-583 (-1073))) (T -1177))
+((-3645 (*1 *2 *3) (-12 (-5 *3 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1069 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2420 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2420 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-2047 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2047 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2047 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2047 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-2110 (*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-2110 (*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2110 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2110 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) (-3048 (*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) (-3048 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))))
+(-10 -7 (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)) (-107))) (-15 -3048 ((-583 (-958 |#1| |#2|)) (-583 (-874 |#1|)))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-958 |#1| |#2|))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)) (-107))) (-15 -2110 ((-583 (-2 (|:| -3674 (-1069 |#1|)) (|:| -4114 (-583 (-874 |#1|))))) (-583 (-874 |#1|)))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2047 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-958 |#1| |#2|))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)) (-107))) (-15 -2420 ((-583 (-583 (-939 (-377 |#1|)))) (-583 (-874 |#1|)))) (-15 -2759 ((-583 (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|)))) (-958 |#1| |#2|))) (-15 -3645 ((-712 |#1| (-789 |#3|)) (-712 |#1| (-789 |#2|)))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-874 |#1|))) (-15 -3645 ((-874 (-939 (-377 |#1|))) (-712 |#1| (-789 |#3|)))) (-15 -3645 ((-1069 (-939 (-377 |#1|))) (-1069 |#1|))) (-15 -3645 ((-583 (-712 |#1| (-789 |#3|))) (-1044 |#1| (-489 (-789 |#3|)) (-789 |#3|) (-712 |#1| (-789 |#3|))))))
+((-1915 (((-3 (-1153 (-377 (-517))) "failed") (-1153 |#1|) |#1|) 17)) (-1387 (((-107) (-1153 |#1|)) 11)) (-2978 (((-3 (-1153 (-517)) "failed") (-1153 |#1|)) 14)))
+(((-1178 |#1|) (-10 -7 (-15 -1387 ((-107) (-1153 |#1|))) (-15 -2978 ((-3 (-1153 (-517)) "failed") (-1153 |#1|))) (-15 -1915 ((-3 (-1153 (-377 (-517))) "failed") (-1153 |#1|) |#1|))) (-579 (-517))) (T -1178))
+((-1915 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-377 (-517)))) (-5 *1 (-1178 *4)))) (-2978 (*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-517))) (-5 *1 (-1178 *4)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1178 *4)))))
+(-10 -7 (-15 -1387 ((-107) (-1153 |#1|))) (-15 -2978 ((-3 (-1153 (-517)) "failed") (-1153 |#1|))) (-15 -1915 ((-3 (-1153 (-377 (-517))) "failed") (-1153 |#1|) |#1|)))
+((-2750 (((-107) $ $) NIL)) (-2814 (((-107) $) 11)) (-4038 (((-3 $ "failed") $ $) NIL)) (-1611 (((-703)) 8)) (-3092 (($) NIL T CONST)) (-3621 (((-3 $ "failed") $) 43)) (-3209 (($) 36)) (-3848 (((-107) $) NIL)) (-1319 (((-3 $ "failed") $) 29)) (-1549 (((-843) $) 15)) (-3985 (((-1056) $) NIL)) (-2836 (($) 25 T CONST)) (-3448 (($ (-843)) 37)) (-3206 (((-1021) $) NIL)) (-3645 (((-517) $) 13)) (-2256 (((-787) $) 22) (($ (-517)) 19)) (-2961 (((-703)) 9)) (-2207 (($ $ (-843)) NIL) (($ $ (-703)) NIL)) (-2396 (($) 23 T CONST)) (-2409 (($) 24 T CONST)) (-1547 (((-107) $ $) 27)) (-1654 (($ $) 38) (($ $ $) 35)) (-1642 (($ $ $) 26)) (** (($ $ (-843)) NIL) (($ $ (-703)) 40)) (* (($ (-843) $) NIL) (($ (-703) $) NIL) (($ (-517) $) 32) (($ $ $) 31)))
+(((-1179 |#1|) (-13 (-156) (-338) (-558 (-517)) (-1049)) (-843)) (T -1179))
+NIL
+(-13 (-156) (-338) (-558 (-517)) (-1049))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-1184 3124859 3124864 3124869 "NIL" NIL T NIL (NIL) NIL NIL NIL) (-3 3124844 3124849 3124854 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-2 3124829 3124834 3124839 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1 3124814 3124819 3124824 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (0 3124799 3124804 3124809 "NIL" NIL NIL NIL (NIL) -8 NIL NIL) (-1179 3123929 3124674 3124751 "ZMOD" 3124756 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1178 3123039 3123203 3123412 "ZLINDEP" 3123761 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1177 3112443 3114188 3116140 "ZDSOLVE" 3121188 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1176 3111689 3111830 3112019 "YSTREAM" 3112289 NIL YSTREAM (NIL T) -7 NIL NIL) (-1175 3109458 3110994 3111197 "XRPOLY" 3111532 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1174 3105928 3107257 3107835 "XPR" 3108926 NIL XPR (NIL T T) -8 NIL NIL) (-1173 3103642 3105263 3105466 "XPOLY" 3105759 NIL XPOLY (NIL T) -8 NIL NIL) (-1172 3101455 3102833 3102888 "XPOLYC" 3103173 NIL XPOLYC (NIL T T) -9 NIL 3103286) (-1171 3097829 3099974 3100361 "XPBWPOLY" 3101114 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1170 3093712 3096025 3096068 "XF" 3096689 NIL XF (NIL T) -9 NIL 3097085) (-1169 3093333 3093421 3093590 "XF-" 3093595 NIL XF- (NIL T T) -8 NIL NIL) (-1168 3088714 3090013 3090068 "XFALG" 3092216 NIL XFALG (NIL T T) -9 NIL 3093001) (-1167 3087851 3087955 3088159 "XEXPPKG" 3088606 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1166 3085949 3087702 3087797 "XDPOLY" 3087802 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1165 3084828 3085438 3085481 "XALG" 3085543 NIL XALG (NIL T) -9 NIL 3085661) (-1164 3078304 3082812 3083305 "WUTSET" 3084420 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1163 3076120 3076927 3077276 "WP" 3078088 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1162 3075006 3075204 3075499 "WFFINTBS" 3075917 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1161 3072910 3073337 3073799 "WEIER" 3074578 NIL WEIER (NIL T) -7 NIL NIL) (-1160 3072058 3072482 3072525 "VSPACE" 3072661 NIL VSPACE (NIL T) -9 NIL 3072735) (-1159 3071896 3071923 3072014 "VSPACE-" 3072019 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1158 3071642 3071685 3071756 "VOID" 3071847 T VOID (NIL) -8 NIL NIL) (-1157 3069778 3070137 3070543 "VIEW" 3071258 T VIEW (NIL) -7 NIL NIL) (-1156 3066203 3066841 3067578 "VIEWDEF" 3069063 T VIEWDEF (NIL) -7 NIL NIL) (-1155 3055542 3057751 3059924 "VIEW3D" 3064052 T VIEW3D (NIL) -8 NIL NIL) (-1154 3047824 3049453 3051032 "VIEW2D" 3053985 T VIEW2D (NIL) -8 NIL NIL) (-1153 3043233 3047594 3047686 "VECTOR" 3047767 NIL VECTOR (NIL T) -8 NIL NIL) (-1152 3041810 3042069 3042387 "VECTOR2" 3042963 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1151 3035359 3039605 3039649 "VECTCAT" 3040637 NIL VECTCAT (NIL T) -9 NIL 3041214) (-1150 3034373 3034627 3035017 "VECTCAT-" 3035022 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1149 3033854 3034024 3034144 "VARIABLE" 3034288 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1148 3032691 3032845 3033105 "UTSODETL" 3033681 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1147 3030131 3030591 3031115 "UTSODE" 3032232 NIL UTSODE (NIL T T) -7 NIL NIL) (-1146 3021981 3027773 3028260 "UTS" 3029701 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1145 3013286 3018648 3018691 "UTSCAT" 3019792 NIL UTSCAT (NIL T) -9 NIL 3020542) (-1144 3010642 3011357 3012345 "UTSCAT-" 3012350 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1143 3010273 3010316 3010447 "UTS2" 3010593 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1142 3004549 3007114 3007158 "URAGG" 3009228 NIL URAGG (NIL T) -9 NIL 3009949) (-1141 3001488 3002351 3003474 "URAGG-" 3003479 NIL URAGG- (NIL T T) -8 NIL NIL) (-1140 2997174 3000105 3000576 "UPXSSING" 3001152 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1139 2989070 2996297 2996576 "UPXS" 2996952 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1138 2982102 2988975 2989046 "UPXSCONS" 2989051 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1137 2972330 2979157 2979219 "UPXSCCA" 2979868 NIL UPXSCCA (NIL T T) -9 NIL 2980109) (-1136 2971969 2972054 2972227 "UPXSCCA-" 2972232 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1135 2962126 2968726 2968769 "UPXSCAT" 2969412 NIL UPXSCAT (NIL T) -9 NIL 2970013) (-1134 2961560 2961639 2961816 "UPXS2" 2962041 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1133 2960214 2960467 2960818 "UPSQFREE" 2961303 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1132 2954068 2957120 2957175 "UPSCAT" 2958324 NIL UPSCAT (NIL T T) -9 NIL 2959091) (-1131 2953282 2953486 2953809 "UPSCAT-" 2953814 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1130 2939361 2947358 2947401 "UPOLYC" 2949479 NIL UPOLYC (NIL T) -9 NIL 2950693) (-1129 2930754 2933158 2936283 "UPOLYC-" 2936288 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1128 2930385 2930428 2930559 "UPOLYC2" 2930705 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1127 2921844 2929954 2930091 "UP" 2930295 NIL UP (NIL NIL T) -8 NIL NIL) (-1126 2921187 2921294 2921457 "UPMP" 2921733 NIL UPMP (NIL T T) -7 NIL NIL) (-1125 2920740 2920821 2920960 "UPDIVP" 2921100 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1124 2919308 2919557 2919873 "UPDECOMP" 2920489 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1123 2918543 2918655 2918840 "UPCDEN" 2919192 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1122 2918066 2918135 2918282 "UP2" 2918468 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1121 2916595 2917281 2917553 "UNISEG" 2917829 NIL UNISEG (NIL T) -8 NIL NIL) (-1120 2915812 2915939 2916143 "UNISEG2" 2916439 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1119 2914872 2915052 2915278 "UNIFACT" 2915628 NIL UNIFACT (NIL T) -7 NIL NIL) (-1118 2898773 2914055 2914304 "ULS" 2914680 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1117 2886741 2898678 2898749 "ULSCONS" 2898754 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1116 2869445 2881455 2881517 "ULSCCAT" 2882229 NIL ULSCCAT (NIL T T) -9 NIL 2882524) (-1115 2868496 2868741 2869128 "ULSCCAT-" 2869133 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1114 2858447 2864961 2865004 "ULSCAT" 2865860 NIL ULSCAT (NIL T) -9 NIL 2866582) (-1113 2857881 2857960 2858137 "ULS2" 2858362 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1112 2856278 2857245 2857276 "UFD" 2857488 T UFD (NIL) -9 NIL 2857602) (-1111 2856072 2856118 2856213 "UFD-" 2856218 NIL UFD- (NIL T) -8 NIL NIL) (-1110 2855154 2855337 2855553 "UDVO" 2855878 T UDVO (NIL) -7 NIL NIL) (-1109 2852972 2853381 2853851 "UDPO" 2854719 NIL UDPO (NIL T) -7 NIL NIL) (-1108 2852904 2852909 2852940 "TYPE" 2852945 T TYPE (NIL) -9 NIL NIL) (-1107 2851875 2852077 2852317 "TWOFACT" 2852698 NIL TWOFACT (NIL T) -7 NIL NIL) (-1106 2850817 2851154 2851415 "TUPLE" 2851649 NIL TUPLE (NIL T) -8 NIL NIL) (-1105 2848508 2849027 2849566 "TUBETOOL" 2850300 T TUBETOOL (NIL) -7 NIL NIL) (-1104 2847357 2847562 2847803 "TUBE" 2848301 NIL TUBE (NIL T) -8 NIL NIL) (-1103 2842083 2846337 2846618 "TS" 2847110 NIL TS (NIL T) -8 NIL NIL) (-1102 2830787 2834879 2834976 "TSETCAT" 2840210 NIL TSETCAT (NIL T T T T) -9 NIL 2841740) (-1101 2825523 2827120 2829010 "TSETCAT-" 2829015 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1100 2819794 2820640 2821578 "TRMANIP" 2824663 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1099 2819235 2819298 2819461 "TRIMAT" 2819726 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1098 2817041 2817278 2817641 "TRIGMNIP" 2818984 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1097 2816560 2816673 2816704 "TRIGCAT" 2816917 T TRIGCAT (NIL) -9 NIL NIL) (-1096 2816229 2816308 2816449 "TRIGCAT-" 2816454 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1095 2813134 2815089 2815369 "TREE" 2815984 NIL TREE (NIL T) -8 NIL NIL) (-1094 2812407 2812935 2812966 "TRANFUN" 2813001 T TRANFUN (NIL) -9 NIL 2813067) (-1093 2811686 2811877 2812157 "TRANFUN-" 2812162 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1092 2811490 2811522 2811583 "TOPSP" 2811647 T TOPSP (NIL) -7 NIL NIL) (-1091 2810842 2810957 2811110 "TOOLSIGN" 2811371 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1090 2809503 2810019 2810258 "TEXTFILE" 2810625 T TEXTFILE (NIL) -8 NIL NIL) (-1089 2807368 2807882 2808320 "TEX" 2809087 T TEX (NIL) -8 NIL NIL) (-1088 2807149 2807180 2807252 "TEX1" 2807331 NIL TEX1 (NIL T) -7 NIL NIL) (-1087 2806797 2806860 2806950 "TEMUTL" 2807081 T TEMUTL (NIL) -7 NIL NIL) (-1086 2804951 2805231 2805556 "TBCMPPK" 2806520 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1085 2796609 2802869 2802926 "TBAGG" 2803326 NIL TBAGG (NIL T T) -9 NIL 2803537) (-1084 2791679 2793167 2794921 "TBAGG-" 2794926 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1083 2791063 2791170 2791315 "TANEXP" 2791568 NIL TANEXP (NIL T) -7 NIL NIL) (-1082 2784576 2790920 2791013 "TABLE" 2791018 NIL TABLE (NIL T T) -8 NIL NIL) (-1081 2783989 2784087 2784225 "TABLEAU" 2784473 NIL TABLEAU (NIL T) -8 NIL NIL) (-1080 2778597 2779817 2781065 "TABLBUMP" 2782775 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1079 2775060 2775755 2776538 "SYSSOLP" 2777848 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1078 2773614 2773869 2774181 "SYNTAX" 2774770 T SYNTAX (NIL) -8 NIL NIL) (-1077 2770748 2771356 2771994 "SYMTAB" 2772998 T SYMTAB (NIL) -8 NIL NIL) (-1076 2765997 2766899 2767882 "SYMS" 2769787 T SYMS (NIL) -8 NIL NIL) (-1075 2763236 2765463 2765689 "SYMPOLY" 2765805 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1074 2762756 2762831 2762953 "SYMFUNC" 2763148 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1073 2758734 2759993 2760815 "SYMBOL" 2761956 T SYMBOL (NIL) -8 NIL NIL) (-1072 2752273 2753962 2755682 "SWITCH" 2757036 T SWITCH (NIL) -8 NIL NIL) (-1071 2745508 2751102 2751403 "SUTS" 2752029 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1070 2737403 2744631 2744910 "SUPXS" 2745286 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1069 2728936 2737024 2737149 "SUP" 2737312 NIL SUP (NIL T) -8 NIL NIL) (-1068 2728095 2728222 2728439 "SUPFRACF" 2728804 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1067 2727720 2727779 2727890 "SUP2" 2728030 NIL SUP2 (NIL T T) -7 NIL NIL) (-1066 2726146 2726418 2726778 "SUMRF" 2727421 NIL SUMRF (NIL T) -7 NIL NIL) (-1065 2725467 2725532 2725729 "SUMFS" 2726068 NIL SUMFS (NIL T T) -7 NIL NIL) (-1064 2709408 2724650 2724899 "SULS" 2725275 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1063 2708730 2708933 2709073 "SUCH" 2709316 NIL SUCH (NIL T T) -8 NIL NIL) (-1062 2702657 2703669 2704627 "SUBSPACE" 2707818 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1061 2702089 2702179 2702342 "SUBRESP" 2702546 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1060 2695458 2696754 2698065 "STTF" 2700825 NIL STTF (NIL T) -7 NIL NIL) (-1059 2689631 2690751 2691898 "STTFNC" 2694358 NIL STTFNC (NIL T) -7 NIL NIL) (-1058 2680986 2682853 2684644 "STTAYLOR" 2687874 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1057 2674242 2680850 2680933 "STRTBL" 2680938 NIL STRTBL (NIL T) -8 NIL NIL) (-1056 2669633 2674197 2674228 "STRING" 2674233 T STRING (NIL) -8 NIL NIL) (-1055 2664491 2668976 2669007 "STRICAT" 2669066 T STRICAT (NIL) -9 NIL 2669128) (-1054 2657216 2662018 2662636 "STREAM" 2663908 NIL STREAM (NIL T) -8 NIL NIL) (-1053 2656726 2656803 2656947 "STREAM3" 2657133 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1052 2655708 2655891 2656126 "STREAM2" 2656539 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1051 2655396 2655448 2655541 "STREAM1" 2655650 NIL STREAM1 (NIL T) -7 NIL NIL) (-1050 2654412 2654593 2654824 "STINPROD" 2655212 NIL STINPROD (NIL T) -7 NIL NIL) (-1049 2653990 2654174 2654205 "STEP" 2654285 T STEP (NIL) -9 NIL 2654363) (-1048 2647545 2653889 2653966 "STBL" 2653971 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1047 2642717 2646764 2646808 "STAGG" 2646961 NIL STAGG (NIL T) -9 NIL 2647050) (-1046 2640419 2641021 2641893 "STAGG-" 2641898 NIL STAGG- (NIL T T) -8 NIL NIL) (-1045 2638617 2640189 2640281 "STACK" 2640362 NIL STACK (NIL T) -8 NIL NIL) (-1044 2631348 2636764 2637219 "SREGSET" 2638247 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1043 2623788 2625156 2626668 "SRDCMPK" 2629954 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1042 2616731 2621198 2621229 "SRAGG" 2622532 T SRAGG (NIL) -9 NIL 2623140) (-1041 2615748 2616003 2616382 "SRAGG-" 2616387 NIL SRAGG- (NIL T) -8 NIL NIL) (-1040 2610205 2614675 2615098 "SQMATRIX" 2615371 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1039 2603963 2606925 2607651 "SPLTREE" 2609551 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1038 2599953 2600619 2601265 "SPLNODE" 2603389 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1037 2598999 2599232 2599263 "SPFCAT" 2599707 T SPFCAT (NIL) -9 NIL NIL) (-1036 2597736 2597946 2598210 "SPECOUT" 2598757 T SPECOUT (NIL) -7 NIL NIL) (-1035 2589758 2591505 2591548 "SPACEC" 2595871 NIL SPACEC (NIL T) -9 NIL 2597687) (-1034 2587930 2589691 2589739 "SPACE3" 2589744 NIL SPACE3 (NIL T) -8 NIL NIL) (-1033 2586684 2586855 2587145 "SORTPAK" 2587736 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1032 2584740 2585043 2585461 "SOLVETRA" 2586348 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1031 2583751 2583973 2584247 "SOLVESER" 2584513 NIL SOLVESER (NIL T) -7 NIL NIL) (-1030 2578971 2579852 2580854 "SOLVERAD" 2582803 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1029 2574786 2575395 2576124 "SOLVEFOR" 2578338 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1028 2569085 2574137 2574234 "SNTSCAT" 2574239 NIL SNTSCAT (NIL T T T T) -9 NIL 2574309) (-1027 2563192 2567418 2567807 "SMTS" 2568776 NIL SMTS (NIL T T T) -8 NIL NIL) (-1026 2557602 2563081 2563157 "SMP" 2563162 NIL SMP (NIL T T) -8 NIL NIL) (-1025 2555761 2556062 2556460 "SMITH" 2557299 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1024 2548728 2552924 2553027 "SMATCAT" 2554367 NIL SMATCAT (NIL NIL T T T) -9 NIL 2554913) (-1023 2545669 2546492 2547669 "SMATCAT-" 2547674 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1022 2543388 2544905 2544949 "SKAGG" 2545210 NIL SKAGG (NIL T) -9 NIL 2545345) (-1021 2539446 2542492 2542770 "SINT" 2543132 T SINT (NIL) -8 NIL NIL) (-1020 2539218 2539256 2539322 "SIMPAN" 2539402 T SIMPAN (NIL) -7 NIL NIL) (-1019 2538056 2538277 2538552 "SIGNRF" 2538977 NIL SIGNRF (NIL T) -7 NIL NIL) (-1018 2536865 2537016 2537306 "SIGNEF" 2537885 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1017 2534557 2535011 2535516 "SHP" 2536407 NIL SHP (NIL T NIL) -7 NIL NIL) (-1016 2528416 2534458 2534534 "SHDP" 2534539 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1015 2527905 2528097 2528128 "SGROUP" 2528280 T SGROUP (NIL) -9 NIL 2528367) (-1014 2527675 2527727 2527831 "SGROUP-" 2527836 NIL SGROUP- (NIL T) -8 NIL NIL) (-1013 2524511 2525208 2525931 "SGCF" 2526974 T SGCF (NIL) -7 NIL NIL) (-1012 2518909 2523961 2524058 "SFRTCAT" 2524063 NIL SFRTCAT (NIL T T T T) -9 NIL 2524101) (-1011 2512369 2513384 2514518 "SFRGCD" 2517892 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1010 2505535 2506606 2507790 "SFQCMPK" 2511302 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1009 2505157 2505246 2505356 "SFORT" 2505476 NIL SFORT (NIL T T) -8 NIL NIL) (-1008 2504302 2504997 2505118 "SEXOF" 2505123 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1007 2503436 2504183 2504251 "SEX" 2504256 T SEX (NIL) -8 NIL NIL) (-1006 2498212 2498901 2498997 "SEXCAT" 2502768 NIL SEXCAT (NIL T T T T T) -9 NIL 2503387) (-1005 2495392 2498146 2498194 "SET" 2498199 NIL SET (NIL T) -8 NIL NIL) (-1004 2493643 2494105 2494410 "SETMN" 2495133 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1003 2493250 2493376 2493407 "SETCAT" 2493524 T SETCAT (NIL) -9 NIL 2493608) (-1002 2493030 2493082 2493181 "SETCAT-" 2493186 NIL SETCAT- (NIL T) -8 NIL NIL) (-1001 2489417 2491491 2491535 "SETAGG" 2492405 NIL SETAGG (NIL T) -9 NIL 2492745) (-1000 2488875 2488991 2489228 "SETAGG-" 2489233 NIL SETAGG- (NIL T T) -8 NIL NIL) (-999 2488085 2488378 2488438 "SEGXCAT" 2488721 NIL SEGXCAT (NIL T T) -9 NIL 2488840) (-998 2487151 2487761 2487937 "SEG" 2487942 NIL SEG (NIL T) -8 NIL NIL) (-997 2486068 2486281 2486323 "SEGCAT" 2486896 NIL SEGCAT (NIL T) -9 NIL 2487134) (-996 2485132 2485460 2485655 "SEGBIND" 2485906 NIL SEGBIND (NIL T) -8 NIL NIL) (-995 2484764 2484821 2484930 "SEGBIND2" 2485069 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-994 2484001 2484124 2484322 "SEG2" 2484612 NIL SEG2 (NIL T T) -7 NIL NIL) (-993 2483440 2483938 2483983 "SDVAR" 2483988 NIL SDVAR (NIL T) -8 NIL NIL) (-992 2475746 2483219 2483343 "SDPOL" 2483348 NIL SDPOL (NIL T) -8 NIL NIL) (-991 2474345 2474611 2474928 "SCPKG" 2475461 NIL SCPKG (NIL T) -7 NIL NIL) (-990 2473572 2473705 2473882 "SCACHE" 2474200 NIL SCACHE (NIL T) -7 NIL NIL) (-989 2473015 2473336 2473419 "SAOS" 2473509 T SAOS (NIL) -8 NIL NIL) (-988 2472583 2472618 2472789 "SAERFFC" 2472974 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-987 2466479 2472482 2472560 "SAE" 2472565 NIL SAE (NIL T T NIL) -8 NIL NIL) (-986 2466075 2466110 2466267 "SAEFACT" 2466438 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-985 2464401 2464715 2465114 "RURPK" 2465741 NIL RURPK (NIL T NIL) -7 NIL NIL) (-984 2463054 2463331 2463638 "RULESET" 2464237 NIL RULESET (NIL T T T) -8 NIL NIL) (-983 2460262 2460765 2461226 "RULE" 2462736 NIL RULE (NIL T T T) -8 NIL NIL) (-982 2459904 2460059 2460140 "RULECOLD" 2460214 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-981 2454796 2455590 2456506 "RSETGCD" 2459103 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-980 2444110 2449162 2449257 "RSETCAT" 2453322 NIL RSETCAT (NIL T T T T) -9 NIL 2454419) (-979 2442041 2442580 2443400 "RSETCAT-" 2443405 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-978 2434471 2435846 2437362 "RSDCMPK" 2440640 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-977 2432488 2432929 2433002 "RRCC" 2434078 NIL RRCC (NIL T T) -9 NIL 2434422) (-976 2431842 2432016 2432292 "RRCC-" 2432297 NIL RRCC- (NIL T T T) -8 NIL NIL) (-975 2406172 2415797 2415862 "RPOLCAT" 2426364 NIL RPOLCAT (NIL T T T) -9 NIL 2429511) (-974 2397676 2400014 2403132 "RPOLCAT-" 2403137 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-973 2388754 2395906 2396386 "ROUTINE" 2397216 T ROUTINE (NIL) -8 NIL NIL) (-972 2385459 2388310 2388457 "ROMAN" 2388627 T ROMAN (NIL) -8 NIL NIL) (-971 2383745 2384330 2384587 "ROIRC" 2385265 NIL ROIRC (NIL T T) -8 NIL NIL) (-970 2380102 2382406 2382435 "RNS" 2382731 T RNS (NIL) -9 NIL 2383001) (-969 2378616 2378999 2379530 "RNS-" 2379603 NIL RNS- (NIL T) -8 NIL NIL) (-968 2378041 2378449 2378478 "RNG" 2378483 T RNG (NIL) -9 NIL 2378504) (-967 2377438 2377800 2377841 "RMODULE" 2377901 NIL RMODULE (NIL T) -9 NIL 2377943) (-966 2376290 2376384 2376714 "RMCAT2" 2377339 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-965 2373008 2375477 2375796 "RMATRIX" 2376027 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-964 2366009 2368243 2368356 "RMATCAT" 2371665 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2372642) (-963 2365388 2365535 2365838 "RMATCAT-" 2365843 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-962 2364958 2365033 2365159 "RINTERP" 2365307 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-961 2364008 2364572 2364601 "RING" 2364711 T RING (NIL) -9 NIL 2364805) (-960 2363803 2363847 2363941 "RING-" 2363946 NIL RING- (NIL T) -8 NIL NIL) (-959 2362655 2362891 2363146 "RIDIST" 2363568 T RIDIST (NIL) -7 NIL NIL) (-958 2353977 2362129 2362332 "RGCHAIN" 2362504 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-957 2350982 2351596 2352264 "RF" 2353341 NIL RF (NIL T) -7 NIL NIL) (-956 2350631 2350694 2350795 "RFFACTOR" 2350913 NIL RFFACTOR (NIL T) -7 NIL NIL) (-955 2350359 2350394 2350489 "RFFACT" 2350590 NIL RFFACT (NIL T) -7 NIL NIL) (-954 2348489 2348853 2349233 "RFDIST" 2349999 T RFDIST (NIL) -7 NIL NIL) (-953 2347947 2348039 2348199 "RETSOL" 2348391 NIL RETSOL (NIL T T) -7 NIL NIL) (-952 2347539 2347619 2347661 "RETRACT" 2347851 NIL RETRACT (NIL T) -9 NIL NIL) (-951 2347391 2347416 2347500 "RETRACT-" 2347505 NIL RETRACT- (NIL T T) -8 NIL NIL) (-950 2340261 2347048 2347173 "RESULT" 2347286 T RESULT (NIL) -8 NIL NIL) (-949 2338846 2339535 2339732 "RESRING" 2340164 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-948 2338486 2338535 2338631 "RESLATC" 2338783 NIL RESLATC (NIL T) -7 NIL NIL) (-947 2338195 2338229 2338334 "REPSQ" 2338445 NIL REPSQ (NIL T) -7 NIL NIL) (-946 2335626 2336206 2336806 "REP" 2337615 T REP (NIL) -7 NIL NIL) (-945 2335327 2335361 2335470 "REPDB" 2335585 NIL REPDB (NIL T) -7 NIL NIL) (-944 2329280 2330659 2331875 "REP2" 2334143 NIL REP2 (NIL T) -7 NIL NIL) (-943 2325690 2326371 2327174 "REP1" 2328509 NIL REP1 (NIL T) -7 NIL NIL) (-942 2318436 2323851 2324303 "REGSET" 2325321 NIL REGSET (NIL T T T T) -8 NIL NIL) (-941 2317259 2317594 2317841 "REF" 2318222 NIL REF (NIL T) -8 NIL NIL) (-940 2316640 2316743 2316908 "REDORDER" 2317143 NIL REDORDER (NIL T T) -7 NIL NIL) (-939 2312609 2315874 2316095 "RECLOS" 2316471 NIL RECLOS (NIL T) -8 NIL NIL) (-938 2311666 2311847 2312060 "REALSOLV" 2312416 T REALSOLV (NIL) -7 NIL NIL) (-937 2311513 2311554 2311583 "REAL" 2311588 T REAL (NIL) -9 NIL 2311623) (-936 2308004 2308806 2309688 "REAL0Q" 2310678 NIL REAL0Q (NIL T) -7 NIL NIL) (-935 2303615 2304603 2305662 "REAL0" 2306985 NIL REAL0 (NIL T) -7 NIL NIL) (-934 2303023 2303095 2303300 "RDIV" 2303537 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-933 2302096 2302270 2302481 "RDIST" 2302845 NIL RDIST (NIL T) -7 NIL NIL) (-932 2300700 2300987 2301356 "RDETRS" 2301804 NIL RDETRS (NIL T T) -7 NIL NIL) (-931 2298521 2298975 2299510 "RDETR" 2300242 NIL RDETR (NIL T T) -7 NIL NIL) (-930 2297137 2297415 2297816 "RDEEFS" 2298237 NIL RDEEFS (NIL T T) -7 NIL NIL) (-929 2295637 2295943 2296372 "RDEEF" 2296825 NIL RDEEF (NIL T T) -7 NIL NIL) (-928 2289862 2292794 2292823 "RCFIELD" 2294100 T RCFIELD (NIL) -9 NIL 2294830) (-927 2287931 2288435 2289128 "RCFIELD-" 2289201 NIL RCFIELD- (NIL T) -8 NIL NIL) (-926 2284264 2286049 2286091 "RCAGG" 2287162 NIL RCAGG (NIL T) -9 NIL 2287625) (-925 2283895 2283989 2284149 "RCAGG-" 2284154 NIL RCAGG- (NIL T T) -8 NIL NIL) (-924 2283240 2283351 2283513 "RATRET" 2283779 NIL RATRET (NIL T) -7 NIL NIL) (-923 2282797 2282864 2282983 "RATFACT" 2283168 NIL RATFACT (NIL T) -7 NIL NIL) (-922 2282112 2282232 2282382 "RANDSRC" 2282667 T RANDSRC (NIL) -7 NIL NIL) (-921 2281849 2281893 2281964 "RADUTIL" 2282061 T RADUTIL (NIL) -7 NIL NIL) (-920 2274856 2280592 2280909 "RADIX" 2281564 NIL RADIX (NIL NIL) -8 NIL NIL) (-919 2266426 2274700 2274828 "RADFF" 2274833 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-918 2266077 2266152 2266181 "RADCAT" 2266338 T RADCAT (NIL) -9 NIL NIL) (-917 2265862 2265910 2266007 "RADCAT-" 2266012 NIL RADCAT- (NIL T) -8 NIL NIL) (-916 2264019 2265637 2265726 "QUEUE" 2265806 NIL QUEUE (NIL T) -8 NIL NIL) (-915 2260516 2263956 2264001 "QUAT" 2264006 NIL QUAT (NIL T) -8 NIL NIL) (-914 2260154 2260197 2260324 "QUATCT2" 2260467 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-913 2253908 2257288 2257329 "QUATCAT" 2258108 NIL QUATCAT (NIL T) -9 NIL 2258865) (-912 2250052 2251089 2252476 "QUATCAT-" 2252570 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-911 2247578 2249136 2249178 "QUAGG" 2249553 NIL QUAGG (NIL T) -9 NIL 2249728) (-910 2246503 2246976 2247148 "QFORM" 2247450 NIL QFORM (NIL NIL T) -8 NIL NIL) (-909 2237764 2243022 2243063 "QFCAT" 2243721 NIL QFCAT (NIL T) -9 NIL 2244702) (-908 2233336 2234537 2236128 "QFCAT-" 2236222 NIL QFCAT- (NIL T T) -8 NIL NIL) (-907 2232974 2233017 2233144 "QFCAT2" 2233287 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-906 2232434 2232544 2232674 "QEQUAT" 2232864 T QEQUAT (NIL) -8 NIL NIL) (-905 2225620 2226691 2227873 "QCMPACK" 2231367 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-904 2223200 2223621 2224047 "QALGSET" 2225277 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-903 2222445 2222619 2222851 "QALGSET2" 2223020 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-902 2221136 2221359 2221676 "PWFFINTB" 2222218 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-901 2219324 2219492 2219845 "PUSHVAR" 2220950 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-900 2215241 2216295 2216337 "PTRANFN" 2218221 NIL PTRANFN (NIL T) -9 NIL NIL) (-899 2213653 2213944 2214265 "PTPACK" 2214952 NIL PTPACK (NIL T) -7 NIL NIL) (-898 2213289 2213346 2213453 "PTFUNC2" 2213590 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-897 2207768 2212103 2212144 "PTCAT" 2212512 NIL PTCAT (NIL T) -9 NIL 2212674) (-896 2207426 2207461 2207585 "PSQFR" 2207727 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-895 2206021 2206319 2206653 "PSEUDLIN" 2207124 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-894 2192835 2195199 2197519 "PSETPK" 2203784 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-893 2185922 2188636 2188731 "PSETCAT" 2191712 NIL PSETCAT (NIL T T T T) -9 NIL 2192525) (-892 2183760 2184394 2185213 "PSETCAT-" 2185218 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-891 2183117 2183279 2183308 "PSCURVE" 2183573 T PSCURVE (NIL) -9 NIL 2183737) (-890 2179521 2181047 2181112 "PSCAT" 2181948 NIL PSCAT (NIL T T T) -9 NIL 2182188) (-889 2178585 2178801 2179200 "PSCAT-" 2179205 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-888 2177238 2177870 2178084 "PRTITION" 2178391 T PRTITION (NIL) -8 NIL NIL) (-887 2166338 2168544 2170731 "PRS" 2175101 NIL PRS (NIL T T) -7 NIL NIL) (-886 2164202 2165688 2165729 "PRQAGG" 2165912 NIL PRQAGG (NIL T) -9 NIL 2166014) (-885 2158008 2162400 2163204 "PRODUCT" 2163444 NIL PRODUCT (NIL T T) -8 NIL NIL) (-884 2155290 2157474 2157704 "PR" 2157822 NIL PR (NIL T T) -8 NIL NIL) (-883 2155086 2155118 2155177 "PRINT" 2155251 T PRINT (NIL) -7 NIL NIL) (-882 2154426 2154543 2154695 "PRIMES" 2154966 NIL PRIMES (NIL T) -7 NIL NIL) (-881 2152491 2152892 2153358 "PRIMELT" 2154005 NIL PRIMELT (NIL T) -7 NIL NIL) (-880 2152222 2152270 2152299 "PRIMCAT" 2152422 T PRIMCAT (NIL) -9 NIL NIL) (-879 2148383 2152160 2152205 "PRIMARR" 2152210 NIL PRIMARR (NIL T) -8 NIL NIL) (-878 2147390 2147568 2147796 "PRIMARR2" 2148201 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-877 2147033 2147089 2147200 "PREASSOC" 2147328 NIL PREASSOC (NIL T T) -7 NIL NIL) (-876 2146513 2146644 2146673 "PPCURVE" 2146876 T PPCURVE (NIL) -9 NIL 2147010) (-875 2143874 2144273 2144864 "POLYROOT" 2146095 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-874 2137782 2143482 2143640 "POLY" 2143748 NIL POLY (NIL T) -8 NIL NIL) (-873 2137167 2137225 2137458 "POLYLIFT" 2137718 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-872 2133452 2133901 2134529 "POLYCATQ" 2136712 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-871 2120460 2125857 2125922 "POLYCAT" 2129407 NIL POLYCAT (NIL T T T) -9 NIL 2131319) (-870 2113911 2115772 2118155 "POLYCAT-" 2118160 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-869 2113500 2113568 2113687 "POLY2UP" 2113837 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-868 2113136 2113193 2113300 "POLY2" 2113437 NIL POLY2 (NIL T T) -7 NIL NIL) (-867 2111823 2112062 2112337 "POLUTIL" 2112911 NIL POLUTIL (NIL T T) -7 NIL NIL) (-866 2110185 2110462 2110792 "POLTOPOL" 2111545 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-865 2105714 2110122 2110167 "POINT" 2110172 NIL POINT (NIL T) -8 NIL NIL) (-864 2103901 2104258 2104633 "PNTHEORY" 2105359 T PNTHEORY (NIL) -7 NIL NIL) (-863 2102329 2102626 2103035 "PMTOOLS" 2103599 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-862 2101922 2102000 2102117 "PMSYM" 2102245 NIL PMSYM (NIL T) -7 NIL NIL) (-861 2101432 2101501 2101675 "PMQFCAT" 2101847 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-860 2100787 2100897 2101053 "PMPRED" 2101309 NIL PMPRED (NIL T) -7 NIL NIL) (-859 2100183 2100269 2100430 "PMPREDFS" 2100688 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-858 2098831 2099039 2099422 "PMPLCAT" 2099946 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-857 2098363 2098442 2098594 "PMLSAGG" 2098746 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-856 2097840 2097916 2098096 "PMKERNEL" 2098281 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-855 2097457 2097532 2097645 "PMINS" 2097759 NIL PMINS (NIL T) -7 NIL NIL) (-854 2096887 2096956 2097171 "PMFS" 2097382 NIL PMFS (NIL T T T) -7 NIL NIL) (-853 2096118 2096236 2096440 "PMDOWN" 2096764 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-852 2095281 2095440 2095622 "PMASS" 2095956 T PMASS (NIL) -7 NIL NIL) (-851 2094555 2094666 2094829 "PMASSFS" 2095167 NIL PMASSFS (NIL T T) -7 NIL NIL) (-850 2094214 2094281 2094374 "PLOTTOOL" 2094482 T PLOTTOOL (NIL) -7 NIL NIL) (-849 2088915 2090081 2091208 "PLOT" 2093107 T PLOT (NIL) -8 NIL NIL) (-848 2084788 2085803 2086708 "PLOT3D" 2088030 T PLOT3D (NIL) -8 NIL NIL) (-847 2083712 2083886 2084118 "PLOT1" 2084595 NIL PLOT1 (NIL T) -7 NIL NIL) (-846 2059107 2063778 2068629 "PLEQN" 2078978 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-845 2058425 2058547 2058727 "PINTERP" 2058972 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-844 2058118 2058165 2058268 "PINTERPA" 2058372 NIL PINTERPA (NIL T T) -7 NIL NIL) (-843 2057345 2057912 2058005 "PI" 2058045 T PI (NIL) -8 NIL NIL) (-842 2055736 2056721 2056750 "PID" 2056932 T PID (NIL) -9 NIL 2057066) (-841 2055461 2055498 2055586 "PICOERCE" 2055693 NIL PICOERCE (NIL T) -7 NIL NIL) (-840 2054782 2054920 2055096 "PGROEB" 2055317 NIL PGROEB (NIL T) -7 NIL NIL) (-839 2050369 2051183 2052088 "PGE" 2053897 T PGE (NIL) -7 NIL NIL) (-838 2048493 2048739 2049105 "PGCD" 2050086 NIL PGCD (NIL T T T T) -7 NIL NIL) (-837 2047831 2047934 2048095 "PFRPAC" 2048377 NIL PFRPAC (NIL T) -7 NIL NIL) (-836 2044446 2046379 2046732 "PFR" 2047510 NIL PFR (NIL T) -8 NIL NIL) (-835 2042835 2043079 2043404 "PFOTOOLS" 2044193 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-834 2041368 2041607 2041958 "PFOQ" 2042592 NIL PFOQ (NIL T T T) -7 NIL NIL) (-833 2039845 2040057 2040419 "PFO" 2041152 NIL PFO (NIL T T T T T) -7 NIL NIL) (-832 2036368 2039734 2039803 "PF" 2039808 NIL PF (NIL NIL) -8 NIL NIL) (-831 2033797 2035078 2035107 "PFECAT" 2035692 T PFECAT (NIL) -9 NIL 2036075) (-830 2033242 2033396 2033610 "PFECAT-" 2033615 NIL PFECAT- (NIL T) -8 NIL NIL) (-829 2031846 2032097 2032398 "PFBRU" 2032991 NIL PFBRU (NIL T T) -7 NIL NIL) (-828 2029713 2030064 2030496 "PFBR" 2031497 NIL PFBR (NIL T T T T) -7 NIL NIL) (-827 2025569 2027093 2027767 "PERM" 2029072 NIL PERM (NIL T) -8 NIL NIL) (-826 2020836 2021776 2022646 "PERMGRP" 2024732 NIL PERMGRP (NIL T) -8 NIL NIL) (-825 2018908 2019901 2019943 "PERMCAT" 2020389 NIL PERMCAT (NIL T) -9 NIL 2020692) (-824 2018563 2018604 2018727 "PERMAN" 2018861 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-823 2016009 2018132 2018263 "PENDTREE" 2018465 NIL PENDTREE (NIL T) -8 NIL NIL) (-822 2014081 2014859 2014901 "PDRING" 2015558 NIL PDRING (NIL T) -9 NIL 2015843) (-821 2013184 2013402 2013764 "PDRING-" 2013769 NIL PDRING- (NIL T T) -8 NIL NIL) (-820 2010326 2011076 2011767 "PDEPROB" 2012513 T PDEPROB (NIL) -8 NIL NIL) (-819 2007897 2008393 2008942 "PDEPACK" 2009797 T PDEPACK (NIL) -7 NIL NIL) (-818 2006809 2006999 2007250 "PDECOMP" 2007696 NIL PDECOMP (NIL T T) -7 NIL NIL) (-817 2004420 2005235 2005264 "PDECAT" 2006049 T PDECAT (NIL) -9 NIL 2006760) (-816 2004173 2004206 2004295 "PCOMP" 2004381 NIL PCOMP (NIL T T) -7 NIL NIL) (-815 2002380 2002976 2003272 "PBWLB" 2003903 NIL PBWLB (NIL T) -8 NIL NIL) (-814 1994889 1996457 1997793 "PATTERN" 2001065 NIL PATTERN (NIL T) -8 NIL NIL) (-813 1994521 1994578 1994687 "PATTERN2" 1994826 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-812 1992278 1992666 1993123 "PATTERN1" 1994110 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-811 1989673 1990227 1990708 "PATRES" 1991843 NIL PATRES (NIL T T) -8 NIL NIL) (-810 1989237 1989304 1989436 "PATRES2" 1989600 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-809 1987134 1987534 1987939 "PATMATCH" 1988906 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-808 1986670 1986853 1986895 "PATMAB" 1987002 NIL PATMAB (NIL T) -9 NIL 1987085) (-807 1985215 1985524 1985782 "PATLRES" 1986475 NIL PATLRES (NIL T T T) -8 NIL NIL) (-806 1984762 1984885 1984927 "PATAB" 1984932 NIL PATAB (NIL T) -9 NIL 1985102) (-805 1982243 1982775 1983348 "PARTPERM" 1984209 T PARTPERM (NIL) -7 NIL NIL) (-804 1981864 1981927 1982029 "PARSURF" 1982174 NIL PARSURF (NIL T) -8 NIL NIL) (-803 1981496 1981553 1981662 "PARSU2" 1981801 NIL PARSU2 (NIL T T) -7 NIL NIL) (-802 1981117 1981180 1981282 "PARSCURV" 1981427 NIL PARSCURV (NIL T) -8 NIL NIL) (-801 1980749 1980806 1980915 "PARSC2" 1981054 NIL PARSC2 (NIL T T) -7 NIL NIL) (-800 1980388 1980446 1980543 "PARPCURV" 1980685 NIL PARPCURV (NIL T) -8 NIL NIL) (-799 1980020 1980077 1980186 "PARPC2" 1980325 NIL PARPC2 (NIL T T) -7 NIL NIL) (-798 1979540 1979626 1979745 "PAN2EXPR" 1979921 T PAN2EXPR (NIL) -7 NIL NIL) (-797 1978346 1978661 1978889 "PALETTE" 1979332 T PALETTE (NIL) -8 NIL NIL) (-796 1972196 1977605 1977799 "PADICRC" 1978201 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-795 1965404 1971542 1971726 "PADICRAT" 1972044 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-794 1963708 1965341 1965386 "PADIC" 1965391 NIL PADIC (NIL NIL) -8 NIL NIL) (-793 1960912 1962486 1962527 "PADICCT" 1963108 NIL PADICCT (NIL NIL) -9 NIL 1963390) (-792 1959869 1960069 1960337 "PADEPAC" 1960699 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-791 1959081 1959214 1959420 "PADE" 1959731 NIL PADE (NIL T T T) -7 NIL NIL) (-790 1957096 1957928 1958241 "OWP" 1958851 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-789 1956205 1956701 1956873 "OVAR" 1956964 NIL OVAR (NIL NIL) -8 NIL NIL) (-788 1955469 1955590 1955751 "OUT" 1956064 T OUT (NIL) -7 NIL NIL) (-787 1944515 1946694 1948864 "OUTFORM" 1953319 T OUTFORM (NIL) -8 NIL NIL) (-786 1943923 1944244 1944333 "OSI" 1944446 T OSI (NIL) -8 NIL NIL) (-785 1942670 1942897 1943181 "ORTHPOL" 1943671 NIL ORTHPOL (NIL T) -7 NIL NIL) (-784 1940041 1942331 1942469 "OREUP" 1942613 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-783 1937437 1939734 1939860 "ORESUP" 1939983 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-782 1934976 1935476 1936034 "OREPCTO" 1936928 NIL OREPCTO (NIL T T) -7 NIL NIL) (-781 1928889 1931095 1931136 "OREPCAT" 1933457 NIL OREPCAT (NIL T) -9 NIL 1934556) (-780 1926037 1926819 1927876 "OREPCAT-" 1927881 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-779 1925214 1925486 1925515 "ORDSET" 1925824 T ORDSET (NIL) -9 NIL 1925988) (-778 1924733 1924855 1925048 "ORDSET-" 1925053 NIL ORDSET- (NIL T) -8 NIL NIL) (-777 1923346 1924147 1924176 "ORDRING" 1924378 T ORDRING (NIL) -9 NIL 1924502) (-776 1922991 1923085 1923229 "ORDRING-" 1923234 NIL ORDRING- (NIL T) -8 NIL NIL) (-775 1922366 1922847 1922876 "ORDMON" 1922881 T ORDMON (NIL) -9 NIL 1922902) (-774 1921528 1921675 1921870 "ORDFUNS" 1922215 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-773 1921039 1921398 1921427 "ORDFIN" 1921432 T ORDFIN (NIL) -9 NIL 1921453) (-772 1917557 1919631 1920037 "ORDCOMP" 1920666 NIL ORDCOMP (NIL T) -8 NIL NIL) (-771 1916823 1916950 1917136 "ORDCOMP2" 1917417 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-770 1913331 1914213 1915050 "OPTPROB" 1916006 T OPTPROB (NIL) -8 NIL NIL) (-769 1910173 1910802 1911496 "OPTPACK" 1912657 T OPTPACK (NIL) -7 NIL NIL) (-768 1907898 1908634 1908663 "OPTCAT" 1909478 T OPTCAT (NIL) -9 NIL 1910124) (-767 1907666 1907705 1907771 "OPQUERY" 1907852 T OPQUERY (NIL) -7 NIL NIL) (-766 1904808 1905999 1906496 "OP" 1907201 NIL OP (NIL T) -8 NIL NIL) (-765 1901579 1903611 1903977 "ONECOMP" 1904475 NIL ONECOMP (NIL T) -8 NIL NIL) (-764 1900884 1900999 1901173 "ONECOMP2" 1901451 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-763 1900303 1900409 1900539 "OMSERVER" 1900774 T OMSERVER (NIL) -7 NIL NIL) (-762 1897191 1899743 1899784 "OMSAGG" 1899845 NIL OMSAGG (NIL T) -9 NIL 1899909) (-761 1895814 1896077 1896359 "OMPKG" 1896929 T OMPKG (NIL) -7 NIL NIL) (-760 1895243 1895346 1895375 "OM" 1895674 T OM (NIL) -9 NIL NIL) (-759 1893784 1894797 1894964 "OMLO" 1895125 NIL OMLO (NIL T T) -8 NIL NIL) (-758 1892714 1892861 1893087 "OMEXPR" 1893610 NIL OMEXPR (NIL T) -7 NIL NIL) (-757 1892032 1892260 1892396 "OMERR" 1892598 T OMERR (NIL) -8 NIL NIL) (-756 1891210 1891453 1891613 "OMERRK" 1891892 T OMERRK (NIL) -8 NIL NIL) (-755 1890688 1890887 1890995 "OMENC" 1891122 T OMENC (NIL) -8 NIL NIL) (-754 1884583 1885768 1886939 "OMDEV" 1889537 T OMDEV (NIL) -8 NIL NIL) (-753 1883652 1883823 1884017 "OMCONN" 1884409 T OMCONN (NIL) -8 NIL NIL) (-752 1882267 1883253 1883282 "OINTDOM" 1883287 T OINTDOM (NIL) -9 NIL 1883308) (-751 1878029 1879259 1879974 "OFMONOID" 1881584 NIL OFMONOID (NIL T) -8 NIL NIL) (-750 1877467 1877966 1878011 "ODVAR" 1878016 NIL ODVAR (NIL T) -8 NIL NIL) (-749 1874594 1876966 1877150 "ODR" 1877343 NIL ODR (NIL T T NIL) -8 NIL NIL) (-748 1866900 1874373 1874497 "ODPOL" 1874502 NIL ODPOL (NIL T) -8 NIL NIL) (-747 1860729 1866772 1866877 "ODP" 1866882 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-746 1859495 1859710 1859985 "ODETOOLS" 1860503 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-745 1856464 1857120 1857836 "ODESYS" 1858828 NIL ODESYS (NIL T T) -7 NIL NIL) (-744 1851370 1852278 1853300 "ODERTRIC" 1855540 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-743 1850796 1850878 1851072 "ODERED" 1851282 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-742 1847698 1848246 1848921 "ODERAT" 1850219 NIL ODERAT (NIL T T) -7 NIL NIL) (-741 1844666 1845130 1845726 "ODEPRRIC" 1847227 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-740 1842537 1843104 1843613 "ODEPROB" 1844177 T ODEPROB (NIL) -8 NIL NIL) (-739 1839069 1839552 1840198 "ODEPRIM" 1842016 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-738 1838322 1838424 1838682 "ODEPAL" 1838961 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-737 1834524 1835305 1836159 "ODEPACK" 1837488 T ODEPACK (NIL) -7 NIL NIL) (-736 1833561 1833668 1833896 "ODEINT" 1834413 NIL ODEINT (NIL T T) -7 NIL NIL) (-735 1827662 1829087 1830534 "ODEIFTBL" 1832134 T ODEIFTBL (NIL) -8 NIL NIL) (-734 1823006 1823792 1824750 "ODEEF" 1826821 NIL ODEEF (NIL T T) -7 NIL NIL) (-733 1822343 1822432 1822661 "ODECONST" 1822911 NIL ODECONST (NIL T T T) -7 NIL NIL) (-732 1820500 1821133 1821162 "ODECAT" 1821765 T ODECAT (NIL) -9 NIL 1822294) (-731 1817372 1820212 1820331 "OCT" 1820413 NIL OCT (NIL T) -8 NIL NIL) (-730 1817010 1817053 1817180 "OCTCT2" 1817323 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-729 1811851 1814289 1814330 "OC" 1815426 NIL OC (NIL T) -9 NIL 1816275) (-728 1809078 1809826 1810816 "OC-" 1810910 NIL OC- (NIL T T) -8 NIL NIL) (-727 1808456 1808898 1808927 "OCAMON" 1808932 T OCAMON (NIL) -9 NIL 1808953) (-726 1807909 1808316 1808345 "OASGP" 1808350 T OASGP (NIL) -9 NIL 1808370) (-725 1807196 1807659 1807688 "OAMONS" 1807728 T OAMONS (NIL) -9 NIL 1807771) (-724 1806636 1807043 1807072 "OAMON" 1807077 T OAMON (NIL) -9 NIL 1807097) (-723 1805940 1806432 1806461 "OAGROUP" 1806466 T OAGROUP (NIL) -9 NIL 1806486) (-722 1805630 1805680 1805768 "NUMTUBE" 1805884 NIL NUMTUBE (NIL T) -7 NIL NIL) (-721 1799203 1800721 1802257 "NUMQUAD" 1804114 T NUMQUAD (NIL) -7 NIL NIL) (-720 1794959 1795947 1796972 "NUMODE" 1798198 T NUMODE (NIL) -7 NIL NIL) (-719 1792374 1793216 1793245 "NUMINT" 1794158 T NUMINT (NIL) -9 NIL 1794910) (-718 1791322 1791519 1791737 "NUMFMT" 1792176 T NUMFMT (NIL) -7 NIL NIL) (-717 1777717 1780654 1783176 "NUMERIC" 1788839 NIL NUMERIC (NIL T) -7 NIL NIL) (-716 1772117 1777169 1777264 "NTSCAT" 1777269 NIL NTSCAT (NIL T T T T) -9 NIL 1777307) (-715 1771313 1771478 1771670 "NTPOLFN" 1771957 NIL NTPOLFN (NIL T) -7 NIL NIL) (-714 1759171 1768157 1768966 "NSUP" 1770536 NIL NSUP (NIL T) -8 NIL NIL) (-713 1758807 1758864 1758971 "NSUP2" 1759108 NIL NSUP2 (NIL T T) -7 NIL NIL) (-712 1748769 1758586 1758716 "NSMP" 1758721 NIL NSMP (NIL T T) -8 NIL NIL) (-711 1747201 1747502 1747859 "NREP" 1748457 NIL NREP (NIL T) -7 NIL NIL) (-710 1745792 1746044 1746402 "NPCOEF" 1746944 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-709 1744858 1744973 1745189 "NORMRETR" 1745673 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-708 1742911 1743201 1743608 "NORMPK" 1744566 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-707 1742596 1742624 1742748 "NORMMA" 1742877 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-706 1742423 1742553 1742582 "NONE" 1742587 T NONE (NIL) -8 NIL NIL) (-705 1742212 1742241 1742310 "NONE1" 1742387 NIL NONE1 (NIL T) -7 NIL NIL) (-704 1741697 1741759 1741944 "NODE1" 1742144 NIL NODE1 (NIL T T) -7 NIL NIL) (-703 1739991 1740860 1741115 "NNI" 1741462 T NNI (NIL) -8 NIL NIL) (-702 1738411 1738724 1739088 "NLINSOL" 1739659 NIL NLINSOL (NIL T) -7 NIL NIL) (-701 1734603 1735564 1736480 "NIPROB" 1737515 T NIPROB (NIL) -8 NIL NIL) (-700 1733360 1733594 1733896 "NFINTBAS" 1734365 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-699 1732068 1732299 1732580 "NCODIV" 1733128 NIL NCODIV (NIL T T) -7 NIL NIL) (-698 1731830 1731867 1731942 "NCNTFRAC" 1732025 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-697 1730010 1730374 1730794 "NCEP" 1731455 NIL NCEP (NIL T) -7 NIL NIL) (-696 1728921 1729660 1729689 "NASRING" 1729799 T NASRING (NIL) -9 NIL 1729873) (-695 1728716 1728760 1728854 "NASRING-" 1728859 NIL NASRING- (NIL T) -8 NIL NIL) (-694 1727869 1728368 1728397 "NARNG" 1728514 T NARNG (NIL) -9 NIL 1728605) (-693 1727561 1727628 1727762 "NARNG-" 1727767 NIL NARNG- (NIL T) -8 NIL NIL) (-692 1726440 1726647 1726882 "NAGSP" 1727346 T NAGSP (NIL) -7 NIL NIL) (-691 1717864 1719510 1721145 "NAGS" 1724825 T NAGS (NIL) -7 NIL NIL) (-690 1716428 1716732 1717059 "NAGF07" 1717557 T NAGF07 (NIL) -7 NIL NIL) (-689 1711010 1712290 1713586 "NAGF04" 1715152 T NAGF04 (NIL) -7 NIL NIL) (-688 1704042 1705640 1707257 "NAGF02" 1709413 T NAGF02 (NIL) -7 NIL NIL) (-687 1699306 1700396 1701503 "NAGF01" 1702955 T NAGF01 (NIL) -7 NIL NIL) (-686 1692966 1694524 1696101 "NAGE04" 1697749 T NAGE04 (NIL) -7 NIL NIL) (-685 1684207 1686310 1688422 "NAGE02" 1690874 T NAGE02 (NIL) -7 NIL NIL) (-684 1680200 1681137 1682091 "NAGE01" 1683273 T NAGE01 (NIL) -7 NIL NIL) (-683 1678007 1678538 1679093 "NAGD03" 1679665 T NAGD03 (NIL) -7 NIL NIL) (-682 1669793 1671712 1673657 "NAGD02" 1676082 T NAGD02 (NIL) -7 NIL NIL) (-681 1663652 1665065 1666493 "NAGD01" 1668385 T NAGD01 (NIL) -7 NIL NIL) (-680 1659909 1660719 1661544 "NAGC06" 1662847 T NAGC06 (NIL) -7 NIL NIL) (-679 1658386 1658715 1659068 "NAGC05" 1659576 T NAGC05 (NIL) -7 NIL NIL) (-678 1657770 1657887 1658029 "NAGC02" 1658264 T NAGC02 (NIL) -7 NIL NIL) (-677 1656831 1657388 1657429 "NAALG" 1657508 NIL NAALG (NIL T) -9 NIL 1657569) (-676 1656666 1656695 1656785 "NAALG-" 1656790 NIL NAALG- (NIL T T) -8 NIL NIL) (-675 1650616 1651724 1652911 "MULTSQFR" 1655562 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-674 1649935 1650010 1650194 "MULTFACT" 1650528 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-673 1643077 1646988 1647041 "MTSCAT" 1648101 NIL MTSCAT (NIL T T) -9 NIL 1648614) (-672 1642789 1642843 1642935 "MTHING" 1643017 NIL MTHING (NIL T) -7 NIL NIL) (-671 1642581 1642614 1642674 "MSYSCMD" 1642749 T MSYSCMD (NIL) -7 NIL NIL) (-670 1638693 1641336 1641656 "MSET" 1642294 NIL MSET (NIL T) -8 NIL NIL) (-669 1635788 1638254 1638296 "MSETAGG" 1638301 NIL MSETAGG (NIL T) -9 NIL 1638335) (-668 1631656 1633198 1633933 "MRING" 1635097 NIL MRING (NIL T T) -8 NIL NIL) (-667 1631226 1631293 1631422 "MRF2" 1631583 NIL MRF2 (NIL T T T) -7 NIL NIL) (-666 1630844 1630879 1631023 "MRATFAC" 1631185 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-665 1628456 1628751 1629182 "MPRFF" 1630549 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-664 1622476 1628311 1628407 "MPOLY" 1628412 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-663 1621966 1622001 1622209 "MPCPF" 1622435 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-662 1621482 1621525 1621708 "MPC3" 1621917 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-661 1620683 1620764 1620983 "MPC2" 1621397 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-660 1618984 1619321 1619711 "MONOTOOL" 1620343 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-659 1618108 1618443 1618472 "MONOID" 1618749 T MONOID (NIL) -9 NIL 1618921) (-658 1617486 1617649 1617892 "MONOID-" 1617897 NIL MONOID- (NIL T) -8 NIL NIL) (-657 1608422 1614408 1614468 "MONOGEN" 1615142 NIL MONOGEN (NIL T T) -9 NIL 1615595) (-656 1605640 1606375 1607375 "MONOGEN-" 1607494 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-655 1604499 1604919 1604948 "MONADWU" 1605340 T MONADWU (NIL) -9 NIL 1605578) (-654 1603871 1604030 1604278 "MONADWU-" 1604283 NIL MONADWU- (NIL T) -8 NIL NIL) (-653 1603256 1603474 1603503 "MONAD" 1603710 T MONAD (NIL) -9 NIL 1603822) (-652 1602941 1603019 1603151 "MONAD-" 1603156 NIL MONAD- (NIL T) -8 NIL NIL) (-651 1601192 1601854 1602133 "MOEBIUS" 1602694 NIL MOEBIUS (NIL T) -8 NIL NIL) (-650 1600585 1600963 1601004 "MODULE" 1601009 NIL MODULE (NIL T) -9 NIL 1601035) (-649 1600153 1600249 1600439 "MODULE-" 1600444 NIL MODULE- (NIL T T) -8 NIL NIL) (-648 1597824 1598519 1598845 "MODRING" 1599978 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-647 1594786 1595951 1596465 "MODOP" 1597359 NIL MODOP (NIL T T) -8 NIL NIL) (-646 1592973 1593425 1593766 "MODMONOM" 1594585 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-645 1582695 1591181 1591601 "MODMON" 1592603 NIL MODMON (NIL T T) -8 NIL NIL) (-644 1579821 1581539 1581815 "MODFIELD" 1582570 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-643 1579347 1579390 1579569 "MMAP" 1579772 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-642 1577584 1578361 1578402 "MLO" 1578819 NIL MLO (NIL T) -9 NIL 1579059) (-641 1574951 1575466 1576068 "MLIFT" 1577065 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-640 1574342 1574426 1574580 "MKUCFUNC" 1574862 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-639 1573941 1574011 1574134 "MKRECORD" 1574265 NIL MKRECORD (NIL T T) -7 NIL NIL) (-638 1572989 1573150 1573378 "MKFUNC" 1573752 NIL MKFUNC (NIL T) -7 NIL NIL) (-637 1572377 1572481 1572637 "MKFLCFN" 1572872 NIL MKFLCFN (NIL T) -7 NIL NIL) (-636 1571803 1572170 1572259 "MKCHSET" 1572321 NIL MKCHSET (NIL T) -8 NIL NIL) (-635 1571080 1571182 1571367 "MKBCFUNC" 1571696 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-634 1567764 1570634 1570770 "MINT" 1570964 T MINT (NIL) -8 NIL NIL) (-633 1566576 1566819 1567096 "MHROWRED" 1567519 NIL MHROWRED (NIL T) -7 NIL NIL) (-632 1561847 1565021 1565445 "MFLOAT" 1566172 T MFLOAT (NIL) -8 NIL NIL) (-631 1561204 1561280 1561451 "MFINFACT" 1561759 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-630 1557551 1558390 1559265 "MESH" 1560349 T MESH (NIL) -7 NIL NIL) (-629 1555941 1556253 1556606 "MDDFACT" 1557238 NIL MDDFACT (NIL T) -7 NIL NIL) (-628 1552789 1555100 1555142 "MDAGG" 1555397 NIL MDAGG (NIL T) -9 NIL 1555540) (-627 1542487 1552082 1552289 "MCMPLX" 1552602 T MCMPLX (NIL) -8 NIL NIL) (-626 1541628 1541774 1541974 "MCDEN" 1542336 NIL MCDEN (NIL T T) -7 NIL NIL) (-625 1539518 1539788 1540168 "MCALCFN" 1541358 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-624 1537140 1537663 1538224 "MATSTOR" 1538989 NIL MATSTOR (NIL T) -7 NIL NIL) (-623 1533158 1536519 1536764 "MATRIX" 1536927 NIL MATRIX (NIL T) -8 NIL NIL) (-622 1528933 1529637 1530370 "MATLIN" 1532518 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-621 1519142 1522274 1522351 "MATCAT" 1527189 NIL MATCAT (NIL T T T) -9 NIL 1528600) (-620 1515507 1516520 1517875 "MATCAT-" 1517880 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-619 1514109 1514262 1514593 "MATCAT2" 1515342 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-618 1512221 1512545 1512929 "MAPPKG3" 1513784 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-617 1511202 1511375 1511597 "MAPPKG2" 1512045 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-616 1509701 1509985 1510312 "MAPPKG1" 1510908 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-615 1509312 1509370 1509493 "MAPHACK3" 1509637 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-614 1508904 1508965 1509079 "MAPHACK2" 1509244 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-613 1508342 1508445 1508587 "MAPHACK1" 1508795 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-612 1506450 1507044 1507347 "MAGMA" 1508071 NIL MAGMA (NIL T) -8 NIL NIL) (-611 1502933 1504696 1505155 "M3D" 1506024 NIL M3D (NIL T) -8 NIL NIL) (-610 1497091 1501300 1501342 "LZSTAGG" 1502124 NIL LZSTAGG (NIL T) -9 NIL 1502419) (-609 1493065 1494222 1495679 "LZSTAGG-" 1495684 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-608 1490181 1490958 1491444 "LWORD" 1492611 NIL LWORD (NIL T) -8 NIL NIL) (-607 1483341 1489952 1490086 "LSQM" 1490091 NIL LSQM (NIL NIL T) -8 NIL NIL) (-606 1482565 1482704 1482932 "LSPP" 1483196 NIL LSPP (NIL T T T T) -7 NIL NIL) (-605 1480377 1480678 1481134 "LSMP" 1482254 NIL LSMP (NIL T T T T) -7 NIL NIL) (-604 1477156 1477830 1478560 "LSMP1" 1479679 NIL LSMP1 (NIL T) -7 NIL NIL) (-603 1471079 1476321 1476363 "LSAGG" 1476425 NIL LSAGG (NIL T) -9 NIL 1476503) (-602 1467774 1468698 1469911 "LSAGG-" 1469916 NIL LSAGG- (NIL T T) -8 NIL NIL) (-601 1465400 1466918 1467167 "LPOLY" 1467569 NIL LPOLY (NIL T T) -8 NIL NIL) (-600 1464982 1465067 1465190 "LPEFRAC" 1465309 NIL LPEFRAC (NIL T) -7 NIL NIL) (-599 1463331 1464078 1464330 "LO" 1464815 NIL LO (NIL T T T) -8 NIL NIL) (-598 1462984 1463096 1463125 "LOGIC" 1463236 T LOGIC (NIL) -9 NIL 1463316) (-597 1462846 1462869 1462940 "LOGIC-" 1462945 NIL LOGIC- (NIL T) -8 NIL NIL) (-596 1462039 1462179 1462372 "LODOOPS" 1462702 NIL LODOOPS (NIL T T) -7 NIL NIL) (-595 1459457 1461956 1462021 "LODO" 1462026 NIL LODO (NIL T NIL) -8 NIL NIL) (-594 1458005 1458240 1458590 "LODOF" 1459205 NIL LODOF (NIL T T) -7 NIL NIL) (-593 1454425 1456861 1456902 "LODOCAT" 1457334 NIL LODOCAT (NIL T) -9 NIL 1457544) (-592 1454159 1454217 1454343 "LODOCAT-" 1454348 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-591 1451473 1454000 1454118 "LODO2" 1454123 NIL LODO2 (NIL T T) -8 NIL NIL) (-590 1448902 1451410 1451455 "LODO1" 1451460 NIL LODO1 (NIL T) -8 NIL NIL) (-589 1447765 1447930 1448241 "LODEEF" 1448725 NIL LODEEF (NIL T T T) -7 NIL NIL) (-588 1443049 1445893 1445935 "LNAGG" 1446882 NIL LNAGG (NIL T) -9 NIL 1447325) (-587 1442196 1442410 1442752 "LNAGG-" 1442757 NIL LNAGG- (NIL T T) -8 NIL NIL) (-586 1438361 1439123 1439761 "LMOPS" 1441612 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-585 1437758 1438120 1438161 "LMODULE" 1438221 NIL LMODULE (NIL T) -9 NIL 1438263) (-584 1435010 1437403 1437526 "LMDICT" 1437668 NIL LMDICT (NIL T) -8 NIL NIL) (-583 1428241 1433960 1434256 "LIST" 1434747 NIL LIST (NIL T) -8 NIL NIL) (-582 1427766 1427840 1427979 "LIST3" 1428161 NIL LIST3 (NIL T T T) -7 NIL NIL) (-581 1426773 1426951 1427179 "LIST2" 1427584 NIL LIST2 (NIL T T) -7 NIL NIL) (-580 1424907 1425219 1425618 "LIST2MAP" 1426420 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-579 1423619 1424299 1424340 "LINEXP" 1424593 NIL LINEXP (NIL T) -9 NIL 1424741) (-578 1422266 1422526 1422823 "LINDEP" 1423371 NIL LINDEP (NIL T T) -7 NIL NIL) (-577 1419033 1419752 1420529 "LIMITRF" 1421521 NIL LIMITRF (NIL T) -7 NIL NIL) (-576 1417314 1417608 1418023 "LIMITPS" 1418728 NIL LIMITPS (NIL T T) -7 NIL NIL) (-575 1411773 1416829 1417055 "LIE" 1417137 NIL LIE (NIL T T) -8 NIL NIL) (-574 1410824 1411267 1411308 "LIECAT" 1411448 NIL LIECAT (NIL T) -9 NIL 1411598) (-573 1410665 1410692 1410780 "LIECAT-" 1410785 NIL LIECAT- (NIL T T) -8 NIL NIL) (-572 1403289 1410114 1410279 "LIB" 1410520 T LIB (NIL) -8 NIL NIL) (-571 1398926 1399807 1400742 "LGROBP" 1402406 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-570 1396796 1397069 1397430 "LF" 1398648 NIL LF (NIL T T) -7 NIL NIL) (-569 1395636 1396327 1396356 "LFCAT" 1396563 T LFCAT (NIL) -9 NIL 1396702) (-568 1392548 1393174 1393860 "LEXTRIPK" 1395002 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-567 1389254 1390118 1390621 "LEXP" 1392128 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-566 1387652 1387965 1388366 "LEADCDET" 1388936 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-565 1386848 1386922 1387149 "LAZM3PK" 1387573 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-564 1381771 1384933 1385467 "LAUPOL" 1386364 NIL LAUPOL (NIL T T) -8 NIL NIL) (-563 1381338 1381382 1381549 "LAPLACE" 1381721 NIL LAPLACE (NIL T T) -7 NIL NIL) (-562 1379268 1380441 1380691 "LA" 1381172 NIL LA (NIL T T T) -8 NIL NIL) (-561 1378330 1378924 1378965 "LALG" 1379026 NIL LALG (NIL T) -9 NIL 1379084) (-560 1378045 1378104 1378239 "LALG-" 1378244 NIL LALG- (NIL T T) -8 NIL NIL) (-559 1376955 1377142 1377439 "KOVACIC" 1377845 NIL KOVACIC (NIL T T) -7 NIL NIL) (-558 1376789 1376813 1376855 "KONVERT" 1376917 NIL KONVERT (NIL T) -9 NIL NIL) (-557 1376623 1376647 1376689 "KOERCE" 1376751 NIL KOERCE (NIL T) -9 NIL NIL) (-556 1374359 1375119 1375511 "KERNEL" 1376263 NIL KERNEL (NIL T) -8 NIL NIL) (-555 1373861 1373942 1374072 "KERNEL2" 1374273 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-554 1367476 1372158 1372213 "KDAGG" 1372590 NIL KDAGG (NIL T T) -9 NIL 1372796) (-553 1367005 1367129 1367334 "KDAGG-" 1367339 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-552 1360180 1366666 1366821 "KAFILE" 1366883 NIL KAFILE (NIL T) -8 NIL NIL) (-551 1354639 1359695 1359921 "JORDAN" 1360003 NIL JORDAN (NIL T T) -8 NIL NIL) (-550 1350948 1352848 1352903 "IXAGG" 1353832 NIL IXAGG (NIL T T) -9 NIL 1354287) (-549 1349867 1350173 1350592 "IXAGG-" 1350597 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-548 1345458 1349789 1349848 "IVECTOR" 1349853 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-547 1344224 1344461 1344727 "ITUPLE" 1345225 NIL ITUPLE (NIL T) -8 NIL NIL) (-546 1342660 1342837 1343143 "ITRIGMNP" 1344046 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-545 1341405 1341609 1341892 "ITFUN3" 1342436 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-544 1341037 1341094 1341203 "ITFUN2" 1341342 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-543 1338841 1339912 1340208 "ITAYLOR" 1340773 NIL ITAYLOR (NIL T) -8 NIL NIL) (-542 1327835 1333029 1334187 "ISUPS" 1337715 NIL ISUPS (NIL T) -8 NIL NIL) (-541 1326943 1327082 1327317 "ISUMP" 1327683 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-540 1322207 1326744 1326823 "ISTRING" 1326896 NIL ISTRING (NIL NIL) -8 NIL NIL) (-539 1321420 1321501 1321716 "IRURPK" 1322121 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-538 1320356 1320557 1320797 "IRSN" 1321200 T IRSN (NIL) -7 NIL NIL) (-537 1318393 1318748 1319182 "IRRF2F" 1319995 NIL IRRF2F (NIL T) -7 NIL NIL) (-536 1318140 1318178 1318254 "IRREDFFX" 1318349 NIL IRREDFFX (NIL T) -7 NIL NIL) (-535 1316755 1317014 1317313 "IROOT" 1317873 NIL IROOT (NIL T) -7 NIL NIL) (-534 1313397 1314448 1315136 "IR" 1316099 NIL IR (NIL T) -8 NIL NIL) (-533 1311010 1311505 1312071 "IR2" 1312875 NIL IR2 (NIL T T) -7 NIL NIL) (-532 1310086 1310199 1310419 "IR2F" 1310893 NIL IR2F (NIL T T) -7 NIL NIL) (-531 1309877 1309911 1309971 "IPRNTPK" 1310046 T IPRNTPK (NIL) -7 NIL NIL) (-530 1306431 1309766 1309835 "IPF" 1309840 NIL IPF (NIL NIL) -8 NIL NIL) (-529 1304748 1306356 1306413 "IPADIC" 1306418 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-528 1304247 1304305 1304494 "INVLAPLA" 1304684 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-527 1293896 1296249 1298635 "INTTR" 1301911 NIL INTTR (NIL T T) -7 NIL NIL) (-526 1290258 1290999 1291855 "INTTOOLS" 1293089 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-525 1289844 1289935 1290052 "INTSLPE" 1290161 T INTSLPE (NIL) -7 NIL NIL) (-524 1287794 1289767 1289826 "INTRVL" 1289831 NIL INTRVL (NIL T) -8 NIL NIL) (-523 1285401 1285913 1286487 "INTRF" 1287279 NIL INTRF (NIL T) -7 NIL NIL) (-522 1284816 1284913 1285054 "INTRET" 1285299 NIL INTRET (NIL T) -7 NIL NIL) (-521 1282818 1283207 1283676 "INTRAT" 1284424 NIL INTRAT (NIL T T) -7 NIL NIL) (-520 1280059 1280642 1281263 "INTPM" 1282307 NIL INTPM (NIL T T) -7 NIL NIL) (-519 1276770 1277369 1278112 "INTPAF" 1279446 NIL INTPAF (NIL T T T) -7 NIL NIL) (-518 1272053 1272989 1274014 "INTPACK" 1275765 T INTPACK (NIL) -7 NIL NIL) (-517 1268907 1271782 1271909 "INT" 1271946 T INT (NIL) -8 NIL NIL) (-516 1268159 1268311 1268519 "INTHERTR" 1268749 NIL INTHERTR (NIL T T) -7 NIL NIL) (-515 1267598 1267678 1267866 "INTHERAL" 1268073 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-514 1265444 1265887 1266344 "INTHEORY" 1267161 T INTHEORY (NIL) -7 NIL NIL) (-513 1256769 1258389 1260166 "INTG0" 1263797 NIL INTG0 (NIL T T T) -7 NIL NIL) (-512 1237366 1242150 1246954 "INTFTBL" 1251985 T INTFTBL (NIL) -8 NIL NIL) (-511 1236615 1236753 1236926 "INTFACT" 1237225 NIL INTFACT (NIL T) -7 NIL NIL) (-510 1234006 1234452 1235015 "INTEF" 1236169 NIL INTEF (NIL T T) -7 NIL NIL) (-509 1232467 1233216 1233245 "INTDOM" 1233546 T INTDOM (NIL) -9 NIL 1233753) (-508 1231836 1232010 1232252 "INTDOM-" 1232257 NIL INTDOM- (NIL T) -8 NIL NIL) (-507 1228328 1230260 1230315 "INTCAT" 1231114 NIL INTCAT (NIL T) -9 NIL 1231433) (-506 1227801 1227903 1228031 "INTBIT" 1228220 T INTBIT (NIL) -7 NIL NIL) (-505 1226476 1226630 1226943 "INTALG" 1227646 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-504 1225933 1226023 1226193 "INTAF" 1226380 NIL INTAF (NIL T T) -7 NIL NIL) (-503 1219399 1225743 1225883 "INTABL" 1225888 NIL INTABL (NIL T T T) -8 NIL NIL) (-502 1214349 1217078 1217107 "INS" 1218075 T INS (NIL) -9 NIL 1218756) (-501 1211589 1212360 1213334 "INS-" 1213407 NIL INS- (NIL T) -8 NIL NIL) (-500 1210368 1210595 1210892 "INPSIGN" 1211342 NIL INPSIGN (NIL T T) -7 NIL NIL) (-499 1209486 1209603 1209800 "INPRODPF" 1210248 NIL INPRODPF (NIL T T) -7 NIL NIL) (-498 1208380 1208497 1208734 "INPRODFF" 1209366 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-497 1207380 1207532 1207792 "INNMFACT" 1208216 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-496 1206577 1206674 1206862 "INMODGCD" 1207279 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-495 1205086 1205330 1205654 "INFSP" 1206322 NIL INFSP (NIL T T T) -7 NIL NIL) (-494 1204270 1204387 1204570 "INFPROD0" 1204966 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-493 1201280 1202439 1202930 "INFORM" 1203787 T INFORM (NIL) -8 NIL NIL) (-492 1200890 1200950 1201048 "INFORM1" 1201215 NIL INFORM1 (NIL T) -7 NIL NIL) (-491 1200413 1200502 1200616 "INFINITY" 1200796 T INFINITY (NIL) -7 NIL NIL) (-490 1199031 1199279 1199600 "INEP" 1200161 NIL INEP (NIL T T T) -7 NIL NIL) (-489 1198307 1198928 1198993 "INDE" 1198998 NIL INDE (NIL T) -8 NIL NIL) (-488 1197871 1197939 1198056 "INCRMAPS" 1198234 NIL INCRMAPS (NIL T) -7 NIL NIL) (-487 1193182 1194107 1195051 "INBFF" 1196959 NIL INBFF (NIL T) -7 NIL NIL) (-486 1189683 1193027 1193130 "IMATRIX" 1193135 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-485 1188397 1188520 1188834 "IMATQF" 1189540 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-484 1186619 1186846 1187182 "IMATLIN" 1188154 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-483 1181245 1186543 1186601 "ILIST" 1186606 NIL ILIST (NIL T NIL) -8 NIL NIL) (-482 1179204 1181105 1181218 "IIARRAY2" 1181223 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-481 1174572 1179115 1179179 "IFF" 1179184 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-480 1169621 1173864 1174052 "IFARRAY" 1174429 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-479 1168828 1169525 1169598 "IFAMON" 1169603 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-478 1168411 1168476 1168531 "IEVALAB" 1168738 NIL IEVALAB (NIL T T) -9 NIL NIL) (-477 1168086 1168154 1168314 "IEVALAB-" 1168319 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-476 1167744 1168000 1168063 "IDPO" 1168068 NIL IDPO (NIL T T) -8 NIL NIL) (-475 1167021 1167633 1167708 "IDPOAMS" 1167713 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-474 1166355 1166910 1166985 "IDPOAM" 1166990 NIL IDPOAM (NIL T T) -8 NIL NIL) (-473 1165440 1165690 1165744 "IDPC" 1166157 NIL IDPC (NIL T T) -9 NIL 1166306) (-472 1164936 1165332 1165405 "IDPAM" 1165410 NIL IDPAM (NIL T T) -8 NIL NIL) (-471 1164339 1164828 1164901 "IDPAG" 1164906 NIL IDPAG (NIL T T) -8 NIL NIL) (-470 1160594 1161442 1162337 "IDECOMP" 1163496 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-469 1153470 1154519 1155565 "IDEAL" 1159631 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-468 1152634 1152746 1152945 "ICDEN" 1153354 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-467 1151733 1152114 1152261 "ICARD" 1152507 T ICARD (NIL) -8 NIL NIL) (-466 1149805 1150118 1150521 "IBPTOOLS" 1151410 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-465 1145419 1149425 1149538 "IBITS" 1149724 NIL IBITS (NIL NIL) -8 NIL NIL) (-464 1142142 1142718 1143413 "IBATOOL" 1144836 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-463 1139922 1140383 1140916 "IBACHIN" 1141677 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-462 1137805 1139768 1139871 "IARRAY2" 1139876 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-461 1133964 1137731 1137788 "IARRAY1" 1137793 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-460 1127904 1132382 1132860 "IAN" 1133506 T IAN (NIL) -8 NIL NIL) (-459 1127415 1127472 1127645 "IALGFACT" 1127841 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-458 1126942 1127055 1127084 "HYPCAT" 1127291 T HYPCAT (NIL) -9 NIL NIL) (-457 1126480 1126597 1126783 "HYPCAT-" 1126788 NIL HYPCAT- (NIL T) -8 NIL NIL) (-456 1123166 1124497 1124539 "HOAGG" 1125520 NIL HOAGG (NIL T) -9 NIL 1126192) (-455 1121760 1122159 1122685 "HOAGG-" 1122690 NIL HOAGG- (NIL T T) -8 NIL NIL) (-454 1115591 1121201 1121367 "HEXADEC" 1121614 T HEXADEC (NIL) -8 NIL NIL) (-453 1114339 1114561 1114824 "HEUGCD" 1115368 NIL HEUGCD (NIL T) -7 NIL NIL) (-452 1113442 1114176 1114306 "HELLFDIV" 1114311 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-451 1111676 1113219 1113307 "HEAP" 1113386 NIL HEAP (NIL T) -8 NIL NIL) (-450 1105549 1111591 1111653 "HDP" 1111658 NIL HDP (NIL NIL T) -8 NIL NIL) (-449 1099261 1105186 1105337 "HDMP" 1105450 NIL HDMP (NIL NIL T) -8 NIL NIL) (-448 1098586 1098725 1098889 "HB" 1099117 T HB (NIL) -7 NIL NIL) (-447 1092095 1098432 1098536 "HASHTBL" 1098541 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-446 1089848 1091723 1091902 "HACKPI" 1091936 T HACKPI (NIL) -8 NIL NIL) (-445 1085544 1089702 1089814 "GTSET" 1089819 NIL GTSET (NIL T T T T) -8 NIL NIL) (-444 1079082 1085422 1085520 "GSTBL" 1085525 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-443 1071320 1078120 1078383 "GSERIES" 1078874 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-442 1070342 1070795 1070824 "GROUP" 1071085 T GROUP (NIL) -9 NIL 1071244) (-441 1069458 1069681 1070025 "GROUP-" 1070030 NIL GROUP- (NIL T) -8 NIL NIL) (-440 1067827 1068146 1068533 "GROEBSOL" 1069135 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-439 1066767 1067029 1067081 "GRMOD" 1067610 NIL GRMOD (NIL T T) -9 NIL 1067778) (-438 1066535 1066571 1066699 "GRMOD-" 1066704 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-437 1061875 1062897 1063894 "GRIMAGE" 1065558 T GRIMAGE (NIL) -8 NIL NIL) (-436 1060342 1060602 1060926 "GRDEF" 1061571 T GRDEF (NIL) -7 NIL NIL) (-435 1059786 1059902 1060043 "GRAY" 1060221 T GRAY (NIL) -7 NIL NIL) (-434 1059019 1059399 1059451 "GRALG" 1059604 NIL GRALG (NIL T T) -9 NIL 1059696) (-433 1058680 1058753 1058916 "GRALG-" 1058921 NIL GRALG- (NIL T T T) -8 NIL NIL) (-432 1055488 1058269 1058445 "GPOLSET" 1058587 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-431 1054844 1054901 1055158 "GOSPER" 1055425 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-430 1050603 1051282 1051808 "GMODPOL" 1054543 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-429 1049608 1049792 1050030 "GHENSEL" 1050415 NIL GHENSEL (NIL T T) -7 NIL NIL) (-428 1043674 1044517 1045543 "GENUPS" 1048692 NIL GENUPS (NIL T T) -7 NIL NIL) (-427 1043371 1043422 1043511 "GENUFACT" 1043617 NIL GENUFACT (NIL T) -7 NIL NIL) (-426 1042783 1042860 1043025 "GENPGCD" 1043289 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-425 1042257 1042292 1042505 "GENMFACT" 1042742 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-424 1040825 1041080 1041387 "GENEEZ" 1042000 NIL GENEEZ (NIL T T) -7 NIL NIL) (-423 1034699 1040438 1040599 "GDMP" 1040748 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-422 1024080 1028472 1029577 "GCNAALG" 1033683 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-421 1022501 1023373 1023402 "GCDDOM" 1023657 T GCDDOM (NIL) -9 NIL 1023814) (-420 1021971 1022098 1022313 "GCDDOM-" 1022318 NIL GCDDOM- (NIL T) -8 NIL NIL) (-419 1020645 1020830 1021133 "GB" 1021751 NIL GB (NIL T T T T) -7 NIL NIL) (-418 1009265 1011591 1013983 "GBINTERN" 1018336 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-417 1007102 1007394 1007815 "GBF" 1008940 NIL GBF (NIL T T T T) -7 NIL NIL) (-416 1005883 1006048 1006315 "GBEUCLID" 1006918 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-415 1005232 1005357 1005506 "GAUSSFAC" 1005754 T GAUSSFAC (NIL) -7 NIL NIL) (-414 1003611 1003913 1004225 "GALUTIL" 1004952 NIL GALUTIL (NIL T) -7 NIL NIL) (-413 1001928 1002202 1002525 "GALPOLYU" 1003338 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-412 999317 999607 1000012 "GALFACTU" 1001625 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-411 991123 992622 994230 "GALFACT" 997749 NIL GALFACT (NIL T) -7 NIL NIL) (-410 988510 989168 989197 "FVFUN" 990353 T FVFUN (NIL) -9 NIL 991073) (-409 987775 987957 987986 "FVC" 988277 T FVC (NIL) -9 NIL 988460) (-408 987417 987572 987653 "FUNCTION" 987727 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-407 985087 985638 986127 "FT" 986948 T FT (NIL) -8 NIL NIL) (-406 983905 984388 984591 "FTEM" 984904 T FTEM (NIL) -8 NIL NIL) (-405 982172 982460 982861 "FSUPFACT" 983598 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-404 980569 980858 981190 "FST" 981860 T FST (NIL) -8 NIL NIL) (-403 979744 979850 980044 "FSRED" 980451 NIL FSRED (NIL T T) -7 NIL NIL) (-402 978425 978680 979033 "FSPRMELT" 979460 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-401 975510 975948 976447 "FSPECF" 977988 NIL FSPECF (NIL T T) -7 NIL NIL) (-400 957847 966404 966445 "FS" 970283 NIL FS (NIL T) -9 NIL 972554) (-399 946497 949487 953543 "FS-" 953840 NIL FS- (NIL T T) -8 NIL NIL) (-398 946013 946067 946243 "FSINT" 946438 NIL FSINT (NIL T T) -7 NIL NIL) (-397 944298 945010 945311 "FSERIES" 945794 NIL FSERIES (NIL T T) -8 NIL NIL) (-396 943316 943432 943662 "FSCINT" 944178 NIL FSCINT (NIL T T) -7 NIL NIL) (-395 939552 942262 942304 "FSAGG" 942674 NIL FSAGG (NIL T) -9 NIL 942931) (-394 937314 937915 938711 "FSAGG-" 938806 NIL FSAGG- (NIL T T) -8 NIL NIL) (-393 936356 936499 936726 "FSAGG2" 937167 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-392 934015 934294 934847 "FS2UPS" 936074 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-391 933601 933644 933797 "FS2" 933966 NIL FS2 (NIL T T T T) -7 NIL NIL) (-390 932461 932632 932940 "FS2EXPXP" 933426 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-389 931887 932002 932154 "FRUTIL" 932341 NIL FRUTIL (NIL T) -7 NIL NIL) (-388 923324 927402 928750 "FR" 930571 NIL FR (NIL T) -8 NIL NIL) (-387 918401 921044 921085 "FRNAALG" 922481 NIL FRNAALG (NIL T) -9 NIL 923087) (-386 914080 915150 916425 "FRNAALG-" 917175 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-385 913718 913761 913888 "FRNAAF2" 914031 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-384 912085 912577 912870 "FRMOD" 913532 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-383 909808 910476 910792 "FRIDEAL" 911876 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-382 909007 909094 909381 "FRIDEAL2" 909715 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-381 908266 908674 908716 "FRETRCT" 908721 NIL FRETRCT (NIL T) -9 NIL 908890) (-380 907378 907609 907960 "FRETRCT-" 907965 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-379 904587 905807 905867 "FRAMALG" 906749 NIL FRAMALG (NIL T T) -9 NIL 907041) (-378 902720 903176 903806 "FRAMALG-" 904029 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-377 896632 902205 902476 "FRAC" 902481 NIL FRAC (NIL T) -8 NIL NIL) (-376 896268 896325 896432 "FRAC2" 896569 NIL FRAC2 (NIL T T) -7 NIL NIL) (-375 895904 895961 896068 "FR2" 896205 NIL FR2 (NIL T T) -7 NIL NIL) (-374 890533 893446 893475 "FPS" 894594 T FPS (NIL) -9 NIL 895147) (-373 889982 890091 890255 "FPS-" 890401 NIL FPS- (NIL T) -8 NIL NIL) (-372 887383 889080 889109 "FPC" 889334 T FPC (NIL) -9 NIL 889476) (-371 887176 887216 887313 "FPC-" 887318 NIL FPC- (NIL T) -8 NIL NIL) (-370 886056 886666 886708 "FPATMAB" 886713 NIL FPATMAB (NIL T) -9 NIL 886863) (-369 883756 884232 884658 "FPARFRAC" 885693 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-368 879151 879648 880330 "FORTRAN" 883188 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-367 876867 877367 877906 "FORT" 878632 T FORT (NIL) -7 NIL NIL) (-366 874542 875104 875133 "FORTFN" 876193 T FORTFN (NIL) -9 NIL 876817) (-365 874305 874355 874384 "FORTCAT" 874443 T FORTCAT (NIL) -9 NIL 874505) (-364 872365 872848 873247 "FORMULA" 873926 T FORMULA (NIL) -8 NIL NIL) (-363 872153 872183 872252 "FORMULA1" 872329 NIL FORMULA1 (NIL T) -7 NIL NIL) (-362 871676 871728 871901 "FORDER" 872095 NIL FORDER (NIL T T T T) -7 NIL NIL) (-361 870772 870936 871129 "FOP" 871503 T FOP (NIL) -7 NIL NIL) (-360 869380 870052 870226 "FNLA" 870654 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-359 868048 868437 868466 "FNCAT" 869038 T FNCAT (NIL) -9 NIL 869331) (-358 867614 868007 868035 "FNAME" 868040 T FNAME (NIL) -8 NIL NIL) (-357 866273 867246 867275 "FMTC" 867280 T FMTC (NIL) -9 NIL 867315) (-356 862593 863800 864427 "FMONOID" 865679 NIL FMONOID (NIL T) -8 NIL NIL) (-355 861815 862338 862485 "FM" 862490 NIL FM (NIL T T) -8 NIL NIL) (-354 859238 859884 859913 "FMFUN" 861057 T FMFUN (NIL) -9 NIL 861765) (-353 858506 858687 858716 "FMC" 859006 T FMC (NIL) -9 NIL 859188) (-352 855736 856570 856624 "FMCAT" 857806 NIL FMCAT (NIL T T) -9 NIL 858299) (-351 854631 855504 855603 "FM1" 855681 NIL FM1 (NIL T T) -8 NIL NIL) (-350 852405 852821 853315 "FLOATRP" 854182 NIL FLOATRP (NIL T) -7 NIL NIL) (-349 845892 850061 850691 "FLOAT" 851795 T FLOAT (NIL) -8 NIL NIL) (-348 843330 843830 844408 "FLOATCP" 845359 NIL FLOATCP (NIL T) -7 NIL NIL) (-347 842119 842967 843008 "FLINEXP" 843013 NIL FLINEXP (NIL T) -9 NIL 843105) (-346 841274 841509 841836 "FLINEXP-" 841841 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-345 840350 840494 840718 "FLASORT" 841126 NIL FLASORT (NIL T T) -7 NIL NIL) (-344 837568 838410 838463 "FLALG" 839690 NIL FLALG (NIL T T) -9 NIL 840157) (-343 831359 835055 835097 "FLAGG" 836359 NIL FLAGG (NIL T) -9 NIL 837007) (-342 830085 830424 830914 "FLAGG-" 830919 NIL FLAGG- (NIL T T) -8 NIL NIL) (-341 829127 829270 829497 "FLAGG2" 829938 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-340 826102 827120 827180 "FINRALG" 828308 NIL FINRALG (NIL T T) -9 NIL 828813) (-339 825262 825491 825830 "FINRALG-" 825835 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-338 824668 824881 824910 "FINITE" 825106 T FINITE (NIL) -9 NIL 825213) (-337 817128 819289 819330 "FINAALG" 822997 NIL FINAALG (NIL T) -9 NIL 824449) (-336 812469 813510 814654 "FINAALG-" 816033 NIL FINAALG- (NIL T T) -8 NIL NIL) (-335 811864 812224 812327 "FILE" 812399 NIL FILE (NIL T) -8 NIL NIL) (-334 810548 810860 810915 "FILECAT" 811599 NIL FILECAT (NIL T T) -9 NIL 811815) (-333 808363 809919 809948 "FIELD" 809988 T FIELD (NIL) -9 NIL 810068) (-332 806983 807368 807879 "FIELD-" 807884 NIL FIELD- (NIL T) -8 NIL NIL) (-331 804798 805620 805966 "FGROUP" 806670 NIL FGROUP (NIL T) -8 NIL NIL) (-330 803888 804052 804272 "FGLMICPK" 804630 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-329 799690 803813 803870 "FFX" 803875 NIL FFX (NIL T NIL) -8 NIL NIL) (-328 799291 799352 799487 "FFSLPE" 799623 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-327 795287 796063 796859 "FFPOLY" 798527 NIL FFPOLY (NIL T) -7 NIL NIL) (-326 794791 794827 795036 "FFPOLY2" 795245 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-325 790613 794710 794773 "FFP" 794778 NIL FFP (NIL T NIL) -8 NIL NIL) (-324 785981 790524 790588 "FF" 790593 NIL FF (NIL NIL NIL) -8 NIL NIL) (-323 781077 785324 785514 "FFNBX" 785835 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-322 775987 780212 780470 "FFNBP" 780931 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-321 770590 775271 775482 "FFNB" 775820 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-320 769422 769620 769935 "FFINTBAS" 770387 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-319 765598 767838 767867 "FFIELDC" 768487 T FFIELDC (NIL) -9 NIL 768863) (-318 764261 764631 765128 "FFIELDC-" 765133 NIL FFIELDC- (NIL T) -8 NIL NIL) (-317 763831 763876 764000 "FFHOM" 764203 NIL FFHOM (NIL T T T) -7 NIL NIL) (-316 761529 762013 762530 "FFF" 763346 NIL FFF (NIL T) -7 NIL NIL) (-315 757117 761271 761372 "FFCGX" 761472 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-314 752719 756849 756956 "FFCGP" 757060 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-313 747872 752446 752554 "FFCG" 752655 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-312 729671 738794 738881 "FFCAT" 744046 NIL FFCAT (NIL T T T) -9 NIL 745531) (-311 724869 725916 727230 "FFCAT-" 728460 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-310 724280 724323 724558 "FFCAT2" 724820 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-309 713484 717274 718489 "FEXPR" 723137 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-308 712486 712921 712963 "FEVALAB" 713047 NIL FEVALAB (NIL T) -9 NIL 713305) (-307 711645 711855 712193 "FEVALAB-" 712198 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-306 710238 711028 711231 "FDIV" 711544 NIL FDIV (NIL T T T T) -8 NIL NIL) (-305 707304 708019 708135 "FDIVCAT" 709703 NIL FDIVCAT (NIL T T T T) -9 NIL 710140) (-304 707066 707093 707263 "FDIVCAT-" 707268 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-303 706286 706373 706650 "FDIV2" 706973 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-302 704979 705236 705523 "FCPAK1" 706019 T FCPAK1 (NIL) -7 NIL NIL) (-301 704107 704479 704620 "FCOMP" 704870 NIL FCOMP (NIL T) -8 NIL NIL) (-300 687747 691159 694719 "FC" 700567 T FC (NIL) -8 NIL NIL) (-299 680296 684342 684383 "FAXF" 686185 NIL FAXF (NIL T) -9 NIL 686875) (-298 677575 678230 679055 "FAXF-" 679520 NIL FAXF- (NIL T T) -8 NIL NIL) (-297 672681 676951 677127 "FARRAY" 677432 NIL FARRAY (NIL T) -8 NIL NIL) (-296 668027 670098 670151 "FAMR" 671163 NIL FAMR (NIL T T) -9 NIL 671620) (-295 666918 667220 667654 "FAMR-" 667659 NIL FAMR- (NIL T T T) -8 NIL NIL) (-294 666114 666840 666893 "FAMONOID" 666898 NIL FAMONOID (NIL T) -8 NIL NIL) (-293 663947 664631 664685 "FAMONC" 665626 NIL FAMONC (NIL T T) -9 NIL 666010) (-292 662641 663703 663839 "FAGROUP" 663844 NIL FAGROUP (NIL T) -8 NIL NIL) (-291 660444 660763 661165 "FACUTIL" 662322 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-290 659543 659728 659950 "FACTFUNC" 660254 NIL FACTFUNC (NIL T) -7 NIL NIL) (-289 651866 658794 659006 "EXPUPXS" 659399 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-288 649365 649901 650483 "EXPRTUBE" 651304 T EXPRTUBE (NIL) -7 NIL NIL) (-287 645559 646151 646888 "EXPRODE" 648704 NIL EXPRODE (NIL T T) -7 NIL NIL) (-286 630727 644224 644647 "EXPR" 645168 NIL EXPR (NIL T) -8 NIL NIL) (-285 625155 625742 626554 "EXPR2UPS" 630025 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-284 624791 624848 624955 "EXPR2" 625092 NIL EXPR2 (NIL T T) -7 NIL NIL) (-283 616145 623928 624223 "EXPEXPAN" 624629 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-282 615972 616102 616131 "EXIT" 616136 T EXIT (NIL) -8 NIL NIL) (-281 615599 615661 615774 "EVALCYC" 615904 NIL EVALCYC (NIL T) -7 NIL NIL) (-280 615139 615257 615299 "EVALAB" 615469 NIL EVALAB (NIL T) -9 NIL 615573) (-279 614620 614742 614963 "EVALAB-" 614968 NIL EVALAB- (NIL T T) -8 NIL NIL) (-278 612082 613394 613423 "EUCDOM" 613978 T EUCDOM (NIL) -9 NIL 614328) (-277 610487 610929 611519 "EUCDOM-" 611524 NIL EUCDOM- (NIL T) -8 NIL NIL) (-276 598100 600839 603570 "ESTOOLS" 607776 T ESTOOLS (NIL) -7 NIL NIL) (-275 597736 597793 597900 "ESTOOLS2" 598037 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-274 597487 597529 597609 "ESTOOLS1" 597688 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-273 591426 593150 593179 "ES" 595943 T ES (NIL) -9 NIL 597347) (-272 586374 587660 589477 "ES-" 589641 NIL ES- (NIL T) -8 NIL NIL) (-271 582781 583533 584305 "ESCONT" 585622 T ESCONT (NIL) -7 NIL NIL) (-270 582526 582558 582640 "ESCONT1" 582743 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-269 582201 582251 582351 "ES2" 582470 NIL ES2 (NIL T T) -7 NIL NIL) (-268 581831 581889 581998 "ES1" 582137 NIL ES1 (NIL T T) -7 NIL NIL) (-267 581047 581176 581352 "ERROR" 581675 T ERROR (NIL) -7 NIL NIL) (-266 574562 580906 580997 "EQTBL" 581002 NIL EQTBL (NIL T T) -8 NIL NIL) (-265 567027 569908 571341 "EQ" 573162 NIL -3128 (NIL T) -8 NIL NIL) (-264 566659 566716 566825 "EQ2" 566964 NIL EQ2 (NIL T T) -7 NIL NIL) (-263 561951 562997 564090 "EP" 565598 NIL EP (NIL T) -7 NIL NIL) (-262 561110 561674 561703 "ENTIRER" 561708 T ENTIRER (NIL) -9 NIL 561753) (-261 557566 559065 559435 "EMR" 560909 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-260 556710 556895 556950 "ELTAGG" 557330 NIL ELTAGG (NIL T T) -9 NIL 557540) (-259 556429 556491 556632 "ELTAGG-" 556637 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-258 556217 556246 556301 "ELTAB" 556385 NIL ELTAB (NIL T T) -9 NIL NIL) (-257 555343 555489 555688 "ELFUTS" 556068 NIL ELFUTS (NIL T T) -7 NIL NIL) (-256 555084 555140 555169 "ELEMFUN" 555274 T ELEMFUN (NIL) -9 NIL NIL) (-255 554954 554975 555043 "ELEMFUN-" 555048 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-254 549850 553053 553095 "ELAGG" 554035 NIL ELAGG (NIL T) -9 NIL 554496) (-253 548135 548569 549232 "ELAGG-" 549237 NIL ELAGG- (NIL T T) -8 NIL NIL) (-252 541005 542804 543630 "EFUPXS" 547412 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-251 534457 536258 537067 "EFULS" 540282 NIL EFULS (NIL T T T) -8 NIL NIL) (-250 531888 532246 532724 "EFSTRUC" 534089 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-249 520960 522525 524085 "EF" 530403 NIL EF (NIL T T) -7 NIL NIL) (-248 520061 520445 520594 "EAB" 520831 T EAB (NIL) -8 NIL NIL) (-247 519274 520020 520048 "E04UCFA" 520053 T E04UCFA (NIL) -8 NIL NIL) (-246 518487 519233 519261 "E04NAFA" 519266 T E04NAFA (NIL) -8 NIL NIL) (-245 517700 518446 518474 "E04MBFA" 518479 T E04MBFA (NIL) -8 NIL NIL) (-244 516913 517659 517687 "E04JAFA" 517692 T E04JAFA (NIL) -8 NIL NIL) (-243 516128 516872 516900 "E04GCFA" 516905 T E04GCFA (NIL) -8 NIL NIL) (-242 515343 516087 516115 "E04FDFA" 516120 T E04FDFA (NIL) -8 NIL NIL) (-241 514556 515302 515330 "E04DGFA" 515335 T E04DGFA (NIL) -8 NIL NIL) (-240 508742 510086 511448 "E04AGNT" 513214 T E04AGNT (NIL) -7 NIL NIL) (-239 507468 507948 507989 "DVARCAT" 508464 NIL DVARCAT (NIL T) -9 NIL 508662) (-238 506672 506884 507198 "DVARCAT-" 507203 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-237 499534 506474 506601 "DSMP" 506606 NIL DSMP (NIL T T T) -8 NIL NIL) (-236 494360 495491 496555 "DROPT" 498490 T DROPT (NIL) -8 NIL NIL) (-235 494025 494084 494182 "DROPT1" 494295 NIL DROPT1 (NIL T) -7 NIL NIL) (-234 489147 490271 491406 "DROPT0" 492910 T DROPT0 (NIL) -7 NIL NIL) (-233 487492 487817 488203 "DRAWPT" 488781 T DRAWPT (NIL) -7 NIL NIL) (-232 482167 483066 484121 "DRAW" 486490 NIL DRAW (NIL T) -7 NIL NIL) (-231 481808 481859 481975 "DRAWHACK" 482110 NIL DRAWHACK (NIL T) -7 NIL NIL) (-230 480553 480818 481105 "DRAWCX" 481541 T DRAWCX (NIL) -7 NIL NIL) (-229 480071 480139 480289 "DRAWCURV" 480479 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-228 470675 472597 474676 "DRAWCFUN" 478012 T DRAWCFUN (NIL) -7 NIL NIL) (-227 467494 469370 469412 "DQAGG" 470041 NIL DQAGG (NIL T) -9 NIL 470314) (-226 455954 462692 462775 "DPOLCAT" 464613 NIL DPOLCAT (NIL T T T T) -9 NIL 465156) (-225 450794 452140 454097 "DPOLCAT-" 454102 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-224 444878 450656 450753 "DPMO" 450758 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-223 438865 444659 444825 "DPMM" 444830 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-222 438784 438810 438845 "DOMAIN" 438850 T DOMAIN (NIL) -8 NIL NIL) (-221 432496 438421 438572 "DMP" 438685 NIL DMP (NIL NIL T) -8 NIL NIL) (-220 432096 432152 432296 "DLP" 432434 NIL DLP (NIL T) -7 NIL NIL) (-219 425746 431197 431424 "DLIST" 431901 NIL DLIST (NIL T) -8 NIL NIL) (-218 422599 424602 424644 "DLAGG" 425194 NIL DLAGG (NIL T) -9 NIL 425422) (-217 421261 421953 421982 "DIVRING" 422132 T DIVRING (NIL) -9 NIL 422240) (-216 420249 420502 420895 "DIVRING-" 420900 NIL DIVRING- (NIL T) -8 NIL NIL) (-215 418351 418708 419114 "DISPLAY" 419863 T DISPLAY (NIL) -7 NIL NIL) (-214 412246 418265 418328 "DIRPROD" 418333 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-213 411094 411297 411562 "DIRPROD2" 412039 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-212 400738 406737 406791 "DIRPCAT" 407199 NIL DIRPCAT (NIL NIL T) -9 NIL 408015) (-211 398064 398706 399587 "DIRPCAT-" 399924 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-210 397351 397511 397697 "DIOSP" 397898 T DIOSP (NIL) -7 NIL NIL) (-209 394060 396264 396306 "DIOPS" 396740 NIL DIOPS (NIL T) -9 NIL 396968) (-208 393609 393723 393914 "DIOPS-" 393919 NIL DIOPS- (NIL T T) -8 NIL NIL) (-207 392480 393118 393147 "DIFRING" 393334 T DIFRING (NIL) -9 NIL 393443) (-206 392126 392203 392355 "DIFRING-" 392360 NIL DIFRING- (NIL T) -8 NIL NIL) (-205 389917 391199 391240 "DIFEXT" 391599 NIL DIFEXT (NIL T) -9 NIL 391890) (-204 388203 388631 389296 "DIFEXT-" 389301 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-203 385531 387735 387777 "DIAGG" 387782 NIL DIAGG (NIL T) -9 NIL 387802) (-202 384915 385072 385324 "DIAGG-" 385329 NIL DIAGG- (NIL T T) -8 NIL NIL) (-201 380386 383874 384151 "DHMATRIX" 384684 NIL DHMATRIX (NIL T) -8 NIL NIL) (-200 375998 376907 377917 "DFSFUN" 379396 T DFSFUN (NIL) -7 NIL NIL) (-199 370784 374712 375077 "DFLOAT" 375653 T DFLOAT (NIL) -8 NIL NIL) (-198 369017 369298 369693 "DFINTTLS" 370492 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-197 366050 367052 367450 "DERHAM" 368684 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-196 363905 365825 365914 "DEQUEUE" 365994 NIL DEQUEUE (NIL T) -8 NIL NIL) (-195 363123 363256 363451 "DEGRED" 363767 NIL DEGRED (NIL T T) -7 NIL NIL) (-194 359539 360280 361128 "DEFINTRF" 362355 NIL DEFINTRF (NIL T) -7 NIL NIL) (-193 357078 357545 358141 "DEFINTEF" 359060 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-192 350909 356519 356685 "DECIMAL" 356932 T DECIMAL (NIL) -8 NIL NIL) (-191 348421 348879 349385 "DDFACT" 350453 NIL DDFACT (NIL T T) -7 NIL NIL) (-190 348017 348060 348211 "DBLRESP" 348372 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-189 345727 346061 346430 "DBASE" 347775 NIL DBASE (NIL T) -8 NIL NIL) (-188 344862 345686 345714 "D03FAFA" 345719 T D03FAFA (NIL) -8 NIL NIL) (-187 343998 344821 344849 "D03EEFA" 344854 T D03EEFA (NIL) -8 NIL NIL) (-186 341948 342414 342903 "D03AGNT" 343529 T D03AGNT (NIL) -7 NIL NIL) (-185 341266 341907 341935 "D02EJFA" 341940 T D02EJFA (NIL) -8 NIL NIL) (-184 340584 341225 341253 "D02CJFA" 341258 T D02CJFA (NIL) -8 NIL NIL) (-183 339902 340543 340571 "D02BHFA" 340576 T D02BHFA (NIL) -8 NIL NIL) (-182 339220 339861 339889 "D02BBFA" 339894 T D02BBFA (NIL) -8 NIL NIL) (-181 332419 334006 335612 "D02AGNT" 337634 T D02AGNT (NIL) -7 NIL NIL) (-180 330200 330719 331262 "D01WGTS" 331896 T D01WGTS (NIL) -7 NIL NIL) (-179 329307 330159 330187 "D01TRNS" 330192 T D01TRNS (NIL) -8 NIL NIL) (-178 328414 329266 329294 "D01GBFA" 329299 T D01GBFA (NIL) -8 NIL NIL) (-177 327521 328373 328401 "D01FCFA" 328406 T D01FCFA (NIL) -8 NIL NIL) (-176 326628 327480 327508 "D01ASFA" 327513 T D01ASFA (NIL) -8 NIL NIL) (-175 325735 326587 326615 "D01AQFA" 326620 T D01AQFA (NIL) -8 NIL NIL) (-174 324842 325694 325722 "D01APFA" 325727 T D01APFA (NIL) -8 NIL NIL) (-173 323949 324801 324829 "D01ANFA" 324834 T D01ANFA (NIL) -8 NIL NIL) (-172 323056 323908 323936 "D01AMFA" 323941 T D01AMFA (NIL) -8 NIL NIL) (-171 322163 323015 323043 "D01ALFA" 323048 T D01ALFA (NIL) -8 NIL NIL) (-170 321270 322122 322150 "D01AKFA" 322155 T D01AKFA (NIL) -8 NIL NIL) (-169 320377 321229 321257 "D01AJFA" 321262 T D01AJFA (NIL) -8 NIL NIL) (-168 313709 315251 316803 "D01AGNT" 318845 T D01AGNT (NIL) -7 NIL NIL) (-167 313046 313174 313326 "CYCLOTOM" 313577 T CYCLOTOM (NIL) -7 NIL NIL) (-166 309781 310494 311221 "CYCLES" 312339 T CYCLES (NIL) -7 NIL NIL) (-165 309093 309227 309398 "CVMP" 309642 NIL CVMP (NIL T) -7 NIL NIL) (-164 306875 307132 307507 "CTRIGMNP" 308821 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-163 306249 306348 306501 "CSTTOOLS" 306772 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-162 302048 302705 303463 "CRFP" 305561 NIL CRFP (NIL T T) -7 NIL NIL) (-161 301095 301280 301508 "CRAPACK" 301852 NIL CRAPACK (NIL T) -7 NIL NIL) (-160 300481 300582 300785 "CPMATCH" 300972 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-159 300206 300234 300340 "CPIMA" 300447 NIL CPIMA (NIL T T T) -7 NIL NIL) (-158 296570 297242 297960 "COORDSYS" 299541 NIL COORDSYS (NIL T) -7 NIL NIL) (-157 292431 294573 295065 "CONTFRAC" 296110 NIL CONTFRAC (NIL T) -8 NIL NIL) (-156 291584 292148 292177 "COMRING" 292182 T COMRING (NIL) -9 NIL 292233) (-155 290665 290942 291126 "COMPPROP" 291420 T COMPPROP (NIL) -8 NIL NIL) (-154 290326 290361 290489 "COMPLPAT" 290624 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-153 280309 290137 290245 "COMPLEX" 290250 NIL COMPLEX (NIL T) -8 NIL NIL) (-152 279945 280002 280109 "COMPLEX2" 280246 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-151 279663 279698 279796 "COMPFACT" 279904 NIL COMPFACT (NIL T T) -7 NIL NIL) (-150 263943 274237 274278 "COMPCAT" 275280 NIL COMPCAT (NIL T) -9 NIL 276656) (-149 253459 256382 260009 "COMPCAT-" 260365 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-148 253190 253218 253320 "COMMUPC" 253425 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-147 252985 253018 253077 "COMMONOP" 253151 T COMMONOP (NIL) -7 NIL NIL) (-146 252568 252736 252823 "COMM" 252918 T COMM (NIL) -8 NIL NIL) (-145 251822 252014 252043 "COMBOPC" 252379 T COMBOPC (NIL) -9 NIL 252552) (-144 250718 250928 251170 "COMBINAT" 251612 NIL COMBINAT (NIL T) -7 NIL NIL) (-143 246924 247495 248133 "COMBF" 250142 NIL COMBF (NIL T T) -7 NIL NIL) (-142 245710 246040 246275 "COLOR" 246709 T COLOR (NIL) -8 NIL NIL) (-141 245350 245397 245522 "CMPLXRT" 245657 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-140 240908 241922 242988 "CLIP" 244304 T CLIP (NIL) -7 NIL NIL) (-139 239246 240016 240254 "CLIF" 240736 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-138 235477 237395 237437 "CLAGG" 238366 NIL CLAGG (NIL T) -9 NIL 238899) (-137 233899 234356 234939 "CLAGG-" 234944 NIL CLAGG- (NIL T T) -8 NIL NIL) (-136 233443 233528 233668 "CINTSLPE" 233808 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-135 230944 231415 231963 "CHVAR" 232971 NIL CHVAR (NIL T T T) -7 NIL NIL) (-134 230166 230730 230759 "CHARZ" 230764 T CHARZ (NIL) -9 NIL 230778) (-133 229920 229960 230038 "CHARPOL" 230120 NIL CHARPOL (NIL T) -7 NIL NIL) (-132 229026 229623 229652 "CHARNZ" 229699 T CHARNZ (NIL) -9 NIL 229754) (-131 227049 227716 228051 "CHAR" 228711 T CHAR (NIL) -8 NIL NIL) (-130 226774 226835 226864 "CFCAT" 226975 T CFCAT (NIL) -9 NIL NIL) (-129 226019 226130 226312 "CDEN" 226658 NIL CDEN (NIL T T T) -7 NIL NIL) (-128 222011 225172 225452 "CCLASS" 225759 T CCLASS (NIL) -8 NIL NIL) (-127 217064 218040 218793 "CARTEN" 221314 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-126 216172 216320 216541 "CARTEN2" 216911 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-125 214469 215324 215580 "CARD" 215936 T CARD (NIL) -8 NIL NIL) (-124 213841 214169 214198 "CACHSET" 214330 T CACHSET (NIL) -9 NIL 214407) (-123 213337 213633 213662 "CABMON" 213712 T CABMON (NIL) -9 NIL 213768) (-122 210900 213029 213136 "BTREE" 213263 NIL BTREE (NIL T) -8 NIL NIL) (-121 208404 210548 210670 "BTOURN" 210810 NIL BTOURN (NIL T) -8 NIL NIL) (-120 205828 207875 207917 "BTCAT" 207985 NIL BTCAT (NIL T) -9 NIL 208062) (-119 205495 205575 205724 "BTCAT-" 205729 NIL BTCAT- (NIL T T) -8 NIL NIL) (-118 200685 204556 204585 "BTAGG" 204841 T BTAGG (NIL) -9 NIL 205020) (-117 200108 200252 200482 "BTAGG-" 200487 NIL BTAGG- (NIL T) -8 NIL NIL) (-116 197158 199386 199601 "BSTREE" 199925 NIL BSTREE (NIL T) -8 NIL NIL) (-115 196296 196422 196606 "BRILL" 197014 NIL BRILL (NIL T) -7 NIL NIL) (-114 193004 195025 195067 "BRAGG" 195716 NIL BRAGG (NIL T) -9 NIL 195972) (-113 191533 191939 192494 "BRAGG-" 192499 NIL BRAGG- (NIL T T) -8 NIL NIL) (-112 184741 190879 191063 "BPADICRT" 191381 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-111 183045 184678 184723 "BPADIC" 184728 NIL BPADIC (NIL NIL) -8 NIL NIL) (-110 182745 182775 182888 "BOUNDZRO" 183009 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-109 178260 179351 180218 "BOP" 181898 T BOP (NIL) -8 NIL NIL) (-108 175883 176327 176846 "BOP1" 177774 NIL BOP1 (NIL T) -7 NIL NIL) (-107 174236 174926 175220 "BOOLEAN" 175609 T BOOLEAN (NIL) -8 NIL NIL) (-106 173602 173980 174033 "BMODULE" 174038 NIL BMODULE (NIL T T) -9 NIL 174102) (-105 169412 173400 173473 "BITS" 173549 T BITS (NIL) -8 NIL NIL) (-104 168509 168944 169096 "BINFILE" 169280 T BINFILE (NIL) -8 NIL NIL) (-103 162344 167953 168118 "BINARY" 168364 T BINARY (NIL) -8 NIL NIL) (-102 160177 161599 161641 "BGAGG" 161901 NIL BGAGG (NIL T) -9 NIL 162038) (-101 160008 160040 160131 "BGAGG-" 160136 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 159106 159392 159597 "BFUNCT" 159823 T BFUNCT (NIL) -8 NIL NIL) (-99 157809 157987 158271 "BEZOUT" 158931 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154340 156669 156997 "BBTREE" 157512 NIL BBTREE (NIL T) -8 NIL NIL) (-97 154077 154130 154157 "BASTYPE" 154274 T BASTYPE (NIL) -9 NIL NIL) (-96 153933 153961 154031 "BASTYPE-" 154036 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153371 153447 153597 "BALFACT" 153844 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 152193 152790 152975 "AUTOMOR" 153216 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151918 151923 151950 "ATTREG" 151955 T ATTREG (NIL) -9 NIL NIL) (-92 150197 150615 150967 "ATTRBUT" 151584 T ATTRBUT (NIL) -8 NIL NIL) (-91 149732 149845 149872 "ATRIG" 150073 T ATRIG (NIL) -9 NIL NIL) (-90 149541 149582 149669 "ATRIG-" 149674 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147744 149317 149405 "ASTACK" 149484 NIL ASTACK (NIL T) -8 NIL NIL) (-88 146251 146548 146912 "ASSOCEQ" 147427 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 145283 145910 146034 "ASP9" 146158 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 145047 145231 145270 "ASP8" 145275 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143917 144652 144794 "ASP80" 144936 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142816 143552 143684 "ASP7" 143816 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141772 142493 142611 "ASP78" 142729 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140743 141452 141569 "ASP77" 141686 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139658 140381 140512 "ASP74" 140643 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138559 139293 139425 "ASP73" 139557 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137514 138236 138354 "ASP6" 138472 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136463 137191 137309 "ASP55" 137427 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135413 136137 136256 "ASP50" 136375 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134501 135114 135224 "ASP4" 135334 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133589 134202 134312 "ASP49" 134422 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132374 133128 133296 "ASP42" 133478 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 131152 131907 132077 "ASP41" 132261 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 130104 130829 130947 "ASP35" 131065 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129869 130052 130091 "ASP34" 130096 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129606 129673 129749 "ASP33" 129824 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128502 129241 129373 "ASP31" 129505 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 128267 128450 128489 "ASP30" 128494 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 128002 128071 128147 "ASP29" 128222 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127767 127950 127989 "ASP28" 127994 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127532 127715 127754 "ASP27" 127759 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126616 127230 127341 "ASP24" 127452 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125533 126257 126387 "ASP20" 126517 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124621 125234 125344 "ASP1" 125454 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123565 124295 124414 "ASP19" 124533 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 123302 123369 123445 "ASP12" 123520 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 122155 122901 123045 "ASP10" 123189 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 120060 121999 122090 "ARRAY2" 122095 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115882 119708 119822 "ARRAY1" 119977 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114914 115087 115308 "ARRAY12" 115705 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 109279 111144 111220 "ARR2CAT" 113850 NIL ARR2CAT (NIL T T T) -9 NIL 114608) (-54 106713 107457 108411 "ARR2CAT-" 108416 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105473 105623 105926 "APPRULE" 106551 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 105126 105174 105292 "APPLYORE" 105419 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 104100 104391 104586 "ANY" 104949 T ANY (NIL) -8 NIL NIL) (-50 103378 103501 103658 "ANY1" 103974 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100910 101828 102153 "ANTISYM" 103103 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100737 100869 100896 "ANON" 100901 T ANON (NIL) -8 NIL NIL) (-47 94814 99282 99733 "AN" 100304 T AN (NIL) -8 NIL NIL) (-46 91126 92524 92575 "AMR" 93314 NIL AMR (NIL T T) -9 NIL 93907) (-45 90239 90460 90822 "AMR-" 90827 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74801 90156 90217 "ALIST" 90222 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71638 74395 74564 "ALGSC" 74719 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 68196 68750 69356 "ALGPKG" 71079 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 67473 67574 67758 "ALGMFACT" 68082 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 63230 63911 64561 "ALGMANIP" 67001 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 54549 62856 63006 "ALGFF" 63163 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53745 53876 54055 "ALGFACT" 54407 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52735 53345 53384 "ALGEBRA" 53444 NIL ALGEBRA (NIL T) -9 NIL 53502) (-36 52453 52512 52644 "ALGEBRA-" 52649 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34174 49899 49952 "ALAGG" 50088 NIL ALAGG (NIL T T) -9 NIL 50249) (-34 33709 33822 33849 "AHYP" 34050 T AHYP (NIL) -9 NIL NIL) (-33 32640 32888 32915 "AGG" 33414 T AGG (NIL) -9 NIL 33692) (-32 32074 32236 32450 "AGG-" 32455 NIL AGG- (NIL T) -8 NIL NIL) (-31 29763 30181 30597 "AF" 31718 NIL AF (NIL T T) -7 NIL NIL) (-30 29041 29295 29449 "ACPLOT" 29627 T ACPLOT (NIL) -8 NIL NIL) (-29 18460 26406 26458 "ACFS" 27169 NIL ACFS (NIL T) -9 NIL 27408) (-28 16474 16964 17739 "ACFS-" 17744 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12694 14650 14677 "ACF" 15556 T ACF (NIL) -9 NIL 15968) (-26 11398 11732 12225 "ACF-" 12230 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11192 "ABELSG" 11284 T ABELSG (NIL) -9 NIL 11349) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10232 10493 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9896 9980 10118 "ABELMON-" 10123 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9230 9576 9603 "ABELGRP" 9728 T ABELGRP (NIL) -9 NIL 9810) (-20 8693 8822 9038 "ABELGRP-" 9043 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8029 8069 "A1AGG" 8074 NIL A1AGG (NIL T) -9 NIL 8114) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 97506929..f5470b67 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,2970 +1,2979 @@
-(680518 . 3269429137)
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) (-5 *1 (-1070)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-621 *4)) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-970)) (-5 *3 (-1053)))))
-(((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-997 (-997 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))))
-(((*1 *1) (-12 (-4 *3 (-1001)) (-5 *1 (-805 *2 *3 *4)) (-4 *2 (-1001)) (-4 *4 (-601 *3)))) ((*1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-2 (|:| |f1| (-578 *4)) (|:| |f2| (-578 (-578 (-578 *4)))) (|:| |f3| (-578 (-578 *4))) (|:| |f4| (-578 (-578 (-578 *4)))))) (-5 *1 (-1076 *4)) (-5 *3 (-578 (-578 (-578 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) ((*1 *1 *1) (-4 *1 (-500))) ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1102 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-916)) (-4 *2 (-959)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-711 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-875 *3 *2)) (-4 *2 (-123)) (-4 *3 (-508)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1064 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-886)) (-4 *2 (-123)) (-5 *1 (-1072 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1118 *4 *3)) (-14 *4 (-1070)) (-4 *3 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-511)))) ((*1 *2 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-578 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *3 (-1125 *4)) (-4 *2 (-1142 *4)) (-5 *1 (-1144 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-107)) (-5 *1 (-1094 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))))
-(((*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *4 (-906 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-340 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-4 *2 (-340 *4)) (-5 *1 (-466 *4 *5 *2 *3)) (-4 *3 (-340 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-906 *4)) (-4 *4 (-508)) (-5 *2 (-621 *4)) (-5 *1 (-624 *4 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *4 (-906 *3)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *5 (-318)) (-5 *2 (-373 (-1064 (-1064 *5)))) (-5 *1 (-1103 *5)) (-5 *3 (-1064 (-1064 *5))))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1070)) (-5 *4 (-769 *2)) (-4 *2 (-1034)) (-4 *2 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *1 (-518 *5 *2)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-511)))))
-(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-1 (-1064 *3) (-1064 *3))) (-4 *3 (-13 (-27) (-389 *6))) (-4 *6 (-13 (-777) (-508))) (-5 *2 (-530 *3)) (-5 *1 (-503 *6 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-578 (-262 *4))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1116 *3)) (-4 *3 (-1104)))))
-(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-877 (-1064 *4))) (-5 *1 (-324 *4)) (-5 *3 (-1064 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-500))))
-(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))))
-(((*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-701)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-701)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-2 (|:| A (-621 *5)) (|:| |eqs| (-578 (-2 (|:| C (-621 *5)) (|:| |g| (-1148 *5)) (|:| -2499 *6) (|:| |rh| *5)))))) (-5 *1 (-743 *5 *6)) (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *6 (-593 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2978 (-621 *6)) (|:| |vec| (-1148 *5)))) (-5 *1 (-743 *5 *6)) (-5 *3 (-621 *6)) (-5 *4 (-1148 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-386 *3)) (-4 *3 (-276)) (-4 *3 (-508)) (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-331)) (-5 *2 (-1148 *1)) (-4 *1 (-297 *4)))) ((*1 *2) (-12 (-4 *3 (-331)) (-5 *2 (-1148 *1)) (-4 *1 (-297 *3)))) ((*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *1)) (-4 *1 (-378 *3 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-381 *3 *4 *5 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-383 *3 *4 *5 *6 *7)) (-4 *6 (-378 *4 *5)) (-14 *7 *2))) ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1148 *1)) (-4 *1 (-386 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 (-1148 *4))) (-5 *1 (-485 *4)) (-4 *4 (-318)))))
-(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-331) (-775))) (-5 *2 (-578 (-2 (|:| -1575 (-578 *3)) (|:| -2390 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1125 (-152 *5))))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-2 (|:| -1575 (-578 *3)) (|:| -2390 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-218 *3)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-252 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-511)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-626 *2)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))))) (-5 *1 (-733)))) ((*1 *2 *3 *4) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(((*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1099 *5 *6 *7 *8)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)))))
-(((*1 *1 *1) (-5 *1 (-970))))
-(((*1 *1) (-12 (-4 *1 (-372)) (-3031 (|has| *1 (-6 -4158))) (-3031 (|has| *1 (-6 -4150))))) ((*1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-4 *1 (-760 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-4 *1 (-777))) ((*1 *1) (-5 *1 (-1018))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-1055 *4)) (-4 *4 (-959)) (-5 *3 (-501)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-621 *4)) (-4 *5 (-593 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))))
-(((*1 *1 *1 *1) (-4 *1 (-267))) ((*1 *1 *1) (-4 *1 (-267))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |ans| (-375 *5)) (|:| |nosol| (-107)))) (-5 *1 (-929 *4 *5)) (-5 *3 (-375 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *5 (-336)) (-5 *2 (-701)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-578 (-1148 *4))) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-578 (-1148 *3))))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *6 (-806 *5)) (-5 *2 (-805 *5 *6 (-578 *6))) (-5 *1 (-807 *5 *6 *4)) (-5 *3 (-578 *6)) (-4 *4 (-556 (-810 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-578 (-262 *3))) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-950 (-1070))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-578 (-262 (-866 *3)))) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-959)) (-3031 (-4 *3 (-950 (-1070)))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-808 *5 *3)) (-5 *1 (-807 *5 *3 *4)) (-3031 (-4 *3 (-950 (-1070)))) (-3031 (-4 *3 (-959))) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))))
-(((*1 *1 *1) (-4 *1 (-500))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-3 (|:| |overq| (-1064 (-375 (-501)))) (|:| |overan| (-1064 (-47))) (|:| -4142 (-107)))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-553 *2))) (-5 *4 (-578 (-1070))) (-4 *2 (-13 (-389 (-152 *5)) (-916) (-1090))) (-4 *5 (-13 (-508) (-777))) (-5 *1 (-544 *5 *6 *2)) (-4 *6 (-13 (-389 *5) (-916) (-1090))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-786)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1035 *4 *5)) (-4 *4 (-13 (-1001) (-33))))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-967)) (-4 *3 (-1090)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131)))))
-(((*1 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *2 (-991 *3)) (-5 *1 (-993 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-1048 *3))) (-5 *1 (-1048 *3)) (-4 *3 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef1| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1001)) (-4 *5 (-1104)) (-5 *1 (-811 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-5 *3 (-578 (-1 (-107) *5))) (-4 *4 (-1001)) (-4 *5 (-1104)) (-5 *1 (-811 *4 *5)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-810 *5)) (-5 *3 (-578 (-1070))) (-5 *4 (-1 (-107) (-578 *6))) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *1 (-811 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1104)) (-5 *2 (-282 (-501))) (-5 *1 (-857 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-578 (-1 (-107) *5))) (-4 *5 (-1104)) (-5 *2 (-282 (-501))) (-5 *1 (-857 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1104)) (-4 *4 (-777)) (-5 *1 (-858 *4 *2 *5)) (-4 *2 (-389 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1 (-107) *5))) (-4 *5 (-1104)) (-4 *4 (-777)) (-5 *1 (-858 *4 *2 *5)) (-4 *2 (-389 *4)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-1 (-107) (-578 *6))) (-4 *6 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *6)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-131))) (-5 *1 (-128)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-128)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1003)) (-5 *3 (-703)) (-5 *1 (-50)))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))))
-(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-563 *3 *4 *5 *6 *7 *2)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *2 (-1009 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-616 *4 *5 *6)) (-4 *4 (-1001)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-4 *2 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-517 *5 *2 *6)) (-4 *6 (-1001)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-950 (-375 *2)))) (-5 *2 (-501)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-578 (-501)))) (-5 *1 (-844 *4 *5 *6 *7)) (-5 *3 (-501)) (-4 *7 (-870 *4 *6 *5)))))
-(((*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-508)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-991 *3)) (-4 *3 (-870 *7 *6 *4)) (-4 *6 (-723)) (-4 *4 (-777)) (-4 *7 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-501)))) (-5 *1 (-539 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-501)))) (-5 *1 (-539 *5 *4 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1062 *4 *2)) (-4 *2 (-13 (-389 *4) (-145) (-27) (-1090))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-13 (-389 *4) (-145) (-27) (-1090))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1062 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-375 (-866 *5))) (-5 *1 (-1063 *5)) (-5 *3 (-866 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-3 (-375 (-866 *5)) (-282 *5))) (-5 *1 (-1063 *5)) (-5 *3 (-375 (-866 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-866 *5))) (-5 *3 (-866 *5)) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-375 *3)) (-5 *1 (-1063 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-3 *3 (-282 *5))) (-5 *1 (-1063 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-979 *3 *4 *5))) (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-981 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-375 *6)) (|:| |c| (-375 *6)) (|:| -1348 *6))) (-5 *1 (-929 *5 *6)) (-5 *3 (-375 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-229)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *2)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-50))) (-5 *2 (-1154)) (-5 *1 (-785)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1104)) (-5 *2 (-501)))))
-(((*1 *1) (-5 *1 (-754))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-2 (|:| |totdeg| (-701)) (|:| -2663 *3)))) (-5 *4 (-701)) (-4 *3 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-262 *3))) (-5 *1 (-262 *3)) (-4 *3 (-508)) (-4 *3 (-1104)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-27) (-389 *4))) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-4 *7 (-1125 (-375 *6))) (-5 *1 (-504 *4 *5 *6 *7 *2)) (-4 *2 (-310 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-701))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-578 *1)) (-4 *1 (-389 *4)) (-4 *4 (-777)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-578 (-1064 *7))) (-5 *3 (-1064 *7)) (-4 *7 (-870 *5 *6 *4)) (-4 *5 (-830)) (-4 *6 (-723)) (-4 *4 (-777)) (-5 *1 (-827 *5 *6 *4 *7)))))
-(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-2 (|:| -3071 (-375 (-866 *5))) (|:| |coeff| (-375 (-866 *5))))) (-5 *1 (-521 *5)) (-5 *3 (-375 (-866 *5))))))
-(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-142)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 (-1 *6 (-578 *6)))) (-4 *5 (-37 (-375 (-501)))) (-4 *6 (-1142 *5)) (-5 *2 (-578 *6)) (-5 *1 (-1143 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-578 *2))) (-5 *4 (-578 *5)) (-4 *5 (-37 (-375 (-501)))) (-4 *2 (-1142 *5)) (-5 *1 (-1143 *5 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-578 (-863 *3))))))))
-(((*1 *2 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-501)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-373 *3)) (-4 *3 (-508)) (-5 *1 (-387 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-501)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *5 (-1125 *2)) (-5 *1 (-462 *2 *5 *6)) (-4 *6 (-378 *2 *5)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1053)) (-5 *1 (-904)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-991 *4)) (-4 *4 (-1104)) (-5 *1 (-993 *4)))))
-(((*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))))
-(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))))
-(((*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-866 *5)) (-5 *1 (-864 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-131)))))
-(((*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))))
-(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) ((*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-404)) (-5 *3 (-578 (-1070))) (-5 *4 (-1070)) (-5 *1 (-1073)))) ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1073)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-404)) (-5 *3 (-1070)) (-5 *1 (-1074)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-404)) (-5 *3 (-578 (-1070))) (-5 *1 (-1074)))))
-(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-501)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -3487 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1152)))) ((*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-578 (-1070))) (|:| |pred| (-50)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *5))) (-5 *3 (-1064 *5)) (-4 *5 (-150 *4)) (-4 *4 (-500)) (-5 *1 (-136 *4 *5)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-318)) (-5 *1 (-326 *4 *5 *3)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 (-501)))) (-5 *3 (-1064 (-501))) (-5 *1 (-523)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *1))) (-5 *3 (-1064 *1)) (-4 *1 (-830)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048 (-375 *3))) (-5 *1 (-157 *3)) (-4 *3 (-276)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-866 *4))) (-5 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-838 *4)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *2 (-107)) (-5 *1 (-51 *4)) (-4 *4 (-1104)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-813 *3)) (-4 *3 (-777)))))
-(((*1 *2 *3) (-12 (-4 *4 (-276)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1022 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-758 *2 *3)) (-4 *2 (-640 *3)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-578 (-1070))) (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))) (-4 *2 (-13 (-777) (-21))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-131)) (-5 *2 (-107)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-749 *3)) (-4 *3 (-777)))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))))
-(((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-304 *3 *4 *5 *2)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *2 (-310 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-655 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) ((*1 *2 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-406 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-980 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1070))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1048 *2)) (-4 *2 (-276)) (-5 *1 (-157 *2)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *6)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-152 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-331) (-775))) (-4 *3 (-1125 *2)))))
-(((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -3709 *11)))))) (-5 *6 (-701)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -3709 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-972 *7 *8 *9)) (-4 *11 (-977 *7 *8 *9 *10)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-5 *1 (-975 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-578 *11)) (|:| |todo| (-578 (-2 (|:| |val| *3) (|:| -3709 *11)))))) (-5 *6 (-701)) (-5 *2 (-578 (-2 (|:| |val| (-578 *10)) (|:| -3709 *11)))) (-5 *3 (-578 *10)) (-5 *4 (-578 *11)) (-4 *10 (-972 *7 *8 *9)) (-4 *11 (-1009 *7 *8 *9 *10)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-5 *1 (-1040 *7 *8 *9 *10 *11)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-100)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-839)) (-5 *1 (-944 *2)) (-4 *2 (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1) (-4 *1 (-456))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 *4) (|:| -1201 (-501))))) (-4 *4 (-1125 (-501))) (-5 *2 (-667 (-701))) (-5 *1 (-409 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-373 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-959)) (-5 *2 (-667 (-701))) (-5 *1 (-411 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-759)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1104)) (-5 *2 (-701)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-777)) (-5 *2 (-701)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-499 *3)) (-4 *3 (-500)))) ((*1 *2) (-12 (-4 *1 (-694)) (-5 *2 (-701)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-725 *3 *4)) (-4 *3 (-726 *4)))) ((*1 *2) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-905 *3 *4)) (-4 *3 (-906 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-701)) (-5 *1 (-911 *3 *4)) (-4 *3 (-912 *4)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-925 *3)) (-4 *3 (-926)))) ((*1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-701)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-966 *3)) (-4 *3 (-967)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1064 *6)) (-4 *6 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-1064 *7)) (-5 *1 (-289 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-530 *3)) (-4 *3 (-331)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-371 *3)) (-4 *3 (-372)))) ((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-371 *3)) (-4 *3 (-372)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) ((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) ((*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-1048 (-501))))))
-(((*1 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-830)) (-5 *1 (-424 *3 *4 *2 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-830)) (-5 *1 (-827 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2) (-12 (-4 *2 (-830)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1 *1) (-5 *1 (-346))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-508)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-152 *5)) (-4 *5 (-13 (-389 *4) (-916) (-1090))) (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 (-152 *4)) (-916) (-1090))) (-5 *1 (-544 *4 *5 *2)))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) (-5 *1 (-733)))))
-(((*1 *1) (-5 *1 (-970))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1053)) (-5 *1 (-1086)))))
-(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093))))
-(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-501)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-440)) (-5 *2 (-501)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-701)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-839)))))
-(((*1 *2 *1) (-12 (-4 *1 (-333 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-1053)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-270)))))
-(((*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) ((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) ((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-131)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-131)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *3 (-578 (-501))) (-5 *1 (-803)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-272)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-948))) (-5 *2 (-948)) (-5 *1 (-272)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-586 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-5 *1 (-970))) ((*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1049 *4)) (-4 *4 (-1104)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-405)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1) (-4 *1 (-1093))))
-(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 *6)) (-5 *4 (-1148 (-501))) (-5 *5 (-501)) (-4 *6 (-1001)) (-5 *2 (-1 *6)) (-5 *1 (-931 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-50)))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *2 (-578 (-199))) (-5 *1 (-272)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 *5)) (-4 *6 (-1001)) (-4 *5 (-1104)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-578 *5)) (-5 *4 (-578 *6)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *5)) (-5 *4 (-578 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1001)) (-4 *2 (-1104)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1039)) (-5 *3 (-131)) (-5 *2 (-701)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-584 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-5 *2 (-1 *5 *4)) (-5 *1 (-615 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 *4)) (-5 *1 (-1036 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))))
-(((*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-375 (-501))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *5) (|:| -1320 *5)))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))) (-5 *4 (-2 (|:| -1313 *5) (|:| -1320 *5))))) ((*1 *2 *3) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))) (-5 *4 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *4) (|:| -1320 *4)))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-375 (-501))) (-5 *2 (-578 (-2 (|:| -1313 *5) (|:| -1320 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *5)) (-5 *4 (-2 (|:| -1313 *5) (|:| -1320 *5))))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-375 *1)) (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-786))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-999 *3)))) ((*1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))))
-(((*1 *1) (-5 *1 (-986))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568))))
-(((*1 *2 *3) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3189 (-375 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-808 *3 *4)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))))
-(((*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-199)) (-5 *1 (-1153)))) ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1153)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))))
-(((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-827 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-779 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1042 (-1053))) (-5 *1 (-359)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1001)) (-5 *2 (-1 *5 *4)) (-5 *1 (-615 *4 *5)) (-4 *4 (-1001)))) ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-5 *1 (-850 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-773)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-199)))) (-5 *1 (-847)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))))
-(((*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-447 *4 *5)) (-5 *1 (-569 *4 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) ((*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-839)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1001) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1073)) (-5 *3 (-1070)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-500))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1070)) (|:| |arrayIndex| (-578 (-866 (-501)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1070)) (|:| |rand| (-786)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1069)) (|:| |thenClause| (-298)) (|:| |elseClause| (-298)))) (|:| |returnBranch| (-2 (|:| -1407 (-107)) (|:| -2150 (-2 (|:| |ints2Floats?| (-107)) (|:| -4055 (-786)))))) (|:| |blockBranch| (-578 (-298))) (|:| |commentBranch| (-578 (-1053))) (|:| |callBranch| (-1053)) (|:| |forBranch| (-2 (|:| -1505 (-993 (-866 (-501)))) (|:| |span| (-866 (-501))) (|:| |body| (-298)))) (|:| |labelBranch| (-1018)) (|:| |loopBranch| (-2 (|:| |switch| (-1069)) (|:| |body| (-298)))) (|:| |commonBranch| (-2 (|:| -3986 (-1070)) (|:| |contents| (-578 (-1070))))) (|:| |printBranch| (-578 (-786))))) (-5 *1 (-298)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-948)) (-5 *1 (-272)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-168)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))) ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))))
-(((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-970)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-346))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-435)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-435)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))))
-(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-621 (-866 *4))) (-5 *1 (-942 *4)) (-4 *4 (-959)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-621 *1)) (-5 *4 (-1148 *1)) (-4 *1 (-577 *5)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -2978 (-621 *5)) (|:| |vec| (-1148 *5)))))) ((*1 *2 *3) (-12 (-5 *3 (-621 *1)) (-4 *1 (-577 *4)) (-4 *4 (-959)) (-5 *2 (-621 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1053)) (-5 *2 (-703)) (-5 *1 (-108)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-883 *3 *2)) (-4 *3 (-1001)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-485 *4)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1035 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *1 (-1036 *4 *5)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-578 (-1035 *3 *4))) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070))))) ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1001)))) ((*1 *1 *1) (-12 (-14 *2 (-578 (-1070))) (-4 *3 (-156)) (-4 *5 (-211 (-3581 *2) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *4) (|:| -3027 *5)) (-2 (|:| -3506 *4) (|:| -3027 *5)))) (-5 *1 (-428 *2 *3 *4 *5 *6 *7)) (-4 *4 (-777)) (-4 *7 (-870 *3 *5 (-787 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-777)))) ((*1 *1 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-959)))) ((*1 *1 *1) (-12 (-5 *1 (-666 *2 *3)) (-4 *3 (-777)) (-4 *2 (-959)) (-4 *3 (-657)))) ((*1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-501))) (-5 *5 (-1 (-1048 *4))) (-4 *4 (-331)) (-4 *4 (-959)) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)))))
-(((*1 *2 *3 *2 *2) (-12 (-5 *2 (-578 (-447 *4 *5))) (-5 *3 (-787 *4)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-569 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))))
-(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))))
-(((*1 *2 *2) (-12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-49 *2 *3)) (-14 *3 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-282 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *4) (|:| -3027 *5)) (-2 (|:| -3506 *4) (|:| -3027 *5)))) (-4 *2 (-156)) (-5 *1 (-428 *3 *2 *4 *5 *6 *7)) (-4 *4 (-777)) (-4 *7 (-870 *2 *5 (-787 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-471 *2 *3)) (-4 *3 (-777)) (-4 *2 (-1001)))) ((*1 *2 *1) (-12 (-4 *2 (-508)) (-5 *1 (-562 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-640 *2)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *2 (-959)) (-5 *1 (-666 *2 *3)) (-4 *3 (-777)) (-4 *3 (-657)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *3 (-722)) (-4 *4 (-777)) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))))
-(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-533 *3)) (-4 *3 (-500)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-578 (-701))) (-5 *1 (-825 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-214)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1001)))) ((*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *6 (-211 (-3581 *3) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-5 *2 (-644 *5 *6 *7)) (-5 *1 (-428 *3 *4 *5 *6 *7 *8)) (-4 *5 (-777)) (-4 *8 (-870 *4 *6 (-787 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-657)) (-4 *2 (-777)) (-5 *1 (-666 *3 *2)) (-4 *3 (-959)))) ((*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *4 (-777)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-701)) (-5 *1 (-844 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-4 *4 (-419)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4)))) (|:| |geneigvec| (-578 (-621 (-375 (-866 *4)))))))) (-5 *1 (-261 *4)) (-5 *3 (-621 (-375 (-866 *4)))))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-354 *3)) (|:| |mm| (-354 *3)) (|:| |rm| (-354 *3)))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-749 *3)) (|:| |mm| (-749 *3)) (|:| |rm| (-749 *3)))) (-5 *1 (-749 *3)) (-4 *3 (-777)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-501)) (-5 *1 (-346)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))))
-(((*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-777)) (-5 *2 (-107)))))
-(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-331)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1125 *3)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1039)) (-5 *2 (-1116 (-501))))))
-(((*1 *1 *1) (-4 *1 (-216))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (-1405 (-12 (-5 *1 (-262 *2)) (-4 *2 (-331)) (-4 *2 (-1104))) (-12 (-5 *1 (-262 *2)) (-4 *2 (-440)) (-4 *2 (-1104))))) ((*1 *1 *1) (-4 *1 (-440))) ((*1 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)) (-4 *2 (-331)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501))))) (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1125 (-375 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-1074)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-1053)) (-5 *1 (-92)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-1053)) (-5 *1 (-92)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-723)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-1078 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-375 (-501)))) (-5 *4 (-262 *8)) (-5 *5 (-1116 (-375 (-501)))) (-5 *6 (-375 (-501))) (-4 *8 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-375 (-501)))) (-5 *7 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *8))) (-4 *8 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *8 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-4 *4 (-959)) (-4 *1 (-1134 *4 *3)) (-4 *3 (-1111 *4)))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-824 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *5 (-13 (-419) (-777) (-950 *4) (-577 *4))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 *5) (-577 *5))) (-5 *5 (-501)) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-501))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *4 (-959)) (-4 *1 (-1113 *4 *3)) (-4 *3 (-1142 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775))))))
-(((*1 *2 *3) (-12 (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-698 *4 *5)) (-4 *5 (-378 *3 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-900 *4 *3 *5 *6)) (-4 *6 (-655 *3 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-1158 *4 *3 *5 *6)) (-4 *6 (-378 *3 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-701)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-501))) (-5 *4 (-262 *6)) (-4 *6 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-701))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-701))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))))
-(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-632)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)) (-5 *1 (-613 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-447 *4 *5)) (-5 *1 (-864 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *8))))) (-5 *1 (-844 *5 *6 *7 *8)) (-5 *4 (-701)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-389 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-389 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-247 *4 *5)) (-4 *5 (-13 (-389 *4) (-916))))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-107)) (-5 *1 (-266 *4)) (-4 *4 (-267)))) ((*1 *2 *3) (-12 (-4 *1 (-267)) (-5 *3 (-108)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-388 *4 *5)) (-4 *4 (-389 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *5 (-389 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-108)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-567 *4 *5)) (-4 *5 (-13 (-389 *4) (-916) (-1090))))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-578 (-375 *7))) (-4 *7 (-1125 *6)) (-5 *3 (-375 *7)) (-4 *6 (-331)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-525 *6 *7)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *3 (-150 *6)) (-4 (-866 *6) (-806 *5)) (-4 *6 (-13 (-806 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-808 *4 *1)) (-5 *3 (-810 *4)) (-4 *1 (-806 *4)) (-4 *4 (-1001)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-13 (-1001) (-950 *3))) (-4 *3 (-806 *5)) (-5 *1 (-851 *5 *3 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-13 (-389 *6) (-556 *4) (-806 *5) (-950 (-553 $)))) (-5 *4 (-810 *5)) (-4 *6 (-13 (-508) (-777) (-806 *5))) (-5 *1 (-852 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 (-501) *3)) (-5 *4 (-810 (-501))) (-4 *3 (-500)) (-5 *1 (-853 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *6)) (-5 *3 (-553 *6)) (-4 *5 (-1001)) (-4 *6 (-13 (-777) (-950 (-553 $)) (-556 *4) (-806 *5))) (-5 *4 (-810 *5)) (-5 *1 (-854 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-805 *5 *6 *3)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-806 *5)) (-4 *3 (-601 *6)) (-5 *1 (-855 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-808 *6 *3) *8 (-810 *6) (-808 *6 *3))) (-4 *8 (-777)) (-5 *2 (-808 *6 *3)) (-5 *4 (-810 *6)) (-4 *6 (-1001)) (-4 *3 (-13 (-870 *9 *7 *8) (-556 *4))) (-4 *7 (-723)) (-4 *9 (-13 (-959) (-777) (-806 *6))) (-5 *1 (-856 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-13 (-870 *8 *6 *7) (-556 *4))) (-5 *4 (-810 *5)) (-4 *7 (-806 *5)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-13 (-959) (-777) (-806 *5))) (-5 *1 (-856 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 *3)) (-4 *5 (-1001)) (-4 *3 (-906 *6)) (-4 *6 (-13 (-508) (-806 *5) (-556 *4))) (-5 *4 (-810 *5)) (-5 *1 (-859 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-808 *5 (-1070))) (-5 *3 (-1070)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-5 *1 (-860 *5)))) ((*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-578 (-810 *7))) (-5 *5 (-1 *9 (-578 *9))) (-5 *6 (-1 (-808 *7 *9) *9 (-810 *7) (-808 *7 *9))) (-4 *7 (-1001)) (-4 *9 (-13 (-959) (-556 (-810 *7)) (-950 *8))) (-5 *2 (-808 *7 *9)) (-5 *3 (-578 *9)) (-4 *8 (-13 (-959) (-777))) (-5 *1 (-861 *7 *8 *9)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (|has| *2 (-6 (-4169 "*"))) (-4 *5 (-340 *2)) (-4 *6 (-340 *2)) (-4 *2 (-959)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1125 *2)) (-4 *4 (-618 *2 *5 *6)))))
-(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-839)) (-5 *1 (-1002 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1160 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1160 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-969)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-969)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-331)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-199)))) ((*1 *1 *1 *1) (-1405 (-12 (-5 *1 (-262 *2)) (-4 *2 (-331)) (-4 *2 (-1104))) (-12 (-5 *1 (-262 *2)) (-4 *2 (-440)) (-4 *2 (-1104))))) ((*1 *1 *1 *1) (-4 *1 (-331))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1023 *3 (-553 *1))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-440))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) ((*1 *1 *1 *1) (-5 *1 (-490))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-558 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-657) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-657) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-573 *2)) (-4 *2 (-156)) (-4 *2 (-331)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-587 *2 *4 *3)) (-4 *2 (-648 *4)) (-4 *3 (|SubsetCategory| (-657) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-587 *3 *4 *2)) (-4 *3 (-648 *4)) (-4 *2 (|SubsetCategory| (-657) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-331)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-788 *2 *3 *4 *5)) (-4 *2 (-331)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-701))) (-14 *5 (-701)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-961 *3 *4 *2 *5 *6)) (-4 *2 (-959)) (-4 *5 (-211 *4 *2)) (-4 *6 (-211 *3 *2)) (-4 *2 (-331)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1156 *2)) (-4 *2 (-331)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-331)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-723)) (-14 *6 (-578 *3)) (-5 *1 (-1159 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-870 *2 *4 *3)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-331)) (-4 *2 (-959)) (-4 *3 (-773)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-786)))) ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-882)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501)))))))))) (-5 *1 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-578 (-1070))) (-5 *1 (-238)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *7)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *2 (-578 *5)) (-5 *1 (-289 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-307 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-355)))) ((*1 *2 *1) (-12 (-4 *1 (-389 *3)) (-4 *3 (-777)) (-5 *2 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *5)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *5 (-777)) (-5 *2 (-578 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-1070))) (-5 *1 (-952 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-578 (-375 *6))) (-5 *3 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-125))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-21)))))
-(((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1104)) (-5 *2 (-701)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)) (-5 *2 (-701)))) ((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) ((*1 *2) (-12 (-4 *1 (-336)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *2) (-12 (-4 *4 (-1001)) (-5 *2 (-701)) (-5 *1 (-393 *3 *4)) (-4 *3 (-394 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-701)) (-5 *1 (-654 *3 *4 *5)) (-4 *3 (-655 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1064 (-375 (-1064 *2)))) (-5 *4 (-553 *2)) (-4 *2 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *5 *2 *6)) (-4 *6 (-1001)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1064 *4)) (-4 *4 (-959)) (-4 *1 (-870 *4 *5 *3)) (-4 *5 (-723)) (-4 *3 (-777)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-1064 *2))) (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-4 *2 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))) (-5 *1 (-871 *5 *4 *6 *7 *2)) (-4 *7 (-870 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-1064 (-375 (-866 *5))))) (-5 *4 (-1070)) (-5 *2 (-375 (-866 *5))) (-5 *1 (-952 *5)) (-4 *5 (-508)))))
-(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-346))))
+(682155 . 3403927926)
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-517)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-413 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-60 *3)) (-14 *3 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-67 *3)) (-14 *3 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-70 *3)) (-14 *3 (-1073)))) ((*1 *2 *1) (-12 (-4 *1 (-365)) (-5 *2 (-1158)))) ((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-367)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *2 (-646 *5 *6 *7)) (-5 *1 (-430 *3 *4 *5 *6 *7 *8)) (-4 *5 (-779)) (-4 *8 (-871 *4 *6 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *2 (-659)) (-4 *2 (-779)) (-5 *1 (-668 *3 *2)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 *3))) (-4 *3 (-13 (-1094) (-880) (-29 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 *3))) (-5 *5 (-1056)) (-4 *3 (-13 (-1094) (-880) (-29 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-996 (-772 (-286 *5)))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-996 (-772 (-286 *6)))) (-5 *5 (-1056)) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-772 (-377 (-874 *5))))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *5))) (|:| |f2| (-583 (-772 (-286 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-772 (-377 (-874 *6))))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |f1| (-772 (-286 *6))) (|:| |f2| (-583 (-772 (-286 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 *3 (-583 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1094) (-880) (-29 *5))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-998 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-998 (-772 (-349))))) (-5 *5 (-349)) (-5 *6 (-973)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1056)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-286 (-349))) (-5 *4 (-996 (-772 (-349)))) (-5 *5 (-1073)) (-5 *2 (-950)) (-5 *1 (-518)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-534 (-377 *5))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-3 (-286 *5) (-583 (-286 *5)))) (-5 *1 (-537 *5)))) ((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)) (-4 *3 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-874 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1114 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1135 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1135 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-3807 (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (-4 *3 (-29 (-517))) (-4 *3 (-880)) (-4 *3 (-1094)) (-4 *3 (-37 (-377 (-517)))))) (-12 (-5 *2 (-1073)) (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-12 (|has| *3 (-15 -1364 ((-583 *2) *3))) (|has| *3 (-15 -4151 (*3 *3 *2))) (-4 *3 (-37 (-377 (-517)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)) (-14 *5 *3))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |ir| (-534 (-377 *6))) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-493))) (-5 *1 (-493)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *1 (-469 *4 *5 *6 *2)) (-4 *2 (-871 *4 *5 *6)))) ((*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))))
+(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-700 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-902 *4 *3 *5 *6)) (-4 *6 (-657 *3 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-1162 *4 *3 *5 *6)) (-4 *6 (-379 *3 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-583 (-583 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 (-865 *4))) (-5 *1 (-1105)) (-5 *3 (-865 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-361)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *2 *3) (-12 (-5 *2 (-556 *4)) (-5 *1 (-555 *3 *4)) (-4 *3 (-779)) (-4 *4 (-779)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 (-517)) (|:| |var| (-556 *1)))) (-4 *1 (-400 *3)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -1623 (-703)) (|:| |period| (-703)))) (-5 *1 (-1054 *4)) (-4 *4 (-1108)) (-5 *3 (-703)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))))
+(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3) (-12 (-5 *3 (-358)) (-5 *2 (-1158)) (-5 *1 (-361)))) ((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-361)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)) (-5 *3 (-1056)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *1 *1) (-4 *1 (-217))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))) ((*1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-333)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-634)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-299 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1153 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-379 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-387 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-623 *5))) (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-1153 *5)) (-5 *1 (-991 *5)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-468 *4 *5 *6 *3)) (-4 *6 (-343 *4)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| (-623 *4)) (|:| |den| *4))) (-5 *1 (-626 *4 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2131 *7) (|:| |rh| (-583 (-377 *6))))) (-5 *1 (-739 *5 *6 *7 *3)) (-5 *4 (-583 (-377 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1123 *4 *5 *3)) (-4 *3 (-1130 *5)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 (-407))))) (-5 *1 (-1077)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-299 *3)) (-4 *5 (-1130 *4)) (-5 *1 (-709 *3 *4 *5 *2 *6)) (-4 *2 (-1130 *5)) (-14 *6 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-333)) (-4 *2 (-338)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-120 *2)) (-4 *2 (-1003)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
+(((*1 *2 *2) (-12 (-5 *2 (-904 (-377 (-517)) (-789 *3) (-214 *4 (-703)) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-903 *3 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-271)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-352 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-668 *3 *4))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *8))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-703)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-343 *4)) (-4 *5 (-343 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *2 (-1069 *4)) (-5 *1 (-490 *4 *5 *6)) (-4 *5 (-333)) (-4 *6 (-13 (-333) (-777))))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-4 *2 (-1130 *4)) (-5 *1 (-844 *4 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-31 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-143 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *5)) (-4 *5 (-13 (-400 *4) (-918))))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-272 *4)) (-4 *4 (-273)))) ((*1 *2 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-399 *4 *5)) (-4 *4 (-400 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-401 *4 *5)) (-4 *5 (-400 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-109)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-570 *4 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-5 *2 (-153 *5)) (-5 *1 (-546 *4 *5 *3)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-51)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-583 (-377 *7))) (-4 *7 (-1130 *6)) (-5 *3 (-377 *7)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *7)))))
+(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-583 *3)) (-5 *1 (-539 *5 *6 *7 *8 *3)) (-4 *3 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-985 *4 *5)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-985 *5 *6)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-240)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1127 *4 *5)) (-5 *3 (-583 *5)) (-14 *4 (-1073)) (-4 *5 (-333)) (-5 *1 (-845 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-333)) (-5 *2 (-1069 *5)) (-5 *1 (-845 *4 *5)) (-14 *4 (-1073)))) ((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-703)) (-4 *6 (-333)) (-5 *2 (-377 (-874 *6))) (-5 *1 (-962 *5 *6)) (-14 *5 (-1073)))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *3 (-150 *6)) (-4 (-874 *6) (-808 *5)) (-4 *6 (-13 (-808 *5) (-156))) (-5 *1 (-160 *5 *6 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-811 *4 *1)) (-5 *3 (-814 *4)) (-4 *1 (-808 *4)) (-4 *4 (-1003)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-13 (-1003) (-952 *3))) (-4 *3 (-808 *5)) (-5 *1 (-853 *5 *3 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-400 *6) (-558 *4) (-808 *5) (-952 (-556 $)))) (-5 *4 (-814 *5)) (-4 *6 (-13 (-509) (-779) (-808 *5))) (-5 *1 (-854 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 (-517) *3)) (-5 *4 (-814 (-517))) (-4 *3 (-502)) (-5 *1 (-855 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *6)) (-5 *3 (-556 *6)) (-4 *5 (-1003)) (-4 *6 (-13 (-779) (-952 (-556 $)) (-558 *4) (-808 *5))) (-5 *4 (-814 *5)) (-5 *1 (-856 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-807 *5 *6 *3)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-4 *3 (-603 *6)) (-5 *1 (-857 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-811 *6 *3) *8 (-814 *6) (-811 *6 *3))) (-4 *8 (-779)) (-5 *2 (-811 *6 *3)) (-5 *4 (-814 *6)) (-4 *6 (-1003)) (-4 *3 (-13 (-871 *9 *7 *8) (-558 *4))) (-4 *7 (-725)) (-4 *9 (-13 (-961) (-779) (-808 *6))) (-5 *1 (-858 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-13 (-871 *8 *6 *7) (-558 *4))) (-5 *4 (-814 *5)) (-4 *7 (-808 *5)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-13 (-961) (-779) (-808 *5))) (-5 *1 (-858 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 *3)) (-4 *5 (-1003)) (-4 *3 (-909 *6)) (-4 *6 (-13 (-509) (-808 *5) (-558 *4))) (-5 *4 (-814 *5)) (-5 *1 (-861 *5 *6 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-811 *5 (-1073))) (-5 *3 (-1073)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *1 (-862 *5)))) ((*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-583 (-814 *7))) (-5 *5 (-1 *9 (-583 *9))) (-5 *6 (-1 (-811 *7 *9) *9 (-814 *7) (-811 *7 *9))) (-4 *7 (-1003)) (-4 *9 (-13 (-961) (-558 (-814 *7)) (-952 *8))) (-5 *2 (-811 *7 *9)) (-5 *3 (-583 *9)) (-4 *8 (-13 (-961) (-779))) (-5 *1 (-863 *7 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-623 *5)) (-4 *5 (-961)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-1054 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-1158)) (-5 *1 (-487 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-583 (-583 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-583 (-3 (|:| |array| (-583 *3)) (|:| |scalar| (-1073))))) (-5 *6 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))) ((*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *5 (-1076)) (-5 *3 (-1073)) (-5 *2 (-1007)) (-5 *1 (-367)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-550 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5) (-12 (-4 *6 (-1130 *9)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-278)) (-4 *10 (-871 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-583 (-1069 *10))) (|:| |dterm| (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *10))))) (|:| |nfacts| (-583 *6)) (|:| |nlead| (-583 *10)))) (-5 *1 (-710 *6 *7 *8 *9 *10)) (-5 *3 (-1069 *10)) (-5 *4 (-583 *6)) (-5 *5 (-583 *10)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *1)) (|has| *1 (-6 -4181)) (-4 *1 (-926 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-1054 (-1054 (-874 *5)))) (-5 *1 (-1161 *5)) (-5 *4 (-1054 (-874 *5))))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-123))))
+(((*1 *2 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-905 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1010 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-89 *3)))))
+(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1056)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *4 (-975 *6 *7 *8)) (-5 *2 (-1158)) (-5 *1 (-708 *6 *7 *8 *4 *5)) (-4 *5 (-980 *6 *7 *8 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-107)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *10)) (-5 *1 (-565 *5 *6 *7 *8 *9 *10)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *10 (-1012 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-958 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))))
+(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1106)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1106)))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-25)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-25)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-291 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-123)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-490))) ((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-25)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-553 *4)) (-4 *4 (-777)) (-4 *2 (-777)) (-5 *1 (-554 *2 *4)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-578 (-839))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-839)) (-4 *2 (-331)) (-14 *5 (-908 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-644 *5 *6 *7)) (-4 *5 (-777)) (-4 *6 (-211 (-3581 *4) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-14 *4 (-578 (-1070))) (-4 *2 (-156)) (-5 *1 (-428 *4 *2 *5 *6 *7 *8)) (-4 *8 (-870 *2 *6 (-787 *4))))) ((*1 *1 *2 *3) (-12 (-4 *1 (-471 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-777)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-4 *2 (-508)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1125 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-640 *2)) (-4 *2 (-959)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-666 *2 *3)) (-4 *2 (-959)) (-4 *3 (-657)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-701))) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *2)) (-4 *4 (-959)) (-4 *2 (-777)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-701))) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-870 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 *5)) (-4 *1 (-888 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-722)) (-4 *6 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-888 *4 *3 *2)) (-4 *4 (-959)) (-4 *3 (-722)) (-4 *2 (-777)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1064 *1)) (-4 *1 (-926)))))
-(((*1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)))) ((*1 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))))
-(((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-701)) (-5 *2 (-1154)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-501)) (-5 *6 (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346)))) (-5 *7 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-501)) (-5 *6 (-2 (|:| |try| (-346)) (|:| |did| (-346)) (|:| -2547 (-346)))) (-5 *7 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-839)) (-5 *1 (-716)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-276)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-276)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))) ((*1 *1 *1) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *3 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 *4)))) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) ((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-578 *1)) (-4 *1 (-1004 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-13 (-775) (-331))) (-5 *2 (-107)) (-5 *1 (-968 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-2 (|:| |num| (-1148 *4)) (|:| |den| *4))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-700 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-700 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4119 (-578 *6))) *7 *6)) (-4 *6 (-331)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *6) "failed")) (|:| -4119 (-578 (-1148 *6))))) (-5 *1 (-743 *6 *7)) (-5 *4 (-1148 *6)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-346)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-501)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 *2)) (-14 *4 (-578 *2)) (-4 *5 (-355)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 *5)) (-4 *5 (-355)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-375 (-866 (-501))))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-375 (-866 (-346))))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-866 (-501)))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-866 (-346)))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-282 (-501)))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-621 (-282 (-346)))) (-4 *1 (-353)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-501)))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 (-866 (-346)))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-501))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-346))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-501))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-282 (-346))) (-4 *1 (-365)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-375 (-866 (-501))))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-375 (-866 (-346))))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-866 (-501)))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-866 (-346)))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-282 (-501)))) (-4 *1 (-408)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1148 (-282 (-346)))) (-4 *1 (-408)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-318)) (-4 *5 (-297 *4)) (-4 *6 (-1125 *5)) (-5 *2 (-1064 (-1064 *4))) (-5 *1 (-707 *4 *5 *6 *3 *7)) (-4 *3 (-1125 *6)) (-14 *7 (-839)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *1 (-891 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (|partial| -1405 (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-3031 (-4 *3 (-37 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-500))) (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-906 (-501)))) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (|partial| -1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))))
-(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-500))) ((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) ((*1 *1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-501)) (-4 *5 (-775)) (-4 *5 (-331)) (-5 *2 (-701)) (-5 *1 (-865 *5 *6)) (-4 *6 (-1125 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *1 *1) (-12 (-4 *1 (-824 *3)) (-4 *3 (-1001)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1104)) (-4 *1 (-211 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))))
-(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))))
-(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4168)) (-4 *1 (-114 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4168)) (-4 *1 (-114 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-50)) (-5 *3 (-1070)) (-5 *1 (-570)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-1116 (-501))) (|has| *1 (-6 -4168)) (-4 *1 (-586 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4168)) (-4 *1 (-924 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1081 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-701)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-701)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-939 *3)) (-4 *3 (-1104)))))
-(((*1 *1 *1) (-5 *1 (-970))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))))
-(((*1 *1 *1) (-5 *1 (-107))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) ((*1 *1) (-4 *1 (-1046))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-590 (-375 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-375 *5))))))
-(((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) ((*1 *1 *1) (-4 *1 (-916))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-926)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-926)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-701)))) ((*1 *1 *1) (-4 *1 (-926))))
-(((*1 *1 *1) (-12 (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-276)) (-4 *6 (-1125 *4)) (-5 *2 (-1148 (-578 *6))) (-5 *1 (-422 *4 *6)) (-5 *5 (-578 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *2 (-373 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-870 (-47) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-47))) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *7 (-870 (-47) *6 *5)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-373 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-701))) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3) (-12 (-5 *2 (-373 (-152 (-501)))) (-5 *1 (-413)) (-5 *3 (-152 (-501))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *5 (-723)) (-4 *7 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-423 *4 *5 *6 *7 *3)) (-4 *6 (-508)) (-4 *3 (-870 *7 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-276)) (-5 *2 (-373 (-1064 *4))) (-5 *1 (-425 *4)) (-5 *3 (-1064 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-4 *7 (-13 (-331) (-134) (-655 *5 *6))) (-5 *2 (-373 *3)) (-5 *1 (-457 *5 *6 *7 *3)) (-4 *3 (-1125 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 (-1064 *7)) (-1064 *7))) (-4 *7 (-13 (-276) (-134))) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *2 (-373 *3)) (-5 *1 (-495 *5 *6 *7 *3)) (-4 *3 (-870 *7 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 (-1064 *7)) (-1064 *7))) (-4 *7 (-13 (-276) (-134))) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *8 (-870 *7 *6 *5)) (-5 *2 (-373 (-1064 *8))) (-5 *1 (-495 *5 *6 *7 *8)) (-5 *3 (-1064 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-590 (-375 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-375 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-590 (-375 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-375 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-749 *4)) (-4 *4 (-777)) (-5 *2 (-578 (-606 *4))) (-5 *1 (-606 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-578 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-629 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-318)) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-629 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-661 *4 *5 *6 *3)) (-4 *3 (-870 (-866 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-870 (-375 (-866 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-664 *4 *5 *6 *3)) (-4 *3 (-870 (-375 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-672 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-672 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1125 (-375 (-501)))))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-954 *3)) (-4 *3 (-1125 (-375 (-866 (-501))))))) ((*1 *2 *3) (-12 (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-13 (-331) (-134) (-655 (-375 (-501)) *4))) (-5 *2 (-373 *3)) (-5 *1 (-984 *4 *5 *3)) (-4 *3 (-1125 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-1125 (-375 (-866 (-501))))) (-4 *5 (-13 (-331) (-134) (-655 (-375 (-866 (-501))) *4))) (-5 *2 (-373 *3)) (-5 *1 (-985 *4 *5 *3)) (-4 *3 (-1125 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-419)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 (-375 *7)))) (-5 *1 (-1066 *4 *5 *6 *7)) (-5 *3 (-1064 (-375 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-373 *1)) (-4 *1 (-1108)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-1048 (-866 *4)) (-1048 (-866 *4)))) (-5 *1 (-1157 *4)) (-4 *4 (-331)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-866 *6)) (-5 *4 (-1070)) (-5 *5 (-769 *7)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *7 (-13 (-1090) (-29 *6))) (-5 *1 (-198 *6 *7)))) ((*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1064 *6)) (-5 *4 (-769 *6)) (-4 *6 (-13 (-1090) (-29 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-198 *5 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *4 (-701)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-1154)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *4 (-701)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-1154)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-500)) (-5 *1 (-144 *2)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 (-152 *4)) (-916) (-1090))) (-5 *1 (-544 *4 *3 *2)) (-4 *3 (-13 (-389 *4) (-916) (-1090))))))
-(((*1 *2 *3) (-12 (-4 *1 (-841)) (-5 *2 (-2 (|:| -3189 (-578 *1)) (|:| -3987 *1))) (-5 *3 (-578 *1)))))
-(((*1 *2 *1) (-12 (-4 *1 (-950 (-501))) (-4 *1 (-267)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-553 *1)) (-4 *1 (-389 *4)) (-4 *4 (-777)) (-4 *4 (-508)) (-5 *2 (-375 (-1064 *1))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-1064 (-375 (-1064 *3)))) (-5 *1 (-512 *6 *3 *7)) (-5 *5 (-1064 *3)) (-4 *7 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1145 *5)) (-14 *5 (-1070)) (-4 *6 (-959)) (-5 *2 (-1118 *5 (-866 *6))) (-5 *1 (-868 *5 *6)) (-5 *3 (-866 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-1064 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-1064 *1)) (-4 *1 (-870 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *5 *4)) (-5 *2 (-375 (-1064 *3))) (-5 *1 (-871 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))) (-4 *7 (-870 *6 *5 *4)) (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-959)) (-5 *1 (-871 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-375 (-1064 (-375 (-866 *5))))) (-5 *1 (-952 *5)) (-5 *3 (-375 (-866 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-866 *3))) (-4 *3 (-419)) (-5 *1 (-328 *3 *4)) (-14 *4 (-578 (-1070))))) ((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-414 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *7)))) ((*1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-710 *3 (-787 *4)))) (-4 *3 (-419)) (-14 *4 (-578 (-1070))) (-5 *1 (-566 *3 *4)))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-134))) (-5 *2 (-2 (|:| -1313 *3) (|:| -1320 *3))) (-5 *1 (-1121 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-701)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-723)) (-4 *4 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-553 *1))) (-4 *1 (-267)))))
-(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 (-1118 *5 *4))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-1118 *5 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1064 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))))
-(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-157 *3)) (-4 *3 (-276)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-671 *3 *4)) (-4 *3 (-959)) (-4 *4 (-777)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-895 *3)) (-4 *3 (-959)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))))
-(((*1 *2 *3) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-715 *3)) (-4 *3 (-556 (-346))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-152 (-346))) (-5 *1 (-715 *3)) (-4 *3 (-556 (-346))))) ((*1 *2 *3) (-12 (-5 *3 (-152 *4)) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-152 *5)) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-866 (-152 *4))) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 (-152 *4)))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 *5)))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-282 (-152 *4))) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-161 *2)) (-4 *2 (-276)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-578 (-578 *4))) (-5 *2 (-578 *4)) (-4 *4 (-276)) (-5 *1 (-161 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-2 (|:| -4119 (-621 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-621 *7))))) (-5 *5 (-701)) (-4 *8 (-1125 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-318)) (-5 *2 (-2 (|:| -4119 (-621 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-621 *7)))) (-5 *1 (-461 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-501)) (-4 *6 (-331)) (-4 *6 (-336)) (-4 *6 (-959)) (-5 *2 (-578 (-578 (-621 *6)))) (-5 *1 (-943 *6)) (-5 *3 (-578 (-621 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *4 (-336)) (-4 *4 (-959)) (-5 *2 (-578 (-578 (-621 *4)))) (-5 *1 (-943 *4)) (-5 *3 (-578 (-621 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-701)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-701)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-578 (-1064 *13))) (-5 *3 (-1064 *13)) (-5 *4 (-578 *12)) (-5 *5 (-578 *10)) (-5 *6 (-578 *13)) (-5 *7 (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| *13))))) (-5 *8 (-578 (-701))) (-5 *9 (-1148 (-578 (-1064 *10)))) (-4 *12 (-777)) (-4 *10 (-276)) (-4 *13 (-870 *10 *11 *12)) (-4 *11 (-723)) (-5 *1 (-639 *11 *12 *10 *13)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-987 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-501) *2 *2)) (-4 *2 (-124)) (-5 *1 (-987 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-553 *1))) (-4 *1 (-267)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-199)))) ((*1 *1 *1) (-4 *1 (-500))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-538 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-4 *1 (-1001)) (-5 *2 (-1018)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-509 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1) (-4 *1 (-1034))) ((*1 *1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-863 *3)))))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-863 *4)))) (-5 *3 (-107)) (-4 *4 (-959)) (-4 *1 (-1032 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 *3)))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-107)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-578 (-863 *4)))) (-5 *3 (-107)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-578 (-155))) (-5 *4 (-155)) (-4 *1 (-1032 *5)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-578 (-863 *5)))) (-5 *3 (-578 (-155))) (-5 *4 (-155)) (-4 *1 (-1032 *5)) (-4 *5 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-298)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-490))) (-5 *1 (-490)))))
-(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-50)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-138 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3027 (-701)) (|:| -2896 *4) (|:| |num| *4)))) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-107)) (-5 *1 (-404)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *3 (-578 (-1070))) (-5 *4 (-107)) (-5 *1 (-404)))) ((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-545 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-5 *1 (-599 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-578 *3)))) (-4 *3 (-1001)) (-5 *1 (-609 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-777)) (-4 *3 (-1001)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *3)) (-2 (|:| -3506 *2) (|:| -3027 *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 *4)))) (-4 *4 (-1001)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-578 (-1035 *3 *5))) (-5 *1 (-1035 *3 *5)) (-4 *3 (-13 (-1001) (-33))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |val| *4) (|:| -3709 *5)))) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-578 (-1035 *4 *5))) (-5 *1 (-1035 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3709 *4))) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1035 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) ((*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-13 (-1001) (-33))) (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1035 *2 *3))) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))) (-5 *1 (-1036 *2 *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-578 (-1036 *2 *3))) (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) ((*1 *1 *2) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1060 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-798 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-800 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-802 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))))
-(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-508)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-508))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-508)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-701))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-508)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-508)) (-5 *1 (-885 *3 *4)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-961 *3 *4 *2 *5 *6)) (-4 *2 (-959)) (-4 *5 (-211 *4 *2)) (-4 *6 (-211 *3 *2)) (-4 *2 (-508)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))))
-(((*1 *1) (-5 *1 (-970))))
-(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-331)) (-14 *6 (-1148 (-621 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))))) ((*1 *1 *2) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) ((*1 *2 *3) (-12 (-5 *2 (-50)) (-5 *1 (-51 *3)) (-4 *3 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699 (QUOTE X)) (-3699) (-630))) (-5 *1 (-59 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3699) (-630)))) (-5 *1 (-60 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) (-5 *1 (-62 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699) (-3699 (QUOTE X) (QUOTE HESS)) (-630)))) (-5 *1 (-63 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE XC)) (-630))) (-5 *1 (-64 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-69 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-72 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE X)) (-630))) (-5 *1 (-73 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X) (QUOTE EPS)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1070)) (-14 *4 (-1070)) (-14 *5 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE EPS)) (-3699 (QUOTE YA) (QUOTE YB)) (-630)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1070)) (-14 *4 (-1070)) (-14 *5 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699) (-3699 (QUOTE X)) (-630))) (-5 *1 (-76 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE XC)) (-630)))) (-5 *1 (-77 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-78 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699) (-3699 (QUOTE X)) (-630)))) (-5 *1 (-79 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630)))) (-5 *1 (-80 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) (-5 *1 (-81 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE X) (QUOTE -1893)) (-3699) (-630)))) (-5 *1 (-82 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) (-5 *1 (-83 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-307 (-3699 (QUOTE X)) (-3699) (-630)))) (-5 *1 (-84 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-307 (-3699 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3699) (-630)))) (-5 *1 (-86 *3)) (-14 *3 (-1070)))) ((*1 *1 *2) (-12 (-5 *2 (-307 (-3699 (QUOTE X)) (-3699 (QUOTE -1893)) (-630))) (-5 *1 (-87 *3)) (-14 *3 (-1070)))) ((*1 *2 *1) (-12 (-5 *2 (-918 2)) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-126 *3 *4 *5))) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-1037 *4 *5)) (-14 *4 (-701)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)))) ((*1 *1 *2) (-12 (-5 *2 (-212 *4 *5)) (-14 *4 (-701)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 (-621 *4))) (-4 *4 (-156)) (-5 *2 (-1148 (-621 (-375 (-866 *4))))) (-5 *1 (-165 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))) (-5 *1 (-189 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-918 10)) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-218 *3)) (-4 *3 (-777)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-218 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-993 (-282 *4))) (-4 *4 (-13 (-777) (-508) (-556 (-346)))) (-5 *2 (-993 (-346))) (-5 *1 (-230 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-246)))) ((*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-259 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1130 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4) (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *1 (-281 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-298)))) ((*1 *2 *1) (-12 (-5 *2 (-282 *5)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *2 (-297 *4)) (-5 *1 (-316 *3 *4 *2)) (-4 *3 (-297 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *2 (-297 *4)) (-5 *1 (-316 *2 *4 *3)) (-4 *3 (-297 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-1171 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-1162 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-351)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-351)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-351)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-630))) (-4 *1 (-351)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-353)))) ((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-1053)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-361)))) ((*1 *2 *3) (-12 (-5 *2 (-361)) (-5 *1 (-362 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-152 (-346))))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-346)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-501)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-152 (-346)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-625)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-630)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-262 (-282 (-632)))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-625))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-630))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-632))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-5 *1 (-366 *3 *4 *5 *6)) (-14 *3 (-1070)) (-14 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-14 *5 (-578 (-1070))) (-14 *6 (-1074)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-375 *3)))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-375 *3))) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-375 *3)) (-4 *3 (-508)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1023 *3 (-553 *1))) (-4 *3 (-959)) (-4 *3 (-777)) (-4 *1 (-389 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-299 *4)) (-4 *4 (-13 (-777) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))))) ((*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-375 (-501))))) (-4 *3 (-13 (-777) (-21))))) ((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-402)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-402)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-402)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-402)))) ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-404)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-630))) (-4 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1074)) (|:| -3886 (-578 (-298))))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-298)) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 *3)))) (-4 *3 (-156)) (-14 *6 (-1148 (-621 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-441 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-918 16)) (-5 *1 (-452)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))) ((*1 *1 *2) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-465)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-549 *3 *2)) (-4 *2 (-675 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-555 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-4 *1 (-560 *2)) (-4 *2 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-1167 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-571 *3 *2)) (-4 *2 (-675 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-610 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-877 (-877 (-877 *3)))) (-5 *1 (-609 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-877 (-877 (-877 *3)))) (-4 *3 (-1001)) (-5 *1 (-609 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-614 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *2)) (-4 *4 (-340 *3)) (-4 *2 (-340 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-152 (-632))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-152 (-630))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-152 (-501))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-152 (-346))) (-5 *1 (-625)))) ((*1 *1 *2) (-12 (-5 *2 (-632)) (-5 *1 (-630)))) ((*1 *2 *1) (-12 (-5 *2 (-346)) (-5 *1 (-630)))) ((*1 *2 *3) (-12 (-5 *3 (-282 (-501))) (-5 *2 (-282 (-632))) (-5 *1 (-632)))) ((*1 *1 *2) (-12 (-5 *1 (-634 *2)) (-4 *2 (-1001)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3506 *3) (|:| -3027 *4))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-1001)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3506 *3) (|:| -3027 *4))) (-4 *3 (-777)) (-4 *4 (-1001)) (-5 *1 (-644 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3189 *3) (|:| -2607 *4)))) (-4 *3 (-959)) (-4 *4 (-657)) (-5 *1 (-666 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-694)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-699)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-699)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-699)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-699)))) ((*1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-704 *3)) (-4 *3 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-738)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-738)))) ((*1 *2 *1) (-12 (-4 *2 (-820 *3)) (-5 *1 (-747 *3 *2 *4)) (-4 *3 (-1001)) (-14 *4 *3))) ((*1 *1 *2) (-12 (-4 *3 (-1001)) (-14 *4 *3) (-5 *1 (-747 *3 *2 *4)) (-4 *2 (-820 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-756)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *1 (-768)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *1 (-768)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *1 (-768)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-768)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-14 *3 (-1070)) (-5 *1 (-782 *3 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-784)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-5 *1 (-788 *3 *4 *5 *6)) (-14 *4 (-578 (-1070))) (-14 *5 (-578 (-701))) (-14 *6 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-866 *3)) (-5 *1 (-788 *3 *4 *5 *6)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))) (-14 *5 (-578 (-701))) (-14 *6 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) ((*1 *2 *3) (-12 (-5 *3 (-866 (-47))) (-5 *2 (-282 (-501))) (-5 *1 (-796)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 (-47)))) (-5 *2 (-282 (-501))) (-5 *1 (-796)))) ((*1 *1 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-749 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *1 (-818)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-818)))) ((*1 *2 *1) (-12 (-5 *2 (-1091 *3)) (-5 *1 (-821 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-822 *3))) (-4 *3 (-1001)) (-5 *1 (-825 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-373 *3))) (-4 *3 (-276)) (-5 *1 (-834 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-375 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-444)) (-5 *2 (-282 *4)) (-5 *1 (-840 *4)) (-4 *4 (-13 (-777) (-508))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-886)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) ((*1 *2 *3) (-12 (-5 *2 (-1154)) (-5 *1 (-946 *3)) (-4 *3 (-1104)))) ((*1 *2 *3) (-12 (-5 *3 (-280)) (-5 *1 (-946 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-870 *3 *4 *5)) (-14 *6 (-578 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) ((*1 *2 *3) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-952 *3)) (-4 *3 (-508)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-621 *5)) (-5 *1 (-962 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)) (-4 *5 (-959)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-5 *1 (-1024 *3 *4 *2)) (-4 *2 (-870 *3 (-487 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *2 (-777)) (-5 *1 (-1024 *3 *2 *4)) (-4 *4 (-870 *3 (-487 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-621 *4)) (-5 *1 (-1037 *3 *4)) (-14 *3 (-701)) (-4 *4 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1039)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1118 *4 *3)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-1068 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1069)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1070)))) ((*1 *2 *1) (-12 (-5 *2 (-1077 (-1070) (-404))) (-5 *1 (-1074)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1078 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-1084)))) ((*1 *2 *3) (-12 (-5 *2 (-1084)) (-5 *1 (-1085 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-5 *1 (-1097 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1097 *3)) (-4 *3 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-1104)) (-5 *1 (-1102 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-1113 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-991 *3)) (-4 *3 (-1104)) (-5 *1 (-1116 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *3)) (-14 *3 (-1070)) (-5 *1 (-1118 *3 *4)) (-4 *4 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-1134 *3 *2)) (-4 *2 (-1111 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1118 *4 *3)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-1139 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-1145 *3)) (-14 *3 *2))) ((*1 *2 *3) (-12 (-5 *3 (-435)) (-5 *2 (-1151)) (-5 *1 (-1150)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1154)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-14 *6 (-578 *4)) (-5 *1 (-1159 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-870 *3 *5 *4)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) ((*1 *2 *1) (-12 (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-1159 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-14 *6 (-578 *4)) (-14 *7 (-578 (-701))) (-14 *8 (-701)))) ((*1 *1 *2) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-959)))) ((*1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-599 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *1 (-1167 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)) (-4 *2 (-773)))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1053)) (|:| -3986 (-1053)))) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-839)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-839)))) ((*1 *2) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-839)))) ((*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-701)) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-5 *2 (-701)) (-5 *1 (-603 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-701)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-701)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-701)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-1083)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))))
-(((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *2 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-5 *1 (-1116 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 *2))) (-5 *2 (-810 *3)) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 *2))))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-511)))))
-(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-701)) (-5 *6 (-107)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-4 *3 (-972 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *7 *8 *9 *3 *4)) (-4 *4 (-977 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-701)) (-5 *6 (-107)) (-4 *7 (-419)) (-4 *8 (-723)) (-4 *9 (-777)) (-4 *3 (-972 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *7 *8 *9 *3 *4)) (-4 *4 (-1009 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *6 *7 *8 *3 *4)) (-4 *4 (-1009 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))))
-(((*1 *2 *1) (-12 (-4 *3 (-13 (-331) (-134))) (-5 *2 (-578 (-2 (|:| -3027 (-701)) (|:| -2896 *4) (|:| |num| *4)))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-870 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))) ((*1 *1 *1) (-4 *1 (-1108))) ((*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-1129 *3 *2)) (-4 *2 (-13 (-1125 *3) (-508) (-10 -8 (-15 -3664 ($ $ $))))))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1088)))))
-(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-751)) (-5 *2 (-1053)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-751)) (-5 *3 (-107)) (-5 *2 (-1053)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-751)) (-5 *3 (-753)) (-5 *2 (-1154)))) ((*1 *2 *3 *1 *4) (-12 (-4 *1 (-751)) (-5 *3 (-753)) (-5 *4 (-107)) (-5 *2 (-1154)))) ((*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-13 (-751) (-777) (-959))) (-5 *2 (-1053)) (-5 *1 (-757 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-751) (-777) (-959))) (-5 *2 (-1053)) (-5 *1 (-757 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-282 *5)) (-4 *5 (-13 (-751) (-777) (-959))) (-5 *2 (-1154)) (-5 *1 (-757 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-753)) (-5 *4 (-282 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-751) (-777) (-959))) (-5 *2 (-1154)) (-5 *1 (-757 *6)))))
-(((*1 *2 *3) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-375 *2))))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *4)) (-4 *4 (-959)) (-5 *1 (-1037 *3 *4)) (-14 *3 (-701)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *1) (-5 *1 (-107))))
-(((*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1104)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-4 *3 (-331)) (-5 *2 (-1064 (-866 *3))))) ((*1 *2) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-419)))) ((*1 *1 *1 *1) (-4 *1 (-419))) ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-451 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1 *1) (-5 *1 (-701))) ((*1 *2 *2 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-870 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *6 *4 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-1064 *7))) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-1064 *7)) (-5 *1 (-836 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-839))) ((*1 *2 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *6)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *6 (-310 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))))
-(((*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-565 *2 *3 *4)) (-4 *2 (-777)) (-4 *3 (-13 (-156) (-648 (-375 (-501))))) (-14 *4 (-839)))) ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-970)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-578 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *1 (-892 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-578 (-863 *4))) (-4 *1 (-1032 *4)) (-4 *4 (-959)) (-5 *2 (-701)))))
-(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-959)) (-4 *2 (-13 (-372) (-950 *5) (-331) (-1090) (-254))) (-5 *1 (-410 *5 *3 *2)) (-4 *3 (-1125 *5)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-5 *6 (-1064 *3)) (-4 *3 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *7 *3 *8)) (-4 *8 (-1001)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-5 *6 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-512 *7 *3 *8)) (-4 *8 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))))
-(((*1 *2) (-12 (-5 *2 (-1148 (-1002 *3 *4))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1091 *2)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-1091 *3)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1091 *2))) (-5 *1 (-1091 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3) (|partial| -12 (-4 *5 (-950 (-47))) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 (-1064 (-47)))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -2499 *3)))) (-5 *1 (-739 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-375 *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| |poly| *6) (|:| -2499 (-591 *6 (-375 *6)))))) (-5 *1 (-742 *5 *6)) (-5 *3 (-591 *6 (-375 *6))))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-501)) (-5 *1 (-451 *4)) (-4 *4 (-1125 *2)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-553 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-701)) (-4 *3 (-1104)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1) (-5 *1 (-155))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))) ((*1 *1) (-5 *1 (-361))) ((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *1) (-12 (-4 *3 (-1001)) (-5 *1 (-805 *2 *3 *4)) (-4 *2 (-1001)) (-4 *4 (-601 *3)))) ((*1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) ((*1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) ((*1 *1 *1) (-5 *1 (-1070))) ((*1 *1) (-5 *1 (-1070))) ((*1 *1) (-5 *1 (-1084))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-267)) (-4 *2 (-1104)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-553 *1))) (-5 *3 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-262 *1)) (-4 *1 (-267)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1053)) (-5 *1 (-272)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-373 *2)) (-4 *2 (-276)) (-5 *1 (-834 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-50)) (-5 *1 (-835 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-373 (-866 *6))) (-5 *5 (-1070)) (-5 *3 (-866 *6)) (-4 *6 (-13 (-276) (-134))) (-5 *2 (-50)) (-5 *1 (-835 *6)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))))
-(((*1 *2 *1) (-12 (-4 *1 (-548 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1001)) (-4 *2 (-777)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-435)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1152)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1148 (-501))) (-5 *3 (-501)) (-5 *1 (-1010)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-1148 (-501))) (-5 *3 (-578 (-501))) (-5 *4 (-501)) (-5 *1 (-1010)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-839)) (-5 *4 (-199)) (-5 *5 (-501)) (-5 *6 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-2 (|:| |k| (-749 *3)) (|:| |c| *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 *3) (|:| -2922 *4)))) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *1 (-1081 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1081 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-1148 (-282 (-346)))) (-5 *1 (-272)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *4 (-1053)) (-4 *5 (-13 (-276) (-134))) (-4 *8 (-870 *5 *7 *6)) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-14 *4 (-701)) (-4 *5 (-1104)) (-5 *2 (-125)) (-5 *1 (-210 *3 *4 *5)) (-4 *3 (-211 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-125)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-358 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-501)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-501)) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-895 *3)) (-4 *3 (-959)) (-5 *2 (-839)))) ((*1 *2) (-12 (-4 *1 (-1156 *3)) (-4 *3 (-331)) (-5 *2 (-125)))))
-(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1039))))
-(((*1 *2 *2) (-12 (-5 *1 (-614 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-501)) (-4 *4 (-318)) (-5 *1 (-485 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *3 (-959)) (-5 *1 (-540 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *1 (-1111 *3)) (-4 *3 (-959)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-501))) (-4 *1 (-1142 *3)) (-4 *3 (-959)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-593 *3)) (-4 *3 (-959)) (-4 *3 (-331)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-5 *1 (-595 *5 *2)) (-4 *2 (-593 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-578 *1)) (-4 *1 (-924 *3)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-578 *11)) (-5 *5 (-578 (-1064 *9))) (-5 *6 (-578 *9)) (-5 *7 (-578 *12)) (-5 *8 (-578 (-701))) (-4 *11 (-777)) (-4 *9 (-276)) (-4 *12 (-870 *9 *10 *11)) (-4 *10 (-723)) (-5 *2 (-578 (-1064 *12))) (-5 *1 (-639 *10 *11 *9 *12)) (-5 *3 (-1064 *12)))))
-(((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-1010)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-999 *3)) (-4 *3 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-839)) (|has| *4 (-6 (-4169 "*"))) (-4 *4 (-959)) (-5 *1 (-942 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-621 *4))) (-5 *3 (-839)) (|has| *4 (-6 (-4169 "*"))) (-4 *4 (-959)) (-5 *1 (-942 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))))
-(((*1 *2) (-12 (-5 *2 (-2 (|:| -1647 (-578 (-1070))) (|:| -3014 (-578 (-1070))))) (-5 *1 (-1106)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *3 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| (-578 *3)))) (-5 *1 (-873 *5 *6 *7 *3 *8)) (-5 *4 (-701)) (-4 *8 (-13 (-331) (-10 -8 (-15 -2946 (*3 $)) (-15 -2949 (*3 $)) (-15 -3691 ($ *3))))))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-5 *3 (-578 (-787 *4))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *1 (-468 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *1)) (-5 *4 (-1070)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *2 (-578 (-1070))) (-5 *1 (-979 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-152 (-282 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-152 *3)) (-5 *1 (-1094 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *1 (-204 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-204 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-206)) (-5 *2 (-701)))) ((*1 *1 *1) (-4 *1 (-206))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-331) (-134))) (-5 *1 (-367 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-701))) (-4 *1 (-820 *4)) (-4 *4 (-1001)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-820 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-820 *3)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-33)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-181)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-346))) (-5 *2 (-346)) (-5 *1 (-181)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-1001)) (-4 *3 (-820 *6)) (-5 *2 (-621 *3)) (-5 *1 (-623 *6 *3 *7 *4)) (-4 *7 (-340 *3)) (-4 *4 (-13 (-340 *6) (-10 -7 (-6 -4167)))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-108)) (-5 *4 (-701)) (-4 *5 (-419)) (-4 *5 (-777)) (-4 *5 (-950 (-501))) (-4 *5 (-508)) (-5 *1 (-40 *5 *2)) (-4 *2 (-389 *5)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *5 (-553 $)) $)) (-15 -2949 ((-1023 *5 (-553 $)) $)) (-15 -3691 ($ (-1023 *5 (-553 $))))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-167)) (-5 *3 (-501)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))))
-(((*1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) ((*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-156)) (-5 *1 (-620 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1059 3 *3)) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))))
-(((*1 *1 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1053)) (-5 *1 (-716)))))
-(((*1 *2 *3 *4) (-12 (-4 *7 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *8 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| *3))) (-5 *1 (-873 *5 *6 *7 *8 *3)) (-5 *4 (-701)) (-4 *3 (-13 (-331) (-10 -8 (-15 -2946 (*8 $)) (-15 -2949 (*8 $)) (-15 -3691 ($ *8))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-189 (-465))) (-5 *1 (-765)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-4 *7 (-870 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-578 *7)) (|:| |n0| (-578 *7)))) (-5 *1 (-844 *4 *5 *6 *7)) (-5 *3 (-578 *7)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4))))))) (-5 *3 (-578 *7)) (-4 *4 (-13 (-276) (-134))) (-4 *7 (-870 *4 *6 *5)) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *1 (-844 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-578 *6))) (-4 *6 (-870 *3 *5 *4)) (-4 *3 (-13 (-276) (-134))) (-4 *4 (-13 (-777) (-556 (-1070)))) (-4 *5 (-723)) (-5 *1 (-844 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-675 *3)) (-4 *3 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-451 *2)) (-4 *2 (-1125 (-501))))))
-(((*1 *2 *3) (-12 (|has| *6 (-6 -4168)) (-4 *4 (-331)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-578 *6)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *3) (-12 (|has| *9 (-6 -4168)) (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)) (-5 *2 (-578 *6)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-618 *4 *5 *6)) (-4 *10 (-618 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-508)) (-5 *2 (-578 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-578 *6)) (-5 *1 (-620 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-4 *5 (-508)) (-5 *2 (-578 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 (-152 (-501)))))) (-5 *2 (-578 (-578 (-262 (-866 (-152 *4)))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 (-152 (-501))))))) (-5 *2 (-578 (-578 (-262 (-866 (-152 *4)))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 (-501))))) (-5 *2 (-578 (-262 (-866 (-152 *4))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 (-152 (-501)))))) (-5 *2 (-578 (-262 (-866 (-152 *4))))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))))
-(((*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))))
-(((*1 *1 *1) (-5 *1 (-47))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-56 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-57 *5 *2)))) ((*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1001)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) ((*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))) ((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-2 (|:| -2663 (-1064 *4)) (|:| |deg| (-839)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1064 *4)) (-4 *5 (-13 (-508) (-777))))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-212 *5 *6)) (-14 *5 (-701)) (-4 *6 (-1104)) (-4 *2 (-1104)) (-5 *1 (-213 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-259 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1125 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-282 *2)) (-4 *2 (-508)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-4 *1 (-304 *2 *3 *4 *5)) (-4 *2 (-331)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))) (-4 *5 (-310 *2 *3 *4)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-340 *5)) (-4 *6 (-340 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1001)) (-4 *2 (-1001)) (-5 *1 (-395 *5 *4 *2 *6)) (-4 *4 (-394 *5)) (-4 *6 (-394 *2)))) ((*1 *1 *1) (-5 *1 (-458))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-578 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-579 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-959)) (-4 *2 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *8 (-340 *2)) (-4 *9 (-340 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-618 *5 *6 *7)) (-4 *10 (-618 *2 *8 *9)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-331)) (-4 *3 (-156)) (-4 *1 (-655 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-655 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-877 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-878 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *2 (-870 *3 *4 *5)) (-14 *6 (-578 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-959)) (-4 *2 (-959)) (-14 *5 (-701)) (-14 *6 (-701)) (-4 *8 (-211 *6 *7)) (-4 *9 (-211 *5 *7)) (-4 *10 (-211 *6 *2)) (-4 *11 (-211 *5 *2)) (-5 *1 (-963 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-961 *5 *6 *7 *8 *9)) (-4 *12 (-961 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1048 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-1050 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1099 *5 *6 *7 *2)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *2 (-972 *5 *6 *7)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *2 (-1104)) (-5 *1 (-1149 *5 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-404))))
-(((*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-401 *4 *3)) (-4 *3 (-389 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-553 *3)) (-4 *3 (-389 *5)) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-401 *5 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 *3)) (|:| |logand| (-1064 *3))))) (-5 *1 (-530 *3)) (-4 *3 (-331)))))
-(((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)) (-5 *2 (-2 (|:| -3405 (-866 *6)) (|:| -1277 (-866 *6)))) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-870 (-375 (-866 *6)) *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -2091 (-373 *3)) (|:| |special| (-373 *3)))) (-5 *1 (-658 *5 *3)))))
-(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3071 (-375 *5)) (|:| |coeff| (-375 *5)))) (-5 *1 (-519 *4 *5)) (-5 *3 (-375 *5)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-786)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *2 (-419)))) ((*1 *1 *1) (-12 (-4 *1 (-310 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))))) ((*1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-419)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-419)))) ((*1 *1 *1) (-12 (-4 *1 (-870 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-4 *3 (-508)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-142)))) ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-795)))) ((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))))
-(((*1 *2 *3 *4) (-12 (-4 *6 (-508)) (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-5 *3 (-375 (-866 *6))) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1048 *3))) (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1086)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-621 (-501))) (-5 *3 (-578 (-501))) (-5 *1 (-1010)))))
-(((*1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-336)) (-4 *2 (-1001)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-324 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *6 (-556 (-1070))) (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1060 (-578 (-866 *4)) (-578 (-262 (-866 *4))))) (-5 *1 (-467 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-775))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1125 (-152 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) ((*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-922 *3)) (-4 *3 (-950 *2)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1024 *4 *3 *5))) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959)) (-4 *3 (-777)) (-5 *1 (-1024 *4 *3 *5)) (-4 *5 (-870 *4 (-487 *3) *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1097 *4))) (-5 *3 (-1070)) (-5 *1 (-1097 *4)) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-272)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-578 (-1070))) (-5 *1 (-186)) (-5 *3 (-1070)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-701)) (-5 *2 (-578 (-1070))) (-5 *1 (-238)))) ((*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-606 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-610 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-749 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-578 *3)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1154)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-465)))))
-(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-1122 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-116 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-419)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-578 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1001)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 (-578 *4))) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-1 *4 (-578 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-583 *3)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-764 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1148 (-701))) (-5 *1 (-609 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-336)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) ((*1 *2 *1) (-12 (-4 *2 (-777)) (-5 *1 (-644 *2 *3 *4)) (-4 *3 (-1001)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *3)) (-2 (|:| -3506 *2) (|:| -3027 *3)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *2 (-959)) (-4 *3 (-722)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 *5)) (-4 *5 (-331)) (-4 *5 (-508)) (-5 *2 (-1148 *5)) (-5 *1 (-576 *5 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 *5)) (-3031 (-4 *5 (-331))) (-4 *5 (-508)) (-5 *2 (-1148 (-375 *5))) (-5 *1 (-576 *5 *4)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-621 (-282 (-501)))) (-5 *1 (-941)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-367 *3 *2)) (-4 *3 (-13 (-331) (-134))))))
-(((*1 *1) (-5 *1 (-131))) ((*1 *1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-232)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-233)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3 *3) (-12 (-4 *3 (-276)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-620 *3 *4 *5 *6)) (-4 *6 (-618 *3 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-631 *3)) (-4 *3 (-276)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1046))))
-(((*1 *2 *3) (-12 (-5 *3 (-699)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *1 (-516)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-699)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *1 (-516)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-717)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-717)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)) (|:| |extra| (-948)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-730)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) ((*1 *2 *3) (-12 (-5 *3 (-738)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-738)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-766)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-766)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) ((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-815)) (-5 *3 (-970)) (-5 *4 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -3492 (-346)) (|:| |explanations| (-1053)))))) ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-817)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-970)) (-5 *2 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *1 (-817)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))))
-(((*1 *2 *3) (-12 (-5 *3 (-50)) (-5 *1 (-51 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-346)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-346))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-501)))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-307 *3 *4 *5)) (-4 *5 (-950 (-501))) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 *2)) (-14 *4 (-578 *2)) (-4 *5 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-282 *5)) (-4 *5 (-355)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-375 (-866 (-501))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-375 (-866 (-346))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-866 (-501)))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-866 (-346)))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-282 (-501)))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-621 (-282 (-346)))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-501)))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-375 (-866 (-346)))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-346))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-4 *1 (-365)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 (-501))))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-375 (-866 (-346))))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-866 (-501)))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-866 (-346)))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-282 (-501)))) (-4 *1 (-408)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-282 (-346)))) (-4 *1 (-408)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-699)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-738)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *1 (-768)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *1 (-818)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *1 (-891 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-950 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-1405 (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-3031 (-4 *3 (-37 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-500))) (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 *3)) (-12 (-3031 (-4 *3 (-906 (-501)))) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (-1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-839)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1151)))))
-(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-1048 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-787 *3)) (-14 *3 (-578 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-904)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-993 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-1070)))) ((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1145 *3)) (-14 *3 *2))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)) (-5 *4 (-578 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-578 (-1070))) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-866 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4)))))))))) (-5 *1 (-844 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *5 (-839)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-866 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *6)))) (|:| -4119 (-578 (-1148 (-375 (-866 *6)))))))))) (-5 *1 (-844 *6 *7 *8 *9)) (-5 *4 (-578 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 (-1070))) (-5 *5 (-839)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *9)) (|:| |neqzro| (-578 *9)) (|:| |wcond| (-578 (-866 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *6)))) (|:| -4119 (-578 (-1148 (-375 (-866 *6)))))))))) (-5 *1 (-844 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-839)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *8)) (|:| |neqzro| (-578 *8)) (|:| |wcond| (-578 (-866 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *5)))) (|:| -4119 (-578 (-1148 (-375 (-866 *5)))))))))) (-5 *1 (-844 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 *9)) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-578 (-1070))) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-1053)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *10)) (-5 *4 (-578 *10)) (-5 *5 (-839)) (-5 *6 (-1053)) (-4 *10 (-870 *7 *9 *8)) (-4 *7 (-13 (-276) (-134))) (-4 *8 (-13 (-777) (-556 (-1070)))) (-4 *9 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-621 *10)) (-5 *4 (-578 (-1070))) (-5 *5 (-839)) (-5 *6 (-1053)) (-4 *10 (-870 *7 *9 *8)) (-4 *7 (-13 (-276) (-134))) (-4 *8 (-13 (-777) (-556 (-1070)))) (-4 *9 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *9)) (-5 *4 (-839)) (-5 *5 (-1053)) (-4 *9 (-870 *6 *8 *7)) (-4 *6 (-13 (-276) (-134))) (-4 *7 (-13 (-777) (-556 (-1070)))) (-4 *8 (-723)) (-5 *2 (-501)) (-5 *1 (-844 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-336)) (-4 *2 (-331)))))
-(((*1 *1) (-5 *1 (-404))))
-(((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-142)))) ((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *1 (-467 *4 *5 *6 *2)) (-4 *2 (-870 *4 *5 *6)))) ((*1 *1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 (-501)) (|:| |var| (-553 *1)))) (-4 *1 (-389 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-1064 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-129 *4 *5 *3)) (-4 *3 (-340 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-466 *4 *5 *6 *3)) (-4 *6 (-340 *4)) (-4 *3 (-340 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *5)) (-4 *5 (-906 *4)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |num| (-621 *4)) (|:| |den| *4))) (-5 *1 (-624 *4 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-2 (|:| -2499 *7) (|:| |rh| (-578 (-375 *6))))) (-5 *1 (-737 *5 *6 *7 *3)) (-5 *4 (-578 (-375 *6))) (-4 *7 (-593 *6)) (-4 *3 (-593 (-375 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-906 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1120 *4 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-107)) (-5 *1 (-270)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-643 *3 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-89 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-959)) (-5 *2 (-220 *4 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-578 (-1070))))))
-(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-381 *4 (-375 *4) *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *3 (-276)) (-5 *1 (-381 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-877 (-1018))) (-5 *1 (-315 *4)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *7))) (-5 *3 (-1064 *7)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-827 *4 *5 *6 *7)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *5))) (-5 *3 (-1064 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-830)) (-5 *1 (-828 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1001)) (-5 *2 (-1053)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2 *3 *4 *5)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-237 *3)) (-4 *5 (-723)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1148 (-630))) (-5 *1 (-272)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-561 *4 *2)) (-4 *2 (-13 (-1090) (-879) (-29 *4))))))
-(((*1 *2 *3) (-12 (-4 *4 (-1104)) (-5 *2 (-701)) (-5 *1 (-163 *4 *3)) (-4 *3 (-608 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))))
-(((*1 *2 *3 *2) (|partial| -12 (-5 *3 (-839)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-701)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-839)) (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *6 (-107)) (-5 *1 (-409 *2)) (-4 *2 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-373 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-411 *5 *2)) (-4 *5 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1086)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-92)))))
-(((*1 *1 *1) (-4 *1 (-1039))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-5 *3 (-1070)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-777) (-508))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-777) (-508))))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-690)))))
-(((*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-701)) (-4 *3 (-13 (-657) (-336) (-10 -7 (-15 ** (*3 *3 (-501)))))) (-5 *1 (-219 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-375 (-501))) (-5 *1 (-272)))))
-(((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-5 *2 (-435)) (-5 *1 (-1151)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4168)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))))
-(((*1 *2 *3) (-12 (-5 *2 (-578 (-578 (-501)))) (-5 *1 (-886)) (-5 *3 (-578 (-501))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))))
-(((*1 *1 *1 *1) (-4 *1 (-500))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))))
-(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3) (-12 (-4 *3 (-1125 (-375 (-501)))) (-5 *2 (-2 (|:| |den| (-501)) (|:| |gcdnum| (-501)))) (-5 *1 (-833 *3 *4)) (-4 *4 (-1125 (-375 *3))))) ((*1 *2 *3) (-12 (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1125 (-375 *4))))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-1064 *4))) (-5 *3 (-1064 *4)) (-4 *4 (-830)) (-5 *1 (-598 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-1064 *3)) (-5 *1 (-1079 *3)) (-4 *3 (-331)))))
-(((*1 *2 *3) (-12 (-4 *1 (-318)) (-5 *3 (-501)) (-5 *2 (-1077 (-839) (-701))))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)) (-5 *2 (-866 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)) (-5 *2 (-866 *4)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1142 *4)) (-4 *4 (-959)) (-5 *2 (-866 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1142 *4)) (-4 *4 (-959)) (-5 *2 (-866 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-500))))
-(((*1 *1 *2) (-12 (-5 *2 (-282 *3)) (-4 *3 (-13 (-959) (-777))) (-5 *1 (-197 *3 *4)) (-14 *4 (-578 (-1070))))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-1108)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1125 (-375 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-959)) (-4 *2 (-618 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1125 *4)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-419)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-830)) (-5 *1 (-424 *3 *4 *5 *6)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-830)))))
-(((*1 *2 *3) (-12 (-4 *4 (-419)) (-5 *2 (-578 (-2 (|:| |eigval| (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 (-621 (-375 (-866 *4)))))))) (-5 *1 (-261 *4)) (-5 *3 (-621 (-375 (-866 *4)))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-467 *3 *4 *5 *6))) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-2 (|:| |num| (-1148 *4)) (|:| |den| *4))))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-814 *2 *3)) (-4 *2 (-1125 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1064 *7)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-464 *5 *2 *6 *7)) (-4 *6 (-1125 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *4 (-1125 *5)) (-5 *2 (-1064 *7)) (-5 *1 (-464 *5 *4 *6 *7)) (-4 *6 (-1125 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-331)) (-5 *1 (-595 *4 *2)) (-4 *2 (-593 *4)))))
-(((*1 *1) (-5 *1 (-1073))))
-(((*1 *1 *1) (-12 (-4 *2 (-318)) (-4 *2 (-959)) (-5 *1 (-643 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-375 (-501))) (-5 *2 (-199)) (-5 *1 (-272)))))
-(((*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) ((*1 *1 *1 *1) (-4 *1 (-723))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-701)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))))
-(((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-701)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-701)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-892 *5 *6 *7 *8)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-752)) (-5 *2 (-50)) (-5 *1 (-761)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-529)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-501)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 (-578 *5))) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-578 (-1048 *4)))) (-5 *1 (-1143 *4 *5)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-4 *2 (-13 (-389 *4) (-916) (-1090))) (-5 *1 (-544 *4 *2 *3)) (-4 *3 (-13 (-389 (-152 *4)) (-916) (-1090))))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-1091 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))))
-(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))))
-(((*1 *2 *2) (|partial| -12 (-4 *3 (-1104)) (-5 *1 (-163 *3 *2)) (-4 *2 (-608 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-553 *5))) (-5 *3 (-1070)) (-4 *5 (-389 *4)) (-4 *4 (-777)) (-5 *1 (-524 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-500)))) ((*1 *1 *1) (-4 *1 (-967))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| C (-621 *5)) (|:| |g| (-1148 *5))))) (-5 *1 (-893 *5)) (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-667 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-777)) (-4 *3 (-1001)))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))))
-(((*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1575 (-578 (-2 (|:| |irr| *10) (|:| -3257 (-501))))))) (-5 *6 (-578 *3)) (-5 *7 (-578 *8)) (-4 *8 (-777)) (-4 *3 (-276)) (-4 *10 (-870 *3 *9 *8)) (-4 *9 (-723)) (-5 *2 (-2 (|:| |polfac| (-578 *10)) (|:| |correct| *3) (|:| |corrfact| (-578 (-1064 *3))))) (-5 *1 (-564 *8 *9 *3 *10)) (-5 *4 (-578 (-1064 *3))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))) ((*1 *1 *1) (-5 *1 (-346))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *2)) (-2 (|:| -3506 *5) (|:| -3027 *2)))) (-4 *2 (-211 (-3581 *3) (-701))) (-5 *1 (-428 *3 *4 *5 *2 *6 *7)) (-4 *5 (-777)) (-4 *7 (-870 *4 *2 (-787 *3))))))
-(((*1 *1 *1) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1064 *7)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-464 *5 *2 *6 *7)) (-4 *6 (-1125 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1072 (-375 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-166)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-1160 *4 *5 *6 *7))) (-5 *1 (-1160 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-578 (-1160 *6 *7 *8 *9))) (-5 *1 (-1160 *6 *7 *8 *9)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 *4) (|:| -1201 (-501))))) (-4 *4 (-1125 (-501))) (-5 *2 (-701)) (-5 *1 (-409 *4)))))
-(((*1 *1 *1) (-5 *1 (-970))))
-(((*1 *1) (-5 *1 (-404))))
-(((*1 *2 *3) (-12 (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-2 (|:| |glbase| (-578 (-220 *4 *5))) (|:| |glval| (-578 (-501))))) (-5 *1 (-569 *4 *5)) (-5 *3 (-578 (-220 *4 *5))))))
-(((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))) ((*1 *1 *1 *1) (-4 *1 (-1034))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))))) (-5 *2 (-948)) (-5 *1 (-272)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3492 (-346)) (|:| -3986 (-1053)) (|:| |explanations| (-578 (-1053))) (|:| |extra| (-948)))) (-5 *2 (-948)) (-5 *1 (-272)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-578 *4)) (-4 *4 (-331)) (-5 *2 (-1148 *4)) (-5 *1 (-744 *4 *3)) (-4 *3 (-593 *4)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-155)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-510 *2)) (-4 *2 (-500)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1048 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-276)) (-5 *2 (-701)) (-5 *1 (-422 *5 *3)))))
-(((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-883 *2 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-447 *4 *5))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-578 (-220 *4 *5))) (-5 *1 (-569 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-4 *4 (-1104)) (-5 *2 (-107)) (-5 *1 (-1048 *4)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-978 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -3897 *5) (|:| -2499 *3)))) (-5 *1 (-739 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-375 *6))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889)))))
-(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-501) "failed") *5)) (-4 *5 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *5 *3)) (-4 *3 (-1125 *5)))) ((*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-501) "failed") *4)) (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-501) "failed") *4)) (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-498 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-146))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-146)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-1125 *4)) (-5 *1 (-739 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-375 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-375 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *1 (-739 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-92)))))
-(((*1 *2 *2) (-12 (-5 *2 (-282 (-199))) (-5 *1 (-186)))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-1064 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) ((*1 *1 *1) (-4 *1 (-145))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *1 (-888 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-722)) (-4 *5 (-777)) (-5 *2 (-107)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-824 *3)) (-4 *3 (-1001)) (-5 *2 (-997 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1001)) (-5 *2 (-997 (-578 *4))) (-5 *1 (-825 *4)) (-5 *3 (-578 *4)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1001)) (-5 *2 (-997 (-997 *4))) (-5 *1 (-825 *4)) (-5 *3 (-997 *4)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-997 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-501))))) (-5 *1 (-373 *3)) (-4 *3 (-508)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-701)) (-4 *3 (-318)) (-4 *5 (-1125 *3)) (-5 *2 (-578 (-1064 *3))) (-5 *1 (-461 *3 *5 *6)) (-4 *6 (-1125 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-108)))))
-(((*1 *2 *3) (-12 (-5 *2 (-373 (-1064 *1))) (-5 *1 (-282 *4)) (-5 *3 (-1064 *1)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *4 (-777)))) ((*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-346)) (-5 *1 (-953)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)) (-4 *3 (-156)))))
-(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-959)) (-14 *3 (-578 (-1070))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070))))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-1048 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))))
-(((*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-786) (-786) (-786))) (-5 *4 (-501)) (-5 *2 (-786)) (-5 *1 (-584 *5 *6 *7)) (-4 *5 (-1001)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-781 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-786)) (-5 *1 (-1064 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-723)) (-4 *6 (-870 *4 *3 *5)) (-4 *4 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *4 *3 *5 *6)))))
-(((*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-331)) (-5 *1 (-482 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))) ((*1 *2 *3) (-12 (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-156)) (-5 *1 (-620 *2 *4 *5 *3)) (-4 *3 (-618 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (|has| *2 (-6 (-4169 "*"))) (-4 *2 (-959)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-2 (|:| -3169 (-701)) (|:| -1684 *8))) (-5 *1 (-831 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-2 (|:| -3169 (-701)) (|:| -1684 *6))) (-5 *1 (-832 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-1125 (-375 *3))) (-5 *2 (-839)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1125 (-375 *4))))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-754)) (-5 *1 (-753)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-630)) (-5 *1 (-272)))))
-(((*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-508)))) ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *4 *1) (-12 (-5 *4 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-959)) (-4 *2 (-618 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1125 *4)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-291 *4 *2)) (-4 *4 (-1001)) (-4 *2 (-123)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-1010)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| -1711 *3) (|:| |nconst| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-419) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-13 (-419) (-134))) (-5 *2 (-373 *3)) (-5 *1 (-95 *5 *3)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-375 *5)) (|:| |c2| (-375 *5)) (|:| |deg| (-701)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 (-621 *4))) (-4 *4 (-156)) (-5 *2 (-1148 (-621 (-866 *4)))) (-5 *1 (-165 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-749 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-773)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-749 *3)) (-4 *3 (-777)) (-5 *1 (-606 *3)))))
-(((*1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 (-447 *4 *5))) (-5 *3 (-578 (-787 *4))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-438 *4 *5 *6)) (-4 *6 (-419)))))
-(((*1 *2 *3) (-12 (-4 *4 (-318)) (-4 *5 (-297 *4)) (-4 *6 (-1125 *5)) (-5 *2 (-578 *3)) (-5 *1 (-707 *4 *5 *6 *3 *7)) (-4 *3 (-1125 *6)) (-14 *7 (-839)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *1 (-98 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))))
-(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-346)))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))))
-(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199))))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-363)))))
-(((*1 *2 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *3 (-777)) (-5 *1 (-606 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1090) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-134)) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-282 *5)) (-5 *1 (-535 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1138 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3189 *3) (|:| |gap| (-701)) (|:| -3236 (-711 *3)) (|:| -1852 (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-959)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1044 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))))
-(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-886)))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-701)) (-4 *6 (-1001)) (-4 *7 (-820 *6)) (-5 *2 (-621 *7)) (-5 *1 (-623 *6 *7 *3 *4)) (-4 *3 (-340 *7)) (-4 *4 (-13 (-340 *6) (-10 -7 (-6 -4167)))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-180)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-508)) (-5 *1 (-885 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))))
-(((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *1) (-5 *1 (-346))) ((*1 *1) (-5 *1 (-346))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-501))) (-5 *4 (-501)) (-5 *2 (-50)) (-5 *1 (-919)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-501)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *9 (-870 *8 *6 *7)) (-5 *2 (-2 (|:| -2663 (-1064 *9)) (|:| |polval| (-1064 *8)))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *3 (-1064 *9)) (-5 *4 (-1064 *8)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-950 (-501))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-31 *4 *2)) (-4 *2 (-389 *4)))) ((*1 *1 *1 *1) (-5 *1 (-125))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-501)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-331)) (-4 *4 (-37 *3)) (-4 *5 (-1142 *4)) (-5 *1 (-249 *4 *5 *2)) (-4 *2 (-1113 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-331)) (-4 *4 (-37 *3)) (-4 *5 (-1111 *4)) (-5 *1 (-250 *4 *5 *2 *6)) (-4 *2 (-1134 *4 *5)) (-4 *6 (-898 *5)))) ((*1 *1 *1 *1) (-4 *1 (-254))) ((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-329 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-5 *1 (-346))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-1012)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-440)) (-5 *2 (-501)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-501)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-490)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-490)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *4 (-1001)) (-5 *1 (-614 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-4 *3 (-331)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-622 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)) (-4 *4 (-583 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-645 *4 *5)) (-4 *5 (-583 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-657)) (-5 *2 (-701)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-764 *3)) (-4 *3 (-959)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-501)) (-5 *1 (-764 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-375 (-501))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-839)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1021 *3 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *3 *4)) (-4 *4 (-331)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))))
-(((*1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-4 *3 (-959)) (-5 *2 (-877 (-643 *3 *4))) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-939 (-769 (-501)))) (-5 *1 (-540 *3)) (-4 *3 (-959)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-229)))))
-(((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))))
-(((*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-701)))))
-(((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-870 *6 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(((*1 *1) (-5 *1 (-298))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *2 (-346)) (-5 *1 (-715 *3)) (-4 *3 (-556 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-346)) (-5 *1 (-715 *3)) (-4 *3 (-556 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1148 (-578 *3))) (-4 *4 (-276)) (-5 *2 (-578 *3)) (-5 *1 (-422 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 *8)) (-4 *7 (-777)) (-4 *8 (-959)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-5 *2 (-1064 *8)) (-5 *1 (-289 *6 *7 *8 *9)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-959)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-373 *4) *4)) (-4 *4 (-508)) (-5 *2 (-373 *4)) (-5 *1 (-387 *4)))) ((*1 *1 *1) (-5 *1 (-845))) ((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *1) (-5 *1 (-847))) ((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *4 (-375 (-501))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *1 (-934 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *4 (-375 (-501))) (-5 *1 (-935 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *1 (-935 *3)) (-4 *3 (-1125 (-375 (-501)))))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))))
-(((*1 *2) (-12 (-4 *3 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-1154)) (-5 *1 (-401 *3 *4)) (-4 *4 (-389 *3)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-779)) (-5 *3 (-583 *6)) (-5 *5 (-583 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-583 *5)) (|:| |f3| *5) (|:| |f4| (-583 *5)))) (-5 *1 (-1080 *6)) (-5 *4 (-583 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))))) ((*1 *1 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) ((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))))
+(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-383 *4 (-377 *4) *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-383 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-377 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| -2986 *5) (|:| -2126 *5)))) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-377 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *4 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -2986 *4) (|:| -2126 *4)))) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-377 *4))))))
+(((*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-1153 *5)) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *6)) (-5 *3 (-517)) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-4 *1 (-374)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-374)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-879 (-1021))) (-5 *1 (-316 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-843)) (-5 *1 (-945 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $))))))))
+(((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-583 (-109))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517)))))))))) (-5 *1 (-1077)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-915 *3)) (-4 *3 (-156)) (-5 *1 (-731 *3)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 (-377 (-517)))) (-5 *2 (-583 *1)) (-4 *1 (-928)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-928)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-583 *1)) (-4 *1 (-977 *4 *3)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-828 *4 *5 *6 *7)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-831)) (-5 *1 (-829 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-121 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107)))) (-5 *1 (-929 *8 *4)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *5)))) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *2 (-583 *5)) (-5 *1 (-191 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| -3755 *5) (|:| -3688 (-517))))) (-5 *4 (-517)) (-4 *5 (-1130 *4)) (-5 *2 (-583 *5)) (-5 *1 (-629 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-3 (-1069 *4) (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021))))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1056)))))
+(((*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-583 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517)))))) (-5 *1 (-470 *4 *5)) (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-583 (-1 (-199) (-199)))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1147 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-583 (-377 *6))) (-5 *3 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-313 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-314 *3 *4)) (-4 *3 (-319)) (-14 *4 (-1069 *3)))) ((*1 *2) (-12 (-5 *2 (-879 (-1021))) (-5 *1 (-315 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1056)) (-5 *1 (-1155)))) ((*1 *1 *1) (-5 *1 (-1155))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-306 *4 *5 *6 *7)) (-4 *4 (-13 (-338) (-333))) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *7 (-312 *4 *5 *6)) (-5 *2 (-703)) (-5 *1 (-362 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-673 *4 *3)) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-703)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-703)) (-5 *1 (-834 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-306 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-4 *4 (-1130 (-377 *7))) (-4 *8 (-312 *6 *7 *4)) (-4 *9 (-13 (-338) (-333))) (-5 *2 (-703)) (-5 *1 (-934 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
+(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-517)))) (-4 *4 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))) (-4 *3 (-509)) (-5 *1 (-1133 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-493)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
+(((*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-583 *3)) (-5 *5 (-843)) (-4 *3 (-1130 *4)) (-4 *4 (-278)) (-5 *1 (-429 *4 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-4 *4 (-779)))))
+(((*1 *1) (-5 *1 (-199))) ((*1 *1) (-5 *1 (-349))))
+(((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *3 (-517)) (-4 *1 (-793 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-107)) (-5 *1 (-330 *4 *5)) (-14 *5 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-712 *4 (-789 *5)))) (-4 *4 (-421)) (-14 *5 (-583 (-1073))) (-5 *2 (-107)) (-5 *1 (-568 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 *3 (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-278)) (-5 *2 (-377 (-388 (-874 *4)))) (-5 *1 (-956 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1153 (-632))) (-5 *1 (-276)))))
+(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-1073)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *5 *2)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 *3)) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-506)))))
+(((*1 *1 *1 *2) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-349)) (-5 *1 (-973)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-710 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *6)) (-4 *7 (-871 *6 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-623 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-563 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-29 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *7)) (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-556 *4)) (-4 *4 (-779)) (-4 *2 (-779)) (-5 *1 (-555 *2 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-199)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-377 (-517))) (-5 *1 (-349)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-4 *4 (-1108)) (-5 *2 (-703)) (-5 *1 (-163 *4 *3)) (-4 *3 (-610 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-564 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3652 *4) (|:| |sol?| (-107))) (-517) *4)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *1 (-527 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-1153 *4)) (-5 *1 (-578 *4 *5)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *2 (-975 *4 *5 *6)) (-5 *1 (-708 *4 *5 *6 *2 *3)) (-4 *3 (-980 *4 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-221 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-14 *3 (-583 (-1073))) (-5 *1 (-423 *3 *4 *5)) (-4 *4 (-961)) (-4 *5 (-212 (-2296 *3) (-703))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-449 *3 *4)) (-14 *3 (-583 (-1073))) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-961)) (-5 *2 (-583 *6)) (-5 *1 (-413 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *2) (|partial| -12 (-5 *3 (-843)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-843)) (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *6 (-107)) (-5 *1 (-411 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-388 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-413 *5 *2)) (-4 *5 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-623 *4)) (-5 *1 (-316 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-706)) (-5 *1 (-51)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
+(((*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-814 *6))) (-5 *5 (-1 (-811 *6 *8) *8 (-814 *6) (-811 *6 *8))) (-4 *6 (-1003)) (-4 *8 (-13 (-961) (-558 (-814 *6)) (-952 *7))) (-5 *2 (-811 *6 *8)) (-4 *7 (-13 (-961) (-779))) (-5 *1 (-863 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-214 *6 *7)) (-14 *6 (-703)) (-4 *7 (-1108)) (-4 *5 (-1108)) (-5 *2 (-214 *6 *5)) (-5 *1 (-213 *6 *7 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-4 *2 (-343 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-343 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1003)) (-4 *5 (-1003)) (-4 *2 (-395 *5)) (-5 *1 (-393 *6 *4 *5 *2)) (-4 *4 (-395 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-583 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-583 *5)) (-5 *1 (-581 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-879 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-879 *5)) (-5 *1 (-878 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1054 *6)) (-4 *6 (-1108)) (-4 *3 (-1108)) (-5 *2 (-1054 *3)) (-5 *1 (-1052 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1153 *6)) (-4 *6 (-1108)) (-4 *5 (-1108)) (-5 *2 (-1153 *5)) (-5 *1 (-1152 *6 *5)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-703)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-843)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-142)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094))) (-5 *1 (-201 *3)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1015)) (-4 *2 (-1108)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-351 *3 *2)) (-4 *3 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *6 (-212 (-2296 *3) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-5 *1 (-430 *3 *4 *5 *6 *7 *2)) (-4 *5 (-779)) (-4 *2 (-871 *4 *6 (-789 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-543 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-585 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-1 *7 *5)) (-5 *1 (-618 *5 *6 *7)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-621 *3 *2 *4)) (-4 *3 (-961)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-621 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-4 *1 (-653))) ((*1 *1 *1 *2) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-968)))) ((*1 *1 *1 *1) (-4 *1 (-1015))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *2 (-212 *3 *4)) (-4 *5 (-212 *3 *4)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1024 *3 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-865 (-199))) (-5 *3 (-199)) (-5 *1 (-1105)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-659)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1090)))))
+(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-779)) (-4 *5 (-725)) (-4 *6 (-509)) (-4 *7 (-871 *6 *5 *3)) (-5 *1 (-431 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-952 (-377 (-517))) (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))))
+(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-583 *3)) (|:| |image| (-583 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |h| *6) (|:| |c1| (-377 *6)) (|:| |c2| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-932 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 (-199)))) (-5 *1 (-1154)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-124)) (-5 *3 (-703)) (-5 *2 (-1158)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))))
+(((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1055)))) ((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-92)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-4 *1 (-825 *3)))))
(((*1 *1 *1 *1) (-5 *1 (-107))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1070))) (-4 *6 (-331)) (-5 *2 (-578 (-262 (-866 *6)))) (-5 *1 (-493 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-13 (-331) (-775))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *1) (-5 *1 (-754))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-508))) (-5 *2 (-107)) (-5 *1 (-247 *4 *3)) (-4 *3 (-13 (-389 *4) (-916))))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-5 *1 (-422 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-5 *1 (-427 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-276)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-701))) (-5 *1 (-494 *3 *2 *4 *5)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-405)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-786))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-578 *2) *2 *2 *2)) (-4 *2 (-1001)) (-5 *1 (-98 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1001)) (-5 *1 (-98 *2)))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1070)) (-5 *6 (-107)) (-4 *7 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-1090) (-879) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-769 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))) ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-287 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))))
-(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *6 (-723)) (-4 *9 (-870 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-578 (-2 (|:| -3739 (-1064 *9)) (|:| -3027 (-501))))))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *3 (-1064 *9)))))
-(((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-777)))) ((*1 *2 *2) (-12 (-5 *2 (-530 *4)) (-4 *4 (-13 (-29 *3) (-1090))) (-4 *3 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *1 (-532 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-530 (-375 (-866 *3)))) (-4 *3 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *1 (-535 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -2091 *3) (|:| |special| *3))) (-5 *1 (-658 *5 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1148 (-1148 *5))) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-578 (-578 (-621 *5)))) (-5 *1 (-943 *5)) (-5 *3 (-578 (-621 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-578 *1)) (-4 *1 (-1039)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-578 *1)) (-4 *1 (-1039)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1070)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-916)) (-4 *2 (-959)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 *4)) (-5 *1 (-1014 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1048 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-104)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-375 *5)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1125 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1072 (-375 (-501)))) (-5 *2 (-375 (-501))) (-5 *1 (-166)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-621 (-282 (-199)))) (-5 *3 (-578 (-1070))) (-5 *4 (-1148 (-282 (-199)))) (-5 *1 (-181)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *3))) (-4 *3 (-278 *3)) (-4 *3 (-1001)) (-4 *3 (-1104)) (-5 *1 (-262 *3)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-278 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)) (-5 *1 (-262 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *1 *1)) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1 *1 *1)) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1 *1 (-578 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-267)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-1 *1 *1))) (-4 *1 (-267)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-262 *3))) (-4 *1 (-278 *3)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-262 *3)) (-4 *1 (-278 *3)) (-4 *3 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-501))) (-5 *4 (-1072 (-375 (-501)))) (-5 *1 (-279 *2)) (-4 *2 (-37 (-375 (-501)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *1)) (-4 *1 (-342 *4 *5)) (-4 *4 (-777)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *4 (-1 *1 *1)) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *4 (-1 *1 (-578 *1))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-701))) (-5 *4 (-578 (-1 *1 (-578 *1)))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-578 (-701))) (-5 *4 (-578 (-1 *1 *1))) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-578 (-108))) (-5 *3 (-578 *1)) (-5 *4 (-1070)) (-4 *1 (-389 *5)) (-4 *5 (-777)) (-4 *5 (-556 (-490))))) ((*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1070)) (-4 *1 (-389 *4)) (-4 *4 (-777)) (-4 *4 (-556 (-490))))) ((*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-556 (-490))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1070))) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-556 (-490))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-389 *3)) (-4 *3 (-777)) (-4 *3 (-556 (-490))))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-476 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1104)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 *5)) (-4 *1 (-476 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1104)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-762 *3)) (-4 *3 (-331)) (-5 *1 (-649 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1001)))) ((*1 *2 *2 *3 *2) (-12 (-5 *2 (-375 (-866 *4))) (-5 *3 (-1070)) (-4 *4 (-508)) (-5 *1 (-952 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-5 *4 (-578 (-375 (-866 *5)))) (-5 *2 (-375 (-866 *5))) (-4 *5 (-508)) (-5 *1 (-952 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-262 (-375 (-866 *4)))) (-5 *2 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *1 (-952 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-262 (-375 (-866 *4))))) (-5 *2 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *1 (-952 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1048 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-578 (-621 *4))) (-5 *2 (-621 *4)) (-4 *4 (-959)) (-5 *1 (-943 *4)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-402)) (-4 *5 (-777)) (-5 *1 (-1006 *5 *4)) (-4 *4 (-389 *5)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1171 *4 *2)) (-4 *1 (-342 *4 *2)) (-4 *4 (-777)) (-4 *2 (-156)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-749 *4)) (-4 *1 (-1166 *4 *2)) (-4 *4 (-777)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-959)) (-5 *1 (-1170 *2 *3)) (-4 *3 (-773)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-769 *3))) (-4 *3 (-13 (-1090) (-879) (-29 *5))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-769 *3))) (-5 *5 (-1053)) (-4 *3 (-13 (-1090) (-879) (-29 *6))) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 *3)) (|:| |f2| (-578 (-769 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-993 (-769 (-282 *5)))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *5))) (|:| |f2| (-578 (-769 (-282 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-375 (-866 *6))) (-5 *4 (-993 (-769 (-282 *6)))) (-5 *5 (-1053)) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *6))) (|:| |f2| (-578 (-769 (-282 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-769 (-375 (-866 *5))))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *5))) (|:| |f2| (-578 (-769 (-282 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-769 (-375 (-866 *6))))) (-5 *5 (-1053)) (-5 *3 (-375 (-866 *6))) (-4 *6 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |f1| (-769 (-282 *6))) (|:| |f2| (-578 (-769 (-282 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-194 *6)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 *3 (-578 *3))) (-5 *1 (-398 *5 *3)) (-4 *3 (-13 (-1090) (-879) (-29 *5))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *6 (-970)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3) (-12 (-5 *3 (-699)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-991 (-769 (-346)))) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-991 (-769 (-346))))) (-5 *5 (-346)) (-5 *6 (-970)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-282 (-346))) (-5 *4 (-993 (-769 (-346)))) (-5 *5 (-1053)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-282 (-346))) (-5 *4 (-993 (-769 (-346)))) (-5 *5 (-1070)) (-5 *2 (-948)) (-5 *1 (-516)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-530 (-375 *5))) (-5 *1 (-519 *4 *5)) (-5 *3 (-375 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-134)) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-3 (-282 *5) (-578 (-282 *5)))) (-5 *1 (-535 *5)))) ((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-671 *3 *2)) (-4 *3 (-959)) (-4 *2 (-777)) (-4 *3 (-37 (-375 (-501)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-866 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-4 *2 (-777)) (-5 *1 (-1024 *3 *2 *4)) (-4 *4 (-870 *3 (-487 *2) *2)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *1 (-1097 *3)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1111 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1111 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1111 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) ((*1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1132 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1132 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-1405 (-12 (-5 *2 (-1070)) (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-12 (-4 *3 (-29 (-501))) (-4 *3 (-879)) (-4 *3 (-1090)) (-4 *3 (-37 (-375 (-501)))))) (-12 (-5 *2 (-1070)) (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-12 (|has| *3 (-15 -3800 ((-578 *2) *3))) (|has| *3 (-15 -3188 (*3 *3 *2))) (-4 *3 (-37 (-375 (-501)))))))) ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)) (-4 *2 (-37 (-375 (-501)))))))
-(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-578 (-578 (-199)))) (-5 *4 (-199)) (-5 *2 (-578 (-863 *4))) (-5 *1 (-1101)) (-5 *3 (-863 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1002 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-500))))
-(((*1 *2 *2) (-12 (-4 *3 (-318)) (-4 *4 (-297 *3)) (-4 *5 (-1125 *4)) (-5 *1 (-707 *3 *4 *5 *2 *6)) (-4 *2 (-1125 *5)) (-14 *6 (-839)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-331)) (-4 *2 (-336)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *4)))))
-(((*1 *2) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-123))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1031 (-199))) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1031 (-199))) (-5 *1 (-227)))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-356 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-23)) (-5 *1 (-586 *4 *2 *5)) (-4 *4 (-1003)) (-14 *5 *2))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-703)) (-5 *1 (-751 *4)) (-4 *4 (-779)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
+(((*1 *1 *1) (-4 *1 (-1042))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-240)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 *6)) (-5 *4 (-1153 (-517))) (-5 *5 (-517)) (-4 *6 (-1003)) (-5 *2 (-1 *6)) (-5 *1 (-933 *6)))))
+(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-4 *8 (-278)) (-5 *2 (-583 (-703))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *5 (-703)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *1 (-622 *4 *5 *6 *2)) (-4 *2 (-621 *4 *5 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *1 (-1080 *4)))))
+(((*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-449 *3 *4))) (-14 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-571 *3 *4)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-319)) (-5 *2 (-1153 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-623 *1)) (-4 *1 (-132)) (-4 *1 (-831)) (-5 *2 (-1153 *1)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *5 *3 *6)) (-4 *3 (-1130 *5)) (-4 *6 (-13 (-374) (-952 *5) (-333) (-1094) (-256))))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-460)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-291 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-623 (-1069 *8))) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *6)) (-5 *1 (-466 *5 *6 *7 *8)) (-4 *7 (-1130 *6)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-827 (-517))) (-5 *4 (-517)) (-5 *2 (-623 *4)) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-943 *4)) (-4 *4 (-961)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-827 (-517)))) (-5 *4 (-517)) (-5 *2 (-583 (-623 *4))) (-5 *1 (-943 *5)) (-4 *5 (-961)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-943 *4)) (-4 *4 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-692)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-950 (-501))) (-4 *1 (-267)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1003)) (-5 *1 (-298)))))
-(((*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-237 *3)) (-4 *3 (-777)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-301 *4 *5 *6 *7)) (-4 *4 (-13 (-336) (-331))) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-4 *7 (-310 *4 *5 *6)) (-5 *2 (-701)) (-5 *1 (-360 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-762 (-839))))) ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-501)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-701)) (-4 *1 (-671 *4 *3)) (-4 *4 (-959)) (-4 *3 (-777)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-671 *4 *3)) (-4 *4 (-959)) (-4 *3 (-777)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-701)) (-5 *1 (-831 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-701)) (-5 *1 (-832 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-301 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-4 *4 (-1125 (-375 *7))) (-4 *8 (-310 *6 *7 *4)) (-4 *9 (-13 (-336) (-331))) (-5 *2 (-701)) (-5 *1 (-932 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)) (-5 *2 (-701)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *2 *1) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))))
-(((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-276)) (-5 *2 (-375 (-373 (-866 *4)))) (-5 *1 (-955 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *3 (-820 *5)) (-5 *2 (-621 *3)) (-5 *1 (-623 *5 *3 *6 *4)) (-4 *6 (-340 *3)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *2 (-972 *4 *5 *6)) (-5 *1 (-706 *4 *5 *6 *2 *3)) (-4 *3 (-977 *4 *5 *6 *2)))))
-(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-56 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-56 *5)) (-5 *1 (-57 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-212 *6 *7)) (-14 *6 (-701)) (-4 *7 (-1104)) (-4 *5 (-1104)) (-5 *2 (-212 *6 *5)) (-5 *1 (-213 *6 *7 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-4 *2 (-340 *5)) (-5 *1 (-341 *6 *4 *5 *2)) (-4 *4 (-340 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1001)) (-4 *5 (-1001)) (-4 *2 (-394 *5)) (-5 *1 (-395 *6 *4 *5 *2)) (-4 *4 (-394 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-578 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-578 *5)) (-5 *1 (-579 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-877 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-877 *5)) (-5 *1 (-878 *6 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1048 *6)) (-4 *6 (-1104)) (-4 *3 (-1104)) (-5 *2 (-1048 *3)) (-5 *1 (-1050 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1148 *6)) (-4 *6 (-1104)) (-4 *5 (-1104)) (-5 *2 (-1148 *5)) (-5 *1 (-1149 *6 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-214)) (-5 *3 (-1053)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-214)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-834 *3)) (-4 *3 (-276)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701)) (-5 *1 (-354 *4)) (-4 *4 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-23)) (-5 *1 (-584 *4 *2 *5)) (-4 *4 (-1001)) (-14 *5 *2))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-701)) (-5 *1 (-749 *4)) (-4 *4 (-777)))))
-(((*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *3 (-508)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-262 *2)) (-4 *2 (-657)) (-4 *2 (-1104)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-98 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1001)) (-5 *2 (-107)) (-5 *1 (-1105 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-199))) (-5 *1 (-276)))))
+(((*1 *1 *2) (-12 (-5 *2 (-383 *3 *4 *5 *6)) (-4 *6 (-952 *4)) (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *6 (-379 *4 *5)) (-14 *7 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *6)) (-4 *6 (-379 *4 *5)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-4 *3 (-278)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-14 *7 *2))))
+(((*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-153 (-517))) (-5 *2 (-107)) (-5 *1 (-415)))) ((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-882 *3)) (-4 *3 (-502)))) ((*1 *2 *1) (-12 (-4 *1 (-1112)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-655)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-659)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *3 (-1003)) (-5 *2 (-107)) (-5 *1 (-1109 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-496 *4 *2 *5 *6)) (-4 *4 (-278)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-703))))))
+(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-1153 *5)) (-5 *3 (-703)) (-5 *4 (-1021)) (-4 *5 (-319)) (-5 *1 (-487 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-759 *2 *3)) (-4 *2 (-642 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-107)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-107)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *4 (-703)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-1158)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))))
+(((*1 *2 *3 *4) (-12 (-4 *7 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *3))) (-5 *1 (-875 *5 *6 *7 *8 *3)) (-5 *4 (-703)) (-4 *3 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))))
+(((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-950)))) ((*1 *2 *3) (-12 (-4 *1 (-768)) (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-950)))))
+(((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1164 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1164 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-388 *5)) (-4 *5 (-509)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *5) (|:| |radicand| (-583 *5)))) (-5 *1 (-290 *5)) (-5 *4 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-517)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-1 (-107) *5)) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-5 *3 (-583 (-1 (-107) *5))) (-4 *4 (-1003)) (-4 *5 (-1108)) (-5 *1 (-812 *4 *5)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-814 *5)) (-5 *3 (-583 (-1073))) (-5 *4 (-1 (-107) (-583 *6))) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-812 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *5)) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-4 *4 (-779)) (-5 *1 (-859 *4 *2 *5)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1 (-107) *5)) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-583 (-1 (-107) *5))) (-4 *5 (-1108)) (-5 *2 (-286 (-517))) (-5 *1 (-860 *5)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1 (-107) (-583 *6))) (-4 *6 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-189 (-467))) (-5 *1 (-767)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-377 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))) ((*1 *2 *3) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))) (-5 *4 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *4) (|:| -3652 *4)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-377 (-517))) (-5 *2 (-583 (-2 (|:| -3639 *5) (|:| -3652 *5)))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *5)) (-5 *4 (-2 (|:| -3639 *5) (|:| -3652 *5))))))
+(((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *4 *5 *6 *7)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 *2))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))))
+(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))))
+(((*1 *1 *1) (-5 *1 (-1072))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-556 *5))) (-4 *4 (-779)) (-5 *2 (-556 *5)) (-5 *1 (-526 *4 *5)) (-4 *5 (-400 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-772 (-199)))) (-5 *4 (-199)) (-5 *2 (-583 *4)) (-5 *1 (-240)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1108)) (-4 *1 (-212 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))))
+(((*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
+(((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-983 *3 *4 *5))) (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-984 *3 *4 *5)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-4 *7 (-871 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-107)) (|:| |z0| (-583 *7)) (|:| |n0| (-583 *7)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2) (-12 (-5 *2 (-623 (-832 *3))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-623 *3)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3652 *7) (|:| |sol?| (-107))) (-517) *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *7 (-822 *6)) (-5 *2 (-623 *7)) (-5 *1 (-625 *6 *7 *3 *4)) (-4 *3 (-343 *7)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-4 *4 (-338)) (-4 *4 (-333)) (-5 *2 (-1069 *1)) (-4 *1 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *3 (-333)) (-4 *2 (-1130 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))))
+(((*1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
+(((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1) (-4 *1 (-918))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-928)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-928)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-928))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
+(((*1 *1) (-5 *1 (-989))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-180)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *3 (-583 *7)) (-4 *4 (-13 (-278) (-134))) (-4 *7 (-871 *4 *6 *5)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *1 (-846 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-871 (-47) *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-47))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *7 (-871 (-47) *6 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-151 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 (-153 (-517)))) (-5 *1 (-415)) (-5 *3 (-153 (-517))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *5 (-725)) (-4 *7 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-425 *4 *5 *6 *7 *3)) (-4 *6 (-509)) (-4 *3 (-871 *7 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-278)) (-5 *2 (-388 (-1069 *4))) (-5 *1 (-427 *4)) (-5 *3 (-1069 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-13 (-333) (-134) (-657 *5 *6))) (-5 *2 (-388 *3)) (-5 *1 (-459 *5 *6 *7 *3)) (-4 *3 (-1130 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *2 (-388 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-871 *7 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 (-1069 *7)) (-1069 *7))) (-4 *7 (-13 (-278) (-134))) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-871 *7 *6 *5)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-497 *5 *6 *7 *8)) (-5 *3 (-1069 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-590 (-377 *6)))) (-5 *1 (-594 *5 *6)) (-5 *3 (-590 (-377 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-608 *4))) (-5 *1 (-608 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 *3)) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-319)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-631 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-663 *4 *5 *6 *3)) (-4 *3 (-871 (-874 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-666 *4 *5 *6 *3)) (-4 *3 (-871 (-377 *6) *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-674 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-674 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-955 *3)) (-4 *3 (-1130 (-377 (-874 (-517))))))) ((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-517)) *4))) (-5 *2 (-388 *3)) (-5 *1 (-986 *4 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 (-874 (-517))))) (-4 *5 (-13 (-333) (-134) (-657 (-377 (-874 (-517))) *4))) (-5 *2 (-388 *3)) (-5 *1 (-988 *4 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1931 (-377 *5)) (|:| |poly| *3))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -3229 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *6))) (-4 *6 (-871 *3 *5 *4)) (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *3 (-343 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-107)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1151)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-798 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1151)) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-798 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1151)) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-993 (-346))) (-5 *2 (-1152)) (-5 *1 (-226 *3)) (-4 *3 (-13 (-556 (-490)) (-1001))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-993 (-346))) (-5 *5 (-578 (-232))) (-4 *6 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-993 (-346))) (-4 *5 (-13 (-556 (-490)) (-1001))) (-5 *2 (-1152)) (-5 *1 (-226 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1151)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-798 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-798 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1151)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *5 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199) (-199)))) (-5 *4 (-991 (-346))) (-5 *2 (-1152)) (-5 *1 (-227)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-1070)) (-5 *5 (-578 (-232))) (-4 *7 (-389 *6)) (-4 *6 (-13 (-508) (-777) (-950 (-501)))) (-5 *2 (-1151)) (-5 *1 (-228 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1151)) (-5 *1 (-231)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-231)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *2 (-1151)) (-5 *1 (-231)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-231)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-1152)) (-5 *1 (-231)))) ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-578 (-232))) (-5 *2 (-1152)) (-5 *1 (-231)))))
-(((*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-752)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-272)))))
-(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-50)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-1148 (-3 (-435) "undefined"))) (-5 *1 (-1151)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| |deg| (-701)) (|:| -2499 *5)))) (-5 *1 (-739 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-375 *5))))))
-(((*1 *1 *2) (-12 (-4 *1 (-601 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1070)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-331)) (-4 *1 (-297 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1125 *4)) (-4 *4 (-1108)) (-4 *1 (-310 *4 *3 *5)) (-4 *5 (-1125 (-375 *3))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-156)) (-4 *1 (-335 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1148 *1)) (-4 *4 (-156)) (-4 *1 (-338 *4 *5)) (-4 *5 (-1125 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-378 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-386 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-578 *8))) (-5 *3 (-578 *8)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-107)) (-5 *1 (-844 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048 (-375 *3))) (-5 *1 (-157 *3)) (-4 *3 (-276)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3)))))
-(((*1 *2) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-5 *1 (-533 *2)) (-4 *2 (-500)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1965 *3) (|:| -3027 (-701)))) (-5 *1 (-533 *3)) (-4 *3 (-500)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-108)) (-5 *3 (-578 *5)) (-5 *4 (-701)) (-4 *5 (-777)) (-5 *1 (-553 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *7)) (-4 *7 (-777)) (-4 *5 (-830)) (-4 *6 (-723)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-373 (-1064 *8))) (-5 *1 (-827 *5 *6 *7 *8)) (-5 *4 (-1064 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-959)) (-5 *1 (-621 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *4)) (-4 *4 (-959)) (-4 *1 (-1021 *3 *4 *5 *6)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-1104)) (-5 *1 (-163 *3 *2)) (-4 *2 (-608 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *4)) (-4 *4 (-37 *3)) (-4 *4 (-959)) (-5 *3 (-375 (-501))) (-5 *1 (-1055 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))))) (-5 *2 (-578 (-1053))) (-5 *1 (-238)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-1148 *2)) (-4 *5 (-276)) (-4 *6 (-906 *5)) (-4 *2 (-13 (-378 *6 *7) (-950 *6))) (-5 *1 (-381 *5 *6 *7 *2)) (-4 *7 (-1125 *6)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-27) (-1090) (-389 *6) (-10 -8 (-15 -3691 ($ *7))))) (-4 *7 (-775)) (-4 *8 (-13 (-1128 *3 *7) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1053)) (-4 *9 (-898 *8)) (-14 *10 (-1070)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-578 (-701))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-577 *4)) (-4 *4 (-508)) (-5 *2 (-107)) (-5 *1 (-576 *4 *5)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-786))) ((*1 *1) (-12 (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))) ((*1 *1) (-12 (-5 *1 (-1035 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))) ((*1 *1) (-5 *1 (-1073))) ((*1 *1) (-5 *1 (-1074))))
-(((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-259 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1125 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-642 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-643 *3 *2)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-646 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-331)) (-14 *5 (-908 *3 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *4)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *2 *1 *2) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-677 *3)) (-4 *3 (-156)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *1 (-437)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *7 *2)) (-4 *6 (-961)) (-4 *7 (-212 *5 *6)) (-4 *2 (-212 *4 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))))
+(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1156)))))
+(((*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) ((*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-5 *4 (-517)) (-5 *2 (-51)) (-5 *1 (-921)))))
+(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-777))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)) (-4 *2 (-970)))) ((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-517)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-13 (-509) (-779) (-952 *2) (-579 *2) (-421))) (-5 *2 (-517)) (-5 *1 (-1018 *6 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-772 (-377 (-874 *6)))) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-377 (-874 *6))) (-5 *4 (-1073)) (-5 *5 (-1056)) (-4 *6 (-421)) (-5 *2 (-517)) (-5 *1 (-1019 *6)))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-4 *2 (-13 (-372) (-10 -7 (-15 -2256 (*2 *4)) (-15 -1549 ((-843) *2)) (-15 -1753 ((-1153 *2) (-843))) (-15 -4103 (*2 *2))))) (-5 *1 (-326 *2 *4)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3) (-12 (|has| *6 (-6 -4181)) (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3) (-12 (|has| *9 (-6 -4181)) (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)) (-5 *2 (-583 *6)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-621 *4 *5 *6)) (-4 *10 (-621 *7 *8 *9)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-583 *6)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-583 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *4 (-703)) (-789 *3) (-221 *3 (-377 (-517))))) (-14 *3 (-583 (-1073))) (-14 *4 (-703)) (-5 *1 (-470 *3 *4)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *2)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-517)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| -1913 (-1069 *9)) (|:| |polval| (-1069 *8)))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)) (-5 *4 (-1069 *8)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-349)) (-5 *1 (-717 *3)) (-4 *3 (-558 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 *2)) (-5 *2 (-349)) (-5 *1 (-717 *5)))))
+(((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-828 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-248)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *8)) (-5 *4 (-583 *6)) (-4 *6 (-779)) (-4 *8 (-871 *7 *5 *6)) (-4 *5 (-725)) (-4 *7 (-961)) (-5 *2 (-583 (-703))) (-5 *1 (-291 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-439 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-5 *2 (-517)) (-5 *1 (-564 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *2 *4)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))) ((*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-843)) (-4 *5 (-278)) (-4 *3 (-1130 *5)) (-5 *2 (-2 (|:| |plist| (-583 *3)) (|:| |modulo| *5))) (-5 *1 (-429 *5 *3)) (-5 *4 (-583 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-153 (-517))))))) (-5 *2 (-583 (-583 (-265 (-874 (-153 *4)))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-153 (-517)))))) (-5 *2 (-583 (-265 (-874 (-153 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-703)) (-4 *6 (-333)) (-5 *4 (-1103 *6)) (-5 *2 (-1 (-1054 *4) (-1054 *4))) (-5 *1 (-1161 *6)) (-5 *5 (-1054 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-2 (|:| |zeros| (-1054 (-199))) (|:| |ones| (-1054 (-199))) (|:| |singularities| (-1054 (-199))))) (-5 *1 (-100)))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 (-517))))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-153 (-517)))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-153 *5)))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))))
+(((*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-278)) (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-286 (-517))) (-5 *1 (-1020)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-623 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))) ((*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1130 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-657 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-874 *5)))) (-5 *4 (-1073)) (-5 *2 (-874 *5)) (-5 *1 (-263 *5)) (-4 *5 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-5 *2 (-874 *4)) (-5 *1 (-263 *4)) (-4 *4 (-421)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *4 (-1073)) (-5 *2 (-874 (-153 (-377 (-517))))) (-5 *1 (-697 *5)) (-4 *5 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *4 (-1073)) (-5 *2 (-874 (-377 (-517)))) (-5 *1 (-711 *5)) (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-509)) (-4 *4 (-961)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *5 *6 *2)) (-4 *6 (-593 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-286 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))))
+(((*1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2) (-12 (-5 *2 (-1045 (-1056))) (-5 *1 (-361)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-733 *6 *4 *3)) (-4 *3 (-593 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-390 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1094) (-400 *3))) (-14 *4 (-1073)) (-14 *5 *2))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *2 (-13 (-27) (-1094) (-400 *3) (-10 -8 (-15 -2256 ($ *4))))) (-4 *4 (-777)) (-4 *5 (-13 (-1132 *2 *4) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-900 *5)) (-14 *7 (-1073)))))
+(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))))
+(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *1) (-5 *1 (-300))))
+(((*1 *2 *3) (-12 (-4 *5 (-13 (-558 *2) (-156))) (-5 *2 (-814 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1003)) (-4 *3 (-150 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-998 (-772 (-349))))) (-5 *2 (-583 (-998 (-772 (-199))))) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-349)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-400 *3)) (-4 *3 (-509)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-432 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-493)))) ((*1 *2 *1) (-12 (-4 *1 (-558 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-972)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *5 (-558 (-1073))) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-978 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-989)))) ((*1 *1 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *5 *2 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *4 *2 *5 *6)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *3 *2 *4 *5 *6)) (-4 *3 (-1003)) (-4 *2 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-1012 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1056)) (-5 *1 (-1043 *4 *5 *6 *7 *8)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1078)))) ((*1 *1 *2) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1078)))) ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-787)) (-5 *3 (-517)) (-5 *1 (-1089)))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *5))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-712 *4 (-789 *6))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-712 *4 (-789 *6))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-874 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-1069 (-939 (-377 *4)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6)))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-712 *4 (-789 *6)))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 (-1069 (-874 *4)) (-874 *4))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *3) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |radicand| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-714 *3)) (|:| |polden| *3) (|:| -1349 (-703)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1349 (-703)))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-848)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517)))))) (-5 *2 (-583 (-377 (-517)))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))))
+(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-528 *4 *2)) (-4 *2 (-13 (-1094) (-880) (-1037) (-29 *4))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-493))) (-5 *1 (-493)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *5 (-1003)))))
+(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-843)) (-4 *3 (-333)) (-14 *4 (-910 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-261 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1130 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *1) (|partial| -4 *1 (-655))) ((*1 *1 *1) (|partial| -4 *1 (-659))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *2 *1) (|partial| -12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-617 *4 *3)) (-4 *4 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
+(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *3 *2)) (-4 *3 (-1003)))))
+(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-407)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-403 *4 *3)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-403 *5 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-228)))))
+(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-449 *4 *5)) (-5 *1 (-571 *4 *5)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-1121 (-517))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-983 *4 *5 *2))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 (-983 *5 *6 *2))) (-5 *4 (-843)) (-4 *5 (-1003)) (-4 *6 (-13 (-961) (-808 *5) (-779) (-558 (-814 *5)))) (-4 *2 (-13 (-400 *6) (-808 *5) (-558 (-814 *5)))) (-5 *1 (-53 *5 *6 *2)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-1063 *2 *3)) (-4 *3 (-1003)))))
+(((*1 *2) (-12 (-5 *2 (-2 (|:| -3100 (-583 *3)) (|:| -3521 (-583 *3)))) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3199 *4) (|:| -2932 (-517))))) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-338)) (-4 *1 (-299 *3)) (-4 *3 (-333)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1114 *3)) (-5 *2 (-377 (-517))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-639 *3 *4)) (-4 *3 (-1108)) (-4 *4 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))))
+(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-556 *2))) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))) (-4 *4 (-509)) (-5 *1 (-40 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *3)) (|:| |logand| (-1069 *3))))) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-236)))))
+(((*1 *1 *2 *3 *1) (-12 (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-4 *3 (-212 (-2296 *4) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *3)) (-2 (|:| -3448 *5) (|:| -2077 *3)))) (-5 *1 (-430 *4 *2 *5 *3 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *2 *3 (-789 *4))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)) (-4 *4 (-319)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-57 *3)) (-4 *3 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-57 *3)))))
+(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)) (-5 *2 (-2 (|:| -1640 (-874 *6)) (|:| -1933 (-874 *6)))) (-5 *1 (-665 *4 *5 *6 *3)) (-4 *3 (-871 (-377 (-874 *6)) *4 *5)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-300)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-843)) (-5 *1 (-947 *2)) (-4 *2 (-13 (-1003) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-230)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 (-388 *3)) (|:| |special| (-388 *3)))) (-5 *1 (-660 *5 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-692)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4182 "*"))) (-4 *5 (-343 *2)) (-4 *6 (-343 *2)) (-4 *2 (-961)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1130 *2)) (-4 *4 (-621 *2 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-5 *1 (-818 *2 *4)) (-4 *2 (-1130 *4)))))
+(((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-240)))))
+(((*1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1) (-5 *1 (-1021))))
+(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -2422 (-377 *5)) (|:| |coeff| (-377 *5)))) (-5 *1 (-521 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *3 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1076)) (-5 *3 (-1073)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
+(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-465 *2)) (-14 *2 (-517)))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *1 *2) (-12 (-5 *2 (-606 *3)) (-4 *3 (-777)) (-4 *1 (-342 *3 *4)) (-4 *4 (-156)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-1001)))) ((*1 *1 *1) (-5 *1 (-570))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-920)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-331)) (-4 *5 (-1125 *4)) (-5 *2 (-1154)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1125 (-375 *5))) (-14 *7 *6))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-107)) (-5 *1 (-108)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-1070)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-108)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-107)) (-5 *1 (-553 *4)) (-4 *4 (-777)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-108)) (-5 *2 (-107)) (-5 *1 (-553 *4)) (-4 *4 (-777)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-807 *5 *3 *4)) (-4 *3 (-806 *5)) (-4 *4 (-556 (-810 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-4 *6 (-806 *5)) (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-807 *5 *6 *4)) (-4 *4 (-556 (-810 *5))))))
-(((*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(((*1 *2 *1) (-12 (-4 *1 (-336)) (-5 *2 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-839)) (-5 *1 (-485 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-331)) (-5 *2 (-621 *4)) (-5 *1 (-744 *4 *5)) (-4 *5 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-701)) (-4 *5 (-331)) (-5 *2 (-621 *5)) (-5 *1 (-744 *5 *6)) (-4 *6 (-593 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *2) (-12 (-4 *3 (-508)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-597))) ((*1 *1 *1 *1) (-5 *1 (-1018))))
-(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-109 *3)) (-4 *3 (-777)) (-4 *3 (-1001)))))
-(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *1) (-4 *1 (-440))) ((*1 *1 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-803)))) ((*1 *1 *1) (-5 *1 (-886))) ((*1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-991 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef1| (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-993 (-866 (-501)))) (-5 *3 (-866 (-501))) (-5 *1 (-298)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-993 (-866 (-501)))) (-5 *1 (-298)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-375 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-373 *7) *7)) (-4 *6 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *7 (-1125 *6)) (-5 *2 (-578 (-375 *7))) (-5 *1 (-742 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-1 (-578 *5) *6)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-375 *7))) (-5 *4 (-1 (-578 *6) *7)) (-5 *5 (-1 (-373 *7) *7)) (-4 *6 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *7 (-1125 *6)) (-5 *2 (-578 (-375 *7))) (-5 *1 (-742 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-590 (-375 *5))) (-4 *5 (-1125 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *5))) (-5 *1 (-742 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-591 *5 (-375 *5))) (-4 *5 (-1125 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *5))) (-5 *1 (-742 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-375 *6))) (-5 *1 (-742 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-597))) ((*1 *1 *1 *1) (-5 *1 (-1018))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-734 *4 *2)) (-4 *2 (-13 (-29 *4) (-1090) (-879))))) ((*1 *1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *2 *3) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))))
-(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *4 *1) (-12 (-5 *3 (-1070)) (-5 *4 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *2 (-1154)) (-5 *1 (-1073)))))
-(((*1 *2 *1) (-12 (-4 *2 (-13 (-1001) (-33))) (-5 *1 (-1035 *3 *2)) (-4 *3 (-13 (-1001) (-33))))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1104)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-548 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 (-1064 (-1064 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-1064 (-1064 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-959)) (-4 *1 (-1125 *3)))))
-(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-375 *7)) (|:| |a0| *6)) (-2 (|:| -3071 (-375 *7)) (|:| |coeff| (-375 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1074)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-1125 *4)) (-4 *4 (-959)) (-5 *2 (-1148 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *3) (-12 (-5 *3 (-1078 (-578 *4))) (-4 *4 (-777)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-775))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1125 (-152 *3))))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-701) *2)) (-5 *4 (-701)) (-4 *2 (-1001)) (-5 *1 (-611 *2)))) ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-701) *3)) (-4 *3 (-1001)) (-5 *1 (-614 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-530 *2)) (-4 *2 (-331)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-621 *3)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-578 *6) "failed") (-501) *6 *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))))
-(((*1 *1) (-5 *1 (-404))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-701)))) ((*1 *1 *1) (-4 *1 (-370))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))))
-(((*1 *1) (-5 *1 (-1151))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3)))))
-(((*1 *2) (-12 (-5 *2 (-578 *3)) (-5 *1 (-987 *3)) (-4 *3 (-124)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *6)))) (-5 *4 (-939 (-769 (-501)))) (-5 *5 (-1070)) (-5 *7 (-375 (-501))) (-4 *6 (-959)) (-5 *2 (-786)) (-5 *1 (-540 *6)))))
-(((*1 *1) (-5 *1 (-511))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-282 (-346))) (-5 *1 (-272)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-1077)) (-5 *1 (-1076)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-153 (-199))) (-5 *6 (-1056)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-493)) (-5 *1 (-492 *4)) (-4 *4 (-1108)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1102 *4 *5 *3 *2)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *2 (-975 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-1106 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *1 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))) ((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-1153 (-623 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-377 (-874 *5))))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-377 (-874 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-4 *5 (-333)) (-5 *2 (-1153 (-623 (-874 *5)))) (-5 *1 (-991 *5)) (-5 *4 (-623 (-874 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-991 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-312 *5 *6 *7)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-738 *5 *6 *7 *4)))))
+(((*1 *1 *1) (-4 *1 (-793 *2))))
+(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-950)) (-5 *1 (-276)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1151 *3)) (-4 *3 (-23)) (-4 *3 (-1108)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1145 *4)) (-4 *4 (-961)) (-5 *2 (-874 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-168)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *1) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-583 (-286 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-286 *3)) (-4 *3 (-509)) (-4 *3 (-779)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))))
+(((*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-874 (-517))) (-5 *3 (-1073)) (-5 *4 (-998 (-377 (-517)))) (-5 *1 (-30)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *6 (-13 (-509) (-779))) (-5 *2 (-583 (-286 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-286 *6)) (-4 *5 (-961)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-534 *5)) (-4 *5 (-13 (-29 *4) (-1094))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 *5)) (-5 *1 (-532 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-583 (-286 *4))) (-5 *1 (-537 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-999 *3 *2)) (-4 *3 (-777)) (-4 *2 (-1047 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))) ((*1 *2 *1) (-12 (-5 *2 (-1166 (-1073) *3)) (-5 *1 (-1173 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-212 *3 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-199)) (-5 *1 (-1105)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-905 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1010 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *3) (-12 (-4 *2 (-333)) (-4 *2 (-777)) (-5 *1 (-867 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-377 (-517))))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-153 (-199))) (-5 *5 (-517)) (-5 *6 (-1056)) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))) ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-4 *2 (-961)) (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-996 (-874 (-517)))) (-5 *2 (-300)) (-5 *1 (-302)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-611 *3)) (-4 *3 (-961)) (-4 *3 (-1003)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-468 *2 *4 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-343 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *4)) (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-626 *2 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-909 *2)) (-4 *2 (-509)) (-5 *1 (-1123 *2 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-628 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-703)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |det| *8) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (-5 *1 (-846 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1153 (-583 *3))) (-4 *4 (-278)) (-5 *2 (-583 *3)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3 *4) (-12 (-4 *6 (-509)) (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-5 *3 (-377 (-874 *6))) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 (-703))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-973)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-1003)) (-5 *1 (-586 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-1069 *8)) (-5 *1 (-291 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1153 (-583 (-517)))) (-5 *1 (-448)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-186)) (-5 *3 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-703)) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-583 *3)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-703)) (-4 *3 (-1108)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1) (-5 *1 (-155))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) ((*1 *1) (-5 *1 (-364))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1) (-12 (-4 *3 (-1003)) (-5 *1 (-807 *2 *3 *4)) (-4 *2 (-1003)) (-4 *4 (-603 *3)))) ((*1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) ((*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1) (-5 *1 (-1073))) ((*1 *1) (-5 *1 (-1073))) ((*1 *1) (-5 *1 (-1089))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1839 (-1054 *4)) (|:| -1853 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1054 *3))) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-37 (-377 (-517)))) (-4 *3 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1025 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))) ((*1 *2 *3 *4) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-739 *4 *2 *5 *3)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-377 *2))))))
+(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-337 *3)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-983 *3 *4 *5))) (-5 *1 (-984 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-338)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *2 *1) (-12 (-4 *2 (-779)) (-5 *1 (-646 *2 *3 *4)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-4 *4 (-961)) (-5 *1 (-647 *4 *2)) (-4 *2 (-585 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-109)) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))))
+(((*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *2 *2) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-905 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *4) (|:| |ineq| (-583 *9)))) (-5 *1 (-1010 *6 *7 *8 *9 *4)) (-5 *3 (-583 *9)) (-4 *4 (-980 *6 *7 *8 *9)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *1) (-4 *1 (-319))) ((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-402 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-509) (-779) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1069 *3)) (|:| |pol2| (-1069 *3)) (|:| |prim| (-1069 *3)))) (-5 *1 (-402 *4 *3)) (-4 *3 (-27)) (-4 *3 (-400 *4)))) ((*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1073)) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| |coef1| (-517)) (|:| |coef2| (-517)) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *5))) (|:| |prim| (-1069 *5)))) (-5 *1 (-881 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-5 *5 (-1073)) (-4 *6 (-13 (-333) (-134))) (-5 *2 (-2 (|:| -1931 (-583 (-517))) (|:| |poly| (-583 (-1069 *6))) (|:| |prim| (-1069 *6)))) (-5 *1 (-881 *6)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-811 *4 *5)) (-5 *3 (-811 *4 *6)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-603 *5)) (-5 *1 (-807 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-388 *4) *4)) (-4 *4 (-509)) (-5 *2 (-388 *4)) (-5 *1 (-389 *4)))) ((*1 *1 *1) (-5 *1 (-848))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *1) (-5 *1 (-849))) ((*1 *1 *1 *2) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-935 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *4 (-377 (-517))) (-5 *1 (-936 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *1 (-936 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-534 *3) *3 (-1073))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1073))) (-4 *3 (-256)) (-4 *3 (-569)) (-4 *3 (-952 *4)) (-4 *3 (-400 *7)) (-5 *4 (-1073)) (-4 *7 (-558 (-814 (-517)))) (-4 *7 (-421)) (-4 *7 (-808 (-517))) (-4 *7 (-779)) (-5 *2 (-534 *3)) (-5 *1 (-526 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1095 *3)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1095 *2))) (-5 *1 (-1095 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-703))) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 (-703))) (-5 *5 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-5 *2 (-388 *3)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1130 (-377 (-517)))))) ((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-623 (-517))) (-5 *3 (-583 (-517))) (-5 *1 (-1013)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-4 *1 (-1135 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-495 *6 *7 *5)) (-4 *7 (-333)) (-4 *5 (-13 (-333) (-777))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-848)))) ((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-865 (-199)) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *2)) (-4 *2 (-871 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))))
+(((*1 *2 *3) (-12 (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-2 (|:| -1701 (-1054 *4)) (|:| -1711 (-1054 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-1054 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 *3) (|:| -1257 *4)))) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *1 (-1085 *3 *4)))) ((*1 *1) (-12 (-4 *1 (-1085 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-583 (-623 *6))) (-5 *4 (-107)) (-5 *5 (-517)) (-5 *2 (-623 *6)) (-5 *1 (-944 *6)) (-4 *6 (-333)) (-4 *6 (-961)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)) (-4 *4 (-333)) (-4 *4 (-961)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-5 *2 (-623 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-961)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-331 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-356 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-586 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-751 *4)) (-4 *4 (-779)) (-4 *1 (-1168 *4 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-157 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(((*1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-338)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-108 *2)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1077)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-583 (-236))) (-5 *1 (-1154)))) ((*1 *1 *1) (-5 *1 (-1154))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-583 (-583 *4))) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *3 (-338)) (-5 *2 (-583 (-583 *3))))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
+(((*1 *2 *2) (-12 (-5 *1 (-616 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *3)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))))
+(((*1 *2 *3 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-1073)) (|:| |c| (-1173 *3))))) (-5 *1 (-1173 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| *3) (|:| |c| (-1175 *3 *4))))) (-5 *1 (-1175 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
+(((*1 *2 *3 *3) (-12 (-4 *3 (-1112)) (-4 *5 (-1130 *3)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-107)) (-5 *1 (-311 *4 *3 *5 *6)) (-4 *4 (-312 *3 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-795 *4)) (-14 *4 *3) (-5 *3 (-517)))) ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-377 (-517))) (-5 *1 (-796 *4 *5)) (-5 *3 (-517)) (-4 *5 (-793 *4)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-928)) (-5 *2 (-377 (-517))))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2256 (*2 (-1073)))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *5 *6)) (-4 *6 (-558 (-1073))) (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1063 (-583 (-874 *4)) (-583 (-265 (-874 *4))))) (-5 *1 (-469 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-4 *3 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-1158)) (-5 *1 (-403 *3 *4)) (-4 *4 (-400 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1) (-4 *1 (-273))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-635 *3 *5 *6 *7)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *7 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *3 *5 *6)) (-4 *3 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |minor| (-583 (-843))) (|:| -2131 *3) (|:| |minors| (-583 (-583 (-843)))) (|:| |ops| (-583 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-623 (-874 *4))) (-5 *1 (-943 *4)) (-4 *4 (-961)))))
+(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-1078))) (-5 *1 (-1078)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
+(((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1) (-5 *1 (-300))))
+(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *1)) (-5 *4 (-1153 *1)) (-4 *1 (-579 *5)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 *5)))))) ((*1 *2 *3) (-12 (-5 *3 (-623 *1)) (-4 *1 (-579 *4)) (-4 *4 (-961)) (-5 *2 (-623 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1078))) (-5 *1 (-1078)))))
+(((*1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1027 *4 *3 *5))) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)) (-4 *3 (-779)) (-5 *1 (-1027 *4 *3 *5)) (-4 *5 (-871 *4 (-489 *3) *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1103 *4))) (-5 *3 (-1073)) (-5 *1 (-1103 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-517)) (-5 *1 (-414 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-628 *3)) (-4 *3 (-1003)) (-5 *2 (-583 (-2 (|:| -1257 *3) (|:| -3217 (-703))))))))
+(((*1 *1 *1) (-12 (-4 *2 (-278)) (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-5 *4 (-517)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-623 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-107)) (-5 *1 (-944 *4)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *4)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-131)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1073))) (-4 *6 (-333)) (-5 *2 (-583 (-265 (-874 *6)))) (-5 *1 (-495 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-13 (-333) (-777))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-265 (-874 (-517)))) (-5 *2 (-2 (|:| |varOrder| (-583 (-1073))) (|:| |inhom| (-3 (-583 (-1153 (-703))) "failed")) (|:| |hom| (-583 (-1153 (-703)))))) (-5 *1 (-210)))))
+(((*1 *2 *1) (-12 (-5 *2 (-3 (-517) (-199) (-1073) (-1056) (-583 (-1078)))) (-5 *1 (-1078)))))
+(((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
+(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-536 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))))
+(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-843)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-765 (-843))) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-765 (-843))))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-928)) (-5 *2 (-787)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *3 *2)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *4 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-265 *6)) (-5 *4 (-109)) (-4 *6 (-400 *5)) (-4 *5 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *5 *6)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-583 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 (-265 *8))) (-5 *4 (-583 (-109))) (-5 *5 (-265 *8)) (-5 *6 (-583 *8)) (-4 *8 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-265 *7)) (-4 *7 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-109))) (-5 *6 (-583 (-265 *8))) (-4 *8 (-400 *7)) (-5 *5 (-265 *8)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-265 *5)) (-5 *4 (-109)) (-4 *5 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-4 *3 (-400 *6)) (-4 *6 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-109)) (-5 *5 (-265 *3)) (-5 *6 (-583 *3)) (-4 *3 (-400 *7)) (-4 *7 (-13 (-779) (-509) (-558 (-493)))) (-5 *2 (-51)) (-5 *1 (-287 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1158)) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1086 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-153 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-509))) (-5 *2 (-107)) (-5 *1 (-249 *4 *3)) (-4 *3 (-13 (-400 *4) (-918))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)) (-4 *3 (-724)))))
+(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-1125 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-221 *4 *5))) (-5 *2 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-236)))) ((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1038 *4 *5))) (-5 *3 (-1 (-107) *5 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *1 (-1039 *4 *5)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-583 (-1038 *3 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 *3)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1005 *4)) (-4 *4 (-1003)) (-5 *2 (-1 *4)) (-5 *1 (-933 *4)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-517))) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-116 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-865 *4)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-2 (|:| |dpolys| (-583 (-221 *5 *6))) (|:| |coords| (-583 (-517))))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1102 *5 *6 *7 *3)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-888)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-690)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1095 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-5 *1 (-429 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *3) (-12 (-4 *3 (-278)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-703))) (-5 *1 (-496 *3 *2 *4 *5)) (-4 *2 (-1130 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-583 *2)) (-5 *1 (-108 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 (-583 *4))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-1 *4 (-583 *4))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))))
+(((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-772 *4)) (-5 *3 (-556 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1094) (-29 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *6 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-5 *3 (-1073)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-779) (-509))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-5 *4 (-1073)) (-4 *2 (-400 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-779) (-509))))) ((*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-4 *1 (-928)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1069 *1)) (-5 *3 (-843)) (-5 *4 (-787)) (-4 *1 (-928)))) ((*1 *1 *2 *3) (|partial| -12 (-5 *3 (-843)) (-4 *4 (-13 (-777) (-333))) (-4 *1 (-977 *4 *2)) (-4 *2 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1130 (-517))) (-5 *2 (-583 (-517))) (-5 *1 (-453 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-421)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-421)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-690)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153 (-703))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))) ((*1 *2) (|partial| -12 (-4 *4 (-1112)) (-4 *5 (-1130 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-311 *3 *4 *2 *5)) (-4 *3 (-312 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-312 *3 *2 *4)) (-4 *3 (-1112)) (-4 *4 (-1130 (-377 *2))) (-4 *2 (-1130 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-221 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *1 *1) (-4 *1 (-502))))
+(((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-703)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-377 (-1069 (-286 *3)))) (-4 *3 (-13 (-509) (-779))) (-5 *1 (-1031 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-1003)) (-4 *2 (-822 *4)) (-5 *1 (-625 *4 *2 *5 *3)) (-4 *5 (-343 *2)) (-4 *3 (-13 (-343 *4) (-10 -7 (-6 -4180)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-998 (-199)))) (-5 *1 (-850)))))
+(((*1 *2 *1) (-12 (-4 *1 (-550 *2 *3)) (-4 *3 (-1108)) (-4 *2 (-1003)) (-4 *2 (-779)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))))
+(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-221 *4 *5)) (-5 *1 (-866 *4 *5)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-377 (-874 *4))) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-623 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 *3))) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-576 *5 *3)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 *3)) (-5 *5 (-1056)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-772 *3)) (-5 *1 (-576 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-772 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-3 (-772 (-377 (-874 *5))) (-2 (|:| |leftHandLimit| (-3 (-772 (-377 (-874 *5))) "failed")) (|:| |rightHandLimit| (-3 (-772 (-377 (-874 *5))) "failed"))) "failed")) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-3 (-772 *3) (-2 (|:| |leftHandLimit| (-3 (-772 *3) "failed")) (|:| |rightHandLimit| (-3 (-772 *3) "failed"))) "failed")) (-5 *1 (-577 *5)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-265 (-377 (-874 *6)))) (-5 *5 (-1056)) (-5 *3 (-377 (-874 *6))) (-4 *6 (-421)) (-5 *2 (-772 *3)) (-5 *1 (-577 *6)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-517)) (-5 *1 (-1013)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-1153 (-517))) (-5 *3 (-583 (-517))) (-5 *4 (-517)) (-5 *1 (-1013)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-703)) (-5 *1 (-514)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *3) (-12 (-4 *1 (-732)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-950)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-236)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-843)) (-5 *4 (-199)) (-5 *5 (-517)) (-5 *6 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
+(((*1 *1 *1) (-5 *1 (-47))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-56 *5 *2)))) ((*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) ((*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-2 (|:| -1913 (-1069 *4)) (|:| |deg| (-843)))) (-5 *1 (-195 *4 *5)) (-5 *3 (-1069 *4)) (-4 *5 (-13 (-509) (-779))))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *2 (-1108)) (-5 *1 (-213 *5 *6 *2)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-261 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1130 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-286 *2)) (-4 *2 (-509)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-305 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *5 (-312 *2 *3 *4)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-341 *5 *4 *2 *6)) (-4 *4 (-343 *5)) (-4 *6 (-343 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1003)) (-4 *2 (-1003)) (-5 *1 (-393 *5 *4 *2 *6)) (-4 *4 (-395 *5)) (-4 *6 (-395 *2)))) ((*1 *1 *1) (-5 *1 (-460))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-581 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-961)) (-4 *2 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *8 (-343 *2)) (-4 *9 (-343 *2)) (-5 *1 (-619 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-621 *5 *6 *7)) (-4 *10 (-621 *2 *8 *9)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-333)) (-4 *3 (-156)) (-4 *1 (-657 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-657 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-878 *5 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-961)) (-4 *2 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *10 (-212 *6 *2)) (-4 *11 (-212 *5 *2)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *12 (-964 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1052 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-107) *2 *2)) (-4 *1 (-1102 *5 *6 *7 *2)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *2 (-975 *5 *6 *7)))) ((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *2 (-1108)) (-5 *1 (-1152 *5 *2)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-236)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-517)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-199)) (|:| |phi| (-199)) (|:| -1278 (-199)) (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |scaleZ| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)))) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-305 *3 *4 *5 *2)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *1) (-12 (-4 *2 (-156)) (-4 *1 (-657 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-349)) (-5 *1 (-973)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-703)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-703)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-556 *6)) (-4 *6 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *6)))) (-5 *1 (-513 *5 *6 *7)) (-5 *3 (-1069 *6)) (-4 *7 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1069 *11)) (-5 *6 (-583 *10)) (-5 *7 (-583 (-703))) (-5 *8 (-583 *11)) (-4 *10 (-779)) (-4 *11 (-278)) (-4 *9 (-725)) (-4 *5 (-871 *11 *9 *10)) (-5 *2 (-583 (-1069 *5))) (-5 *1 (-675 *9 *10 *11 *5)) (-5 *3 (-1069 *5)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *4 *5)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-14 *6 (-583 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-155))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-278) (-134))) (-4 *4 (-13 (-779) (-558 (-1073)))) (-4 *5 (-725)) (-5 *1 (-846 *3 *4 *5 *2)) (-4 *2 (-871 *3 *5 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-209 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-554 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))) ((*1 *1 *1) (-4 *1 (-145))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))) ((*1 *1) (-4 *1 (-338))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-5 *1 (-517))) ((*1 *1 *1) (-5 *1 (-703))) ((*1 *2 *1) (-12 (-5 *2 (-827 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-502)) (-4 *2 (-509)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-2 (|:| |k| (-751 *3)) (|:| |c| *4))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-421)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-540 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-4 *1 (-1003)) (-5 *2 (-1021)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-517))))) (-4 *2 (-509)) (-5 *1 (-388 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *4) (|:| -3631 (-517))))))) (-4 *4 (-1130 (-517))) (-5 *2 (-388 *4)) (-5 *1 (-411 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1003) (-33))) (-5 *1 (-1038 *2 *3)) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-843)) (-4 *5 (-509)) (-5 *2 (-623 *5)) (-5 *1 (-877 *5 *3)) (-4 *3 (-593 *5)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-871 *4 *6 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-4 *6 (-725)) (-5 *1 (-904 *4 *5 *6 *3)))))
+(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-221 *5 *6))) (-4 *6 (-421)) (-5 *2 (-221 *5 *6)) (-14 *5 (-583 (-1073))) (-5 *1 (-571 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-199)))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-1153 (-286 (-349)))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-583 (-1073))) (|:| |pred| (-51)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-1005 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-583 *4))) (-5 *1 (-826 *4)) (-5 *3 (-583 *4)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-1003)) (-5 *2 (-1005 (-1005 *4))) (-5 *1 (-826 *4)) (-5 *3 (-1005 *4)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *2 (-822 *5)) (-5 *1 (-625 *5 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *5))) (-5 *3 (-1069 *5)) (-4 *5 (-150 *4)) (-4 *4 (-502)) (-5 *1 (-136 *4 *5)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-319)) (-5 *1 (-328 *4 *5 *3)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 (-517)))) (-5 *3 (-1069 (-517))) (-5 *1 (-525)))) ((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *1))) (-5 *3 (-1069 *1)) (-4 *1 (-831)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-753)) (-5 *4 (-51)) (-5 *2 (-1158)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-703)) (-4 *3 (-319)) (-4 *5 (-1130 *3)) (-5 *2 (-583 (-1069 *3))) (-5 *1 (-463 *3 *5 *6)) (-4 *6 (-1130 *5)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-4 *4 (-961)) (-4 *4 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1015)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |var| (-556 *1)) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-703)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-703)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-689)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2597 *1) (|:| |upper| *1))) (-4 *1 (-893 *4 *5 *3 *6)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-286 (-199)))) (-5 *1 (-240)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-874 *4))) (-5 *3 (-583 (-1073))) (-4 *4 (-421)) (-5 *1 (-840 *4)))))
+(((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *8))) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *8))) (-5 *1 (-1044 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-319)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1130 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
+(((*1 *2 *3) (-12 (-5 *3 (-449 *4 *5)) (-14 *4 (-583 (-1073))) (-4 *5 (-961)) (-5 *2 (-874 *5)) (-5 *1 (-866 *4 *5)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-1073))) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 *2)) (-14 *7 (-1153 (-623 *4))))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-422 *3 *4 *5 *6))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-1073))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 *2)) (-14 *6 (-1153 (-623 *3))))) ((*1 *1) (-12 (-5 *1 (-422 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-843)) (-14 *4 (-583 (-1073))) (-14 *5 (-1153 (-623 *2))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-107)) (-5 *1 (-50 *4)) (-4 *4 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-107)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *4 (-1056)) (-4 *5 (-13 (-278) (-134))) (-4 *8 (-871 *5 *7 *6)) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-1112)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-312 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-278)) (-5 *2 (-703)))))
+(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-358)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2) (-12 (-14 *4 (-703)) (-4 *5 (-1108)) (-5 *2 (-125)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-125)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-517)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-897 *3)) (-4 *3 (-961)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-333)) (-5 *2 (-125)))))
+(((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-583 *6)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *7))) (-5 *1 (-466 *5 *6 *4 *7)) (-4 *4 (-1130 *6)))))
+(((*1 *2 *2) (-12 (-4 *3 (-961)) (-4 *4 (-1130 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1130 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-756)) (-5 *3 (-583 (-1073))) (-5 *1 (-757)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-583 (-556 *3))) (|:| |vals| (-583 *3)))) (-5 *1 (-250 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
+(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1042))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1401 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-943 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-623 *3))) (-4 *3 (-961)) (-5 *1 (-943 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-286 (-517))) (|:| -1696 (-286 (-349))) (|:| CF (-286 (-153 (-349)))) (|:| |switch| (-1072)))) (-5 *1 (-1072)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-239 *3)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1 *3) (-12 (-4 *2 (-333)) (-4 *2 (-822 *3)) (-5 *1 (-534 *2)) (-5 *3 (-1073)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-349)) (-5 *1 (-954)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *3) (-12 (-5 *3 (-769 (-346))) (-5 *2 (-769 (-199))) (-5 *1 (-272)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-578 (-866 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-578 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-578 (-866 *3))))) ((*1 *2) (-12 (-5 *2 (-578 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) ((*1 *2 *3) (-12 (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *2 (-578 (-866 *4))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-508)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 (-1070))) (-14 *7 (-1148 (-621 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-578 (-199))) (-5 *1 (-435)))))
-(((*1 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4119 (-578 *1)))) (-4 *1 (-335 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-420 *3 *4 *5 *6)) (|:| -4119 (-578 (-420 *3 *4 *5 *6))))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-795)))) ((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-50)) (-5 *1 (-759)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-373 *4)) (-4 *4 (-508)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-412 *3)) (-4 *3 (-959)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-298)))))
-(((*1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) ((*1 *1 *1) (-5 *1 (-1018))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)) (-5 *3 (-282 (-501))))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-749 *3)) (|:| |rm| (-749 *3)))) (-5 *1 (-749 *3)) (-4 *3 (-777)))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (|has| *1 (-6 -4158)) (-4 *1 (-372)) (-5 *2 (-839)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) ((*1 *1 *1 *1) (-5 *1 (-1018))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-997 *3)) (-5 *1 (-822 *3)) (-4 *3 (-336)) (-4 *3 (-1001)))))
-(((*1 *1 *1 *1) (-4 *1 (-276))) ((*1 *1 *1 *1) (-5 *1 (-701))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-752)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-463 *2)) (-14 *2 (-501)))) ((*1 *1 *1 *1) (-5 *1 (-1018))))
-(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-1018))))
-(((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))))
-(((*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-578 (-578 (-578 *4)))) (-5 *1 (-1076 *4)) (-5 *3 (-578 (-578 *4))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *1 (-530 *2)) (-4 *2 (-950 *3)) (-4 *2 (-331)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-530 *2)) (-4 *2 (-331)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-567 *4 *2)) (-4 *2 (-13 (-389 *4) (-916) (-1090))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-13 (-389 *4) (-916) (-1090))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-567 *4 *2)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-879)) (-5 *2 (-1070)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-879)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1130 *3 *4 *5)) (-5 *1 (-287 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-373 *3)) (-4 *3 (-508)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) ((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-644 *3 *2 *4)) (-4 *3 (-777)) (-14 *4 (-1 (-107) (-2 (|:| -3506 *3) (|:| -3027 *2)) (-2 (|:| -3506 *3) (|:| -3027 *2)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-621 *3)) (|:| |invmval| (-621 *3)) (|:| |genIdeal| (-467 *3 *4 *5 *6)))) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1053)) (-5 *1 (-272)))))
-(((*1 *1 *1 *1) (-4 *1 (-276))) ((*1 *1 *1 *1) (-5 *1 (-701))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-282 (-199)))) (-5 *1 (-238)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1148 (-1070))) (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 (-1070))) (-14 *7 (-1148 (-621 *4))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-420 *4 *5 *6 *7))) (-5 *1 (-420 *4 *5 *6 *7)) (-4 *4 (-156)) (-14 *5 (-839)) (-14 *6 (-578 *2)) (-14 *7 (-1148 (-621 *4))))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-420 *3 *4 *5 *6))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1148 (-1070))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 *2)) (-14 *6 (-1148 (-621 *3))))) ((*1 *1) (-12 (-5 *1 (-420 *2 *3 *4 *5)) (-4 *2 (-156)) (-14 *3 (-839)) (-14 *4 (-578 (-1070))) (-14 *5 (-1148 (-621 *2))))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *2) (-12 (-4 *3 (-959)) (-4 *4 (-1125 *3)) (-5 *1 (-148 *3 *4 *2)) (-4 *2 (-1125 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-942 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-578 (-621 *3))) (-4 *3 (-959)) (-5 *1 (-942 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-942 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-621 *3))) (-4 *3 (-959)) (-5 *1 (-942 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| -2109 *1) (|:| -2342 (-578 *7))))) (-5 *3 (-578 *7)) (-4 *1 (-1099 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-501))) (-5 *4 (-822 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-536)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-536)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-501))) (-5 *4 (-578 (-822 (-501)))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-536)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-208 *3)))) ((*1 *1) (-12 (-4 *1 (-208 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-723)) (-4 *2 (-870 *4 *5 *6)) (-5 *1 (-417 *4 *5 *6 *2)) (-4 *4 (-419)) (-4 *6 (-777)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1090) (-29 *4))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1090) (-29 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-530 (-375 (-866 *5)))) (-5 *1 (-521 *5)) (-5 *3 (-375 (-866 *5))))))
-(((*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-1148 *3)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1070)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1090) (-27) (-389 *8))) (-4 *8 (-13 (-419) (-777) (-134) (-950 *3) (-577 *3))) (-5 *3 (-501)) (-5 *2 (-578 *4)) (-5 *1 (-928 *8 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-995 *3)) (-4 *3 (-1104)))))
-(((*1 *2 *3) (-12 (-5 *2 (-373 (-1064 (-501)))) (-5 *1 (-167)) (-5 *3 (-501)))))
-(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-282 (-375 (-501)))) (-5 *1 (-272)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-501)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-501)) (-5 *7 (-1053)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-199)) (-5 *7 (-501)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-199)) (-5 *7 (-501)) (-5 *8 (-1053)) (-5 *2 (-1100 (-847))) (-5 *1 (-286)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-777)) (-5 *2 (-578 (-599 *4 *5))) (-5 *1 (-565 *4 *5 *6)) (-4 *5 (-13 (-156) (-648 (-375 (-501))))) (-14 *6 (-839)))))
-(((*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-1151)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1151)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1151)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1053)) (-5 *1 (-1152)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1152)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-107)) (-5 *1 (-446)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1633 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-701)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-282 (-501))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1090)))) ((*1 *2 *1) (-12 (-5 *1 (-299 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-553 *3)) (-4 *3 (-777)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-795)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3606 (-578 (-786))) (|:| -3405 (-578 (-786))) (|:| |presup| (-578 (-786))) (|:| -3411 (-578 (-786))) (|:| |args| (-578 (-786))))) (-5 *1 (-1070)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 (-786)))) (-5 *1 (-1070)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))))
-(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -3071 (-375 *6)) (|:| |coeff| (-375 *6)))) (-5 *1 (-525 *5 *6)) (-5 *3 (-375 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-508)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-578 *7) *7 (-1064 *7))) (-5 *5 (-1 (-373 *7) *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-331) (-134) (-950 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |frac| (-375 *7)) (|:| -2499 *3)))) (-5 *1 (-739 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-375 *7))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |frac| (-375 *6)) (|:| -2499 (-591 *6 (-375 *6)))))) (-5 *1 (-742 *5 *6)) (-5 *3 (-591 *6 (-375 *6))))))
-(((*1 *2 *1) (-12 (-4 *2 (-640 *3)) (-5 *1 (-758 *2 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-107)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-508)) (-5 *1 (-885 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-991 (-769 (-199)))) (-5 *1 (-272)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-199))) (-5 *4 (-701)) (-5 *2 (-621 (-199))) (-5 *1 (-272)))))
-(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-331) (-134) (-950 (-501)))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-375 *5))) (-5 *1 (-930 *4 *5)) (-5 *3 (-375 *5)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *3 (-107)) (-5 *1 (-1010)))))
-(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-4 *2 (-1001)) (-5 *1 (-808 *4 *2)))))
-(((*1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *5)) (-4 *5 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-375 (-501))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-262 *3)) (-5 *5 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-284 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-501))) (-5 *4 (-262 *6)) (-4 *6 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-501))) (-5 *4 (-262 *7)) (-5 *5 (-1116 (-501))) (-4 *7 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-375 (-501)))) (-5 *4 (-262 *8)) (-5 *5 (-1116 (-375 (-501)))) (-5 *6 (-375 (-501))) (-4 *8 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1070)) (-5 *5 (-262 *3)) (-5 *6 (-1116 (-375 (-501)))) (-5 *7 (-375 (-501))) (-4 *3 (-13 (-27) (-1090) (-389 *8))) (-4 *8 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-50)) (-5 *1 (-426 *8 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-4 *3 (-959)) (-5 *1 (-540 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-541 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-4 *3 (-959)) (-4 *1 (-1111 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-1048 (-2 (|:| |k| (-375 (-501))) (|:| |c| *4)))) (-4 *4 (-959)) (-4 *1 (-1132 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-4 *1 (-1142 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-701)) (|:| |c| *3)))) (-4 *3 (-959)) (-4 *1 (-1142 *3)))))
-(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *6 (-578 (-232))) (-5 *2 (-435)) (-5 *1 (-1150)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-435)) (-5 *1 (-1150)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-578 (-232))) (-5 *2 (-435)) (-5 *1 (-1150)))))
-(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-621 *11)) (-5 *4 (-578 (-375 (-866 *8)))) (-5 *5 (-701)) (-5 *6 (-1053)) (-4 *8 (-13 (-276) (-134))) (-4 *11 (-870 *8 *10 *9)) (-4 *9 (-13 (-777) (-556 (-1070)))) (-4 *10 (-723)) (-5 *2 (-2 (|:| |rgl| (-578 (-2 (|:| |eqzro| (-578 *11)) (|:| |neqzro| (-578 *11)) (|:| |wcond| (-578 (-866 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *8)))) (|:| -4119 (-578 (-1148 (-375 (-866 *8)))))))))) (|:| |rgsz| (-501)))) (-5 *1 (-844 *8 *9 *10 *11)) (-5 *7 (-501)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))))
-(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1121 *3 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-501)) (-4 *3 (-156)) (-4 *5 (-340 *3)) (-4 *6 (-340 *3)) (-5 *1 (-620 *3 *5 *6 *2)) (-4 *2 (-618 *3 *5 *6)))))
-(((*1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *5)) (-2 (|:| -3506 *2) (|:| -3027 *5)))) (-4 *2 (-777)) (-5 *1 (-428 *3 *4 *2 *5 *6 *7)) (-4 *7 (-870 *4 *5 (-787 *3))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-777)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| -1210 *1) (|:| -1513 (-583 *7))))) (-5 *3 (-583 *7)) (-4 *1 (-1102 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1153 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)) (-4 *3 (-156)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-971 (-939 *3) (-1069 (-939 *3)))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-358)) (-5 *1 (-406)))))
+(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-827 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-538)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-517))) (-5 *4 (-583 (-827 (-517)))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-538)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1076)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *1 *1 *1) (-5 *1 (-125))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1145 *4)) (-5 *1 (-251 *4 *5 *2)) (-4 *2 (-1116 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-333)) (-4 *4 (-37 *3)) (-4 *5 (-1114 *4)) (-5 *1 (-252 *4 *5 *2 *6)) (-4 *2 (-1137 *4 *5)) (-4 *6 (-900 *5)))) ((*1 *1 *1 *1) (-4 *1 (-256))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-331 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-1015)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-517)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-493)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-493)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *4 (-1003)) (-5 *1 (-616 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)) (-4 *4 (-585 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-647 *4 *5)) (-4 *5 (-585 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-766 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-517)) (-5 *1 (-766 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-918)) (-5 *2 (-377 (-517))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)) (-4 *4 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-300)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1114 *3)) (-4 *3 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-517))) (-4 *1 (-1145 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-623 (-517))) (-5 *1 (-1013)))))
+(((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))))
+(((*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *2 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))) ((*1 *1) (-5 *1 (-1021))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *1 *1) (-12 (-4 *1 (-343 *2)) (-4 *2 (-1108)))) ((*1 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) ((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-5 *1 (-1073))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-593 *3)) (-4 *3 (-961)) (-4 *3 (-333)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-596 *5 *2)) (-4 *2 (-593 *5)))))
+(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-209 *3)))) ((*1 *1) (-12 (-4 *1 (-209 *2)) (-4 *2 (-1003)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-583 (-1069 *11))) (-5 *3 (-1069 *11)) (-5 *4 (-583 *10)) (-5 *5 (-583 *8)) (-5 *6 (-583 (-703))) (-5 *7 (-1153 (-583 (-1069 *8)))) (-4 *10 (-779)) (-4 *8 (-278)) (-4 *11 (-871 *8 *9 *10)) (-4 *9 (-725)) (-5 *1 (-641 *9 *10 *8 *11)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-725)) (-4 *2 (-871 *4 *5 *6)) (-5 *1 (-418 *4 *5 *6 *2)) (-4 *4 (-421)) (-4 *6 (-779)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *6)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-787) (-787) (-787))) (-5 *4 (-517)) (-5 *2 (-787)) (-5 *1 (-586 *5 *6 *7)) (-4 *5 (-1003)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-783 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-787)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *1 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-109)) (-5 *1 (-147)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *4)) (-4 *4 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-5 *1 (-272 *3)) (-4 *3 (-273)))) ((*1 *2 *2) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *4 (-779)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *4)) (-4 *4 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-109)) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *4)) (-4 *4 (-13 (-400 *3) (-918) (-1094))))))
+(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1073)) (|:| |arrayIndex| (-583 (-874 (-517)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1073)) (|:| |rand| (-787)) (|:| |ints2Floats?| (-107)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1072)) (|:| |thenClause| (-300)) (|:| |elseClause| (-300)))) (|:| |returnBranch| (-2 (|:| -3619 (-107)) (|:| -3199 (-2 (|:| |ints2Floats?| (-107)) (|:| -1556 (-787)))))) (|:| |blockBranch| (-583 (-300))) (|:| |commentBranch| (-583 (-1056))) (|:| |callBranch| (-1056)) (|:| |forBranch| (-2 (|:| -2919 (-996 (-874 (-517)))) (|:| |span| (-874 (-517))) (|:| |body| (-300)))) (|:| |labelBranch| (-1021)) (|:| |loopBranch| (-2 (|:| |switch| (-1072)) (|:| |body| (-300)))) (|:| |commonBranch| (-2 (|:| -1207 (-1073)) (|:| |contents| (-583 (-1073))))) (|:| |printBranch| (-583 (-787))))) (-5 *1 (-300)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-198 *4 *5)) (-4 *5 (-13 (-1094) (-29 *4))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))))
+(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-725)) (-4 *6 (-871 *4 *3 *5)) (-4 *4 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *4 *3 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))))
+(((*1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *3) (-12 (-5 *2 (-153 *4)) (-5 *1 (-162 *4 *3)) (-4 *4 (-13 (-333) (-777))) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-333)) (-5 *1 (-484 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)) (-5 *1 (-378 *3 *4 *5)) (-4 *3 (-379 *4 *5)))) ((*1 *2) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-583 *11)) (-5 *5 (-583 (-1069 *9))) (-5 *6 (-583 *9)) (-5 *7 (-583 *12)) (-5 *8 (-583 (-703))) (-4 *11 (-779)) (-4 *9 (-278)) (-4 *12 (-871 *9 *10 *11)) (-4 *10 (-725)) (-5 *2 (-583 (-1069 *12))) (-5 *1 (-641 *10 *11 *9 *12)) (-5 *3 (-1069 *12)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-725)) (-4 *3 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *3)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *3 (-509)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1094) (-29 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-534 (-377 (-874 *5)))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1153 (-1153 (-517)))) (-5 *3 (-843)) (-5 *1 (-435)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-958 *4 *5))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))))
+(((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-980 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-978 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-583 *11)) (|:| |todo| (-583 (-2 (|:| |val| *3) (|:| -3726 *11)))))) (-5 *6 (-703)) (-5 *2 (-583 (-2 (|:| |val| (-583 *10)) (|:| -3726 *11)))) (-5 *3 (-583 *10)) (-5 *4 (-583 *11)) (-4 *10 (-975 *7 *8 *9)) (-4 *11 (-1012 *7 *8 *9 *10)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-5 *1 (-1043 *7 *8 *9 *10 *11)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *8))) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-2 (|:| -3972 (-703)) (|:| -1234 *6))) (-5 *1 (-834 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 G)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
+(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1073)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-519 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1073)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 (-583 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-583 (-583 *5))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-583 *3))) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-1013)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-349))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-349))) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1073)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-583 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1094) (-27) (-400 *8))) (-4 *8 (-13 (-421) (-779) (-134) (-952 *3) (-579 *3))) (-5 *3 (-517)) (-5 *2 (-583 *4)) (-5 *1 (-930 *8 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-306 *5 *6 *7 *8)) (-4 *5 (-400 *4)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-833 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-306 (-377 (-517)) *4 *5 *6)) (-4 *4 (-1130 (-377 (-517)))) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 (-377 (-517)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-834 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-1130 (-377 *3))) (-5 *2 (-843)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4))))))
+(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-688)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-283 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-772 *4)) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-1069 (-517)))) (-5 *1 (-167)) (-5 *3 (-517)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-865 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-755)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *2 *4)) (-4 *4 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-156)) (-5 *1 (-378 *3 *2 *4)) (-4 *3 (-379 *2 *4)))) ((*1 *2) (-12 (-4 *1 (-379 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *3 (-1130 *2)) (-5 *2 (-517)) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 *2 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-509)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-156)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-286 (-377 (-517)))) (-5 *1 (-276)))))
+(((*1 *1 *1) (-4 *1 (-1042))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-632)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-288)) (-5 *3 (-199)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-519 *5 *3 *6)) (-4 *6 (-1003)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-517)) (-5 *7 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-199)) (-5 *7 (-517)) (-5 *8 (-1056)) (-5 *2 (-1104 (-848))) (-5 *1 (-288)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *2 (-1155)) (-5 *1 (-230)))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-706)) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-153 (-199)))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-4 *4 (-319)) (-5 *2 (-703)) (-5 *1 (-316 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021))))))))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 (-1056))) (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *1 (-215)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-779)) (-5 *2 (-583 (-601 *4 *5))) (-5 *1 (-567 *4 *5 *6)) (-4 *5 (-13 (-156) (-650 (-377 (-517))))) (-14 *6 (-843)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-670 (-703))) (-5 *1 (-411 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-670 (-703))) (-5 *1 (-413 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-632)) (-5 *1 (-276)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-517))) (-5 *1 (-1178 *4)))))
+(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
+(((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-107)) (-5 *1 (-448)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))))
+(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-509)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1153 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-4 *1 (-657 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1130 *5)) (-5 *2 (-623 *5)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
+(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *1) (-12 (-4 *1 (-374)) (-2630 (|has| *1 (-6 -4171))) (-2630 (|has| *1 (-6 -4163))))) ((*1 *2 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-762 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-4 *1 (-779))) ((*1 *1) (-5 *1 (-1021))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-276)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-814 *3)) (|:| |den| (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (|has| *4 (-6 (-4182 "*"))) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 *4)))) (-4 *4 (-421)) (-5 *2 (-583 (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4))))) (-5 *1 (-263 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-699 *3 *4)) (-4 *3 (-642 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-779)) (-5 *2 (-703)) (-5 *1 (-399 *3 *4)) (-4 *3 (-400 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-501 *3)) (-4 *3 (-502)))) ((*1 *2) (-12 (-4 *1 (-696)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-728 *3 *4)) (-4 *3 (-729 *4)))) ((*1 *2) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-908 *3 *4)) (-4 *3 (-909 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-703)) (-5 *1 (-912 *3 *4)) (-4 *3 (-913 *4)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-927 *3)) (-4 *3 (-928)))) ((*1 *2) (-12 (-4 *1 (-961)) (-5 *2 (-703)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-969 *3)) (-4 *3 (-970)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1056)) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1069 *6)) (-4 *6 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *7)) (-5 *1 (-291 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-703)) (-5 *1 (-109)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2) (-12 (-5 *2 (-2 (|:| -3521 (-583 (-1073))) (|:| -3100 (-583 (-1073))))) (-5 *1 (-1110)))))
+(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3295 *1) (|:| -4167 *1) (|:| |associate| *1))) (-4 *1 (-509)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4 *1) (-12 (-5 *4 (-583 (-1073))) (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *3 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| (-583 *3)))) (-5 *1 (-875 *5 *6 *7 *3 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*3 $)) (-15 -1800 (*3 $)) (-15 -2256 ($ *3))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-583 *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-2 (|:| |solns| (-583 *5)) (|:| |maps| (-583 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1029 *3 *5)) (-4 *3 (-1130 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-286 (-517))) (-5 *4 (-1 (-199) (-199))) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-226 *4 *3 *5 *6)) (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-239 *3)) (-4 *3 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-373 *3)) (-4 *3 (-374)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-5 *2 (-1054 (-517))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-1076)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-5 *1 (-542 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-543 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1114 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-1054 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))) (-4 *4 (-961)) (-4 *1 (-1135 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-4 *1 (-1145 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-703)) (|:| |c| *3)))) (-4 *3 (-961)) (-4 *1 (-1145 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-904 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-421)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-256)) (-4 *2 (-400 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-1094)))) ((*1 *2 *1) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-556 *3)) (-4 *3 (-779)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *1 (-470 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-377 (-517))))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))))
+(((*1 *2 *3 *4) (-12 (-5 *2 (-583 (-153 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1130 (-153 (-517)))) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-153 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-509)) (-5 *2 (-2 (|:| -2790 (-623 *5)) (|:| |vec| (-1153 (-583 (-843)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-843)) (-4 *3 (-593 *5)))))
+(((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-426 *3 *4 *2 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-831)) (-5 *1 (-828 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2) (-12 (-4 *2 (-831)) (-5 *1 (-829 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-1 *4 (-517))) (-4 *4 (-961)) (-5 *1 (-1058 *4)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-1056)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-1081 (-583 *4))) (-5 *1 (-1080 *4)) (-5 *3 (-583 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *1 *2) (|partial| -12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-601 *3 *4)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-601 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-509)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-1099 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *2 (-509)) (-5 *1 (-887 *2 *4)) (-4 *4 (-1130 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-293 *4 *2)) (-4 *4 (-1003)) (-4 *2 (-123)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-2 (|:| -1210 (-583 *6)) (|:| -1513 (-583 *6)))))))
+(((*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *5 *6 *7 *8)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-153 *5)) (-4 *5 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *5 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-583 (-623 (-517)))) (-5 *1 (-1013)))))
+(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))))
+(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-897 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-865 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-865 *3)) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)) (-5 *3 (-199)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))))
+(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *5 (-509)) (-5 *1 (-665 *4 *3 *5 *2)) (-4 *2 (-871 (-377 (-874 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *3 *2)) (-4 *2 (-871 (-874 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-4 *4 (-961)) (-4 *5 (-725)) (-5 *1 (-901 *4 *5 *6 *2)) (-4 *2 (-871 (-874 *4) *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *1 (-735)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))))
+(((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| -3618 *3) (|:| |nconst| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-517))))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -2077 (-517))))) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 (-703))))) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *2 (-583 (-1073))) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-1148 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1145 *5)))))
+(((*1 *1) (-5 *1 (-973))))
+(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-905 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-583 *10)) (-5 *5 (-107)) (-4 *10 (-980 *6 *7 *8 *9)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *9 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| -2131 (-583 *9)) (|:| -3726 *10) (|:| |ineq| (-583 *9))))) (-5 *1 (-1010 *6 *7 *8 *9 *10)) (-5 *3 (-583 *9)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-13 (-421) (-134))) (-5 *2 (-388 *3)) (-5 *1 (-95 *5 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-112 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-795 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-795 *2)) (-14 *2 (-517)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-14 *3 *2) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))) ((*1 *1 *1) (-12 (-14 *2 (-517)) (-5 *1 (-796 *2 *3)) (-4 *3 (-793 *2)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-517)) (-4 *1 (-1116 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1145 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1116 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1145 *2)))))
+(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-680)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-942 *5 *6 *7 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-583 *8)) (|:| |towers| (-583 (-1044 *5 *6 *7 *8))))) (-5 *1 (-1044 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2422 (-377 *6)) (|:| |coeff| (-377 *6)))) (-5 *1 (-527 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-897 *2)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-961)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-377 *5)) (|:| |c2| (-377 *5)) (|:| |deg| (-703)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1130 (-377 *5))))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-72 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-517))) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-94 *3)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-153 (-286 *4))) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-153 *3)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-583 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-400 *4) (-918))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-249 *4 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-874 *4)))) (-5 *1 (-165 *4)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-79 FCN)))) (-5 *2 (-950)) (-5 *1 (-679)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-212 *3 *4)) (-4 *4 (-961)) (-4 *4 (-1108)))) ((*1 *1 *2) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *2 (-779)) (-4 *7 (-871 *4 *5 (-789 *3))))) ((*1 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-583 *7) *7 (-1069 *7))) (-5 *5 (-1 (-388 *7) *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *7)) (|:| -2131 *3)))) (-5 *1 (-741 *6 *7 *3 *8)) (-4 *3 (-593 *7)) (-4 *8 (-593 (-377 *7))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |frac| (-377 *6)) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
+(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-1056)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1172 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))))
+(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-812 *5 *3)) (-4 *3 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-107)) (-5 *1 (-812 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-703)))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-62 -1696)))) (-5 *2 (-950)) (-5 *1 (-679)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-517)) (-5 *3 (-843)) (-5 *1 (-632)))) ((*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-623 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-333)) (-5 *1 (-895 *5)))))
+(((*1 *2 *1) (-12 (-4 *2 (-642 *3)) (-5 *1 (-759 *2 *3)) (-4 *3 (-961)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1) (-4 *1 (-1049))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-724)) (-5 *2 (-107)) (-5 *1 (-774 *4 *5)) (-14 *4 (-703)))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-3 (-107) (-583 *1))) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *1 *2) (|partial| -12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-404)) (-5 *2 (-583 (-3 (|:| -1207 (-1073)) (|:| |bounds| (-583 (-3 (|:| S (-1073)) (|:| P (-874 (-517))))))))) (-5 *1 (-1077)))))
+(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-155)))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-181)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-349))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-494 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-4 *4 (-1130 *3)) (-4 *5 (-657 *3 *4)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-1145 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-338) (-558 (-517)))) (-5 *1 (-499 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1050 *3)))))
+(((*1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)))))
+(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-678)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-1003)) (-4 *3 (-822 *6)) (-5 *2 (-623 *3)) (-5 *1 (-625 *6 *3 *7 *4)) (-4 *7 (-343 *3)) (-4 *4 (-13 (-343 *6) (-10 -7 (-6 -4180)))))))
+(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-1069 (-377 *5))) (-5 *1 (-559 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-134) (-27) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-1069 (-377 *6))) (-5 *1 (-559 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-142))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *3 (-583 (-517))) (-5 *1 (-805)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-407)) (-5 *1 (-1077)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1156)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-509)) (-5 *1 (-887 *4 *2)) (-4 *2 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-787)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-883)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *4 *2 *5)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *2 (-212 *3 *4)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
+(((*1 *2 *2) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3837 (-109)) (|:| |arg| (-583 (-814 *3))))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-886 *2)) (-4 *2 (-779)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-583 (-789 *4))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-440 *4 *5 *6)) (-4 *6 (-421)))))
+(((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1154)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1154)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1056)) (-5 *1 (-1155)))) ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1155)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))))
+(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-703)) (-5 *2 (-623 (-199))) (-5 *1 (-276)))))
+(((*1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-107)) (-5 *1 (-826 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-843)) (-5 *2 (-107)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-583 *3)) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1071 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1127 *5 *4)) (-5 *1 (-1146 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-1073)) (-14 *6 *4))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-109)) (-5 *4 (-703)) (-4 *5 (-421)) (-4 *5 (-779)) (-4 *5 (-952 (-517))) (-4 *5 (-509)) (-5 *1 (-40 *5 *2)) (-4 *2 (-400 *5)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *5 (-556 $)) $)) (-15 -1800 ((-1026 *5 (-556 $)) $)) (-15 -2256 ($ (-1026 *5 (-556 $))))))))))
+(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-377 *5))) (-5 *1 (-932 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *1 (-98 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
+(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-107)) (-5 *1 (-1013)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
+(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-1036)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-787))) (-5 *2 (-1158)) (-5 *1 (-1036)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-167)) (-5 *3 (-517)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-4 *2 (-1003)) (-5 *1 (-811 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-406)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-436)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-415)) (-5 *3 (-517)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-871 *6 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 *7))) (-5 *1 (-675 *4 *5 *6 *7)) (-5 *3 (-1069 *7)))) ((*1 *2 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-388 *1)) (-4 *1 (-871 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-779)) (-4 *5 (-725)) (-4 *6 (-421)) (-5 *2 (-388 *3)) (-5 *1 (-896 *4 *5 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-421)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-388 (-1069 (-377 *7)))) (-5 *1 (-1068 *4 *5 *6 *7)) (-5 *3 (-1069 (-377 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1112)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-388 *3)) (-5 *1 (-1133 *4 *3)) (-4 *3 (-13 (-1130 *4) (-509) (-10 -8 (-15 -1401 ($ $ $))))))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-1044 *4 (-489 (-789 *6)) (-789 *6) (-712 *4 (-789 *6))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-156)) (-5 *1 (-622 *2 *4 *5 *3)) (-4 *3 (-621 *2 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (|has| *2 (-6 (-4182 "*"))) (-4 *2 (-961)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 *5)) (-4 *5 (-961)) (-5 *2 (-449 *4 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-583 (-1073))))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-437)) (-5 *1 (-1157)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-437)) (-5 *1 (-1157)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-1054 (-199))) (-5 *1 (-271)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-950)) (-5 *3 (-1073)) (-5 *1 (-168)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-865 *4)) (-4 *4 (-961)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-623 *11)) (-5 *4 (-583 (-377 (-874 *8)))) (-5 *5 (-703)) (-5 *6 (-1056)) (-4 *8 (-13 (-278) (-134))) (-4 *11 (-871 *8 *10 *9)) (-4 *9 (-13 (-779) (-558 (-1073)))) (-4 *10 (-725)) (-5 *2 (-2 (|:| |rgl| (-583 (-2 (|:| |eqzro| (-583 *11)) (|:| |neqzro| (-583 *11)) (|:| |wcond| (-583 (-874 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *8)))) (|:| -1753 (-583 (-1153 (-377 (-874 *8)))))))))) (|:| |rgsz| (-517)))) (-5 *1 (-846 *8 *9 *10 *11)) (-5 *7 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-278)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-367)))))
+(((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-377 (-874 *6)) (-1063 (-1073) (-874 *6)))) (-5 *5 (-703)) (-4 *6 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *6))))) (-5 *1 (-263 *6)) (-5 *4 (-623 (-377 (-874 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 *4)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1062 3 *3)) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-755)) (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-703)) (-4 *1 (-205 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-205 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-207)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-207))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-333) (-134))) (-5 *1 (-369 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 (-703))) (-4 *1 (-822 *4)) (-4 *4 (-1003)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-822 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-822 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-822 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-4 *5 (-421)) (-5 *2 (-583 *6)) (-5 *1 (-495 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-3 (|:| |overq| (-1069 (-377 (-517)))) (|:| |overan| (-1069 (-47))) (|:| -3713 (-107)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))) (-4 *2 (-13 (-779) (-21))))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-13 (-27) (-400 *5))) (-4 *5 (-13 (-779) (-509) (-952 (-517)))) (-4 *8 (-1130 (-377 *7))) (-5 *2 (-534 *3)) (-5 *1 (-505 *5 *6 *7 *8 *3)) (-4 *3 (-312 *6 *7 *8)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1151 *3)) (-4 *3 (-1108)) (-4 *3 (-961)) (-5 *2 (-623 *3)))))
+(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-843))) (-4 *2 (-333)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-14 *5 (-910 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *3 *1) (-12 (-4 *1 (-293 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *2 (-871 *4 (-489 *5) *5)) (-5 *1 (-1027 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-874 *4)) (-5 *1 (-1103 *4)) (-4 *4 (-961)))))
+(((*1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-703)) (-5 *1 (-538)))))
+(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *2))) (-5 *4 (-583 (-1073))) (-4 *2 (-13 (-400 (-153 *5)) (-918) (-1094))) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-546 *5 *6 *2)) (-4 *6 (-13 (-400 *5) (-918) (-1094))))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *3 (-779)) (-5 *1 (-608 *3)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-509) (-134))) (-5 *1 (-1124 *3 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-961)) (-5 *1 (-782 *5 *2)) (-4 *2 (-781 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-1153 (-583 (-2 (|:| -3199 *4) (|:| -3448 (-1021)))))) (-5 *1 (-316 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-940 *3 *2)) (-4 *2 (-593 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| -2131 *3) (|:| -3837 (-583 *5)))) (-5 *1 (-940 *5 *3)) (-5 *4 (-583 *5)) (-4 *3 (-593 *5)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-396 *4 *2)) (-4 *2 (-13 (-1094) (-29 *4))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-134)) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *5)) (-5 *1 (-537 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2) (-12 (-5 *2 (-772 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-772 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-289 *3 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))))
+(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-517)) (-4 *3 (-156)) (-4 *5 (-343 *3)) (-4 *6 (-343 *3)) (-5 *1 (-622 *3 *5 *6 *2)) (-4 *2 (-621 *3 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1006 *2 *3 *4 *5 *6)) (-4 *2 (-1003)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-168)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *6 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-959)))))
+(((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *5)) (-2 (|:| -3448 *2) (|:| -2077 *5)))) (-4 *2 (-779)) (-5 *1 (-430 *3 *4 *2 *5 *6 *7)) (-4 *7 (-871 *4 *5 (-789 *3))))))
+(((*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1153 *4)) (-5 *3 (-623 *4)) (-4 *4 (-333)) (-5 *1 (-604 *4)))) ((*1 *2 *3 *2) (|partial| -12 (-4 *4 (-333)) (-4 *5 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))) (-5 *1 (-605 *4 *5 *2 *3)) (-4 *3 (-621 *4 *5 *2)))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-583 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-333)) (-5 *1 (-746 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))) ((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-349)))))
+(((*1 *1) (-5 *1 (-1158))))
+(((*1 *2) (-12 (-5 *2 (-765 (-517))) (-5 *1 (-491)))) ((*1 *1) (-12 (-5 *1 (-765 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-714 *3))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 *2)) (-4 *4 (-1130 *2)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-5 *1 (-464 *2 *4 *5)) (-4 *5 (-379 *2 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-107) *5 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1931 *3) (|:| |gap| (-703)) (|:| -3425 (-714 *3)) (|:| -3060 (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *2 *1 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1931 *1) (|:| |gap| (-703)) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-517)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-494 *4 *2)) (-4 *2 (-1145 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-4 *5 (-1130 *4)) (-4 *6 (-657 *4 *5)) (-5 *1 (-498 *4 *5 *6 *2)) (-4 *2 (-1145 *6)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-517)) (-4 *4 (-13 (-333) (-338) (-558 *3))) (-5 *1 (-499 *4 *2)) (-4 *2 (-1145 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1050 *4)))))
+(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-973))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-501)) (-5 *1 (-214)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-501)) (-5 *1 (-214)))))
-(((*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *1 *1) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-959)) (-5 *1 (-1123 *3 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1100 *3)) (-4 *3 (-889)))))
-(((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-839)) (-5 *4 (-346)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *2 (-340 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *6 *7 *2)) (-4 *6 (-959)) (-4 *7 (-211 *5 *6)) (-4 *2 (-211 *4 *6)))))
-(((*1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-906 *2)) (-4 *4 (-1125 *3)) (-4 *2 (-276)) (-5 *1 (-381 *2 *3 *4 *5)) (-4 *5 (-13 (-378 *3 *4) (-950 *3))))) ((*1 *2 *1) (-12 (-4 *3 (-508)) (-4 *3 (-777)) (-5 *2 (-1023 *3 (-553 *1))) (-4 *1 (-389 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-657) *4)) (-5 *1 (-558 *3 *4 *2)) (-4 *3 (-37 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-657) *4)) (-5 *1 (-587 *3 *4 *2)) (-4 *3 (-648 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-1012)) (-4 *3 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-389 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-1042 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *6)) (-5 *1 (-381 *3 *4 *5 *6)) (-4 *6 (-13 (-378 *4 *5) (-950 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *3 (-777)) (-5 *2 (-1023 *3 (-553 *1))) (-4 *1 (-389 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1023 (-501) (-553 (-458)))) (-5 *1 (-458)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-558 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-657) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-648 *3)) (-5 *1 (-587 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-657) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))))
-(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-44 (-1053) (-703))) (-5 *1 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-2 (|:| |zeros| (-1048 (-199))) (|:| |ones| (-1048 (-199))) (|:| |singularities| (-1048 (-199))))) (-5 *1 (-100)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-621 *2)) (-4 *2 (-156)) (-5 *1 (-133 *2)))) ((*1 *2 *3) (-12 (-4 *4 (-156)) (-4 *2 (-1125 *4)) (-5 *1 (-159 *4 *2 *3)) (-4 *3 (-655 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-866 *5)))) (-5 *4 (-1070)) (-5 *2 (-866 *5)) (-5 *1 (-261 *5)) (-4 *5 (-419)))) ((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 *4)))) (-5 *2 (-866 *4)) (-5 *1 (-261 *4)) (-4 *4 (-419)))) ((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-866 (-152 (-375 (-501))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *4 (-1070)) (-5 *2 (-866 (-152 (-375 (-501))))) (-5 *1 (-695 *5)) (-4 *5 (-13 (-331) (-775))))) ((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-866 (-375 (-501)))) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *4 (-1070)) (-5 *2 (-866 (-375 (-501)))) (-5 *1 (-709 *5)) (-4 *5 (-13 (-331) (-775))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-711 *3)) (|:| |polden| *3) (|:| -2735 (-701)))) (-5 *1 (-711 *3)) (-4 *3 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -2735 (-701)))) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *1 (-612 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-501)) (-5 *6 (-1 (-1154) (-1148 *5) (-1148 *5) (-346))) (-5 *3 (-1148 (-346))) (-5 *5 (-346)) (-5 *2 (-1154)) (-5 *1 (-718)))))
-(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *1 (-404)))))
-(((*1 *2 *2 *3) (-12 (-5 *1 (-612 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -2150 *4) (|:| -1506 (-501))))) (-4 *4 (-1001)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-346)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-1074)) (-5 *1 (-1073)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-590 *4)) (-4 *4 (-310 *5 *6 *7)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-736 *5 *6 *7 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-282 *3)) (-4 *3 (-508)) (-4 *3 (-777)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2532 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-669)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-511)))))
-(((*1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) ((*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1001)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1153)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-114 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-903 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-977 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *4) (|:| |ineq| (-578 *9)))) (-5 *1 (-1007 *6 *7 *8 *9 *4)) (-5 *3 (-578 *9)) (-4 *4 (-977 *6 *7 *8 *9)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-1132 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-107)) (-5 *1 (-533 *3)) (-4 *3 (-500)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-435)) (-5 *3 (-578 (-232))) (-5 *1 (-1151)))) ((*1 *1 *1) (-5 *1 (-1151))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-609 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-1070)) (|:| |c| (-1168 *3))))) (-5 *1 (-1168 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| *3) (|:| |c| (-1171 *3 *4))))) (-5 *1 (-1171 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-651)) (-5 *2 (-839)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-701)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *5 (-508)) (-5 *2 (-2 (|:| |minor| (-578 (-839))) (|:| -2499 *3) (|:| |minors| (-578 (-578 (-839)))) (|:| |ops| (-578 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-839)) (-4 *3 (-593 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568))))
-(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1001)) (-5 *2 (-578 (-2 (|:| -2922 *3) (|:| -3713 (-701))))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-611 *2)) (-4 *2 (-961)) (-4 *2 (-1003)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))) (-5 *2 (-950)) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *1 (-492 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-493)))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-970)) (-4 *3 (-1094)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1166 (-1073) *3)) (-4 *3 (-961)) (-5 *1 (-1173 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *1 (-1175 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *3 (-207)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-779)) (-4 *5 (-239 *3)) (-4 *6 (-725)) (-5 *2 (-1 *1 (-703))) (-4 *1 (-226 *4 *3 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-239 *2)) (-4 *2 (-779)))))
+(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1056)) (|:| -1207 (-1056)))) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-517)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-300)))))
+(((*1 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-583 *3)) (-4 *3 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-349))) (-5 *2 (-286 (-199))) (-5 *1 (-276)))))
+(((*1 *2 *2) (-12 (-4 *3 (-558 (-814 *3))) (-4 *3 (-808 *3)) (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-558 (-814 *3))) (-4 *2 (-808 *3)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))))
+(((*1 *2) (-12 (-4 *2 (-13 (-400 *3) (-918))) (-5 *1 (-249 *3 *2)) (-4 *3 (-13 (-779) (-509))))) ((*1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1) (-5 *1 (-446))) ((*1 *1) (-4 *1 (-1094))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-1087)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-1054 *3))) (-5 *1 (-1054 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *2) (|partial| -12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
(((*1 *1) (-5 *1 (-142))))
-(((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-839)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-762 (-839))) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-839)))) ((*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-762 (-839))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -1654 (-701)) (|:| |curves| (-701)) (|:| |polygons| (-701)) (|:| |constructs| (-701)))))))
-(((*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-220 *4 *5))) (-5 *2 (-220 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *1 (-569 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1064 *1)) (-5 *3 (-1070)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-1064 *1)) (-4 *1 (-27)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *1)) (-4 *1 (-27)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1070)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-777) (-508))))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-777) (-508))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *2)) (-5 *4 (-1070)) (-4 *2 (-389 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-777) (-508))))) ((*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1064 *1)) (-5 *3 (-839)) (-4 *1 (-926)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1064 *1)) (-5 *3 (-839)) (-5 *4 (-786)) (-4 *1 (-926)))) ((*1 *1 *2 *3) (|partial| -12 (-5 *3 (-839)) (-4 *4 (-13 (-775) (-331))) (-4 *1 (-974 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-375 (-1064 (-282 *3)))) (-4 *3 (-13 (-508) (-777))) (-5 *1 (-1028 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-501)) (-5 *1 (-214)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-578 (-1053))) (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *1 (-214)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-447 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-220 *4 *5)) (-5 *1 (-864 *4 *5)))))
-(((*1 *2 *3) (-12 (-4 *1 (-730)) (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-948)))))
-(((*1 *2 *2) (-12 (-5 *2 (-467 (-375 (-501)) (-212 *4 (-701)) (-787 *3) (-220 *3 (-375 (-501))))) (-14 *3 (-578 (-1070))) (-14 *4 (-701)) (-5 *1 (-468 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *2 *4 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))) ((*1 *1) (-4 *1 (-336))) ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 *4)) (-5 *1 (-485 *4)) (-4 *4 (-318)))) ((*1 *1 *1) (-4 *1 (-500))) ((*1 *1) (-4 *1 (-500))) ((*1 *1 *1) (-5 *1 (-501))) ((*1 *1 *1) (-5 *1 (-701))) ((*1 *2 *1) (-12 (-5 *2 (-822 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-822 *4)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) ((*1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-500)) (-4 *2 (-508)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-276) (-134))) (-4 *4 (-13 (-777) (-556 (-1070)))) (-4 *5 (-723)) (-5 *1 (-844 *3 *4 *5 *2)) (-4 *2 (-870 *3 *5 *4)))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-220 *5 *6))) (-4 *6 (-419)) (-5 *2 (-220 *5 *6)) (-14 *5 (-578 (-1070))) (-5 *1 (-569 *5 *6)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-701)) (|:| -2663 *4))) (-5 *5 (-701)) (-4 *4 (-870 *6 *7 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-417 *6 *7 *8 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-614 *2)) (-4 *2 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 *5) (-578 *5))) (-5 *4 (-501)) (-5 *2 (-578 *5)) (-5 *1 (-614 *5)) (-4 *5 (-1001)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1053) (-703))) (-5 *1 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))))
-(((*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-1123 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1039))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-375 (-501))))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-375 (-501))) (-5 *1 (-922 *3)) (-4 *3 (-950 *2)))))
-(((*1 *1) (-5 *1 (-733))))
-(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1073)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-102 *3)))))
-(((*1 *1 *1) (-4 *1 (-508))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-822 *3))) (-4 *3 (-1001)) (-5 *1 (-825 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-340 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3383 *1) (|:| |upper| *1))) (-4 *1 (-891 *4 *5 *3 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-754)) (-5 *1 (-753)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-786)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-753)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *1) (-12 (-4 *1 (-608 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-107)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-1048 *4) (-1048 *4))) (-5 *1 (-1143 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *5)) (-4 *5 (-156)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-847)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-548 *4 *3)) (-4 *4 (-1001)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1053)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *4 (-972 *6 *7 *8)) (-5 *2 (-1154)) (-5 *1 (-706 *6 *7 *8 *4 *5)) (-4 *5 (-977 *6 *7 *8 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| -2896 *5) (|:| -4022 *5)))) (-5 *1 (-737 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-375 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *4 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -2896 *4) (|:| -4022 *4)))) (-5 *1 (-737 *5 *4 *3 *6)) (-4 *3 (-593 *4)) (-4 *6 (-593 (-375 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-578 (-2 (|:| -2896 *5) (|:| -4022 *5)))) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 (-375 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *4 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -2896 *4) (|:| -4022 *4)))) (-5 *1 (-737 *5 *4 *6 *3)) (-4 *6 (-593 *4)) (-4 *3 (-593 (-375 *4))))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1070)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-578 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1090) (-27) (-389 *8))) (-4 *8 (-13 (-419) (-777) (-134) (-950 *3) (-577 *3))) (-5 *3 (-501)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1320 *4) (|:| |sol?| (-107)))) (-5 *1 (-927 *8 *4)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *2 (-50)) (-5 *1 (-232)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *1 (-234 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *3 (-501)) (-4 *1 (-792 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 *3)) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-373 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-959)) (-5 *2 (-578 *6)) (-5 *1 (-411 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-621 *4)) (-5 *1 (-315 *4)))))
-(((*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-808 *3 *5)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-777)) (-4 *5 (-723)) (-4 *6 (-508)) (-4 *7 (-870 *6 *5 *3)) (-5 *1 (-429 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-950 (-375 (-501))) (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-4 *1 (-824 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-1070)) (-5 *1 (-238)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1098 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-2 (|:| |radval| (-286 (-517))) (|:| |radmult| (-517)) (|:| |radvect| (-583 (-623 (-286 (-517)))))))) (-5 *1 (-946)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-517)) (-5 *1 (-215)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *2 *2) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 (-814 *3)))) (-5 *1 (-983 *3 *4 *2)) (-4 *2 (-13 (-400 *4) (-808 *3) (-558 (-814 *3)))))))
+(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-1021))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-5 *4 (-623 *12)) (-5 *5 (-583 (-377 (-874 *9)))) (-5 *6 (-583 (-583 *12))) (-5 *7 (-703)) (-5 *8 (-517)) (-4 *9 (-13 (-278) (-134))) (-4 *12 (-871 *9 *11 *10)) (-4 *10 (-13 (-779) (-558 (-1073)))) (-4 *11 (-725)) (-5 *2 (-2 (|:| |eqzro| (-583 *12)) (|:| |neqzro| (-583 *12)) (|:| |wcond| (-583 (-874 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *9)))) (|:| -1753 (-583 (-1153 (-377 (-874 *9))))))))) (-5 *1 (-846 *9 *10 *11 *12)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-556 *5))) (-5 *3 (-1073)) (-4 *5 (-400 *4)) (-4 *4 (-779)) (-5 *1 (-526 *4 *5)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-670 *3)))) ((*1 *1 *2) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-49 *3 *4)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-5 *1 (-567 *3 *4 *5)) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-789 *5))) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-583 (-583 (-221 *5 *6)))) (-5 *1 (-440 *5 *6 *7)) (-5 *3 (-583 (-221 *5 *6))) (-4 *7 (-421)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-703)))) ((*1 *2 *3 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-517)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-517)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)) (-5 *3 (-128)))) ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-286 *5))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-286 *5)))) (-5 *1 (-1030 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1) (-12 (-4 *1 (-226 *2 *3 *4 *5)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-239 *3)) (-4 *5 (-725)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
+(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-583 (-583 (-865 (-199))))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-583 (-583 (-865 (-199))))))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-512)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-377 (-517))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1021)) (-5 *1 (-104)))) ((*1 *2 *1) (|partial| -12 (-5 *1 (-335 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1056)) (-5 *1 (-1090)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-436)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-406)))))
+(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-865 (-199)) (-199) (-199))) (-5 *1 (-630)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-2 (|:| |f1| (-583 *4)) (|:| |f2| (-583 (-583 (-583 *4)))) (|:| |f3| (-583 (-583 *4))) (|:| |f4| (-583 (-583 (-583 *4)))))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 (-583 *4)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))) ((*1 *2 *3 *4 *1) (-12 (-5 *3 (-1073)) (-5 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *2 (-1158)) (-5 *1 (-1076)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-703)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-725)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1104 *2)) (-4 *2 (-891)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-131))) (-5 *1 (-128)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-128)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5))))) (-5 *1 (-895 *5)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1021)) (-4 *4 (-319)) (-5 *1 (-487 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-781 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
+(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1 *6 *5)) (-5 *1 (-640 *4 *5 *6)) (-4 *4 (-558 (-493))) (-4 *5 (-1108)) (-4 *6 (-1108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-300)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-736 *4 *2)) (-4 *2 (-13 (-29 *4) (-1094) (-880))))))
+(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-653)) (-5 *2 (-843)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-655)) (-5 *2 (-703)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *7 *8 *9 *3 *4)) (-4 *4 (-980 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-703)) (-5 *6 (-107)) (-4 *7 (-421)) (-4 *8 (-725)) (-4 *9 (-779)) (-4 *3 (-975 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *7 *8 *9 *3 *4)) (-4 *4 (-1012 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-31 *4 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-565 *3 *4 *5 *6 *7 *2)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *2 (-1012 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-670 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-286 (-517)))) (-5 *1 (-946)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 (-1069 *6)) (|:| -2077 (-517))))) (-4 *6 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-517)) (-5 *1 (-675 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3639 (-377 (-517))) (|:| -3652 (-377 (-517))))) (-5 *2 (-377 (-517))) (-5 *1 (-935 *4)) (-4 *4 (-1130 (-517))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *1) (-5 *1 (-754))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-267)) (-5 *3 (-1070)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-501)) (-5 *5 (-152 (-199))) (-5 *6 (-1053)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1160 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-578 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1160 *5 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-948)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 *2)) (-5 *2 (-346)) (-5 *1 (-715 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-769 (-199)))) (-5 *4 (-199)) (-5 *2 (-578 *4)) (-5 *1 (-238)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-501)) (-5 *2 (-1100 *3)) (-5 *1 (-720 *3)) (-4 *3 (-889)))) ((*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-107)) (-5 *1 (-1100 *2)) (-4 *2 (-889)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-108) (-108))) (-5 *1 (-108)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-839)) (-5 *2 (-701)) (-5 *1 (-1002 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1105 *2)) (-4 *2 (-1001)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-777)) (-5 *1 (-1105 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))))
-(((*1 *1 *1) (-4 *1 (-967))) ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1128 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-1035 *3 *2)) (-4 *3 (-13 (-1001) (-33))) (-4 *2 (-13 (-1001) (-33))))))
-(((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-500)))) ((*1 *1 *1) (-4 *1 (-967))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))) ((*1 *2 *3) (-12 (-5 *2 (-1048 (-578 (-501)))) (-5 *1 (-803)) (-5 *3 (-578 (-501))))))
-(((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-452)))) ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-276)))) ((*1 *2 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))) ((*1 *1 *1) (-4 *1 (-967))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-1148 (-375 (-501)))) (-5 *1 (-1174 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1035 *4 *5)) (-4 *4 (-13 (-1001) (-33))) (-4 *5 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1036 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-4 *5 (-331)) (-5 *2 (-375 *6)) (-5 *1 (-789 *5 *4 *6)) (-4 *4 (-1142 *5)) (-4 *6 (-1125 *5)))) ((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-5 *4 (-1139 *5 *6 *7)) (-4 *5 (-331)) (-14 *6 (-1070)) (-14 *7 *5) (-5 *2 (-375 (-1118 *6 *5))) (-5 *1 (-790 *5 *6 *7)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-701)) (-5 *4 (-1139 *5 *6 *7)) (-4 *5 (-331)) (-14 *6 (-1070)) (-14 *7 *5) (-5 *2 (-375 (-1118 *6 *5))) (-5 *1 (-790 *5 *6 *7)))))
-(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-802 *2)) (-4 *2 (-1104)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1 *1) (-5 *1 (-970))))
-(((*1 *2 *1) (-12 (-5 *2 (-753)) (-5 *1 (-752)))))
-(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-375 (-501))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)) (-5 *3 (-578 (-863 (-199)))))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)) (-5 *3 (-578 (-578 (-863 (-199))))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-959)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-553 *1)) (-4 *1 (-267)))))
-(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1125 *6)) (-4 *6 (-13 (-331) (-134) (-950 *4))) (-5 *4 (-501)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2499 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-929 *6 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-1100 *3)) (-4 *3 (-889)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-525 *5 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-276)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 (-501))))) (-5 *2 (-578 (-578 (-262 (-866 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 (-501)))))) (-5 *2 (-578 (-578 (-262 (-866 *4))))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-501)))) (-5 *2 (-578 (-262 (-866 *4)))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 (-501))))) (-5 *2 (-578 (-262 (-866 *4)))) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-4 *4 (-13 (-29 *6) (-1090) (-879))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4119 (-578 *4)))) (-5 *1 (-588 *6 *4 *3)) (-4 *3 (-593 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-588 *6 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *7 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-578 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4119 (-578 *7))))) (-5 *1 (-602 *5 *6 *7 *3)) (-5 *4 (-578 *7)) (-4 *3 (-618 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5))))) (-5 *1 (-603 *5)) (-5 *4 (-1148 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-331)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5))))) (-5 *1 (-603 *5)) (-5 *4 (-1148 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5)))))) (-5 *1 (-603 *5)) (-5 *4 (-578 (-1148 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 *5))) (-4 *5 (-331)) (-5 *2 (-578 (-2 (|:| |particular| (-3 (-1148 *5) "failed")) (|:| -4119 (-578 (-1148 *5)))))) (-5 *1 (-603 *5)) (-5 *4 (-578 (-1148 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-700 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-700 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-702 *5 *2)) (-4 *2 (-13 (-29 *5) (-1090) (-879))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-621 *7)) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)) (-5 *4 (-1148 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-621 *6)) (-5 *4 (-1070)) (-4 *6 (-13 (-29 *5) (-1090) (-879))) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-1148 *6))) (-5 *1 (-732 *5 *6)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 (-262 *7))) (-5 *4 (-578 (-108))) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-108))) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-2 (|:| |particular| (-1148 *7)) (|:| -4119 (-578 (-1148 *7))))) (-5 *1 (-732 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-108)) (-5 *5 (-1070)) (-4 *7 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4119 (-578 *7))) *7 "failed")) (-5 *1 (-732 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4119 (-578 *3))) *3 "failed")) (-5 *1 (-732 *6 *3)) (-4 *3 (-13 (-29 *6) (-1090) (-879))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-262 *2)) (-5 *4 (-108)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-5 *1 (-732 *6 *2)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))))) ((*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-108)) (-5 *4 (-262 *2)) (-5 *5 (-578 *2)) (-4 *2 (-13 (-29 *6) (-1090) (-879))) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-732 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-738)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-738)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1148 (-282 (-346)))) (-5 *4 (-346)) (-5 *5 (-578 *4)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1148 (-282 *4))) (-5 *5 (-578 (-346))) (-5 *6 (-282 (-346))) (-5 *4 (-346)) (-5 *2 (-948)) (-5 *1 (-735)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4119 (-578 *6))) "failed") *7 *6)) (-4 *6 (-331)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1148 *6)) (|:| -4119 (-621 *6)))) (-5 *1 (-743 *6 *7)) (-5 *3 (-621 *6)) (-5 *4 (-1148 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-948)) (-5 *1 (-817)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-817)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-701)) (-5 *6 (-578 (-578 (-282 *3)))) (-5 *7 (-1053)) (-5 *8 (-199)) (-5 *5 (-578 (-282 (-346)))) (-5 *3 (-346)) (-5 *2 (-948)) (-5 *1 (-817)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-701)) (-5 *6 (-578 (-578 (-282 *3)))) (-5 *7 (-1053)) (-5 *5 (-578 (-282 (-346)))) (-5 *3 (-346)) (-5 *2 (-948)) (-5 *1 (-817)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *2 (-578 (-346))) (-5 *1 (-936)) (-5 *4 (-346)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 (-501))) (-5 *2 (-578 (-346))) (-5 *1 (-936)) (-5 *4 (-346)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-282 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-262 (-282 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-262 (-282 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-282 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1029 *5)) (-5 *3 (-578 (-262 (-282 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-1075 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *5)))))) (-5 *1 (-1075 *5)) (-5 *3 (-578 (-262 (-375 (-866 *5))))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-375 (-866 *4)))) (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-1075 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *4)))))) (-5 *1 (-1075 *4)) (-5 *3 (-578 (-262 (-375 (-866 *4))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-375 (-866 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *5))))) (-5 *1 (-1075 *5)) (-5 *3 (-262 (-375 (-866 *5)))))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *4))))) (-5 *1 (-1075 *4)) (-5 *3 (-375 (-866 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 (-262 (-375 (-866 *4))))) (-5 *1 (-1075 *4)) (-5 *3 (-262 (-375 (-866 *4)))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-866 *5)))) (-5 *1 (-1075 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1036 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))))
-(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-578 (-375 *8))) (-4 *7 (-331)) (-4 *8 (-1125 *7)) (-5 *3 (-375 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))))
-(((*1 *1 *2 *3 *4) (-12 (-14 *5 (-578 (-1070))) (-4 *2 (-156)) (-4 *4 (-211 (-3581 *5) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *3) (|:| -3027 *4)) (-2 (|:| -3506 *3) (|:| -3027 *4)))) (-5 *1 (-428 *5 *2 *3 *4 *6 *7)) (-4 *3 (-777)) (-4 *7 (-870 *2 *4 (-787 *5))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 (-1 *4 (-578 *4)))) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1001)) (-5 *1 (-109 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-578 (-1 *4 (-578 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-331)) (-4 *6 (-1125 (-375 *2))) (-4 *2 (-1125 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-310 *5 *2 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1148 *5))) (-5 *4 (-501)) (-5 *2 (-1148 *5)) (-5 *1 (-943 *5)) (-4 *5 (-331)) (-4 *5 (-336)) (-4 *5 (-959)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-262 *2)) (-4 *2 (-657)) (-4 *2 (-1104)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1037 *4 *2)) (-14 *4 (-839)) (-4 *2 (-13 (-959) (-10 -7 (-6 (-4169 "*"))))) (-5 *1 (-823 *4 *2)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-863 *5)) (-5 *3 (-701)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-785)))) ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-785)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-786)) (-5 *2 (-1154)) (-5 *1 (-785)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1048 *4)) (-4 *4 (-1001)) (-4 *4 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-447 *5 *6))) (-5 *3 (-447 *5 *6)) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-1148 *6)) (-5 *1 (-569 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 *5)))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-1060 (-578 (-282 *5)) (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-1060 (-578 (-282 *5)) (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-299 *3)) (-4 *3 (-777)))))
-(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-373 *2)) (-4 *2 (-508)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-508)) (-4 *7 (-870 *3 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *8) (|:| |radicand| *8))) (-5 *1 (-873 *5 *6 *3 *7 *8)) (-5 *4 (-701)) (-4 *8 (-13 (-331) (-10 -8 (-15 -2946 (*7 $)) (-15 -2949 (*7 $)) (-15 -3691 ($ *7))))))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-959)) (-4 *6 (-870 *5 *4 *2)) (-4 *2 (-777)) (-5 *1 (-871 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *6)) (-15 -2946 (*6 $)) (-15 -2949 (*6 $))))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-5 *2 (-1070)) (-5 *1 (-952 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-107)) (-5 *1 (-105)))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (|has| *1 (-6 -4158)) (-4 *1 (-372)))) ((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-232)))))
-(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))))
-(((*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *4 (-578 (-839))) (-5 *5 (-578 (-232))) (-5 *1 (-435)))) ((*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *4 (-578 (-839))) (-5 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *1 (-435)))) ((*1 *1 *1) (-5 *1 (-435))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *1 (-821 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-566 *5 *6)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-107)) (-5 *1 (-1174 *4)))))
-(((*1 *2 *3 *4) (-12 (-4 *4 (-331)) (-5 *2 (-578 (-1048 *4))) (-5 *1 (-255 *4 *5)) (-5 *3 (-1048 *4)) (-4 *5 (-1142 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-331)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))))
-(((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-517 *6 *3 *7)) (-4 *7 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-5 *2 (-578 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1064 *1)) (-4 *1 (-926)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-578 (-2 (|:| -3739 *3) (|:| -1201 *4)))) (-5 *1 (-627 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-1041 *5 (-487 (-787 *6)) (-787 *6) (-710 *5 (-787 *6))))) (-5 *1 (-566 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-775)) (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-865 *4 *5)) (-4 *5 (-1125 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-701)) (-5 *1 (-200)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-152 (-199))) (-5 *3 (-701)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-621 *6)) (-5 *5 (-1 (-373 (-1064 *6)) (-1064 *6))) (-4 *6 (-331)) (-5 *2 (-578 (-2 (|:| |outval| *7) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 *7)))))) (-5 *1 (-488 *6 *7 *4)) (-4 *7 (-331)) (-4 *4 (-13 (-331) (-775))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-373 *3)) (-4 *3 (-508)))))
-(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))) ((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-1153)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3540 *3))) (-5 *1 (-514 *5 *6 *7 *3)) (-4 *3 (-310 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |answer| (-375 *6)) (|:| -3540 (-375 *6)) (|:| |specpart| (-375 *6)) (|:| |polypart| *6))) (-5 *1 (-515 *5 *6)) (-5 *3 (-375 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-449 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))))
-(((*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-866 (-152 *4))) (-4 *4 (-156)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-156)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-866 *4)) (-4 *4 (-959)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-866 *5)) (-5 *4 (-839)) (-4 *5 (-959)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 (-152 *4)))) (-4 *4 (-508)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-375 (-866 (-152 *5)))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-282 *4)) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 *5)) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-282 (-152 *4))) (-4 *4 (-508)) (-4 *4 (-777)) (-4 *4 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-282 (-152 *5))) (-5 *4 (-839)) (-4 *5 (-508)) (-4 *5 (-777)) (-4 *5 (-556 (-346))) (-5 *2 (-152 (-346))) (-5 *1 (-715 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-331)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 *1)) (-4 *1 (-352 *3 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-666 *3 *4))) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) ((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-331)) (-5 *2 (-1064 *4)) (-5 *1 (-488 *4 *5 *6)) (-4 *5 (-331)) (-4 *6 (-13 (-331) (-775))))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-777))) (-5 *2 (-152 *5)) (-5 *1 (-544 *4 *5 *3)) (-4 *5 (-13 (-389 *4) (-916) (-1090))) (-4 *3 (-13 (-389 (-152 *4)) (-916) (-1090))))))
-(((*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-434)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-578 (-578 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-578 (-3 (|:| |array| (-578 *3)) (|:| |scalar| (-1070))))) (-5 *6 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))) ((*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-578 (-578 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-578 (-3 (|:| |array| (-578 *3)) (|:| |scalar| (-1070))))) (-5 *6 (-578 (-1070))) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))) ((*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *5 (-1073)) (-5 *3 (-1070)) (-5 *2 (-1003)) (-5 *1 (-363)))))
-(((*1 *2 *3 *4 *5) (-12 (-4 *6 (-1125 *9)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-276)) (-4 *10 (-870 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-578 (-1064 *10))) (|:| |dterm| (-578 (-578 (-2 (|:| -3890 (-701)) (|:| |pcoef| *10))))) (|:| |nfacts| (-578 *6)) (|:| |nlead| (-578 *10)))) (-5 *1 (-708 *6 *7 *8 *9 *10)) (-5 *3 (-1064 *10)) (-5 *4 (-578 *6)) (-5 *5 (-578 *10)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-540 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-107)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-501)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-1148 *5)) (-4 *5 (-276)) (-4 *5 (-959)) (-5 *2 (-621 *5)) (-5 *1 (-943 *5)))))
-(((*1 *1) (-5 *1 (-754))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-578 (-1 (-199) (-199)))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-578 (-1 (-199) (-199)))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))) ((*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-847)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))))
-(((*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-578 *3)) (-5 *5 (-839)) (-4 *3 (-1125 *4)) (-4 *4 (-276)) (-5 *1 (-427 *4 *3)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-582 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-4 *1 (-225 *3)) (-4 *3 (-1104)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-701)))) ((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-346)) (-5 *1 (-970)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-199)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-199)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-346)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-375 (-501))) (-5 *1 (-346)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-810 *6))) (-5 *5 (-1 (-808 *6 *8) *8 (-810 *6) (-808 *6 *8))) (-4 *6 (-1001)) (-4 *8 (-13 (-959) (-556 (-810 *6)) (-950 *7))) (-5 *2 (-808 *6 *8)) (-4 *7 (-13 (-959) (-777))) (-5 *1 (-861 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-578 *3)) (|:| |image| (-578 *3)))) (-5 *1 (-822 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-107) *8))) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-1087 *3)) (-4 *3 (-959)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134) (-950 (-501)))) (-5 *1 (-519 *3 *4)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-1143 *4 *2)) (-4 *4 (-37 (-375 (-501)))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3996 (-108)) (|:| |w| (-199)))) (-5 *1 (-180)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 (-346)))) (-5 *1 (-936)) (-5 *5 (-346)))) ((*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1001)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-447 *5 *6))) (-5 *4 (-787 *5)) (-14 *5 (-578 (-1070))) (-5 *2 (-447 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-419)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-447 *5 *6))) (-5 *4 (-787 *5)) (-14 *5 (-578 (-1070))) (-5 *2 (-447 *5 *6)) (-5 *1 (-569 *5 *6)) (-4 *6 (-419)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-701)) (-4 *5 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) ((*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-959)) (-4 *1 (-618 *3 *2 *4)) (-4 *2 (-340 *3)) (-4 *4 (-340 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1037 *2 *3)) (-14 *2 (-701)) (-4 *3 (-959)))))
-(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-112 *3)) (-14 *3 (-501)))) ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1048 *2)) (-4 *2 (-276)) (-5 *1 (-157 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-375 *3)) (-4 *3 (-276)) (-5 *1 (-157 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-157 (-501))) (-5 *1 (-696 *3)) (-4 *3 (-372)))) ((*1 *2 *1) (-12 (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-793 *3)) (-14 *3 (-501)))) ((*1 *2 *1) (-12 (-14 *3 (-501)) (-5 *2 (-157 (-375 (-501)))) (-5 *1 (-794 *3 *4)) (-4 *4 (-792 *3)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-282 (-199))) (-5 *1 (-272)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-810 *3)) (|:| |den| (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-1079 *2)) (-4 *2 (-331)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-5 *4 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-740 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-375 *6))) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| -4119 (-578 (-375 *6))) (|:| -2978 (-621 *5)))) (-5 *1 (-740 *5 *6)) (-5 *4 (-578 (-375 *6))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-5 *4 (-375 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-740 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-375 *6))) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-2 (|:| -4119 (-578 (-375 *6))) (|:| -2978 (-621 *5)))) (-5 *1 (-740 *5 *6)) (-5 *4 (-578 (-375 *6))))))
-(((*1 *2 *1) (-12 (-4 *1 (-471 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-777)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-37 (-375 (-501)))) (-4 *4 (-959)))))
-(((*1 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-786)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-1154)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *3 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-578 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *1) (-12 (-5 *2 (-373 *3)) (-5 *1 (-834 *3)) (-4 *3 (-276)))))
-(((*1 *1 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-336)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-759)))))
-(((*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-513)) (-5 *3 (-501)))) ((*1 *2 *3) (-12 (-5 *2 (-1064 (-375 (-501)))) (-5 *1 (-862)) (-5 *3 (-501)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-975 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-701)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *6 *7 *8 *3 *4)) (-4 *4 (-1009 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-578 *4)) (|:| |todo| (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))))) (-5 *1 (-1040 *5 *6 *7 *3 *4)) (-4 *4 (-1009 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-5 *5 (-1064 *2)) (-4 *2 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *6 *2 *7)) (-4 *7 (-1001)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-553 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1070))) (-5 *5 (-375 (-1064 *2))) (-4 *2 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *1 (-512 *6 *2 *7)) (-4 *7 (-1001)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-1064 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-841)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-870 (-375 (-866 *6)) *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *6 (-508)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1633 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-703)) (-5 *2 (-107)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-107)) (-5 *1 (-1109 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-888)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-797)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-672 *3)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-388 (-1069 (-1069 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-1069 (-1069 *4))))))
+(((*1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-5 *1 (-369 *3 *4)) (-4 *4 (-1130 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1069 *9)) (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *9 (-871 *8 *6 *7)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |upol| (-1069 *8)) (|:| |Lval| (-583 *8)) (|:| |Lfact| (-583 (-2 (|:| -3755 (-1069 *8)) (|:| -2077 (-517))))) (|:| |ctpol| *8))) (-5 *1 (-675 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-998 *3)) (-4 *3 (-871 *7 *6 *4)) (-4 *6 (-725)) (-4 *4 (-779)) (-4 *7 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *6 *4 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-509)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-517)))) (-5 *1 (-541 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))) ((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-145) (-27) (-1094))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-1065 *4 *2)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 (-874 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-874 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 (-377 (-874 *5)) (-286 *5))) (-5 *1 (-1066 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-874 *5))) (-5 *3 (-874 *5)) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-377 *3)) (-5 *1 (-1066 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-3 *3 (-286 *5))) (-5 *1 (-1066 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-300)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-153 (-377 (-517))))) (-5 *2 (-583 (-2 (|:| |outval| (-153 *4)) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 (-153 *4))))))) (-5 *1 (-697 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *1 *1) (-12 (-4 *1 (-871 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1) (-4 *1 (-1112))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-1133 *3 *2)) (-4 *2 (-13 (-1130 *3) (-509) (-10 -8 (-15 -1401 ($ $ $))))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
+(((*1 *1 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-961)) (-4 *1 (-1130 *3)))))
+(((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-618 *4 *5 *6)) (-4 *4 (-1003)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-437)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
+(((*1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))) ((*1 *2 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1156)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-349))) (-5 *1 (-954)) (-5 *3 (-349)))))
+(((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2508 (-517)) (|:| -2879 (-583 *3)))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-153 (-199)) (-153 (-199)))) (-5 *4 (-998 (-199))) (-5 *5 (-107)) (-5 *2 (-1155)) (-5 *1 (-230)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-377 *7)) (|:| |a0| *6)) (-2 (|:| -2422 (-377 *7)) (|:| |coeff| (-377 *7))) "failed")) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *1) (-12 (-5 *2 (-998 *3)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *1 (-1121 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-57 (-583 (-608 *5)))) (-5 *1 (-608 *5)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 (-1153 *4))) (-4 *4 (-961)) (-5 *2 (-623 *4)) (-5 *1 (-944 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-757)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *6 (-583 (-286 (-349)))) (-5 *3 (-286 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *5 (-583 (-772 (-349)))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-349))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-286 (-349)))) (-5 *4 (-583 (-349))) (-5 *2 (-950)) (-5 *1 (-769)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-519 *5 *2 *6)) (-4 *6 (-1003)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-671)))))
+(((*1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1092)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 *5))))) (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-4 *4 (-13 (-278) (-779) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *4))))) (-5 *1 (-1030 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1077)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-618 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-4 *1 (-278))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-952 (-377 *2)))) (-5 *2 (-517)) (-5 *1 (-110 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (|partial| -12 (-4 *2 (-1003)) (-5 *1 (-1086 *3 *2)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2879 (-583 (-2 (|:| |irr| *10) (|:| -3631 (-517))))))) (-5 *6 (-583 *3)) (-5 *7 (-583 *8)) (-4 *8 (-779)) (-4 *3 (-278)) (-4 *10 (-871 *3 *9 *8)) (-4 *9 (-725)) (-5 *2 (-2 (|:| |polfac| (-583 *10)) (|:| |correct| *3) (|:| |corrfact| (-583 (-1069 *3))))) (-5 *1 (-566 *8 *9 *3 *10)) (-5 *4 (-583 (-1069 *3))))))
+(((*1 *1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-1130 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *3 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-708 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-297 *3)) (-4 *3 (-1108)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-480 *3 *4)) (-4 *3 (-1108)) (-14 *4 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-865 *3)) (-4 *3 (-13 (-333) (-1094) (-918))) (-5 *1 (-158 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-107)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1056)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-754)) (-5 *4 (-286 *5)) (-4 *5 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-754)) (-5 *4 (-286 *6)) (-5 *5 (-107)) (-4 *6 (-13 (-760) (-779) (-961))) (-5 *2 (-1158)) (-5 *1 (-758 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-760)) (-5 *2 (-1056)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-760)) (-5 *3 (-107)) (-5 *2 (-1056)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *2 (-1158)))) ((*1 *2 *3 *1 *4) (-12 (-4 *1 (-760)) (-5 *3 (-754)) (-5 *4 (-107)) (-5 *2 (-1158)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-278)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-416 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-843)) (-4 *5 (-779)) (-5 *2 (-583 (-608 *5))) (-5 *1 (-608 *5)))))
+(((*1 *2) (-12 (-4 *3 (-961)) (-5 *2 (-879 (-645 *3 *4))) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))))
+(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-509))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (|partial| -5 *1 (-703))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-509)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-509)) (-5 *1 (-887 *3 *4)))) ((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-509)))) ((*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *3)) (-4 *3 (-13 (-374) (-1094))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *3)) (-4 *4 (-13 (-777) (-333))) (-4 *3 (-1130 *4)) (-5 *2 (-107)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-942 *5 *6 *7 *3))) (-5 *1 (-942 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *2)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-583 (-1044 *5 *6 *7 *3))) (-5 *1 (-1044 *5 *6 *7 *3)) (-4 *3 (-975 *5 *6 *7)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *9)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *8 (-961)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))))
+(((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *4 (-156)) (-14 *6 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *2)) (-2 (|:| -3448 *5) (|:| -2077 *2)))) (-4 *2 (-212 (-2296 *3) (-703))) (-5 *1 (-430 *3 *4 *5 *2 *6 *7)) (-4 *5 (-779)) (-4 *7 (-871 *4 *2 (-789 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(((*1 *2 *3) (-12 (-4 *2 (-1130 *4)) (-5 *1 (-741 *4 *2 *3 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-377 *2))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1081 (-583 *4))) (-4 *4 (-779)) (-5 *2 (-583 (-583 *4))) (-5 *1 (-1080 *4)))))
+(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-278)))) ((*1 *2 *2) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-964 *2 *3 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *2 *4)) (-4 *4 (-278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-1062 3 *3)))) ((*1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-1155)))))
+(((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-954)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-846 *4 *5 *6 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-961)) (-4 *2 (-1130 *4)) (-5 *1 (-413 *4 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-377 (-1069 (-286 *5)))) (-5 *3 (-1153 (-286 *5))) (-5 *4 (-517)) (-4 *5 (-13 (-509) (-779))) (-5 *1 (-1031 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 *5)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-517)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-349)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-349)) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-4 *1 (-509)) (-5 *2 (-107)))))
+(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-950))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-5 *1 (-973))) ((*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1051 *4)) (-4 *4 (-1108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-517)) (-5 *1 (-1091 *4)) (-4 *4 (-961)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-278)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-416 *4 *5 *6 *2)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-333) (-777))) (-5 *1 (-162 *3 *2)) (-4 *2 (-1130 (-153 *3))))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-781 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-509)) (-4 *5 (-961)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-782 *5 *3)) (-4 *3 (-781 *5)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 *3)) (-5 *1 (-846 *4 *5 *6 *3)) (-4 *3 (-871 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-511 *3)) (-4 *3 (-502)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-703) *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))) ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-703) *3)) (-4 *3 (-1003)) (-5 *1 (-616 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-327 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-107)) (-5 *1 (-487 *4)))))
+(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-109))) ((*1 *1 *1) (-5 *1 (-155))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
+(((*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-377 *6)) (|:| |c| (-377 *6)) (|:| -2147 *6))) (-5 *1 (-931 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *2 (-2 (|:| |additions| (-517)) (|:| |multiplications| (-517)) (|:| |exponentiations| (-517)) (|:| |functionCalls| (-517)))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-998 (-199))) (-5 *6 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-630)))) ((*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1034 (-199))) (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-199))) (-5 *5 (-583 (-236))) (-5 *1 (-630)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *5 (-1130 *4)) (-5 *2 (-1 *6 (-583 *6))) (-5 *1 (-1148 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1145 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1003)) (-4 *4 (-1003)) (-4 *6 (-1003)) (-5 *2 (-1 *6 *5)) (-5 *1 (-618 *5 *4 *6)))))
+(((*1 *2 *1) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-230)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-1164 *4 *5 *6 *7))) (-5 *1 (-1164 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-583 (-1164 *6 *7 *8 *9))) (-5 *1 (-1164 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-1069 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *1) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *6)) (-5 *1 (-306 *3 *4 *5 *6)) (-4 *6 (-312 *3 *4 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-941 (-772 (-517)))) (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *4)))) (-4 *4 (-961)) (-5 *1 (-542 *4)))))
+(((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-1005 (-703))) (-5 *6 (-703)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4181)) (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1073)) (-5 *1 (-572)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 (-1121 (-517))) (|has| *1 (-6 -4181)) (-4 *1 (-588 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1085 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4181)) (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-340 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-623 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-379 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-623 *3)))))
+(((*1 *1) (-12 (-4 *1 (-434 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-4 *1 (-655))) ((*1 *1) (-4 *1 (-659))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))))
+(((*1 *2 *3 *3) (-12 (-4 *2 (-509)) (-4 *2 (-421)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *1 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-567 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-13 (-156) (-650 (-377 (-517))))) (-14 *4 (-843)))) ((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-583 *3)) (-5 *1 (-882 *3)) (-4 *3 (-502)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-583 *6) "failed") (-517) *6 *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))))
+(((*1 *2 *1) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-493))) ((*1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-1011 *6 *7 *4 *8 *9)))))
+(((*1 *1) (-5 *1 (-755))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *2 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-703)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-865 *5)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
+(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-421)) (-4 *3 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-418 *4 *3 *5 *6)) (-4 *6 (-871 *4 *3 *5)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-2 (|:| |totdeg| (-703)) (|:| -1913 *3)))) (-5 *4 (-703)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -3755 *4) (|:| -3688 (-517))))) (-4 *4 (-1130 (-517))) (-5 *2 (-703)) (-5 *1 (-411 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1 *1) (-5 *1 (-1021))))
+(((*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-973)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-888)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-509)) (-4 *4 (-779)) (-5 *1 (-526 *4 *2)) (-4 *2 (-400 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-703)))) ((*1 *1 *1) (-4 *1 (-372))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-278)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-360 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *4 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1076)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-1073)) (-5 *1 (-1077)))) ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-407)) (-5 *3 (-583 (-1073))) (-5 *1 (-1077)))))
+(((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))) ((*1 *1) (-4 *1 (-502))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-265 *3))) (-5 *1 (-265 *3)) (-4 *3 (-509)) (-4 *3 (-1108)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-349))) ((*1 *1) (-5 *1 (-349))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -3038 (-703)) (|:| |curves| (-703)) (|:| |polygons| (-703)) (|:| |constructs| (-703)))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 (-623 *4))) (-5 *3 (-843)) (-4 *4 (-961)) (-5 *1 (-943 *4)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
(((*1 *1) (-5 *1 (-1154))))
-(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-959)) (-5 *1 (-622 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-786)) (-5 *1 (-31 *4 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *5)) (-4 *5 (-331)) (-5 *2 (-578 *6)) (-5 *1 (-488 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-578 *7)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-926)) (-5 *2 (-786)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-808 *4 *3)) (-4 *3 (-1001)))))
-(((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))))
-(((*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1142 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 (-786)))) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-1037 *3 *4)) (-5 *1 (-908 *3 *4)) (-14 *3 (-839)) (-4 *4 (-331)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *5))) (-4 *5 (-959)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-553 (-47)))) (-5 *1 (-47)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-553 (-47))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-47))) (-5 *3 (-578 (-553 (-47)))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-47))) (-5 *3 (-553 (-47))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-331)))) ((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-906 *3)) (-5 *1 (-381 *3 *2 *4 *5)) (-4 *3 (-276)) (-4 *5 (-13 (-378 *2 *4) (-950 *2))))) ((*1 *2 *1) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-906 *3)) (-5 *1 (-383 *3 *2 *4 *5 *6)) (-4 *3 (-276)) (-4 *5 (-378 *2 *4)) (-14 *6 (-1148 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *5 (-959)) (-4 *2 (-13 (-372) (-950 *5) (-331) (-1090) (-254))) (-5 *1 (-410 *5 *3 *2)) (-4 *3 (-1125 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-553 (-458)))) (-5 *1 (-458)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-553 (-458))) (-5 *1 (-458)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-458))) (-5 *3 (-578 (-553 (-458)))) (-5 *1 (-458)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1064 (-458))) (-5 *3 (-553 (-458))) (-5 *1 (-458)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-839)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-655 *4 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-705 *4 *2 *5 *3)) (-4 *3 (-1125 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))) ((*1 *1 *1) (-4 *1 (-967))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-578 (-711 *3))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-5 *2 (-1070)) (-5 *1 (-298)))))
-(((*1 *1 *1 *1) (-4 *1 (-500))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-578 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-578 (-578 (-863 (-199))))))) ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-578 (-578 (-863 (-199))))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-723)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1148 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1064 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-31 *4 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-670 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3689 (-701)) (|:| |eqns| (-578 (-2 (|:| |det| *7) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (|:| |fgb| (-578 *7))))) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-701)) (-5 *1 (-844 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-152 (-199)) (-152 (-199)))) (-5 *4 (-991 (-199))) (-5 *5 (-107)) (-5 *2 (-1152)) (-5 *1 (-229)))))
-(((*1 *1 *2 *3) (-12 (-4 *1 (-352 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-5 *2 (-1048 *3)) (-5 *1 (-1055 *3)) (-4 *3 (-959)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-749 *4)) (-4 *4 (-777)) (-4 *1 (-1166 *4 *3)) (-4 *3 (-959)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1027 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1027 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-262 (-375 (-866 *5)))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *5)))) (-5 *1 (-1027 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-262 (-375 (-866 *4)))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-262 (-282 *4)))) (-5 *1 (-1027 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-375 (-866 *4)))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *4))))) (-5 *1 (-1027 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-262 (-375 (-866 *5))))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *5))))) (-5 *1 (-1027 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-262 (-375 (-866 *4))))) (-4 *4 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-262 (-282 *4))))) (-5 *1 (-1027 *4)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-415 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-1053)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-501)) (-5 *1 (-1087 *4)) (-4 *4 (-959)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-199))) (-5 *5 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))) ((*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-1 (-863 (-199)) (-199) (-199))) (-5 *4 (-991 (-199))) (-5 *5 (-578 (-232))) (-5 *1 (-628)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-701)) (-4 *1 (-204 *4)) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-204 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-206)) (-5 *2 (-701)))) ((*1 *1 *1) (-4 *1 (-206))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-237 *3)) (-4 *3 (-777)))) ((*1 *1 *1) (-12 (-4 *1 (-237 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *1 *1) (-12 (-4 *2 (-13 (-331) (-134))) (-5 *1 (-367 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-441 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *2 *1 *3) (-12 (-4 *2 (-331)) (-4 *2 (-820 *3)) (-5 *1 (-530 *2)) (-5 *3 (-1070)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-530 *2)) (-4 *2 (-331)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *4)) (-5 *3 (-578 (-701))) (-4 *1 (-820 *4)) (-4 *4 (-1001)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-820 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-820 *3)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-820 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1061 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1067 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1068 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1109 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1130 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1145 *4)) (-14 *4 (-1070)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-701)))))
-(((*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-419)) (-4 *3 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *3 *5 *6)) (-4 *6 (-870 *4 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-886)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-5 *1 (-490))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-839)) (-4 *4 (-959)) (-5 *1 (-942 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-621 *4))) (-5 *3 (-839)) (-4 *4 (-959)) (-5 *1 (-942 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-959)) (-5 *1 (-780 *5 *2)) (-4 *2 (-779 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 (-866 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-4 *3 (-331)) (-5 *2 (-1064 (-866 *3))))) ((*1 *2) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-795)))))
-(((*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-701)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-723)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-419)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2 *3 *4 *5)) (-4 *2 (-959)) (-4 *3 (-777)) (-4 *4 (-237 *3)) (-4 *5 (-723)))))
-(((*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-759)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-701)) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-278)) (-5 *2 (-388 *3)) (-5 *1 (-675 *5 *4 *6 *3)) (-4 *3 (-871 *6 *5 *4)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))))
+(((*1 *2 *3) (-12 (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |glbase| (-583 (-221 *4 *5))) (|:| |glval| (-583 (-517))))) (-5 *1 (-571 *4 *5)) (-5 *3 (-583 (-221 *4 *5))))))
+(((*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-534 *3)) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-583 *9)) (-5 *3 (-1 (-107) *9)) (-5 *4 (-1 (-107) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *1 (-894 *6 *7 *8 *9)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-509)) (-5 *2 (-377 (-1069 *1))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-1069 (-377 (-1069 *3)))) (-5 *1 (-513 *6 *3 *7)) (-5 *5 (-1069 *3)) (-4 *7 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1149 *5)) (-14 *5 (-1073)) (-4 *6 (-961)) (-5 *2 (-1127 *5 (-874 *6))) (-5 *1 (-869 *5 *6)) (-5 *3 (-874 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-1069 *3)))) ((*1 *2 *1 *3) (-12 (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *5 *4)) (-5 *2 (-377 (-1069 *3))) (-5 *1 (-872 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1069 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-4 *7 (-871 *6 *5 *4)) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-5 *1 (-872 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-377 (-1069 (-377 (-874 *5))))) (-5 *1 (-957 *5)) (-5 *3 (-377 (-874 *5))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 (-703))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-637 *3)) (-4 *3 (-558 (-493))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-556 *1))) (-4 *1 (-273)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-27) (-400 *4))) (-4 *4 (-13 (-779) (-509) (-952 (-517)))) (-4 *7 (-1130 (-377 *6))) (-5 *1 (-505 *4 *5 *6 *7 *2)) (-4 *2 (-312 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-300)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))))
+(((*1 *1) (-5 *1 (-300))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-209 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *4 (-1003)) (-5 *2 (-811 *3 *5)) (-5 *1 (-807 *3 *4 *5)) (-4 *3 (-1003)) (-4 *5 (-603 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-1045 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-865 *4))) (-4 *1 (-1035 *4)) (-4 *4 (-961)) (-5 *2 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-1083 *2)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-608 *3))) (-5 *1 (-815 *3)) (-4 *3 (-779)))))
+(((*1 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1054 (-2 (|:| |k| (-517)) (|:| |c| *6)))) (-5 *4 (-941 (-772 (-517)))) (-5 *5 (-1073)) (-5 *7 (-377 (-517))) (-4 *6 (-961)) (-5 *2 (-787)) (-5 *1 (-542 *6)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-703))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1145 *2)) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *1 (-835 *3 *2)) (-4 *2 (-1130 (-377 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *2 (-950)) (-5 *1 (-276)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *2 (-950)) (-5 *1 (-276)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-971 (-939 *4) (-1069 (-939 *4)))) (-5 *3 (-787)) (-5 *1 (-939 *4)) (-4 *4 (-13 (-777) (-333) (-937))))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-421)) (-4 *4 (-779)) (-4 *5 (-725)) (-5 *2 (-107)) (-5 *1 (-904 *3 *4 *5 *6)) (-4 *6 (-871 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |k| (-608 *3)) (|:| |c| *4)))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
+(((*1 *1) (-5 *1 (-512))))
+(((*1 *2 *3) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-153 (-349))) (-5 *1 (-717 *3)) (-4 *3 (-558 (-349))))) ((*1 *2 *3) (-12 (-5 *3 (-153 *4)) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-153 *5)) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-153 *4))) (-4 *4 (-156)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-156)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-961)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-843)) (-4 *5 (-961)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-153 *4)))) (-4 *4 (-509)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-153 *5)))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 *4)) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 *5)) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-153 *4))) (-4 *4 (-509)) (-4 *4 (-779)) (-4 *4 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-286 (-153 *5))) (-5 *4 (-843)) (-4 *5 (-509)) (-4 *5 (-779)) (-4 *5 (-558 (-349))) (-5 *2 (-153 (-349))) (-5 *1 (-717 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-583 (-1069 *7))) (-5 *3 (-1069 *7)) (-4 *7 (-871 *5 *6 *4)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *4 (-779)) (-5 *1 (-828 *5 *6 *4 *7)))))
+(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-509)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1388 (-564 *4 *5)) (|:| -2544 (-377 *5)))) (-5 *1 (-564 *4 *5)) (-5 *3 (-377 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-421)) (-4 *3 (-961)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1130 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-517))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-509)) (-4 *8 (-871 *7 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *9) (|:| |radicand| *9))) (-5 *1 (-875 *5 *6 *7 *8 *9)) (-5 *4 (-703)) (-4 *9 (-13 (-333) (-10 -8 (-15 -1787 (*8 $)) (-15 -1800 (*8 $)) (-15 -2256 ($ *8))))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-879 *3)) (-5 *1 (-1061 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-1158)) (-5 *1 (-418 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 (-199))) (-5 *2 (-286 (-349))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-13 (-509) (-952 (-517)) (-134))) (-5 *2 (-2 (|:| -2422 (-377 (-874 *5))) (|:| |coeff| (-377 (-874 *5))))) (-5 *1 (-523 *5)) (-5 *3 (-377 (-874 *5))))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-1153 *4)) (-5 *1 (-746 *4 *3)) (-4 *3 (-593 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-349)) (|:| |stabilityFactor| (-349)))) (-5 *1 (-181)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-273)) (-4 *2 (-1108)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-556 *1))) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *1)) (-4 *1 (-273)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-4 *3 (-333)) (-5 *2 (-1069 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1069 *7)) (-5 *3 (-517)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *1 (-291 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-128))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-33)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1174 *3 *4)) (-4 *3 (-961)) (-4 *4 (-775)))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-142)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-155)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1130 (-517))) (-5 *1 (-453 *3)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-1069 *3)) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-5 *6 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-513 *7 *3 *8)) (-4 *8 (-1003)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772 (-349))) (-5 *2 (-772 (-199))) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-814 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-812 *4 *5)) (-4 *5 (-1108)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 (-1 *6 (-583 *6)))) (-4 *5 (-37 (-377 (-517)))) (-4 *6 (-1145 *5)) (-5 *2 (-583 *6)) (-5 *1 (-1147 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-511 *2)) (-4 *2 (-502)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-874 *4))) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-583 (-874 *3))))) ((*1 *2) (-12 (-5 *2 (-583 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))) ((*1 *2 *3) (-12 (-5 *3 (-1153 (-422 *4 *5 *6 *7))) (-5 *2 (-583 (-874 *4))) (-5 *1 (-422 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *4 (-156)) (-14 *5 (-843)) (-14 *6 (-583 (-1073))) (-14 *7 (-1153 (-623 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-196 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-227 *3)))) ((*1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-138 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -2077 (-703)) (|:| -2986 *4) (|:| |num| *4)))) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *3 (-583 (-1073))) (-5 *4 (-107)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-547 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-5 *1 (-601 *3 *4)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-583 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-779)) (-4 *3 (-1003)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *2) (|:| -2077 *3)) (-2 (|:| -3448 *2) (|:| -2077 *3)))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-1073)) (|:| -1257 *4)))) (-4 *4 (-1003)) (-5 *1 (-811 *3 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *3 *5))) (-5 *1 (-1038 *3 *5)) (-4 *3 (-13 (-1003) (-33))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |val| *4) (|:| -3726 *5)))) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-583 (-1038 *4 *5))) (-5 *1 (-1038 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3726 *4))) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1038 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1038 *2 *3))) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))) (-5 *1 (-1039 *2 *3)))) ((*1 *1 *2 *3 *4) (-12 (-5 *4 (-583 (-1039 *2 *3))) (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1 *2) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-1063 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-583 *2))) (-5 *4 (-583 *5)) (-4 *5 (-37 (-377 (-517)))) (-4 *2 (-1145 *5)) (-5 *1 (-1147 *5 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-554 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-735)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-790 *4 *5 *6 *7)) (-4 *4 (-961)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 *3)) (-14 *7 *3))) ((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-14 *8 (-583 *5)) (-5 *2 (-1158)) (-5 *1 (-1163 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-871 *4 *6 *5)) (-14 *9 (-583 *3)) (-14 *10 *3))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-865 (-199))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-865 (-199))) (-5 *2 (-1158)) (-5 *1 (-437)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *2 (-1158)) (-5 *1 (-437)))))
+(((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *2 (-583 (-199))) (-5 *1 (-437)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-865 *3))))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 (-1054 *7))) (-4 *6 (-779)) (-4 *7 (-871 *5 (-489 *6) *6)) (-4 *5 (-961)) (-5 *2 (-1 (-1054 *7) *7)) (-5 *1 (-1027 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-155)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 *5))) (-5 *1 (-350 *5)) (-4 *5 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 *4)) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 *2) (-4 *5 (-156)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-843)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-843)))) ((*1 *2) (-12 (-4 *1 (-340 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-604 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-703)) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))))
+(((*1 *2) (-12 (-5 *2 (-1153 (-1004 *3 *4))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-735)))))
+(((*1 *2) (|partial| -12 (-4 *3 (-509)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1753 (-583 *1)))) (-4 *1 (-337 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-422 *3 *4 *5 *6)) (|:| -1753 (-583 (-422 *3 *4 *5 *6))))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-59 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-61 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276) (-632))) (-5 *1 (-62 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276) (-2276 (QUOTE X) (QUOTE HESS)) (-632)))) (-5 *1 (-63 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE XC)) (-632))) (-5 *1 (-64 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-69 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-72 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE EPS)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE EPS)) (-2276 (QUOTE YA) (QUOTE YB)) (-632)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1073)) (-14 *4 (-1073)) (-14 *5 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-75 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276) (-2276 (QUOTE X)) (-632))) (-5 *1 (-76 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE XC)) (-632)))) (-5 *1 (-77 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-78 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276) (-2276 (QUOTE X)) (-632)))) (-5 *1 (-79 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-80 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X) (QUOTE -1972)) (-2276) (-632)))) (-5 *1 (-81 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-82 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276) (-632)))) (-5 *1 (-83 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632)))) (-5 *1 (-84 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-309 (-2276 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2276) (-632)))) (-5 *1 (-85 *3)) (-14 *3 (-1073)))) ((*1 *1 *2) (-12 (-5 *2 (-309 (-2276 (QUOTE X)) (-2276 (QUOTE -1972)) (-632))) (-5 *1 (-87 *3)) (-14 *3 (-1073)))) ((*1 *2 *1) (-12 (-5 *2 (-920 2)) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-127 *3 *4 *5))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *5)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-1040 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *1 *2) (-12 (-5 *2 (-214 *4 *5)) (-14 *4 (-703)) (-4 *5 (-156)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 (-623 *4))) (-4 *4 (-156)) (-5 *2 (-1153 (-623 (-377 (-874 *4))))) (-5 *1 (-165 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))) (-5 *1 (-189 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-920 10)) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-219 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-996 (-286 *4))) (-4 *4 (-13 (-779) (-509) (-558 (-349)))) (-5 *2 (-996 (-349))) (-5 *1 (-231 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-248)))) ((*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *3 (-156)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1139 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4) (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *1 (-283 *3 *4 *5 *6)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-300)))) ((*1 *2 *1) (-12 (-5 *2 (-286 *5)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *3 *4 *2)) (-4 *3 (-299 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *2 (-299 *4)) (-5 *1 (-317 *2 *4 *3)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1175 *3 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *2 (-1166 *3 *4)))) ((*1 *1 *2) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-623 (-632))) (-4 *1 (-353)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-354)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-354)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))) ((*1 *2 *3) (-12 (-5 *2 (-364)) (-5 *1 (-363 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-364)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-366)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-153 (-349))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-517)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-153 (-349)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-349))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-517))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-627)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-632)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-265 (-286 (-634)))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-627))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-632))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-286 (-634))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-5 *1 (-368 *3 *4 *5 *6)) (-14 *3 (-1073)) (-14 *4 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-14 *5 (-583 (-1073))) (-14 *6 (-1077)))) ((*1 *1 *2) (-12 (-5 *2 (-301 *4)) (-4 *4 (-13 (-779) (-21))) (-5 *1 (-397 *3 *4)) (-4 *3 (-13 (-156) (-37 (-377 (-517))))))) ((*1 *1 *2) (-12 (-5 *1 (-397 *2 *3)) (-4 *2 (-13 (-156) (-37 (-377 (-517))))) (-4 *3 (-13 (-779) (-21))))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-874 (-377 *3)))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-874 (-377 *3))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-961)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-404)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-404)))) ((*1 *1 *2) (-12 (-5 *2 (-404)) (-5 *1 (-407)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-407)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-632))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1077)) (|:| -3071 (-583 (-300))))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-300)) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-300))) (-4 *1 (-410)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 (-377 (-874 *3)))) (-4 *3 (-156)) (-14 *6 (-1153 (-623 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-443 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-443 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-5 *2 (-920 16)) (-5 *1 (-454)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *2) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-467)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-551 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *1 (-561 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-575 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-612 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-5 *1 (-611 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-879 (-879 (-879 *3)))) (-4 *3 (-1003)) (-5 *1 (-611 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-616 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *2)) (-4 *4 (-343 *3)) (-4 *2 (-343 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-634))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-632))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-517))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-153 (-349))) (-5 *1 (-627)))) ((*1 *1 *2) (-12 (-5 *2 (-634)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-5 *2 (-349)) (-5 *1 (-632)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-517))) (-5 *2 (-286 (-634))) (-5 *1 (-634)))) ((*1 *1 *2) (-12 (-5 *1 (-636 *2)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-644 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-5 *1 (-645 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-1003)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3448 *3) (|:| -2077 *4))) (-4 *3 (-779)) (-4 *4 (-1003)) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-1 (-107) *2 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-648 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-4 *3 (-961)) (-4 *4 (-659)) (-5 *1 (-668 *3 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-696)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| |mdnia| (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-701)))) ((*1 *2 *3) (-12 (-5 *2 (-706)) (-5 *1 (-705 *3)) (-4 *3 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-740)))) ((*1 *2 *1) (-12 (-4 *2 (-822 *3)) (-5 *1 (-749 *3 *2 *4)) (-4 *3 (-1003)) (-14 *4 *3))) ((*1 *1 *2) (-12 (-4 *3 (-1003)) (-14 *4 *3) (-5 *1 (-749 *3 *2 *4)) (-4 *2 (-822 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-756)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *1 (-770)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-770)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-784 *3 *4 *5 *6)) (-4 *4 (-961)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-786)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-790 *3 *4 *5 *6)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-874 *3)) (-5 *1 (-790 *3 *4 *5 *6)) (-4 *3 (-961)) (-14 *4 (-583 (-1073))) (-14 *5 (-583 (-703))) (-14 *6 (-703)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-874 (-47))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 (-47)))) (-5 *2 (-286 (-517))) (-5 *1 (-798)))) ((*1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-751 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-820)))) ((*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-823 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-827 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-827 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-377 (-388 *3))) (-4 *3 (-278)) (-5 *1 (-836 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-377 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))) ((*1 *2 *3) (-12 (-5 *3 (-446)) (-5 *2 (-286 *4)) (-5 *1 (-841 *4)) (-4 *4 (-13 (-779) (-509))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-888)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *1 (-948 *3)) (-4 *3 (-1108)))) ((*1 *2 *3) (-12 (-5 *3 (-282)) (-5 *1 (-948 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-949 *3 *4 *5 *2 *6)) (-4 *2 (-871 *3 *4 *5)) (-14 *6 (-583 *2)))) ((*1 *1 *2) (-12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) ((*1 *2 *3) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-957 *3)) (-4 *3 (-509)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *5)) (-5 *1 (-965 *3 *4 *5)) (-14 *3 (-703)) (-14 *4 (-703)) (-4 *5 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-5 *1 (-1027 *3 *4 *2)) (-4 *2 (-871 *3 (-489 *4) *4)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *2 (-779)) (-5 *1 (-1027 *3 *2 *4)) (-4 *4 (-871 *3 (-489 *2) *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-623 *4)) (-5 *1 (-1040 *3 *4)) (-14 *3 (-703)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-131)) (-4 *1 (-1042)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-1054 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-1058 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1064 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1070 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1071 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1071 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1072)))) ((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1073)))) ((*1 *2 *1) (-12 (-5 *2 (-1082 (-1073) (-407))) (-5 *1 (-1077)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1081 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (-12 (-5 *2 (-1089)) (-5 *1 (-1088 *3)) (-4 *3 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-787)) (-5 *1 (-1089)))) ((*1 *1 *2) (-12 (-5 *2 (-874 *3)) (-4 *3 (-961)) (-5 *1 (-1103 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1103 *3)) (-4 *3 (-961)))) ((*1 *1 *2) (-12 (-5 *2 (-879 *3)) (-4 *3 (-1108)) (-5 *1 (-1106 *3)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1116 *3 *2)) (-4 *2 (-1145 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1118 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-998 *3)) (-4 *3 (-1108)) (-5 *1 (-1121 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-14 *3 (-1073)) (-5 *1 (-1127 *3 *4)) (-4 *4 (-961)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-1137 *3 *2)) (-4 *2 (-1114 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1149 *4)) (-14 *4 (-1073)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *5 *3))) ((*1 *1 *2) (-12 (-5 *2 (-1127 *4 *3)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3) (-5 *1 (-1146 *3 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1154)))) ((*1 *2 *3) (-12 (-5 *3 (-437)) (-5 *2 (-1154)) (-5 *1 (-1157)))) ((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1158)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-871 *3 *5 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-871 *3 *5 *4)) (-5 *1 (-1163 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-14 *6 (-583 *4)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *2) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-961)))) ((*1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *2) (-12 (-5 *2 (-601 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)) (-5 *1 (-1171 *3 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)) (-4 *2 (-775)))))
+(((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-736 *4 *5)) (-4 *5 (-13 (-29 *4) (-1094) (-880))))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-761)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *1 *1) (-12 (-5 *1 (-1062 *2 *3)) (-14 *2 (-843)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-751 *4)) (-4 *4 (-779)) (-5 *2 (-107)) (-5 *1 (-608 *4)))))
+(((*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349))))))) (-5 *1 (-735)))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-583 *5)) (-4 *5 (-779)) (-5 *1 (-1080 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-278)) (-5 *2 (-703)) (-5 *1 (-424 *5 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1130 *3)) (-4 *3 (-961)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-703)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-797)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-4 *1 (-817)) (-5 *3 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-950)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *2 (-1 *6 *5)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *6)) (-5 *4 (-583 *5)) (-4 *6 (-1003)) (-4 *5 (-1108)) (-5 *2 (-1 *5 *6)) (-5 *1 (-580 *6 *5)))) ((*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-583 *5)) (-5 *4 (-583 *6)) (-4 *5 (-1003)) (-4 *6 (-1108)) (-5 *1 (-580 *5 *6)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-583 *5)) (-5 *4 (-583 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1003)) (-4 *2 (-1108)) (-5 *1 (-580 *5 *2)))) ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1) (-5 *1 (-107))))
+(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-404)) (-4 *5 (-779)) (-5 *1 (-1009 *5 *4)) (-4 *4 (-400 *5)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-1021)) (-5 *2 (-107)) (-5 *1 (-753)))))
+(((*1 *2 *3) (|partial| -12 (-4 *5 (-952 (-47))) (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-4 *5 (-400 *4)) (-5 *2 (-388 (-1069 (-47)))) (-5 *1 (-405 *4 *5 *3)) (-4 *3 (-1130 *5)))))
(((*1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
-(((*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-540 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3) (-12 (-5 *2 (-373 (-1064 *1))) (-5 *1 (-282 *4)) (-5 *3 (-1064 *1)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *4 (-777)))) ((*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-98 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1001)))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-590 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-740 *4 *2)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))))) ((*1 *2 *3) (-12 (-5 *3 (-591 *2 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-740 *4 *2)) (-4 *4 (-13 (-331) (-134) (-950 (-501)) (-950 (-375 (-501))))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-918 *3)) (-14 *3 (-501)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156)))))
-(((*1 *1 *1) (-4 *1 (-500))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-701)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1147 *3)) (-4 *3 (-23)) (-4 *3 (-1104)))))
-(((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1001) (-33))) (-4 *6 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1035 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-505)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-578 *7))) (-4 *1 (-1099 *4 *5 *6 *7)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-246)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-701)) (-5 *1 (-513)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-346)) (-5 *1 (-970)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-419)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-839)) (-4 *5 (-508)) (-5 *2 (-621 *5)) (-5 *1 (-876 *5 *3)) (-4 *3 (-593 *5)))))
-(((*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *2 (-820 *5)) (-5 *1 (-623 *5 *2 *3 *4)) (-4 *3 (-340 *2)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-959)) (-4 *4 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *4)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-108)) (-4 *4 (-959)) (-4 *4 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *4)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-1012)) (-4 *3 (-777)) (-5 *2 (-2 (|:| |var| (-553 *1)) (|:| -3027 (-501)))) (-4 *1 (-389 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-810 *3)) (|:| -3027 (-701)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| |var| *5) (|:| -3027 (-701)))))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3027 (-501)))) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-447 *4 *5)) (-14 *4 (-578 (-1070))) (-4 *5 (-959)) (-5 *2 (-866 *5)) (-5 *1 (-864 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-1108)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-310 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-578 *6)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
+(((*1 *2 *3) (-12 (-5 *3 (-754)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 *4)) (-5 *1 (-1039 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-333)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-583 (-2 (|:| |gen| *3) (|:| -2624 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -1931 *3) (|:| -3419 *4)))) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1054 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-787)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-300)))))
+(((*1 *1 *1) (-5 *1 (-493))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-107)) (-5 *1 (-542 *3)) (-4 *3 (-961)))))
+(((*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *2 (-2 (|:| -1753 (-623 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-623 *3)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-379 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-1130 (-517))) (-5 *2 (-2 (|:| -1753 (-623 (-517))) (|:| |basisDen| (-517)) (|:| |basisInv| (-623 (-517))))) (-5 *1 (-700 *3 *4)) (-4 *4 (-379 (-517) *3)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-902 *3 *4 *5 *6)) (-4 *6 (-657 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-319)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| -1753 (-623 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-623 *4)))) (-5 *1 (-1162 *3 *4 *5 *6)) (-4 *6 (-379 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-848)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1073)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-583 (-221 *4 *5))) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-1069 *4)) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-556 *4)) (-5 *6 (-377 (-1069 *4))) (-4 *4 (-13 (-400 *7) (-27) (-1094))) (-4 *7 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-513 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-1069 *1))) (-5 *1 (-286 *4)) (-5 *3 (-1069 *1)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *4 (-779)))) ((*1 *2 *3) (-12 (-4 *1 (-831)) (-5 *2 (-388 (-1069 *1))) (-5 *3 (-1069 *1)))))
+(((*1 *2 *2 *1) (-12 (-5 *2 (-1175 *3 *4)) (-4 *1 (-344 *3 *4)) (-4 *3 (-779)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-356 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-751 *3)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1168 *2 *3)) (-4 *2 (-779)) (-4 *3 (-961)))))
+(((*1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *2) (-12 (-4 *1 (-217)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-442)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-659)) (-5 *2 (-703)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1015)) (-5 *2 (-843)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3083 (-583 (-787))) (|:| -1640 (-583 (-787))) (|:| |presup| (-583 (-787))) (|:| -1709 (-583 (-787))) (|:| |args| (-583 (-787))))) (-5 *1 (-1073)))))
+(((*1 *2 *3 *2) (-12 (-5 *1 (-614 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-114 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-509)) (-5 *1 (-389 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-610 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-1003)) (-5 *2 (-703)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1056)) (-5 *3 (-706)) (-5 *1 (-109)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| |poly| *6) (|:| -2131 (-591 *6 (-377 *6)))))) (-5 *1 (-744 *5 *6)) (-5 *3 (-591 *6 (-377 *6))))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |val| (-583 *6)) (|:| -3726 *7)))) (-4 *6 (-975 *3 *4 *5)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *4)) (-4 *4 (-509)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) ((*1 *1 *1) (-4 *1 (-502))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-608 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-843)) (-5 *1 (-612 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-911 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1106 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961)))))
+(((*1 *2 *2 *3) (-12 (-5 *1 (-614 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)) (-5 *2 (-107)) (-5 *1 (-1054 *4)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-1153 *3)) (-5 *1 (-645 *3 *4)) (-4 *4 (-1130 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-517)) (-5 *1 (-453 *4)) (-4 *4 (-1130 *2)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1003)) (-5 *1 (-98 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *7 (-1130 *5)) (-4 *4 (-657 *5 *7)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-743 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-414 *3)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1003)) (-4 *4 (-13 (-961) (-808 *3) (-779) (-558 *2))) (-5 *2 (-814 *3)) (-5 *1 (-983 *3 *4 *5)) (-4 *5 (-13 (-400 *4) (-808 *3) (-558 *2))))))
+(((*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-517)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1040 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)) (-5 *1 (-910 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-874 (-517))) (-5 *2 (-300)) (-5 *1 (-302)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-1069 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-377 (-1069 *3))) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-513 *6 *3 *7)) (-4 *7 (-1003)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-843))) (-5 *1 (-1004 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))))
+(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))))
+(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-240)))))
+(((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))) ((*1 *2 *3) (-12 (-5 *3 (-591 *2 (-377 *2))) (-4 *2 (-1130 *4)) (-5 *1 (-742 *4 *2)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-556 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))) (-4 *4 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-250 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
+(((*1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-754)))))
+(((*1 *2 *3) (-12 (-4 *4 (-278)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1025 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1153 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -3038 (-517)) (|:| -3661 (-517)) (|:| |spline| (-517)) (|:| -2547 (-517)) (|:| |axesColor| (-797)) (|:| -3029 (-517)) (|:| |unitsColor| (-797)) (|:| |showing| (-517))))) (-5 *1 (-1154)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1054 *4)) (-5 *3 (-517)) (-4 *4 (-961)) (-5 *1 (-1058 *4)))) ((*1 *1 *2 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-1146 *3 *4 *5)) (-4 *3 (-961)) (-14 *4 (-1073)) (-14 *5 *3))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-623 (-377 (-874 (-517))))) (-5 *2 (-583 (-623 (-286 (-517))))) (-5 *1 (-946)) (-5 *3 (-286 (-517))))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1619 *5) (|:| -2131 *3)))) (-5 *1 (-741 *5 *6 *3 *7)) (-4 *3 (-593 *6)) (-4 *7 (-593 (-377 *6))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 (-377 (-517)))) (-5 *2 (-583 (-2 (|:| |outval| *4) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *4)))))) (-5 *1 (-711 *4)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-542 *3)) (-4 *3 (-37 *2)) (-4 *3 (-961)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-715 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-156)))))
+(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-517)) (-5 *1 (-180)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-5 *2 (-583 *1)) (-4 *1 (-1035 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1104 *3)) (-4 *3 (-891)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-703))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-445 *4 *5 *6 *7)) (|:| -4139 (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-703)) (-4 *2 (-1003)) (-5 *1 (-613 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (|has| *1 (-6 -4171)) (-4 *1 (-374)) (-5 *2 (-843)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
+(((*1 *2 *2) (-12 (-4 *3 (-952 (-517))) (-4 *3 (-13 (-779) (-509))) (-5 *1 (-31 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1069 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-961)) (-4 *1 (-273)))) ((*1 *2) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-5 *2 (-1069 *3)))) ((*1 *2) (-12 (-4 *1 (-657 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1130 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-977 *3 *2)) (-4 *3 (-13 (-777) (-333))) (-4 *2 (-1130 *3)))))
+(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-517) "failed") *5)) (-4 *5 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-517) "failed") *4)) (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-500 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-725)) (-4 *2 (-239 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-2 (|:| -3402 (-383 *4 (-377 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2527 (-377 *6)) (|:| |special| (-377 *6)))) (-5 *1 (-660 *5 *6)) (-5 *3 (-377 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-818 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-818 *3 *5)) (-4 *3 (-1130 *5)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-583 *9)) (-5 *3 (-583 *8)) (-5 *4 (-107)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1038 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-1056)) (-5 *1 (-276)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-906)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-998 *4)) (-4 *4 (-1108)) (-5 *1 (-996 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-517) (-517))) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-703) (-703))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)))))
+(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-215)))))
+(((*1 *1 *1 *1) (-5 *1 (-146))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-146)))))
+(((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-139 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-333)) (-14 *5 (-910 *3 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-388 *2)) (-4 *2 (-278)) (-5 *1 (-836 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-388 (-874 *6))) (-5 *5 (-1073)) (-5 *3 (-874 *6)) (-4 *6 (-13 (-278) (-134))) (-5 *2 (-51)) (-5 *1 (-837 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-506)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) ((*1 *2 *3 *2) (-12 (-4 *1 (-719)) (-5 *2 (-950)) (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1 (-107) *7 (-583 *7))) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-1114 *4)) (-4 *4 (-961)) (-4 *4 (-509)) (-5 *2 (-377 (-874 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1005 *3)) (-5 *1 (-827 *3)) (-4 *3 (-338)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *5)) (|:| -4114 (-583 (-874 *5)))))) (-5 *1 (-1177 *5 *6 *7)) (-5 *3 (-583 (-874 *5))) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-2 (|:| -3674 (-1069 *4)) (|:| -4114 (-583 (-874 *4)))))) (-5 *1 (-1177 *4 *5 *6)) (-5 *3 (-583 (-874 *4))) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))))
+(((*1 *2 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-1130 *4)) (-5 *1 (-741 *4 *3 *2 *5)) (-4 *2 (-593 *3)) (-4 *5 (-593 (-377 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *1 (-741 *4 *5 *2 *6)) (-4 *2 (-593 *5)) (-4 *6 (-593 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-874 (-517)))) (-5 *1 (-407)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-199))) (-5 *2 (-1007)) (-5 *1 (-692)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-623 (-517))) (-5 *2 (-1007)) (-5 *1 (-692)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-109)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-779)) (-5 *1 (-851 *4 *2)) (-4 *2 (-400 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1056)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-950)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-753)))))
+(((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-509)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-4 *7 (-909 *4)) (-4 *2 (-621 *7 *8 *9)) (-5 *1 (-485 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-621 *4 *5 *6)) (-4 *8 (-343 *7)) (-4 *9 (-343 *7)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-333)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-623 *2)) (-4 *2 (-333)) (-4 *2 (-961)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1024 *2 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-212 *2 *3)) (-4 *5 (-212 *2 *3)) (-4 *3 (-333)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-1080 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-779)) (-5 *1 (-1080 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1056))) (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-267)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-517)) (-5 *6 (-2 (|:| |try| (-349)) (|:| |did| (-349)) (|:| -3098 (-349)))) (-5 *7 (-1 (-1158) (-1153 *5) (-1153 *5) (-349))) (-5 *3 (-1153 (-349))) (-5 *5 (-349)) (-5 *2 (-1158)) (-5 *1 (-720)))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)) (-5 *1 (-418 *4 *5 *6 *3)) (-4 *3 (-871 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-998 (-772 (-349)))) (-5 *2 (-998 (-772 (-199)))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(((*1 *2 *2) (-12 (-5 *2 (-286 (-199))) (-5 *1 (-186)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-1091 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3) (-12 (-4 *4 (-779)) (-5 *2 (-583 (-583 (-583 *4)))) (-5 *1 (-1080 *4)) (-5 *3 (-583 (-583 *4))))))
+(((*1 *1) (-5 *1 (-437))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-788)))) ((*1 *2 *3) (-12 (-5 *3 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-787)) (-5 *2 (-1158)) (-5 *1 (-788)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1054 *4)) (-4 *4 (-1003)) (-4 *4 (-1108)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-703)) (-5 *1 (-42 *4 *3)) (-4 *3 (-387 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-278) (-134))) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-871 *4 *5 *6)) (-5 *2 (-583 (-583 *7))) (-5 *1 (-417 *4 *5 *6 *7)) (-5 *3 (-583 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-583 (-583 *8))) (-5 *1 (-417 *5 *6 *7 *8)) (-5 *3 (-583 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-1069 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-377 *4)) (-4 *4 (-1130 *3)) (-4 *3 (-13 (-333) (-134) (-952 (-517)))) (-5 *1 (-521 *3 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *1 (-534 *2)) (-4 *2 (-952 *3)) (-4 *2 (-333)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-534 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-996 *2)) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-4 *4 (-13 (-779) (-509))) (-5 *1 (-570 *4 *2)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-880)) (-5 *2 (-1073)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-996 *1)) (-4 *1 (-880)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-510 *6 *3)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1145 *4)) (-5 *1 (-1147 *4 *2)) (-4 *4 (-37 (-377 (-517)))))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1139 *3 *4 *5)) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-374)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-632)))) ((*1 *2 *1) (-12 (-4 *2 (-1003)) (-5 *1 (-646 *3 *2 *4)) (-4 *3 (-779)) (-14 *4 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *2)) (-2 (|:| -3448 *3) (|:| -2077 *2)))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *1 (-235 *2)) (-4 *2 (-1108)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-583 (-236))) (-5 *4 (-1073)) (-5 *2 (-51)) (-5 *1 (-236)))))
+(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-5 *2 (-2 (|:| -3435 *3) (|:| -1257 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3220 *1))) (-4 *1 (-278)))))
+(((*1 *2 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-703)) (-4 *3 (-13 (-659) (-338) (-10 -7 (-15 ** (*3 *3 (-517)))))) (-5 *1 (-220 *3)))))
+(((*1 *2) (-12 (-5 *2 (-583 *3)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
+(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *1 *1) (-12 (-4 *2 (-156)) (-4 *2 (-961)) (-5 *1 (-647 *2 *3)) (-4 *3 (-585 *2)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-766 *2)) (-4 *2 (-156)) (-4 *2 (-961)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -3837 (-109)) (|:| |w| (-199)))) (-5 *1 (-180)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-998 (-199))) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-5 *2 (-849)) (-5 *1 (-847 *3)) (-4 *3 (-558 (-493))))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-849)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-998 (-199))) (-5 *1 (-849)))))
+(((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-623 *3)) (|:| |invmval| (-623 *3)) (|:| |genIdeal| (-469 *3 *4 *5 *6)))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *3 (-156)))))
+(((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4180)) (-4 *1 (-138 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-517)) (-4 *4 (-1003)) (-5 *1 (-670 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *1 (-670 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))) (-5 *1 (-1039 *3 *4)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-377 *5)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-5 *1 (-135 *4 *5 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1075 (-377 (-517)))) (-5 *2 (-377 (-517))) (-5 *1 (-166)))) ((*1 *2 *2 *3 *4) (-12 (-5 *2 (-623 (-286 (-199)))) (-5 *3 (-583 (-1073))) (-5 *4 (-1153 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *3 (-280 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-280 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)) (-5 *1 (-265 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 *1)) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1 *1 (-583 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-273)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-1 *1 *1))) (-4 *1 (-273)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-265 *3))) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-265 *3)) (-4 *1 (-280 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-517))) (-5 *4 (-1075 (-377 (-517)))) (-5 *1 (-281 *2)) (-4 *2 (-37 (-377 (-517)))))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *1)) (-4 *1 (-344 *4 *5)) (-4 *4 (-779)) (-4 *5 (-156)))) ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-344 *2 *3)) (-4 *2 (-779)) (-4 *3 (-156)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 *1)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-703)) (-5 *4 (-1 *1 (-583 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 (-583 *1)))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-583 (-703))) (-5 *4 (-583 (-1 *1 *1))) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-109))) (-5 *3 (-583 *1)) (-5 *4 (-1073)) (-4 *1 (-400 *5)) (-4 *5 (-779)) (-4 *5 (-558 (-493))))) ((*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1073)) (-4 *1 (-400 *4)) (-4 *4 (-779)) (-4 *4 (-558 (-493))))) ((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-400 *3)) (-4 *3 (-779)) (-4 *3 (-558 (-493))))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-478 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1108)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *4)) (-5 *3 (-583 *5)) (-4 *1 (-478 *4 *5)) (-4 *4 (-1003)) (-4 *5 (-1108)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-765 *3)) (-4 *3 (-333)) (-5 *1 (-651 *3)))) ((*1 *2 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *3 *2) (-12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-1073))) (-5 *4 (-583 (-377 (-874 *5)))) (-5 *2 (-377 (-874 *5))) (-4 *5 (-509)) (-5 *1 (-957 *5)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-265 (-377 (-874 *4)))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-265 (-377 (-874 *4))))) (-5 *2 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *1 (-957 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1054 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4180)) (-4 *1 (-456 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-583 (-1073))) (-5 *2 (-583 (-583 (-349)))) (-5 *1 (-938)) (-5 *5 (-349)))) ((*1 *2 *3) (-12 (-5 *3 (-958 *4 *5)) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-14 *5 (-583 (-1073))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *6 (-583 (-1073))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *5))))) (-5 *1 (-1177 *5 *6 *7)) (-14 *6 (-583 (-1073))) (-14 *7 (-583 (-1073))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-13 (-777) (-278) (-134) (-937))) (-5 *2 (-583 (-583 (-939 (-377 *4))))) (-5 *1 (-1177 *4 *5 *6)) (-14 *5 (-583 (-1073))) (-14 *6 (-583 (-1073))))))
+(((*1 *2 *3 *1) (-12 (-4 *4 (-13 (-777) (-333))) (-5 *2 (-107)) (-5 *1 (-971 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-407)))))
+(((*1 *2 *1) (-12 (-4 *1 (-343 *3)) (-4 *3 (-1108)) (-4 *3 (-779)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-343 *4)) (-4 *4 (-1108)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-583 (-874 *5))) (-5 *1 (-311 *4 *5 *6 *7)) (-4 *4 (-312 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-4 *4 (-333)) (-5 *2 (-583 (-874 *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-843)) (-5 *2 (-437)) (-5 *1 (-1154)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-449 *5 *6))) (-5 *4 (-789 *5)) (-14 *5 (-583 (-1073))) (-5 *2 (-449 *5 *6)) (-5 *1 (-571 *5 *6)) (-4 *6 (-421)))))
+(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-761)))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-286 (-199)))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-107)) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-343 *2)) (-4 *2 (-1108)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-127 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-703)) (-4 *5 (-156)))) ((*1 *1 *1) (-12 (-5 *1 (-127 *2 *3 *4)) (-14 *2 (-517)) (-14 *3 (-703)) (-4 *4 (-156)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *2) (-12 (-4 *3 (-961)) (-4 *1 (-621 *3 *2 *4)) (-4 *2 (-343 *3)) (-4 *4 (-343 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1040 *2 *3)) (-14 *2 (-703)) (-4 *3 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1753 (-583 *6))) *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *6) "failed")) (|:| -1753 (-583 (-1153 *6))))) (-5 *1 (-745 *6 *7)) (-5 *4 (-1153 *6)))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))) (-5 *1 (-981 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
+(((*1 *2 *3) (-12 (-5 *3 (-534 *2)) (-4 *2 (-13 (-29 *4) (-1094))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))))) ((*1 *2 *3) (-12 (-5 *3 (-534 (-377 (-874 *4)))) (-4 *4 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *2 (-286 *4)) (-5 *1 (-537 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-583 (-517)))) (-5 *1 (-888)) (-5 *3 (-583 (-517))))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-517)) (-4 *5 (-777)) (-4 *5 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *5 *6)) (-4 *6 (-1130 *5)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-271)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-583 (-1056))) (-5 *1 (-276)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *2 (-400 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-952 *4)) (-4 *3 (-13 (-779) (-509))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1007)) (-5 *3 (-706)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-753)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1069 *4)) (-5 *1 (-327 *4)) (-4 *4 (-319)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-199)) (-5 *5 (-517)) (-5 *2 (-1104 *3)) (-5 *1 (-722 *3)) (-4 *3 (-891)))) ((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-107)) (-5 *1 (-1104 *2)) (-4 *2 (-891)))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-980 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-978 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *9)) (-4 *8 (-975 *5 *6 *7)) (-4 *9 (-1012 *5 *6 *7 *8)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-703)) (-5 *1 (-1043 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-51)))))
+(((*1 *2 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)) (-5 *3 (-1056)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-215)))) ((*1 *1 *2) (-12 (-5 *2 (-142)) (-5 *1 (-797)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *4)) (-4 *4 (-156)) (-5 *2 (-623 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-623 *4)) (-5 *1 (-386 *3 *4)) (-4 *3 (-387 *4)))) ((*1 *2) (-12 (-4 *1 (-387 *3)) (-4 *3 (-156)) (-5 *2 (-623 *3)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-278)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2790 (-623 (-377 (-874 *4)))) (|:| |vec| (-583 (-377 (-874 *4)))) (|:| -2261 (-703)) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517))))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4))))))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-112 *3)) (-14 *3 (-517)))) ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1054 *2)) (-4 *2 (-278)) (-5 *1 (-157 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-377 *3)) (-4 *3 (-278)) (-5 *1 (-157 *3)))) ((*1 *2 *3) (-12 (-5 *2 (-157 (-517))) (-5 *1 (-698 *3)) (-4 *3 (-374)))) ((*1 *2 *1) (-12 (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-795 *3)) (-14 *3 (-517)))) ((*1 *2 *1) (-12 (-14 *3 (-517)) (-5 *2 (-157 (-377 (-517)))) (-5 *1 (-796 *3 *4)) (-4 *4 (-793 *3)))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-583 (-517))) (-5 *3 (-623 (-517))) (-5 *1 (-1013)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *2 *1) (-12 (-5 *2 (-1153 (-3 (-437) "undefined"))) (-5 *1 (-1154)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-939 *3)) (-4 *3 (-13 (-777) (-333) (-937))))) ((*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-977 *2 *3)) (-4 *2 (-13 (-777) (-333))) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-349)) (-5 *1 (-181)))))
+(((*1 *2 *1 *3) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-973)) (-5 *3 (-1056)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1073)) (-5 *2 (-3 (|:| |fst| (-404)) (|:| -2677 "void"))) (-5 *1 (-1076)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-377 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-739 *5 *2 *3 *6)) (-4 *5 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-377 *2))))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *2)) (-5 *4 (-1 (-107) *2 *2)) (-5 *1 (-1109 *2)) (-4 *2 (-1003)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-779)) (-5 *1 (-1109 *2)))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-278)) (-5 *1 (-633 *3)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-1083 *2)) (-4 *2 (-333)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-448)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *1 (-1029 *3 *2)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *1)) (-4 *1 (-337 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-386 *3 *2)) (-4 *3 (-387 *2)))) ((*1 *2) (-12 (-4 *1 (-387 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1158)) (-5 *1 (-349)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-377 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-742 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-4 *6 (-1130 *5)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-2 (|:| -1753 (-583 (-377 *6))) (|:| -2790 (-623 *5)))) (-5 *1 (-742 *5 *6)) (-5 *4 (-583 (-377 *6))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1069 (-517))) (-5 *2 (-517)) (-5 *1 (-864)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-2 (|:| |deg| (-703)) (|:| -2131 *5)))) (-5 *1 (-741 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-593 (-377 *5))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)))))
+(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1005 (-1005 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-297 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-5 *1 (-480 *3 *4)) (-14 *4 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-975 *3 *4 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))))
+(((*1 *1 *1) (-4 *1 (-970))) ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-522 *3)) (-4 *3 (-952 (-517))))) ((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 (-1054 *4) (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 (-1054 *5)) (-583 (-1054 *5)))) (-5 *4 (-517)) (-5 *2 (-583 (-1054 *5))) (-5 *1 (-1176 *5)) (-4 *5 (-1108)))))
+(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-493))) (-5 *2 (-1073)) (-5 *1 (-493)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1 (-107) *8))) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |goodPols| (-583 *8)) (|:| |badPols| (-583 *8)))) (-5 *1 (-894 *5 *6 *7 *8)) (-5 *4 (-583 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-779)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-333)) (-4 *1 (-299 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-1130 *4)) (-4 *4 (-1112)) (-4 *1 (-312 *4 *3 *5)) (-4 *5 (-1130 (-377 *3))))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-337 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-1153 *1)) (-4 *4 (-156)) (-4 *1 (-340 *4 *5)) (-4 *5 (-1130 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-379 *3 *4)) (-4 *4 (-1130 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-156)) (-4 *1 (-387 *3)))))
+(((*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-333)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-4 *1 (-305 *4 *3 *5 *2)) (-4 *2 (-312 *4 *3 *5)))) ((*1 *1 *2 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-333)) (-4 *4 (-1130 *2)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *2 *4 *5 *6)) (-4 *6 (-312 *2 *4 *5)))) ((*1 *1 *2 *2) (-12 (-4 *2 (-333)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))) (-4 *1 (-305 *2 *3 *4 *5)) (-4 *5 (-312 *2 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *1 (-305 *3 *4 *5 *2)) (-4 *2 (-312 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-383 *4 (-377 *4) *5 *6)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-4 *3 (-333)) (-4 *1 (-305 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
+(((*1 *2 *3) (-12 (-4 *3 (-1130 (-377 (-517)))) (-5 *2 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517)))) (-5 *1 (-835 *3 *4)) (-4 *4 (-1130 (-377 *3))))) ((*1 *2 *3) (-12 (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *3)) (-4 *3 (-1130 (-377 *4))))))
+(((*1 *1 *1 *2) (-12 (-5 *1 (-1038 *3 *2)) (-4 *3 (-13 (-1003) (-33))) (-4 *2 (-13 (-1003) (-33))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3 *1 *4) (-12 (-5 *3 (-1038 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1003) (-33))) (-4 *6 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *5 *6)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-583 *8))) (-5 *3 (-583 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-846 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-4 *1 (-694))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)) (-5 *1 (-615 *5 *6 *2)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *4 (-1130 *3)) (-5 *1 (-464 *3 *4 *5)) (-4 *5 (-379 *3 *4)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-714 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-884 *3 *2)) (-4 *2 (-123)) (-4 *3 (-509)) (-4 *3 (-961)) (-4 *2 (-724)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1069 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-888)) (-4 *2 (-123)) (-5 *1 (-1075 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1127 *4 *3)) (-14 *4 (-1073)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1130 *5)) (-5 *1 (-660 *5 *2)) (-4 *5 (-333)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-583 (-1069 *4))) (-5 *3 (-1069 *4)) (-4 *4 (-831)) (-5 *1 (-600 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-502)))) ((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-484 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-4 *3 (-509)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *4 (-156)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)) (-5 *2 (-703)) (-5 *1 (-622 *4 *5 *6 *3)) (-4 *3 (-621 *4 *5 *6)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-4 *5 (-509)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-153 (-349))))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-517)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-153 (-349)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-349))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1073)) (-5 *3 (-583 (-874 (-517)))) (-5 *4 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-627)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-632)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-286 (-634)))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1153 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-623 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-627))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-632))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-286 (-634))) (-5 *1 (-300)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-1056)) (-5 *1 (-300)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-333)) (-5 *2 (-583 *3)) (-5 *1 (-867 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *2) (-12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 (-377 *3))) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-975 *6 *7 *8)) (-4 *6 (-509)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *9)))) (-5 *3 (-583 *9)) (-4 *1 (-1102 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |bas| *1) (|:| -4139 (-583 *8)))) (-5 *3 (-583 *8)) (-4 *1 (-1102 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-512)))) ((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1069 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-333)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1108)) (-4 *5 (-343 *4)) (-4 *2 (-343 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *6 *2 *7)) (-4 *6 (-961)) (-4 *7 (-212 *4 *6)) (-4 *2 (-212 *5 *6)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))) ((*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-37 (-377 (-517)))) (-4 *4 (-961)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-107)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-377 (-874 *4))) (-5 *3 (-1073)) (-4 *4 (-13 (-509) (-952 (-517)) (-134))) (-5 *1 (-523 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1175 *4 *2)) (-4 *1 (-344 *4 *2)) (-4 *4 (-779)) (-4 *2 (-156)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-751 *4)) (-4 *1 (-1168 *4 *2)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *3 (-1130 *4)) (-4 *2 (-1145 *4)) (-5 *1 (-1148 *4 *3 *5 *2)) (-4 *5 (-593 *3)))))
+(((*1 *1) (-5 *1 (-1155))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-703)) (-5 *5 (-583 *3)) (-4 *3 (-278)) (-4 *6 (-779)) (-4 *7 (-725)) (-5 *2 (-107)) (-5 *1 (-566 *6 *7 *3 *8)) (-4 *8 (-871 *3 *7 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-103)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-192)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)) (-4 *2 (-278)))) ((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))) ((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *2 *3) (-12 (-4 *1 (-319)) (-5 *3 (-517)) (-5 *2 (-1082 (-843) (-703))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2) (-12 (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2) (-12 (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2) (-12 (-5 *2 (-377 (-874 *3))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-517)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-312 *4 *5 *6)) (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-2 (|:| |num| (-623 *5)) (|:| |den| *5))))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-926 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-3 (|:| |%expansion| (-283 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-390 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-14 *6 (-1073)) (-14 *7 *3))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-1153 (-377 (-517)))) (-5 *1 (-1178 *4)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-1069 *4)) (-5 *1 (-487 *4)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-13 (-509) (-134))) (-5 *1 (-1124 *4 *2)) (-4 *2 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-703)) (-5 *1 (-535 *2)) (-4 *2 (-502)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2372 *3) (|:| -2077 (-703)))) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-107)) (-5 *1 (-164 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 (-153 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-107)) (-5 *1 (-1098 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1034 (-199))) (-5 *1 (-232 *5)))))
+(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-343 *3)) (-4 *3 (-1108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-286 *3)) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-787)))))
+(((*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *5 (-1130 *4)) (-5 *2 (-583 (-590 (-377 *5)))) (-5 *1 (-594 *4 *5)) (-5 *3 (-590 (-377 *5))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *7)) (-4 *7 (-779)) (-4 *5 (-831)) (-4 *6 (-725)) (-4 *8 (-871 *5 *6 *7)) (-5 *2 (-388 (-1069 *8))) (-5 *1 (-828 *5 *6 *7 *8)) (-5 *4 (-1069 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-831)) (-4 *5 (-1130 *4)) (-5 *2 (-388 (-1069 *5))) (-5 *1 (-829 *4 *5)) (-5 *3 (-1069 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3) (|partial| -12 (-5 *2 (-517)) (-5 *1 (-522 *3)) (-4 *3 (-952 *2)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-129 *3 *4 *2)) (-4 *2 (-343 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-909 *4)) (-4 *2 (-343 *4)) (-5 *1 (-468 *4 *5 *2 *3)) (-4 *3 (-343 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *5)) (-4 *5 (-909 *4)) (-4 *4 (-509)) (-5 *2 (-623 *4)) (-5 *1 (-626 *4 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *4 (-909 *3)) (-5 *1 (-1123 *3 *4 *2)) (-4 *2 (-1130 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-1112)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-1130 (-377 *4))))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1038 *4 *5)) (-4 *4 (-13 (-1003) (-33))) (-4 *5 (-13 (-1003) (-33))) (-5 *2 (-107)) (-5 *1 (-1039 *4 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-49 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-127 *5 *6 *7)) (-14 *5 (-517)) (-14 *6 (-703)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-127 *5 *6 *8)) (-5 *1 (-126 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-153 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-153 *6)) (-5 *1 (-152 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-286 *3) (-286 *3))) (-4 *3 (-13 (-961) (-779))) (-5 *1 (-197 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-214 *5 *6)) (-14 *5 (-703)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-5 *2 (-214 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-265 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-265 *6)) (-5 *1 (-264 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-265 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1056)) (-5 *5 (-556 *6)) (-4 *6 (-273)) (-4 *2 (-1108)) (-5 *1 (-268 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-556 *5)) (-4 *5 (-273)) (-4 *2 (-273)) (-5 *1 (-269 *5 *2)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-556 *1)) (-4 *1 (-273)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-623 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-623 *6)) (-5 *1 (-275 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-286 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-5 *2 (-286 *6)) (-5 *1 (-284 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-306 *5 *6 *7 *8)) (-4 *5 (-333)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *8 (-312 *5 *6 *7)) (-4 *9 (-333)) (-4 *10 (-1130 *9)) (-4 *11 (-1130 (-377 *10))) (-5 *2 (-306 *9 *10 *11 *12)) (-5 *1 (-303 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-312 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-308 *3)) (-4 *3 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1112)) (-4 *8 (-1112)) (-4 *6 (-1130 *5)) (-4 *7 (-1130 (-377 *6))) (-4 *9 (-1130 *8)) (-4 *2 (-312 *8 *9 *10)) (-5 *1 (-310 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-312 *5 *6 *7)) (-4 *10 (-1130 (-377 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-4 *2 (-343 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-343 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-388 *6)) (-5 *1 (-375 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-377 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-5 *2 (-377 *6)) (-5 *1 (-376 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-383 *5 *6 *7 *8)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *7 (-1130 *6)) (-4 *8 (-13 (-379 *6 *7) (-952 *6))) (-4 *9 (-278)) (-4 *10 (-909 *9)) (-4 *11 (-1130 *10)) (-5 *2 (-383 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-379 *10 *11) (-952 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-387 *6)) (-5 *1 (-385 *4 *5 *2 *6)) (-4 *4 (-387 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-509)) (-5 *1 (-388 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-961) (-779))) (-4 *6 (-13 (-961) (-779))) (-4 *2 (-400 *6)) (-5 *1 (-391 *5 *4 *6 *2)) (-4 *4 (-400 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-395 *6)) (-5 *1 (-393 *5 *4 *6 *2)) (-4 *4 (-395 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-473 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-534 *5)) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-534 *6)) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2422 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| -2422 *6) (|:| |coeff| *6))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-333)) (-4 *2 (-333)) (-5 *1 (-533 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-333)) (-4 *6 (-333)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-533 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-547 *6)) (-5 *1 (-544 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-547 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-547 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-547 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-545 *6 *7 *8)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1108)) (-5 *1 (-547 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-583 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-581 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-583 *6)) (-5 *5 (-583 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-583 *8)) (-5 *1 (-582 *6 *7 *8)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-961)) (-4 *8 (-961)) (-4 *6 (-343 *5)) (-4 *7 (-343 *5)) (-4 *2 (-621 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-621 *5 *6 *7)) (-4 *9 (-343 *8)) (-4 *10 (-343 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-509)) (-4 *7 (-509)) (-4 *6 (-1130 *5)) (-4 *2 (-1130 (-377 *8))) (-5 *1 (-643 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1130 (-377 *6))) (-4 *8 (-1130 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-961)) (-4 *9 (-961)) (-4 *5 (-779)) (-4 *6 (-725)) (-4 *2 (-871 *9 *7 *5)) (-5 *1 (-661 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-725)) (-4 *4 (-871 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-779)) (-4 *6 (-779)) (-4 *7 (-725)) (-4 *9 (-961)) (-4 *2 (-871 *9 *8 *6)) (-5 *1 (-662 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-725)) (-4 *4 (-871 *9 *7 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-668 *5 *7)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *7 (-659)) (-5 *2 (-668 *6 *7)) (-5 *1 (-667 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-668 *3 *4)) (-4 *4 (-659)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-714 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-714 *6)) (-5 *1 (-713 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-729 *6)) (-5 *1 (-730 *4 *5 *2 *6)) (-4 *4 (-729 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-765 *6)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-765 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-765 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-764 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-772 *6)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-772 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-772 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *1 (-771 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-804 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-804 *6)) (-5 *1 (-803 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-811 *5 *6)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-811 *5 *7)) (-5 *1 (-810 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-874 *6)) (-5 *1 (-868 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-779)) (-4 *8 (-961)) (-4 *6 (-725)) (-4 *2 (-13 (-1003) (-10 -8 (-15 -1642 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-703)))))) (-5 *1 (-873 *6 *7 *8 *5 *2)) (-4 *5 (-871 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-865 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-865 *6)) (-5 *1 (-898 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-874 *4))) (-4 *4 (-961)) (-4 *2 (-871 (-874 *4) *5 *6)) (-4 *5 (-725)) (-4 *6 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $)) (-15 -1638 ((-3 $ "failed") (-1073)))))) (-5 *1 (-901 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-509)) (-4 *6 (-509)) (-4 *2 (-909 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-909 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-913 *6)) (-5 *1 (-914 *4 *5 *2 *6)) (-4 *4 (-913 *5)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-961)) (-4 *10 (-961)) (-14 *5 (-703)) (-14 *6 (-703)) (-4 *8 (-212 *6 *7)) (-4 *9 (-212 *5 *7)) (-4 *2 (-964 *5 *6 *10 *11 *12)) (-5 *1 (-966 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-964 *5 *6 *7 *8 *9)) (-4 *11 (-212 *6 *10)) (-4 *12 (-212 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-998 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-998 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-583 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-996 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-996 *6)) (-5 *1 (-995 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-999 *4 *2)) (-4 *4 (-777)) (-4 *2 (-1047 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1054 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1052 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1054 *6)) (-5 *5 (-1054 *7)) (-4 *6 (-1108)) (-4 *7 (-1108)) (-4 *8 (-1108)) (-5 *2 (-1054 *8)) (-5 *1 (-1053 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1069 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-5 *2 (-1069 *6)) (-5 *1 (-1067 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1085 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1118 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1118 *6 *8 *10)) (-5 *1 (-1113 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1121 *6)) (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1121 *5)) (-4 *5 (-777)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1054 *6)) (-5 *1 (-1120 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1127 *5 *6)) (-14 *5 (-1073)) (-4 *6 (-961)) (-4 *8 (-961)) (-5 *2 (-1127 *7 *8)) (-5 *1 (-1122 *5 *6 *7 *8)) (-14 *7 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1130 *6)) (-5 *1 (-1128 *5 *4 *6 *2)) (-4 *4 (-1130 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5 *7 *9)) (-4 *5 (-961)) (-4 *6 (-961)) (-14 *7 (-1073)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1139 *6 *8 *10)) (-5 *1 (-1134 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1073)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-961)) (-4 *6 (-961)) (-4 *2 (-1145 *6)) (-5 *1 (-1143 *5 *6 *4 *2)) (-4 *4 (-1145 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1153 *5)) (-4 *5 (-1108)) (-4 *6 (-1108)) (-5 *2 (-1153 *6)) (-5 *1 (-1152 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-1174 *3 *4)) (-4 *4 (-775)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-226 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-779)) (-4 *5 (-239 *4)) (-4 *6 (-725)) (-5 *2 (-583 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-377 *6)) (-4 *5 (-1112)) (-4 *6 (-1130 *5)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-703)) (-4 *7 (-1130 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-319)) (-5 *2 (-388 (-1069 (-1069 *5)))) (-5 *1 (-1107 *5)) (-5 *3 (-1069 (-1069 *5))))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-718)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-349)) (-5 *1 (-92)))))
+(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-4 *5 (-333)) (-5 *2 (-377 *6)) (-5 *1 (-791 *5 *4 *6)) (-4 *4 (-1145 *5)) (-4 *6 (-1130 *5)))) ((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))) ((*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-703)) (-5 *4 (-1146 *5 *6 *7)) (-4 *5 (-333)) (-14 *6 (-1073)) (-14 *7 *5) (-5 *2 (-377 (-1127 *6 *5))) (-5 *1 (-792 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-703)))) ((*1 *2 *3) (-12 (-4 *4 (-961)) (-4 *2 (-13 (-374) (-952 *4) (-333) (-1094) (-256))) (-5 *1 (-412 *4 *3 *2)) (-4 *3 (-1130 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-517)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-961)) (-5 *1 (-623 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 *4)) (-4 *4 (-961)) (-4 *1 (-1024 *3 *4 *5 *6)) (-4 *5 (-212 *3 *4)) (-4 *6 (-212 *3 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-703)) (-4 *4 (-278)) (-4 *6 (-1130 *4)) (-5 *2 (-1153 (-583 *6))) (-5 *1 (-424 *4 *6)) (-5 *5 (-583 *6)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1073)) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-520 *5 *3)) (-4 *3 (-569)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1073)) (-5 *4 (-772 *2)) (-4 *2 (-1037)) (-4 *2 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-558 (-814 (-517)))) (-4 *5 (-808 (-517))) (-4 *5 (-13 (-779) (-952 (-517)) (-421) (-579 (-517)))) (-5 *1 (-520 *5 *2)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -1931 *4) (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-975 *3 *4 *5)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-5 *2 (-2 (|:| -1931 *3) (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-1130 *3)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-961)) (-4 *2 (-621 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1130 *4)) (-4 *5 (-343 *4)) (-4 *6 (-343 *4)))))
+(((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-623 (-377 *4))))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *3 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-333)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1153 *1)) (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-437)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-4 *1 (-256))) ((*1 *2 *3) (-12 (-5 *3 (-388 *4)) (-4 *4 (-509)) (-5 *2 (-583 (-2 (|:| -1931 (-703)) (|:| |logand| *4)))) (-5 *1 (-290 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *1) (-12 (-5 *2 (-601 *3 *4)) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-13 (-961) (-650 (-377 (-517))))) (-4 *5 (-779)) (-5 *1 (-1167 *4 *5 *2)) (-4 *2 (-1172 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-1171 *3 *4)) (-4 *4 (-650 (-377 (-517)))) (-4 *3 (-779)) (-4 *4 (-156)))))
+(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-361)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-556 *3)) (-5 *5 (-1 (-1069 *3) (-1069 *3))) (-4 *3 (-13 (-27) (-400 *6))) (-4 *6 (-13 (-779) (-509))) (-5 *2 (-534 *3)) (-5 *1 (-504 *6 *3)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1154)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 (-1 (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-865 (-199)) (-199) (-199))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 (-1 (-199) (-199) (-199)))) (-5 *4 (-998 (-349))) (-5 *2 (-1155)) (-5 *1 (-228)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-1073)) (-5 *5 (-583 (-236))) (-4 *7 (-400 *6)) (-4 *6 (-13 (-509) (-779) (-952 (-517)))) (-5 *2 (-1154)) (-5 *1 (-229 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1154)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-800 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-800 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1154)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-802 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-802 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-996 (-349))) (-5 *2 (-1155)) (-5 *1 (-232 *3)) (-4 *3 (-13 (-558 (-493)) (-1003))))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-804 *6)) (-5 *4 (-996 (-349))) (-5 *5 (-583 (-236))) (-4 *6 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *6)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-804 *5)) (-5 *4 (-996 (-349))) (-4 *5 (-13 (-558 (-493)) (-1003))) (-5 *2 (-1155)) (-5 *1 (-232 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-865 (-199)))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-583 (-199))) (-5 *2 (-1155)) (-5 *1 (-233)))) ((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-583 (-199))) (-5 *4 (-583 (-236))) (-5 *2 (-1155)) (-5 *1 (-233)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-421)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-831)) (-5 *1 (-426 *3 *4 *5 *6)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-831)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-804 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-1054 (-874 *4)) (-1054 (-874 *4)))) (-5 *1 (-1161 *4)) (-4 *4 (-333)))))
+(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-583 *3)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-779)) (-5 *4 (-583 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-583 *4)))) (-5 *1 (-1080 *6)) (-5 *5 (-583 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-509)) (-4 *2 (-961)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))) ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *1)))) (-4 *1 (-980 *4 *5 *6 *3)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-1108)) (-5 *1 (-163 *3 *2)) (-4 *2 (-610 *3)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-583 (-265 *4))) (-5 *1 (-567 *3 *4 *5)) (-4 *3 (-779)) (-4 *4 (-13 (-156) (-650 (-377 (-517))))) (-14 *5 (-843)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-109)) (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-779)) (-5 *1 (-556 *5)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |eigmult| (-703)) (|:| |eigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))))
+(((*1 *2 *2) (-12 (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-893 *3 *4 *2 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)) (-4 *5 (-975 *3 *4 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-4 *4 (-961)) (-5 *2 (-517)) (-5 *1 (-412 *4 *3 *5)) (-4 *3 (-1130 *4)) (-4 *5 (-13 (-374) (-952 *4) (-333) (-1094) (-256))))))
+(((*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-843)) (-5 *1 (-1004 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-777)) (-5 *1 (-274 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-961)) (-4 *1 (-621 *3 *4 *5)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-787)))) (-5 *1 (-787)))) ((*1 *2 *1) (-12 (-5 *2 (-1040 *3 *4)) (-5 *1 (-910 *3 *4)) (-14 *3 (-843)) (-4 *4 (-333)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *5))) (-4 *5 (-961)) (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1) (-4 *1 (-458))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1121 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-583 *7)) (|:| -3726 *8))) (-4 *7 (-975 *4 *5 *6)) (-4 *8 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-349)) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-874 *6)) (-5 *4 (-1073)) (-5 *5 (-772 *7)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *7 (-13 (-1094) (-29 *6))) (-5 *1 (-198 *6 *7)))) ((*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-107)) (-5 *3 (-1069 *6)) (-5 *4 (-772 *6)) (-4 *6 (-13 (-1094) (-29 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *1 (-198 *5 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *4)) (-4 *4 (-37 *3)) (-4 *4 (-961)) (-5 *3 (-377 (-517))) (-5 *1 (-1058 *4)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3652 *6) (|:| |sol?| (-107))) (-517) *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-286 (-199))) (-5 *2 (-377 (-517))) (-5 *1 (-276)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-199)))))
+(((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-879 (-1069 *4))) (-5 *1 (-327 *4)) (-5 *3 (-1069 *4)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 *4)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1072)) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-5 *2 (-754)) (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-418 *4 *5 *6 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-395 *2)) (-4 *2 (-1003)) (-4 *2 (-338)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-3 (-377 (-874 *5)) (-1063 (-1073) (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-583 (-623 (-377 (-874 *5))))) (-5 *1 (-263 *5)) (-5 *4 (-623 (-377 (-874 *5)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-583 *7) (-583 *7))) (-5 *2 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-894 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (|:| |lsa| (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))))) (-5 *2 (-583 (-1056))) (-5 *1 (-240)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-469 *3 *4 *5 *6))) (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-623 *4)) (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-624 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-849)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-849)) (-5 *4 (-377 (-517))) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-865 (-199)))))) ((*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 (-199))))) (|:| |xValues| (-998 (-199))) (|:| |yValues| (-998 (-199))))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 (-199))))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-998 (-349)))) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-583 (-107))) (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *7 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-51)) (-5 *1 (-761)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-502)) (-5 *1 (-144 *2)))))
+(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-418 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-703)) (-5 *4 (-1153 *2)) (-4 *5 (-278)) (-4 *6 (-909 *5)) (-4 *2 (-13 (-379 *6 *7) (-952 *6))) (-5 *1 (-383 *5 *6 *7 *2)) (-4 *7 (-1130 *6)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-909 *2)) (-4 *4 (-1130 *3)) (-4 *2 (-278)) (-5 *1 (-383 *2 *3 *4 *5)) (-4 *5 (-13 (-379 *3 *4) (-952 *3))))) ((*1 *2 *1) (-12 (-4 *3 (-509)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)))) ((*1 *2 *1) (-12 (-4 *4 (-156)) (-4 *2 (|SubsetCategory| (-659) *4)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1038 *3 *4)) (-4 *3 (-13 (-1003) (-33))) (-4 *4 (-13 (-1003) (-33))))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-377 (-874 *4)))) (-5 *1 (-846 *4 *5 *6 *7)) (-4 *7 (-871 *4 *6 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-300)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-623 (-517))) (-5 *5 (-107)) (-5 *7 (-623 (-199))) (-5 *3 (-517)) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 (-153 *4)) (-918) (-1094))) (-5 *1 (-546 *4 *3 *2)) (-4 *3 (-13 (-400 *4) (-918) (-1094))))))
+(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(((*1 *2 *3 *1) (-12 (-4 *1 (-893 *4 *5 *3 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)) (-4 *6 (-975 *4 *5 *3)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073)))))
+(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))))
(((*1 *1) (-5 *1 (-128))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-959)) (-4 *2 (-1001)))))
-(((*1 *2 *2) (-12 (-5 *2 (-356)) (-5 *1 (-405)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-356)) (-5 *1 (-405)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33))) ((*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) ((*1 *1) (-4 *1 (-657))) ((*1 *1) (-5 *1 (-1070))))
-(((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))))
-(((*1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-723)) (-4 *3 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *3)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-769 *4)) (-5 *1 (-281 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-769 *4)) (-5 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4))))
-(((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-149 *3 *2)) (-4 *3 (-150 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *2 *4)) (-4 *4 (-1125 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *4 (-1125 *2)) (-4 *2 (-156)) (-5 *1 (-377 *3 *2 *4)) (-4 *3 (-378 *2 *4)))) ((*1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *3 (-1125 *2)) (-5 *2 (-501)) (-5 *1 (-698 *3 *4)) (-4 *4 (-378 *2 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 *4)))) (-4 *4 (-419)) (-5 *2 (-578 (-3 (-375 (-866 *4)) (-1060 (-1070) (-866 *4))))) (-5 *1 (-261 *4)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-556 (-810 (-501)))) (-4 *5 (-806 (-501))) (-4 *5 (-13 (-777) (-950 (-501)) (-419) (-577 (-501)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-568)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))))
-(((*1 *2 *1) (-12 (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-805 *3 *4 *5)) (-4 *3 (-1001)) (-4 *5 (-601 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-808 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-578 *5)) (-5 *1 (-811 *4 *5)) (-4 *5 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *2 (-870 *3 *5 *4)) (-5 *1 (-901 *3 *4 *5 *2)) (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)))))
-(((*1 *2 *1) (-12 (-5 *2 (-786)) (-5 *1 (-50)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-61 *3)) (-14 *3 (-1070)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-67 *3)) (-14 *3 (-1070)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-70 *3)) (-14 *3 (-1070)))) ((*1 *2 *3) (-12 (-5 *3 (-356)) (-5 *2 (-1154)) (-5 *1 (-363)))) ((*1 *2 *1) (-12 (-4 *1 (-364)) (-5 *2 (-1154)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))))
-(((*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-107) *2)) (-4 *1 (-138 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4168)) (-4 *1 (-454 *3)) (-4 *3 (-1104)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-435)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-701)) (-4 *2 (-1001)) (-5 *1 (-611 *2)))))
-(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-578 (-2 (|:| |func| *2) (|:| |pole| (-107))))) (-4 *2 (-13 (-389 *4) (-916))) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-247 *4 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-359)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-578 (-155)))))))
-(((*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501))))) (-4 *5 (-1125 *4)) (-5 *2 (-1064 (-375 *5))) (-5 *1 (-557 *4 *5)) (-5 *3 (-375 *5)))) ((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-373 *6) *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-134) (-27) (-950 (-501)) (-950 (-375 (-501))))) (-5 *2 (-1064 (-375 *6))) (-5 *1 (-557 *5 *6)) (-5 *3 (-375 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-107)) (-5 *1 (-238)))))
-(((*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3) (-12 (-5 *3 (-356)) (-5 *2 (-1154)) (-5 *1 (-359)))) ((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-359)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-107)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-863 *4)) (-4 *4 (-959)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-754)) (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-214)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-1154)) (-5 *1 (-214)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *2 (-959)) (-5 *1 (-49 *2 *3)) (-14 *3 (-578 (-1070))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 (-839))) (-4 *2 (-331)) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-839)) (-14 *5 (-908 *4 *2)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-282 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *2 *3 *1) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-123)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1001)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-508)) (-5 *1 (-562 *2 *4)) (-4 *4 (-1125 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-640 *2)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-4 *2 (-959)) (-5 *1 (-666 *2 *3)) (-4 *3 (-657)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *5)) (-5 *3 (-578 (-701))) (-4 *1 (-671 *4 *5)) (-4 *4 (-959)) (-4 *5 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-671 *4 *2)) (-4 *4 (-959)) (-4 *2 (-777)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 *6)) (-5 *3 (-578 (-701))) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-870 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *2 (-777)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-4 *2 (-870 *4 (-487 *5) *5)) (-5 *1 (-1024 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-777)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-866 *4)) (-5 *1 (-1097 *4)) (-4 *4 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-1148 *5)) (-5 *3 (-701)) (-5 *4 (-1018)) (-4 *5 (-318)) (-5 *1 (-485 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2 *3) (-12 (-4 *1 (-766)) (-5 *3 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *2 (-948)))) ((*1 *2 *3) (-12 (-4 *1 (-766)) (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-948)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 *2))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-1070)) (|:| -2922 (-404))))) (-5 *1 (-1074)))))
-(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-417 *3 *4 *5 *2)) (-4 *2 (-870 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-723)) (-4 *2 (-237 *4)))))
-(((*1 *2) (-12 (-5 *2 (-621 (-826 *3))) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) ((*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018))))))))) ((*1 *2) (-12 (-5 *2 (-621 *3)) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *3 (-340 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-578 (-863 (-199))))) (-5 *3 (-578 (-795))) (-5 *1 (-435)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *2 (-13 (-372) (-950 *4) (-331) (-1090) (-254))) (-5 *1 (-410 *4 *3 *2)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))) ((*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1022 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-128)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-131)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| |radicand| (-375 *5)) (|:| |deg| (-701)))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-1125 (-375 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-616 *4 *5 *6)) (-4 *5 (-1001)))))
-(((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-978 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-336)) (-4 *1 (-297 *3)) (-4 *3 (-331)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-232)))))
-(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-701)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-723)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-578 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *1 *1 *1) (-5 *1 (-349))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-1026 *3 (-556 *1))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1026 (-517) (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-37 *3)) (-5 *1 (-562 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-650 *3)) (-5 *1 (-599 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-659) *3)))) ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
+(((*1 *2) (-12 (-4 *4 (-1112)) (-4 *5 (-1130 *4)) (-4 *6 (-1130 (-377 *5))) (-5 *2 (-703)) (-5 *1 (-311 *3 *4 *5 *6)) (-4 *3 (-312 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *4)) (-4 *3 (-779)) (-4 *4 (-961)) (-5 *2 (-751 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-775)) (-5 *1 (-1174 *3 *2)) (-4 *3 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-2 (|:| |num| (-1153 *4)) (|:| |den| *4))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-556 *1)) (-4 *1 (-273)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-583 (-107))) (-5 *7 (-623 (-199))) (-5 *8 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-687)))))
+(((*1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-514)) (-5 *3 (-517)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-377 (-517)))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *3) (-12 (-4 *1 (-842)) (-5 *2 (-2 (|:| -1931 (-583 *1)) (|:| -3220 *1))) (-5 *3 (-583 *1)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-5 *2 (-2 (|:| A (-623 *5)) (|:| |eqs| (-583 (-2 (|:| C (-623 *5)) (|:| |g| (-1153 *5)) (|:| -2131 *6) (|:| |rh| *5)))))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *5)) (-5 *4 (-1153 *5)) (-4 *6 (-593 *5)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-593 *5)) (-5 *2 (-2 (|:| -2790 (-623 *6)) (|:| |vec| (-1153 *5)))) (-5 *1 (-745 *5 *6)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *5)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-961)) (-5 *1 (-816 *2 *3)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1056)) (-5 *1 (-718)))))
+(((*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1130 *6)) (-4 *6 (-13 (-333) (-134) (-952 *4))) (-5 *4 (-517)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-107)))) (|:| -2131 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-931 *6 *3)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-349))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-5 *1 (-309 *3 *4 *5)) (-4 *5 (-952 (-517))) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 *2)) (-14 *4 (-583 *2)) (-4 *5 (-357)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 *5)) (-4 *5 (-357)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-517))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-377 (-874 (-349))))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-874 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-517)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-623 (-286 (-349)))) (-4 *1 (-354)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-517)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-377 (-874 (-349)))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-517))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-286 (-349))) (-4 *1 (-366)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-517))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-377 (-874 (-349))))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-874 (-349)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-517)))) (-4 *1 (-410)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1153 (-286 (-349)))) (-4 *1 (-410)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-319)) (-4 *5 (-299 *4)) (-4 *6 (-1130 *5)) (-5 *2 (-1069 (-1069 *4))) (-5 *1 (-709 *4 *5 *6 *3 *7)) (-4 *3 (-1130 *6)) (-14 *7 (-843)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *1 (-893 *3 *4 *5 *6)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-952 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-2630 (-4 *3 (-37 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-502))) (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 *3)) (-12 (-2630 (-4 *3 (-909 (-517)))) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *1 (-975 *3 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -3807 (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-2630 (-4 *3 (-37 (-377 (-517))))) (-4 *3 (-37 (-517))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))) (-12 (-5 *2 (-874 (-517))) (-4 *1 (-975 *3 *4 *5)) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073)))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779))))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-874 (-377 (-517)))) (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-37 (-377 (-517)))) (-4 *5 (-558 (-1073))) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *5 (-703)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *6 *7 *8 *3 *4)) (-4 *4 (-1012 *6 *7 *8 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-583 *4)) (|:| |todo| (-583 (-2 (|:| |val| (-583 *3)) (|:| -3726 *4)))))) (-5 *1 (-1043 *5 *6 *7 *3 *4)) (-4 *4 (-1012 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-952 (-517))) (-4 *1 (-273)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-827 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-797)) (-5 *5 (-843)) (-5 *6 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 (-865 (-199))))) (-5 *4 (-583 (-236))) (-5 *2 (-1154)) (-5 *1 (-1157)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-583 (-703))))))))
+(((*1 *1) (-4 *1 (-319))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))))
+(((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-1013)) (-5 *3 (-517)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-686)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 (-874 *3))) (-4 *3 (-421)) (-5 *1 (-330 *3 *4)) (-14 *4 (-583 (-1073))))) ((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-419 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-583 *7)) (-5 *3 (-1056)) (-4 *7 (-871 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *7)))) ((*1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-712 *3 (-789 *4)))) (-4 *3 (-421)) (-14 *4 (-583 (-1073))) (-5 *1 (-568 *3 *4)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-1069 *2)) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-556 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1073))) (-5 *5 (-377 (-1069 *2))) (-4 *2 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *6 *2 *7)) (-4 *7 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *5)) (-4 *5 (-579 *4)) (-4 *4 (-509)) (-5 *2 (-107)) (-5 *1 (-578 *4 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-502))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
+(((*1 *2 *2) (-12 (-5 *2 (-1153 *4)) (-4 *4 (-387 *3)) (-4 *3 (-278)) (-4 *3 (-509)) (-5 *1 (-42 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *4)))) ((*1 *2) (-12 (-4 *3 (-333)) (-5 *2 (-1153 *1)) (-4 *1 (-299 *3)))) ((*1 *2) (-12 (-4 *3 (-156)) (-4 *4 (-1130 *3)) (-5 *2 (-1153 *1)) (-4 *1 (-379 *3 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-383 *3 *4 *5 *6)) (-4 *6 (-13 (-379 *4 *5) (-952 *4))))) ((*1 *2 *1) (-12 (-4 *3 (-278)) (-4 *4 (-909 *3)) (-4 *5 (-1130 *4)) (-5 *2 (-1153 *6)) (-5 *1 (-384 *3 *4 *5 *6 *7)) (-4 *6 (-379 *4 *5)) (-14 *7 *2))) ((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1153 *1)) (-4 *1 (-387 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 *4))) (-5 *1 (-487 *4)) (-4 *4 (-319)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-51)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-583 (-517))))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-1104 *3)) (-4 *3 (-891)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-107)) (-5 *7 (-623 (-517))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
+(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-2 (|:| -3639 *3) (|:| -3652 *3))) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1069 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *4 (-556 $)) $)) (-15 -1800 ((-1026 *4 (-556 $)) $)) (-15 -2256 ($ (-1026 *4 (-556 $))))))))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-787))) ((*1 *1) (-12 (-4 *2 (-421)) (-4 *3 (-779)) (-4 *4 (-725)) (-5 *1 (-904 *2 *3 *4 *5)) (-4 *5 (-871 *2 *4 *3)))) ((*1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))) ((*1 *1) (-5 *1 (-1076))) ((*1 *1) (-5 *1 (-1077))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-826 (-517))) (-5 *1 (-839)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-517))) (-5 *2 (-826 (-517))) (-5 *1 (-839)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
+(((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-107)))))
+(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-107)) (-5 *2 (-950)) (-5 *1 (-686)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-583 *1)) (-4 *1 (-842)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-961)) (-4 *3 (-779)) (-5 *2 (-2 (|:| |val| *1) (|:| -2077 (-517)))) (-4 *1 (-400 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-814 *3)) (|:| -2077 (-814 *3)))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2077 (-517)))) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))))
+(((*1 *2 *1) (-12 (-4 *3 (-156)) (-4 *2 (-23)) (-5 *1 (-261 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1130 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-644 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-645 *3 *2)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-648 *3 *2 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) ((*1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-703))) (-5 *3 (-107)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)) (-4 *5 (-961)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *5)))) (-5 *1 (-162 *5 *3)) (-4 *3 (-1130 (-153 *5))))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-583 (-2 (|:| -2879 (-583 *3)) (|:| -2101 *4)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-950)) (-5 *1 (-686)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *2)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))) (-4 *6 (-509)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-5 *2 (-2 (|:| |contp| (-517)) (|:| -2879 (-583 (-2 (|:| |irr| *3) (|:| -3631 (-517))))))) (-5 *1 (-1119 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-334 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-109) (-109))) (-5 *1 (-109)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-107)) (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-388 *3)) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
+(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-4 *3 (-975 *6 *7 *8)) (-5 *2 (-583 (-2 (|:| |val| *3) (|:| -3726 *4)))) (-5 *1 (-981 *6 *7 *8 *3 *4)) (-4 *4 (-980 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 (-2 (|:| |val| (-583 *8)) (|:| -3726 *9)))) (-5 *5 (-107)) (-4 *8 (-975 *6 *7 *4)) (-4 *9 (-980 *6 *7 *4 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *4 (-779)) (-5 *2 (-583 (-2 (|:| |val| *8) (|:| -3726 *9)))) (-5 *1 (-981 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1069 *7)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *2 (-1130 *5)) (-5 *1 (-466 *5 *2 *6 *7)) (-4 *6 (-1130 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-961)) (-4 *7 (-961)) (-4 *4 (-1130 *5)) (-5 *2 (-1069 *7)) (-5 *1 (-466 *5 *4 *6 *7)) (-4 *6 (-1130 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-527 *5 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-950)) (-5 *1 (-686)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 (-1127 *5 *4))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-1127 *5 *4)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2407 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *5 *3)) (-4 *3 (-1130 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-843)) (-5 *1 (-718)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-116 *2)) (-4 *2 (-779)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-779)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-254 *3)) (-4 *3 (-1108)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-254 *2)) (-4 *2 (-1108)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-512)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-703)) (-4 *1 (-628 *2)) (-4 *2 (-1003)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3435 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -1257 (-2 (|:| |stiffness| (-349)) (|:| |stability| (-349)) (|:| |expense| (-349)) (|:| |accuracy| (-349)) (|:| |intermediateResults| (-349)))))) (-5 *1 (-735)))) ((*1 *2 *3 *4) (-12 (-5 *2 (-1158)) (-5 *1 (-1086 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1003)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3) (-12 (-5 *2 (-517)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-278)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-3 (|:| |fn| (-358)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-950)) (-5 *1 (-686)))))
+(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-623 *3)) (-4 *3 (-961)) (-5 *1 (-624 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)) (-5 *2 (-1069 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-843)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-236)))))
(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-131)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3 *3 *4) (-12 (-5 *4 (-578 (-282 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-186)))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-4 *5 (-389 *4)) (-5 *2 (-373 (-1064 (-375 (-501))))) (-5 *1 (-403 *4 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-993 (-866 (-501)))) (-5 *2 (-298)) (-5 *1 (-300)))) ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-609 *3)) (-4 *3 (-959)) (-4 *3 (-1001)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-578 (-701))))) ((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-578 (-701))))))
-(((*1 *2 *3) (-12 (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-2 (|:| -3970 (-1048 *4)) (|:| -3975 (-1048 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-1048 *4)))))
-(((*1 *2 *2) (-12 (-4 *2 (-156)) (-4 *2 (-959)) (-5 *1 (-645 *2 *3)) (-4 *3 (-583 *2)))) ((*1 *2 *2) (-12 (-5 *1 (-764 *2)) (-4 *2 (-156)) (-4 *2 (-959)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *3 (-578 (-1070))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) ((*1 *1 *2 *2) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))))))
-(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 *3)) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-701))) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-578 (-701))) (-5 *5 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-5 *2 (-373 *3)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-921 *3)) (-4 *3 (-1125 (-375 (-501)))))) ((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-329 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-354 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1001)) (-5 *1 (-584 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1074)))))
-(((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-324 *3)) (-4 *3 (-318)))))
-(((*1 *2 *3 *2) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-775))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1125 (-152 *2))))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-38 *3)) (-4 *3 (-1125 (-47))))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *1) (-4 *1 (-267))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-501)) (-5 *1 (-412 *2)) (-4 *2 (-959)))))
-(((*1 *2 *1) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-508)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-886)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-769 *4)) (-5 *3 (-553 *4)) (-5 *5 (-107)) (-4 *4 (-13 (-1090) (-29 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-198 *6 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))) ((*1 *2) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-309 *3 *4 *2 *5)) (-4 *3 (-310 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-310 *3 *2 *4)) (-4 *3 (-1108)) (-4 *4 (-1125 (-375 *2))) (-4 *2 (-1125 *3)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-701)) (-4 *4 (-318)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1125 *4)))) ((*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-627 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1070)) (-5 *6 (-578 (-553 *3))) (-5 *5 (-553 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *7))) (-4 *7 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-509 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-959)) (-5 *1 (-289 *4 *5 *2 *6)) (-4 *6 (-870 *2 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-125)))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| |scalar| (-375 (-501))) (|:| |coeff| (-1064 *2)) (|:| |logand| (-1064 *2))))) (-5 *4 (-578 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-331)) (-5 *1 (-530 *2)))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-777) (-950 (-501)) (-577 (-501)) (-419))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1130 *4 *5 *6)) (|:| |%expon| (-287 *4 *5 *6)) (|:| |%expTerms| (-578 (-2 (|:| |k| (-375 (-501))) (|:| |c| *4)))))) (|:| |%type| (-1053)))) (-5 *1 (-1136 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1090) (-389 *3))) (-14 *5 (-1070)) (-14 *6 *4))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-343 *4 *2)) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *4 (-578 (-1070))) (-5 *2 (-621 (-282 (-199)))) (-5 *1 (-181)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *6 (-820 *5)) (-5 *2 (-621 *6)) (-5 *1 (-623 *5 *6 *3 *4)) (-4 *3 (-340 *6)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-578 *5)) (-4 *5 (-1125 *3)) (-4 *3 (-276)) (-5 *2 (-107)) (-5 *1 (-422 *3 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-1030 *4 *2)) (-4 *2 (-13 (-548 (-501) *4) (-10 -7 (-6 -4167) (-6 -4168)))))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-4 *3 (-1104)) (-5 *1 (-1030 *3 *2)) (-4 *2 (-13 (-548 (-501) *3) (-10 -7 (-6 -4167) (-6 -4168)))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-276)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-354 *3)) (|:| |rm| (-354 *3)))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3236 (-701)) (|:| -1852 (-701)))) (-5 *1 (-701)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1048 (-501))) (-5 *1 (-1055 *4)) (-4 *4 (-959)) (-5 *3 (-501)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-530 *3)) (-4 *3 (-331)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1152)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1001) (-950 *5))) (-4 *5 (-806 *4)) (-4 *4 (-1001)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-851 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-271 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) (-12 (-5 *4 (-991 (-769 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-272)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-276)) (-4 *6 (-340 *5)) (-4 *4 (-340 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-1022 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-501)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-103)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-490))) (-5 *1 (-490)))))
-(((*1 *2 *3) (-12 (-5 *2 (-553 *4)) (-5 *1 (-554 *3 *4)) (-4 *3 (-777)) (-4 *4 (-777)))))
-(((*1 *2 *3) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-759)) (-5 *3 (-1053)))))
-(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-282 (-346))) (-5 *1 (-272)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-108)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-1053)) (-5 *2 (-282 (-501))) (-5 *1 (-849)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-777)) (-5 *1 (-850 *4 *2)) (-4 *2 (-389 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-901 (-375 (-501)) (-787 *3) (-212 *4 (-701)) (-220 *3 (-375 (-501))))) (-14 *3 (-578 (-1070))) (-14 *4 (-701)) (-5 *1 (-902 *3 *4)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-501)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1104)) (-4 *3 (-340 *4)) (-4 *5 (-340 *4)))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-385 *3 *2)) (-4 *3 (-386 *2)))) ((*1 *2) (-12 (-4 *1 (-386 *2)) (-4 *2 (-156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-870 *3 *4 *5)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-467 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-1154)) (-5 *1 (-485 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-5 *1 (-533 *2)) (-4 *2 (-500)))))
-(((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-903 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-1154)) (-5 *1 (-1007 *3 *4 *5 *6 *7)) (-4 *7 (-977 *3 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))))
-(((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))))) ((*1 *1 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) ((*1 *1 *2 *2) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))))
-(((*1 *2 *1 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-112 *4)) (-14 *4 *3) (-5 *3 (-501)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-792 *3)) (-5 *2 (-501)))) ((*1 *2 *1 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-793 *4)) (-14 *4 *3) (-5 *3 (-501)))) ((*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-375 (-501))) (-5 *1 (-794 *4 *5)) (-5 *3 (-501)) (-4 *5 (-792 *4)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-926)) (-5 *2 (-375 (-501))))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-775) (-331))) (-4 *3 (-1125 *2)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3691 (*2 (-1070)))) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-1053))) (-5 *2 (-280)) (-5 *1 (-265)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-1053))) (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-265)))))
-(((*1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-578 (-108))))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-121 *3)))))
-(((*1 *2 *3) (-12 (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-578 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501)))))) (-5 *1 (-468 *4 *5)) (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-578 (-232))) (-5 *1 (-1152)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1031 (-199))) (-5 *3 (-1053)) (-5 *1 (-1152)))) ((*1 *1 *1) (-5 *1 (-1152))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *1) (-5 *1 (-404))))
-(((*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-578 (-553 *2))) (-5 *4 (-1070)) (-4 *2 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *5 *2)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))) ((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-630)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-282 (-346))) (-5 *1 (-272)))))
-(((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254))))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-396 *5 *3)) (-4 *3 (-13 (-1090) (-29 *5))))))
-(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-621 *1)) (-4 *1 (-318)) (-5 *2 (-1148 *1)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-621 *1)) (-4 *1 (-132)) (-4 *1 (-830)) (-5 *2 (-1148 *1)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-822 (-501))) (-5 *4 (-501)) (-5 *2 (-621 *4)) (-5 *1 (-942 *5)) (-4 *5 (-959)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-942 *4)) (-4 *4 (-959)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-822 (-501)))) (-5 *4 (-501)) (-5 *2 (-578 (-621 *4))) (-5 *1 (-942 *5)) (-4 *5 (-959)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-501)))) (-5 *2 (-578 (-621 (-501)))) (-5 *1 (-942 *4)) (-4 *4 (-959)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1048 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1505 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-511)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-107)))))
-(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *2 (-107)) (-5 *1 (-238)))) ((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-107)) (-5 *1 (-238)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-375 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-737 *5 *2 *3 *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *6 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-375 *2))) (-4 *2 (-1125 *5)) (-5 *1 (-737 *5 *2 *3 *6)) (-4 *5 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *6 (-593 (-375 *2))))))
-(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-972 *3 *4 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1084)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-375 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1125 *5)) (-5 *1 (-658 *5 *2)) (-4 *5 (-331)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1104)) (-4 *5 (-340 *4)) (-4 *2 (-340 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *6 *2 *7)) (-4 *6 (-959)) (-4 *7 (-211 *4 *6)) (-4 *2 (-211 *5 *6)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-701)) (-5 *5 (-578 *3)) (-4 *3 (-276)) (-4 *6 (-777)) (-4 *7 (-723)) (-5 *2 (-107)) (-5 *1 (-564 *6 *7 *3 *8)) (-4 *8 (-870 *3 *7 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (|:| |%expansion| (-281 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-391 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-14 *6 (-1070)) (-14 *7 *3))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (|has| *1 (-6 -4168)) (-4 *1 (-340 *3)) (-4 *3 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-716)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| -3189 *4) (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3189 *3) (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-490))) (-5 *2 (-1070)) (-5 *1 (-490)))))
-(((*1 *1) (-5 *1 (-404))))
-(((*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-199)) (-5 *1 (-272)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))))
-(((*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-621 *4)) (-5 *3 (-701)) (-4 *4 (-959)) (-5 *1 (-622 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-749 *3)))) ((*1 *2 *1) (-12 (-4 *2 (-773)) (-5 *1 (-1170 *3 *2)) (-4 *3 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1053)) (-5 *1 (-716)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *1 (-333 *2 *4)) (-4 *2 (-1001)) (-4 *4 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-333 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-50)) (-5 *1 (-810 *4)) (-4 *4 (-1001)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)))))
-(((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *5 (-107)) (-4 *8 (-972 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *4 (-777)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -3709 *9)))) (-5 *1 (-978 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-508) (-134))) (-5 *2 (-578 *3)) (-5 *1 (-1121 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-845)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 (-866 *6))) (-4 *6 (-508)) (-4 *2 (-870 (-375 (-866 *6)) *5 *4)) (-5 *1 (-663 *5 *4 *6 *2)) (-4 *5 (-723)) (-4 *4 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3071 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))))
-(((*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1148 (-1148 (-501)))) (-5 *1 (-433)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-1083)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-4 *5 (-331)) (-5 *2 (-578 (-1097 *5))) (-5 *1 (-1157 *5)) (-5 *4 (-1097 *5)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-533 *2)) (-4 *2 (-500)))))
-(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-845)))) ((*1 *2 *1) (-12 (-5 *2 (-991 (-199))) (-5 *1 (-847)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-447 *4 *5))) (-14 *4 (-578 (-1070))) (-4 *5 (-419)) (-5 *2 (-2 (|:| |gblist| (-578 (-220 *4 *5))) (|:| |gvlist| (-578 (-501))))) (-5 *1 (-569 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-4 *5 (-276)) (-4 *5 (-959)) (-5 *2 (-1148 (-1148 *5))) (-5 *1 (-943 *5)) (-5 *4 (-1148 *5)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-701)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-723)) (-4 *4 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *7 (-777)) (-5 *1 (-417 *5 *6 *7 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1048 (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1055 *4)) (-4 *4 (-959)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *7)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-5 *2 (-2 (|:| |particular| (-3 (-1148 (-375 *8)) "failed")) (|:| -4119 (-578 (-1148 (-375 *8)))))) (-5 *1 (-604 *5 *6 *7 *8)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-282 (-346))) (-5 *2 (-282 (-199))) (-5 *1 (-272)))))
-(((*1 *1) (-5 *1 (-142))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-5 *4 (-621 *12)) (-5 *5 (-578 (-375 (-866 *9)))) (-5 *6 (-578 (-578 *12))) (-5 *7 (-701)) (-5 *8 (-501)) (-4 *9 (-13 (-276) (-134))) (-4 *12 (-870 *9 *11 *10)) (-4 *10 (-13 (-777) (-556 (-1070)))) (-4 *11 (-723)) (-5 *2 (-2 (|:| |eqzro| (-578 *12)) (|:| |neqzro| (-578 *12)) (|:| |wcond| (-578 (-866 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *9)))) (|:| -4119 (-578 (-1148 (-375 (-866 *9))))))))) (-5 *1 (-844 *9 *10 *11 *12)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-621 *4)) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-375 (-501))) (-4 *4 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-248 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))))
-(((*1 *1 *1) (-4 *1 (-597))) ((*1 *1 *1) (-5 *1 (-1018))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-1018)) (-4 *4 (-318)) (-5 *1 (-485 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))))
-(((*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *2 (-373 (-1064 *1))) (-5 *3 (-1064 *1)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-331)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1451 (-501)) (|:| -1575 (-578 *3)))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3) (|partial| -12 (-4 *2 (-1001)) (-5 *1 (-1082 *3 *2)) (-4 *3 (-1001)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-295 *3)) (-4 *3 (-1104)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-478 *3 *4)) (-4 *3 (-1104)) (-14 *4 (-501)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *3))) (-5 *1 (-940 *5 *6 *7 *3)) (-4 *3 (-972 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-578 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *2)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *3))) (-5 *1 (-1041 *5 *6 *7 *3)) (-4 *3 (-972 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-959)) (-4 *2 (-1125 *4)) (-5 *1 (-411 *4 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *2 (-375 (-1064 (-282 *5)))) (-5 *3 (-1148 (-282 *5))) (-5 *4 (-501)) (-4 *5 (-13 (-508) (-777))) (-5 *1 (-1028 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 *3)) (-5 *1 (-844 *4 *5 *6 *3)) (-4 *3 (-870 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-4 *3 (-508)) (-5 *2 (-1064 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-361)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *2 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-701)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-863 *5)) (-4 *5 (-959)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-578 (-1118 *5 *4))) (-5 *1 (-1014 *4 *5)) (-5 *3 (-1118 *5 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-199)) (-5 *1 (-272)))))
-(((*1 *1 *1) (-5 *1 (-199))) ((*1 *1 *1) (-5 *1 (-346))) ((*1 *1) (-5 *1 (-346))))
-(((*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-1064 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) ((*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-553 *3)) (-5 *5 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-294 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-701))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-701)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *2) (-12 (-4 *3 (-1125 (-375 (-501)))) (-5 *1 (-833 *3 *2)) (-4 *2 (-1125 (-375 *3))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-501))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-508)) (-4 *8 (-870 *7 *5 *6)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *9) (|:| |radicand| *9))) (-5 *1 (-873 *5 *6 *7 *8 *9)) (-5 *4 (-701)) (-4 *9 (-13 (-331) (-10 -8 (-15 -2946 (*8 $)) (-15 -2949 (*8 $)) (-15 -3691 ($ *8))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346)))) (-5 *1 (-181)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1125 (-501))) (-5 *1 (-451 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-863 (-199))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *2 (-1154)) (-5 *1 (-435)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-435)))) ((*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-578 (-863 (-199)))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *2 (-1154)) (-5 *1 (-435)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-375 (-866 (-501))))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 *5))) (-5 *1 (-348 *5)) (-4 *5 (-13 (-775) (-331))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-501)))) (-5 *2 (-578 *4)) (-5 *1 (-348 *4)) (-4 *4 (-13 (-775) (-331))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *2 (-578 (-578 (-578 *5)))) (-5 *3 (-1 (-107) *5 *5)) (-5 *4 (-578 *5)) (-4 *5 (-777)) (-5 *1 (-1076 *5)))))
-(((*1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-298)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-1064 *4)) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-512 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-375 (-1064 *4))) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-512 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1053)) (-5 *3 (-703)) (-5 *1 (-108)))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-1064 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1037 *3 *4)) (-14 *3 (-839)) (-4 *4 (-331)) (-5 *1 (-908 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-282 (-199))) (-5 *1 (-238)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-578 (-2 (|:| |outval| *4) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 *4)))))) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *2 *2) (-12 (-4 *3 (-950 (-501))) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-31 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1064 *4)) (-5 *1 (-149 *3 *4)) (-4 *3 (-150 *4)))) ((*1 *1 *1) (-12 (-4 *1 (-959)) (-4 *1 (-267)))) ((*1 *2) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1064 *3)))) ((*1 *2) (-12 (-4 *1 (-655 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-775) (-331))) (-4 *2 (-1125 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-214)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *2)) (-4 *2 (-870 *5 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1064 *6)) (-4 *6 (-870 *5 *3 *4)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-276)) (-5 *1 (-836 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *6 *4 *5)) (-5 *1 (-836 *4 *5 *6 *2)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-866 (-501)))) (-5 *1 (-404)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-621 (-199))) (-5 *2 (-1003)) (-5 *1 (-690)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-621 (-501))) (-5 *2 (-1003)) (-5 *1 (-690)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-777)) (-5 *1 (-1076 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-845)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-490) (-578 (-490)))) (-5 *1 (-108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-490) (-578 (-490)))) (-5 *1 (-108)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-416 *4 *5 *6 *7)) (-5 *3 (-578 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-870 *5 *6 *7)) (-5 *2 (-578 (-578 *8))) (-5 *1 (-416 *5 *6 *7 *8)) (-5 *3 (-578 *8)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-208 *3)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-208 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) ((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-552 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-501)) (-4 *4 (-1001)) (-5 *1 (-667 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-667 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-107)))))
-(((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-199)))) (-5 *2 (-199)) (-5 *1 (-272)))))
-(((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-752)) (-5 *4 (-50)) (-5 *2 (-1154)) (-5 *1 (-761)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-318)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-191 *5 *3)) (-4 *3 (-1125 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-959) (-777))) (-14 *3 (-578 (-1070))))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-508) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-578 (-553 *3))) (|:| |vals| (-578 *3)))) (-5 *1 (-248 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-968 (-937 *3) (-1064 (-937 *3)))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-775) (-331) (-933))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1073)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-578 (-1064 *11))) (-5 *3 (-1064 *11)) (-5 *4 (-578 *10)) (-5 *5 (-578 *8)) (-5 *6 (-578 (-701))) (-5 *7 (-1148 (-578 (-1064 *8)))) (-4 *10 (-777)) (-4 *8 (-276)) (-4 *11 (-870 *8 *9 *10)) (-4 *9 (-723)) (-5 *1 (-639 *9 *10 *8 *11)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-1074)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)) (-5 *1 (-377 *3 *4 *5)) (-4 *3 (-378 *4 *5)))) ((*1 *2) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-621 *3)))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 (-621 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-578 (-578 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-578 (-578 *5))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-578 *3))) (-5 *1 (-1078 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-863 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-286)) (-5 *3 (-199)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-920)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1148 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-4 *1 (-655 *5 *6)) (-4 *5 (-156)) (-4 *6 (-1125 *5)) (-5 *2 (-621 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-701)) (-5 *1 (-108)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1154)) (-5 *1 (-1073)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -1852 *1))) (-4 *1 (-972 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3189 *1) (|:| |gap| (-701)) (|:| -1852 *1))) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *2)) (-4 *2 (-331)))) ((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-1125 *2)) (-4 *2 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1148 *4)) (-5 *3 (-839)) (-4 *4 (-318)) (-5 *1 (-485 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (-4 *2 (-959)))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *2 (-508)) (-5 *1 (-885 *2 *4)) (-4 *4 (-1125 *2)))))
-(((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1320 *6) (|:| |sol?| (-107))) (-501) *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-375 *7)) (|:| |a0| *6)) (-2 (|:| -3071 (-375 *7)) (|:| |coeff| (-375 *7))) "failed")) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-107)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-903 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-578 *10)) (-5 *5 (-107)) (-4 *10 (-977 *6 *7 *8 *9)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *9 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| -2499 (-578 *9)) (|:| -3709 *10) (|:| |ineq| (-578 *9))))) (-5 *1 (-1007 *6 *7 *8 *9 *10)) (-5 *3 (-578 *9)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-895 *2)) (-4 *2 (-959)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-810 *4)) (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-808 *4 *5)) (-4 *5 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-5 *2 (-107)) (-5 *1 (-811 *5 *3)) (-4 *3 (-1104)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-1104)) (-5 *2 (-107)) (-5 *1 (-811 *5 *6)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-3 (-107) (-578 *1))) (-4 *1 (-977 *4 *5 *6 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-404)) (-5 *1 (-1074)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)) (-4 *2 (-777)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-107) *3 *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *1 *2) (-12 (-5 *1 (-301 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-309 *2 *3 *4)) (-14 *2 (-583 (-1073))) (-14 *3 (-583 (-1073))) (-4 *4 (-357)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))) ((*1 *1 *1) (-4 *1 (-1097))))
+(((*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-107) *8 *8)) (-4 *1 (-1102 *5 *6 *7 *8)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-134))) (-5 *2 (-583 *3)) (-5 *1 (-1124 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-703)) (-5 *2 (-1 (-349))) (-5 *1 (-954)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-517)) (-5 *5 (-107)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-686)))))
+(((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-1022 *3)) (-4 *3 (-1108)) (-5 *2 (-703)))))
+(((*1 *2 *3 *3) (-12 (-5 *2 (-1069 *3)) (-5 *1 (-836 *3)) (-4 *3 (-278)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-5 *1 (-916 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-608 *3)) (-4 *3 (-779)) (-4 *1 (-344 *3 *4)) (-4 *4 (-156)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *5)) (-4 *5 (-400 *4)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-787)) (-5 *1 (-31 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
+(((*1 *1 *1) (-5 *1 (-973))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-849)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-333)) (-5 *1 (-596 *4 *2)) (-4 *2 (-593 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-156)) (-4 *2 (-509)))) ((*1 *1 *1) (|partial| -4 *1 (-655))))
+(((*1 *1 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-138 *2)) (-4 *2 (-1108)) (-4 *2 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-215)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1056))) (-5 *2 (-1158)) (-5 *1 (-215)))))
+(((*1 *2 *2 *1) (-12 (-5 *2 (-583 *6)) (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)))))
+(((*1 *1) (-5 *1 (-1076))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 (-874 *6))) (-4 *6 (-509)) (-4 *2 (-871 (-377 (-874 *6)) *5 *4)) (-5 *1 (-665 *5 *4 *6 *2)) (-4 *5 (-725)) (-4 *4 (-13 (-779) (-10 -8 (-15 -3645 ((-1073) $))))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 (-517))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-265 (-377 (-874 (-517)))))) (-5 *2 (-583 (-583 (-265 (-874 *4))))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 (-517)))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 (-517))))) (-5 *2 (-583 (-265 (-874 *4)))) (-5 *1 (-350 *4)) (-4 *4 (-13 (-777) (-333))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-4 *4 (-13 (-29 *6) (-1094) (-880))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1753 (-583 *4)))) (-5 *1 (-589 *6 *4 *3)) (-4 *3 (-593 *4)))) ((*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1073)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-589 *6 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5))))) (-5 *1 (-604 *5)) (-5 *4 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *5)) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-583 *5))) (-4 *5 (-333)) (-5 *2 (-583 (-2 (|:| |particular| (-3 (-1153 *5) "failed")) (|:| -1753 (-583 (-1153 *5)))))) (-5 *1 (-604 *5)) (-5 *4 (-583 (-1153 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-605 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-333)) (-4 *6 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-4 *7 (-13 (-343 *5) (-10 -7 (-6 -4181)))) (-5 *2 (-583 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1753 (-583 *7))))) (-5 *1 (-605 *5 *6 *7 *3)) (-5 *4 (-583 *7)) (-4 *3 (-621 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *5))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-702 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-702 *4)))) ((*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-704 *5 *2)) (-4 *2 (-13 (-29 *5) (-1094) (-880))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-623 *7)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)) (-5 *4 (-1153 *7)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-623 *6)) (-5 *4 (-1073)) (-4 *6 (-13 (-29 *5) (-1094) (-880))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-1153 *6))) (-5 *1 (-734 *5 *6)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 (-265 *7))) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-583 *7)) (-5 *4 (-583 (-109))) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-2 (|:| |particular| (-1153 *7)) (|:| -1753 (-583 (-1153 *7))))) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-265 *7)) (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *7 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1753 (-583 *7))) *7 "failed")) (-5 *1 (-734 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-109)) (-5 *5 (-1073)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1753 (-583 *3))) *3 "failed")) (-5 *1 (-734 *6 *3)) (-4 *3 (-13 (-29 *6) (-1094) (-880))))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-265 *2)) (-5 *4 (-109)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-5 *1 (-734 *6 *2)) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))))) ((*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-109)) (-5 *4 (-265 *2)) (-5 *5 (-583 *2)) (-4 *2 (-13 (-29 *6) (-1094) (-880))) (-4 *6 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *1 (-734 *6 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1153 (-286 (-349)))) (-5 *4 (-349)) (-5 *5 (-583 *4)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1153 (-286 *4))) (-5 *5 (-583 (-349))) (-5 *6 (-286 (-349))) (-5 *4 (-349)) (-5 *2 (-950)) (-5 *1 (-737)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1753 (-583 *6))) "failed") *7 *6)) (-4 *6 (-333)) (-4 *7 (-593 *6)) (-5 *2 (-2 (|:| |particular| (-1153 *6)) (|:| -1753 (-623 *6)))) (-5 *1 (-745 *6 *7)) (-5 *3 (-623 *6)) (-5 *4 (-1153 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *8 (-199)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-703)) (-5 *6 (-583 (-583 (-286 *3)))) (-5 *7 (-1056)) (-5 *5 (-583 (-286 (-349)))) (-5 *3 (-349)) (-5 *2 (-950)) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-377 (-517)))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-874 (-517))) (-5 *2 (-583 (-349))) (-5 *1 (-938)) (-5 *4 (-349)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-286 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *4)))) (-5 *1 (-1032 *4)) (-5 *3 (-265 (-286 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-265 (-286 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-265 (-286 *5)))) (-5 *1 (-1032 *5)) (-5 *3 (-286 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-13 (-779) (-278) (-952 (-517)) (-579 (-517)) (-134))) (-5 *2 (-583 (-583 (-265 (-286 *5))))) (-5 *1 (-1032 *5)) (-5 *3 (-583 (-265 (-286 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *5)))))) (-5 *1 (-1079 *5)) (-5 *3 (-583 (-265 (-377 (-874 *5))))))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-377 (-874 *4)))) (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *4)))))) (-5 *1 (-1079 *4)) (-5 *3 (-583 (-265 (-377 (-874 *4))))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1073)) (-4 *5 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *5))))) (-5 *1 (-1079 *5)) (-5 *3 (-265 (-377 (-874 *5)))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-377 (-874 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-583 (-265 (-377 (-874 *4))))) (-5 *1 (-1079 *4)) (-5 *3 (-265 (-377 (-874 *4)))))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-157 *3)) (-4 *3 (-278)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-610 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-673 *3 *4)) (-4 *3 (-961)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-793 *3)) (-5 *2 (-517)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *1 (-897 *3)) (-4 *3 (-961)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-5 *3 (-583 *7)) (-4 *1 (-980 *4 *5 *6 *7)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-583 *1)) (-4 *1 (-980 *4 *5 *6 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *2)) (-4 *3 (-961)) (-4 *2 (-724)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-1003)))))
+(((*1 *1 *1) (-12 (-5 *1 (-552 *2)) (-4 *2 (-1003)))) ((*1 *1 *1) (-5 *1 (-572))))
+(((*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-550 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-1108)) (-5 *2 (-1158)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-199)))) ((*1 *1 *1 *1) (-3807 (-12 (-5 *1 (-265 *2)) (-4 *2 (-333)) (-4 *2 (-1108))) (-12 (-5 *1 (-265 *2)) (-4 *2 (-442)) (-4 *2 (-1108))))) ((*1 *1 *1 *1) (-4 *1 (-333))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1026 *3 (-556 *1))) (-4 *3 (-509)) (-4 *3 (-779)) (-4 *1 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1153 *3)) (-4 *3 (-319)) (-5 *1 (-487 *3)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-562 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-562 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-574 *2)) (-4 *2 (-156)) (-4 *2 (-333)))) ((*1 *1 *2 *3) (-12 (-4 *4 (-156)) (-5 *1 (-599 *2 *4 *3)) (-4 *2 (-650 *4)) (-4 *3 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *4 (-156)) (-5 *1 (-599 *3 *4 *2)) (-4 *3 (-650 *4)) (-4 *2 (|SubsetCategory| (-659) *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-790 *2 *3 *4 *5)) (-4 *2 (-333)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-703))) (-14 *5 (-703)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *1 *2 *2) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *3 *4 *2 *5 *6)) (-4 *2 (-961)) (-4 *5 (-212 *4 *2)) (-4 *6 (-212 *3 *2)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-779)) (-4 *4 (-725)) (-14 *6 (-583 *3)) (-5 *1 (-1163 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871 *2 *4 *3)) (-14 *7 (-583 (-703))) (-14 *8 (-703)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-333)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-975 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *2 (-961)) (-5 *1 (-645 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-377 (-874 *5)))) (-5 *4 (-583 (-1073))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-874 *5)))) (-5 *1 (-1079 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-583 (-583 (-865 *4)))) (|:| |xValues| (-998 *4)) (|:| |yValues| (-998 *4)))) (-5 *1 (-140)) (-5 *3 (-583 (-583 (-865 *4)))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *1 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-779)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1102 *2 *3 *4 *5)) (-4 *2 (-509)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-975 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-161 *2)) (-4 *2 (-278)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-583 *4))) (-5 *2 (-583 *4)) (-4 *4 (-278)) (-5 *1 (-161 *4)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7))))) (-5 *5 (-703)) (-4 *8 (-1130 *7)) (-4 *7 (-1130 *6)) (-4 *6 (-319)) (-5 *2 (-2 (|:| -1753 (-623 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-623 *7)))) (-5 *1 (-463 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-922)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *5)) (-4 *5 (-333)) (-5 *2 (-583 *6)) (-5 *1 (-490 *5 *6 *4)) (-4 *6 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-583 *3)) (-4 *3 (-278)) (-5 *1 (-161 *3)))))
+(((*1 *1 *1) (-4 *1 (-569))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-570 *3 *2)) (-4 *2 (-13 (-400 *3) (-918) (-1094))))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-125))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))) ((*1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-21)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-1153 (-623 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-623 *4)) (-4 *5 (-593 *4)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-333)) (-4 *7 (-1130 *6)) (-5 *2 (-2 (|:| |answer| (-534 (-377 *7))) (|:| |a0| *6))) (-5 *1 (-527 *6 *7)) (-5 *3 (-377 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-377 (-517))) (-5 *2 (-199)) (-5 *1 (-276)))))
+(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2422 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-583 (-377 *8))) (-4 *7 (-333)) (-4 *8 (-1130 *7)) (-5 *3 (-377 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-527 *7 *8)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1069 *1)) (-5 *4 (-1073)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-874 *1)) (-4 *1 (-27)) (-5 *2 (-583 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *2 (-583 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *1) (-12 (-4 *1 (-550 *3 *2)) (-4 *3 (-1003)) (-4 *3 (-779)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *1 (-612 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *1 (-751 *2)) (-4 *2 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-608 *3)) (-5 *1 (-815 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-703)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-107)) (-5 *5 (-517)) (-4 *6 (-333)) (-4 *6 (-338)) (-4 *6 (-961)) (-5 *2 (-583 (-583 (-623 *6)))) (-5 *1 (-944 *6)) (-5 *3 (-583 (-623 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-333)) (-4 *4 (-338)) (-4 *4 (-961)) (-5 *2 (-583 (-583 (-623 *4)))) (-5 *1 (-944 *4)) (-5 *3 (-583 (-623 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-168)))))
+(((*1 *2 *3) (-12 (-5 *3 (-703)) (-4 *4 (-333)) (-4 *5 (-1130 *4)) (-5 *2 (-1158)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1130 (-377 *5))) (-14 *7 *6))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-142))) ((*1 *1 *1 *1) (-12 (-5 *1 (-189 *2)) (-4 *2 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-25)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-293 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-123)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-13 (-333) (-134))) (-5 *1 (-369 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-439 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-333)) (-4 *3 (-725)) (-4 *4 (-779)) (-5 *1 (-469 *2 *3 *4 *5)) (-4 *5 (-871 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-493))) ((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *1) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1003)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-865 (-199))) (-5 *1 (-1105)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-25)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1146 *2 *3 *4)) (-4 *2 (-961)) (-14 *3 (-1073)) (-14 *4 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-507 *2)) (-4 *2 (-13 (-374) (-1094))))) ((*1 *1 *1 *1) (-4 *1 (-725))))
+(((*1 *2 *3) (-12 (-4 *1 (-312 *4 *3 *5)) (-4 *4 (-1112)) (-4 *3 (-1130 *4)) (-4 *5 (-1130 (-377 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-312 *3 *4 *5)) (-4 *3 (-1112)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-4 *1 (-239 *2)) (-4 *2 (-779)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-789 *3)) (-14 *3 (-583 *2)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-906)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-996 *3)) (-4 *3 (-1108)))) ((*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-1073)))) ((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1149 *3)) (-14 *3 *2))))
+(((*1 *1 *2 *3 *4) (-12 (-14 *5 (-583 (-1073))) (-4 *2 (-156)) (-4 *4 (-212 (-2296 *5) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *3) (|:| -2077 *4)) (-2 (|:| -3448 *3) (|:| -2077 *4)))) (-5 *1 (-430 *5 *2 *3 *4 *6 *7)) (-4 *3 (-779)) (-4 *7 (-871 *2 *4 (-789 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-309 *3 *4 *5)) (-14 *3 (-583 (-1073))) (-14 *4 (-583 (-1073))) (-4 *5 (-357)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1056)) (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-905 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-583 *7)) (-4 *7 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *1 (-1010 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-421)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-703)) (-4 *5 (-319)) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6))))) (-5 *1 (-463 *5 *6 *7)) (-5 *3 (-2 (|:| -1753 (-623 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-623 *6)))) (-4 *7 (-1130 *6)))))
+(((*1 *1 *1 *1) (-4 *1 (-273))) ((*1 *1 *1) (-4 *1 (-273))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-1 *4 (-583 *4)))) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1003)) (-5 *1 (-108 *4)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-109)) (-5 *2 (-583 (-1 *4 (-583 *4)))) (-5 *1 (-108 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-787))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-703)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-372)) (-5 *2 (-703)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1003)) (-5 *2 (-1 *5 *4)) (-5 *1 (-617 *4 *5)) (-4 *4 (-1003)))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-5 *1 (-851 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-286 (-517))) (-5 *1 (-852)))) ((*1 *2 *1) (-12 (-4 *1 (-1168 *3 *2)) (-4 *3 (-779)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-1174 *2 *3)) (-4 *3 (-775)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-333) (-134) (-952 (-517)))) (-4 *5 (-1130 *4)) (-5 *2 (-2 (|:| |ans| (-377 *5)) (|:| |nosol| (-107)))) (-5 *1 (-931 *4 *5)) (-5 *3 (-377 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1038 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
+(((*1 *2 *3) (-12 (-4 *3 (-1130 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-902 *4 *2 *3 *5)) (-4 *4 (-319)) (-4 *5 (-657 *2 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-843)) (-5 *2 (-1153 (-1153 (-517)))) (-5 *1 (-435)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-377 (-517))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-377 (-517)))) (-5 *4 (-265 *8)) (-5 *5 (-1121 (-377 (-517)))) (-5 *6 (-377 (-517))) (-4 *8 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-377 (-517)))) (-5 *7 (-377 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *8))) (-4 *8 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *8 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-377 (-517))) (-4 *4 (-961)) (-4 *1 (-1137 *4 *3)) (-4 *3 (-1114 *4)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1108)) (-5 *2 (-703)) (-5 *1 (-211 *3 *4 *5)) (-4 *3 (-212 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-293 *3 *4)) (-4 *3 (-1003)) (-4 *4 (-123)) (-5 *2 (-703)))) ((*1 *2) (-12 (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-298 *3 *4)) (-4 *3 (-299 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-331 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *1 (-338)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2) (-12 (-4 *4 (-1003)) (-5 *2 (-703)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-586 *3 *4 *5)) (-4 *3 (-1003)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) (-12 (-4 *4 (-156)) (-4 *5 (-1130 *4)) (-5 *2 (-703)) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-657 *4 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-751 *3)) (-4 *3 (-779)))) ((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-777) (-333))) (-5 *1 (-971 *2 *3)) (-4 *3 (-1130 *2)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-928)) (-5 *2 (-787)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-109)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-1073)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-273)) (-5 *3 (-109)) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-109)) (-5 *2 (-107)) (-5 *1 (-556 *4)) (-4 *4 (-779)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-4 *6 (-808 *5)) (-4 *5 (-1003)) (-5 *2 (-107)) (-5 *1 (-809 *5 *6 *4)) (-4 *4 (-558 (-814 *5))))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-583 (-1069 *13))) (-5 *3 (-1069 *13)) (-5 *4 (-583 *12)) (-5 *5 (-583 *10)) (-5 *6 (-583 *13)) (-5 *7 (-583 (-583 (-2 (|:| -3577 (-703)) (|:| |pcoef| *13))))) (-5 *8 (-583 (-703))) (-5 *9 (-1153 (-583 (-1069 *10)))) (-4 *12 (-779)) (-4 *10 (-278)) (-4 *13 (-871 *10 *11 *12)) (-4 *11 (-725)) (-5 *1 (-641 *11 *12 *10 *13)))))
+(((*1 *2 *3) (-12 (-5 *3 (-556 *5)) (-4 *5 (-400 *4)) (-4 *4 (-952 (-517))) (-4 *4 (-13 (-779) (-509))) (-5 *2 (-1069 *5)) (-5 *1 (-31 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-556 *1)) (-4 *1 (-961)) (-4 *1 (-273)) (-5 *2 (-1069 *1)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-4 *5 (-338)) (-5 *2 (-703)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-1087)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-333)) (-4 *6 (-1130 (-377 *2))) (-4 *2 (-1130 *5)) (-5 *1 (-190 *5 *2 *6 *3)) (-4 *3 (-312 *5 *2 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-4 *5 (-13 (-421) (-779) (-952 *4) (-579 *4))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 *5) (-579 *5))) (-5 *5 (-517)) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-517))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-517))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-517)) (-4 *4 (-961)) (-4 *1 (-1116 *4 *3)) (-4 *3 (-1145 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1137 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1114 *3)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1056)) (-5 *5 (-623 (-199))) (-5 *6 (-199)) (-5 *7 (-623 (-517))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-517) *2 *2)) (-4 *2 (-124)) (-5 *1 (-990 *2)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-469 (-377 (-517)) (-214 *5 (-703)) (-789 *4) (-221 *4 (-377 (-517))))) (-14 *4 (-583 (-1073))) (-14 *5 (-703)) (-5 *2 (-107)) (-5 *1 (-470 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-265 *2)) (-4 *2 (-21)) (-4 *2 (-1108)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1089)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-4 *5 (-333)) (-5 *2 (-583 (-1103 *5))) (-5 *1 (-1161 *5)) (-5 *4 (-1103 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-703)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-236)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *5)) (-4 *5 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *4 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *4))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-703)) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-265 *3)) (-5 *5 (-703)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-517))) (-5 *4 (-265 *6)) (-4 *6 (-13 (-27) (-1094) (-400 *5))) (-4 *5 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-517))) (-5 *4 (-265 *7)) (-5 *5 (-1121 (-703))) (-4 *7 (-13 (-27) (-1094) (-400 *6))) (-4 *6 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1073)) (-5 *5 (-265 *3)) (-5 *6 (-1121 (-703))) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-509) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-51)) (-5 *1 (-428 *7 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-961)) (-4 *2 (-1145 *3)))))
+(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-981 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))) ((*1 *2) (-12 (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-1158)) (-5 *1 (-1011 *3 *4 *5 *6 *7)) (-4 *7 (-980 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-585 *5)) (-4 *5 (-961)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-781 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-623 *3)) (-4 *1 (-387 *3)) (-4 *3 (-156)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-961)) (-5 *1 (-782 *2 *3)) (-4 *3 (-781 *2)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-265 (-765 *3))) (-4 *5 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-5 *2 (-765 *3)) (-5 *1 (-576 *5 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-765 (-874 *5)))) (-4 *5 (-421)) (-5 *2 (-765 (-377 (-874 *5)))) (-5 *1 (-577 *5)) (-5 *3 (-377 (-874 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-265 (-377 (-874 *5)))) (-5 *3 (-377 (-874 *5))) (-4 *5 (-421)) (-5 *2 (-765 *3)) (-5 *1 (-577 *5)))))
+(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-4 *4 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *1 (-510 *4 *2)) (-4 *2 (-13 (-27) (-1094) (-400 *4))))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-583 (-1153 *4))) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-4 *3 (-509)) (-5 *2 (-583 (-1153 *3))))))
+(((*1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))) ((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-922)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-535 *2)) (-4 *2 (-502)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-5 *2 (-703)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-514)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 (-865 *3) (-865 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-333) (-1094) (-918))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-779)) (-5 *2 (-107)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-4 *1 (-825 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-826 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-808 *5)) (-5 *2 (-807 *5 *6 (-583 *6))) (-5 *1 (-809 *5 *6 *4)) (-5 *3 (-583 *6)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 *3))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-952 (-1073))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-583 (-265 (-874 *3)))) (-5 *1 (-809 *5 *3 *4)) (-4 *3 (-961)) (-2630 (-4 *3 (-952 (-1073)))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-5 *2 (-811 *5 *3)) (-5 *1 (-809 *5 *3 *4)) (-2630 (-4 *3 (-952 (-1073)))) (-2630 (-4 *3 (-961))) (-4 *3 (-808 *5)) (-4 *4 (-558 (-814 *5))))))
+(((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-703)) (-5 *4 (-843)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
(((*1 *1) (-5 *1 (-107))))
-(((*1 *2 *3 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-454 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-107)) (-5 *1 (-825 *4)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-839)) (-5 *2 (-107)) (-5 *1 (-1002 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))))
-(((*1 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-413)) (-5 *3 (-501)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 *5)) (-4 *5 (-959)) (-5 *2 (-447 *4 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-578 (-1070))))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *4 (-578 (-1070))) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-1048 (-199))) (-5 *1 (-270)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-397 *3 *2)) (-4 *3 (-13 (-156) (-37 (-375 (-501))))) (-4 *2 (-13 (-777) (-21))))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-938 *3 *2)) (-4 *2 (-593 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-5 *2 (-2 (|:| -2499 *3) (|:| -3996 (-578 *5)))) (-5 *1 (-938 *5 *3)) (-5 *4 (-578 *5)) (-4 *3 (-593 *5)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-357)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-4 *1 (-999 *3)))) ((*1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))) ((*1 *2 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))) ((*1 *2 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)) (-4 *2 (-276)))) ((*1 *2 *1) (-12 (-4 *1 (-967)) (-5 *2 (-501)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-633 *4 *5 *6 *7)) (-4 *4 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 *9)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-701)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-749 *3)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-1010)))))
-(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-578 (-2 (|:| |deg| (-701)) (|:| -3215 *3)))) (-5 *1 (-191 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *1 *2) (-12 (-4 *1 (-333 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1001)))))
-(((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-4 *2 (-13 (-370) (-10 -7 (-15 -3691 (*2 *4)) (-15 -3104 ((-839) *2)) (-15 -4119 ((-1148 *2) (-839))) (-15 -3184 (*2 *2))))) (-5 *1 (-325 *2 *4)))))
-(((*1 *1 *1) (-5 *1 (-970))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-970)) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-578 (-346))) (-5 *5 (-578 (-769 (-346)))) (-5 *6 (-578 (-282 (-346)))) (-5 *3 (-282 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-346))) (-5 *5 (-578 (-769 (-346)))) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-282 (-346))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-346)))) (-5 *4 (-578 (-346))) (-5 *2 (-948)) (-5 *1 (-767)))))
-(((*1 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-795)) (-5 *1 (-1153)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *5 (-1070)) (-4 *6 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-4 *4 (-13 (-29 *6) (-1090) (-879))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4119 (-578 *4)))) (-5 *1 (-731 *6 *4 *3)) (-4 *3 (-593 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501)))))) (-5 *2 (-578 (-375 (-501)))) (-5 *1 (-934 *4)) (-4 *4 (-1125 (-501))))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-139 *2 *3 *4)) (-14 *2 (-839)) (-4 *3 (-331)) (-14 *4 (-908 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1 *1) (|partial| -4 *1 (-653))) ((*1 *1 *1) (|partial| -4 *1 (-657))) ((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-706 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))) ((*1 *2 *2 *1) (|partial| -12 (-4 *1 (-974 *3 *2)) (-4 *3 (-13 (-775) (-331))) (-4 *2 (-1125 *3)))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-152 (-199))) (-5 *5 (-501)) (-5 *6 (-1053)) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *1) (-4 *1 (-500))))
-(((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1111 *3)) (-5 *2 (-375 (-501))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *1 (-56 *3)) (-4 *3 (-1104)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-56 *3)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 *4)) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-331)) (-5 *1 (-816 *2 *4)) (-4 *2 (-1125 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *1) (-12 (-4 *1 (-506 *3)) (-4 *3 (-13 (-372) (-1090))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-27) (-389 *5))) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-4 *8 (-1125 (-375 *7))) (-5 *2 (-530 *3)) (-5 *1 (-504 *5 *6 *7 *8 *3)) (-4 *3 (-310 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-356)) (-5 *1 (-570)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-490)) (-5 *1 (-491 *4)) (-4 *4 (-1104)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))))
-(((*1 *1 *1 *2) (|partial| -12 (-5 *2 (-701)) (-4 *1 (-1125 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-621 *8)) (-5 *4 (-701)) (-4 *8 (-870 *5 *7 *6)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-13 (-777) (-556 (-1070)))) (-4 *7 (-723)) (-5 *2 (-578 (-2 (|:| |det| *8) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501)))))) (-5 *1 (-844 *5 *6 *7 *8)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-291 *2 *4)) (-4 *4 (-123)) (-4 *2 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-329 *2)) (-4 *2 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-1001)) (-5 *1 (-584 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-749 *2)) (-4 *2 (-777)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-892 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-784)))) ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-904)))) ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-1001) (-33))) (-5 *1 (-1035 *2 *3)) (-4 *3 (-13 (-1001) (-33))))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-839))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-108)) (-4 *2 (-1001)) (-4 *2 (-777)) (-5 *1 (-109 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))))
-(((*1 *1 *1 *1) (-4 *1 (-440))) ((*1 *1 *1 *1) (-4 *1 (-692))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3 *3) (-12 (-4 *3 (-1108)) (-4 *5 (-1125 *3)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-107)) (-5 *1 (-309 *4 *3 *5 *6)) (-4 *4 (-310 *3 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *1 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-21)) (-4 *2 (-1104)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-435)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-262 (-866 (-501)))) (-5 *2 (-2 (|:| |varOrder| (-578 (-1070))) (|:| |inhom| (-3 (-578 (-1148 (-701))) "failed")) (|:| |hom| (-578 (-1148 (-701)))))) (-5 *1 (-209)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *1 (-122 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-716)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-107) *3 *3)) (-4 *1 (-1099 *5 *6 *7 *3)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1091 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-753)))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-786) (-786))) (-5 *1 (-108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-786) (-578 (-786)))) (-5 *1 (-108)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-786) (-578 (-786)))) (-5 *1 (-108)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 (*2 $)) (-15 -3512 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-361)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-361)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-465)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1084)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-1084)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *2 (-578 (-991 (-199)))) (-5 *1 (-848)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1147 *3)) (-4 *3 (-1104)) (-4 *3 (-959)) (-5 *2 (-621 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-769 *3))) (-4 *3 (-13 (-27) (-1090) (-389 *5))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-3 (-769 *3) (-2 (|:| |leftHandLimit| (-3 (-769 *3) "failed")) (|:| |rightHandLimit| (-3 (-769 *3) "failed"))) "failed")) (-5 *1 (-574 *5 *3)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-262 *3)) (-5 *5 (-1053)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-769 *3)) (-5 *1 (-574 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-769 (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-3 (-769 (-375 (-866 *5))) (-2 (|:| |leftHandLimit| (-3 (-769 (-375 (-866 *5))) "failed")) (|:| |rightHandLimit| (-3 (-769 (-375 (-866 *5))) "failed"))) "failed")) (-5 *1 (-575 *5)) (-5 *3 (-375 (-866 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-419)) (-5 *2 (-3 (-769 *3) (-2 (|:| |leftHandLimit| (-3 (-769 *3) "failed")) (|:| |rightHandLimit| (-3 (-769 *3) "failed"))) "failed")) (-5 *1 (-575 *5)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-262 (-375 (-866 *6)))) (-5 *5 (-1053)) (-5 *3 (-375 (-866 *6))) (-4 *6 (-419)) (-5 *2 (-769 *3)) (-5 *1 (-575 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1053)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-777)) (-4 *4 (-331)) (-4 *5 (-723)) (-5 *2 (-2 (|:| |mval| (-621 *4)) (|:| |invmval| (-621 *4)) (|:| |genIdeal| (-467 *4 *5 *6 *7)))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *7 (-870 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *1) (-12 (-4 *1 (-389 *2)) (-4 *2 (-777)) (-4 *2 (-959)))) ((*1 *1 *1) (-12 (-4 *1 (-906 *2)) (-4 *2 (-508)))))
-(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-578 (-553 *6))) (-5 *4 (-1070)) (-5 *2 (-553 *6)) (-4 *6 (-389 *5)) (-4 *5 (-777)) (-5 *1 (-524 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-246)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-50)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-810 *4)) (-4 *4 (-1001)) (-5 *1 (-811 *4 *3)) (-4 *3 (-1104)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-373 *2)) (-4 *2 (-870 *7 *5 *6)) (-5 *1 (-673 *5 *6 *7 *2)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-276)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1018)) (-5 *2 (-1154)) (-5 *1 (-761)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-13 (-276) (-134))) (-4 *2 (-870 *4 *6 *5)) (-5 *1 (-844 *4 *5 *6 *2)) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-1070)) (-4 *6 (-389 *5)) (-4 *5 (-777)) (-5 *2 (-578 (-553 *6))) (-5 *1 (-524 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-1009 *5 *6 *7 *8)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-537 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2532 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-329 (-108))) (-4 *2 (-959)) (-5 *1 (-645 *2 *4)) (-4 *4 (-583 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-329 (-108))) (-5 *1 (-764 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-5 *2 (-1 *5)) (-5 *1 (-615 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-298)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-1001)) (-4 *3 (-820 *5)) (-5 *2 (-1148 *3)) (-5 *1 (-623 *5 *3 *6 *4)) (-4 *6 (-340 *3)) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4167)))))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-282 (-199))) (-5 *4 (-1070)) (-5 *5 (-991 (-769 (-199)))) (-5 *2 (-578 (-199))) (-5 *1 (-270)))))
-(((*1 *1) (-5 *1 (-131))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-4 *4 (-777)) (-5 *1 (-1076 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |ir| (-530 (-375 *6))) (|:| |specpart| (-375 *6)) (|:| |polypart| *6))) (-5 *1 (-525 *5 *6)) (-5 *3 (-375 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-229)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-863 (-199)) (-863 (-199)))) (-5 *1 (-232)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-297 *4)) (-4 *4 (-331)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1148 *3)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-1148 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-338 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-1148 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-378 *4 *5)) (-4 *4 (-156)) (-4 *5 (-1125 *4)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-386 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-621 *5))) (-5 *3 (-621 *5)) (-4 *5 (-331)) (-5 *2 (-1148 *5)) (-5 *1 (-988 *5)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-331)) (-5 *1 (-697 *2 *3)) (-4 *2 (-640 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1170 *3 *4)) (-4 *3 (-959)) (-4 *4 (-773)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-152 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-689)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-331)) (-4 *2 (-1125 *4)) (-5 *1 (-843 *4 *2)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-578 *3)) (-5 *1 (-537 *5 *6 *7 *8 *3)) (-4 *3 (-1009 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-982 *4 *5)) (-5 *3 (-578 (-866 *4))) (-14 *5 (-578 (-1070))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-276) (-134))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-982 *5 *6)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-168)))) ((*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-270)))) ((*1 *2 *3) (-12 (-5 *3 (-1048 (-199))) (-5 *2 (-578 (-1053))) (-5 *1 (-272)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-4 *5 (-331)) (-5 *2 (-1048 (-1048 (-866 *5)))) (-5 *1 (-1157 *5)) (-5 *4 (-1048 (-866 *5))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 *10)) (-5 *1 (-563 *5 *6 *7 *8 *9 *10)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *10 (-1009 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-566 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-1041 *5 (-487 (-787 *6)) (-787 *6) (-710 *5 (-787 *6))))) (-5 *1 (-566 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-940 *5 *6 *7 *8))) (-5 *1 (-940 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-710 *5 (-787 *6)))) (-5 *4 (-107)) (-4 *5 (-419)) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-956 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-578 (-1041 *5 *6 *7 *8))) (-5 *1 (-1041 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-1099 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1064 *6)) (-5 *3 (-501)) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-688)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-910 *3)) (-4 *3 (-156)) (-5 *1 (-728 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-3 (-1064 *4) (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018))))))) (-5 *1 (-315 *4)) (-4 *4 (-318)))))
-(((*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-312 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) ((*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-313 *3 *4)) (-4 *3 (-318)) (-14 *4 (-1064 *3)))) ((*1 *2) (-12 (-5 *2 (-877 (-1018))) (-5 *1 (-314 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-490)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-578 (-578 *4)))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)) (-4 *4 (-777)))))
-(((*1 *2 *3 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-3 *3 (-578 *1))) (-4 *1 (-977 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-688)))))
-(((*1 *2 *3) (-12 (-5 *2 (-578 (-1064 (-501)))) (-5 *1 (-167)) (-5 *3 (-501)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-68 APROD)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-959)) (-5 *1 (-1055 *4)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-1139 *3 *4 *5)) (-4 *3 (-959)) (-14 *4 (-1070)) (-14 *5 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-621 (-282 (-501)))) (-5 *1 (-941)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-494 *4 *2 *5 *6)) (-4 *4 (-276)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-701))))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-863 (-199)))) (-5 *1 (-1151)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-578 (-578 *4)))) (-5 *3 (-578 *4)) (-4 *4 (-777)) (-5 *1 (-1076 *4)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-621 (-1064 *8))) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-1125 *5)) (-5 *2 (-621 *6)) (-5 *1 (-464 *5 *6 *7 *8)) (-4 *7 (-1125 *6)))))
-(((*1 *2) (-12 (-5 *2 (-769 (-501))) (-5 *1 (-489)))) ((*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1001)))))
-(((*1 *2) (|partial| -12 (-4 *4 (-1108)) (-4 *5 (-1125 (-375 *2))) (-4 *2 (-1125 *4)) (-5 *1 (-309 *3 *4 *2 *5)) (-4 *3 (-310 *4 *2 *5)))) ((*1 *2) (|partial| -12 (-4 *1 (-310 *3 *2 *4)) (-4 *3 (-1108)) (-4 *4 (-1125 (-375 *2))) (-4 *2 (-1125 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))))
-(((*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))))
-(((*1 *2 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-777)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *1 (-340 *4)) (-4 *4 (-1104)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *2)) (-4 *2 (-13 (-389 *3) (-916) (-1090))))) ((*1 *1 *1) (-4 *1 (-568))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-578 *3)) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-501)) (-4 *2 (-389 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-950 *4)) (-4 *3 (-13 (-777) (-508))))))
-(((*1 *2) (-12 (-5 *2 (-769 (-501))) (-5 *1 (-489)))) ((*1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-1001)))))
-(((*1 *1 *1) (-5 *1 (-970))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-937 *3)) (-4 *3 (-13 (-775) (-331) (-933))))) ((*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-974 *2 *3)) (-4 *2 (-13 (-775) (-331))) (-4 *3 (-1125 *2)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-446)))))
-(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-845)) (-5 *4 (-375 (-501))) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 (-199))))) (|:| |xValues| (-991 (-199))) (|:| |yValues| (-991 (-199))))) (-5 *1 (-140)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1 (-107) *8))) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8)))))
-(((*1 *1 *1 *1) (-4 *1 (-692))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-865 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-419)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-107)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2) (-12 (-5 *2 (-762 (-501))) (-5 *1 (-489)))) ((*1 *1) (-12 (-5 *1 (-762 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-578 *7)) (-5 *3 (-501)) (-4 *7 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-834 *3)) (-4 *3 (-276)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-637 *3 *4)) (-4 *3 (-1104)) (-4 *4 (-1104)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-375 *6)) (-4 *5 (-1108)) (-4 *6 (-1125 *5)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *3) (|:| |radicand| *6))) (-5 *1 (-135 *5 *6 *7)) (-5 *4 (-701)) (-4 *7 (-1125 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-359)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-508)) (-4 *2 (-959)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *2 *3 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-775)) (-5 *1 (-273 *3)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-839)) (-4 *1 (-372)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-372)))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *2 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1320 *6) (|:| |sol?| (-107))) (-501) *6)) (-4 *6 (-331)) (-4 *7 (-1125 *6)) (-5 *2 (-2 (|:| |answer| (-530 (-375 *7))) (|:| |a0| *6))) (-5 *1 (-525 *6 *7)) (-5 *3 (-375 *7)))))
-(((*1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-1060 *3 *2)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-870 *5 *6 *7)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-417 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-5 *1 (-786))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1052)))) ((*1 *2 *1) (-12 (-5 *2 (-1053)) (-5 *1 (-1070)))))
-(((*1 *1) (-5 *1 (-128))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-795)) (-5 *5 (-839)) (-5 *6 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-1150)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-578 (-863 (-199))))) (-5 *4 (-578 (-232))) (-5 *2 (-1151)) (-5 *1 (-1150)))))
-(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1104)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 (-501))) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 (-501)) (-14 *5 (-701)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *2 (-156)) (-5 *1 (-126 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-701)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-126 *3 *4 *2)) (-14 *3 (-501)) (-14 *4 (-701)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-218 (-1053))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ *3)) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-904)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-777) (-10 -8 (-15 -2007 ((-1053) $ (-1070))) (-15 -2125 ((-1154) $)) (-15 -3512 ((-1154) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-701)) (-5 *1 (-218 *4)) (-4 *4 (-777)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-218 *3)) (-4 *3 (-777)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-218 *3)) (-4 *3 (-777)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-256 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-259 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1125 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-310 *2 *3 *4)) (-4 *2 (-1108)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-386 *2)) (-4 *2 (-156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1053)) (-5 *1 (-465)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-50)) (-5 *1 (-570)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-701)) (-5 *1 (-609 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-108)) (-5 *3 (-578 (-810 *4))) (-5 *1 (-810 *4)) (-4 *4 (-1001)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-824 *2)) (-4 *2 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-822 *4)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-212 *4 *2)) (-14 *4 (-839)) (-4 *2 (-331)) (-5 *1 (-908 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-924 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-5 *1 (-939 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *2 (-959)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)) (-4 *2 (-959)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-979 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-839)) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-5 *1 (-981 *4 *5 *2)) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) ((*1 *1 *1 *1) (-4 *1 (-1039))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-375 *1)) (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-375 *1)) (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-4 *3 (-508)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1128 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)))) ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *2 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))) (-5 *1 (-979 *3 *4 *2)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))))) ((*1 *2 *1) (-12 (-4 *2 (-1001)) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *2 *3) (-12 (-5 *2 (-501)) (-5 *1 (-520 *3)) (-4 *3 (-950 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *2 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))))
-(((*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))) ((*1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1) (-5 *1 (-444))) ((*1 *1) (-4 *1 (-1090))))
-(((*1 *1 *1 *1) (-4 *1 (-500))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *3 (-777)) (-5 *2 (-2 (|:| |val| *1) (|:| -3027 (-501)))) (-4 *1 (-389 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-810 *3)) (|:| -3027 (-810 *3)))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3027 (-501)))) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-687)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-333 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-839)) (-5 *1 (-716)))))
-(((*1 *1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-839)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-331)) (-5 *1 (-255 *3 *2)) (-4 *2 (-1142 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-914 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-107)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) ((*1 *1 *1) (|partial| -4 *1 (-653))))
-(((*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-548 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1104)) (-5 *2 (-1154)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-276)) (-5 *1 (-161 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-254))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *1 *2) (-12 (-5 *2 (-599 *3 *4)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-5 *1 (-565 *3 *4 *5)) (-14 *5 (-839)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *4 (-648 (-375 (-501)))) (-4 *3 (-777)) (-4 *4 (-156)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) ((*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1099 *4 *5 *3 *2)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *2 (-972 *4 *5 *3)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *1 (-1102 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-107)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-701)) (-4 *5 (-318)) (-4 *6 (-1125 *5)) (-5 *2 (-578 (-2 (|:| -4119 (-621 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-621 *6))))) (-5 *1 (-461 *5 *6 *7)) (-5 *3 (-2 (|:| -4119 (-621 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-621 *6)))) (-4 *7 (-1125 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-318)) (-5 *2 (-701)))) ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-370)) (-5 *2 (-701)))))
-(((*1 *2 *3) (-12 (-5 *3 (-553 *5)) (-4 *5 (-389 *4)) (-4 *4 (-950 (-501))) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-1064 *5)) (-5 *1 (-31 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-553 *1)) (-4 *1 (-959)) (-4 *1 (-267)) (-5 *2 (-1064 *1)))))
-(((*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-356)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-262 (-762 *3))) (-4 *5 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *2 (-762 *3)) (-5 *1 (-574 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-762 (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-762 (-375 (-866 *5)))) (-5 *1 (-575 *5)) (-5 *3 (-375 (-866 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-262 (-375 (-866 *5)))) (-5 *3 (-375 (-866 *5))) (-4 *5 (-419)) (-5 *2 (-762 *3)) (-5 *1 (-575 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-501)) (-5 *5 (-107)) (-5 *6 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-578 *3)) (-4 *3 (-1104)))))
+(((*1 *1 *2 *3) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
+(((*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-1156)))))
+(((*1 *1 *1) (-5 *1 (-199))) ((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1) (-4 *1 (-1037))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-107)) (-5 *1 (-109)))))
+(((*1 *2 *2 *3 *4) (-12 (-5 *2 (-583 *8)) (-5 *3 (-1 (-107) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-975 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-4 *7 (-779)) (-5 *1 (-894 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-848)))) ((*1 *2 *1) (-12 (-5 *2 (-998 (-199))) (-5 *1 (-849)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *2)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-1153 *5))) (-5 *4 (-517)) (-5 *2 (-1153 *5)) (-5 *1 (-944 *5)) (-4 *5 (-333)) (-4 *5 (-338)) (-4 *5 (-961)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1147 *3 *2)) (-4 *2 (-1145 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-583 (-865 *3)))))) ((*1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *4 (-961)) (-4 *1 (-1035 *4)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 *3)))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-583 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-583 (-583 (-865 *4)))) (-5 *3 (-107)) (-4 *1 (-1035 *4)) (-4 *4 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-583 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))) ((*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 *5)))) (-5 *3 (-583 (-155))) (-5 *4 (-155)) (-4 *1 (-1035 *5)) (-4 *5 (-961)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1003)) (-4 *2 (-1108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-338)) (-5 *2 (-843)))) ((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-319)) (-5 *2 (-843)) (-5 *1 (-487 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-5 *2 (-1069 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-107)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-265 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-941 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
+(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-278)))) ((*1 *2 *3) (-12 (-5 *2 (-1075 (-377 (-517)))) (-5 *1 (-166)) (-5 *3 (-517)))) ((*1 *1 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1108)))) ((*1 *1 *1) (-4 *1 (-793 *2))) ((*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-724)) (-4 *4 (-779)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-449 *4 *5))) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *2 (-2 (|:| |gblist| (-583 (-221 *4 *5))) (|:| |gvlist| (-583 (-517))))) (-5 *1 (-571 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-265 *2)) (-4 *2 (-659)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-583 *2)) (-4 *2 (-1108)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-1054 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-980 *4 *5 *6 *3)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-333)) (-5 *2 (-623 *4)) (-5 *1 (-746 *4 *5)) (-4 *5 (-593 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-583 *5)) (-5 *4 (-703)) (-4 *5 (-333)) (-5 *2 (-623 *5)) (-5 *1 (-746 *5 *6)) (-4 *6 (-593 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (|has| *1 (-6 -4180)) (-4 *1 (-456 *3)) (-4 *3 (-1108)) (-5 *2 (-583 *3)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-333)) (-5 *1 (-257 *3 *2)) (-4 *2 (-1145 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-753)) (-5 *2 (-51)) (-5 *1 (-763)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1040 *4 *2)) (-14 *4 (-843)) (-4 *2 (-13 (-961) (-10 -7 (-6 (-4182 "*"))))) (-5 *1 (-824 *4 *2)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *1 *2) (-12 (-4 *1 (-603 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-1073)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-583 *7)) (|:| |badPols| (-583 *7)))) (-5 *1 (-894 *4 *5 *6 *7)) (-5 *3 (-583 *7)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-800 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-802 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *1 (-804 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1154)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-236))) (-5 *1 (-1155)))))
(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-125)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-1003)) (-5 *2 (-1158)) (-5 *1 (-1109 *4)))))
+(((*1 *1 *1) (-4 *1 (-502))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-623 *5))) (-4 *5 (-278)) (-4 *5 (-961)) (-5 *2 (-1153 (-1153 *5))) (-5 *1 (-944 *5)) (-5 *4 (-1153 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-531)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-107)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-125)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-1003)))))
(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-987 *3)) (-4 *3 (-124)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-4 *6 (-13 (-508) (-777))) (-5 *2 (-578 (-282 *6))) (-5 *1 (-195 *5 *6)) (-5 *3 (-282 *6)) (-4 *5 (-959)))) ((*1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))) ((*1 *2 *3) (-12 (-5 *3 (-530 *5)) (-4 *5 (-13 (-29 *4) (-1090))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-578 *5)) (-5 *1 (-532 *4 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-530 (-375 (-866 *4)))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-578 (-282 *4))) (-5 *1 (-535 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-996 *3 *2)) (-4 *3 (-775)) (-4 *2 (-1044 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-996 *4 *2)) (-4 *4 (-775)) (-4 *2 (-1044 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))) ((*1 *2 *1) (-12 (-5 *2 (-1162 (-1070) *3)) (-5 *1 (-1168 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-755)))))
-(((*1 *2) (-12 (-4 *1 (-372)) (-5 *2 (-839)))) ((*1 *1) (-4 *1 (-500))) ((*1 *2 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) ((*1 *2) (-12 (-5 *2 (-839)) (-5 *1 (-630)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-4 *6 (-13 (-508) (-950 *5))) (-4 *5 (-508)) (-5 *2 (-578 (-578 (-262 (-375 (-866 *6)))))) (-5 *1 (-951 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1104)) (-5 *2 (-578 *1)) (-4 *1 (-924 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-959)) (-5 *2 (-1148 *4)) (-5 *1 (-1071 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-839)) (-5 *2 (-1148 *3)) (-5 *1 (-1071 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-486 *3)) (-4 *3 (-13 (-657) (-25))))))
-(((*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))))
-(((*1 *1 *2 *3) (-12 (-5 *1 (-883 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-1018))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1148 (-578 (-501)))) (-5 *1 (-446)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *4 *5 *6)) (-4 *4 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-1048 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1313 (-375 (-501))) (|:| -1320 (-375 (-501))))) (-5 *2 (-375 (-501))) (-5 *1 (-934 *4)) (-4 *4 (-1125 (-501))))))
-(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-324 *4)) (-4 *4 (-318)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 (-1148 *4))) (-4 *4 (-959)) (-5 *2 (-621 *4)) (-5 *1 (-943 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-107) *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |goodPols| (-578 *8)) (|:| |badPols| (-578 *8)))) (-5 *1 (-892 *5 *6 *7 *8)) (-5 *4 (-578 *8)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-839)) (-4 *5 (-777)) (-5 *2 (-578 (-606 *5))) (-5 *1 (-606 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-104)))) ((*1 *2 *1) (-12 (-4 *1 (-124)) (-5 *2 (-701)))) ((*1 *2 *3 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-340 *3)) (-4 *3 (-1104)) (-4 *3 (-1001)) (-5 *2 (-501)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (-4 *1 (-340 *4)) (-4 *4 (-1104)) (-5 *2 (-501)))) ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-501)) (-5 *3 (-128)))) ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-501)))))
-(((*1 *2 *2) (-12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *2 (-618 *7 *8 *9)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-618 *4 *5 *6)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)))) ((*1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-276)))) ((*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-961 *2 *3 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *6 (-211 *2 *4)) (-4 *4 (-276)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-924 *3)) (-4 *3 (-1104)) (-5 *2 (-501)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-276)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-415 *4 *5 *6 *2)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-324 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-107)) (-5 *1 (-485 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-1125 *4)) (-5 *2 (-1 *6 (-578 *6))) (-5 *1 (-1144 *4 *5 *3 *6)) (-4 *3 (-593 *5)) (-4 *6 (-1142 *4)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-107)) (-5 *5 (-997 (-701))) (-5 *6 (-701)) (-5 *2 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *3) (|:| -3257 (-501))))))) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *1) (-12 (-4 *1 (-432 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-4 *1 (-653))) ((*1 *1) (-4 *1 (-657))) ((*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))))
-(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *3 *3) (-12 (-5 *2 (-578 *3)) (-5 *1 (-881 *3)) (-4 *3 (-500)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-783 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-508)) (-4 *4 (-777)) (-5 *1 (-524 *4 *2)) (-4 *2 (-389 *4)))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-686)))))
-(((*1 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-513)) (-5 *3 (-501)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-723)) (-4 *4 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *5 *4 *6 *3)) (-4 *3 (-870 *6 *5 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 (-199) (-199))) (-5 *1 (-635 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 (-199) (-199) (-199))) (-5 *1 (-635 *3)) (-4 *3 (-556 (-490))))))
-(((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-813 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-606 *3))) (-5 *1 (-813 *3)) (-4 *3 (-777)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1053)) (-4 *1 (-357)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |k| (-606 *3)) (|:| |c| *4)))) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-877 *3)) (-5 *1 (-1058 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-335 *2)) (-4 *2 (-156)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-152 (-199)))) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-196 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-4 *1 (-225 *3)))) ((*1 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-340 *2)) (-4 *5 (-340 *2)) (-4 *2 (-1104)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-1104)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-961 *4 *5 *2 *6 *7)) (-4 *6 (-211 *5 *2)) (-4 *7 (-211 *4 *2)) (-4 *2 (-959)))))
-(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-733)))))
-(((*1 *2 *3) (-12 (-5 *3 (-749 *4)) (-4 *4 (-777)) (-5 *2 (-107)) (-5 *1 (-606 *4)))))
-(((*1 *2 *3) (-12 (-4 *1 (-815)) (-5 *3 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-948)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *2 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))))
-(((*1 *2) (-12 (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-5 *1 (-319 *3 *4 *5)) (-4 *5 (-378 *3 *4)))) ((*1 *2) (-12 (-4 *3 (-1125 (-501))) (-5 *2 (-2 (|:| -4119 (-621 (-501))) (|:| |basisDen| (-501)) (|:| |basisInv| (-621 (-501))))) (-5 *1 (-698 *3 *4)) (-4 *4 (-378 (-501) *3)))) ((*1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -4119 (-621 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-621 *4)))) (-5 *1 (-900 *3 *4 *5 *6)) (-4 *6 (-655 *4 *5)))) ((*1 *2) (-12 (-4 *3 (-318)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -4119 (-621 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-621 *4)))) (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *6 (-378 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-114 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -3709 *7)))) (-4 *6 (-972 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-903 *3 *4 *5 *6 *7)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-2 (|:| |val| (-578 *6)) (|:| -3709 *7)))) (-4 *6 (-972 *3 *4 *5)) (-4 *7 (-977 *3 *4 *5 *6)) (-4 *3 (-419)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-1007 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 (-1048 *4) (-1048 *4))) (-5 *2 (-1048 *4)) (-5 *1 (-1172 *4)) (-4 *4 (-1104)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-578 (-1048 *5)) (-578 (-1048 *5)))) (-5 *4 (-501)) (-5 *2 (-578 (-1048 *5))) (-5 *1 (-1172 *5)) (-4 *5 (-1104)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *7 (-1125 *5)) (-4 *4 (-655 *5 *7)) (-5 *2 (-2 (|:| -2978 (-621 *6)) (|:| |vec| (-1148 *5)))) (-5 *1 (-741 *5 *6 *7 *4 *3)) (-4 *6 (-593 *5)) (-4 *3 (-593 *4)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-1064 *3)) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-553 *3)) (-5 *5 (-375 (-1064 *3))) (-4 *3 (-13 (-389 *6) (-27) (-1090))) (-4 *6 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-512 *6 *3 *7)) (-4 *7 (-1001)))))
-(((*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))))
-(((*1 *1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-156)) (-4 *2 (-508)))) ((*1 *1 *1) (|partial| -4 *1 (-653))))
-(((*1 *1 *2) (-12 (-5 *2 (-375 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-13 (-331) (-134))) (-5 *1 (-367 *3 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-578 (-107))) (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *7 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-1048 (-866 *4)) (-1048 (-866 *4)))) (-5 *1 (-1157 *4)) (-4 *4 (-331)))))
-(((*1 *2 *3 *2) (-12 (-4 *1 (-717)) (-5 *2 (-948)) (-5 *3 (-2 (|:| |fn| (-282 (-199))) (|:| -1505 (-578 (-991 (-769 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))) ((*1 *2 *3 *2) (-12 (-4 *1 (-717)) (-5 *2 (-948)) (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-621 (-501))) (-5 *5 (-107)) (-5 *7 (-621 (-199))) (-5 *3 (-501)) (-5 *6 (-199)) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-4 *1 (-1111 *4)) (-4 *4 (-959)) (-4 *4 (-508)) (-5 *2 (-375 (-866 *4))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-1111 *4)) (-4 *4 (-959)) (-4 *4 (-508)) (-5 *2 (-375 (-866 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-948)))))
-(((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-701)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-578 (-107))) (-5 *7 (-621 (-199))) (-5 *8 (-621 (-501))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-685)))))
-(((*1 *1) (-5 *1 (-435))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-509 *6 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-866 *3))) (-4 *3 (-419)) (-5 *1 (-328 *3 *4)) (-14 *4 (-578 (-1070))))) ((*1 *2 *2) (|partial| -12 (-5 *2 (-578 (-710 *3 (-787 *4)))) (-4 *3 (-419)) (-14 *4 (-578 (-1070))) (-5 *1 (-566 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *1 (-845)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 (-199) (-199))) (-5 *3 (-991 (-199))) (-5 *1 (-845)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1070)) (-5 *5 (-991 (-199))) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-845)) (-5 *1 (-846 *3)) (-4 *3 (-556 (-490))))))
-(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-684)))))
-(((*1 *1 *1) (-5 *1 (-970))))
-(((*1 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1148 *5)) (-4 *5 (-722)) (-5 *2 (-107)) (-5 *1 (-772 *4 *5)) (-14 *4 (-701)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-621 (-199))) (-5 *6 (-107)) (-5 *7 (-621 (-501))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684)))))
-(((*1 *2 *1) (-12 (-4 *1 (-276)) (-5 *2 (-701)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-959)) (-4 *7 (-959)) (-4 *6 (-1125 *5)) (-5 *2 (-1064 (-1064 *7))) (-5 *1 (-464 *5 *6 *4 *7)) (-4 *4 (-1125 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-684)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-1154)) (-5 *1 (-1033)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-786))) (-5 *2 (-1154)) (-5 *1 (-1033)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-621 (-501))) (-5 *1 (-1010)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-948)) (-5 *1 (-684)))))
-(((*1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-500)))))
-(((*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-508)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-62 LSFUN2)))) (-5 *2 (-948)) (-5 *1 (-684)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-31 *3 *4)) (-4 *4 (-389 *3)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-701)) (-5 *1 (-108)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-108)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *4)) (-4 *4 (-389 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-108)) (-5 *1 (-147)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *4)) (-4 *4 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-266 *3)) (-4 *3 (-267)))) ((*1 *2 *2) (-12 (-4 *1 (-267)) (-5 *2 (-108)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *4 (-777)) (-5 *1 (-388 *3 *4)) (-4 *3 (-389 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *4)) (-4 *4 (-389 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-553 *3)) (-4 *3 (-777)))) ((*1 *2 *2) (-12 (-5 *2 (-108)) (-4 *3 (-13 (-777) (-508))) (-5 *1 (-567 *3 *4)) (-4 *4 (-13 (-389 *3) (-916) (-1090))))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *6 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *3 (-508)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1) (-5 *1 (-490))) ((*1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-948)) (-5 *1 (-684)))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-553 *4)) (-5 *6 (-1070)) (-4 *4 (-13 (-389 *7) (-27) (-1090))) (-4 *7 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4119 (-578 *4)))) (-5 *1 (-517 *7 *4 *3)) (-4 *3 (-593 *4)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-301 *5 *6 *7 *8)) (-4 *5 (-389 *4)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *4 (-13 (-777) (-508) (-950 (-501)))) (-5 *2 (-107)) (-5 *1 (-831 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-301 (-375 (-501)) *4 *5 *6)) (-4 *4 (-1125 (-375 (-501)))) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 (-375 (-501)) *4 *5)) (-5 *2 (-107)) (-5 *1 (-832 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-4 *4 (-318)) (-5 *2 (-373 (-1064 (-1064 *4)))) (-5 *1 (-1103 *4)) (-5 *3 (-1064 (-1064 *4))))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-501)) (-5 *5 (-107)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-76 OBJFUN)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-684)))))
-(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-3 (-1 (-199) (-199) (-199) (-199)) "undefined")) (-5 *5 (-991 (-199))) (-5 *6 (-578 (-232))) (-5 *2 (-1031 (-199))) (-5 *1 (-628)))))
-(((*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-553 *3)) (-4 *3 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-517 *5 *3 *6)) (-4 *6 (-1001)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-845)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-331)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-697 *3 *4)) (-4 *3 (-640 *4)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-779 *3)))) ((*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-2 (|:| -3236 *3) (|:| -1852 *3))) (-5 *1 (-780 *5 *3)) (-4 *3 (-779 *5)))))
-(((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (|partial| -12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-578 (-282 (-199)))) (|:| |constraints| (-578 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-701)) (|:| |boundaryType| (-501)) (|:| |dStart| (-621 (-199))) (|:| |dFinish| (-621 (-199)))))) (|:| |f| (-578 (-578 (-282 (-199))))) (|:| |st| (-1053)) (|:| |tol| (-199)))) (-5 *2 (-107)) (-5 *1 (-186)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-2 (|:| |solns| (-578 *5)) (|:| |maps| (-578 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1026 *3 *5)) (-4 *3 (-1125 *5)))))
-(((*1 *2 *3 *4) (-12 (-5 *2 (-578 (-152 *4))) (-5 *1 (-141 *3 *4)) (-4 *3 (-1125 (-152 (-501)))) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))) ((*1 *2 *3 *4) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))))
-(((*1 *1 *2) (|partial| -12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *1 (-599 *3 *4)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-599 *3 *4)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-267)))) ((*1 *1 *1) (-4 *1 (-267))) ((*1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-373 *2)) (-4 *2 (-508)))))
-(((*1 *2 *1) (-12 (-4 *1 (-372)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-630)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *5 (-508)) (-5 *1 (-663 *4 *3 *5 *2)) (-4 *2 (-870 (-375 (-866 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-870 (-866 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *4 (-959)) (-4 *5 (-723)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-870 (-866 *4) *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *3)))) (-5 *1 (-540 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-940 *5 *6 *7 *8))))) (-5 *1 (-940 *5 *6 *7 *8)) (-5 *3 (-578 *8)))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-578 *8)) (|:| |towers| (-578 (-1041 *5 *6 *7 *8))))) (-5 *1 (-1041 *5 *6 *7 *8)) (-5 *3 (-578 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *1 *2) (-12 (-5 *2 (-839)) (-4 *1 (-211 *3 *4)) (-4 *4 (-959)) (-4 *4 (-1104)))) ((*1 *1 *2) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *5 (-211 (-3581 *3) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *2) (|:| -3027 *5)) (-2 (|:| -3506 *2) (|:| -3027 *5)))) (-5 *1 (-428 *3 *4 *2 *5 *6 *7)) (-4 *2 (-777)) (-4 *7 (-870 *4 *5 (-787 *3))))) ((*1 *2 *2) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-501)) (-5 *3 (-839)) (-5 *1 (-630)))) ((*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-621 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-331)) (-5 *1 (-893 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-1056)) (-4 *1 (-334 *2 *4)) (-4 *2 (-1003)) (-4 *4 (-1003)))) ((*1 *1 *2) (-12 (-4 *1 (-334 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))))
+(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-107)) (-5 *1 (-814 *4)) (-4 *4 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-787)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-517)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-703)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-725)) (-4 *4 (-871 *5 *6 *7)) (-4 *5 (-421)) (-4 *7 (-779)) (-5 *1 (-418 *5 *6 *7 *4)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-865 *5)) (-5 *3 (-703)) (-4 *5 (-961)) (-5 *1 (-1062 *4 *5)) (-14 *4 (-843)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-623 (-199))) (-5 *6 (-623 (-517))) (-5 *3 (-517)) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-583 (-556 (-47)))) (-5 *1 (-47)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-47))) (-5 *3 (-556 (-47))) (-5 *1 (-47)))) ((*1 *2 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-333) (-777))) (-5 *1 (-162 *2 *3)) (-4 *3 (-1130 (-153 *2))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-383 *3 *2 *4 *5)) (-4 *3 (-278)) (-4 *5 (-13 (-379 *2 *4) (-952 *2))))) ((*1 *2 *1) (-12 (-4 *4 (-1130 *2)) (-4 *2 (-909 *3)) (-5 *1 (-384 *3 *2 *4 *5 *6)) (-4 *3 (-278)) (-4 *5 (-379 *2 *4)) (-14 *6 (-1153 *5)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-4 *5 (-961)) (-4 *2 (-13 (-374) (-952 *5) (-333) (-1094) (-256))) (-5 *1 (-412 *5 *3 *2)) (-4 *3 (-1130 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-583 (-556 (-460)))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1069 (-460))) (-5 *3 (-556 (-460))) (-5 *1 (-460)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-421)) (-4 *5 (-657 *4 *2)) (-4 *2 (-1130 *4)) (-5 *1 (-707 *4 *2 *5 *3)) (-4 *3 (-1130 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))) ((*1 *1 *1) (-4 *1 (-970))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-756)) (-5 *1 (-757)))))
+(((*1 *2 *2) (-12 (-4 *3 (-509)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-622 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-4 *1 (-359)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1054 (-1054 *4))) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)) (-4 *4 (-961)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1054 (-583 (-517)))) (-5 *1 (-805)) (-5 *3 (-517)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *3 (-583 (-236))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-865 (-199)) (-865 (-199)))) (-5 *1 (-236)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-583 (-449 *5 *6))) (-5 *3 (-449 *5 *6)) (-14 *5 (-583 (-1073))) (-4 *6 (-421)) (-5 *2 (-1153 *6)) (-5 *1 (-571 *5 *6)))))
+(((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *1)) (-4 *1 (-975 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-975 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-509)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-975 *4 *5 *6)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *2 (-109)) (-5 *1 (-108 *3)) (-4 *3 (-779)) (-4 *3 (-1003)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *5 (-583 *5))) (-4 *5 (-1145 *4)) (-4 *4 (-37 (-377 (-517)))) (-5 *2 (-1 (-1054 *4) (-583 (-1054 *4)))) (-5 *1 (-1147 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1145 *3)) (-5 *1 (-251 *3 *4 *2)) (-4 *2 (-1116 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-377 (-517)))) (-4 *4 (-1114 *3)) (-5 *1 (-252 *3 *4 *2 *5)) (-4 *2 (-1137 *3 *4)) (-4 *5 (-900 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1059 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-37 (-377 (-517)))) (-5 *1 (-1060 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-685)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-874 *6))) (-5 *4 (-583 (-1073))) (-4 *6 (-13 (-509) (-952 *5))) (-4 *5 (-509)) (-5 *2 (-583 (-583 (-265 (-377 (-874 *6)))))) (-5 *1 (-953 *5 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)))) ((*1 *1 *1 *1) (-4 *1 (-442))) ((*1 *1 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-805)))) ((*1 *1 *1) (-5 *1 (-888))) ((*1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *8)) (-5 *4 (-583 *7)) (-4 *7 (-779)) (-4 *8 (-871 *5 *6 *7)) (-4 *5 (-509)) (-4 *6 (-725)) (-5 *2 (-2 (|:| |particular| (-3 (-1153 (-377 *8)) "failed")) (|:| -1753 (-583 (-1153 (-377 *8)))))) (-5 *1 (-606 *5 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-509) (-779))) (-4 *2 (-13 (-400 *4) (-918) (-1094))) (-5 *1 (-546 *4 *2 *3)) (-4 *3 (-13 (-400 (-153 *4)) (-918) (-1094))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-265 (-377 (-874 *5)))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-874 *5))) (-5 *4 (-1073)) (-4 *5 (-13 (-278) (-779) (-134))) (-5 *2 (-1063 (-583 (-286 *5)) (-583 (-265 (-286 *5))))) (-5 *1 (-1030 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-236)))) ((*1 *1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-236)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1108)) (-5 *2 (-583 *1)) (-4 *1 (-926 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1062 *3 *4))) (-5 *1 (-1062 *3 *4)) (-14 *3 (-843)) (-4 *4 (-961)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1401 (-714 *3)) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-509)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-2 (|:| -1401 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-975 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-703)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1095 *3))) (-5 *1 (-1095 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-301 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-517))) (-5 *5 (-1 (-1054 *4))) (-4 *4 (-333)) (-4 *4 (-961)) (-5 *2 (-1054 *4)) (-5 *1 (-1058 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-843)) (-4 *1 (-299 *3)) (-4 *3 (-333)) (-4 *3 (-338)))) ((*1 *2 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-333)))) ((*1 *2 *1) (-12 (-4 *1 (-340 *2 *3)) (-4 *3 (-1130 *2)) (-4 *2 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1153 *4)) (-5 *3 (-843)) (-4 *4 (-319)) (-5 *1 (-487 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1024 *3 *2 *4 *5)) (-4 *4 (-212 *3 *2)) (-4 *5 (-212 *3 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-623 (-199))) (-5 *5 (-623 (-517))) (-5 *6 (-199)) (-5 *3 (-517)) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *2 *1) (-12 (-4 *1 (-305 *3 *4 *5 *6)) (-4 *3 (-333)) (-4 *4 (-1130 *3)) (-4 *5 (-1130 (-377 *4))) (-4 *6 (-312 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-51))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *3 (-874 (-517))) (-5 *1 (-300)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-996 (-874 (-517)))) (-5 *1 (-300)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *2 *3 *2 *2) (-12 (-5 *2 (-583 (-449 *4 *5))) (-5 *3 (-789 *4)) (-14 *4 (-583 (-1073))) (-4 *5 (-421)) (-5 *1 (-571 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-157 *3)) (-4 *3 (-278)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-961)) (-5 *2 (-1153 *4)) (-5 *1 (-1074 *4)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-843)) (-5 *2 (-1153 *3)) (-5 *1 (-1074 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-51))) (-5 *2 (-1158)) (-5 *1 (-788)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-590 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-583 *5) *6)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *6 (-1130 *5)) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-591 *7 (-377 *7))) (-5 *4 (-1 (-583 *6) *7)) (-5 *5 (-1 (-388 *7) *7)) (-4 *6 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-4 *7 (-1130 *6)) (-5 *2 (-583 (-377 *7))) (-5 *1 (-744 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-590 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-590 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-591 *5 (-377 *5))) (-4 *5 (-1130 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *5))) (-5 *1 (-744 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-591 *6 (-377 *6))) (-5 *4 (-1 (-388 *6) *6)) (-4 *6 (-1130 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-333) (-134) (-952 (-517)) (-952 (-377 (-517))))) (-5 *2 (-583 (-377 *6))) (-5 *1 (-744 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-598))) ((*1 *1 *1) (-5 *1 (-1021))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *3 (-703)) (-4 *4 (-319)) (-5 *1 (-191 *4 *2)) (-4 *2 (-1130 *4)))) ((*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-334 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1003)))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-388 *2)) (-4 *2 (-509)))))
+(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-843)) (-5 *4 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
+(((*1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-509)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *5 (-583 (-236))) (-5 *1 (-437)))) ((*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *3 (-583 (-797))) (-5 *4 (-583 (-843))) (-5 *1 (-437)))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-583 (-865 (-199))))) (-5 *1 (-437)))) ((*1 *1 *1) (-5 *1 (-437))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-583 *7)) (-4 *7 (-975 *4 *5 *6)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *1) (|partial| -12 (-4 *1 (-337 *2)) (-4 *2 (-509)) (-4 *2 (-156)))))
+(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-114 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-583 (-517))) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 (-517)) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *2 (-156)) (-5 *1 (-127 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-703)))) ((*1 *2 *1) (-12 (-4 *2 (-156)) (-5 *1 (-127 *3 *4 *2)) (-14 *3 (-517)) (-14 *4 (-703)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-219 (-1056))) (-5 *1 (-189 *4)) (-4 *4 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ *3)) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-906)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 ((-1158) $)) (-15 -3307 ((-1158) $))))))) ((*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-703)) (-5 *1 (-219 *4)) (-4 *4 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-219 *3)) (-4 *3 (-779)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-258 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *2) (-12 (-4 *3 (-156)) (-5 *1 (-261 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1130 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 *1)) (-4 *1 (-273)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-273)) (-5 *2 (-109)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-312 *2 *3 *4)) (-4 *2 (-1112)) (-4 *3 (-1130 *2)) (-4 *4 (-1130 (-377 *3))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-4 *1 (-387 *2)) (-4 *2 (-156)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1056)) (-5 *1 (-467)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-572)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1121 (-517))) (-4 *1 (-588 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-703)) (-5 *1 (-611 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-621 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-787)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-109)) (-5 *3 (-583 (-814 *4))) (-5 *1 (-814 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-825 *2)) (-4 *2 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-703)) (-5 *2 (-827 *4)) (-5 *1 (-826 *4)) (-4 *4 (-1003)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-214 *4 *2)) (-14 *4 (-843)) (-4 *2 (-333)) (-5 *1 (-910 *4 *2)))) ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-926 *2)) (-4 *2 (-1108)))) ((*1 *2 *1) (-12 (-5 *1 (-941 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *2 (-961)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-983 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *2 *1 *2 *3) (-12 (-5 *3 (-843)) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-984 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *3 (-1003)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-4 *6 (-1003)) (-4 *7 (-1003)))) ((*1 *1 *1 *1) (-4 *1 (-1042))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-787))) (-5 *1 (-1073)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-377 *1)) (-4 *1 (-1130 *2)) (-4 *2 (-961)) (-4 *2 (-333)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-377 *1)) (-4 *1 (-1130 *3)) (-4 *3 (-961)) (-4 *3 (-509)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-1132 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1142 *3)) (-4 *3 (-1108)))) ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1142 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-981 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-1056)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-1158)) (-5 *1 (-1011 *4 *5 *6 *7 *8)) (-4 *8 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1073)) (-5 *6 (-583 (-556 *3))) (-5 *5 (-556 *3)) (-4 *3 (-13 (-27) (-1094) (-400 *7))) (-4 *7 (-13 (-421) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-5 *2 (-2 (|:| -2422 *3) (|:| |coeff| *3))) (-5 *1 (-510 *7 *3)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1108)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)))) ((*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))) ((*1 *2) (-12 (-5 *2 (-349)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-1073))) (-4 *4 (-1003)) (-4 *5 (-13 (-961) (-808 *4) (-779) (-558 (-814 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-400 *5) (-808 *4) (-558 (-814 *4)))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *4 *5 *6)) (-4 *4 (-333)) (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *1 (-419 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-333)) (-5 *2 (-2 (|:| R (-623 *6)) (|:| A (-623 *6)) (|:| |Ainv| (-623 *6)))) (-5 *1 (-895 *6)) (-5 *3 (-623 *6)))))
+(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)))))
+(((*1 *1) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1042)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-296 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-961)) (-5 *1 (-291 *4 *5 *2 *6)) (-4 *6 (-871 *2 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-725)) (-4 *6 (-779)) (-4 *3 (-509)) (-4 *7 (-871 *3 *5 *6)) (-5 *2 (-2 (|:| -2077 (-703)) (|:| -1931 *8) (|:| |radicand| *8))) (-5 *1 (-875 *5 *6 *3 *7 *8)) (-5 *4 (-703)) (-4 *8 (-13 (-333) (-10 -8 (-15 -1787 (*7 $)) (-15 -1800 (*7 $)) (-15 -2256 ($ *7))))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4181)) (-4 *1 (-456 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *2 *2) (-12 (-4 *3 (-333)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *1 (-484 *3 *4 *5 *2)) (-4 *2 (-621 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-249 *3 *2)) (-4 *2 (-13 (-400 *3) (-918))))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-777))) (-5 *2 (-2 (|:| |start| *3) (|:| -2879 (-388 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1130 (-153 *4))))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-125)))))
+(((*1 *1) (-5 *1 (-107))))
+(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-849)))))
+(((*1 *2 *2 *2) (-12 (-4 *3 (-333)) (-5 *1 (-699 *2 *3)) (-4 *2 (-642 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-958 *5 *6))) (-5 *1 (-568 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *6 (-779)) (-4 *4 (-333)) (-4 *5 (-725)) (-5 *2 (-2 (|:| |mval| (-623 *4)) (|:| |invmval| (-623 *4)) (|:| |genIdeal| (-469 *4 *5 *6 *7)))) (-5 *1 (-469 *4 *5 *6 *7)) (-4 *7 (-871 *4 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-1069 *3)) (-4 *3 (-319)) (-5 *1 (-327 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-754)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-583 *2) *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1003)) (-5 *1 (-98 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-1056))) (-5 *1 (-364)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-517)) (-5 *2 (-107)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-556 *4))) (-4 *4 (-400 *3)) (-4 *3 (-779)) (-5 *1 (-526 *3 *4)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-811 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-1003)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-4 *5 (-333)) (-4 *5 (-509)) (-5 *2 (-1153 *5)) (-5 *1 (-578 *5 *4)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1153 *4)) (-4 *4 (-579 *5)) (-2630 (-4 *5 (-333))) (-4 *5 (-509)) (-5 *2 (-1153 (-377 *5))) (-5 *1 (-578 *5 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-493)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 (-623 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-871 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-725)) (-4 *5 (-961)) (-4 *6 (-871 *5 *4 *2)) (-4 *2 (-779)) (-5 *1 (-872 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *6)) (-15 -1787 (*6 $)) (-15 -1800 (*6 $))))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-1073)) (-5 *1 (-957 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *1 *1) (-12 (-4 *1 (-400 *2)) (-4 *2 (-779)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-509)))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-535 *3)) (-4 *3 (-502)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1073)) (-5 *6 (-107)) (-4 *7 (-13 (-278) (-779) (-134) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-1094) (-880) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-772 *3)) (|:| |f2| (-583 (-772 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-193 *7 *3)) (-5 *5 (-772 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) ((*1 *1 *1 *1) (-4 *1 (-421))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-5 *1 (-453 *2)) (-4 *2 (-1130 (-517))))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))) ((*1 *1 *1 *1) (-5 *1 (-703))) ((*1 *2 *2 *2) (-12 (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *2)) (-4 *2 (-871 *5 *3 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-871 *6 *4 *5)) (-5 *1 (-838 *4 *5 *6 *2)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1069 *6)) (-4 *6 (-871 *5 *3 *4)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *5 (-278)) (-5 *1 (-838 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-1069 *7))) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-278)) (-5 *2 (-1069 *7)) (-5 *1 (-838 *4 *5 *6 *7)) (-4 *7 (-871 *6 *4 *5)))) ((*1 *1 *1 *1) (-5 *1 (-843))) ((*1 *2 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-509)) (-5 *1 (-887 *3 *2)) (-4 *2 (-1130 *3)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-975 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-725)) (-4 *4 (-779)) (-4 *2 (-421)))))
+(((*1 *2 *3) (|partial| -12 (-5 *3 (-623 (-377 (-874 (-517))))) (-5 *2 (-623 (-286 (-517)))) (-5 *1 (-946)))))
+(((*1 *1 *2 *3 *4) (-12 (-5 *3 (-583 (-2 (|:| |scalar| (-377 (-517))) (|:| |coeff| (-1069 *2)) (|:| |logand| (-1069 *2))))) (-5 *4 (-583 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-333)) (-5 *1 (-534 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-703)) (-5 *3 (-107)) (-5 *1 (-105)))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (|has| *1 (-6 -4171)) (-4 *1 (-374)))) ((*1 *2) (-12 (-4 *1 (-374)) (-5 *2 (-843)))))
+(((*1 *2 *1) (-12 (-4 *1 (-876)) (-5 *2 (-998 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-891)) (-5 *2 (-998 (-199))))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-990 *3)) (-4 *3 (-124)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1003)) (-5 *2 (-583 (-703))) (-5 *1 (-826 *4)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *2 (-950)) (-5 *1 (-684)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-585 *3)) (-4 *3 (-961)) (-5 *1 (-647 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-961)) (-5 *1 (-766 *3)))))
+(((*1 *2 *2 *3 *4) (-12 (-5 *3 (-583 (-556 *6))) (-5 *4 (-1073)) (-5 *2 (-556 *6)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *1 (-526 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *2)) (-4 *2 (-400 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-779) (-509))))))
+(((*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-779) (-952 (-517)) (-579 (-517)) (-421))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1139 *4 *5 *6)) (|:| |%expon| (-289 *4 *5 *6)) (|:| |%expTerms| (-583 (-2 (|:| |k| (-377 (-517))) (|:| |c| *4)))))) (|:| |%type| (-1056)))) (-5 *1 (-1140 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1094) (-400 *3))) (-14 *5 (-1073)) (-14 *6 *4))))
+(((*1 *2 *1) (-12 (-4 *2 (-1130 *3)) (-5 *1 (-369 *3 *2)) (-4 *3 (-13 (-333) (-134))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1153 *4)) (-4 *4 (-579 (-517))) (-5 *2 (-107)) (-5 *1 (-1178 *4)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-611 (-199))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-248)))))
+(((*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-488 *3)) (-4 *3 (-13 (-659) (-25))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-517)) (-5 *1 (-215)))))
+(((*1 *2 *3) (-12 (-5 *3 (-517)) (-5 *2 (-583 (-583 (-199)))) (-5 *1 (-1105)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-345 *4 *2)) (-4 *2 (-13 (-343 *4) (-10 -7 (-6 -4181)))))))
+(((*1 *1) (-5 *1 (-131))) ((*1 *2 *3) (-12 (-5 *3 (-583 (-236))) (-5 *2 (-1034 (-199))) (-5 *1 (-234)))) ((*1 *1 *2) (-12 (-5 *2 (-1034 (-199))) (-5 *1 (-236)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-703)) (|:| -1913 *4))) (-5 *5 (-703)) (-4 *4 (-871 *6 *7 *8)) (-4 *6 (-421)) (-4 *7 (-725)) (-4 *8 (-779)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-418 *6 *7 *8 *4)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-343 *2)) (-4 *5 (-343 *2)) (-4 *2 (-1108)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-260 *3 *2)) (-4 *3 (-1003)) (-4 *2 (-1108)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-4 *1 (-964 *4 *5 *2 *6 *7)) (-4 *6 (-212 *5 *2)) (-4 *7 (-212 *4 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| -2261 (-703)) (|:| |eqns| (-583 (-2 (|:| |det| *7) (|:| |rows| (-583 (-517))) (|:| |cols| (-583 (-517)))))) (|:| |fgb| (-583 *7))))) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-703)) (-5 *1 (-846 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-950)) (-5 *1 (-683)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-814 *4)) (-4 *4 (-1003)) (-5 *1 (-812 *4 *3)) (-4 *3 (-1108)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-814 *3)) (-4 *3 (-1003)))))
+(((*1 *2 *1) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-289 *3 *4 *5)) (-4 *3 (-13 (-333) (-779))) (-14 *4 (-1073)) (-14 *5 *3))))
+(((*1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-692)))))
+(((*1 *2 *3 *4) (-12 (-4 *4 (-333)) (-5 *2 (-583 (-1054 *4))) (-5 *1 (-257 *4 *5)) (-5 *3 (-1054 *4)) (-4 *5 (-1145 *4)))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-583 *6)) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)) (-5 *2 (-703)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-703)))))
+(((*1 *2 *2) (-12 (-4 *3 (-13 (-779) (-421))) (-5 *1 (-1100 *3 *2)) (-4 *2 (-13 (-400 *3) (-1094))))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1153 (-286 (-199)))) (-5 *4 (-583 (-1073))) (-5 *2 (-623 (-286 (-199)))) (-5 *1 (-181)))) ((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *6 (-822 *5)) (-5 *2 (-623 *6)) (-5 *1 (-625 *5 *6 *3 *4)) (-4 *3 (-343 *6)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-616 *2)) (-4 *2 (-1003)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 (-583 *5) (-583 *5))) (-5 *4 (-517)) (-5 *2 (-583 *5)) (-5 *1 (-616 *5)) (-4 *5 (-1003)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *1)) (-4 *1 (-421)))) ((*1 *1 *1 *1) (-4 *1 (-421))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-583 (-1073))) (-5 *1 (-240)))) ((*1 *2 *3) (-12 (-5 *3 (-1069 *7)) (-4 *7 (-871 *6 *4 *5)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-5 *2 (-583 *5)) (-5 *1 (-291 *4 *5 *6 *7)))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-1073))) (-5 *1 (-309 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-357)))) ((*1 *2 *1) (-12 (-4 *1 (-400 *3)) (-4 *3 (-779)) (-5 *2 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-583 (-814 *3))) (-5 *1 (-814 *3)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-871 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-961)) (-4 *7 (-871 *6 *4 *5)) (-5 *2 (-583 *5)) (-5 *1 (-872 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))))) ((*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-961)) (-4 *4 (-724)) (-4 *5 (-779)) (-5 *2 (-583 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-583 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-377 (-874 *4))) (-4 *4 (-509)) (-5 *2 (-583 (-1073))) (-5 *1 (-957 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-349)))) ((*1 *1 *1 *1) (-4 *1 (-502))) ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-703)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-1001 *3)))) ((*1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1003)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-683)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-517)) (-5 *4 (-388 *2)) (-4 *2 (-871 *7 *5 *6)) (-5 *1 (-675 *5 *6 *7 *2)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-278)))))
+(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-623 *2)) (-5 *4 (-703)) (-4 *2 (-13 (-278) (-10 -8 (-15 -2759 ((-388 $) $))))) (-4 *5 (-1130 *2)) (-5 *1 (-464 *2 *5 *6)) (-4 *6 (-379 *2 *5)))))
+(((*1 *2 *3) (-12 (-4 *4 (-421)) (-5 *2 (-583 (-2 (|:| |eigval| (-3 (-377 (-874 *4)) (-1063 (-1073) (-874 *4)))) (|:| |geneigvec| (-583 (-623 (-377 (-874 *4)))))))) (-5 *1 (-263 *4)) (-5 *3 (-623 (-377 (-874 *4)))))))
+(((*1 *1 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))))
+(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (-12 (-4 *1 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-924 *3)) (-4 *3 (-952 (-377 (-517)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-127 *3 *4 *5)) (-14 *3 (-517)) (-14 *4 (-703)) (-4 *5 (-156)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *3 *3) (-12 (-4 *3 (-278)) (-4 *3 (-156)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-622 *3 *4 *5 *6)) (-4 *6 (-621 *3 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-633 *3)) (-4 *3 (-278)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1056) (-706))) (-5 *1 (-109)))))
+(((*1 *2 *3 *4 *2) (-12 (-5 *3 (-1069 (-377 (-1069 *2)))) (-5 *4 (-556 *2)) (-4 *2 (-13 (-400 *5) (-27) (-1094))) (-4 *5 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *1 (-513 *5 *2 *6)) (-4 *6 (-1003)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *1)) (-4 *1 (-871 *4 *5 *3)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1069 *4)) (-4 *4 (-961)) (-4 *1 (-871 *4 *5 *3)) (-4 *5 (-725)) (-4 *3 (-779)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 *2))) (-4 *5 (-725)) (-4 *4 (-779)) (-4 *6 (-961)) (-4 *2 (-13 (-333) (-10 -8 (-15 -2256 ($ *7)) (-15 -1787 (*7 $)) (-15 -1800 (*7 $))))) (-5 *1 (-872 *5 *4 *6 *7 *2)) (-4 *7 (-871 *6 *5 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-377 (-1069 (-377 (-874 *5))))) (-5 *4 (-1073)) (-5 *2 (-377 (-874 *5))) (-5 *1 (-957 *5)) (-4 *5 (-509)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1054 *3)) (-4 *3 (-333)) (-4 *3 (-961)) (-5 *1 (-1058 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1035 *3)) (-4 *3 (-961)) (-5 *2 (-583 (-865 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *3 (-961)) (-4 *1 (-1035 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-583 (-865 *3))) (-4 *1 (-1035 *3)) (-4 *3 (-961)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1021)) (-5 *2 (-1158)) (-5 *1 (-763)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (|has| *1 (-6 -4181)) (-4 *1 (-1142 *3)) (-4 *3 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *2) (-12 (-5 *2 (-583 *6)) (-4 *6 (-975 *3 *4 *5)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *1 (-894 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-703)) (-5 *1 (-785 *2)) (-4 *2 (-156)))) ((*1 *2 *3) (-12 (-5 *2 (-1069 (-517))) (-5 *1 (-864)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *5)) (-4 *5 (-1130 *3)) (-4 *3 (-278)) (-5 *2 (-107)) (-5 *1 (-424 *3 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-404)))))
+(((*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-583 (-843))) (-5 *1 (-139 *4 *2 *5)) (-14 *4 (-843)) (-4 *2 (-333)) (-14 *5 (-910 *4 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-646 *5 *6 *7)) (-4 *5 (-779)) (-4 *6 (-212 (-2296 *4) (-703))) (-14 *7 (-1 (-107) (-2 (|:| -3448 *5) (|:| -2077 *6)) (-2 (|:| -3448 *5) (|:| -2077 *6)))) (-14 *4 (-583 (-1073))) (-4 *2 (-156)) (-5 *1 (-430 *4 *2 *5 *6 *7 *8)) (-4 *8 (-871 *2 *6 (-789 *4))))) ((*1 *1 *2 *3) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-517)) (-4 *2 (-509)) (-5 *1 (-564 *2 *4)) (-4 *4 (-1130 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *5)) (-5 *3 (-583 (-703))) (-4 *1 (-673 *4 *5)) (-4 *4 (-961)) (-4 *5 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-673 *4 *2)) (-4 *4 (-961)) (-4 *2 (-779)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 (-703))) (-4 *1 (-871 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-703)) (-4 *1 (-871 *4 *5 *2)) (-4 *4 (-961)) (-4 *5 (-725)) (-4 *2 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 *6)) (-5 *3 (-583 *5)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-961)) (-4 *5 (-724)) (-4 *6 (-779)))) ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-890 *4 *3 *2)) (-4 *4 (-961)) (-4 *3 (-724)) (-4 *2 (-779)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |mm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-751 *3)) (|:| |mm| (-751 *3)) (|:| |rm| (-751 *3)))) (-5 *1 (-751 *3)) (-4 *3 (-779)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-950)) (-5 *1 (-682)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-358)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(((*1 *2 *2 *3) (-12 (-4 *3 (-961)) (-5 *1 (-413 *3 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-961)) (-4 *2 (-333)))))
+(((*1 *2 *2) (-12 (-4 *3 (-421)) (-4 *3 (-779)) (-4 *3 (-952 (-517))) (-4 *3 (-509)) (-5 *1 (-40 *3 *2)) (-4 *2 (-400 *3)) (-4 *2 (-13 (-333) (-273) (-10 -8 (-15 -1787 ((-1026 *3 (-556 $)) $)) (-15 -1800 ((-1026 *3 (-556 $)) $)) (-15 -2256 ($ (-1026 *3 (-556 $))))))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-714 *3)) (|:| |coef2| (-714 *3)))) (-5 *1 (-714 *3)) (-4 *3 (-509)) (-4 *3 (-961)))))
+(((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-905 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-421)) (-4 *5 (-725)) (-4 *6 (-779)) (-4 *7 (-975 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1010 *4 *5 *6 *7 *3)) (-4 *3 (-980 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-843)) (-5 *2 (-703)) (-5 *1 (-1004 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(((*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-703)) (-4 *4 (-961)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-1130 *4)))))
+(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-831)))))
+(((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-115 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(((*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-556 *3)) (-5 *5 (-583 *3)) (-4 *3 (-13 (-400 *6) (-27) (-1094))) (-4 *6 (-13 (-421) (-952 (-517)) (-779) (-134) (-579 (-517)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-583 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-519 *6 *3 *7)) (-4 *7 (-1003)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-583 *7)) (-5 *5 (-583 (-583 *8))) (-4 *7 (-779)) (-4 *8 (-278)) (-4 *6 (-725)) (-4 *9 (-871 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-583 (-2 (|:| -3755 (-1069 *9)) (|:| -2077 (-517))))))) (-5 *1 (-675 *6 *7 *8 *9)) (-5 *3 (-1069 *9)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-349) (-349))) (-5 *4 (-349)) (-5 *2 (-2 (|:| -3199 *4) (|:| -2101 *4) (|:| |totalpts| (-517)) (|:| |success| (-107)))) (-5 *1 (-721)) (-5 *5 (-517)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-517)) (-4 *1 (-997 *3)) (-4 *3 (-1108)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-517)) (-5 *1 (-349)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1049))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1108)) (-5 *1 (-1033 *4 *2)) (-4 *2 (-13 (-550 (-517) *4) (-10 -7 (-6 -4180) (-6 -4181)))))) ((*1 *2 *2) (-12 (-4 *3 (-779)) (-4 *3 (-1108)) (-5 *1 (-1033 *3 *2)) (-4 *2 (-13 (-550 (-517) *3) (-10 -7 (-6 -4180) (-6 -4181)))))))
+(((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))) ((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-411 *3)) (-4 *3 (-1130 (-517))))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1069 *1)) (-4 *1 (-928)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-517))) (-5 *1 (-920 *3)) (-14 *3 (-517)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1130 (-47))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-116 *3)) (|:| |greater| (-116 *3)))) (-5 *1 (-116 *3)) (-4 *3 (-779)))) ((*1 *2 *2) (-12 (-5 *2 (-534 *4)) (-4 *4 (-13 (-29 *3) (-1094))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-532 *3 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-534 (-377 (-874 *3)))) (-4 *3 (-13 (-421) (-952 (-517)) (-779) (-579 (-517)))) (-5 *1 (-537 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| -2527 *3) (|:| |special| *3))) (-5 *1 (-660 *5 *3)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153 *5)) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1153 (-1153 *5))) (-4 *5 (-333)) (-4 *5 (-961)) (-5 *2 (-583 (-583 (-623 *5)))) (-5 *1 (-944 *5)) (-5 *3 (-583 (-623 *5))))) ((*1 *2 *1 *3) (-12 (-5 *3 (-128)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-131)) (-5 *2 (-583 *1)) (-4 *1 (-1042)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *1 (-296 *3 *4)) (-4 *3 (-961)) (-4 *4 (-724)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-961)) (-4 *4 (-1003)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1054 *3)) (-5 *1 (-543 *3)) (-4 *3 (-961)))) ((*1 *2 *1) (-12 (-5 *2 (-583 *3)) (-5 *1 (-668 *3 *4)) (-4 *3 (-961)) (-4 *4 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *3)) (-4 *3 (-961)) (-5 *2 (-583 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1145 *3)) (-4 *3 (-961)) (-5 *2 (-1054 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *2 (-950)) (-5 *1 (-682)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1042)) (-5 *3 (-131)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))) (|:| |extra| (-950)))) (-5 *1 (-518)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2919 (-583 (-998 (-772 (-199))))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-719)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)) (|:| |extra| (-950)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-732)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1153 (-286 (-199)))) (|:| |yinit| (-583 (-199))) (|:| |intvals| (-583 (-199))) (|:| |g| (-286 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3) (-12 (-5 *3 (-740)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-740)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-737)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |lfn| (-583 (-286 (-199)))) (|:| -2836 (-583 (-199))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3 *4) (-12 (-4 *1 (-768)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |fn| (-286 (-199))) (|:| -2836 (-583 (-199))) (|:| |lb| (-583 (-772 (-199)))) (|:| |cf| (-583 (-286 (-199)))) (|:| |ub| (-583 (-772 (-199)))))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-769)))) ((*1 *2 *3 *4) (-12 (-4 *1 (-817)) (-5 *3 (-973)) (-5 *4 (-2 (|:| |pde| (-583 (-286 (-199)))) (|:| |constraints| (-583 (-2 (|:| |start| (-199)) (|:| |finish| (-199)) (|:| |grid| (-703)) (|:| |boundaryType| (-517)) (|:| |dStart| (-623 (-199))) (|:| |dFinish| (-623 (-199)))))) (|:| |f| (-583 (-583 (-286 (-199))))) (|:| |st| (-1056)) (|:| |tol| (-199)))) (-5 *2 (-2 (|:| -1308 (-349)) (|:| |explanations| (-1056)))))) ((*1 *2 *3) (-12 (-5 *3 (-820)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-820)) (-5 *4 (-973)) (-5 *2 (-2 (|:| -1308 (-349)) (|:| -1207 (-1056)) (|:| |explanations| (-583 (-1056))))) (-5 *1 (-819)))))
+(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-343 *3)) (-4 *5 (-343 *3)) (-5 *2 (-517)))) ((*1 *2 *1) (-12 (-4 *1 (-964 *3 *4 *5 *6 *7)) (-4 *5 (-961)) (-4 *6 (-212 *4 *5)) (-4 *7 (-212 *3 *5)) (-5 *2 (-517)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 *1) (|:| -3060 *1))) (-4 *1 (-278)))) ((*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-356 *3)) (|:| |rm| (-356 *3)))) (-5 *1 (-356 *3)) (-4 *3 (-1003)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3425 (-703)) (|:| -3060 (-703)))) (-5 *1 (-703)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| -3425 *3) (|:| -3060 *3))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *2 *2) (|partial| -12 (-4 *3 (-333)) (-5 *1 (-818 *2 *3)) (-4 *2 (-1130 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1073)))))
+(((*1 *2 *3) (-12 (-5 *3 (-874 *4)) (-4 *4 (-13 (-278) (-134))) (-4 *2 (-871 *4 *6 *5)) (-5 *1 (-846 *4 *5 *6 *2)) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-517)) (-5 *2 (-583 (-2 (|:| -3755 *3) (|:| -3688 *4)))) (-5 *1 (-629 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-358)) (-5 *1 (-572)))))
+(((*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 (-832 *3)) (|:| -3448 (-1021)))))) (-5 *1 (-321 *3 *4)) (-14 *3 (-843)) (-14 *4 (-843)))) ((*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-319)) (-14 *4 (-3 (-1069 *3) *2)))) ((*1 *2) (-12 (-5 *2 (-1153 (-583 (-2 (|:| -3199 *3) (|:| -3448 (-1021)))))) (-5 *1 (-323 *3 *4)) (-4 *3 (-319)) (-14 *4 (-843)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-517)) (-5 *5 (-1056)) (-5 *6 (-623 (-199))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1069 (-377 (-874 *3)))) (-5 *1 (-422 *3 *4 *5 *6)) (-4 *3 (-509)) (-4 *3 (-156)) (-14 *4 (-843)) (-14 *5 (-583 (-1073))) (-14 *6 (-1153 (-623 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1151 *2)) (-4 *2 (-1108)) (-4 *2 (-918)) (-4 *2 (-961)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 *6)) (-5 *4 (-1073)) (-4 *6 (-400 *5)) (-4 *5 (-779)) (-5 *2 (-583 (-556 *6))) (-5 *1 (-526 *5 *6)))))
+(((*1 *1 *1) (|partial| -12 (-5 *1 (-1039 *2 *3)) (-4 *2 (-13 (-1003) (-33))) (-4 *3 (-13 (-1003) (-33))))))
(((*1 *1) (-5 *1 (-142))))
-(((*1 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-701))) (-5 *1 (-1153)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3996 (-108)) (|:| |arg| (-578 (-810 *3))))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-108)) (-5 *2 (-578 (-810 *4))) (-5 *1 (-810 *4)) (-4 *4 (-1001)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-959)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-756)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *6 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-4 *3 (-336)) (-5 *2 (-1064 *3)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1053)) (-5 *5 (-621 (-199))) (-5 *6 (-199)) (-5 *7 (-621 (-501))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-701)) (-5 *1 (-536)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-318)) (-5 *2 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-5 *1 (-315 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1130 *3 *4 *5)) (-4 *3 (-13 (-331) (-777))) (-14 *4 (-1070)) (-14 *5 *3) (-5 *1 (-287 *3 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-863 (-199))) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-435)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-895 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-863 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-863 *3)) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-863 (-199))) (-5 *1 (-1101)) (-5 *3 (-199)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-957)))))
-(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-298))) (-5 *1 (-298)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-2 (|:| |radval| (-282 (-501))) (|:| |radmult| (-501)) (|:| |radvect| (-578 (-621 (-282 (-501)))))))) (-5 *1 (-941)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-839)) (-4 *4 (-336)) (-4 *4 (-331)) (-5 *2 (-1064 *1)) (-4 *1 (-297 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-1064 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-156)) (-4 *3 (-331)) (-4 *2 (-1125 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 *4)) (-4 *4 (-318)) (-5 *2 (-1064 *4)) (-5 *1 (-485 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-4 *5 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-530 *3)) (-5 *1 (-509 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))))
-(((*1 *2) (-12 (-4 *2 (-13 (-389 *3) (-916))) (-5 *1 (-247 *3 *2)) (-4 *3 (-13 (-777) (-508))))))
-(((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-870 *4 *5 *6)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-827 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-830)) (-4 *5 (-1125 *4)) (-5 *2 (-373 (-1064 *5))) (-5 *1 (-828 *4 *5)) (-5 *3 (-1064 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 (-282 (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef2| *1))) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))) ((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-786)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-701)) (-4 *6 (-331)) (-5 *4 (-1097 *6)) (-5 *2 (-1 (-1048 *4) (-1048 *4))) (-5 *1 (-1157 *6)) (-5 *5 (-1048 *4)))))
-(((*1 *1 *1) (-12 (-4 *2 (-134)) (-4 *2 (-276)) (-4 *2 (-419)) (-4 *3 (-777)) (-4 *4 (-723)) (-5 *1 (-901 *2 *3 *4 *5)) (-4 *5 (-870 *2 *4 *3)))) ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-282 (-501))) (-5 *1 (-1017)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *2 (-107)) (-5 *1 (-238)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3664 *3))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1 (-863 (-199)) (-199) (-199))) (-5 *3 (-1 (-199) (-199) (-199) (-199))) (-5 *1 (-227)))))
-(((*1 *2) (-12 (-5 *2 (-2 (|:| -3014 (-578 *3)) (|:| -1647 (-578 *3)))) (-5 *1 (-1105 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-50)) (-5 *1 (-490)))) ((*1 *2 *3) (-12 (-5 *3 (-490)) (-5 *1 (-491 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *1 *2 *3 *1) (-12 (-14 *4 (-578 (-1070))) (-4 *2 (-156)) (-4 *3 (-211 (-3581 *4) (-701))) (-14 *6 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *3)) (-2 (|:| -3506 *5) (|:| -3027 *3)))) (-5 *1 (-428 *4 *2 *5 *3 *6 *7)) (-4 *5 (-777)) (-4 *7 (-870 *2 *3 (-787 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-298)))))
-(((*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4169 "*"))) (-4 *5 (-340 *2)) (-4 *6 (-340 *2)) (-4 *2 (-959)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1125 *2)) (-4 *4 (-618 *2 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-346)) (-5 *1 (-92)))))
-(((*1 *2) (|partial| -12 (-4 *3 (-508)) (-4 *3 (-156)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4119 (-578 *1)))) (-4 *1 (-335 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-420 *3 *4 *5 *6)) (|:| -4119 (-578 (-420 *3 *4 *5 *6))))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-331)) (-5 *1 (-595 *4 *2)) (-4 *2 (-593 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-1148 (-621 *4))))) ((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-385 *3 *4)) (-4 *3 (-386 *4)))) ((*1 *2) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 (-621 *3))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-4 *5 (-331)) (-5 *2 (-1148 (-621 (-375 (-866 *5))))) (-5 *1 (-988 *5)) (-5 *4 (-621 (-375 (-866 *5)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-1070))) (-4 *5 (-331)) (-5 *2 (-1148 (-621 (-866 *5)))) (-5 *1 (-988 *5)) (-5 *4 (-621 (-866 *5))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-621 *4))) (-4 *4 (-331)) (-5 *2 (-1148 (-621 *4))) (-5 *1 (-988 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1106)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *3) (-12 (-4 *2 (-331)) (-4 *2 (-775)) (-5 *1 (-865 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)) (-4 *2 (-389 *4)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-993 *2)) (-4 *2 (-389 *4)) (-4 *4 (-13 (-777) (-508))) (-5 *1 (-143 *4 *2)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-993 *1)) (-4 *1 (-145)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-145)) (-5 *2 (-1070)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-432 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-621 (-199))) (-5 *6 (-621 (-501))) (-5 *3 (-501)) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *2) (-12 (-4 *3 (-276)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1022 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))))
-(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-578 (-578 *7))) (-5 *1 (-493 *6 *7 *5)) (-4 *7 (-331)) (-4 *5 (-13 (-331) (-775))))))
-(((*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-701)) (-4 *5 (-331)) (-5 *2 (-157 *6)) (-5 *1 (-789 *5 *4 *6)) (-4 *4 (-1142 *5)) (-4 *6 (-1125 *5)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-825 *4)) (-4 *4 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-156)))) ((*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-508)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-959)) (-4 *2 (-156)))))
-(((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-633 *3 *5 *6 *7)) (-4 *3 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *7 (-1104)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1070)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *3 *5 *6)) (-4 *3 (-556 (-490))) (-4 *5 (-1104)) (-4 *6 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-282 (-152 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-501))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-346))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-625))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-632))) (-5 *1 (-298)))) ((*1 *1 *2) (-12 (-5 *2 (-282 (-630))) (-5 *1 (-298)))) ((*1 *1) (-5 *1 (-298))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-683)))))
-(((*1 *1 *1) (-12 (-4 *2 (-276)) (-4 *3 (-906 *2)) (-4 *4 (-1125 *3)) (-5 *1 (-381 *2 *3 *4 *5)) (-4 *5 (-13 (-378 *3 *4) (-950 *3))))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-926)) (-5 *2 (-786)))))
-(((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-262 *6)) (-5 *4 (-108)) (-4 *6 (-389 *5)) (-4 *5 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *5 *6)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-262 *7)) (-5 *4 (-108)) (-5 *5 (-578 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 (-262 *7))) (-5 *4 (-578 (-108))) (-5 *5 (-262 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 (-262 *8))) (-5 *4 (-578 (-108))) (-5 *5 (-262 *8)) (-5 *6 (-578 *8)) (-4 *8 (-389 *7)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *8)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-578 *7)) (-5 *4 (-578 (-108))) (-5 *5 (-262 *7)) (-4 *7 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *7)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-578 *8)) (-5 *4 (-578 (-108))) (-5 *6 (-578 (-262 *8))) (-4 *8 (-389 *7)) (-5 *5 (-262 *8)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-262 *5)) (-5 *4 (-108)) (-4 *5 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-4 *3 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-4 *3 (-389 *6)) (-4 *6 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-262 *3)) (-5 *6 (-578 *3)) (-4 *3 (-389 *7)) (-4 *7 (-13 (-777) (-508) (-556 (-490)))) (-5 *2 (-50)) (-5 *1 (-285 *7 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-346))) (-5 *1 (-232)))) ((*1 *1) (|partial| -12 (-4 *1 (-335 *2)) (-4 *2 (-508)) (-4 *2 (-156)))) ((*1 *2 *1) (-12 (-5 *1 (-373 *2)) (-4 *2 (-508)))))
-(((*1 *2 *1) (-12 (-5 *2 (-863 *4)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *1) (-12 (-4 *1 (-294 *2 *3)) (-4 *3 (-722)) (-4 *2 (-959)) (-4 *2 (-419)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1125 (-501))) (-5 *2 (-578 (-501))) (-5 *1 (-451 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-419)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *3 (-419)))))
-(((*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1070)) (-4 *5 (-13 (-419) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *2 (-2 (|:| -3071 *3) (|:| |coeff| *3))) (-5 *1 (-509 *5 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *5))))))
-(((*1 *2) (-12 (-4 *4 (-331)) (-5 *2 (-701)) (-5 *1 (-296 *3 *4)) (-4 *3 (-297 *4)))) ((*1 *2) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-701)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-375 (-866 *4))) (-5 *1 (-844 *4 *5 *6 *3)) (-4 *3 (-870 *4 *6 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-621 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-375 (-866 *4)))) (-5 *1 (-844 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3664 (-711 *3)) (|:| |coef1| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-508)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-2 (|:| -3664 *1) (|:| |coef1| *1))) (-4 *1 (-972 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-621 (-199))) (-5 *5 (-621 (-501))) (-5 *6 (-199)) (-5 *3 (-501)) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-155))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-501))))) (-4 *2 (-508)) (-5 *1 (-373 *2)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-501)) (|:| -1575 (-578 (-2 (|:| |irr| *4) (|:| -3257 (-501))))))) (-4 *4 (-1125 (-501))) (-5 *2 (-373 *4)) (-5 *1 (-409 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-870 *4 *6 *5)) (-4 *4 (-419)) (-4 *5 (-777)) (-4 *6 (-723)) (-5 *1 (-901 *4 *5 *6 *3)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))))
-(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *1 *1) (-12 (-4 *1 (-150 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) ((*1 *1 *1) (-4 *1 (-775))) ((*1 *2 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-156)) (-4 *2 (-967)))) ((*1 *1 *1) (-4 *1 (-967))) ((*1 *1 *1) (-4 *1 (-1034))))
-(((*1 *1) (-5 *1 (-404))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-839)) (-4 *5 (-276)) (-4 *3 (-1125 *5)) (-5 *2 (-2 (|:| |plist| (-578 *3)) (|:| |modulo| *5))) (-5 *1 (-427 *5 *3)) (-5 *4 (-578 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 (-152 (-501))))) (-5 *2 (-578 (-152 *4))) (-5 *1 (-347 *4)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-375 (-866 (-152 (-501)))))) (-5 *4 (-578 (-1070))) (-5 *2 (-578 (-578 (-152 *5)))) (-5 *1 (-347 *5)) (-4 *5 (-13 (-331) (-775))))))
-(((*1 *2 *3) (-12 (-5 *3 (-375 *5)) (-4 *5 (-1125 *4)) (-4 *4 (-508)) (-4 *4 (-959)) (-4 *2 (-1142 *4)) (-5 *1 (-1144 *4 *5 *6 *2)) (-4 *6 (-593 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-5 *2 (-1 (-1064 (-866 *4)) (-866 *4))) (-5 *1 (-1157 *4)) (-4 *4 (-331)))))
-(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-615 *4 *3)) (-4 *4 (-1001)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *3 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-417 *4 *3 *5 *6)) (-4 *6 (-870 *4 *3 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-5 *3 (-578 *7)) (-4 *1 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-134)) (-4 *3 (-276)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *5)) (-4 *5 (-419)) (-5 *2 (-578 *6)) (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-866 *5)) (-4 *5 (-419)) (-5 *2 (-578 *6)) (-5 *1 (-493 *5 *6 *4)) (-4 *6 (-331)) (-4 *4 (-13 (-331) (-775))))))
-(((*1 *2) (-12 (-4 *3 (-508)) (-5 *2 (-578 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-386 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-959)) (-5 *2 (-1064 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-5 *2 (-1154)) (-5 *1 (-1105 *4)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *4)) (-4 *4 (-1001)) (-5 *2 (-1154)) (-5 *1 (-1105 *4)))))
-(((*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-107)) (-5 *1 (-810 *4)) (-4 *4 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *2 (-578 (-578 (-199)))) (-5 *1 (-1101)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-870 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-701)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-419)))) ((*1 *1 *1 *1) (-4 *1 (-419))))
-(((*1 *2 *1) (-12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-373 *3)) (-4 *3 (-500)) (-4 *3 (-508)))) ((*1 *2 *1) (-12 (-4 *1 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-726 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-762 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-769 *3)) (-4 *3 (-500)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-156)) (-4 *3 (-500)) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-922 *3)) (-4 *3 (-950 (-375 (-501)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1749 *3) (|:| |coef1| (-711 *3)) (|:| |coef2| (-711 *3)))) (-5 *1 (-711 *3)) (-4 *3 (-508)) (-4 *3 (-959)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-1053)) (-5 *4 (-1018)) (-5 *2 (-107)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1148 (-2 (|:| |scaleX| (-199)) (|:| |scaleY| (-199)) (|:| |deltaX| (-199)) (|:| |deltaY| (-199)) (|:| -1654 (-501)) (|:| -2473 (-501)) (|:| |spline| (-501)) (|:| -1184 (-501)) (|:| |axesColor| (-795)) (|:| -3876 (-501)) (|:| |unitsColor| (-795)) (|:| |showing| (-501))))) (-5 *1 (-1151)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-540 *3)) (-4 *3 (-37 *2)) (-4 *3 (-959)))))
-(((*1 *2 *3) (|partial| -12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-443 *4 *5 *6 *7)) (|:| -2425 (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *4 *5 *6)) (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-5 *2 (-2 (|:| -3611 (-381 *4 (-375 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-331)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2091 (-375 *6)) (|:| |special| (-375 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-375 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-331)) (-5 *2 (-578 *3)) (-5 *1 (-816 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-701)) (-4 *5 (-331)) (-5 *2 (-2 (|:| -1313 *3) (|:| -1320 *3))) (-5 *1 (-816 *3 *5)) (-4 *3 (-1125 *5)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-975 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-578 *9)) (-5 *3 (-578 *8)) (-5 *4 (-107)) (-4 *8 (-972 *5 *6 *7)) (-4 *9 (-1009 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *1 (-1040 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863 *2)) (-5 *1 (-897 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2978 (-621 (-375 (-866 *4)))) (|:| |vec| (-578 (-375 (-866 *4)))) (|:| -3689 (-701)) (|:| |rows| (-578 (-501))) (|:| |cols| (-578 (-501))))) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4))))))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5)))))
-(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-1070))) (-5 *3 (-1070)) (-5 *1 (-490)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))) ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-578 (-1070))) (-5 *2 (-1070)) (-5 *1 (-636 *3)) (-4 *3 (-556 (-490))))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-621 *3)) (-4 *3 (-276)) (-5 *1 (-631 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-1070))) (-5 *1 (-490)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-520 *3)) (-4 *3 (-950 (-501))))) ((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-682)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-134))) (-5 *1 (-492 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-4 *4 (-1125 *3)) (-4 *5 (-655 *3 *4)) (-5 *1 (-496 *3 *4 *5 *2)) (-4 *2 (-1142 *5)))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-331) (-336) (-556 (-501)))) (-5 *1 (-497 *3 *2)) (-4 *2 (-1142 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-13 (-508) (-134))) (-5 *1 (-1047 *3)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1118 *4 *5)) (-5 *3 (-578 *5)) (-14 *4 (-1070)) (-4 *5 (-331)) (-5 *1 (-842 *4 *5)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-331)) (-5 *2 (-1064 *5)) (-5 *1 (-842 *4 *5)) (-14 *4 (-1070)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-578 *2)) (-4 *2 (-1104)))))
-(((*1 *2) (-12 (-4 *3 (-156)) (-5 *2 (-1148 *1)) (-4 *1 (-335 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-578 (-578 *4))) (-5 *1 (-1076 *4)) (-5 *3 (-578 *4)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-701)) (-5 *3 (-863 *4)) (-4 *1 (-1032 *4)) (-4 *4 (-959)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-701)) (-5 *4 (-863 (-199))) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-609 (-199))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-681)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-787 *5))) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-2 (|:| |dpolys| (-578 (-220 *5 *6))) (|:| |coords| (-578 (-501))))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-578 (-220 *5 *6))) (-4 *7 (-419)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))))
-(((*1 *1 *1) (-4 *1 (-1039))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-152 (-199)) (-152 (-199)))) (-5 *4 (-991 (-199))) (-5 *2 (-1152)) (-5 *1 (-229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-142)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-81 PDEF)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-82 BNDY)))) (-5 *2 (-948)) (-5 *1 (-681)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-168)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1142 *4)) (-5 *1 (-1143 *4 *2)) (-4 *4 (-37 (-375 (-501)))))))
-(((*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-681)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1148 (-1148 (-501)))) (-5 *3 (-839)) (-5 *1 (-433)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-168)))))
-(((*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-508)) (-5 *1 (-885 *3 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 *2)) (-4 *4 (-1125 *2)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-5 *1 (-462 *2 *4 *5)) (-4 *5 (-378 *2 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-74 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-75 G JACOBG JACGEP)))) (-5 *4 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346)))) (-5 *2 (-948)) (-5 *1 (-272)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-701)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-866 (-501))) (-5 *3 (-1070)) (-5 *4 (-991 (-375 (-501)))) (-5 *1 (-30)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-903 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-578 *3)) (-4 *3 (-977 *5 *6 *7 *8)) (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *8 (-972 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-1007 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-129 *2 *4 *3)) (-4 *3 (-340 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-466 *2 *4 *5 *3)) (-4 *5 (-340 *2)) (-4 *3 (-340 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-621 *4)) (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-624 *2 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-906 *2)) (-4 *2 (-508)) (-5 *1 (-1120 *2 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) (-5 *2 (-948)) (-5 *1 (-680)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-60 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-86 BDYVAL)))) (-5 *8 (-356)) (-5 *2 (-948)) (-5 *1 (-680)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3)))))
-(((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-953)))))
-(((*1 *2 *1) (-12 (-4 *1 (-508)) (-5 *2 (-107)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-891 *3 *4 *2 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *2 (-777)) (-4 *5 (-972 *3 *4 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-2 (|:| |additions| (-501)) (|:| |multiplications| (-501)) (|:| |exponentiations| (-501)) (|:| |functionCalls| (-501)))) (-5 *1 (-272)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-83 FCNF)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-84 FCNG)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1142 *3)) (-5 *1 (-249 *3 *4 *2)) (-4 *2 (-1113 *3 *4)))) ((*1 *2 *2) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *4 (-1111 *3)) (-5 *1 (-250 *3 *4 *2 *5)) (-4 *2 (-1134 *3 *4)) (-4 *5 (-898 *4)))) ((*1 *1 *1) (-4 *1 (-254))) ((*1 *2 *3) (-12 (-5 *3 (-373 *4)) (-4 *4 (-508)) (-5 *2 (-578 (-2 (|:| -3189 (-701)) (|:| |logand| *4)))) (-5 *1 (-288 *4)))) ((*1 *1 *1) (-12 (-5 *1 (-307 *2 *3 *4)) (-14 *2 (-578 (-1070))) (-14 *3 (-578 (-1070))) (-4 *4 (-355)))) ((*1 *2 *1) (-12 (-5 *2 (-599 *3 *4)) (-5 *1 (-565 *3 *4 *5)) (-4 *3 (-777)) (-4 *4 (-13 (-156) (-648 (-375 (-501))))) (-14 *5 (-839)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1056 *3)))) ((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-37 (-375 (-501)))) (-5 *1 (-1057 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-13 (-959) (-648 (-375 (-501))))) (-4 *5 (-777)) (-5 *1 (-1163 *4 *5 *2)) (-4 *2 (-1169 *5 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1167 *3 *4)) (-4 *4 (-648 (-375 (-501)))) (-4 *3 (-777)) (-4 *4 (-156)))))
-(((*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) ((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *5))))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-578 (-937 (-375 *4))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))))
-(((*1 *2 *3 *3) (-12 (-4 *2 (-508)) (-4 *2 (-419)) (-5 *1 (-885 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-107)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *8 (-777)) (-4 *3 (-972 *6 *7 *8)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *6 *7 *8 *3 *4)) (-4 *4 (-977 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-2 (|:| |val| (-578 *8)) (|:| -3709 *9)))) (-5 *5 (-107)) (-4 *8 (-972 *6 *7 *4)) (-4 *9 (-977 *6 *7 *4 *8)) (-4 *6 (-419)) (-4 *7 (-723)) (-4 *4 (-777)) (-5 *2 (-578 (-2 (|:| |val| *8) (|:| -3709 *9)))) (-5 *1 (-1008 *6 *7 *4 *8 *9)))))
-(((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-501)) (-4 *3 (-156)) (-4 *5 (-340 *3)) (-4 *6 (-340 *3)) (-5 *1 (-620 *3 *5 *6 *2)) (-4 *2 (-618 *3 *5 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *5 *3 *6)) (-4 *3 (-1125 *5)) (-4 *6 (-13 (-372) (-950 *5) (-331) (-1090) (-254))))) ((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254))))))
-(((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-609 *3)) (-4 *3 (-959)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-152 (-501))) (-5 *2 (-107)) (-5 *1 (-413)))) ((*1 *2 *3) (-12 (-5 *3 (-467 (-375 (-501)) (-212 *5 (-701)) (-787 *4) (-220 *4 (-375 (-501))))) (-14 *4 (-578 (-1070))) (-14 *5 (-701)) (-5 *2 (-107)) (-5 *1 (-468 *4 *5)))) ((*1 *2 *3) (-12 (-5 *2 (-107)) (-5 *1 (-881 *3)) (-4 *3 (-500)))) ((*1 *2 *1) (-12 (-4 *1 (-1108)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *2 (-948)) (-5 *1 (-680)))))
-(((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-156)) (-5 *1 (-259 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-642 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-646 *2 *3 *4 *5 *6)) (-4 *2 (-156)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3 *4 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *5 *6))) (-5 *1 (-1173 *5 *6 *7)) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-956 *4 *5))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-959)))))
-(((*1 *2 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-501)) (-5 *1 (-180)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-501) (-501))) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-701) (-701))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))))
-(((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 *1)) (-4 *1 (-977 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) ((*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-107)) (-4 *5 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *5)) (|:| -2085 (-578 (-866 *5)))))) (-5 *1 (-1173 *5 *6 *7)) (-5 *3 (-578 (-866 *5))) (-14 *6 (-578 (-1070))) (-14 *7 (-578 (-1070))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-578 (-2 (|:| -1717 (-1064 *4)) (|:| -2085 (-578 (-866 *4)))))) (-5 *1 (-1173 *4 *5 *6)) (-5 *3 (-578 (-866 *4))) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))))
-(((*1 *2 *2) (|partial| -12 (-4 *3 (-331)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-508)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-4 *7 (-906 *4)) (-4 *2 (-618 *7 *8 *9)) (-5 *1 (-483 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-618 *4 *5 *6)) (-4 *8 (-340 *7)) (-4 *9 (-340 *7)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)) (-4 *2 (-331)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-331)) (-4 *3 (-156)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-620 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))) ((*1 *1 *1) (|partial| -12 (-5 *1 (-621 *2)) (-4 *2 (-331)) (-4 *2 (-959)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1021 *2 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-211 *2 *3)) (-4 *5 (-211 *2 *3)) (-4 *3 (-331)))) ((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-777)) (-5 *1 (-1076 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-991 (-769 (-346)))) (-5 *2 (-991 (-769 (-199)))) (-5 *1 (-272)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-501)) (-5 *5 (-1053)) (-5 *6 (-621 (-199))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *9 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))))
-(((*1 *2 *3) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-513)) (-5 *3 (-501)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-50))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-1091 *3))) (-5 *1 (-1091 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *5 (-1108)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-5 *2 (-578 (-866 *5))) (-5 *1 (-309 *4 *5 *6 *7)) (-4 *4 (-310 *5 *6 *7)))) ((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *1 (-310 *4 *5 *6)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-4 *4 (-331)) (-5 *2 (-578 (-866 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *3 (-530 *2)) (-4 *2 (-13 (-29 *4) (-1090))) (-5 *1 (-532 *4 *2)) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))))) ((*1 *2 *3) (-12 (-5 *3 (-530 (-375 (-866 *4)))) (-4 *4 (-13 (-419) (-950 (-501)) (-777) (-577 (-501)))) (-5 *2 (-282 *4)) (-5 *1 (-535 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1070)) (-5 *2 (-3 (|:| |fst| (-402)) (|:| -2645 "void"))) (-5 *1 (-1073)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *2)) (-4 *2 (-156)))) ((*1 *2) (-12 (-4 *2 (-156)) (-5 *1 (-385 *3 *2)) (-4 *3 (-386 *2)))) ((*1 *2) (-12 (-4 *1 (-386 *2)) (-4 *2 (-156)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-295 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1104)) (-5 *1 (-478 *3 *4)) (-14 *4 (-501)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-578 *7)) (|:| |badPols| (-578 *7)))) (-5 *1 (-892 *4 *5 *6 *7)) (-5 *3 (-578 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-107) *9)) (-5 *5 (-1 (-107) *9 *9)) (-4 *9 (-972 *6 *7 *8)) (-4 *6 (-508)) (-4 *7 (-723)) (-4 *8 (-777)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2425 (-578 *9)))) (-5 *3 (-578 *9)) (-4 *1 (-1099 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-107) *8 *8)) (-4 *8 (-972 *5 *6 *7)) (-4 *5 (-508)) (-4 *6 (-723)) (-4 *7 (-777)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2425 (-578 *8)))) (-5 *3 (-578 *8)) (-4 *1 (-1099 *5 *6 *7 *8)))))
-(((*1 *1) (-5 *1 (-1152))))
-(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-924 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-80 FCN)))) (-5 *7 (-3 (|:| |fn| (-356)) (|:| |fp| (-85 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-680)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-447 *3 *4))) (-14 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-569 *3 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-578 *1)) (-4 *1 (-972 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-494 *4 *2 *5 *6)) (-4 *4 (-276)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-701))))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-331)) (-4 *6 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-4 *4 (-13 (-340 *5) (-10 -7 (-6 -4168)))) (-5 *2 (-107)) (-5 *1 (-602 *5 *6 *4 *3)) (-4 *3 (-618 *5 *6 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-621 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-331)) (-5 *2 (-107)) (-5 *1 (-603 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-4 *4 (-318)) (-5 *2 (-701)) (-5 *1 (-315 *4)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018))))))))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1148 *4)) (-4 *4 (-577 (-501))) (-5 *2 (-1148 (-501))) (-5 *1 (-1174 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-713 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-156)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-508)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *1 (-1095 *3 *4 *5 *2)) (-4 *2 (-618 *3 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1118 *5 *4)) (-4 *4 (-750)) (-14 *5 (-1070)) (-5 *2 (-501)) (-5 *1 (-1014 *4 *5)))))
-(((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-419)) (-4 *4 (-777)) (-5 *1 (-524 *4 *2)) (-4 *2 (-254)) (-4 *2 (-389 *4)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-1 *4 (-501))) (-4 *4 (-959)) (-5 *1 (-1055 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-2 (|:| -2109 (-578 *6)) (|:| -2342 (-578 *6)))))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-107) *4 *4)) (-4 *4 (-1104)) (-5 *1 (-1030 *4 *2)) (-4 *2 (-13 (-548 (-501) *4) (-10 -7 (-6 -4167) (-6 -4168)))))) ((*1 *2 *2) (-12 (-4 *3 (-777)) (-4 *3 (-1104)) (-5 *1 (-1030 *3 *2)) (-4 *2 (-13 (-548 (-501) *3) (-10 -7 (-6 -4167) (-6 -4168)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-501))))) (-5 *1 (-329 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-701))))) (-5 *1 (-354 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3739 *3) (|:| -3027 (-501))))) (-5 *1 (-373 *3)) (-4 *3 (-508)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 (-701))))) (-5 *1 (-749 *3)) (-4 *3 (-777)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-112 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-112 *2)) (-14 *2 (-501)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-793 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-793 *2)) (-14 *2 (-501)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-14 *3 *2) (-5 *1 (-794 *3 *4)) (-4 *4 (-792 *3)))) ((*1 *1 *1) (-12 (-14 *2 (-501)) (-5 *1 (-794 *2 *3)) (-4 *3 (-792 *2)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-1113 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1142 *3)))) ((*1 *1 *1) (-12 (-4 *1 (-1113 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1142 *2)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-73 FUNCTN)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-501))) (-4 *3 (-959)) (-5 *1 (-94 *3)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-94 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-94 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-578 (-701)))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-402)) (-5 *2 (-578 (-3 (|:| -3986 (-1070)) (|:| |bounds| (-578 (-3 (|:| S (-1070)) (|:| P (-866 (-501))))))))) (-5 *1 (-1074)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)))))
-(((*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)) (-5 *2 (-501)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *2 *5)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *2 (-211 *3 *4)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1118 *5 *4)) (-5 *1 (-1068 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-1070)) (-14 *6 *4))) ((*1 *2 *1 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1118 *5 *4)) (-5 *1 (-1139 *4 *5 *6)) (-4 *4 (-959)) (-14 *5 (-1070)) (-14 *6 *4))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3) (-12 (-5 *2 (-373 *3)) (-5 *1 (-510 *3)) (-4 *3 (-500)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-373 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-870 *6 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 *7))) (-5 *1 (-673 *4 *5 *6 *7)) (-5 *3 (-1064 *7)))) ((*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-373 *1)) (-4 *1 (-870 *3 *4 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-777)) (-4 *5 (-723)) (-4 *6 (-419)) (-5 *2 (-373 *3)) (-5 *1 (-894 *4 *5 *6 *3)) (-4 *3 (-870 *6 *5 *4)))) ((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-419)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-373 (-1064 (-375 *7)))) (-5 *1 (-1066 *4 *5 *6 *7)) (-5 *3 (-1064 (-375 *7))))) ((*1 *2 *1) (-12 (-5 *2 (-373 *1)) (-4 *1 (-1108)))) ((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-373 *3)) (-5 *1 (-1129 *4 *3)) (-4 *3 (-13 (-1125 *4) (-508) (-10 -8 (-15 -3664 ($ $ $))))))) ((*1 *2 *3) (-12 (-5 *3 (-956 *4 *5)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-578 (-1041 *4 (-487 (-787 *6)) (-787 *6) (-710 *4 (-787 *6))))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))))
-(((*1 *2 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1154)) (-5 *1 (-417 *4 *5 *6 *3)) (-4 *3 (-870 *4 *5 *6)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-1070)) (-5 *1 (-168)))))
-(((*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-375 (-866 *6)) (-1060 (-1070) (-866 *6)))) (-5 *5 (-701)) (-4 *6 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *6))))) (-5 *1 (-261 *6)) (-5 *4 (-621 (-375 (-866 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-375 (-866 *5)) (-1060 (-1070) (-866 *5)))) (|:| |eigmult| (-701)) (|:| |eigvec| (-578 *4)))) (-4 *5 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *5))))) (-5 *1 (-261 *5)) (-5 *4 (-621 (-375 (-866 *5)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 (-199))) (-5 *2 (-199)) (-5 *1 (-272)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-870 *4 *5 *3)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-959)) (-5 *2 (-2 (|:| -3236 *1) (|:| -1852 *1))) (-4 *1 (-1125 *3)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-866 *4))) (-4 *4 (-419)) (-5 *2 (-107)) (-5 *1 (-328 *4 *5)) (-14 *5 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-710 *4 (-787 *5)))) (-4 *4 (-419)) (-14 *5 (-578 (-1070))) (-5 *2 (-107)) (-5 *1 (-566 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-501)) (-5 *2 (-107)) (-5 *1 (-505)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *5 *6 *3)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-562 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1320 *4) (|:| |sol?| (-107))) (-501) *4)) (-4 *4 (-331)) (-4 *5 (-1125 *4)) (-5 *1 (-525 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 (-282 (-199)))) (-5 *1 (-238)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-409 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1125 *6)) (-4 *6 (-13 (-27) (-389 *5))) (-4 *5 (-13 (-777) (-508) (-950 (-501)))) (-4 *8 (-1125 (-375 *7))) (-5 *2 (-530 *3)) (-5 *1 (-504 *5 *6 *7 *8 *3)) (-4 *3 (-310 *6 *7 *8)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-1070)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-798 *2)) (-4 *2 (-1104)))) ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))))
-(((*1 *2 *3 *2) (|partial| -12 (-4 *4 (-331)) (-4 *5 (-13 (-340 *4) (-10 -7 (-6 -4168)))) (-4 *2 (-13 (-340 *4) (-10 -7 (-6 -4168)))) (-5 *1 (-602 *4 *5 *2 *3)) (-4 *3 (-618 *4 *5 *2)))) ((*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1148 *4)) (-5 *3 (-621 *4)) (-4 *4 (-331)) (-5 *1 (-603 *4)))) ((*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-578 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-331)) (-5 *1 (-744 *2 *3)) (-4 *3 (-593 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-492 *4 *2)) (-4 *2 (-1142 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-331) (-336) (-556 *3))) (-4 *5 (-1125 *4)) (-4 *6 (-655 *4 *5)) (-5 *1 (-496 *4 *5 *6 *2)) (-4 *2 (-1142 *6)))) ((*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-13 (-331) (-336) (-556 *3))) (-5 *1 (-497 *4 *2)) (-4 *2 (-1142 *4)))) ((*1 *2 *2 *3 *3) (-12 (-5 *2 (-1048 *4)) (-5 *3 (-501)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1047 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1162 (-1070) *3)) (-4 *3 (-959)) (-5 *1 (-1168 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *1 (-1171 *3 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (|has| *1 (-6 -4158)) (-4 *1 (-372)) (-5 *2 (-839)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-107)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 G)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-375 (-866 *5))) (-5 *4 (-1070)) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-282 *5))) (-5 *1 (-1027 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-375 (-866 *5)))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-276) (-777) (-134))) (-5 *2 (-578 (-578 (-282 *5)))) (-5 *1 (-1027 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-405)))))
-(((*1 *2) (-12 (-5 *2 (-1042 (-1053))) (-5 *1 (-359)))))
-(((*1 *1 *1) (-4 *1 (-792 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-810 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-753)))))
-(((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4167)) (-4 *1 (-138 *2)) (-4 *2 (-1104)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-138 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-608 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-107) *4)) (-5 *3 (-501)) (-4 *4 (-1001)) (-5 *1 (-667 *4)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *1 (-667 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))) (-5 *1 (-1036 *3 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-346)))) ((*1 *1 *1 *1) (-4 *1 (-500))) ((*1 *1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1 *2) (-12 (-5 *1 (-649 *2)) (-4 *2 (-331)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-701)))))
-(((*1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-847)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *2 *1) (-12 (-4 *1 (-548 *2 *3)) (-4 *3 (-1104)) (-4 *2 (-1001)) (-4 *2 (-777)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-505)))))
-(((*1 *2 *3 *4) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-737 *4 *2 *3 *5)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *3 (-593 *2)) (-4 *5 (-593 (-375 *2))))) ((*1 *2 *3 *4) (-12 (-4 *2 (-1125 *4)) (-5 *1 (-737 *4 *2 *5 *3)) (-4 *4 (-13 (-331) (-134) (-950 (-375 (-501))))) (-4 *5 (-593 *2)) (-4 *3 (-593 (-375 *2))))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-501)) (-5 *5 (-621 (-199))) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *3 (-199)) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-808 *4 *5)) (-5 *3 (-808 *4 *6)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-601 *5)) (-5 *1 (-805 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-346)) (-5 *2 (-1053)) (-5 *1 (-272)))))
-(((*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1738 *1) (|:| -4154 *1) (|:| |associate| *1))) (-4 *1 (-508)))))
-(((*1 *1) (-5 *1 (-298))))
-(((*1 *2 *2) (-12 (-5 *2 (-863 *3)) (-4 *3 (-13 (-331) (-1090) (-916))) (-5 *1 (-158 *3)))))
-(((*1 *2 *3 *4) (-12 (-4 *5 (-508)) (-5 *2 (-2 (|:| -2978 (-621 *5)) (|:| |vec| (-1148 (-578 (-839)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-839)) (-4 *3 (-593 *5)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $))))) (-4 *5 (-508)) (-5 *1 (-663 *4 *3 *5 *2)) (-4 *2 (-870 (-375 (-866 *5)) *4 *3)))) ((*1 *2 *2 *3) (-12 (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *3 *2)) (-4 *2 (-870 (-866 *4) *5 *3)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 *6)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-4 *4 (-959)) (-4 *5 (-723)) (-5 *1 (-899 *4 *5 *6 *2)) (-4 *2 (-870 (-866 *4) *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)))) ((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-701)) (-4 *5 (-959)) (-4 *2 (-1125 *5)) (-5 *1 (-1144 *5 *2 *6 *3)) (-4 *6 (-593 *2)) (-4 *3 (-1142 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-108)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-108)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-237 *3)) (-4 *3 (-777)) (-5 *2 (-701)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-375 (-501))))) (-5 *1 (-232)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))))
-(((*1 *2 *3) (-12 (-4 *4 (-777)) (-5 *2 (-1078 (-578 *4))) (-5 *1 (-1076 *4)) (-5 *3 (-578 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-679)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-584 *3 *4 *5)) (-4 *3 (-1001)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-5 *1 (-1079 *2)) (-4 *2 (-331)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |var| (-1070)) (|:| |fn| (-282 (-199))) (|:| -1505 (-991 (-769 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-511)))) ((*1 *2 *1) (-12 (-4 *1 (-552 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199))))) (-5 *1 (-733)))))
-(((*1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *1) (-12 (-5 *2 (-1064 (-375 (-866 *3)))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1064 *7)) (-5 *3 (-501)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *1 (-289 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *2 *2) (-12 (-5 *1 (-533 *2)) (-4 *2 (-500)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *2 (-375 (-866 *4))) (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-950 (-501)) (-134))) (-5 *1 (-521 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-972 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *2 (-419)))))
-(((*1 *2 *2 *3) (|partial| -12 (-5 *3 (-701)) (-4 *4 (-13 (-508) (-134))) (-5 *1 (-1121 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-520 *3)) (-4 *3 (-950 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-224 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-578 *4)))))
-(((*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1113 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1142 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2 *1 *2) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-435)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-991 (-346)))) (-5 *1 (-435)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-107) *6 *6)) (-4 *6 (-777)) (-5 *4 (-578 *6)) (-5 *2 (-2 (|:| |fs| (-107)) (|:| |sd| *4) (|:| |td| (-578 *4)))) (-5 *1 (-1076 *6)) (-5 *5 (-578 *4)))))
-(((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-501)) (-5 *1 (-410 *4 *3 *5)) (-4 *3 (-1125 *4)) (-4 *5 (-13 (-372) (-950 *4) (-331) (-1090) (-254))))))
-(((*1 *2 *3) (-12 (-5 *3 (-282 (-199))) (-5 *2 (-375 (-501))) (-5 *1 (-272)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-3 (-375 (-866 *5)) (-1060 (-1070) (-866 *5)))) (-4 *5 (-419)) (-5 *2 (-578 (-621 (-375 (-866 *5))))) (-5 *1 (-261 *5)) (-5 *4 (-621 (-375 (-866 *5)))))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-501)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-701)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-839)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-126 *2 *3 *4)) (-14 *2 (-501)) (-14 *3 (-701)) (-4 *4 (-156)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-199)) (-5 *1 (-142)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-839)) (-5 *1 (-142)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1012)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-262 *2)) (-4 *2 (-1012)) (-4 *2 (-1104)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-291 *3 *2)) (-4 *3 (-1001)) (-4 *2 (-123)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-329 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-329 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *3) (-12 (-5 *1 (-350 *3 *2)) (-4 *3 (-959)) (-4 *2 (-777)))) ((*1 *1 *2 *3) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-959)) (-4 *3 (-1001)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-354 *2)) (-4 *2 (-1001)))) ((*1 *1 *2 *1) (-12 (-14 *3 (-578 (-1070))) (-4 *4 (-156)) (-4 *6 (-211 (-3581 *3) (-701))) (-14 *7 (-1 (-107) (-2 (|:| -3506 *5) (|:| -3027 *6)) (-2 (|:| -3506 *5) (|:| -3027 *6)))) (-5 *1 (-428 *3 *4 *5 *6 *7 *2)) (-4 *5 (-777)) (-4 *2 (-870 *4 *6 (-787 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-437 *2 *3)) (-4 *2 (-156)) (-4 *3 (-23)))) ((*1 *1 *1 *1) (-12 (-4 *2 (-331)) (-4 *3 (-723)) (-4 *4 (-777)) (-5 *1 (-467 *2 *3 *4 *5)) (-4 *5 (-870 *2 *3 *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-318)) (-5 *1 (-485 *3)))) ((*1 *1 *1 *1) (-5 *1 (-490))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-541 *2)) (-4 *2 (-959)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-541 *2)) (-4 *2 (-959)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-965)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-1 *7 *5)) (-5 *1 (-616 *5 *6 *7)))) ((*1 *2 *2 *1) (-12 (-4 *1 (-618 *3 *2 *4)) (-4 *3 (-959)) (-4 *2 (-340 *3)) (-4 *4 (-340 *3)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-618 *3 *4 *2)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *2 (-340 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))) ((*1 *1 *1 *1) (-4 *1 (-651))) ((*1 *1 *1 *2) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *2 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *1) (-12 (-5 *1 (-810 *2)) (-4 *2 (-1001)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1148 *4)) (-4 *4 (-1125 *3)) (-4 *3 (-508)) (-5 *1 (-885 *3 *4)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-964 *2)) (-4 *2 (-965)))) ((*1 *1 *1 *1) (-4 *1 (-1012))) ((*1 *2 *2 *1) (-12 (-4 *1 (-1021 *3 *4 *2 *5)) (-4 *4 (-959)) (-4 *2 (-211 *3 *4)) (-4 *5 (-211 *3 *4)))) ((*1 *2 *1 *2) (-12 (-4 *1 (-1021 *3 *4 *5 *2)) (-4 *4 (-959)) (-4 *5 (-211 *3 *4)) (-4 *2 (-211 *3 *4)))) ((*1 *1 *2 *1) (-12 (-4 *3 (-959)) (-4 *4 (-777)) (-5 *1 (-1024 *3 *4 *2)) (-4 *2 (-870 *3 (-487 *4) *4)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-863 (-199))) (-5 *3 (-199)) (-5 *1 (-1101)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-657)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-501)) (-4 *1 (-1147 *3)) (-4 *3 (-1104)) (-4 *3 (-21)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-1166 *2 *3)) (-4 *2 (-777)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-1166 *3 *2)) (-4 *3 (-777)) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *1 (-1170 *2 *3)) (-4 *2 (-959)) (-4 *3 (-773)))))
-(((*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-5 *2 (-2 (|:| -3626 *3) (|:| -2922 *4))))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-1008 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-891 *4 *5 *3 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-4 *6 (-972 *4 *5 *3)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1151)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1151)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1152)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-232))) (-5 *1 (-1152)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-501)) (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-220 *3 *4)) (-14 *3 (-578 (-1070))) (-4 *4 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-14 *3 (-578 (-1070))) (-5 *1 (-421 *3 *4 *5)) (-4 *4 (-959)) (-4 *5 (-211 (-3581 *3) (-701))))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-447 *3 *4)) (-14 *3 (-578 (-1070))) (-4 *4 (-959)))))
-(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-501)) (-4 *1 (-586 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1148 *1)) (-4 *1 (-335 *4)) (-4 *4 (-156)) (-5 *2 (-621 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-621 *3)))))
-(((*1 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-1053))) (-5 *1 (-1153)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1018)) (-5 *1 (-769 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-4 *7 (-777)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-4 *8 (-276)) (-5 *2 (-578 (-701))) (-5 *1 (-673 *6 *7 *8 *9)) (-5 *5 (-701)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1064 *7)) (-4 *7 (-870 *6 *4 *5)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-5 *2 (-1064 *6)) (-5 *1 (-289 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-839)) (-5 *2 (-1148 (-578 (-2 (|:| -2150 *4) (|:| -3506 (-1018)))))) (-5 *1 (-315 *4)) (-4 *4 (-318)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-282 (-199)))) (-5 *4 (-701)) (-5 *2 (-621 (-199))) (-5 *1 (-238)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1100 *2)) (-4 *2 (-889)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *1 (-734 *4 *2)) (-4 *2 (-13 (-29 *4) (-1090) (-879))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-276)) (-5 *1 (-161 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1064 *9)) (-5 *4 (-578 *7)) (-5 *5 (-578 (-578 *8))) (-4 *7 (-777)) (-4 *8 (-276)) (-4 *9 (-870 *8 *6 *7)) (-4 *6 (-723)) (-5 *2 (-2 (|:| |upol| (-1064 *8)) (|:| |Lval| (-578 *8)) (|:| |Lfact| (-578 (-2 (|:| -3739 (-1064 *8)) (|:| -3027 (-501))))) (|:| |ctpol| *8))) (-5 *1 (-673 *6 *7 *8 *9)))))
-(((*1 *1 *1) (-4 *1 (-967))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-618 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-340 *2)) (-4 *4 (-340 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-616 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))) ((*1 *2) (-12 (-5 *2 (-346)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *2) (-12 (-4 *3 (-959)) (-5 *2 (-877 (-643 *3 *4))) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-1059 3 *3)))) ((*1 *1) (-12 (-5 *1 (-1059 *2 *3)) (-14 *2 (-839)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1152)))) ((*1 *2 *1) (-12 (-5 *2 (-1031 (-199))) (-5 *1 (-1152)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-578 (-282 (-199)))) (|:| -3746 (-578 (-199))))) (-5 *2 (-346)) (-5 *1 (-238)))) ((*1 *2 *3) (-12 (-5 *3 (-1148 (-282 (-199)))) (-5 *2 (-346)) (-5 *1 (-272)))))
-(((*1 *2 *2 *3) (-12 (-4 *3 (-959)) (-5 *1 (-411 *3 *2)) (-4 *2 (-1125 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-578 (-553 *4))) (-4 *4 (-389 *3)) (-4 *3 (-777)) (-5 *1 (-524 *3 *4)))) ((*1 *1 *1 *1) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *3 (-1001)) (-5 *1 (-822 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-501)) (-5 *4 (-1053)) (-5 *5 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346)))))
-(((*1 *2 *3) (-12 (-4 *1 (-310 *4 *3 *5)) (-4 *4 (-1108)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-5 *2 (-107)))) ((*1 *2 *3) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *3 (-206)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *5 (-237 *4)) (-4 *6 (-723)) (-5 *2 (-1 *1 (-701))) (-4 *1 (-224 *3 *4 *5 *6)))) ((*1 *2 *3) (-12 (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-1 *1 (-701))) (-4 *1 (-224 *4 *3 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-701)) (-4 *1 (-237 *2)) (-4 *2 (-777)))))
-(((*1 *2 *2) (-12 (-4 *3 (-556 (-810 *3))) (-4 *3 (-806 *3)) (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-556 (-810 *3))) (-4 *2 (-806 *3)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *3)))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-508) (-777) (-950 (-501)))) (-5 *1 (-164 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 (-152 *4)))))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *3 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *3))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-27) (-1090) (-389 *4))))))
-(((*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-667 *3)))) ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1001)))) ((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-578 (-787 *5))) (-14 *5 (-578 (-1070))) (-4 *6 (-419)) (-5 *2 (-578 (-578 (-220 *5 *6)))) (-5 *1 (-438 *5 *6 *7)) (-5 *3 (-578 (-220 *5 *6))) (-4 *7 (-419)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-582 *3)) (-4 *3 (-1001)))))
-(((*1 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-232)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-107)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))) ((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-434)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-282 (-501)))) (-5 *1 (-941)))))
-(((*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-886)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-152 (-375 (-501))))) (-5 *2 (-578 (-2 (|:| |outval| (-152 *4)) (|:| |outmult| (-501)) (|:| |outvect| (-578 (-621 (-152 *4))))))) (-5 *1 (-695 *4)) (-4 *4 (-13 (-331) (-775))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1070)) (-5 *4 (-866 (-501))) (-5 *2 (-298)) (-5 *1 (-300)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *5)) (-5 *4 (-839)) (-4 *5 (-777)) (-5 *2 (-56 (-578 (-606 *5)))) (-5 *1 (-606 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-959)) (-4 *2 (-1111 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-775)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *3 *1) (-12 (-4 *1 (-974 *4 *3)) (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-501)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *4 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *4))))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-769 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))) (-4 *6 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *6 *3)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-1053)) (-4 *6 (-13 (-508) (-777) (-950 *2) (-577 *2) (-419))) (-5 *2 (-501)) (-5 *1 (-1015 *6 *3)) (-4 *3 (-13 (-27) (-1090) (-389 *6))))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-375 (-866 *4))) (-4 *4 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *4)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-769 (-375 (-866 *6)))) (-5 *3 (-375 (-866 *6))) (-4 *6 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *6)))) ((*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-375 (-866 *6))) (-5 *4 (-1070)) (-5 *5 (-1053)) (-4 *6 (-419)) (-5 *2 (-501)) (-5 *1 (-1016 *6)))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-501)) (-5 *1 (-1087 *3)) (-4 *3 (-959)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1148 *1)) (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 (-375 (-866 (-501))))) (-5 *2 (-578 (-621 (-282 (-501))))) (-5 *1 (-941)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-389 *4)) (-5 *1 (-143 *4 *2)) (-4 *4 (-13 (-777) (-508))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))))
-(((*1 *2 *3 *4 *3) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *2 (-948)) (-5 *1 (-678)))))
-(((*1 *2 *3) (-12 (-5 *3 (-621 (-282 (-199)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-346)) (|:| |stabilityFactor| (-346)))) (-5 *1 (-181)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1090) (-389 *3))) (-14 *4 (-1070)) (-14 *5 *2))) ((*1 *2 *2) (-12 (-4 *3 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *2 (-13 (-27) (-1090) (-389 *3) (-10 -8 (-15 -3691 ($ *4))))) (-4 *4 (-775)) (-4 *5 (-13 (-1128 *2 *4) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *1 (-392 *3 *2 *4 *5 *6 *7)) (-4 *6 (-898 *5)) (-14 *7 (-1070)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *2 (-107)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))) ((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1035 *3 *4)) (-4 *3 (-13 (-1001) (-33))) (-4 *4 (-13 (-1001) (-33))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-578 (-979 *4 *5 *2))) (-4 *4 (-1001)) (-4 *5 (-13 (-959) (-806 *4) (-777) (-556 (-810 *4)))) (-4 *2 (-13 (-389 *5) (-806 *4) (-556 (-810 *4)))) (-5 *1 (-53 *4 *5 *2)))) ((*1 *2 *3 *2 *4) (-12 (-5 *3 (-578 (-979 *5 *6 *2))) (-5 *4 (-839)) (-4 *5 (-1001)) (-4 *6 (-13 (-959) (-806 *5) (-777) (-556 (-810 *5)))) (-4 *2 (-13 (-389 *6) (-806 *5) (-556 (-810 *5)))) (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-72 FCN)))) (-5 *2 (-948)) (-5 *1 (-677)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-417 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-108)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *6)) (-5 *4 (-578 (-1048 *7))) (-4 *6 (-777)) (-4 *7 (-870 *5 (-487 *6) *6)) (-4 *5 (-959)) (-5 *2 (-1 (-1048 *7) *7)) (-5 *1 (-1024 *5 *6 *7)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *8)) (-4 *8 (-977 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 (-2 (|:| -3626 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (|:| -2922 (-2 (|:| |stiffness| (-346)) (|:| |stability| (-346)) (|:| |expense| (-346)) (|:| |accuracy| (-346)) (|:| |intermediateResults| (-346))))))) (-5 *1 (-733)))))
-(((*1 *2 *2) (-12 (-4 *3 (-419)) (-4 *3 (-777)) (-4 *3 (-950 (-501))) (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-389 *3)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))))
-(((*1 *1 *1) (-5 *1 (-1069))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-501)) (-5 *4 (-621 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-356)) (|:| |fp| (-79 FCN)))) (-5 *2 (-948)) (-5 *1 (-677)))))
-(((*1 *2 *1) (-12 (-4 *1 (-291 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-123)) (-5 *2 (-578 (-2 (|:| |gen| *3) (|:| -1989 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-2 (|:| -3189 *3) (|:| -2607 *4)))) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) ((*1 *2 *1) (-12 (-4 *1 (-1128 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-1048 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-1070)))))
-(((*1 *2 *1) (-12 (-4 *1 (-394 *3)) (-4 *3 (-1001)) (-5 *2 (-701)))))
-(((*1 *2 *1) (-12 (-4 *3 (-959)) (-5 *2 (-1148 *3)) (-5 *1 (-643 *3 *4)) (-4 *4 (-1125 *3)))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-1082 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))))
-(((*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-690)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-199)) (-5 *4 (-501)) (-5 *5 (-3 (|:| |fn| (-356)) (|:| |fp| (-59 -2958)))) (-5 *2 (-948)) (-5 *1 (-677)))))
-(((*1 *2 *3) (-12 (-4 *4 (-276)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1022 *4 *5 *6 *3)) (-4 *3 (-618 *4 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1116 (-501))) (-4 *1 (-252 *3)) (-4 *3 (-1104)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-282 *3)) (-4 *3 (-508)) (-4 *3 (-777)))))
-(((*1 *2 *1) (-12 (-4 *1 (-217 *2)) (-4 *2 (-1104)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 (-822 *3))) (-5 *1 (-825 *3)) (-4 *3 (-1001)))))
-(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-282 (-199))) (|:| -3746 (-578 (-199))) (|:| |lb| (-578 (-769 (-199)))) (|:| |cf| (-578 (-282 (-199)))) (|:| |ub| (-578 (-769 (-199)))))) (-5 *1 (-238)))))
-(((*1 *1 *2) (-12 (-5 *2 (-621 *5)) (-4 *5 (-959)) (-5 *1 (-962 *3 *4 *5)) (-14 *3 (-701)) (-14 *4 (-701)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 *1)) (|has| *1 (-6 -4168)) (-4 *1 (-924 *3)) (-4 *3 (-1104)))))
-(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-676)))))
-(((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1070)) (-5 *5 (-578 (-375 (-866 *6)))) (-5 *3 (-375 (-866 *6))) (-4 *6 (-13 (-508) (-950 (-501)) (-134))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-225 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-340 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))))
-(((*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-621 (-199))) (-5 *4 (-501)) (-5 *5 (-107)) (-5 *2 (-948)) (-5 *1 (-676)))))
-(((*1 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1153)))) ((*1 *2 *2) (-12 (-5 *2 (-578 (-839))) (-5 *1 (-1153)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| |deg| (-701)) (|:| -3215 *5)))) (-4 *5 (-1125 *4)) (-4 *4 (-318)) (-5 *2 (-578 *5)) (-5 *1 (-191 *4 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-2 (|:| -3739 *5) (|:| -1201 (-501))))) (-5 *4 (-501)) (-4 *5 (-1125 *4)) (-5 *2 (-578 *5)) (-5 *1 (-627 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1142 *4)) (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-1 (-1048 *4) (-1048 *4))) (-5 *1 (-1143 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-501)))) (-4 *4 (-13 (-1125 *3) (-508) (-10 -8 (-15 -3664 ($ $ $))))) (-4 *3 (-508)) (-5 *1 (-1129 *3 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-276)))))
-(((*1 *1 *1 *2) (-12 (-5 *1 (-584 *2 *3 *4)) (-4 *2 (-1001)) (-4 *3 (-23)) (-14 *4 *3))))
-(((*1 *2 *3) (-12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-276)) (-5 *2 (-578 (-701))) (-5 *1 (-708 *3 *4 *5 *6 *7)) (-4 *3 (-1125 *6)) (-4 *7 (-870 *6 *4 *5)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-621 *7)) (-5 *3 (-578 *7)) (-4 *7 (-870 *4 *6 *5)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *1 (-844 *4 *5 *6 *7)))))
-(((*1 *2 *3) (|partial| -12 (-5 *3 (-1148 *5)) (-4 *5 (-577 *4)) (-4 *4 (-508)) (-5 *2 (-1148 *4)) (-5 *1 (-576 *4 *5)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-692))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))))
-(((*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1125 *5)) (-4 *5 (-13 (-331) (-134) (-950 (-501)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-375 *6)) (|:| |h| *6) (|:| |c1| (-375 *6)) (|:| |c2| (-375 *6)) (|:| -1348 *6))) (-5 *1 (-930 *5 *6)) (-5 *3 (-375 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *2 *2 *3 *3) (-12 (-5 *3 (-501)) (-4 *4 (-156)) (-4 *5 (-340 *4)) (-4 *6 (-340 *4)) (-5 *1 (-620 *4 *5 *6 *2)) (-4 *2 (-618 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-107)) (-5 *1 (-458)))))
-(((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))))
-(((*1 *1 *2) (-12 (-5 *2 (-381 *3 *4 *5 *6)) (-4 *6 (-950 *4)) (-4 *3 (-276)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *6 (-378 *4 *5)) (-14 *7 (-1148 *6)) (-5 *1 (-383 *3 *4 *5 *6 *7)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *6)) (-4 *6 (-378 *4 *5)) (-4 *4 (-906 *3)) (-4 *5 (-1125 *4)) (-4 *3 (-276)) (-5 *1 (-383 *3 *4 *5 *6 *7)) (-14 *7 *2))))
-(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *6 (-870 *3 *4 *5)))) ((*1 *2 *1) (-12 (-4 *1 (-653)) (-5 *2 (-107)))) ((*1 *2 *1) (-12 (-4 *1 (-657)) (-5 *2 (-107)))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))) ((*1 *2 *3 *1) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-578 (-2 (|:| |val| (-107)) (|:| -3709 *1)))) (-4 *1 (-977 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-346)))) ((*1 *2) (-12 (-5 *2 (-1154)) (-5 *1 (-346)))))
-(((*1 *2 *3 *3 *4) (-12 (-4 *5 (-419)) (-4 *6 (-723)) (-4 *7 (-777)) (-4 *3 (-972 *5 *6 *7)) (-5 *2 (-578 (-2 (|:| |val| *3) (|:| -3709 *4)))) (-5 *1 (-978 *5 *6 *7 *3 *4)) (-4 *4 (-977 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-508)) (-5 *2 (-701)) (-5 *1 (-42 *4 *3)) (-4 *3 (-386 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)))))
-(((*1 *1) (-4 *1 (-318))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1 (-346))) (-5 *1 (-953)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-786))) (-5 *1 (-786)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-578 (-701))) (-5 *3 (-107)) (-5 *1 (-1059 *4 *5)) (-14 *4 (-839)) (-4 *5 (-959)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-107) (-108) (-108))) (-5 *1 (-108)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-578 (-866 *4))) (-5 *3 (-578 (-1070))) (-4 *4 (-419)) (-5 *1 (-838 *4)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-373 *5)) (-4 *5 (-508)) (-5 *2 (-2 (|:| -3027 (-701)) (|:| -3189 *5) (|:| |radicand| (-578 *5)))) (-5 *1 (-288 *5)) (-5 *4 (-701)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-916)) (-5 *2 (-501)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-157 *3)) (-4 *3 (-276)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1070)) (-5 *1 (-553 *3)) (-4 *3 (-777)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-553 *5))) (-4 *4 (-777)) (-5 *2 (-553 *5)) (-5 *1 (-524 *4 *5)) (-4 *5 (-389 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-959)))))
-(((*1 *2 *3) (-12 (-4 *4 (-331)) (-4 *4 (-508)) (-4 *5 (-1125 *4)) (-5 *2 (-2 (|:| -3499 (-562 *4 *5)) (|:| -3677 (-375 *5)))) (-5 *1 (-562 *4 *5)) (-5 *3 (-375 *5)))) ((*1 *2 *1) (-12 (-5 *2 (-578 (-1059 *3 *4))) (-5 *1 (-1059 *3 *4)) (-14 *3 (-839)) (-4 *4 (-959)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-419)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1125 *3)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-232))) (-5 *4 (-1070)) (-5 *2 (-107)) (-5 *1 (-232)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4119 (-621 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-621 *3)))) (-4 *3 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *4 (-1125 *3)) (-5 *1 (-462 *3 *4 *5)) (-4 *5 (-378 *3 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-501)) (-5 *1 (-513)))))
-(((*1 *2 *3) (-12 (-5 *3 (-701)) (-5 *2 (-1154)) (-5 *1 (-788 *4 *5 *6 *7)) (-4 *4 (-959)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 *3)) (-14 *7 *3))) ((*1 *2 *3) (-12 (-5 *3 (-701)) (-4 *4 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-14 *8 (-578 *5)) (-5 *2 (-1154)) (-5 *1 (-1159 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-870 *4 *6 *5)) (-14 *9 (-578 *3)) (-14 *10 *3))))
-(((*1 *1 *1) (-5 *1 (-970))))
-(((*1 *2 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-276) (-950 (-501)) (-577 (-501)) (-134))) (-5 *2 (-1 *5 *5)) (-5 *1 (-734 *4 *5)) (-4 *5 (-13 (-29 *4) (-1090) (-879))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-578 (-863 *3))))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *3 (-959)) (-4 *1 (-1032 *3)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-578 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-578 (-863 *3))) (-4 *1 (-1032 *3)) (-4 *3 (-959)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-291 *2 *3)) (-4 *2 (-1001)) (-4 *3 (-123)) (-4 *3 (-722)))))
-(((*1 *2 *3) (-12 (-5 *3 (-997 *4)) (-4 *4 (-1001)) (-5 *2 (-1 *4)) (-5 *1 (-931 *4)))) ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-346))) (-5 *1 (-953)) (-5 *3 (-346)))) ((*1 *2 *3) (-12 (-5 *3 (-991 (-501))) (-5 *2 (-1 (-501))) (-5 *1 (-957)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-375 (-866 *3))) (-5 *1 (-420 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *3 (-156)) (-14 *4 (-839)) (-14 *5 (-578 (-1070))) (-14 *6 (-1148 (-621 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *1) (-12 (-4 *1 (-372)) (-3031 (|has| *1 (-6 -4158))) (-3031 (|has| *1 (-6 -4150))))) ((*1 *2 *1) (-12 (-4 *1 (-394 *2)) (-4 *2 (-1001)) (-4 *2 (-777)))) ((*1 *1 *1 *1) (-4 *1 (-777))) ((*1 *2 *1) (-12 (-4 *1 (-884 *2)) (-4 *2 (-777)))) ((*1 *1) (-5 *1 (-1018))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1018)) (-5 *2 (-107)) (-5 *1 (-752)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))))
-(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-903 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *7 (-972 *4 *5 *6)) (-5 *2 (-107)) (-5 *1 (-1007 *4 *5 *6 *7 *3)) (-4 *3 (-977 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-1125 *4)) (-4 *4 (-1108)) (-4 *1 (-310 *4 *3 *5)) (-4 *5 (-1125 (-375 *3))))))
-(((*1 *1) (-4 *1 (-318))) ((*1 *2 *3) (-12 (-5 *3 (-578 *5)) (-4 *5 (-389 *4)) (-4 *4 (-13 (-508) (-777) (-134))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-578 (-1064 *5))) (|:| |prim| (-1064 *5)))) (-5 *1 (-400 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-508) (-777) (-134))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1064 *3)) (|:| |pol2| (-1064 *3)) (|:| |prim| (-1064 *3)))) (-5 *1 (-400 *4 *3)) (-4 *3 (-27)) (-4 *3 (-389 *4)))) ((*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-866 *5)) (-5 *4 (-1070)) (-4 *5 (-13 (-331) (-134))) (-5 *2 (-2 (|:| |coef1| (-501)) (|:| |coef2| (-501)) (|:| |prim| (-1064 *5)))) (-5 *1 (-880 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-866 *5))) (-5 *4 (-578 (-1070))) (-4 *5 (-13 (-331) (-134))) (-5 *2 (-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 *5))) (|:| |prim| (-1064 *5)))) (-5 *1 (-880 *5)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-578 (-866 *6))) (-5 *4 (-578 (-1070))) (-5 *5 (-1070)) (-4 *6 (-13 (-331) (-134))) (-5 *2 (-2 (|:| -3189 (-578 (-501))) (|:| |poly| (-578 (-1064 *6))) (|:| |prim| (-1064 *6)))) (-5 *1 (-880 *6)))))
-(((*1 *2 *3 *4) (-12 (-5 *4 (-553 *6)) (-4 *6 (-13 (-389 *5) (-27) (-1090))) (-4 *5 (-13 (-419) (-950 (-501)) (-777) (-134) (-577 (-501)))) (-5 *2 (-1064 (-375 (-1064 *6)))) (-5 *1 (-512 *5 *6 *7)) (-5 *3 (-1064 *6)) (-4 *7 (-1001)))) ((*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-643 *3 *2)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-4 *1 (-655 *3 *2)) (-4 *3 (-156)) (-4 *2 (-1125 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1064 *11)) (-5 *6 (-578 *10)) (-5 *7 (-578 (-701))) (-5 *8 (-578 *11)) (-4 *10 (-777)) (-4 *11 (-276)) (-4 *9 (-723)) (-4 *5 (-870 *11 *9 *10)) (-5 *2 (-578 (-1064 *5))) (-5 *1 (-673 *9 *10 *11 *5)) (-5 *3 (-1064 *5)))) ((*1 *2 *1) (-12 (-4 *2 (-870 *3 *4 *5)) (-5 *1 (-947 *3 *4 *5 *2 *6)) (-4 *3 (-331)) (-4 *4 (-723)) (-4 *5 (-777)) (-14 *6 (-578 *2)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-870 *4 *5 *6)) (-4 *4 (-331)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-414 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-331)) (-5 *2 (-2 (|:| R (-621 *6)) (|:| A (-621 *6)) (|:| |Ainv| (-621 *6)))) (-5 *1 (-893 *6)) (-5 *3 (-621 *6)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-775))) (-5 *2 (-2 (|:| |start| *3) (|:| -1575 (-373 *3)))) (-5 *1 (-162 *4 *3)) (-4 *3 (-1125 (-152 *4))))))
-(((*1 *1 *1) (-12 (-4 *1 (-114 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (-5 *1 (-786)))) ((*1 *2 *1) (-12 (-4 *2 (-13 (-775) (-331))) (-5 *1 (-968 *2 *3)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-898 *2)) (-4 *2 (-1090)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-583 *3)) (-4 *3 (-959)) (-5 *1 (-645 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-764 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-486 *3)) (-4 *3 (-13 (-657) (-25))))))
-(((*1 *2) (-12 (-5 *2 (-1053)) (-5 *1 (-690)))))
-(((*1 *2 *3 *2 *4) (-12 (-5 *3 (-621 *2)) (-5 *4 (-701)) (-4 *2 (-13 (-276) (-10 -8 (-15 -1559 ((-373 $) $))))) (-4 *5 (-1125 *2)) (-5 *1 (-462 *2 *5 *6)) (-4 *6 (-378 *2 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-501)) (|has| *1 (-6 -4168)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))))
-(((*1 *1 *1) (-12 (-4 *1 (-593 *2)) (-4 *2 (-959)) (-4 *2 (-331)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-346) (-346))) (-5 *4 (-346)) (-5 *2 (-2 (|:| -2150 *4) (|:| -2390 *4) (|:| |totalpts| (-501)) (|:| |success| (-107)))) (-5 *1 (-719)) (-5 *5 (-501)))))
-(((*1 *2 *1) (-12 (-4 *1 (-294 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-5 *2 (-1048 *3)) (-5 *1 (-541 *3)) (-4 *3 (-959)))) ((*1 *2 *1) (-12 (-5 *2 (-578 *3)) (-5 *1 (-666 *3 *4)) (-4 *3 (-959)) (-4 *4 (-657)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-578 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-959)) (-5 *2 (-1048 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 (-826 *3)) (|:| -3506 (-1018)))))) (-5 *1 (-320 *3 *4)) (-14 *3 (-839)) (-14 *4 (-839)))) ((*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018)))))) (-5 *1 (-321 *3 *4)) (-4 *3 (-318)) (-14 *4 (-3 (-1064 *3) *2)))) ((*1 *2) (-12 (-5 *2 (-1148 (-578 (-2 (|:| -2150 *3) (|:| -3506 (-1018)))))) (-5 *1 (-322 *3 *4)) (-4 *3 (-318)) (-14 *4 (-839)))))
-(((*1 *1 *1) (|partial| -12 (-5 *1 (-1036 *2 *3)) (-4 *2 (-13 (-1001) (-33))) (-4 *3 (-13 (-1001) (-33))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-280)) (-5 *1 (-759)))))
-(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-143 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-500)))) ((*1 *1 *1 *1) (-5 *1 (-786))) ((*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-501))) (-5 *1 (-957)) (-5 *3 (-501)))))
-(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3071 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-331)) (-5 *1 (-525 *4 *2)) (-4 *2 (-1125 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))) ((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-412 *3)) (-4 *3 (-372)) (-4 *3 (-959)))))
-(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1053)) (-5 *1 (-50)))))
-(((*1 *2) (-12 (-4 *1 (-318)) (-5 *2 (-578 (-2 (|:| -3739 (-501)) (|:| -3027 (-501))))))))
-(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-419) (-777) (-950 (-501)) (-577 (-501)))) (-4 *3 (-13 (-27) (-1090) (-389 *6) (-10 -8 (-15 -3691 ($ *7))))) (-4 *7 (-775)) (-4 *8 (-13 (-1128 *3 *7) (-331) (-1090) (-10 -8 (-15 -2596 ($ $)) (-15 -3188 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1053)) (|:| |prob| (-1053)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1053)) (-4 *9 (-898 *8)) (-14 *10 (-1070)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-211 *3 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-786)))) ((*1 *1 *1) (-5 *1 (-786))) ((*1 *2 *3 *3) (-12 (-5 *3 (-863 (-199))) (-5 *2 (-199)) (-5 *1 (-1101)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-1147 *2)) (-4 *2 (-1104)) (-4 *2 (-959)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-701)) (-4 *3 (-959)) (-4 *1 (-618 *3 *4 *5)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2) (-12 (-4 *2 (-959)) (-4 *1 (-1021 *3 *2 *4 *5)) (-4 *4 (-211 *3 *2)) (-4 *5 (-211 *3 *2)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-4 *4 (-13 (-276) (-134))) (-4 *5 (-13 (-777) (-556 (-1070)))) (-4 *6 (-723)) (-5 *2 (-578 (-2 (|:| |eqzro| (-578 *7)) (|:| |neqzro| (-578 *7)) (|:| |wcond| (-578 (-866 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1148 (-375 (-866 *4)))) (|:| -4119 (-578 (-1148 (-375 (-866 *4)))))))))) (-5 *1 (-844 *4 *5 *6 *7)) (-4 *7 (-870 *4 *6 *5)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-108)) (-4 *4 (-959)) (-5 *1 (-645 *4 *2)) (-4 *2 (-583 *4)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-108)) (-5 *1 (-764 *2)) (-4 *2 (-959)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1064 *3)) (-4 *3 (-318)) (-5 *1 (-324 *3)))))
-(((*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-578 (-621 *6))) (-5 *4 (-107)) (-5 *5 (-501)) (-5 *2 (-621 *6)) (-5 *1 (-943 *6)) (-4 *6 (-331)) (-4 *6 (-959)))) ((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-621 *4))) (-5 *2 (-621 *4)) (-5 *1 (-943 *4)) (-4 *4 (-331)) (-4 *4 (-959)))) ((*1 *2 *3 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-501)) (-5 *2 (-621 *5)) (-5 *1 (-943 *5)) (-4 *5 (-331)) (-4 *5 (-959)))))
-(((*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-578 (-578 *4))) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *3 (-336)) (-5 *2 (-578 (-578 *3))))))
-(((*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-389 *3)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (|partial| -12 (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-578 *1)) (-4 *1 (-870 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-959)) (-4 *7 (-870 *6 *4 *5)) (-5 *2 (-578 *3)) (-5 *1 (-871 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-331) (-10 -8 (-15 -3691 ($ *7)) (-15 -2946 (*7 $)) (-15 -2949 (*7 $))))))))
-(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-578 (-501))) (-5 *3 (-621 (-501))) (-5 *1 (-1010)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-50)) (-5 *1 (-759)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1064 (-501))) (-5 *2 (-501)) (-5 *1 (-862)))))
-(((*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-331)) (-4 *3 (-1125 *4)) (-4 *5 (-1125 (-375 *3))) (-4 *1 (-304 *4 *3 *5 *2)) (-4 *2 (-310 *4 *3 *5)))) ((*1 *1 *2 *2 *3) (-12 (-5 *3 (-501)) (-4 *2 (-331)) (-4 *4 (-1125 *2)) (-4 *5 (-1125 (-375 *4))) (-4 *1 (-304 *2 *4 *5 *6)) (-4 *6 (-310 *2 *4 *5)))) ((*1 *1 *2 *2) (-12 (-4 *2 (-331)) (-4 *3 (-1125 *2)) (-4 *4 (-1125 (-375 *3))) (-4 *1 (-304 *2 *3 *4 *5)) (-4 *5 (-310 *2 *3 *4)))) ((*1 *1 *2) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *1 (-304 *3 *4 *5 *2)) (-4 *2 (-310 *3 *4 *5)))) ((*1 *1 *2) (-12 (-5 *2 (-381 *4 (-375 *4) *5 *6)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-4 *6 (-310 *3 *4 *5)) (-4 *3 (-331)) (-4 *1 (-304 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-107))) ((*1 *1 *1 *1) (-4 *1 (-118))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *3 *1 *4) (-12 (-5 *3 (-1035 *5 *6)) (-5 *4 (-1 (-107) *6 *6)) (-4 *5 (-13 (-1001) (-33))) (-4 *6 (-13 (-1001) (-33))) (-5 *2 (-107)) (-5 *1 (-1036 *5 *6)))))
-(((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-152 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-346))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-501))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-152 (-346))))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-501)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-152 (-346))))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-501)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-152 (-346)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-346))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-501))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-625))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-630))) (-5 *1 (-298)))) ((*1 *1 *2 *3 *4) (-12 (-5 *2 (-1070)) (-5 *3 (-578 (-866 (-501)))) (-5 *4 (-282 (-632))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-625)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-630)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-282 (-632)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-625)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-630)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-282 (-632)))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-625))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-630))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1148 (-632))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-625))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-630))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-621 (-632))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-625))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-630))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-282 (-632))) (-5 *1 (-298)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-1053)) (-5 *1 (-298)))) ((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2 *1) (-12 (-4 *1 (-506 *2)) (-4 *2 (-13 (-372) (-1090))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-310 *4 *5 *6)) (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-2 (|:| |num| (-621 *5)) (|:| |den| *5))))))
-(((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-621 (-375 *4))))))
-(((*1 *1 *1) (|partial| -4 *1 (-132))) ((*1 *1 *1) (-4 *1 (-318))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-132)) (-4 *1 (-830)))))
-(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-334 *3 *4)) (-4 *3 (-335 *4)))) ((*1 *2) (-12 (-4 *1 (-335 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-199)) (-5 *2 (-2 (|:| |brans| (-578 (-578 (-863 *4)))) (|:| |xValues| (-991 *4)) (|:| |yValues| (-991 *4)))) (-5 *1 (-140)) (-5 *3 (-578 (-578 (-863 *4)))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *1)) (-5 *4 (-1070)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-27)) (-5 *2 (-578 *1)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1070)) (-4 *4 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *4)))) ((*1 *2 *1) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *2 (-578 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-107)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))) ((*1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-307 *3 *4 *5)) (-14 *3 (-578 (-1070))) (-14 *4 (-578 (-1070))) (-4 *5 (-355)))))
-(((*1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-1073)))))
-(((*1 *2 *3) (-12 (-4 *3 (-1125 *2)) (-4 *2 (-1125 *4)) (-5 *1 (-900 *4 *2 *3 *5)) (-4 *4 (-318)) (-4 *5 (-655 *2 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-157 *2)) (-4 *2 (-276)))) ((*1 *2 *3) (-12 (-5 *2 (-1072 (-375 (-501)))) (-5 *1 (-166)) (-5 *3 (-501)))) ((*1 *1 *1) (-12 (-4 *1 (-608 *2)) (-4 *2 (-1104)))) ((*1 *1 *1) (-4 *1 (-792 *2))) ((*1 *1 *1) (-12 (-4 *1 (-888 *2 *3 *4)) (-4 *2 (-959)) (-4 *3 (-722)) (-4 *4 (-777)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 (-1064 *6)) (|:| -3027 (-501))))) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))) ((*1 *1 *1) (-12 (-4 *1 (-1032 *2)) (-4 *2 (-959)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1069)) (-5 *1 (-298)))))
-(((*1 *2 *3) (-12 (-4 *4 (-1125 (-375 *2))) (-5 *2 (-501)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1125 (-375 *4))))))
-(((*1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))) ((*1 *2 *2) (-12 (-5 *2 (-701)) (-5 *1 (-115 *3)) (-4 *3 (-1125 (-501))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-107)))))
-(((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1320 *7) (|:| |sol?| (-107))) (-501) *7)) (-5 *6 (-578 (-375 *8))) (-4 *7 (-331)) (-4 *8 (-1125 *7)) (-5 *3 (-375 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-525 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3) (-12 (-4 *4 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *4)) (-5 *1 (-1026 *3 *4)) (-4 *3 (-1125 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *2 (-578 *3)) (-5 *1 (-1026 *4 *3)) (-4 *4 (-1125 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1001)) (-4 *4 (-13 (-959) (-806 *3) (-777) (-556 (-810 *3)))) (-5 *2 (-578 (-979 *3 *4 *5))) (-5 *1 (-981 *3 *4 *5)) (-4 *5 (-13 (-389 *4) (-806 *3) (-556 (-810 *3)))))))
-(((*1 *2 *3) (-12 (-4 *4 (-959)) (-5 *2 (-107)) (-5 *1 (-411 *4 *3)) (-4 *3 (-1125 *4)))) ((*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-726 *2)) (-4 *2 (-156)))))
-(((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-107)) (|:| -2995 (-701)) (|:| |period| (-701)))) (-5 *1 (-1048 *4)) (-4 *4 (-1104)) (-5 *3 (-701)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-822 *4)) (-4 *4 (-1001)) (-5 *2 (-578 (-701))) (-5 *1 (-825 *4)))))
-(((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1749 *4))) (-5 *1 (-885 *4 *3)) (-4 *3 (-1125 *4)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-777)) (-5 *3 (-578 *6)) (-5 *5 (-578 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-578 *5)) (|:| |f3| *5) (|:| |f4| (-578 *5)))) (-5 *1 (-1076 *6)) (-5 *4 (-578 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3) (-12 (-5 *3 (-866 (-501))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) ((*1 *2 *3) (-12 (-5 *3 (-866 (-375 (-501)))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) ((*1 *2 *3) (-12 (-5 *3 (-866 *1)) (-4 *1 (-926)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 (-501))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 (-375 (-501)))) (-5 *2 (-578 *1)) (-4 *1 (-926)))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *1)) (-4 *1 (-926)) (-5 *2 (-578 *1)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-775) (-331))) (-4 *3 (-1125 *4)) (-5 *2 (-578 *1)) (-4 *1 (-974 *4 *3)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-282 (-501))) (|:| -2958 (-282 (-346))) (|:| CF (-282 (-152 (-346)))) (|:| |switch| (-1069)))) (-5 *1 (-1069)))))
-(((*1 *2 *3) (-12 (-4 *5 (-13 (-556 *2) (-156))) (-5 *2 (-810 *4)) (-5 *1 (-154 *4 *5 *3)) (-4 *4 (-1001)) (-4 *3 (-150 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-991 (-769 (-346))))) (-5 *2 (-578 (-991 (-769 (-199))))) (-5 *1 (-272)))) ((*1 *1 *2) (-12 (-5 *2 (-199)) (-5 *1 (-346)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-361)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-378 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-156)) (-4 *4 (-1125 *3)) (-5 *2 (-1148 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1148 *3)) (-4 *3 (-156)) (-4 *1 (-386 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-386 *3)) (-4 *3 (-156)) (-5 *2 (-1148 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-373 *1)) (-4 *1 (-389 *3)) (-4 *3 (-508)) (-4 *3 (-777)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-430 *3 *4 *5 *6)))) ((*1 *1 *2) (-12 (-5 *2 (-1003)) (-5 *1 (-490)))) ((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-4 *3 (-156)) (-4 *1 (-655 *3 *2)) (-4 *2 (-1125 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-578 (-810 *3))) (-5 *1 (-810 *3)) (-4 *3 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-959)) (-4 *1 (-895 *3)))) ((*1 *1 *2) (-12 (-5 *2 (-1070)) (-5 *1 (-969)))) ((*1 *1 *2) (-12 (-5 *2 (-866 *3)) (-4 *3 (-959)) (-4 *1 (-972 *3 *4 *5)) (-4 *5 (-556 (-1070))) (-4 *4 (-723)) (-4 *5 (-777)))) ((*1 *1 *2) (-1405 (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-3031 (-4 *3 (-37 (-375 (-501))))) (-4 *3 (-37 (-501))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))) (-12 (-5 *2 (-866 (-501))) (-4 *1 (-972 *3 *4 *5)) (-12 (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070)))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777))))) ((*1 *1 *2) (-12 (-5 *2 (-866 (-375 (-501)))) (-4 *1 (-972 *3 *4 *5)) (-4 *3 (-37 (-375 (-501)))) (-4 *5 (-556 (-1070))) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-977 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1053)) (-5 *1 (-975 *4 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-5 *2 (-1070)) (-5 *1 (-986)))) ((*1 *1 *2) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1104)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *5 *6 *2)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *5 *2 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *2 (-1001)) (-4 *6 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *3 *4 *2 *5 *6)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *2 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *3 *2 *4 *5 *6)) (-4 *3 (-1001)) (-4 *2 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) ((*1 *1 *2) (-12 (-4 *1 (-1004 *2 *3 *4 *5 *6)) (-4 *2 (-1001)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)))) ((*1 *1 *2) (-12 (-5 *2 (-578 *1)) (-4 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *3 (-1001)) (-4 *4 (-1001)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)))) ((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-578 *7)) (|:| -3709 *8))) (-4 *7 (-972 *4 *5 *6)) (-4 *8 (-1009 *4 *5 *6 *7)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-1053)) (-5 *1 (-1040 *4 *5 *6 *7 *8)))) ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-1084)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-786)) (-5 *3 (-501)) (-5 *1 (-1084)))) ((*1 *2 *3) (-12 (-5 *3 (-710 *4 (-787 *5))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *5 (-578 (-1070))) (-5 *2 (-710 *4 (-787 *6))) (-5 *1 (-1173 *4 *5 *6)) (-14 *6 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-866 *4)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-866 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-710 *4 (-787 *6))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *6 (-578 (-1070))) (-5 *2 (-866 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-1064 *4)) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-5 *2 (-1064 (-937 (-375 *4)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))) (-14 *6 (-578 (-1070))))) ((*1 *2 *3) (-12 (-5 *3 (-1041 *4 (-487 (-787 *6)) (-787 *6) (-710 *4 (-787 *6)))) (-4 *4 (-13 (-775) (-276) (-134) (-933))) (-14 *6 (-578 (-1070))) (-5 *2 (-578 (-710 *4 (-787 *6)))) (-5 *1 (-1173 *4 *5 *6)) (-14 *5 (-578 (-1070))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))) ((*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3 *4)) (-4 *2 (-959)) (-14 *3 (-1070)) (-14 *4 *2))))
-(((*1 *2 *2) (-12 (-5 *1 (-881 *2)) (-4 *2 (-500)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-282 (-199))) (-5 *1 (-238)))))
-(((*1 *2 *1) (-12 (-5 *2 (-107)) (-5 *1 (-402)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-435)) (-5 *4 (-839)) (-5 *2 (-1154)) (-5 *1 (-1151)))))
-(((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-331) (-10 -8 (-15 ** ($ $ (-375 (-501))))))) (-5 *1 (-1026 *3 *2)) (-4 *3 (-1125 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-199)) (|:| |xend| (-199)) (|:| |fn| (-1148 (-282 (-199)))) (|:| |yinit| (-578 (-199))) (|:| |intvals| (-578 (-199))) (|:| |g| (-282 (-199))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-346)) (-5 *1 (-181)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1154)) (-5 *1 (-753)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1001)) (-4 *4 (-1001)) (-4 *6 (-1001)) (-5 *2 (-1 *6 *5)) (-5 *1 (-616 *5 *4 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-939 (-769 (-501)))) (-5 *3 (-1048 (-2 (|:| |k| (-501)) (|:| |c| *4)))) (-4 *4 (-959)) (-5 *1 (-540 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-375 (-501))) (-5 *1 (-192)))))
-(((*1 *2 *1) (-12 (-4 *1 (-874)) (-5 *2 (-991 (-199))))) ((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-991 (-199))))))
-(((*1 *1 *1) (-12 (-5 *1 (-540 *2)) (-4 *2 (-37 (-375 (-501)))) (-4 *2 (-959)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-578 *1)) (-4 *1 (-276)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-501))) (-5 *2 (-825 (-501))) (-5 *1 (-837)))) ((*1 *2) (-12 (-5 *2 (-825 (-501))) (-5 *1 (-837)))))
-(((*1 *2 *2 *3) (-12 (-4 *4 (-1001)) (-4 *2 (-820 *4)) (-5 *1 (-623 *4 *2 *5 *3)) (-4 *5 (-340 *2)) (-4 *3 (-13 (-340 *4) (-10 -7 (-6 -4167)))))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1070)) (-5 *3 (-346)) (-5 *1 (-970)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-3 (-107) "failed")) (-4 *3 (-419)) (-4 *4 (-777)) (-4 *5 (-723)) (-5 *1 (-901 *3 *4 *5 *6)) (-4 *6 (-870 *3 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1001)) (-5 *1 (-822 *3)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1018)) (-5 *1 (-104)))) ((*1 *2 *1) (|partial| -12 (-5 *1 (-332 *2)) (-4 *2 (-1001)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1053)) (-5 *1 (-1086)))))
-(((*1 *2 *1 *1) (-12 (-4 *3 (-331)) (-4 *3 (-959)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3987 *1))) (-4 *1 (-779 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-152 (-199))) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-399 *3 *2)) (-4 *2 (-389 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1034))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-795)) (-5 *3 (-578 (-232))) (-5 *1 (-233)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (|has| *1 (-6 -4167)) (-4 *1 (-208 *3)) (-4 *3 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-107) *3)) (-4 *1 (-252 *3)) (-4 *3 (-1104)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-968 (-937 *4) (-1064 (-937 *4)))) (-5 *3 (-786)) (-5 *1 (-937 *4)) (-4 *4 (-13 (-775) (-331) (-933))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1064 (-501))) (-5 *1 (-862)) (-5 *3 (-501)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *2 (-508)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-972 *2 *3 *4)))))
-(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-578 (-501))) (-5 *1 (-1010)) (-5 *3 (-501)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 (-621 *5))) (-5 *4 (-501)) (-4 *5 (-331)) (-4 *5 (-959)) (-5 *2 (-107)) (-5 *1 (-943 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-578 (-621 *4))) (-4 *4 (-331)) (-4 *4 (-959)) (-5 *2 (-107)) (-5 *1 (-943 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-1064 *4)) (-5 *1 (-534 *4)) (-4 *4 (-318)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1048 *3)) (-4 *3 (-959)) (-5 *1 (-1055 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *3)) (-4 *3 (-1125 (-501))) (-5 *1 (-451 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-959)) (-4 *4 (-722)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-49 *3 *4)) (-14 *4 (-578 (-1070))))) ((*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1104)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-56 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-56 *6)) (-5 *1 (-57 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-126 *5 *6 *7)) (-14 *5 (-501)) (-14 *6 (-701)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-126 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-152 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-5 *2 (-152 *6)) (-5 *1 (-153 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-282 *3) (-282 *3))) (-4 *3 (-13 (-959) (-777))) (-5 *1 (-197 *3 *4)) (-14 *4 (-578 (-1070))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-212 *5 *6)) (-14 *5 (-701)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-5 *2 (-212 *5 *7)) (-5 *1 (-213 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-262 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-262 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-262 *6)) (-5 *1 (-263 *5 *6)))) ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-553 *1)) (-4 *1 (-267)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1053)) (-5 *5 (-553 *6)) (-4 *6 (-267)) (-4 *2 (-1104)) (-5 *1 (-268 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-553 *5)) (-4 *5 (-267)) (-4 *2 (-267)) (-5 *1 (-269 *5 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-621 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-621 *6)) (-5 *1 (-274 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-282 *5)) (-4 *5 (-777)) (-4 *6 (-777)) (-5 *2 (-282 *6)) (-5 *1 (-283 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-301 *5 *6 *7 *8)) (-4 *5 (-331)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *8 (-310 *5 *6 *7)) (-4 *9 (-331)) (-4 *10 (-1125 *9)) (-4 *11 (-1125 (-375 *10))) (-5 *2 (-301 *9 *10 *11 *12)) (-5 *1 (-302 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-310 *9 *10 *11)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-306 *3)) (-4 *3 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1108)) (-4 *8 (-1108)) (-4 *6 (-1125 *5)) (-4 *7 (-1125 (-375 *6))) (-4 *9 (-1125 *8)) (-4 *2 (-310 *8 *9 *10)) (-5 *1 (-311 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-310 *5 *6 *7)) (-4 *10 (-1125 (-375 *9))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-4 *2 (-340 *6)) (-5 *1 (-341 *5 *4 *6 *2)) (-4 *4 (-340 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-352 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1001)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-508)) (-5 *1 (-373 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-373 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-5 *2 (-373 *6)) (-5 *1 (-374 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-375 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-5 *2 (-375 *6)) (-5 *1 (-376 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-381 *5 *6 *7 *8)) (-4 *5 (-276)) (-4 *6 (-906 *5)) (-4 *7 (-1125 *6)) (-4 *8 (-13 (-378 *6 *7) (-950 *6))) (-4 *9 (-276)) (-4 *10 (-906 *9)) (-4 *11 (-1125 *10)) (-5 *2 (-381 *9 *10 *11 *12)) (-5 *1 (-382 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-378 *10 *11) (-950 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-386 *6)) (-5 *1 (-384 *4 *5 *2 *6)) (-4 *4 (-386 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-959) (-777))) (-4 *6 (-13 (-959) (-777))) (-4 *2 (-389 *6)) (-5 *1 (-390 *5 *4 *6 *2)) (-4 *4 (-389 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *2 (-394 *6)) (-5 *1 (-395 *5 *4 *6 *2)) (-4 *4 (-394 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-454 *3)) (-4 *3 (-1104)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-471 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-777)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-530 *5)) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-530 *6)) (-5 *1 (-531 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3071 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-2 (|:| -3071 *6) (|:| |coeff| *6))) (-5 *1 (-531 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-331)) (-4 *2 (-331)) (-5 *1 (-531 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-331)) (-4 *6 (-331)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-578 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-531 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-545 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-545 *6)) (-5 *1 (-542 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-545 *6)) (-5 *5 (-545 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-545 *8)) (-5 *1 (-543 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1048 *6)) (-5 *5 (-545 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-543 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-545 *6)) (-5 *5 (-1048 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-543 *6 *7 *8)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1104)) (-5 *1 (-545 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-578 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-578 *6)) (-5 *1 (-579 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-578 *6)) (-5 *5 (-578 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-578 *8)) (-5 *1 (-581 *6 *7 *8)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-586 *3)) (-4 *3 (-1104)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *2 (-618 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-618 *5 *6 *7)) (-4 *9 (-340 *8)) (-4 *10 (-340 *8)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-959)) (-4 *8 (-959)) (-4 *6 (-340 *5)) (-4 *7 (-340 *5)) (-4 *2 (-618 *8 *9 *10)) (-5 *1 (-619 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-618 *5 *6 *7)) (-4 *9 (-340 *8)) (-4 *10 (-340 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-508)) (-4 *7 (-508)) (-4 *6 (-1125 *5)) (-4 *2 (-1125 (-375 *8))) (-5 *1 (-641 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1125 (-375 *6))) (-4 *8 (-1125 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-959)) (-4 *9 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *2 (-870 *9 *7 *5)) (-5 *1 (-659 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-723)) (-4 *4 (-870 *8 *6 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-777)) (-4 *6 (-777)) (-4 *7 (-723)) (-4 *9 (-959)) (-4 *2 (-870 *9 *8 *6)) (-5 *1 (-660 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-723)) (-4 *4 (-870 *9 *7 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-666 *5 *7)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *7 (-657)) (-5 *2 (-666 *6 *7)) (-5 *1 (-665 *5 *6 *7)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-666 *3 *4)) (-4 *4 (-657)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-711 *6)) (-5 *1 (-712 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-726 *6)) (-5 *1 (-729 *4 *5 *2 *6)) (-4 *4 (-726 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-762 *6)) (-5 *1 (-763 *5 *6)))) ((*1 *2 *3 *4 *2) (-12 (-5 *2 (-762 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-762 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *1 (-763 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-769 *6)) (-5 *1 (-770 *5 *6)))) ((*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-769 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-769 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *1 (-770 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-798 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-798 *6)) (-5 *1 (-797 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-800 *6)) (-5 *1 (-799 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-802 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-802 *6)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-808 *5 *6)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-4 *7 (-1001)) (-5 *2 (-808 *5 *7)) (-5 *1 (-809 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-810 *5)) (-4 *5 (-1001)) (-4 *6 (-1001)) (-5 *2 (-810 *6)) (-5 *1 (-812 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-866 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-866 *6)) (-5 *1 (-867 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-777)) (-4 *8 (-959)) (-4 *6 (-723)) (-4 *2 (-13 (-1001) (-10 -8 (-15 -3790 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-701)))))) (-5 *1 (-872 *6 *7 *8 *5 *2)) (-4 *5 (-870 *8 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-877 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-863 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-863 *6)) (-5 *1 (-896 *5 *6)))) ((*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-866 *4))) (-4 *4 (-959)) (-4 *2 (-870 (-866 *4) *5 *6)) (-4 *5 (-723)) (-4 *6 (-13 (-777) (-10 -8 (-15 -1248 ((-1070) $)) (-15 -3484 ((-3 $ "failed") (-1070)))))) (-5 *1 (-899 *4 *5 *6 *2)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-508)) (-4 *6 (-508)) (-4 *2 (-906 *6)) (-5 *1 (-907 *5 *6 *4 *2)) (-4 *4 (-906 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-156)) (-4 *6 (-156)) (-4 *2 (-912 *6)) (-5 *1 (-913 *4 *5 *2 *6)) (-4 *4 (-912 *5)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-961 *3 *4 *5 *6 *7)) (-4 *5 (-959)) (-4 *6 (-211 *4 *5)) (-4 *7 (-211 *3 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-959)) (-4 *10 (-959)) (-14 *5 (-701)) (-14 *6 (-701)) (-4 *8 (-211 *6 *7)) (-4 *9 (-211 *5 *7)) (-4 *2 (-961 *5 *6 *10 *11 *12)) (-5 *1 (-963 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-961 *5 *6 *7 *8 *9)) (-4 *11 (-211 *6 *10)) (-4 *12 (-211 *5 *10)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-991 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-991 *6)) (-5 *1 (-992 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-991 *5)) (-4 *5 (-775)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-578 *6)) (-5 *1 (-992 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-993 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-993 *6)) (-5 *1 (-994 *5 *6)))) ((*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-996 *4 *2)) (-4 *4 (-775)) (-4 *2 (-1044 *4)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1048 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1048 *6)) (-5 *1 (-1050 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1048 *6)) (-5 *5 (-1048 *7)) (-4 *6 (-1104)) (-4 *7 (-1104)) (-4 *8 (-1104)) (-5 *2 (-1048 *8)) (-5 *1 (-1051 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1064 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-5 *2 (-1064 *6)) (-5 *1 (-1065 *5 *6)))) ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1081 *3 *4)) (-4 *3 (-1001)) (-4 *4 (-1001)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5 *7 *9)) (-4 *5 (-959)) (-4 *6 (-959)) (-14 *7 (-1070)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1109 *6 *8 *10)) (-5 *1 (-1110 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1070)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1116 *6)) (-5 *1 (-1117 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1116 *5)) (-4 *5 (-775)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1048 *6)) (-5 *1 (-1117 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1118 *5 *6)) (-14 *5 (-1070)) (-4 *6 (-959)) (-4 *8 (-959)) (-5 *2 (-1118 *7 *8)) (-5 *1 (-1119 *5 *6 *7 *8)) (-14 *7 (-1070)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *2 (-1125 *6)) (-5 *1 (-1126 *5 *4 *6 *2)) (-4 *4 (-1125 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1130 *5 *7 *9)) (-4 *5 (-959)) (-4 *6 (-959)) (-14 *7 (-1070)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1130 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1070)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-959)) (-4 *6 (-959)) (-4 *2 (-1142 *6)) (-5 *1 (-1140 *5 *6 *4 *2)) (-4 *4 (-1142 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1104)) (-4 *6 (-1104)) (-5 *2 (-1148 *6)) (-5 *1 (-1149 *5 *6)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1166 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-959)) (-5 *1 (-1170 *3 *4)) (-4 *4 (-773)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1082 *4 *5)) (-4 *4 (-1001)) (-4 *5 (-1001)))))
-(((*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-839)) (-5 *1 (-1002 *3 *4)) (-14 *3 *2) (-14 *4 *2))))
-(((*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-419)) (-4 *5 (-723)) (-4 *6 (-777)) (-4 *3 (-972 *4 *5 *6)) (-5 *2 (-107)))))
-(((*1 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 *3)) (-5 *1 (-892 *4 *5 *6 *3)) (-4 *3 (-972 *4 *5 *6)))) ((*1 *2 *2 *3) (-12 (-5 *2 (-578 *3)) (-4 *3 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *3)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-578 *6)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *1 (-892 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-578 *7) (-578 *7))) (-5 *2 (-578 *7)) (-4 *7 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1) (-5 *1 (-786))))
-(((*1 *2) (-12 (-4 *4 (-1108)) (-4 *5 (-1125 *4)) (-4 *6 (-1125 (-375 *5))) (-5 *2 (-701)) (-5 *1 (-309 *3 *4 *5 *6)) (-4 *3 (-310 *4 *5 *6)))) ((*1 *2) (-12 (-4 *1 (-310 *3 *4 *5)) (-4 *3 (-1108)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-1032 *3)) (-4 *3 (-959)) (-5 *2 (-701)))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-578 *8)) (-5 *4 (-126 *5 *6 *7)) (-14 *5 (-501)) (-14 *6 (-701)) (-4 *7 (-156)) (-4 *8 (-156)) (-5 *2 (-126 *5 *6 *8)) (-5 *1 (-127 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-578 *9)) (-4 *9 (-959)) (-4 *5 (-777)) (-4 *6 (-723)) (-4 *8 (-959)) (-4 *2 (-870 *9 *7 *5)) (-5 *1 (-659 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-723)) (-4 *4 (-870 *8 *6 *5)))))
-(((*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-701)) (-5 *1 (-609 *2)) (-4 *2 (-1001)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-419))) (-5 *1 (-1096 *3 *2)) (-4 *2 (-13 (-389 *3) (-1090))))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-972 *4 *5 *6)) (-4 *4 (-508)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *1 (-892 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-959)) (-4 *2 (-722)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-49 *3 *4)) (-4 *3 (-959)) (-14 *4 (-578 (-1070))))) ((*1 *2 *1) (-12 (-5 *2 (-501)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-959) (-777))) (-14 *4 (-578 (-1070))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-224 *4 *3 *5 *6)) (-4 *4 (-959)) (-4 *3 (-777)) (-4 *5 (-237 *3)) (-4 *6 (-723)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-246)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1064 *8)) (-5 *4 (-578 *6)) (-4 *6 (-777)) (-4 *8 (-870 *7 *5 *6)) (-4 *5 (-723)) (-4 *7 (-959)) (-5 *2 (-578 (-701))) (-5 *1 (-289 *5 *6 *7 *8)))) ((*1 *2 *1) (-12 (-4 *1 (-297 *3)) (-4 *3 (-331)) (-5 *2 (-839)))) ((*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-777)) (-4 *4 (-156)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-437 *3 *2)) (-4 *3 (-156)) (-4 *2 (-23)))) ((*1 *2 *1) (-12 (-4 *3 (-508)) (-5 *2 (-501)) (-5 *1 (-562 *3 *4)) (-4 *4 (-1125 *3)))) ((*1 *2 *1) (-12 (-4 *1 (-640 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-779 *3)) (-4 *3 (-959)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-822 *3)) (-4 *3 (-1001)))) ((*1 *2 *1) (-12 (-5 *2 (-701)) (-5 *1 (-825 *3)) (-4 *3 (-1001)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-578 *6)) (-4 *1 (-870 *4 *5 *6)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *6 (-777)) (-5 *2 (-578 (-701))))) ((*1 *2 *1 *3) (-12 (-4 *1 (-870 *4 *5 *3)) (-4 *4 (-959)) (-4 *5 (-723)) (-4 *3 (-777)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-888 *3 *2 *4)) (-4 *3 (-959)) (-4 *4 (-777)) (-4 *2 (-722)))) ((*1 *2 *1) (-12 (-4 *1 (-1099 *3 *4 *5 *6)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-5 *2 (-701)))) ((*1 *2 *1) (-12 (-4 *1 (-1113 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1142 *3)) (-5 *2 (-501)))) ((*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-959)) (-4 *4 (-1111 *3)) (-5 *2 (-375 (-501))))) ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-331)) (-5 *2 (-762 (-839))))) ((*1 *2 *1) (-12 (-4 *1 (-1169 *3 *4)) (-4 *3 (-777)) (-4 *4 (-959)) (-5 *2 (-701)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1 (-107) *4)) (|has| *1 (-6 -4167)) (-4 *1 (-454 *4)) (-4 *4 (-1104)) (-5 *2 (-107)))))
-(((*1 *1 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (-12 (-5 *1 (-813 *2)) (-4 *2 (-777)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-1099 *2 *3 *4 *5)) (-4 *2 (-508)) (-4 *3 (-723)) (-4 *4 (-777)) (-4 *5 (-972 *2 *3 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *1 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-501)) (-4 *1 (-618 *3 *4 *5)) (-4 *3 (-959)) (-4 *4 (-340 *3)) (-4 *5 (-340 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-331)) (-4 *4 (-1125 *3)) (-4 *5 (-1125 (-375 *4))) (-5 *2 (-1148 *6)) (-5 *1 (-301 *3 *4 *5 *6)) (-4 *6 (-310 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-4 *3 (-13 (-777) (-508))) (-5 *1 (-247 *3 *2)) (-4 *2 (-13 (-389 *3) (-916))))))
-(((*1 *2 *1) (-12 (-5 *2 (-578 *5)) (-5 *1 (-126 *3 *4 *5)) (-14 *3 (-501)) (-14 *4 (-701)) (-4 *5 (-156)))))
-(((*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1070)) (-4 *4 (-13 (-276) (-777) (-134) (-950 (-501)) (-577 (-501)))) (-5 *1 (-526 *4 *2)) (-4 *2 (-13 (-1090) (-879) (-1034) (-29 *4))))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 (-863 *3) (-863 *3))) (-5 *1 (-158 *3)) (-4 *3 (-13 (-331) (-1090) (-916))))))
-(((*1 *2 *3 *4) (-12 (-5 *3 (-621 (-375 (-501)))) (-5 *2 (-578 *4)) (-5 *1 (-709 *4)) (-4 *4 (-13 (-331) (-775))))))
-(((*1 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-508)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *3 (-553 $)) $)) (-15 -2949 ((-1023 *3 (-553 $)) $)) (-15 -3691 ($ (-1023 *3 (-553 $))))))))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 *2)) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))) (-4 *4 (-508)) (-5 *1 (-40 *4 *2)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-578 (-553 *2))) (-4 *2 (-13 (-331) (-267) (-10 -8 (-15 -2946 ((-1023 *4 (-553 $)) $)) (-15 -2949 ((-1023 *4 (-553 $)) $)) (-15 -3691 ($ (-1023 *4 (-553 $))))))) (-4 *4 (-508)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-548 *3 *2)) (-4 *3 (-1001)) (-4 *3 (-777)) (-4 *2 (-1104)))) ((*1 *2 *1) (-12 (-5 *1 (-610 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-5 *1 (-749 *2)) (-4 *2 (-777)))) ((*1 *2 *1) (-12 (-5 *2 (-606 *3)) (-5 *1 (-813 *3)) (-4 *3 (-777)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *4 *5 *2)) (-4 *3 (-508)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *2 (-972 *3 *4 *5)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-701)) (-4 *1 (-1138 *3)) (-4 *3 (-1104)))) ((*1 *2 *1) (-12 (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *1 (-891 *3 *4 *5 *6)) (-4 *3 (-959)) (-4 *4 (-723)) (-4 *5 (-777)) (-4 *6 (-972 *3 *4 *5)) (-4 *3 (-508)) (-5 *2 (-107)))))
-(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-199) (-199) (-199))) (-5 *4 (-1 (-199) (-199) (-199) (-199))) (-5 *2 (-1 (-863 (-199)) (-199) (-199))) (-5 *1 (-628)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1018)) (-5 *1 (-298)))))
-(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-217 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-252 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))) ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4168)) (-4 *1 (-1138 *2)) (-4 *2 (-1104)))))
-(((*1 *2 *3) (-12 (-5 *3 (-578 (-2 (|:| -3739 (-1064 *6)) (|:| -3027 (-501))))) (-4 *6 (-276)) (-4 *4 (-723)) (-4 *5 (-777)) (-5 *2 (-501)) (-5 *1 (-673 *4 *5 *6 *7)) (-4 *7 (-870 *6 *4 *5)))))
-(((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-795)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1151)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1053)) (-5 *2 (-1154)) (-5 *1 (-1152)))))
-(((*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-583 *5)) (-4 *5 (-959)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-779 *5)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-621 *3)) (-4 *1 (-386 *3)) (-4 *3 (-156)))) ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-779 *2)) (-4 *2 (-959)))) ((*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-959)) (-5 *1 (-780 *2 *3)) (-4 *3 (-779 *2)))))
-(((*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-530 *3) *3 (-1070))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1070))) (-4 *3 (-254)) (-4 *3 (-568)) (-4 *3 (-950 *4)) (-4 *3 (-389 *7)) (-5 *4 (-1070)) (-4 *7 (-556 (-810 (-501)))) (-4 *7 (-419)) (-4 *7 (-806 (-501))) (-4 *7 (-777)) (-5 *2 (-530 *3)) (-5 *1 (-524 *7 *3)))))
-(((*1 *2 *3) (-12 (-4 *4 (-37 (-375 (-501)))) (-5 *2 (-2 (|:| -3929 (-1048 *4)) (|:| -3933 (-1048 *4)))) (-5 *1 (-1056 *4)) (-5 *3 (-1048 *4)))))
-((-1181 . 680371) (-1182 . 680021) (-1183 . 679648) (-1184 . 679400) (-1185 . 679205) (-1186 . 678854) (-1187 . 678801) (-1188 . 678639) (-1189 . 678491) (-1190 . 677975) (-1191 . 677124) (-1192 . 677006) (-1193 . 676897) (-1194 . 676713) (-1195 . 676602) (-1196 . 676500) (-1197 . 676348) (-1198 . 676230) (-1199 . 675819) (-1200 . 675700) (-1201 . 673691) (-1202 . 673552) (-1203 . 673448) (-1204 . 673365) (-1205 . 672986) (-1206 . 672656) (-1207 . 672622) (-1208 . 671906) (-1209 . 671770) (-1210 . 671671) (-1211 . 671563) (-1212 . 658326) (-1213 . 658245) (-1214 . 658167) (-1215 . 658078) (-1216 . 657843) (-1217 . 657762) (-1218 . 657643) (-1219 . 657568) (-1220 . 657432) (-1221 . 657249) (-1222 . 657172) (-1223 . 656937) (-1224 . 656802) (-1225 . 656615) (-1226 . 656506) (-1227 . 656395) (-1228 . 656293) (-1229 . 656219) (-1230 . 656069) (-1231 . 655995) (-1232 . 655847) (-1233 . 655713) (-1234 . 655645) (-1235 . 655562) (-1236 . 655447) (-1237 . 655388) (-1238 . 655250) (-1239 . 655112) (-1240 . 655059) (-1241 . 654794) (-1242 . 654669) (-1243 . 654579) (-1244 . 654527) (-1245 . 654458) (-1246 . 654403) (-1247 . 654240) (-1248 . 649860) (-1249 . 649705) (-1250 . 649144) (-1251 . 649088) (-1252 . 648880) (-1253 . 648738) (-1254 . 648639) (-1255 . 648488) (-1256 . 648433) (-1257 . 648238) (-1258 . 648039) (-1259 . 647753) (-1260 . 647696) (-1261 . 647326) (-1262 . 647272) (-1263 . 647122) (-1264 . 647012) (-1265 . 646900) (-1266 . 646649) (-1267 . 646343) (-1268 . 646220) (-1269 . 646169) (-1270 . 645927) (-1271 . 645513) (-1272 . 645314) (-1273 . 645162) (-1274 . 645034) (-1275 . 644905) (-1276 . 644729) (-1277 . 644660) (-1278 . 641994) (-1279 . 641825) (-1280 . 641729) (-1281 . 641006) (-1282 . 640931) (-1283 . 640864) (-1284 . 640776) (-1285 . 640242) (-1286 . 639945) (-1287 . 639549) (-1288 . 639475) (-1289 . 639311) (-1290 . 638939) (-1291 . 638797) (-1292 . 638578) (-1293 . 638274) (-1294 . 637824) (-1295 . 637732) (-1296 . 637665) (-1297 . 637501) (-1298 . 637341) (-1299 . 637035) (-1300 . 636964) (-1301 . 636854) (-1302 . 636438) (-1303 . 635957) (-1304 . 635755) (-1305 . 635685) (-1306 . 635588) (-1307 . 635408) (-1308 . 635358) (-1309 . 635275) (-1310 . 635103) (-1311 . 635037) (-1312 . 634984) (-1313 . 634657) (-1314 . 634508) (-1315 . 634170) (-1316 . 633374) (-1317 . 632308) (-1318 . 632179) (-1319 . 631849) (-1320 . 631522) (-1321 . 631389) (-1322 . 631318) (-1323 . 631047) (-1324 . 630994) (-1325 . 630820) (-1326 . 630582) (-1327 . 630490) (-1328 . 630434) (-1329 . 630301) (-1330 . 629980) (-1331 . 629801) (-1332 . 629770) (-1333 . 629412) (-1334 . 629357) (-1335 . 629131) (-1336 . 629038) (-1337 . 628640) (-1338 . 628584) (-1339 . 628465) (-1340 . 628384) (-1341 . 628310) (-1342 . 628093) (-1343 . 627987) (-1344 . 627913) (-1345 . 627795) (-1346 . 627643) (-1347 . 627581) (-1348 . 627509) (-1349 . 627481) (-1350 . 627392) (-1351 . 627302) (-1352 . 627098) (-1353 . 626983) (-1354 . 626675) (-1355 . 626444) (-1356 . 626101) (-1357 . 626011) (-1358 . 625956) (-1359 . 625811) (-1360 . 625745) (-1361 . 625469) (-1362 . 625417) (-1363 . 625380) (-1364 . 625256) (-1365 . 625065) (-1366 . 624903) (-1367 . 624812) (-1368 . 624757) (-1369 . 624542) (-1370 . 624397) (-1371 . 624102) (-1372 . 623988) (-1373 . 623875) (-1374 . 623820) (-1375 . 623604) (-1376 . 623333) (-1377 . 623220) (-1378 . 623121) (-1379 . 622999) (-1380 . 622888) (-1381 . 622691) (-1382 . 622610) (-1383 . 622302) (-1384 . 622214) (-1385 . 622112) (-1386 . 621959) (-1387 . 621761) (-1388 . 621610) (-1389 . 621561) (-1390 . 621475) (-1391 . 621387) (-1392 . 621291) (-1393 . 621220) (-1394 . 621167) (-1395 . 620805) (-1396 . 620634) (-1397 . 620453) (-1398 . 620181) (-1399 . 619758) (-1400 . 619392) (-1401 . 619210) (-1402 . 619158) (-1403 . 619019) (-1404 . 618845) (-1405 . 618690) (-1406 . 618273) (-1407 . 617980) (-1408 . 617829) (-1409 . 617693) (-1410 . 617209) (-1411 . 617068) (-1412 . 616973) (-12 . 616818) (-1414 . 616711) (-1415 . 616602) (-1416 . 616476) (-1417 . 615211) (-1418 . 615133) (-1419 . 615011) (-1420 . 614916) (-1421 . 614823) (-1422 . 614608) (-1423 . 614456) (-1424 . 614358) (-1425 . 614256) (-1426 . 614163) (-1427 . 614110) (-1428 . 613889) (-1429 . 613818) (-1430 . 613627) (-1431 . 613450) (-1432 . 613349) (-1433 . 612784) (-1434 . 612594) (-1435 . 612242) (-1436 . 612001) (-1437 . 611886) (-1438 . 611766) (-1439 . 611564) (-1440 . 611483) (-1441 . 611374) (-1442 . 611027) (-1443 . 610919) (-1444 . 610839) (-1445 . 610636) (-1446 . 610371) (-1447 . 610269) (-1448 . 610149) (-1449 . 610049) (-1450 . 609911) (-1451 . 609828) (-1452 . 609728) (-1453 . 609697) (-1454 . 609366) (-1455 . 609309) (-1456 . 609186) (-1457 . 609110) (-1458 . 608947) (-1459 . 608891) (-1460 . 608785) (-1461 . 608455) (-1462 . 608312) (-1463 . 608186) (-1464 . 607983) (-1465 . 607827) (-1466 . 607629) (-1467 . 607563) (-1468 . 607410) (-1469 . 607338) (-1470 . 607243) (-1471 . 607127) (-1472 . 606962) (-1473 . 606811) (-1474 . 606460) (-1475 . 606377) (-1476 . 606306) (-1477 . 606069) (-1478 . 605974) (-1479 . 605838) (-1480 . 605633) (-1481 . 605503) (* . 601259) (-1483 . 601074) (-1484 . 600993) (-1485 . 600845) (-1486 . 600655) (-1487 . 600372) (-1488 . 600294) (-1489 . 600196) (-1490 . 600066) (-1491 . 599983) (-1492 . 599864) (-1493 . 599758) (-1494 . 599622) (-1495 . 599567) (-1496 . 599469) (-1497 . 599314) (-1498 . 599135) (-1499 . 599104) (-1500 . 598581) (-1501 . 598507) (-1502 . 598401) (-1503 . 598244) (-1504 . 598144) (-1505 . 598008) (-1506 . 597586) (-1507 . 597447) (-1508 . 597290) (-1509 . 597237) (-1510 . 597171) (-1511 . 596973) (-1512 . 596377) (-1513 . 596215) (-1514 . 596121) (-1515 . 596093) (-1516 . 595992) (-1517 . 595924) (-1518 . 595783) (-1519 . 595598) (-1520 . 595275) (-1521 . 595220) (-1522 . 595130) (-1523 . 594973) (-1524 . 594924) (-1525 . 594679) (-1526 . 594109) (-1527 . 594056) (-1528 . 593985) (-1529 . 593951) (-1530 . 593893) (-1531 . 593843) (-1532 . 593535) (-1533 . 593376) (-1534 . 593320) (-1535 . 593247) (-1536 . 593099) (-1537 . 593010) (-1538 . 592834) (-1539 . 592672) (-1540 . 592173) (-1541 . 591634) (-1542 . 591198) (-1543 . 591145) (-1544 . 591082) (-1545 . 590849) (-1546 . 590774) (-1547 . 590708) (-1548 . 590519) (-1549 . 590251) (-1550 . 590181) (-1551 . 589930) (-1552 . 589877) (-1553 . 589721) (-1554 . 589482) (-1555 . 589408) (-1556 . 588952) (-1557 . 588878) (-1558 . 588744) (-1559 . 587533) (-1560 . 587460) (-1561 . 587304) (-1562 . 587045) (-1563 . 586943) (-1564 . 586886) (-1565 . 586789) (-1566 . 586682) (-1567 . 586449) (-1568 . 586376) (-1569 . 586215) (-1570 . 586130) (-1571 . 586036) (-1572 . 585813) (-1573 . 585630) (-1574 . 585057) (-1575 . 584628) (-1576 . 584343) (-1577 . 584167) (-1578 . 584066) (-1579 . 583941) (-1580 . 583843) (-1581 . 583727) (-1582 . 583599) (-1583 . 583528) (-1584 . 583427) (-1585 . 583312) (-1586 . 582865) (-1587 . 582564) (-1588 . 582424) (-1589 . 582238) (-1590 . 581740) (-1591 . 581684) (-1592 . 581574) (-1593 . 581336) (-1594 . 581255) (-1595 . 581226) (-1596 . 580751) (-1597 . 580617) (-1598 . 580415) (-1599 . 580251) (-1600 . 580058) (-1601 . 579950) (-1602 . 579884) (-1603 . 579651) (-1604 . 579598) (-1605 . 579307) (-1606 . 579218) (-1607 . 578883) (-1608 . 578800) (-1609 . 578723) (-1610 . 578649) (-1611 . 578342) (-1612 . 578077) (-1613 . 577996) (-1614 . 577906) (-1615 . 577811) (-1616 . 576914) (-1617 . 575697) (-1618 . 575558) (-1619 . 575188) (-1620 . 574912) (-1621 . 574840) (-1622 . 574653) (-1623 . 574597) (-1624 . 574539) (-1625 . 573936) (-1626 . 573338) (-1627 . 573146) (-1628 . 572780) (-1629 . 572694) (-1630 . 572383) (-1631 . 572235) (-1632 . 571735) (-1633 . 571640) (-1634 . 570810) (-1635 . 569636) (-1636 . 569384) (-1637 . 569188) (-1638 . 569067) (-1639 . 569015) (-1640 . 568966) (-1641 . 568878) (-1642 . 568672) (-1643 . 568154) (-1644 . 567755) (-1645 . 567062) (-1646 . 566947) (-1647 . 566891) (-1648 . 566658) (-1649 . 566461) (-1650 . 566179) (-1651 . 565916) (-1652 . 565830) (-1653 . 565389) (-1654 . 565298) (-1655 . 565212) (-1656 . 565081) (-1657 . 564937) (-1658 . 564824) (-1659 . 564722) (-1660 . 564535) (-1661 . 564301) (-1662 . 564153) (-1663 . 564078) (-1664 . 564025) (-1665 . 563903) (-1666 . 563871) (-1667 . 563815) (-1668 . 563582) (-1669 . 563387) (-1670 . 563305) (-1671 . 563116) (-1672 . 563017) (-1673 . 562926) (-1674 . 562855) (-1675 . 562796) (-1676 . 562563) (-1677 . 562140) (-1678 . 562087) (-1679 . 561983) (-1680 . 561712) (-1681 . 561507) (-1682 . 561444) (-1683 . 561365) (-1684 . 560936) (-1685 . 560838) (-1686 . 560430) (-1687 . 560357) (-1688 . 558875) (-1689 . 558663) (-1690 . 558566) (-1691 . 558247) (-1692 . 558140) (-1693 . 558050) (-1694 . 557901) (-1695 . 557765) (-1696 . 557138) (-1697 . 557052) (-1698 . 556945) (-1699 . 556715) (-1700 . 556633) (-1701 . 556537) (-1702 . 556355) (-1703 . 556321) (-1704 . 556246) (-1705 . 556156) (-1706 . 555872) (-1707 . 555706) (-1708 . 555584) (-1709 . 555001) (-1710 . 554865) (-1711 . 554771) (-1712 . 554677) (-1713 . 554564) (-1714 . 554460) (-1715 . 554387) (-1716 . 554233) (-1717 . 553932) (-1718 . 553758) (-1719 . 553730) (-1720 . 553249) (-1721 . 553148) (-1722 . 553026) (-1723 . 552926) (-1724 . 552828) (-1725 . 552689) (-1726 . 552359) (-1727 . 552281) (-1728 . 552131) (-1729 . 551848) (-1730 . 551613) (-1731 . 551038) (-1732 . 550885) (-1733 . 550664) (-1734 . 550303) (-1735 . 550169) (-1736 . 550041) (-1737 . 549948) (-1738 . 549763) (-1739 . 549659) (-1740 . 547903) (-1741 . 547841) (-1742 . 547713) (-1743 . 547575) (-1744 . 547468) (-1745 . 547097) (-1746 . 546799) (-1747 . 546725) (-1748 . 546612) (-1749 . 546246) (-1750 . 546112) (-1751 . 545950) (-1752 . 545799) (-1753 . 545613) (-1754 . 545504) (-1755 . 545379) (-1756 . 545208) (-1757 . 545149) (-1758 . 544569) (-1759 . 544477) (-1760 . 544349) (-1761 . 544298) (-1762 . 544085) (-1763 . 543425) (-1764 . 543254) (-1765 . 542896) (-1766 . 542762) (-1767 . 542586) (-1768 . 542533) (-1769 . 542263) (-1770 . 542132) (-1771 . 542013) (-1772 . 541902) (-1773 . 541780) (-1774 . 541638) (-1775 . 541513) (-1776 . 541382) (-1777 . 541301) (-1778 . 541179) (-1779 . 541072) (-1780 . 540752) (-1781 . 540602) (-1782 . 540414) (-1783 . 540250) (-1784 . 539967) (-1785 . 539752) (-1786 . 539671) (-1787 . 539619) (-1788 . 539503) (-1789 . 539221) (-1790 . 539122) (-1791 . 538941) (-1792 . 538584) (-1793 . 538465) (-1794 . 538276) (-1795 . 538223) (-1796 . 538164) (-1797 . 538081) (-1798 . 537987) (-1799 . 537889) (-1800 . 537828) (-1801 . 537220) (-1802 . 537023) (-1803 . 536886) (-1804 . 536812) (-1805 . 536634) (-1806 . 536446) (-1807 . 536390) (-1808 . 536335) (-1809 . 536282) (-1810 . 536114) (-1811 . 536062) (-1812 . 536009) (-1813 . 535875) (-1814 . 535756) (-1815 . 535563) (-1816 . 535330) (-1817 . 535216) (-1818 . 535188) (-1819 . 535020) (-1820 . 534954) (-1821 . 534766) (-1822 . 534359) (-1823 . 534246) (-1824 . 534193) (-1825 . 533728) (-1826 . 533622) (-1827 . 533026) (-1828 . 532925) (-1829 . 532852) (-1830 . 532730) (-1831 . 532619) (-1832 . 532412) (-1833 . 532042) (-1834 . 531806) (-1835 . 531450) (-1836 . 531328) (-1837 . 530978) (-1838 . 530589) (-1839 . 530537) (-1840 . 530421) (-1841 . 530321) (-1842 . 530219) (-1843 . 529974) (-1844 . 529766) (-1845 . 529550) (-1846 . 529433) (-1847 . 529023) (-1848 . 528725) (-1849 . 528563) (-1850 . 528395) (-1851 . 528268) (-1852 . 528070) (-1853 . 527075) (-1854 . 526913) (-1855 . 526656) (-1856 . 526601) (-1857 . 526433) (-1858 . 526348) (-1859 . 526206) (-1860 . 526153) (-1861 . 526007) (-1862 . 525951) (-1863 . 525785) (-1864 . 525733) (-1865 . 525468) (-1866 . 525357) (-1867 . 525305) (-1868 . 525274) (-1869 . 524897) (-1870 . 524842) (-1871 . 524481) (-1872 . 524240) (-1873 . 524115) (-1874 . 523941) (-1875 . 523647) (-1876 . 523619) (-1877 . 523423) (-1878 . 523290) (-1879 . 523238) (-1880 . 523010) (-1881 . 522833) (-1882 . 522469) (-1883 . 522349) (-1884 . 522247) (-1885 . 522069) (-1886 . 521961) (-1887 . 521843) (-1888 . 521688) (-1889 . 521549) (-1890 . 521426) (-1891 . 520879) (-1892 . 520675) (-1893 . 520417) (-1894 . 520009) (-1895 . 519908) (-1896 . 519827) (-1897 . 518909) (-1898 . 518854) (-1899 . 518719) (-1900 . 518363) (-1901 . 518275) (-1902 . 518225) (-1903 . 518099) (-1904 . 517999) (-1905 . 517679) (-1906 . 517484) (-1907 . 517376) (-1908 . 517285) (-1909 . 517230) (-1910 . 517131) (-1911 . 516989) (-1912 . 516817) (-1913 . 516758) (-1914 . 516392) (-1915 . 516169) (-1916 . 516036) (-1917 . 515961) (-1918 . 515822) (-1919 . 515748) (-1920 . 515650) (-1921 . 515540) (-1922 . 515439) (-1923 . 515363) (-1924 . 515262) (-1925 . 515019) (-1926 . 514803) (-1927 . 514656) (-1928 . 514399) (-1929 . 514295) (-1930 . 514156) (-1931 . 514049) (-1932 . 513975) (-1933 . 513201) (-1934 . 512701) (-1935 . 512585) (-1936 . 512397) (-1937 . 512169) (-1938 . 512071) (-1939 . 511967) (-1940 . 511867) (-1941 . 511763) (-1942 . 511600) (-1943 . 511511) (-1944 . 511407) (-1945 . 511257) (-1946 . 511182) (-1947 . 511047) (-1948 . 510937) (-1949 . 510631) (-1950 . 510534) (-1951 . 510430) (-1952 . 510326) (-1953 . 510248) (-1954 . 510134) (-1955 . 509985) (-1956 . 509908) (-1957 . 509822) (-1958 . 509712) (-1959 . 509529) (-1960 . 509449) (-1961 . 509274) (-1962 . 509149) (-1963 . 508963) (-1964 . 508465) (-1965 . 508225) (-1966 . 508173) (-1967 . 507221) (-1968 . 507153) (-1969 . 507088) (-1970 . 507036) (-1971 . 506965) (-1972 . 506699) (-1973 . 506556) (-1974 . 506394) (-1975 . 506322) (-1976 . 506264) (-1977 . 506112) (-1978 . 506060) (-1979 . 505593) (-1980 . 505080) (-1981 . 504918) (-1982 . 504740) (-1983 . 504507) (-1984 . 504393) (-1985 . 504102) (-1986 . 503965) (-1987 . 503502) (-1988 . 503429) (-1989 . 502282) (-1990 . 502206) (-1991 . 502087) (-1992 . 501969) (-1993 . 501825) (-1994 . 501751) (-1995 . 501671) (-1996 . 501545) (-1997 . 501477) (-1998 . 501383) (-1999 . 501266) (-2000 . 500757) (-2001 . 500655) (-2002 . 500621) (-2003 . 500368) (-2004 . 500165) (-2005 . 500064) (-2006 . 499770) (-2007 . 494916) (-2008 . 494650) (-2009 . 494584) (-2010 . 494556) (-2011 . 494294) (-2012 . 494110) (-2013 . 494009) (-2014 . 493938) (-2015 . 493644) (-2016 . 493387) (-2017 . 493132) (-2018 . 493059) (-2019 . 492632) (-2020 . 492582) (-2021 . 492478) (-2022 . 492412) (-2023 . 492209) (-2024 . 492084) (-2025 . 491994) (-2026 . 491862) (-2027 . 491792) (-2028 . 491635) (-2029 . 491529) (-2030 . 491425) (-2031 . 491108) (-2032 . 491010) (-2033 . 490976) (-2034 . 490741) (-2035 . 490382) (-2036 . 490327) (-2037 . 490202) (-2038 . 489916) (-2039 . 489885) (-2040 . 489779) (-2041 . 489655) (-2042 . 489444) (-2043 . 489306) (-2044 . 489156) (-2045 . 488973) (-2046 . 488874) (-2047 . 488815) (-2048 . 488554) (-2049 . 488502) (-2050 . 488250) (-2051 . 488144) (-2052 . 487937) (-2053 . 487828) (-2054 . 487687) (-2055 . 487507) (-2056 . 487440) (-2057 . 487300) (-2058 . 487234) (-2059 . 487029) (-2060 . 486835) (-2061 . 486753) (-2062 . 486655) (-2063 . 486450) (-2064 . 486300) (-2065 . 486187) (-2066 . 486134) (-2067 . 485853) (-2068 . 485704) (-2069 . 485555) (-2070 . 485407) (-2071 . 485252) (-2072 . 485196) (-2073 . 483343) (-2074 . 483208) (-2075 . 483094) (-2076 . 482990) (-2077 . 482747) (-2078 . 481943) (-2079 . 481820) (-2080 . 481716) (-2081 . 481618) (-2082 . 481526) (-2083 . 481351) (-2084 . 481202) (-2085 . 480069) (-2086 . 480035) (-2087 . 479983) (-2088 . 479778) (-2089 . 479695) (-2090 . 479610) (-2091 . 479535) (-2092 . 479419) (-2093 . 479391) (-2094 . 479130) (-2095 . 478963) (-2096 . 478910) (-2097 . 478825) (-2098 . 478759) (-2099 . 478646) (-2100 . 478468) (-2101 . 478383) (-2102 . 478244) (-2103 . 478046) (-2104 . 477908) (-2105 . 477738) (-2106 . 477653) (-2107 . 477587) (-2108 . 477352) (-2109 . 477195) (-2110 . 477115) (-2111 . 477043) (-2112 . 476889) (-2113 . 476804) (-2114 . 476638) (-2115 . 476586) (-2116 . 476445) (-2117 . 476323) (-2118 . 476232) (-2119 . 475995) (-2120 . 475867) (-2121 . 474685) (-2122 . 474600) (-2123 . 474507) (-2124 . 474405) (-2125 . 473748) (-2126 . 473658) (-2127 . 473605) (-2128 . 473548) (-2129 . 473463) (-2130 . 473067) (-2131 . 472701) (-2132 . 472667) (-2133 . 472582) (-2134 . 472359) (-2135 . 472291) (-2136 . 472176) (-2137 . 471981) (-2138 . 471929) (-2139 . 471844) (-2140 . 471766) (-2141 . 471696) (-2142 . 471422) (-2143 . 471337) (-2144 . 471272) (-2145 . 471187) (-2146 . 471091) (-2147 . 470976) (-2148 . 470891) (-2149 . 470810) (-2150 . 470558) (-2151 . 470404) (-2152 . 470319) (-2153 . 469842) (-2154 . 469565) (-2155 . 469510) (-2156 . 469289) (-2157 . 469204) (-2158 . 469120) (-2159 . 468957) (-2160 . 468884) (-2161 . 468797) (-2162 . 468745) (-2163 . 468512) (-2164 . 468274) (-2165 . 468189) (-2166 . 468094) (-2167 . 467924) (-2168 . 467781) (-2169 . 467681) (-2170 . 467650) (-2171 . 467565) (-2172 . 467413) (-2173 . 467281) (-2174 . 466147) (-2175 . 465983) (-2176 . 465912) (-2177 . 465668) (-2178 . 465536) (-2179 . 465436) (-2180 . 464794) (-2181 . 464690) (-2182 . 464637) (-2183 . 464606) (-2184 . 464403) (-2185 . 464253) (-2186 . 464175) (-2187 . 464061) (-2188 . 463930) (-2189 . 463836) (-2190 . 463748) (-2191 . 463634) (-2192 . 463600) (-2193 . 463518) (-2194 . 462984) (-2195 . 462581) (-2196 . 462424) (-2197 . 462201) (-2198 . 462077) (-2199 . 462025) (-2200 . 461846) (-2201 . 461623) (-2202 . 461548) (-2203 . 461457) (-2204 . 461343) (-2205 . 461177) (-2206 . 460700) (-2207 . 460579) (-2208 . 460505) (-2209 . 459940) (-2210 . 459844) (-2211 . 459545) (-2212 . 459517) (-2213 . 459303) (-2214 . 459220) (-2215 . 459148) (-2216 . 458725) (-2217 . 458574) (-2218 . 458219) (-2219 . 458117) (-2220 . 457927) (-2221 . 457345) (-2222 . 457271) (-2223 . 456953) (-2224 . 456855) (-2225 . 456448) (-2226 . 456136) (-2227 . 456066) (-2228 . 456011) (-2229 . 455949) (-2230 . 455876) (-2231 . 455725) (-2232 . 455676) (-2233 . 455574) (-2234 . 455495) (-2235 . 455395) (-2236 . 455312) (-2237 . 454980) (-2238 . 454883) (-2239 . 454567) (-2240 . 454506) (-2241 . 454354) (-2242 . 454063) (-2243 . 453992) (-2244 . 453874) (-2245 . 453746) (-2246 . 453656) (-2247 . 453418) (-2248 . 453282) (-2249 . 453187) (-2250 . 453005) (-2251 . 452880) (-2252 . 452795) (-2253 . 452739) (-2254 . 452502) (-2255 . 452431) (-2256 . 451720) (-2257 . 450991) (-2258 . 450839) (-2259 . 450787) (-2260 . 450706) (-2261 . 450458) (-2262 . 450067) (-2263 . 450017) (-2264 . 449543) (-2265 . 449443) (-2266 . 449249) (-2267 . 449190) (-2268 . 449131) (-2269 . 449035) (-2270 . 448961) (-2271 . 448887) (-2272 . 448272) (-2273 . 448213) (-2274 . 448104) (-2275 . 447966) (-2276 . 447914) (-2277 . 447641) (-2278 . 447328) (-2279 . 447177) (-2280 . 447096) (-2281 . 446771) (-2282 . 446456) (-2283 . 446357) (-2284 . 446205) (-2285 . 445761) (-2286 . 445294) (-2287 . 445210) (-2288 . 445136) (-2289 . 445006) (-2290 . 444662) (-2291 . 444599) (-2292 . 444510) (-2293 . 444457) (-2294 . 444287) (-2295 . 444196) (-2296 . 443954) (-2297 . 443331) (-2298 . 443173) (-2299 . 443087) (-2300 . 443014) (-2301 . 442941) (-2302 . 442824) (-2303 . 442740) (-2304 . 442604) (-2305 . 442522) (-2306 . 442233) (-2307 . 442137) (-2308 . 442077) (-2309 . 441915) (-2310 . 441811) (-2311 . 441564) (-2312 . 440997) (-2313 . 440969) (-2314 . 440888) (-2315 . 440815) (-2316 . 440557) (-2317 . 440504) (-2318 . 440402) (-2319 . 440169) (-2320 . 440025) (-2321 . 439877) (-2322 . 439690) (-2323 . 439575) (-2324 . 439303) (-2325 . 439238) (-2326 . 439118) (-2327 . 439064) (-2328 . 438981) (-2329 . 438872) (-2330 . 438631) (-2331 . 438385) (-2332 . 438252) (-2333 . 438052) (-2334 . 438000) (-2335 . 437891) (-2336 . 437806) (-2337 . 437308) (-2338 . 437085) (-2339 . 436931) (-2340 . 436832) (-2341 . 436674) (-2342 . 436508) (-2343 . 436440) (-2344 . 436277) (-2345 . 436159) (-2346 . 436059) (-2347 . 436003) (-2348 . 435936) (-2349 . 435734) (-2350 . 435706) (-2351 . 435631) (-2352 . 435230) (-2353 . 435152) (-2354 . 435099) (-2355 . 435000) (-2356 . 434695) (-2357 . 434523) (-2358 . 434284) (-2359 . 434167) (-2360 . 434103) (-2361 . 433897) (-2362 . 433824) (-2363 . 433455) (-2364 . 433308) (-2365 . 433219) (-2366 . 433163) (-2367 . 432881) (-2368 . 432752) (-2369 . 432633) (-2370 . 432485) (-2371 . 432419) (-2372 . 431459) (-2373 . 431304) (-2374 . 430861) (-2375 . 430681) (-2376 . 430525) (-2377 . 430351) (-2378 . 430203) (-2379 . 430129) (-2380 . 430025) (-2381 . 429824) (-2382 . 429726) (-2383 . 429532) (-2384 . 429504) (-2385 . 429400) (-2386 . 429208) (-2387 . 428958) (-2388 . 428885) (-2389 . 428826) (-2390 . 428527) (-2391 . 427888) (-2392 . 427662) (-2393 . 427603) (-2394 . 427283) (-2395 . 427210) (-2396 . 427073) (-2397 . 426937) (-2398 . 426744) (-2399 . 426654) (-2400 . 426536) (-2401 . 426373) (-2402 . 426134) (-2403 . 426053) (-2404 . 425977) (-2405 . 425886) (-2406 . 425768) (-2407 . 425635) (-2408 . 425436) (-2409 . 425110) (-2410 . 424952) (-2411 . 424805) (-2412 . 424705) (-2413 . 424639) (-2414 . 424558) (-2415 . 424444) (-2416 . 424350) (-2417 . 424198) (-2418 . 424132) (-2419 . 423720) (-2420 . 423435) (-2421 . 423357) (-2422 . 423244) (-2423 . 423192) (-2424 . 422907) (-2425 . 422850) (-2426 . 422718) (-2427 . 422352) (-2428 . 422132) (-2429 . 422035) (-2430 . 421983) (-2431 . 421850) (-2432 . 421797) (-2433 . 421530) (-2434 . 421352) (-2435 . 420994) (-2436 . 420791) (-2437 . 420720) (-2438 . 420622) (-2439 . 420515) (-2440 . 420432) (-2441 . 420294) (-2442 . 420239) (-2443 . 420184) (-2444 . 420096) (-2445 . 420030) (-2446 . 419863) (-2447 . 419787) (-2448 . 419593) (-2449 . 419523) (-2450 . 419402) (-2451 . 419049) (-2452 . 418293) (-2453 . 417928) (-2454 . 417770) (-2455 . 417623) (-2456 . 417355) (-2457 . 417070) (-2458 . 416898) (-2459 . 416796) (-2460 . 416692) (-2461 . 416588) (-2462 . 416536) (-2463 . 416443) (-2464 . 416387) (-2465 . 416169) (-2466 . 416040) (-2467 . 415833) (-2468 . 415741) (-2469 . 415421) (-2470 . 415286) (-2471 . 415110) (-2472 . 414963) (-2473 . 414872) (-2474 . 414763) (-2475 . 414566) (-2476 . 414433) (-2477 . 414360) (-2478 . 414297) (-2479 . 414199) (-2480 . 414081) (-2481 . 414000) (-2482 . 413879) (-2483 . 413761) (-2484 . 413708) (-2485 . 413375) (-2486 . 413263) (-2487 . 413145) (-2488 . 413048) (-2489 . 412888) (-2490 . 412645) (-2491 . 412312) (-2492 . 412141) (-2493 . 412030) (-2494 . 411814) (-2495 . 410309) (-2496 . 410167) (-2497 . 410096) (-2498 . 410000) (-2499 . 409849) (-2500 . 409776) (-2501 . 409707) (-2502 . 409565) (-2503 . 409433) (-2504 . 409140) (-2505 . 409006) (-2506 . 408950) (-2507 . 408876) (-2508 . 408812) (-2509 . 408740) (-2510 . 408346) (-2511 . 408261) (-2512 . 408152) (-2513 . 407887) (-2514 . 407837) (-2515 . 407666) (-2516 . 407547) (-2517 . 407451) (-2518 . 407361) (-2519 . 407145) (-2520 . 407053) (-2521 . 406851) (-2522 . 406311) (-2523 . 406260) (-2524 . 406142) (-2525 . 406031) (-2526 . 405833) (-2527 . 405548) (-2528 . 405398) (-2529 . 405315) (-2530 . 405166) (-2531 . 405059) (-2532 . 404387) (-2533 . 403989) (-2534 . 403931) (-2535 . 403849) (-2536 . 403636) (-2537 . 403546) (-2538 . 403440) (-2539 . 403314) (-2540 . 403125) (-2541 . 403072) (-2542 . 402968) (-2543 . 402715) (-2544 . 402687) (-2545 . 402562) (-2546 . 402426) (-2547 . 402370) (-2548 . 402164) (-2549 . 402043) (-2550 . 401865) (-2551 . 400907) (-2552 . 400759) (-2553 . 400659) (-2554 . 400537) (-2555 . 400406) (-2556 . 400332) (-2557 . 400280) (-2558 . 400210) (-2559 . 400151) (-2560 . 399981) (-2561 . 399929) (-2562 . 399753) (-2563 . 399555) (-2564 . 399503) (-2565 . 399472) (-2566 . 399371) (-2567 . 399290) (-2568 . 398990) (-2569 . 398900) (-2570 . 398734) (-2571 . 398651) (-2572 . 398442) (-2573 . 398356) (-2574 . 398304) (-2575 . 398145) (-2576 . 398088) (-2577 . 397976) (-2578 . 397766) (-2579 . 397676) (-2580 . 397624) (-2581 . 397454) (-2582 . 397092) (-2583 . 396943) (-2584 . 396822) (-2585 . 396720) (-2586 . 396582) (-2587 . 396509) (-2588 . 396361) (-2589 . 396302) (-2590 . 396116) (-2591 . 396085) (-2592 . 395931) (-2593 . 395879) (-2594 . 395737) (-2595 . 395631) (-2596 . 393577) (-2597 . 393506) (-2598 . 392987) (-2599 . 392865) (-2600 . 392778) (-2601 . 392712) (-2602 . 392660) (-2603 . 392217) (-2604 . 392133) (-2605 . 390916) (-2606 . 390765) (-2607 . 390506) (-2608 . 390366) (-2609 . 390044) (-2610 . 389968) (-2611 . 389862) (-2612 . 389752) (-2613 . 389677) (-2614 . 389606) (-2615 . 389385) (-2616 . 389242) (-2617 . 389105) (-2618 . 389003) (-2619 . 388969) (-2620 . 388890) (-2621 . 388815) (-2622 . 388675) (-2623 . 388595) (-2624 . 388497) (-2625 . 388345) (-2626 . 386637) (-2627 . 386267) (-2628 . 386065) (-2629 . 385982) (-2630 . 385573) (-2631 . 385479) (-2632 . 385421) (-2633 . 385312) (-2634 . 384992) (-2635 . 384893) (-2636 . 384838) (-2637 . 384747) (-2638 . 384417) (-2639 . 383914) (-2640 . 383770) (-2641 . 383666) (-2642 . 383564) (-2643 . 383443) (-2644 . 383364) (-2645 . 383335) (-2646 . 383195) (-2647 . 383002) (-2648 . 382934) (-2649 . 382713) (-2650 . 382162) (-2651 . 381135) (-2652 . 380982) (-2653 . 380905) (-2654 . 380838) (-2655 . 380767) (-2656 . 380694) (-2657 . 380616) (-2658 . 380523) (-2659 . 380318) (-2660 . 379948) (-2661 . 379875) (-2662 . 379806) (-2663 . 379713) (-2664 . 379590) (-2665 . 379460) (-2666 . 379407) (-2667 . 378909) (-2668 . 378835) (-2669 . 377870) (-2670 . 377796) (-2671 . 377607) (-2672 . 377116) (-2673 . 377022) (-2674 . 376619) (-2675 . 376500) (-2676 . 376040) (-2677 . 375736) (-2678 . 375661) (-2679 . 374473) (-2680 . 374355) (-2681 . 374124) (-2682 . 374033) (-2683 . 373958) (-2684 . 373839) (-2685 . 373707) (-2686 . 373626) (-2687 . 373391) (-2688 . 373271) (-2689 . 373008) (-2690 . 372803) (-2691 . 372440) (-2692 . 372365) (-2693 . 372060) (-2694 . 371780) (-2695 . 371709) (-2696 . 371297) (-2697 . 371244) (-2698 . 371182) (-2699 . 371063) (-2700 . 371014) (-2701 . 369907) (-2702 . 369705) (-2703 . 369677) (-2704 . 369542) (-2705 . 369384) (-2706 . 368884) (-2707 . 368513) (-2708 . 367939) (-2709 . 367795) (-2710 . 367533) (-2711 . 367356) (-2712 . 367215) (-2713 . 366919) (-2714 . 366826) (-2715 . 365097) (-2716 . 365047) (-2717 . 364955) (-2718 . 364844) (-2719 . 364771) (-2720 . 364688) (-2721 . 364266) (-2722 . 364152) (-2723 . 364052) (-2724 . 363979) (-2725 . 363715) (-2726 . 363450) (-2727 . 363325) (-2728 . 363117) (-2729 . 362938) (-2730 . 362811) (-2731 . 362745) (-2732 . 362537) (-2733 . 362219) (-2734 . 361986) (-2735 . 361893) (-2736 . 361859) (-2737 . 361734) (-2738 . 361637) (-2739 . 361530) (-2740 . 361426) (-2741 . 361263) (-2742 . 361211) (-2743 . 361109) (-2744 . 360997) (-2745 . 360804) (-2746 . 360432) (-2747 . 360358) (-2748 . 360210) (-2749 . 360109) (-2750 . 359961) (-2751 . 359774) (-2752 . 359355) (-2753 . 359206) (-2754 . 358913) (-2755 . 358762) (-2756 . 358644) (-2757 . 358537) (-2758 . 358467) (-2759 . 358109) (-2760 . 358037) (-2761 . 357709) (-2762 . 357387) (-2763 . 357270) (-2764 . 357166) (-2765 . 357038) (-2766 . 356957) (-2767 . 356809) (-2768 . 356718) (-2769 . 356635) (-2770 . 356509) (-2771 . 356354) (-2772 . 356206) (-2773 . 355898) (-2774 . 355628) (-2775 . 355269) (-2776 . 355119) (-2777 . 354973) (-2778 . 346112) (-2779 . 346041) (-2780 . 345889) (-2781 . 345834) (-2782 . 345684) (-2783 . 345583) (-2784 . 345479) (-2785 . 345387) (-2786 . 345330) (-2787 . 345273) (-2788 . 344972) (-2789 . 344907) (-2790 . 344849) (-2791 . 344015) (-2792 . 343963) (-2793 . 343932) (-2794 . 343780) (-2795 . 343718) (-2796 . 343589) (-2797 . 343091) (-2798 . 342951) (-2799 . 342749) (-2800 . 342624) (-2801 . 342283) (-2802 . 342105) (-2803 . 342007) (-2804 . 341904) (-2805 . 341722) (-2806 . 341649) (-2807 . 341458) (-2808 . 341354) (-2809 . 341280) (-2810 . 341060) (-2811 . 340958) (-2812 . 340179) (-2813 . 340127) (-2814 . 339782) (-2815 . 339647) (-2816 . 339524) (-2817 . 339434) (-2818 . 339406) (-2819 . 339354) (-2820 . 339269) (-2821 . 339180) (-2822 . 339109) (-2823 . 339028) (-2824 . 338767) (-2825 . 338682) (-2826 . 338565) (-2827 . 338429) (-2828 . 338298) (-2829 . 338232) (-2830 . 338147) (-2831 . 338057) (-2832 . 337914) (-2833 . 337774) (-2834 . 337685) (-2835 . 337600) (-2836 . 337537) (-2837 . 337331) (-2838 . 337179) (-2839 . 336732) (-2840 . 336637) (-2841 . 336505) (-2842 . 335668) (-2843 . 335480) (-2844 . 335291) (-2845 . 335160) (-2846 . 335028) (-2847 . 334976) (-2848 . 334865) (-2849 . 334706) (-2850 . 334621) (-2851 . 334555) (-2852 . 334462) (-2853 . 334391) (-2854 . 334306) (-2855 . 334253) (-2856 . 334177) (-2857 . 333844) (-2858 . 333759) (-2859 . 333704) (-2860 . 333633) (-2861 . 333222) (-2862 . 333141) (-2863 . 333056) (-2864 . 332983) (-2865 . 332952) (-2866 . 332878) (-2867 . 332793) (-2868 . 332742) (-2869 . 332714) (-2870 . 331962) (-2871 . 331877) (-2872 . 331811) (-2873 . 331759) (-2874 . 331674) (-2875 . 331586) (-2876 . 331528) (-2877 . 331476) (-2878 . 331326) (-2879 . 331235) (-2880 . 331133) (-2881 . 331081) (-2882 . 331012) (-2883 . 330921) (-2884 . 330724) (-2885 . 330454) (-2886 . 330299) (-2887 . 330205) (-2888 . 330126) (-2889 . 329974) (-2890 . 329352) (-2891 . 329300) (-2892 . 329167) (-2893 . 329004) (-2894 . 328739) (-2895 . 328615) (-2896 . 328296) (-2897 . 328188) (-2898 . 328132) (-2899 . 327390) (-2900 . 327288) (-2901 . 327236) (-2902 . 327102) (-2903 . 326890) (-2904 . 326790) (-2905 . 326630) (-2906 . 326314) (-2907 . 326286) (-2908 . 326176) (-2909 . 326038) (-2910 . 325816) (-2911 . 325709) (-2912 . 325466) (-2913 . 325388) (-2914 . 325281) (-2915 . 325247) (-2916 . 325159) (-2917 . 324918) (-2918 . 324350) (-2919 . 324269) (-2920 . 324218) (-2921 . 324093) (-2922 . 323161) (-2923 . 323092) (-2924 . 322970) (-2925 . 322885) (-2926 . 322819) (-2927 . 322546) (-2928 . 322473) (-2929 . 322203) (-2930 . 322077) (-2931 . 322024) (-2932 . 321926) (-2933 . 321800) (-2934 . 321674) (-2935 . 321596) (-2936 . 321508) (-2937 . 321331) (-2938 . 321253) (-2939 . 320961) (-2940 . 320783) (-2941 . 320730) (-2942 . 319701) (-2943 . 319541) (-2944 . 319475) (-2945 . 319381) (-2946 . 318711) (-2947 . 318636) (-2948 . 318100) (-2949 . 317449) (-2950 . 317396) (-2951 . 317343) (-2952 . 317104) (-2953 . 316939) (-2954 . 316868) (-2955 . 316737) (-2956 . 316656) (-2957 . 316511) (-2958 . 316436) (-2959 . 316265) (-2960 . 316125) (-2961 . 316067) (-2962 . 315954) (-2963 . 315902) (-2964 . 315844) (-2965 . 315580) (-2966 . 315432) (-2967 . 315328) (-2968 . 315073) (-2969 . 314840) (-2970 . 314750) (-2971 . 314241) (-2972 . 313891) (-2973 . 311142) (-2974 . 311090) (-2975 . 310984) (-2976 . 310903) (-2977 . 310740) (-2978 . 310641) (-2979 . 310575) (-2980 . 310477) (-2981 . 310244) (-2982 . 310167) (-2983 . 310091) (-2984 . 309550) (-2985 . 309280) (-2986 . 309091) (-2987 . 309021) (-2988 . 308961) (-2989 . 308706) (-2990 . 308629) (-2991 . 308546) (-2992 . 308353) (-2993 . 308185) (-2994 . 308119) (-2995 . 308057) (-2996 . 307952) (-2997 . 307883) (-2998 . 307726) (-2999 . 307650) (-3000 . 307265) (-3001 . 307100) (-3002 . 306385) (-3003 . 306297) (-3004 . 306215) (-3005 . 306141) (-3006 . 306080) (-3007 . 305665) (-3008 . 305569) (-3009 . 305240) (-3010 . 304893) (-3011 . 304732) (-3012 . 304529) (-3013 . 304405) (-3014 . 304349) (-3015 . 304041) (-3016 . 303847) (-3017 . 303544) (-3018 . 303392) (-3019 . 303309) (-3020 . 302360) (-3021 . 302294) (-3022 . 302190) (-3023 . 302094) (-3024 . 302026) (-3025 . 301810) (-3026 . 301739) (-3027 . 301281) (-3028 . 300772) (-3029 . 300659) (-3030 . 300607) (-3031 . 300491) (-3032 . 300400) (-3033 . 300347) (-3034 . 300251) (-3035 . 300162) (-3036 . 300026) (-3037 . 299943) (-3038 . 299852) (-3039 . 299763) (-3040 . 299609) (-3041 . 299386) (-3042 . 299252) (-3043 . 299150) (-3044 . 299079) (-3045 . 298994) (-3046 . 298884) (-3047 . 298816) (-3048 . 298701) (-3049 . 298167) (-3050 . 298118) (-3051 . 298052) (-3052 . 297930) (-3053 . 297855) (-3054 . 297497) (-3055 . 297402) (-3056 . 296766) (-3057 . 296685) (-3058 . 296657) (-3059 . 296576) (-3060 . 296548) (-3061 . 296348) (-3062 . 296314) (-3063 . 296244) (-3064 . 296156) (-3065 . 296127) (-3066 . 295803) (-3067 . 295720) (-3068 . 295692) (-3069 . 295463) (-3070 . 295254) (-3071 . 295199) (-3072 . 295017) (-3073 . 294920) (-3074 . 294848) (-3075 . 294741) (-3076 . 294506) (-3077 . 294413) (-3078 . 294352) (-3079 . 294292) (-3080 . 293985) (-3081 . 293910) (-3082 . 293793) (-3083 . 293722) (-3084 . 293525) (-3085 . 293469) (-3086 . 293369) (-3087 . 293019) (-3088 . 292856) (-3089 . 292528) (-3090 . 292340) (-3091 . 291974) (-3092 . 291908) (-3093 . 290229) (-3094 . 290069) (-3095 . 289745) (-3096 . 289630) (-3097 . 289356) (-3098 . 289270) (-3099 . 289204) (-3100 . 289065) (-3101 . 288877) (-3102 . 288773) (-3103 . 288534) (-3104 . 288396) (-3105 . 288323) (-3106 . 288240) (-3107 . 288191) (-3108 . 288121) (-3109 . 287486) (-3110 . 287419) (-3111 . 287265) (-3112 . 287114) (-3113 . 287046) (-3114 . 286962) (-3115 . 286823) (-3116 . 286732) (-3117 . 286680) (-3118 . 286570) (-3119 . 286418) (-3120 . 286074) (-3121 . 285395) (-3122 . 285085) (-3123 . 284975) (-3124 . 284883) (-3125 . 284817) (-3126 . 284367) (-3127 . 284192) (-3128 . 283879) (-3129 . 283762) (-3130 . 283679) (-3131 . 283599) (-3132 . 283493) (-3133 . 283073) (-3134 . 283008) (-3135 . 282705) (-3136 . 282406) (-3137 . 282224) (-3138 . 282056) (-3139 . 281976) (-3140 . 281895) (-3141 . 281682) (-3142 . 281110) (-3143 . 280996) (-3144 . 280782) (-3145 . 280680) (-3146 . 280523) (-3147 . 280472) (-3148 . 280232) (-3149 . 280180) (-3150 . 276339) (-3151 . 276271) (-3152 . 276219) (-3153 . 276153) (-3154 . 276062) (-3155 . 275810) (-3156 . 275734) (-3157 . 275653) (-3158 . 275523) (-3159 . 275175) (-3160 . 275102) (-3161 . 274920) (-3162 . 273789) (-3163 . 273711) (-3164 . 273560) (-3165 . 273508) (-3166 . 273342) (-3167 . 273230) (-3168 . 273163) (-3169 . 271024) (-3170 . 270953) (-3171 . 270900) (-3172 . 270709) (-3173 . 270612) (-3174 . 270560) (-3175 . 270480) (-3176 . 268261) (-3177 . 268217) (-3178 . 268049) (-3179 . 267932) (-3180 . 267796) (-3181 . 267713) (-3182 . 267607) (-3183 . 267533) (-3184 . 267240) (-3185 . 267203) (-3186 . 267105) (-3187 . 266968) (-3188 . 260426) (-3189 . 260088) (-3190 . 260018) (-3191 . 259941) (-3192 . 259827) (-3193 . 259726) (-3194 . 259640) (-3195 . 255836) (-3196 . 255745) (-3197 . 255689) (-3198 . 255573) (-3199 . 255491) (-3200 . 255372) (-3201 . 255282) (-3202 . 255216) (-3203 . 255129) (-3204 . 255078) (-3205 . 254027) (-3206 . 253739) (-3207 . 253467) (-3208 . 253146) (-3209 . 253028) (-3210 . 252903) (-3211 . 252769) (-3212 . 252623) (-3213 . 252305) (-3214 . 252132) (-3215 . 252036) (-3216 . 251519) (-3217 . 251460) (-3218 . 251308) (-3219 . 251239) (-3220 . 250960) (-3221 . 250445) (-3222 . 250347) (-3223 . 250230) (-3224 . 250157) (-3225 . 250129) (-3226 . 250027) (-3227 . 249847) (-3228 . 249713) (-3229 . 249679) (-3230 . 249591) (-3231 . 249475) (-3232 . 249351) (-3233 . 249249) (-3234 . 249145) (-3235 . 249079) (-3236 . 248840) (-3237 . 247835) (-3238 . 247739) (-3239 . 247541) (-3240 . 247404) (-3241 . 246527) (-3242 . 246452) (-3243 . 246283) (-3244 . 246193) (-3245 . 246165) (-3246 . 246011) (-3247 . 245875) (-3248 . 245642) (-3249 . 245568) (-3250 . 245493) (-3251 . 245372) (-3252 . 245320) (-3253 . 245220) (-3254 . 245131) (-3255 . 245065) (-3256 . 244981) (-3257 . 244879) (-3258 . 244727) (-3259 . 244674) (-3260 . 244505) (-3261 . 244427) (** . 241469) (-3263 . 241376) (-3264 . 241137) (-3265 . 241046) (-3266 . 240856) (-3267 . 240705) (-3268 . 240605) (-3269 . 240507) (-3270 . 240303) (-3271 . 240201) (-3272 . 240014) (-3273 . 239903) (-3274 . 239812) (-3275 . 239740) (-3276 . 239252) (-3277 . 239181) (-3278 . 239109) (-3279 . 238783) (-3280 . 238710) (-3281 . 238561) (-3282 . 238501) (-3283 . 238442) (-3284 . 238272) (-3285 . 238153) (-3286 . 238009) (-3287 . 237927) (-3288 . 237854) (-3289 . 237697) (-3290 . 237531) (-3291 . 237442) (-3292 . 237156) (-3293 . 237071) (-3294 . 236988) (-3295 . 236825) (-3296 . 236711) (-3297 . 236495) (-3298 . 236260) (-3299 . 236058) (-3300 . 235969) (-3301 . 235877) (-3302 . 235729) (-3303 . 235541) (-3304 . 235275) (-3305 . 235185) (-3306 . 235106) (-3307 . 234984) (-3308 . 234917) (-3309 . 234853) (-3310 . 234798) (-3311 . 234724) (-3312 . 234599) (-3313 . 234517) (-3314 . 234023) (-3315 . 233524) (-3316 . 233311) (-3317 . 232767) (-3318 . 232642) (-3319 . 232485) (-3320 . 232312) (-3321 . 232116) (-3322 . 232049) (-3323 . 231880) (-3324 . 231671) (-3325 . 231615) (-3326 . 231228) (-3327 . 231113) (-3328 . 230810) (-3329 . 230461) (-3330 . 230378) (-3331 . 230205) (-3332 . 229930) (-3333 . 229856) (-3334 . 229797) (-3335 . 229746) (-3336 . 229412) (-3337 . 229322) (-3338 . 229239) (-3339 . 228807) (-3340 . 228687) (-3341 . 228448) (-3342 . 228396) (-3343 . 228298) (-3344 . 227928) (-3345 . 227819) (-3346 . 227748) (-3347 . 227610) (-3348 . 227523) (-3349 . 227448) (-3350 . 227335) (-3351 . 227250) (-3352 . 227160) (-3353 . 227072) (-3354 . 227007) (-3355 . 226889) (-3356 . 226760) (-3357 . 226558) (-3358 . 226260) (-3359 . 226205) (-3360 . 225867) (-3361 . 225681) (-3362 . 225653) (-3363 . 225622) (-3364 . 225423) (-3365 . 225340) (-3366 . 225236) (-3367 . 224841) (-3368 . 224749) (-3369 . 224676) (-3370 . 224494) (-3371 . 224419) (-3372 . 224155) (-3373 . 223639) (-3374 . 223250) (-3375 . 223158) (-3376 . 223056) (-3377 . 222956) (-3378 . 222904) (-3379 . 222748) (-3380 . 222581) (-3381 . 222474) (-3382 . 222320) (-3383 . 222222) (-3384 . 222151) (-3385 . 222054) (-3386 . 221980) (-3387 . 221860) (-3388 . 221773) (-3389 . 221673) (-3390 . 221590) (-3391 . 221431) (-3392 . 221272) (-3393 . 221190) (-3394 . 221088) (-3395 . 221019) (-3396 . 220953) (-3397 . 220870) (-3398 . 220680) (-3399 . 220491) (-3400 . 220393) (-3401 . 220322) (-3402 . 220120) (-3403 . 220020) (-3404 . 219937) (-3405 . 219837) (-3406 . 219763) (-3407 . 219671) (-3408 . 219642) (-3409 . 219471) (-3410 . 219338) (-3411 . 219304) (-3412 . 218991) (-3413 . 218912) (-3414 . 218803) (-3415 . 218711) (-3416 . 218630) (-3417 . 218475) (-3418 . 218317) (-3419 . 218110) (-3420 . 217204) (-3421 . 217034) (-3422 . 216604) (-3423 . 216365) (-3424 . 216113) (-3425 . 215965) (-3426 . 215831) (-3427 . 215721) (-3428 . 215608) (-3429 . 215571) (-3430 . 215172) (-3431 . 215090) (-3432 . 214997) (-3433 . 214884) (-3434 . 214624) (-3435 . 214491) (-3436 . 214423) (-3437 . 214389) (-3438 . 214334) (-3439 . 214232) (-3440 . 214144) (-3441 . 213947) (-3442 . 213876) (-3443 . 213748) (-3444 . 213674) (-3445 . 213542) (-3446 . 213441) (-3447 . 213391) (-3448 . 213067) (-3449 . 213035) (-3450 . 212986) (-3451 . 212933) (-3452 . 212233) (-3453 . 212097) (-3454 . 212005) (-3455 . 211839) (-3456 . 211757) (-3457 . 211645) (-3458 . 211586) (-3459 . 211505) (-3460 . 211451) (-3461 . 211143) (-3462 . 211046) (-3463 . 210592) (-3464 . 210471) (-3465 . 210398) (-3466 . 210321) (-3467 . 210150) (-3468 . 210079) (-3469 . 209995) (-3470 . 209921) (-3471 . 209656) (-3472 . 209469) (-3473 . 208650) (-3474 . 208561) (-3475 . 208428) (-3476 . 208168) (-3477 . 208078) (-3478 . 207946) (-3479 . 207824) (-3480 . 207796) (-3481 . 207729) (-3482 . 207596) (-3483 . 203858) (-3484 . 203452) (-3485 . 203246) (-3486 . 203158) (-3487 . 202958) (-3488 . 202903) (-3489 . 202813) (-3490 . 197966) (-3491 . 197733) (-3492 . 194794) (-3493 . 194752) (-3494 . 194422) (-3495 . 194277) (-3496 . 193994) (-3497 . 193890) (-3498 . 193726) (-3499 . 193636) (-3500 . 193524) (-3501 . 193228) (-3502 . 193124) (-3503 . 193042) (-3504 . 192672) (-3505 . 192597) (-3506 . 192291) (-3507 . 192212) (-3508 . 191650) (-3509 . 191522) (-3510 . 191449) (-3511 . 191315) (-3512 . 190935) (-3513 . 190851) (-3514 . 190069) (-3515 . 189974) (-3516 . 189737) (-3517 . 189438) (-3518 . 188766) (-3519 . 188669) (-3520 . 188453) (-3521 . 188315) (-3522 . 188110) (-3523 . 187504) (-3524 . 187436) (-3525 . 187348) (-3526 . 187294) (-3527 . 187164) (-3528 . 186979) (-3529 . 186897) (-3530 . 186822) (-3531 . 186651) (-3532 . 186549) (-3533 . 185988) (-3534 . 185890) (-3535 . 185837) (-3536 . 185693) (-3537 . 185499) (-3538 . 185339) (-3539 . 185111) (-3540 . 184956) (-3541 . 184852) (-3542 . 184576) (-3543 . 184486) (-3544 . 184458) (-3545 . 184306) (-3546 . 184235) (-3547 . 180798) (-3548 . 180674) (-3549 . 180057) (-3550 . 179513) (-3551 . 179183) (-3552 . 178346) (-3553 . 178265) (-3554 . 178192) (-3555 . 178015) (-3556 . 177932) (-3557 . 177661) (-3558 . 177293) (-3559 . 177146) (-3560 . 176897) (-3561 . 176845) (-3562 . 176767) (-3563 . 176692) (-3564 . 176384) (-3565 . 176316) (-3566 . 176190) (-3567 . 176108) (-3568 . 176053) (-3569 . 175926) (-3570 . 175724) (-3571 . 175654) (-3572 . 175276) (-3573 . 175059) (-3574 . 174922) (-3575 . 174614) (-3576 . 174521) (-3577 . 174424) (-3578 . 174348) (-3579 . 174164) (-3580 . 174035) (-3581 . 173731) (-3582 . 173562) (-3583 . 173272) (-3584 . 172479) (-3585 . 172171) (-3586 . 172028) (-3587 . 171837) (-3588 . 171286) (-3589 . 171107) (-3590 . 171036) (-3591 . 170628) (-3592 . 170328) (-3593 . 170226) (-3594 . 170153) (-3595 . 169911) (-3596 . 169804) (-3597 . 169677) (-3598 . 169624) (-3599 . 169550) (-3600 . 169497) (-3601 . 169441) (-3602 . 169392) (-3603 . 169087) (-3604 . 169013) (-3605 . 168935) (-3606 . 168901) (-3607 . 168700) (-3608 . 168461) (-3609 . 168395) (-3610 . 168303) (-3611 . 168247) (-3612 . 168162) (-3613 . 167459) (-3614 . 167069) (-3615 . 166951) (-3616 . 166847) (-3617 . 166747) (-3618 . 166534) (-3619 . 166437) (-3620 . 166347) (-3621 . 166151) (-3622 . 166031) (-3623 . 165954) (-3624 . 165801) (-3625 . 165618) (-3626 . 165466) (-3627 . 165376) (-3628 . 165327) (-3629 . 164984) (-3630 . 164786) (-3631 . 164512) (-3632 . 164460) (-3633 . 164411) (-3634 . 163807) (-3635 . 163602) (-3636 . 163444) (-3637 . 163351) (-3638 . 163255) (-3639 . 162768) (-3640 . 162690) (-3641 . 162541) (-3642 . 162356) (-3643 . 162282) (-3644 . 162175) (-3645 . 161963) (-3646 . 161860) (-3647 . 161804) (-3648 . 161748) (-3649 . 161055) (-3650 . 160941) (-3651 . 160816) (-3652 . 160535) (-3653 . 160436) (-3654 . 160364) (-3655 . 160148) (-3656 . 159996) (-3657 . 159894) (-3658 . 159810) (-3659 . 159782) (-3660 . 159418) (-3661 . 159278) (-3662 . 159126) (-3663 . 159043) (-3664 . 157994) (-3665 . 157632) (-3666 . 157516) (-3667 . 157488) (-3668 . 157405) (-3669 . 157312) (-3670 . 157152) (-3671 . 156381) (-3672 . 156259) (-3673 . 156201) (-3674 . 156099) (-3675 . 155947) (-3676 . 155527) (-3677 . 155368) (-3678 . 155294) (-3679 . 153701) (-3680 . 153530) (-3681 . 153246) (-3682 . 153196) (-3683 . 153024) (-3684 . 152937) (-3685 . 152854) (-3686 . 152682) (-3687 . 152600) (-3688 . 152532) (-3689 . 151348) (-3690 . 151259) (-3691 . 129924) (-3692 . 129896) (-3693 . 129844) (-3694 . 129033) (-3695 . 128926) (-3696 . 128790) (-3697 . 128557) (-3698 . 128341) (-3699 . 125803) (-3700 . 125752) (-3701 . 125674) (-3702 . 125594) (-3703 . 125126) (-3704 . 124367) (-3705 . 123995) (-3706 . 123736) (-3707 . 123563) (-3708 . 123368) (-3709 . 123306) (-3710 . 123144) (-3711 . 122755) (-3712 . 122659) (-3713 . 122431) (-3714 . 122379) (-3715 . 121745) (-3716 . 121207) (-3717 . 119172) (-3718 . 118039) (-3719 . 117806) (-3720 . 117729) (-3721 . 117640) (-3722 . 117510) (-3723 . 117401) (-3724 . 117339) (-3725 . 117103) (-3726 . 116959) (-3727 . 116183) (-3728 . 114868) (-3729 . 114677) (-3730 . 114572) (-3731 . 114413) (-3732 . 114337) (-3733 . 113860) (-3734 . 113721) (-3735 . 113304) (-3736 . 113250) (-3737 . 113129) (-3738 . 113009) (-3739 . 107819) (-3740 . 107693) (-3741 . 107541) (-3742 . 107423) (-3743 . 107046) (-3744 . 106850) (-3745 . 106751) (-3746 . 106634) (-3747 . 106500) (-3748 . 106469) (-3749 . 106030) (-3750 . 105999) (-3751 . 105735) (-3752 . 105185) (-3753 . 105023) (-3754 . 103786) (-3755 . 103451) (-3756 . 103282) (-3757 . 103212) (-3758 . 103123) (-3759 . 103045) (-3760 . 102780) (-3761 . 102611) (-3762 . 102312) (-3763 . 102166) (-3764 . 101849) (-3765 . 97695) (-3766 . 97135) (-3767 . 96977) (-3768 . 96891) (-3769 . 96783) (-3770 . 96505) (-3771 . 96396) (-3772 . 96336) (-3773 . 96179) (-3774 . 95623) (-3775 . 95589) (-3776 . 95390) (-3777 . 95307) (-3778 . 95221) (-3779 . 95153) (-3780 . 94951) (-3781 . 94445) (-3782 . 94374) (-3783 . 94325) (-3784 . 94270) (-3785 . 94055) (-3786 . 93989) (-3787 . 92452) (-3788 . 92351) (-3789 . 92248) (-3790 . 91119) (-3791 . 90965) (-3792 . 90913) (-3793 . 90860) (-3794 . 90049) (-3795 . 90000) (-3796 . 89044) (-3797 . 87916) (-3798 . 87656) (-3799 . 87597) (-3800 . 86387) (-3801 . 86237) (-3802 . 86119) (-3803 . 84032) (-3804 . 83930) (-3805 . 83585) (-3806 . 83489) (-3807 . 83316) (-3808 . 83164) (-3809 . 81025) (-3810 . 80770) (-3811 . 79905) (-3812 . 79826) (-3813 . 79483) (-3814 . 79359) (-3815 . 79221) (-3816 . 79123) (-3817 . 79030) (-3818 . 77306) (-3819 . 76501) (-3820 . 76369) (-3821 . 76314) (-3822 . 74893) (-3823 . 74819) (-3824 . 74747) (-3825 . 74657) (-3826 . 73203) (-3827 . 73144) (-3828 . 73062) (-3829 . 72849) (-3830 . 72709) (-3831 . 72655) (-3832 . 72484) (-3833 . 71778) (-3834 . 71711) (-3835 . 71683) (-3836 . 71593) (-3837 . 71438) (-3838 . 71360) (-3839 . 71305) (-3840 . 71039) (-3841 . 70914) (-3842 . 70839) (-3843 . 70620) (-3844 . 70298) (-3845 . 69697) (-3846 . 69626) (-3847 . 69527) (-3848 . 69457) (-3849 . 69404) (-3850 . 68299) (-3851 . 68215) (-3852 . 68091) (-3853 . 67991) (-3854 . 67882) (-3855 . 67776) (-3856 . 67642) (-3857 . 67499) (-3858 . 66429) (-3859 . 66325) (-3860 . 66193) (-3861 . 65897) (-3862 . 65822) (-3863 . 65730) (-3864 . 65655) (-3865 . 65372) (-3866 . 65291) (-3867 . 65126) (-3868 . 64885) (-3869 . 64790) (-3870 . 64737) (-3871 . 64648) (-3872 . 64540) (-3873 . 64461) (-3874 . 64309) (-3875 . 63919) (-3876 . 63545) (-3877 . 63467) (-3878 . 63329) (-3879 . 63273) (-3880 . 63206) (-3881 . 63054) (-3882 . 62688) (-3883 . 62556) (-3884 . 61744) (-3885 . 61606) (-3886 . 60649) (-3887 . 60612) (-3888 . 60532) (-3889 . 60384) (-3890 . 60279) (-3891 . 60030) (-3892 . 59607) (-3893 . 59483) (-3894 . 59377) (-3895 . 59311) (-3896 . 59239) (-3897 . 58842) (-3898 . 58784) (-3899 . 58613) (-3900 . 58478) (-3901 . 58196) (-3902 . 58084) (-3903 . 57969) (-3904 . 57917) (-3905 . 57800) (-3906 . 57666) (-3907 . 57508) (-3908 . 57370) (-3909 . 57342) (-3910 . 57134) (-3911 . 57078) (-3912 . 57005) (-3913 . 56751) (-3914 . 56546) (-3915 . 55219) (-3916 . 55101) (-3917 . 54985) (-3918 . 54904) (-3919 . 54814) (-3920 . 54676) (-3921 . 53839) (-3922 . 53714) (-3923 . 53583) (-3924 . 53445) (-3925 . 53390) (-3926 . 53338) (-3927 . 53203) (-3928 . 53070) (-3929 . 52366) (-3930 . 52214) (-3931 . 52145) (-3932 . 52056) (-3933 . 51352) (-3934 . 50742) (-3935 . 50624) (-3936 . 50497) (-3937 . 49845) (-3938 . 49796) (-3939 . 49715) (-3940 . 49169) (-3941 . 49077) (-3942 . 48975) (-3943 . 48760) (-3944 . 48621) (-3945 . 48075) (-3946 . 47964) (-3947 . 47873) (-3948 . 47605) (-3949 . 47059) (-3950 . 46946) (-3951 . 46882) (-3952 . 46232) (-3953 . 46204) (-3954 . 45799) (-3955 . 45149) (-3956 . 44972) (-3957 . 44844) (-3958 . 44132) (-3959 . 43834) (-3960 . 43523) (-3961 . 42979) (-3962 . 42909) (-3963 . 42753) (-3964 . 42209) (-3965 . 41393) (-3966 . 41322) (-3967 . 40778) (-3968 . 40525) (-3969 . 40284) (-3970 . 39633) (-3971 . 39365) (-3972 . 39256) (-3973 . 39158) (-3974 . 39101) (-3975 . 38450) (-3976 . 38397) (-3977 . 38074) (-3978 . 37423) (-3979 . 36684) (-3980 . 36576) (-3981 . 36031) (-3982 . 35816) (-3983 . 35602) (-3984 . 35057) (-3985 . 34980) (-3986 . 34578) (-3987 . 34003) (-3988 . 33951) (-3989 . 33738) (-3990 . 33664) (-3991 . 33119) (-3992 . 33005) (-3993 . 32949) (-3994 . 32871) (-3995 . 32327) (-3996 . 32251) (-3997 . 32077) (-3998 . 31592) (-3999 . 31048) (-4000 . 30942) (-4001 . 30861) (-4002 . 30408) (-4003 . 29864) (-4004 . 29749) (-4005 . 29642) (-4006 . 29437) (-4007 . 29204) (-4008 . 28660) (-4009 . 27423) (-4010 . 26955) (-4011 . 26800) (-4012 . 26728) (-4013 . 26184) (-4014 . 26069) (-4015 . 26017) (-4016 . 25896) (-4017 . 25844) (-4018 . 25755) (-4019 . 25667) (-4020 . 25519) (-4021 . 25445) (-4022 . 25227) (-4023 . 25174) (-4024 . 25122) (-4025 . 25038) (-4026 . 24855) (-4027 . 24651) (-4028 . 24503) (-4029 . 24427) (-4030 . 24353) (-4031 . 24217) (-4032 . 24143) (-4033 . 23998) (-4034 . 23896) (-4035 . 23819) (-4036 . 23724) (-4037 . 23586) (-4038 . 23423) (-4039 . 23374) (-4040 . 23162) (-4041 . 22983) (-4042 . 22927) (-4043 . 22533) (-4044 . 22431) (-4045 . 22375) (-4046 . 22150) (-4047 . 22077) (-4048 . 21988) (-4049 . 21892) (-4050 . 21784) (-4051 . 21588) (-4052 . 21560) (-4053 . 21489) (-4054 . 21415) (-4055 . 21282) (-4056 . 21226) (-4057 . 21130) (-4058 . 21005) (-4059 . 20953) (-4060 . 20897) (-4061 . 20659) (-4062 . 20460) (-4063 . 19073) (-4064 . 18803) (-4065 . 18650) (-4066 . 18451) (-4067 . 18213) (-4068 . 18119) (-4069 . 18004) (-4070 . 17754) (-4071 . 17602) (-4072 . 17540) (-4073 . 17405) (-4074 . 17335) (-4075 . 17283) (-4076 . 17104) (-4077 . 16759) (-4078 . 16689) (-4079 . 16580) (-4080 . 16435) (-4081 . 15336) (-4082 . 15227) (-4083 . 15102) (-4084 . 14897) (-4085 . 14819) (-4086 . 14738) (-4087 . 14554) (-4088 . 14498) (-4089 . 14389) (-4090 . 14262) (-4091 . 14115) (-4092 . 14025) (-4093 . 13952) (-4094 . 13893) (-4095 . 13841) (-4096 . 13628) (-4097 . 13406) (-4098 . 13354) (-4099 . 13283) (-4100 . 13252) (-4101 . 12579) (-4102 . 12390) (-4103 . 12266) (-4104 . 12117) (-4105 . 11936) (-4106 . 11874) (-4107 . 11711) (-4108 . 11592) (-4109 . 11498) (-4110 . 11344) (-4111 . 11073) (-4112 . 11042) (-4113 . 10848) (-4114 . 9002) (-4115 . 8929) (-4116 . 8678) (-4117 . 8349) (-4118 . 8297) (-4119 . 7475) (-4120 . 7422) (-4121 . 7012) (-4122 . 6750) (-4123 . 6642) (-4124 . 6605) (-4125 . 6505) (-4126 . 6433) (-4127 . 6286) (-4128 . 6105) (-4129 . 5163) (-4130 . 4624) (-4131 . 4489) (-4132 . 4072) (-4133 . 3728) (-4134 . 3694) (-4135 . 3539) (-4136 . 3418) (-4137 . 2368) (-4138 . 1899) (-4139 . 1249) (-4140 . 1197) (-4141 . 977) (-4142 . 815) (-4143 . 734) (-4144 . 600) (-4145 . 521) (-4146 . 274) (-4147 . 30)) \ No newline at end of file
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-493) (-583 (-493)))) (-5 *1 (-109)))))
+(((*1 *2 *1) (-12 (-4 *1 (-729 *2)) (-4 *2 (-156)))))
+(((*1 *2) (-12 (-4 *4 (-156)) (-5 *2 (-107)) (-5 *1 (-336 *3 *4)) (-4 *3 (-337 *4)))) ((*1 *2) (-12 (-4 *1 (-337 *3)) (-4 *3 (-156)) (-5 *2 (-107)))))
+(((*1 *1) (-5 *1 (-128))) ((*1 *1 *1) (-5 *1 (-131))) ((*1 *1 *1) (-4 *1 (-1042))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 (-2 (|:| |den| (-517)) (|:| |gcdnum| (-517))))) (-4 *4 (-1130 (-377 *2))) (-5 *2 (-517)) (-5 *1 (-835 *4 *5)) (-4 *5 (-1130 (-377 *4))))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-583 (-712 *5 (-789 *6)))) (-5 *4 (-107)) (-4 *5 (-421)) (-14 *6 (-583 (-1073))) (-5 *2 (-583 (-1044 *5 (-489 (-789 *6)) (-789 *6) (-712 *5 (-789 *6))))) (-5 *1 (-568 *5 *6)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-282)) (-5 *1 (-761)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-583 *3)) (-4 *3 (-1012 *5 *6 *7 *8)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *8 (-975 *5 *6 *7)) (-5 *2 (-107)) (-5 *1 (-539 *5 *6 *7 *8 *3)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-201 *2)) (-4 *2 (-13 (-333) (-1094))))) ((*1 *1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-333)))) ((*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-843)) (-5 *4 (-349)) (-5 *2 (-1158)) (-5 *1 (-1154)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1054 (-517))) (-5 *1 (-1058 *4)) (-4 *4 (-961)) (-5 *3 (-517)))))
+(((*1 *2 *2) (-12 (-5 *2 (-517)) (-5 *1 (-848)))))
+(((*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1007)) (-5 *1 (-1077)))))
+(((*1 *2 *3) (-12 (-5 *3 (-583 *4)) (-4 *4 (-777)) (-4 *4 (-333)) (-5 *2 (-703)) (-5 *1 (-867 *4 *5)) (-4 *5 (-1130 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1108)) (-4 *3 (-1003)) (-5 *2 (-107)))))
+(((*1 *2 *3) (-12 (-4 *4 (-509)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3010 *4))) (-5 *1 (-887 *4 *3)) (-4 *3 (-1130 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-130))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-143 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-144 *2)) (-4 *2 (-502)))) ((*1 *1 *1 *1) (-5 *1 (-787))) ((*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)) (-5 *3 (-517)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-517)) (-5 *5 (-623 (-199))) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-358)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-199)) (-5 *2 (-950)) (-5 *1 (-682)))))
+(((*1 *2 *1) (-12 (-5 *2 (-787)) (-5 *1 (-1054 *3)) (-4 *3 (-1003)) (-4 *3 (-1108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-583 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-534 *3)) (-4 *3 (-333)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-199)) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-153 (-199))) (-5 *3 (-703)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-13 (-779) (-509))) (-5 *1 (-401 *3 *2)) (-4 *2 (-400 *3)))) ((*1 *1 *1 *1) (-4 *1 (-1037))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1127 *5 *4)) (-4 *4 (-752)) (-14 *5 (-1073)) (-5 *2 (-583 *4)) (-5 *1 (-1017 *4 *5)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-4 *2 (-961)) (-5 *1 (-647 *2 *4)) (-4 *4 (-585 *2)))) ((*1 *1 *2 *3) (-12 (-5 *3 (-331 (-109))) (-5 *1 (-766 *2)) (-4 *2 (-961)))))
+(((*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2422 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-333)) (-5 *1 (-527 *4 *2)) (-4 *2 (-1130 *4)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-349)) (-5 *3 (-1056)) (-5 *1 (-92)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-421)) (-4 *6 (-725)) (-4 *7 (-779)) (-4 *3 (-975 *5 *6 *7)) (-5 *2 (-583 (-2 (|:| |val| (-107)) (|:| -3726 *4)))) (-5 *1 (-1011 *5 *6 *7 *3 *4)) (-4 *4 (-980 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1073)) (|:| |fn| (-286 (-199))) (|:| -2919 (-998 (-772 (-199)))) (|:| |abserr| (-199)) (|:| |relerr| (-199)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1054 (-199))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2919 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-512)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-150 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-388 *3)) (-4 *3 (-502)) (-4 *3 (-509)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-729 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-765 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-772 *3)) (-4 *3 (-502)) (-4 *3 (-1003)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-913 *3)) (-4 *3 (-156)) (-4 *3 (-502)) (-5 *2 (-377 (-517))))) ((*1 *2 *3) (|partial| -12 (-5 *2 (-377 (-517))) (-5 *1 (-924 *3)) (-4 *3 (-952 *2)))))
+(((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4181)) (-4 *1 (-218 *2)) (-4 *2 (-1108)))))
+(((*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-623 (-199))) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *6)) (-5 *5 (-1 (-388 (-1069 *6)) (-1069 *6))) (-4 *6 (-333)) (-5 *2 (-583 (-2 (|:| |outval| *7) (|:| |outmult| (-517)) (|:| |outvect| (-583 (-623 *7)))))) (-5 *1 (-490 *6 *7 *4)) (-4 *7 (-333)) (-4 *4 (-13 (-333) (-777))))))
+(((*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-517))) (-5 *1 (-959)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1003)) (-4 *5 (-1003)) (-5 *2 (-1 *5)) (-5 *1 (-617 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-583 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-703)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-725)) (-4 *6 (-871 *3 *4 *5)) (-4 *3 (-421)) (-4 *5 (-779)) (-5 *1 (-418 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))) ((*1 *2) (-12 (-5 *2 (-703)) (-5 *1 (-414 *3)) (-4 *3 (-374)) (-4 *3 (-961)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)) (-5 *4 (-583 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-583 (-1073))) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3) (-12 (-5 *3 (-623 *7)) (-4 *7 (-871 *4 *6 *5)) (-4 *4 (-13 (-278) (-134))) (-4 *5 (-13 (-779) (-558 (-1073)))) (-4 *6 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *7)) (|:| |neqzro| (-583 *7)) (|:| |wcond| (-583 (-874 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *4)))) (|:| -1753 (-583 (-1153 (-377 (-874 *4)))))))))) (-5 *1 (-846 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)) (-5 *4 (-583 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *9)) (|:| |neqzro| (-583 *9)) (|:| |wcond| (-583 (-874 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *6)))) (|:| -1753 (-583 (-1153 (-377 (-874 *6)))))))))) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-843)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-583 (-2 (|:| |eqzro| (-583 *8)) (|:| |neqzro| (-583 *8)) (|:| |wcond| (-583 (-874 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1153 (-377 (-874 *5)))) (|:| -1753 (-583 (-1153 (-377 (-874 *5)))))))))) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 *9)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-583 (-1073))) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-623 *8)) (-5 *4 (-1056)) (-4 *8 (-871 *5 *7 *6)) (-4 *5 (-13 (-278) (-134))) (-4 *6 (-13 (-779) (-558 (-1073)))) (-4 *7 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 *10)) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-623 *10)) (-5 *4 (-583 (-1073))) (-5 *5 (-843)) (-5 *6 (-1056)) (-4 *10 (-871 *7 *9 *8)) (-4 *7 (-13 (-278) (-134))) (-4 *8 (-13 (-779) (-558 (-1073)))) (-4 *9 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-623 *9)) (-5 *4 (-843)) (-5 *5 (-1056)) (-4 *9 (-871 *6 *8 *7)) (-4 *6 (-13 (-278) (-134))) (-4 *7 (-13 (-779) (-558 (-1073)))) (-4 *8 (-725)) (-5 *2 (-517)) (-5 *1 (-846 *6 *7 *8 *9)))))
+(((*1 *1) (-5 *1 (-735))))
+(((*1 *2 *3 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1) (-5 *1 (-787))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-787))) (-5 *1 (-109)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-787) (-583 (-787)))) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-189 *3)) (-4 *3 (-13 (-779) (-10 -8 (-15 -1449 ((-1056) $ (-1073))) (-15 -1242 (*2 $)) (-15 -3307 (*2 $))))))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-364)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-364)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-467)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1089)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1089)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-583 *3))) (-4 *3 (-1003)) (-5 *1 (-1081 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-517)) (-5 *4 (-623 (-199))) (-5 *5 (-199)) (-5 *6 (-3 (|:| |fn| (-358)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-950)) (-5 *1 (-681)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-388 *3)) (-4 *3 (-509)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1021)) (-5 *1 (-104)))))
+(((*1 *2 *3) (-12 (-5 *3 (-107)) (-5 *2 (-1056)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-4 *1 (-893 *3 *4 *5 *6)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *6 (-975 *3 *4 *5)) (-5 *2 (-107)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-583 (-1073))) (-5 *3 (-1073)) (-5 *1 (-493)))) ((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))) ((*1 *2 *3 *2 *4) (-12 (-5 *4 (-583 (-1073))) (-5 *2 (-1073)) (-5 *1 (-638 *3)) (-4 *3 (-558 (-493))))))
+(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1076)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-621 *2 *3 *4)) (-4 *2 (-961)) (-4 *3 (-343 *2)) (-4 *4 (-343 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))) ((*1 *2) (-12 (-5 *2 (-843)) (-5 *1 (-1156)))))
+(((*1 *1 *2) (-12 (-5 *2 (-377 (-517))) (-5 *1 (-454)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-1003)) (-4 *3 (-822 *5)) (-5 *2 (-1153 *3)) (-5 *1 (-625 *5 *3 *6 *4)) (-4 *6 (-343 *3)) (-4 *4 (-13 (-343 *5) (-10 -7 (-6 -4180)))))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-586 *2 *3 *4)) (-4 *2 (-1003)) (-4 *3 (-23)) (-14 *4 *3))))
+(((*1 *2) (-12 (-4 *1 (-319)) (-5 *2 (-583 (-2 (|:| -3755 (-517)) (|:| -2077 (-517))))))))
+(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-517)) (-5 *2 (-1158)) (-5 *1 (-1155)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *1) (-12 (-4 *1 (-299 *2)) (-4 *2 (-338)) (-4 *2 (-333)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1108)) (-4 *1 (-102 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-199)) (-5 *1 (-200)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-153 (-199))) (-5 *1 (-200)))))
+(((*1 *2) (-12 (-4 *3 (-509)) (-5 *2 (-583 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-387 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-168)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-286 (-199))) (-5 *4 (-1073)) (-5 *5 (-998 (-772 (-199)))) (-5 *2 (-583 (-199))) (-5 *1 (-271)))))
+(((*1 *2 *3 *4 *5) (-12 (-5 *4 (-107)) (-4 *6 (-13 (-421) (-779) (-952 (-517)) (-579 (-517)))) (-4 *3 (-13 (-27) (-1094) (-400 *6) (-10 -8 (-15 -2256 ($ *7))))) (-4 *7 (-777)) (-4 *8 (-13 (-1132 *3 *7) (-333) (-1094) (-10 -8 (-15 -3127 ($ $)) (-15 -4151 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1056)) (|:| |prob| (-1056)))))) (-5 *1 (-392 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1056)) (-4 *9 (-900 *8)) (-14 *10 (-1073)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1 (-107) *6)) (-4 *6 (-13 (-1003) (-952 *5))) (-4 *5 (-808 *4)) (-4 *4 (-1003)) (-5 *2 (-1 (-107) *5)) (-5 *1 (-853 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-407))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *1 *1) (-4 *1 (-509))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-961)) (-4 *3 (-724)))) ((*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-961)) (-14 *3 (-583 (-1073))))) ((*1 *1 *1) (-12 (-5 *1 (-197 *2 *3)) (-4 *2 (-13 (-961) (-779))) (-14 *3 (-583 (-1073))))) ((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-961)) (-4 *3 (-1003)))) ((*1 *1 *1) (-12 (-14 *2 (-583 (-1073))) (-4 *3 (-156)) (-4 *5 (-212 (-2296 *2) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-5 *1 (-430 *2 *3 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *3 *5 (-789 *2))))) ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-1003)) (-4 *3 (-779)))) ((*1 *1 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *1 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *1 *1) (-12 (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *2 (-961)) (-4 *3 (-659)))) ((*1 *1 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))) ((*1 *1 *1) (-12 (-5 *1 (-1174 *2 *3)) (-4 *2 (-961)) (-4 *3 (-775)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-349)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-107)) (-5 *1 (-155)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1154)))) ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-583 (-623 *4))) (-5 *2 (-623 *4)) (-4 *4 (-961)) (-5 *1 (-944 *4)))))
+(((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-4 *7 (-1130 (-377 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3591 *3))) (-5 *1 (-515 *5 *6 *7 *3)) (-4 *3 (-312 *5 *6 *7)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1130 *5)) (-4 *5 (-333)) (-5 *2 (-2 (|:| |answer| (-377 *6)) (|:| -3591 (-377 *6)) (|:| |specpart| (-377 *6)) (|:| |polypart| *6))) (-5 *1 (-516 *5 *6)) (-5 *3 (-377 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-109)))) ((*1 *2 *1) (-12 (-4 *1 (-334 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *1 (-359)) (-5 *2 (-1056)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-408 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-556 *3)) (-4 *3 (-779)))) ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-982 *3)) (-14 *3 *2))) ((*1 *1 *1) (-5 *1 (-1073))))
+(((*1 *1) (-5 *1 (-131))))
+(((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-142)))) ((*1 *2 *3) (-12 (-5 *3 (-865 *2)) (-5 *1 (-899 *2)) (-4 *2 (-961)))))
+(((*1 *2 *3) (-12 (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-270 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) (-12 (-5 *4 (-998 (-772 (-199)))) (-5 *3 (-199)) (-5 *2 (-107)) (-5 *1 (-276)))) ((*1 *2 *1 *1) (-12 (-4 *3 (-333)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-107)) (-5 *1 (-469 *3 *4 *5 *6)) (-4 *6 (-871 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1056)) (-5 *2 (-1158)) (-5 *1 (-1155)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *3 (-961)) (-4 *4 (-725)) (-4 *5 (-779)) (-5 *2 (-583 *1)) (-4 *1 (-871 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-1108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-1003)) (-4 *1 (-825 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-583 (-583 (-583 *4)))) (-5 *2 (-583 (-583 *4))) (-4 *4 (-779)) (-5 *1 (-1080 *4)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-517)) (-5 *1 (-629 *2)) (-4 *2 (-1130 *3)))))
+(((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-509)) (-4 *4 (-725)) (-4 *5 (-779)) (-4 *2 (-975 *3 *4 *5)))))
+(((*1 *2 *3 *4) (-12 (-4 *5 (-278)) (-4 *6 (-343 *5)) (-4 *4 (-343 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1753 (-583 *4)))) (-5 *1 (-1025 *5 *6 *4 *3)) (-4 *3 (-621 *5 *6 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 (-827 *3))) (-4 *3 (-1003)) (-5 *1 (-826 *3)))))
+(((*1 *2 *3 *4) (-12 (-5 *3 (-199)) (-5 *4 (-517)) (-5 *2 (-950)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-724)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-49 *2 *3)) (-14 *3 (-583 (-1073))))) ((*1 *2 *1) (-12 (-5 *2 (-286 *3)) (-5 *1 (-197 *3 *4)) (-4 *3 (-13 (-961) (-779))) (-14 *4 (-583 (-1073))))) ((*1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *3 (-1003)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-14 *3 (-583 (-1073))) (-4 *5 (-212 (-2296 *3) (-703))) (-14 *6 (-1 (-107) (-2 (|:| -3448 *4) (|:| -2077 *5)) (-2 (|:| -3448 *4) (|:| -2077 *5)))) (-4 *2 (-156)) (-5 *1 (-430 *3 *2 *4 *5 *6 *7)) (-4 *4 (-779)) (-4 *7 (-871 *2 *5 (-789 *3))))) ((*1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *3 (-779)) (-4 *2 (-1003)))) ((*1 *2 *1) (-12 (-4 *2 (-509)) (-5 *1 (-564 *2 *3)) (-4 *3 (-1130 *2)))) ((*1 *2 *1) (-12 (-4 *1 (-642 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *2 (-961)) (-5 *1 (-668 *2 *3)) (-4 *3 (-779)) (-4 *3 (-659)))) ((*1 *2 *1) (-12 (-4 *1 (-781 *2)) (-4 *2 (-961)))) ((*1 *2 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *3 (-724)) (-4 *4 (-779)) (-4 *2 (-961)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-975 *3 *4 *2)) (-4 *3 (-961)) (-4 *4 (-725)) (-4 *2 (-779)))))
+(((*1 *2 *3) (-12 (-4 *4 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *4)) (-5 *1 (-1029 *3 *4)) (-4 *3 (-1130 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-333) (-10 -8 (-15 ** ($ $ (-377 (-517))))))) (-5 *2 (-583 *3)) (-5 *1 (-1029 *4 *3)) (-4 *4 (-1130 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-583 *3)) (-4 *3 (-779)) (-5 *1 (-451 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-337 *2)) (-4 *2 (-156)))))
+(((*1 *1 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-37 (-377 (-517)))) (-4 *2 (-961)))))
+(((*1 *2 *2) (-12 (-5 *2 (-843)) (-5 *1 (-327 *3)) (-4 *3 (-319)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-131)))) ((*1 *1 *2) (-12 (-5 *2 (-517)) (-5 *1 (-131)))))
+((-1185 . 682053) (-1186 . 681983) (-1187 . 681900) (-1188 . 681845) (-1189 . 681772) (-1190 . 681486) (-1191 . 680381) (-1192 . 680296) (-1193 . 680215) (-1194 . 680016) (-1195 . 679884) (-1196 . 679807) (-1197 . 679691) (-1198 . 679608) (-1199 . 679534) (-1200 . 679477) (-1201 . 679368) (-1202 . 679283) (-1203 . 679210) (-1204 . 678884) (-1205 . 678762) (-1206 . 678734) (-1207 . 678332) (-1208 . 677910) (-1209 . 677809) (-1210 . 677652) (-1211 . 677580) (-1212 . 676510) (-1213 . 676479) (-1214 . 676394) (-1215 . 676366) (-1216 . 676208) (-1217 . 675758) (-1218 . 675497) (-1219 . 675411) (-1220 . 675321) (-1221 . 675207) (-1222 . 675133) (-1223 . 675048) (-1224 . 674981) (-1225 . 674834) (-1226 . 674742) (-1227 . 674651) (-1228 . 674484) (-1229 . 674425) (-1230 . 674325) (-1231 . 674225) (-1232 . 674140) (-1233 . 674089) (-1234 . 673660) (-1235 . 673527) (-1236 . 673460) (-1237 . 673404) (-1238 . 673331) (-1239 . 673148) (-1240 . 673082) (-1241 . 673000) (-1242 . 672343) (-1243 . 672309) (-1244 . 672221) (-1245 . 672193) (-1246 . 668455) (-1247 . 668389) (-1248 . 668225) (-1249 . 668012) (-1250 . 667899) (-1251 . 667817) (-1252 . 667553) (-1253 . 667455) (-1254 . 667374) (-1255 . 667283) (-1256 . 666531) (-1257 . 665599) (-1258 . 665393) (-1259 . 665253) (-1260 . 665093) (-1261 . 664915) (-1262 . 664796) (-1263 . 664610) (-1264 . 664345) (-1265 . 664254) (-1266 . 664188) (-1267 . 664074) (-1268 . 663986) (-1269 . 663748) (-1270 . 663442) (-1271 . 663303) (-1272 . 663213) (-1273 . 663088) (-1274 . 663034) (-1275 . 662940) (-1276 . 662888) (-1277 . 662794) (-1278 . 662522) (-1279 . 662324) (-1280 . 662253) (-1281 . 662045) (-1282 . 661979) (-1283 . 661746) (-1284 . 661575) (-1285 . 661490) (-1286 . 661338) (-1287 . 661283) (-1288 . 661131) (-1289 . 661103) (-1290 . 660993) (-1291 . 660855) (-1292 . 660768) (-1293 . 660589) (-1294 . 660282) (-1295 . 660224) (-1296 . 660134) (-1297 . 660068) (-1298 . 659652) (-1299 . 659600) (-1300 . 659473) (-1301 . 659303) (-1302 . 659252) (-1303 . 658882) (-1304 . 658792) (-1305 . 658740) (-1306 . 658328) (-1307 . 658095) (-1308 . 655156) (-1309 . 655082) (-1310 . 654890) (-1311 . 654409) (-1312 . 654343) (-1313 . 653292) (-1314 . 653214) (-1315 . 653148) (-1316 . 652996) (-1317 . 652846) (-1318 . 652561) (-1319 . 652519) (-1320 . 652464) (-1321 . 652390) (-1322 . 652188) (-1323 . 651900) (-1324 . 651665) (-1325 . 651347) (-1326 . 651095) (-1327 . 651017) (-1328 . 650889) (-1329 . 650787) (-1330 . 650683) (-1331 . 650353) (-1332 . 650204) (-1333 . 649932) (-1334 . 649862) (-1335 . 649782) (-1336 . 649264) (-1337 . 648998) (-1338 . 648765) (-1339 . 647228) (-1340 . 647176) (-1341 . 647063) (-1342 . 646918) (-1343 . 646782) (-1344 . 646707) (-1345 . 646610) (-1346 . 646538) (-1347 . 646217) (-1348 . 645935) (-1349 . 645842) (-1350 . 645031) (-1351 . 644962) (-1352 . 644679) (-1353 . 644627) (-1354 . 644509) (-1355 . 643882) (-1356 . 643813) (-1357 . 643594) (-1358 . 643414) (-1359 . 643260) (-1360 . 643129) (-1361 . 643095) (-1362 . 642969) (-1363 . 642724) (-1364 . 641514) (-1365 . 641428) (-1366 . 641231) (-1367 . 640946) (-1368 . 640842) (-1369 . 640612) (-1370 . 640543) (-1371 . 640418) (-1372 . 640368) (-1373 . 640243) (-1374 . 640077) (-1375 . 639843) (-1376 . 639521) (-1377 . 639201) (-1378 . 638931) (-1379 . 638767) (-1380 . 638635) (-1381 . 638553) (-1382 . 638482) (-1383 . 638399) (-1384 . 638347) (-1385 . 638213) (-1386 . 638018) (-1387 . 637921) (-1388 . 637831) (-1389 . 637465) (-1390 . 637358) (-1391 . 637217) (-1392 . 637045) (-1393 . 636941) (-1394 . 636795) (-1395 . 636696) (-1396 . 636628) (-1397 . 636513) (-1398 . 636326) (-1399 . 636106) (-1400 . 635994) (-1401 . 634945) (-1402 . 634627) (-1403 . 634561) (-1404 . 634491) (-1405 . 634369) (-1406 . 634271) (-1407 . 634167) (-1408 . 634052) (-1409 . 633633) (-1410 . 633536) (-1411 . 633473) (-1412 . 633177) (-1413 . 632827) (-1414 . 632753) (-1415 . 632693) (-1416 . 632520) (-1417 . 632467) (-1418 . 632383) (-1419 . 632146) (-1420 . 631983) (-1421 . 631876) (-1422 . 631817) (-1423 . 631668) (-1424 . 631616) (-1425 . 631588) (-1426 . 631536) (-1427 . 631432) (-1428 . 631363) (-1429 . 631214) (-1430 . 631112) (-1431 . 630988) (-1432 . 630881) (-1433 . 630665) (-1434 . 630372) (-1435 . 630239) (-1436 . 630157) (-1437 . 630101) (-1438 . 630035) (-1439 . 629886) (-1440 . 629698) (-1441 . 629360) (-1442 . 629167) (-1443 . 629045) (-1444 . 628945) (-1445 . 628724) (-1446 . 628573) (-1447 . 628306) (-1448 . 627936) (-1449 . 623082) (-1450 . 623005) (-1451 . 622639) (-1452 . 622267) (-1453 . 622163) (-1454 . 622057) (-1455 . 621966) (-1456 . 621848) (-1457 . 621773) (-1458 . 621595) (-1459 . 621539) (-1460 . 621479) (-1461 . 619800) (-1462 . 619726) (-1463 . 619543) (-1464 . 619469) (-1465 . 619335) (-1466 . 619234) (-1467 . 619127) (-1468 . 618967) (-1469 . 618887) (-1470 . 618739) (-1471 . 618589) (-1472 . 618182) (-1473 . 618039) (-1474 . 617969) (-1475 . 617896) (-1476 . 617813) (-1477 . 617580) (-1478 . 617256) (-1479 . 617081) (-1480 . 616980) (-1481 . 616852) (-1482 . 616748) (-1483 . 616390) (-1484 . 616231) (-1485 . 615973) (-1486 . 615740) (-1487 . 615466) (-1488 . 615280) (-1489 . 615148) (-1490 . 615041) (-1491 . 614893) (-1492 . 614349) (-1493 . 614277) (-1494 . 614224) (-1495 . 614065) (-1496 . 613979) (-1497 . 613481) (-1498 . 613368) (-1499 . 613040) (-1500 . 612958) (-1501 . 612856) (-1502 . 612797) (-1503 . 612658) (-1504 . 612606) (-1505 . 612470) (-1506 . 610762) (-1507 . 610591) (-1508 . 610474) (-1509 . 610372) (-1510 . 610139) (-1511 . 610087) (-1512 . 609991) (-1513 . 609825) (-1514 . 609760) (-1515 . 609572) (-1516 . 609339) (-1517 . 608969) (-1518 . 608841) (-1519 . 608737) (-1520 . 608668) (-1521 . 608524) (-1522 . 608493) (-1523 . 608311) (-1524 . 608259) (-1525 . 608022) (-1526 . 607806) (-1527 . 607702) (-1528 . 607500) (-1529 . 607386) (-1530 . 607255) (-1531 . 607127) (-1532 . 607061) (-1533 . 606913) (-1534 . 606879) (-1535 . 606799) (-1536 . 606591) (-1537 . 606352) (-1538 . 606086) (-1539 . 606003) (-1540 . 605887) (-1541 . 605762) (-1542 . 605681) (-1543 . 605598) (-1544 . 605411) (-1545 . 605105) (-1546 . 605053) (-1547 . 604789) (-1548 . 604714) (-1549 . 604576) (-1550 . 604501) (-1551 . 604429) (-1552 . 603670) (-1553 . 603576) (-1554 . 603469) (-1555 . 603321) (-1556 . 603188) (-1557 . 603073) (-1558 . 602883) (-1559 . 602812) (-1560 . 602722) (-1561 . 602570) (-1562 . 602495) (-1563 . 602422) (-1564 . 602050) (-1565 . 601992) (-1566 . 601876) (-1567 . 601604) (-1568 . 601513) (-1569 . 601485) (-1570 . 601296) (-1571 . 600623) (-1572 . 600323) (-1573 . 600214) (-1574 . 600162) (-1575 . 600079) (-1576 . 600004) (-1577 . 599745) (-1578 . 599626) (-1579 . 599543) (-1580 . 599478) (-1581 . 599380) (-1582 . 599191) (-1583 . 599105) (-1584 . 599056) (-1585 . 598883) (-1586 . 598416) (-1587 . 598043) (-1588 . 597723) (-1589 . 597625) (-1590 . 595901) (-1591 . 595775) (-1592 . 595704) (-1593 . 595584) (-1594 . 595460) (-1595 . 595303) (-1596 . 595233) (-1597 . 595055) (-1598 . 594956) (-1599 . 594794) (-1600 . 594616) (-1601 . 593195) (-1602 . 593040) (-1603 . 592838) (-1604 . 592784) (-1605 . 592635) (-1606 . 592549) (-1607 . 592316) (-1608 . 591927) (-1609 . 591292) (-1610 . 591237) (-1611 . 590281) (-1612 . 590113) (-1613 . 588659) (-1614 . 588576) (-1615 . 588428) (-1616 . 588305) (-1617 . 588205) (-1618 . 588024) (-1619 . 587627) (-1620 . 587513) (-1621 . 587417) (-1622 . 587350) (-1623 . 587288) (-1624 . 587197) (-1625 . 587004) (-1626 . 586696) (-1627 . 586613) (-1628 . 586504) (-1629 . 586453) (-1630 . 586391) (-1631 . 586100) (-1632 . 585946) (-1633 . 585894) (-1634 . 585564) (-1635 . 585396) (-1636 . 585154) (-1637 . 584884) (-1638 . 584478) (-1639 . 584237) (-1640 . 584137) (-1641 . 583974) (-1642 . 582845) (-1643 . 582694) (-1644 . 582191) (-1645 . 582118) (-1646 . 581484) (-1647 . 580968) (-1648 . 580855) (-1649 . 580441) (-1650 . 580082) (-1651 . 580008) (-1652 . 579762) (-1653 . 579643) (-1654 . 578515) (-1655 . 578377) (-1656 . 578301) (-1657 . 578157) (-1658 . 578089) (-1659 . 577551) (-1660 . 577140) (-1661 . 577018) (-1662 . 576819) (-1663 . 576673) (-1664 . 576581) (-1665 . 576448) (-1666 . 576354) (-1667 . 574267) (-1668 . 574148) (-1669 . 574064) (-1670 . 574002) (-1671 . 573898) (-1672 . 572765) (-1673 . 572643) (-1674 . 563782) (-1675 . 563582) (-1676 . 563553) (-1677 . 563399) (-1678 . 563257) (-1679 . 563163) (-1680 . 563045) (-1681 . 562906) (-1682 . 562804) (-1683 . 562571) (-1684 . 562455) (-1685 . 562384) (-1686 . 562213) (-1687 . 562161) (-1688 . 562130) (-1689 . 561992) (-1690 . 561871) (-1691 . 561780) (-1692 . 561706) (-1693 . 561629) (-1694 . 561489) (-1695 . 561273) (-1696 . 561198) (-1697 . 561046) (-1698 . 560913) (-1699 . 560804) (-1700 . 560610) (-1701 . 559906) (-1702 . 559854) (-1703 . 559728) (-1704 . 559639) (-1705 . 559560) (-1706 . 559398) (-1707 . 559343) (-1708 . 559258) (-1709 . 559224) (-1710 . 557378) (-1711 . 556674) (-1712 . 556606) (-1713 . 556454) (-1714 . 556314) (-1715 . 556184) (-1716 . 556022) (-1717 . 555872) (-1718 . 555559) (-1719 . 555061) (-1720 . 554810) (-1721 . 554158) (-1722 . 554084) (-1723 . 553990) (-1724 . 553646) (-1725 . 553453) (-1726 . 553344) (-1727 . 553176) (-1728 . 553075) (-1729 . 552996) (-1730 . 552773) (-1731 . 552444) (-1732 . 551898) (-1733 . 551780) (-1734 . 551101) (-1735 . 550592) (-1736 . 550356) (-1737 . 550288) (-1738 . 550142) (-1739 . 550038) (-1740 . 549929) (-1741 . 549775) (-1742 . 549723) (-1743 . 549177) (-1744 . 549025) (-1745 . 548923) (-1746 . 548613) (-1747 . 548392) (-1748 . 548248) (-1749 . 547983) (-1750 . 547891) (-1751 . 547799) (-1752 . 547700) (-1753 . 546878) (-1754 . 546332) (-1755 . 546270) (-1756 . 546236) (-1757 . 546126) (-1758 . 545575) (-1759 . 544799) (-1760 . 544422) (-1761 . 544365) (-1762 . 544284) (-1763 . 544126) (-1764 . 544073) (-1765 . 543423) (-1766 . 543395) (-1767 . 543303) (-1768 . 543037) (-1769 . 542846) (-1770 . 541819) (-1771 . 541694) (-1772 . 537540) (-1773 . 537239) (-1774 . 537171) (-1775 . 537016) (-1776 . 536606) (-1777 . 535956) (-1778 . 535890) (-1779 . 535824) (-1780 . 535719) (-1781 . 535566) (-1782 . 535370) (-1783 . 535305) (-1784 . 535147) (-1785 . 534984) (-1786 . 534722) (-1787 . 534052) (-1788 . 533340) (-1789 . 533312) (-1790 . 532982) (-1791 . 532532) (-1792 . 532396) (-1793 . 532319) (-1794 . 532160) (-1795 . 531983) (-1796 . 531515) (-1797 . 531457) (-1798 . 531250) (-1799 . 531132) (-1800 . 530481) (-1801 . 530373) (-1802 . 529829) (-1803 . 529654) (-1804 . 529620) (-1805 . 529436) (-1806 . 529231) (-1807 . 529155) (-1808 . 529088) (-1809 . 528910) (-1810 . 528076) (-1811 . 527976) (-1812 . 527069) (-1813 . 527032) (-1814 . 526488) (-1815 . 526175) (-1816 . 525459) (-1817 . 525274) (-1818 . 525203) (-1819 . 525132) (-1820 . 524993) (-1821 . 524870) (-1822 . 524818) (-1823 . 524762) (-1824 . 524592) (-1825 . 524492) (-1826 . 524439) (-1827 . 523895) (-1828 . 523814) (-1829 . 523678) (-1830 . 523421) (-1831 . 523304) (-1832 . 522887) (-1833 . 522814) (-1834 . 522713) (-1835 . 522682) (-1836 . 522615) (-1837 . 522185) (-1838 . 522113) (-1839 . 521462) (-1840 . 521053) (-1841 . 520980) (-1842 . 520881) (-1843 . 520733) (-1844 . 520650) (-1845 . 520572) (-1846 . 520451) (-1847 . 520316) (-1848 . 520164) (-1849 . 519962) (-1850 . 519723) (-1851 . 519424) (-1852 . 519277) (-1853 . 518626) (-1854 . 518546) (-1855 . 518119) (-1856 . 517929) (-1857 . 517836) (-1858 . 517716) (-1859 . 517590) (-1860 . 517528) (-1861 . 517500) (-1862 . 517248) (-1863 . 513407) (-1864 . 513226) (-1865 . 512575) (-1866 . 512525) (-1867 . 511351) (-1868 . 511068) (-1869 . 510962) (-1870 . 510836) (-1871 . 510631) (-1872 . 510502) (-1873 . 510354) (-1874 . 509953) (-1875 . 509414) (-1876 . 508869) (-1877 . 508717) (-1878 . 508651) (-1879 . 508231) (-1880 . 508153) (-1881 . 507741) (-1882 . 507371) (-1883 . 506873) (-1884 . 506739) (-1885 . 506661) (-1886 . 506526) (-1887 . 505981) (-1888 . 505916) (-1889 . 505713) (-1890 . 505583) (-1891 . 505465) (-1892 . 505392) (-1893 . 492155) (-1894 . 492015) (-1895 . 491905) (-1896 . 491852) (-1897 . 491435) (-1898 . 490890) (-1899 . 490807) (-1900 . 490717) (-1901 . 490414) (-1902 . 490218) (-1903 . 490149) (-1904 . 489947) (-1905 . 489834) (-1906 . 489735) (-1907 . 487516) (-1908 . 487172) (-1909 . 487043) (-1910 . 486861) (-1911 . 486791) (-1912 . 486672) (-1913 . 486579) (-1914 . 486480) (-1915 . 486355) (-1916 . 486050) (-1917 . 486013) (-1918 . 485932) (-1919 . 485898) (-1920 . 485722) (-1921 . 485565) (-1922 . 485397) (-1923 . 485291) (-1924 . 485168) (-1925 . 485034) (-1926 . 484952) (-1927 . 484611) (-1928 . 484439) (-1929 . 484410) (-1930 . 484289) (-1931 . 483951) (-1932 . 483871) (-1933 . 483802) (-1934 . 483666) (-1935 . 483349) (-1936 . 483318) (-1937 . 483188) (-1938 . 483010) (-1939 . 482771) (-1940 . 482678) (-1941 . 481628) (-1942 . 481153) (-1943 . 481072) (-1944 . 481017) (-1945 . 480919) (-1946 . 478253) (-1947 . 478200) (-1948 . 477650) (-1949 . 477552) (-1950 . 477439) (-1951 . 477322) (-1952 . 477188) (-1953 . 476719) (-1954 . 476557) (-1955 . 476419) (-1956 . 476385) (-1957 . 476172) (-1958 . 476003) (-1959 . 475505) (-1960 . 475452) (-1961 . 475349) (-1962 . 475089) (-1963 . 475025) (-1964 . 474823) (-1965 . 474771) (-1966 . 474048) (-1967 . 473476) (-1968 . 473402) (-1969 . 473167) (-1970 . 473092) (-1971 . 472923) (-1972 . 472665) (-1973 . 472394) (-1974 . 472212) (-1975 . 472079) (-1976 . 471873) (-1977 . 471709) (-1978 . 471626) (-1979 . 471267) (-1980 . 471197) (-1981 . 470983) (-1982 . 470908) (-1983 . 469943) (-1984 . 469738) (-1985 . 469665) (-1986 . 469597) (-1987 . 469524) (-1988 . 469331) (-1989 . 469197) (-1990 . 469095) (-1991 . 469040) (-1992 . 468951) (-1993 . 468884) (-1994 . 468810) (-1995 . 468731) (-1996 . 468540) (-1997 . 468506) (-1998 . 468137) (-1999 . 468029) (-2000 . 467950) (-2001 . 467685) (-2002 . 467399) (-2003 . 467242) (-2004 . 467154) (-2005 . 466663) (-2006 . 466255) (-2007 . 466181) (-2008 . 466126) (-2009 . 465979) (-2010 . 465732) (-2011 . 465666) (-2012 . 465484) (-2013 . 465433) (-2014 . 465402) (-2015 . 465233) (-2016 . 464830) (-2017 . 464757) (-2018 . 464537) (-2019 . 464435) (-2020 . 464346) (-2021 . 464293) (-2022 . 464223) (-2023 . 464099) (-2024 . 463859) (-2025 . 463740) (-2026 . 463594) (-2027 . 463506) (-2028 . 463450) (-2029 . 463159) (-2030 . 463107) (-2031 . 462896) (-2032 . 462336) (-2033 . 461876) (-2034 . 461679) (-2035 . 461397) (-2036 . 461308) (-2037 . 461170) (-2038 . 461102) (-2039 . 460944) (-2040 . 460640) (-2041 . 460511) (-2042 . 460440) (-2043 . 460105) (-2044 . 459922) (-2045 . 459870) (-2046 . 459762) (-2047 . 458574) (-2048 . 458455) (-2049 . 458327) (-2050 . 458244) (-2051 . 454440) (-2052 . 453870) (-2053 . 453761) (-2054 . 453643) (-2055 . 453569) (-2056 . 453421) (-2057 . 453344) (-2058 . 453128) (-2059 . 452767) (-2060 . 452536) (-2061 . 451980) (-2062 . 451910) (-2063 . 451778) (-2064 . 451712) (-2065 . 451638) (-2066 . 451397) (-2067 . 451326) (-2068 . 451018) (-2069 . 450819) (-2070 . 450728) (-2071 . 449768) (-2072 . 449667) (-2073 . 449402) (-2074 . 449272) (-2075 . 449066) (-2076 . 448892) (-2077 . 448434) (-2078 . 448351) (-2079 . 448232) (-2080 . 448151) (-2081 . 447857) (-2082 . 447348) (-2083 . 447216) (-2084 . 447148) (-2085 . 447074) (-2086 . 446345) (-2087 . 446255) (-2088 . 445933) (-2089 . 445905) (-2090 . 445792) (-2091 . 445590) (-2092 . 445509) (-2093 . 445450) (-2094 . 445398) (-2095 . 445234) (-2096 . 445139) (-2097 . 445006) (-2098 . 444954) (-2099 . 444448) (-2100 . 444213) (-2101 . 443914) (-2102 . 443863) (-2103 . 443782) (-2104 . 442885) (-2105 . 442832) (-2106 . 442780) (-2107 . 442541) (-2108 . 442293) (-2109 . 441959) (-2110 . 440742) (-2111 . 440652) (-2112 . 440424) (-2113 . 440375) (-2114 . 440205) (-2115 . 440115) (-2116 . 439724) (-2117 . 439585) (-2118 . 439221) (-2119 . 439085) (-2120 . 439033) (-2121 . 438690) (-2122 . 438580) (-2123 . 438497) (-2124 . 438447) (-2125 . 438171) (-2126 . 437953) (-2127 . 437870) (-2128 . 437750) (-2129 . 437552) (-2130 . 437376) (-2131 . 437225) (-2132 . 435743) (-2133 . 435631) (-2134 . 435199) (-2135 . 434725) (-2136 . 434653) (-2137 . 434551) (-2138 . 434462) (-2139 . 434410) (-2140 . 434358) (-2141 . 434262) (-2142 . 434050) (-2143 . 433948) (-2144 . 433848) (-2145 . 433728) (-2146 . 433654) (-2147 . 433582) (-2148 . 433395) (-2149 . 433287) (-2150 . 433064) (-2151 . 432963) (-2152 . 432914) (-2153 . 432817) (-2154 . 432664) (-2155 . 432470) (-2156 . 432231) (-2157 . 432178) (-2158 . 432060) (-2159 . 431926) (-2160 . 431845) (-2161 . 431640) (-2162 . 431321) (-2163 . 431269) (-2164 . 431210) (-2165 . 431012) (-2166 . 430960) (-2167 . 430812) (-2168 . 430710) (-2169 . 430571) (-2170 . 430413) (-2171 . 430113) (-2172 . 430054) (-2173 . 430001) (-2174 . 429915) (-2175 . 429817) (-2176 . 429733) (-2177 . 429186) (-2178 . 429115) (-2179 . 429025) (-2180 . 428932) (-2181 . 428844) (-2182 . 428748) (-2183 . 428378) (-2184 . 428195) (-2185 . 428023) (-2186 . 427955) (-2187 . 427751) (-2188 . 427585) (-2189 . 427489) (-2190 . 427415) (-2191 . 427319) (-2192 . 427210) (-2193 . 427006) (-2194 . 426928) (-2195 . 426278) (-2196 . 426163) (-2197 . 425755) (-2198 . 425672) (-2199 . 425185) (-2200 . 425111) (-2201 . 425040) (-2202 . 424969) (-2203 . 424893) (-2204 . 424812) (-2205 . 424734) (-2206 . 424490) (-2207 . 424222) (-2208 . 423688) (-2209 . 423479) (-2210 . 423401) (-2211 . 422786) (-2212 . 422648) (-2213 . 422595) (-2214 . 422521) (-2215 . 422472) (-2216 . 421554) (-2217 . 421468) (-2218 . 421319) (-2219 . 421288) (-2220 . 421229) (-2221 . 421142) (-2222 . 421089) (-2223 . 420727) (-2224 . 420591) (-2225 . 420473) (-2226 . 420407) (-2227 . 420352) (-2228 . 420300) (-2229 . 420115) (-2230 . 420025) (-2231 . 419911) (-2232 . 419639) (-2233 . 419608) (-2234 . 419533) (-2235 . 419424) (-2236 . 419277) (-2237 . 418440) (-2238 . 418084) (-2239 . 417962) (-2240 . 417803) (-2241 . 417729) (-2242 . 417616) (-2243 . 417295) (-2244 . 417157) (-2245 . 416734) (-2246 . 416632) (-2247 . 416544) (-2248 . 416469) (-2249 . 416362) (-2250 . 416305) (-2251 . 416253) (-2252 . 416074) (-2253 . 415989) (-2254 . 415623) (-2255 . 415546) (-2256 . 394211) (-2257 . 393853) (-2258 . 393803) (-2259 . 393593) (-2260 . 393490) (-2261 . 392306) (-2262 . 392033) (-2263 . 392002) (-2264 . 391912) (-2265 . 391730) (-2266 . 391635) (-2267 . 391540) (-2268 . 391440) (-2269 . 391384) (-2270 . 391294) (-2271 . 390981) (-2272 . 390893) (-2273 . 390535) (-2274 . 390012) (-2275 . 389874) (-2276 . 387336) (-2277 . 387141) (-2278 . 386505) (-2279 . 386449) (-2280 . 386397) (-2281 . 386332) (-2282 . 386279) (-2283 . 386224) (-2284 . 386073) (-2285 . 385910) (-2286 . 385794) (-2287 . 385713) (-2288 . 385622) (-2289 . 384929) (-2290 . 384759) (-2291 . 384678) (-2292 . 384597) (-2293 . 384371) (-2294 . 384253) (-2295 . 384204) (-2296 . 383900) (-2297 . 383872) (-2298 . 383717) (-2299 . 383662) (-2300 . 383300) (-2301 . 383186) (-2302 . 382912) (-2303 . 382793) (-2304 . 382468) (-2305 . 382375) (-2306 . 382246) (-2307 . 382034) (-2308 . 381953) (-2309 . 381804) (-2310 . 381705) (-2311 . 381526) (-2312 . 381401) (-2313 . 381326) (-2314 . 381124) (-2315 . 380809) (-2316 . 380411) (-2317 . 380232) (-2318 . 380130) (-2319 . 378095) (-2320 . 378067) (-2321 . 377895) (-2322 . 377614) (-2323 . 377583) (-2324 . 377328) (-2325 . 377192) (-2326 . 376894) (-2327 . 376795) (-2328 . 376739) (-2329 . 376637) (-2330 . 376437) (-2331 . 376364) (-2332 . 375998) (-2333 . 375924) (-2334 . 375825) (-2335 . 375750) (-2336 . 375633) (-2337 . 375450) (-2338 . 375422) (-2339 . 375367) (-2340 . 375215) (-2341 . 375162) (-2342 . 374937) (-2343 . 374875) (-2344 . 374769) (-2345 . 374546) (-2346 . 374512) (-2347 . 374364) (-2348 . 374292) (-2349 . 373848) (-2350 . 373510) (-2351 . 373437) (-2352 . 372122) (-2353 . 372047) (-2354 . 371959) (-2355 . 371743) (-2356 . 371684) (-2357 . 371217) (-2358 . 371031) (-2359 . 370942) (-2360 . 370803) (-2361 . 370774) (-2362 . 370622) (-2363 . 370436) (-2364 . 370276) (-2365 . 370192) (-2366 . 370164) (-2367 . 370068) (-2368 . 369744) (-2369 . 369670) (-2370 . 369568) (-2371 . 369414) (-2372 . 369174) (-2373 . 368706) (-2374 . 368632) (-2375 . 368601) (-2376 . 368493) (-2377 . 368425) (-2378 . 368342) (-2379 . 368232) (-2380 . 368180) (-2381 . 368096) (-2382 . 368030) (-2383 . 367831) (-2384 . 367701) (-2385 . 367505) (-2386 . 367477) (-2387 . 367394) (-2388 . 367293) (-2389 . 367265) (-2390 . 367123) (-2391 . 367057) (-2392 . 366974) (-2393 . 366630) (-2394 . 366602) (-2395 . 366102) (-2396 . 365934) (-2397 . 365868) (-2398 . 365809) (-2399 . 365580) (-2400 . 365504) (-2401 . 365398) (-2402 . 365034) (-2403 . 364769) (-2404 . 364706) (-2405 . 364602) (-2406 . 364477) (-2407 . 364382) (-2408 . 364301) (-2409 . 364058) (-2410 . 363849) (-2411 . 362612) (-2412 . 362395) (-2413 . 362257) (-2414 . 362105) (-2415 . 362034) (-2416 . 361909) (-2417 . 361820) (-2418 . 361425) (-2419 . 361373) (-2420 . 360543) (-2421 . 360434) (-2422 . 360379) (-2423 . 360241) (-2424 . 360094) (-2425 . 360011) (-2426 . 359492) (-2427 . 359440) (-2428 . 359348) (-2429 . 359295) (-2430 . 359099) (-2431 . 358861) (-2432 . 358753) (-2433 . 358436) (-2434 . 358179) (-2435 . 357997) (-2436 . 357635) (-2437 . 357513) (-2438 . 357444) (-2439 . 357371) (-2440 . 357201) (-2441 . 356931) (-2442 . 356810) (-2443 . 356730) (-2444 . 356493) (-2445 . 356396) (-2446 . 356257) (-2447 . 356174) (-2448 . 356087) (-2449 . 355905) (-2450 . 355850) (-2451 . 355759) (-2452 . 355149) (-2453 . 354996) (-2454 . 354944) (-2455 . 354741) (-2456 . 354661) (-2457 . 354627) (-2458 . 354555) (-2459 . 354481) (-2460 . 354415) (-2461 . 354322) (-2462 . 354211) (-2463 . 354136) (-2464 . 353894) (-2465 . 353695) (-2466 . 353646) (-2467 . 353381) (-2468 . 352607) (-2469 . 352500) (-2470 . 352340) (-2471 . 352288) (-2472 . 352024) (-2473 . 351645) (-2474 . 351022) (-2475 . 350784) (-2476 . 349973) (-2477 . 349885) (-2478 . 349783) (-2479 . 349667) (-2480 . 349432) (-2481 . 348989) (-2482 . 348218) (-2483 . 348124) (-2484 . 347966) (-2485 . 347450) (-2486 . 347296) (-2487 . 347090) (-2488 . 346990) (-2489 . 346802) (-2490 . 346709) (-2491 . 346587) (-2492 . 346503) (-2493 . 346447) (-2494 . 346058) (-2495 . 345972) (-2496 . 345857) (-2497 . 345761) (-2498 . 345623) (-2499 . 345395) (-2500 . 345334) (-2501 . 344117) (-2502 . 344059) (-2503 . 343990) (-2504 . 343898) (-2505 . 343825) (-2506 . 343575) (-2507 . 342933) (-2508 . 342850) (-2509 . 342790) (-2510 . 342690) (-2511 . 342588) (-2512 . 342437) (-2513 . 341495) (-2514 . 341373) (-2515 . 341189) (-2516 . 341087) (-2517 . 341014) (-2518 . 340918) (-2519 . 340766) (-2520 . 340666) (-2521 . 340359) (-2522 . 340255) (-2523 . 340115) (-2524 . 339963) (-2525 . 339870) (-2526 . 339753) (-2527 . 339678) (-2528 . 339578) (-2529 . 339488) (-2530 . 339353) (-2531 . 339322) (-2532 . 339247) (-2533 . 339084) (-2534 . 338762) (-2535 . 338342) (-2536 . 338127) (-2537 . 338048) (-2538 . 337964) (-2539 . 337912) (-2540 . 337842) (-2541 . 336455) (-2542 . 336124) (-2543 . 336035) (-2544 . 335876) (-2545 . 335759) (-2546 . 335683) (-2547 . 335435) (-2548 . 335283) (-2549 . 335147) (-2550 . 334991) (-2551 . 334939) (-2552 . 334882) (-2553 . 334808) (-2554 . 334737) (-2555 . 334587) (-2556 . 334392) (-2557 . 334286) (-2558 . 334209) (-2559 . 334107) (-2560 . 333940) (-2561 . 333858) (-2562 . 333679) (-2563 . 333603) (-2564 . 333493) (-2565 . 333296) (-2566 . 333221) (-2567 . 331628) (-2568 . 331277) (-2569 . 331225) (-2570 . 330990) (-2571 . 330897) (-2572 . 330790) (-2573 . 330501) (-2574 . 330156) (-2575 . 329993) (-2576 . 329940) (-2577 . 329805) (-2578 . 329749) (-2579 . 329578) (-2580 . 329507) (-2581 . 329454) (-2582 . 329319) (-2583 . 329223) (-2584 . 329069) (-2585 . 328960) (-2586 . 328904) (-2587 . 328683) (-2588 . 328333) (-2589 . 328113) (-2590 . 328009) (-2591 . 327725) (-2592 . 327563) (-2593 . 327513) (-2594 . 327292) (-2595 . 327105) (-2596 . 326943) (-2597 . 326845) (-2598 . 326700) (-2599 . 326622) (-2600 . 326459) (-2601 . 326409) (-2602 . 326266) (-2603 . 326157) (-2604 . 326045) (-2605 . 325974) (-2606 . 325666) (-2607 . 325166) (-2608 . 325095) (-2609 . 324991) (-2610 . 324866) (-2611 . 324752) (-2612 . 324424) (-2613 . 324337) (-2614 . 324200) (-2615 . 324009) (-2616 . 323953) (-2617 . 323856) (-2618 . 323744) (-2619 . 323497) (-2620 . 323346) (-2621 . 323141) (-2622 . 323039) (-2623 . 322956) (-2624 . 321809) (-2625 . 321632) (-2626 . 321559) (-2627 . 321439) (-2628 . 320872) (-2629 . 320794) (-2630 . 320678) (-2631 . 320313) (-2632 . 320173) (-2633 . 319984) (-2634 . 319902) (-2635 . 319868) (-2636 . 319720) (-2637 . 319155) (-2638 . 319127) (-2639 . 319040) (-2640 . 318959) (-2641 . 318901) (-2642 . 318848) (-2643 . 318773) (-2644 . 318705) (-2645 . 318452) (-2646 . 318363) (-2647 . 318173) (-2648 . 318092) (-2649 . 317992) (-2650 . 317921) (-2651 . 317865) (-2652 . 317806) (-2653 . 317693) (-2654 . 317604) (-2655 . 317464) (-2656 . 317112) (-2657 . 316936) (-2658 . 316809) (-2659 . 316690) (-2660 . 316493) (-2661 . 316410) (-2662 . 316157) (-2663 . 316105) (-2664 . 316025) (-2665 . 315997) (-2666 . 315756) (-2667 . 315257) (-2668 . 315034) (-2669 . 314546) (-2670 . 314399) (-2671 . 314136) (-2672 . 314078) (-2673 . 313984) (-2674 . 313886) (-2675 . 313834) (-2676 . 313728) (-2677 . 313699) (-2678 . 313584) (-2679 . 313045) (-2680 . 312993) (-2681 . 312922) (-2682 . 312832) (-2683 . 312746) (-2684 . 312482) (-2685 . 312421) (-2686 . 312314) (-2687 . 312162) (-2688 . 311960) (-2689 . 311524) (-2690 . 311345) (-2691 . 311273) (-2692 . 311086) (-2693 . 311013) (-2694 . 310880) (-2695 . 310439) (-2696 . 310291) (-2697 . 310094) (-2698 . 310041) (-2699 . 309935) (-2700 . 309882) (-2701 . 309556) (-2702 . 309333) (-2703 . 309185) (-2704 . 309126) (-2705 . 308993) (-2706 . 308856) (-2707 . 308735) (-2708 . 308631) (-2709 . 308549) (-2710 . 308333) (-2711 . 308094) (-2712 . 308031) (-2713 . 307956) (-2714 . 307883) (-2715 . 307808) (-2716 . 307595) (-2717 . 307521) (-2718 . 307288) (-2719 . 307233) (-2720 . 305728) (-2721 . 305654) (-2722 . 305548) (-2723 . 305455) (-2724 . 305222) (-2725 . 305108) (-2726 . 304959) (-2727 . 304906) (-2728 . 304684) (-2729 . 304496) (-2730 . 304212) (-2731 . 303419) (-2732 . 303329) (-2733 . 303258) (-2734 . 303131) (-2735 . 302675) (-2736 . 302615) (-2737 . 302449) (-2738 . 302393) (-2739 . 301884) (-2740 . 301682) (-2741 . 301586) (-2742 . 301512) (-2743 . 301035) (-2744 . 300865) (-2745 . 300732) (-2746 . 300677) (-2747 . 300327) (-2748 . 300257) (-2749 . 300184) (-2750 . 300130) (-2751 . 299996) (-2752 . 299877) (-2753 . 299756) (-2754 . 299604) (-2755 . 299551) (-2756 . 299499) (-2757 . 299121) (-2758 . 299052) (-2759 . 297841) (-2760 . 297767) (-2761 . 297623) (-2762 . 297554) (-2763 . 297502) (-2764 . 297396) (-2765 . 297179) (-2766 . 297037) (-2767 . 296964) (-2768 . 296882) (-2769 . 296317) (-2770 . 296228) (-2771 . 296175) (-2772 . 296094) (-2773 . 295962) (-2774 . 295825) (-2775 . 295728) (-2776 . 295655) (-2777 . 295559) (-2778 . 295441) (-2779 . 295243) (-2780 . 295109) (-2781 . 294946) (-2782 . 294638) (-2783 . 294345) (-2784 . 294086) (-2785 . 293981) (-2786 . 293824) (-2787 . 293525) (-2788 . 293398) (-2789 . 293367) (-2790 . 293268) (-2791 . 293149) (-2792 . 293075) (-2793 . 292982) (-2794 . 292880) (-2795 . 292495) (-2796 . 292329) (-2797 . 292115) (-2798 . 292066) (-2799 . 292000) (-2800 . 291767) (-2801 . 291670) (-2802 . 291606) (-2803 . 291499) (-2804 . 291410) (-2805 . 291327) (-2806 . 291275) (-2807 . 291194) (-2808 . 291076) (-2809 . 290978) (-2810 . 290864) (-2811 . 290788) (-2812 . 290716) (-2813 . 290483) (-2814 . 290197) (-2815 . 290125) (-2816 . 290033) (-2817 . 290005) (-2818 . 289772) (-2819 . 289378) (-2820 . 289194) (-2821 . 289081) (-2822 . 289008) (-2823 . 288933) (-2824 . 288848) (-2825 . 288425) (-2826 . 288286) (-2827 . 288209) (-2828 . 288143) (-2829 . 288014) (-2830 . 287929) (-2831 . 287816) (-2832 . 287655) (-2833 . 287572) (-2834 . 287421) (-2835 . 287310) (-2836 . 287193) (-2837 . 287117) (-2838 . 286929) (-2839 . 286820) (-2840 . 286651) (-2841 . 286500) (-2842 . 286415) (-2843 . 286060) (-2844 . 285897) (-2845 . 285806) (-2846 . 285265) (-2847 . 284858) (-2848 . 284593) (-2849 . 284303) (-2850 . 284209) (-2851 . 284038) (-2852 . 283924) (-2853 . 283822) (-2854 . 283709) (-2855 . 283656) (-2856 . 283386) (-2857 . 283215) (-2858 . 282907) (-2859 . 282684) (-2860 . 282510) (-2861 . 282294) (-2862 . 282104) (-2863 . 282040) (-2864 . 281851) (-2865 . 281386) (-2866 . 281267) (-2867 . 281124) (-2868 . 281029) (-2869 . 280456) (-2870 . 280221) (-2871 . 279639) (-2872 . 279611) (-2873 . 279472) (-2874 . 279402) (-2875 . 279296) (-2876 . 279105) (-2877 . 279015) (-2878 . 278920) (-2879 . 278491) (-2880 . 278289) (-2881 . 278117) (-2882 . 278043) (-2883 . 277638) (-2884 . 277585) (-2885 . 276989) (-2886 . 276929) (-2887 . 276837) (-2888 . 276286) (-2889 . 275678) (-2890 . 275580) (-2891 . 275295) (-2892 . 274977) (-2893 . 274888) (-2894 . 274711) (-2895 . 274645) (-2896 . 274568) (-2897 . 274495) (-2898 . 274316) (-2899 . 274114) (-2900 . 274013) (-2901 . 273837) (-2902 . 273745) (-2903 . 273647) (-2904 . 273519) (-2905 . 273468) (-2906 . 272872) (-2907 . 272789) (-2908 . 272582) (-2909 . 272511) (-2910 . 272411) (-2911 . 272291) (-2912 . 272190) (-2913 . 272078) (-2914 . 271930) (-2915 . 271618) (-2916 . 271320) (-2917 . 271158) (-2918 . 270788) (-2919 . 270652) (-2920 . 270244) (-2921 . 270051) (-2922 . 269926) (-2923 . 269808) (-2924 . 269688) (-2925 . 266939) (-2926 . 266849) (-2927 . 266768) (-2928 . 266580) (-2929 . 266510) (-2930 . 266199) (-2931 . 266105) (-2932 . 265683) (-2933 . 265515) (-2934 . 265279) (-2935 . 265168) (-2936 . 264868) (-2937 . 264745) (-2938 . 264629) (-2939 . 264574) (-2940 . 264308) (-2941 . 264238) (-2942 . 264137) (-2943 . 263781) (-2944 . 263715) (-2945 . 263517) (-2946 . 263415) (-2947 . 263289) (-2948 . 263161) (-2949 . 263099) (-2950 . 263009) (-2951 . 262853) (-2952 . 262785) (-2953 . 262716) (-2954 . 262366) (-2955 . 262293) (-2956 . 262008) (-2957 . 261913) (-2958 . 261842) (-2959 . 261763) (-2960 . 261690) (-2961 . 260874) (-2962 . 260485) (-2963 . 260328) (-2964 . 260178) (-2965 . 259936) (-2966 . 259747) (-2967 . 259476) (-2968 . 259381) (-2969 . 259280) (-2970 . 259129) (-2971 . 259007) (-2972 . 258936) (-2973 . 258860) (-2974 . 258760) (-2975 . 258677) (-2976 . 258570) (-2977 . 258472) (-2978 . 258357) (-2979 . 258290) (-2980 . 258241) (-2981 . 257988) (-2982 . 257861) (-2983 . 257759) (-2984 . 257594) (-2985 . 257445) (-2986 . 257126) (-2987 . 256679) (-2988 . 256581) (-2989 . 256479) (-2990 . 256415) (-2991 . 256307) (-2992 . 256066) (-2993 . 256009) (-2994 . 255928) (-2995 . 255806) (-2996 . 255091) (-2997 . 254846) (-2998 . 254793) (-2999 . 254686) (-3000 . 254529) (-3001 . 254474) (-3002 . 254395) (-3003 . 254253) (-3004 . 254155) (-3005 . 254098) (-3006 . 254066) (-3007 . 253978) (-3008 . 253770) (-3009 . 253695) (-3010 . 253023) (-3011 . 252866) (-3012 . 252733) (-3013 . 252659) (-3014 . 252559) (-3015 . 252502) (-3016 . 252446) (-3017 . 252364) (-3018 . 252247) (-3019 . 252194) (-3020 . 251796) (-3021 . 251611) (-3022 . 251528) (-3023 . 251430) (-3024 . 251305) (-3025 . 251252) (-3026 . 251196) (-3027 . 250786) (-3028 . 250371) (-3029 . 249997) (-3030 . 249939) (-3031 . 249883) (-3032 . 249726) (-3033 . 249644) (-3034 . 249543) (-3035 . 249211) (-3036 . 248888) (-3037 . 248830) (-3038 . 248739) (-3039 . 248441) (-3040 . 248345) (-3041 . 248296) (-3042 . 248214) (-3043 . 248055) (-3044 . 247958) (-3045 . 247854) (-3046 . 247360) (-3047 . 246621) (-3048 . 246018) (-3049 . 245932) (-3050 . 245603) (-3051 . 245476) (-3052 . 245263) (-3053 . 244958) (-3054 . 244796) (-3055 . 244480) (-3056 . 244373) (-3057 . 243874) (-3058 . 243766) (-3059 . 243622) (-3060 . 243424) (-3061 . 243077) (-3062 . 242987) (-3063 . 242913) (-3064 . 242757) (-3065 . 242544) (-3066 . 242446) (-3067 . 242385) (-3068 . 242170) (-3069 . 242009) (-3070 . 241896) (-3071 . 240939) (-3072 . 239944) (-3073 . 239866) (-3074 . 239760) (-3075 . 239604) (-3076 . 239500) (-3077 . 239348) (-3078 . 238804) (-3079 . 238590) (-3080 . 238387) (-3081 . 238130) (-3082 . 238004) (-3083 . 237970) (-3084 . 237873) (-3085 . 237582) (-3086 . 237478) (-3087 . 237353) (-3088 . 237276) (-3089 . 237152) (-3090 . 237097) (-3091 . 236896) (-3092 . 236707) (-3093 . 236492) (-3094 . 236382) (-3095 . 236311) (-3096 . 236154) (-3097 . 236102) (-3098 . 236046) (-3099 . 235775) (-3100 . 235719) (-3101 . 235634) (-3102 . 235581) (-3103 . 235342) (-3104 . 235232) (-3105 . 235059) (** . 232101) (-3107 . 231997) (-3108 . 231879) (-3109 . 231666) (-3110 . 231358) (-3111 . 231216) (-3112 . 231112) (-3113 . 231046) (-3114 . 230936) (-3115 . 230808) (-3116 . 230612) (-3117 . 230498) (-3118 . 230423) (-3119 . 230370) (-3120 . 230176) (-3121 . 230148) (-3122 . 230056) (-3123 . 229966) (-3124 . 229841) (-3125 . 229774) (-3126 . 229718) (-3127 . 227664) (-3128 . 227509) (-3129 . 227453) (-3130 . 227150) (-3131 . 227025) (-3132 . 226940) (-3133 . 226702) (-3134 . 226559) (-3135 . 226390) (-3136 . 226312) (-3137 . 226160) (-3138 . 225994) (-3139 . 225856) (-3140 . 225720) (-3141 . 225017) (-3142 . 224504) (-3143 . 224295) (-3144 . 224159) (-3145 . 223985) (-3146 . 223933) (-3147 . 223850) (-3148 . 223644) (-3149 . 223254) (-3150 . 223198) (-3151 . 223103) (-3152 . 222966) (-3153 . 222481) (-3154 . 221532) (-3155 . 221421) (-3156 . 221300) (-3157 . 221182) (-3158 . 221000) (-3159 . 220856) (-3160 . 220469) (-3161 . 220363) (-3162 . 220297) (-3163 . 220245) (-3164 . 220067) (-3165 . 219963) (-3166 . 219552) (-3167 . 219342) (-3168 . 219225) (-3169 . 219100) (-3170 . 218983) (-3171 . 218902) (-3172 . 218871) (-3173 . 218767) (-3174 . 217809) (-3175 . 217709) (-3176 . 217406) (-3177 . 217305) (-3178 . 217220) (-3179 . 216767) (-3180 . 216699) (-3181 . 216644) (-3182 . 216496) (-3183 . 216283) (-3184 . 216182) (-3185 . 215827) (-3186 . 215771) (-3187 . 215656) (-3188 . 215559) (-3189 . 210712) (-3190 . 210612) (-3191 . 210375) (-3192 . 210292) (-3193 . 210188) (-3194 . 210081) (-3195 . 209926) (-3196 . 209787) (-3197 . 209697) (-3198 . 209575) (-3199 . 209323) (-3200 . 209191) (-3201 . 209018) (-3202 . 208947) (-3203 . 208742) (-3204 . 208412) (-3205 . 208333) (-3206 . 208138) (-3207 . 208007) (-3208 . 207887) (-3209 . 207265) (-3210 . 206990) (-3211 . 206886) (-3212 . 206175) (-3213 . 205942) (-3214 . 205790) (-3215 . 205712) (-3216 . 204916) (-3217 . 204688) (-3218 . 204611) (-3219 . 204537) (-3220 . 203962) (-3221 . 203837) (-3222 . 202600) (-3223 . 202548) (-3224 . 202265) (-3225 . 198828) (-3226 . 198776) (-3227 . 198623) (-3228 . 198495) (-3229 . 198399) (-3230 . 198249) (-3231 . 198177) (-3232 . 197912) (-3233 . 197677) (-3234 . 197607) (-3235 . 197424) (-3236 . 196242) (-3237 . 195725) (-3238 . 195464) (-3239 . 195349) (-3240 . 194774) (-3241 . 194650) (-3242 . 194591) (-3243 . 194501) (-3244 . 194399) (-3245 . 194339) (-3246 . 194198) (-3247 . 194146) (-3248 . 193998) (-3249 . 193890) (-3250 . 193737) (-3251 . 193706) (-3252 . 193616) (-3253 . 193464) (-3254 . 193376) (-3255 . 193182) (-3256 . 193061) (-3257 . 192840) (-3258 . 192784) (-3259 . 192426) (-3260 . 192347) (-3261 . 192276) (-3262 . 192207) (-3263 . 192154) (-3264 . 192056) (-3265 . 192004) (-3266 . 191643) (-3267 . 190901) (-3268 . 190698) (-3269 . 190136) (-3270 . 190083) (-3271 . 189804) (-3272 . 189747) (-3273 . 189599) (-3274 . 189510) (-3275 . 189376) (-3276 . 189274) (-3277 . 189140) (-3278 . 189069) (-3279 . 188941) (-3280 . 188839) (-3281 . 188665) (-3282 . 188150) (-3283 . 187754) (-3284 . 187640) (-3285 . 187407) (-3286 . 187355) (-3287 . 187262) (-3288 . 187189) (-3289 . 187091) (-3290 . 186852) (-3291 . 186486) (-3292 . 186388) (-3293 . 186265) (-3294 . 185969) (-3295 . 185784) (-3296 . 185650) (-3297 . 185543) (-3298 . 185409) (-3299 . 185317) (-3300 . 185200) (-3301 . 185166) (-3302 . 185074) (-3303 . 184999) (-3304 . 184891) (-3305 . 184679) (-3306 . 184575) (-3307 . 184195) (-3308 . 184112) (-3309 . 184056) (-3310 . 184000) (-3311 . 183927) (-3312 . 183704) (-3313 . 183612) (-3314 . 183527) (-3315 . 183446) (-3316 . 181690) (-3317 . 181590) (-3318 . 181506) (-3319 . 181368) (-3320 . 181297) (-3321 . 181229) (-3322 . 181201) (-3323 . 181116) (-3324 . 181041) (-3325 . 180963) (-3326 . 180901) (-3327 . 180585) (-3328 . 180490) (-3329 . 180435) (-3330 . 180379) (-3331 . 180264) (-3332 . 180162) (-3333 . 180077) (-3334 . 179794) (-3335 . 179705) (-3336 . 179623) (-3337 . 179595) (-3338 . 179467) (-3339 . 179230) (-3340 . 179175) (-3341 . 179079) (-3342 . 178884) (-3343 . 178719) (-3344 . 178539) (-3345 . 178454) (-3346 . 178345) (-3347 . 178156) (-3348 . 177921) (-3349 . 177783) (-3350 . 177673) (-3351 . 177585) (-3352 . 177286) (-3353 . 177233) (-3354 . 177172) (-3355 . 176931) (-3356 . 176879) (-3357 . 176745) (-3358 . 176660) (-3359 . 176551) (-3360 . 176452) (-3361 . 176081) (-3362 . 175943) (-3363 . 175877) (-3364 . 175205) (-3365 . 175125) (-3366 . 175047) (-3367 . 174959) (-3368 . 174868) (-3369 . 174773) (-3370 . 174551) (-3371 . 174450) (-3372 . 174152) (-3373 . 174055) (-3374 . 173888) (-3375 . 173818) (-3376 . 173702) (-3377 . 173617) (-3378 . 173564) (-3379 . 173490) (-3380 . 173383) (-3381 . 173307) (-3382 . 173091) (-3383 . 172452) (-3384 . 172178) (-3385 . 172054) (-3386 . 171965) (-3387 . 171880) (-3388 . 171514) (-3389 . 171271) (-3390 . 171077) (-3391 . 170939) (-3392 . 170881) (-3393 . 170779) (-3394 . 170714) (-3395 . 170606) (-3396 . 170521) (-3397 . 170451) (-3398 . 170373) (-3399 . 170239) (-3400 . 170034) (-3401 . 169500) (-3402 . 169444) (-3403 . 169359) (-3404 . 169255) (-3405 . 169170) (-3406 . 169091) (-3407 . 168794) (-3408 . 168632) (-3409 . 168525) (-3410 . 168404) (-3411 . 167798) (-3412 . 167702) (-3413 . 167636) (-3414 . 167484) (-3415 . 167399) (-3416 . 167331) (-3417 . 167243) (-3418 . 167092) (-3419 . 166833) (-3420 . 166480) (-3421 . 166084) (-3422 . 165888) (-3423 . 165741) (-3424 . 165626) (-3425 . 165387) (-3426 . 165302) (-3427 . 164912) (-3428 . 164838) (-3429 . 164652) (-3430 . 164411) (-3431 . 164323) (-3432 . 163567) (-3433 . 163355) (-3434 . 163005) (-3435 . 162853) (-3436 . 162772) (-3437 . 161767) (-3438 . 161689) (-3439 . 161604) (-3440 . 161495) (-3441 . 161354) (-3442 . 160288) (-3443 . 160197) (-3444 . 159629) (-3445 . 159471) (-3446 . 159417) (-3447 . 159253) (-3448 . 158947) (-3449 . 158866) (-3450 . 158770) (-3451 . 158616) (-3452 . 158478) (-3453 . 158393) (-3454 . 158264) (-3455 . 158065) (-3456 . 157994) (-3457 . 157671) (-3458 . 157546) (-3459 . 157416) (-3460 . 157269) (-3461 . 156897) (-3462 . 156293) (-3463 . 155511) (-3464 . 155205) (-3465 . 155007) (-3466 . 154530) (-3467 . 154445) (-3468 . 154389) (-3469 . 154121) (-3470 . 154066) (-3471 . 153736) (-3472 . 153677) (-3473 . 153626) (-3474 . 153441) (-3475 . 153299) (-3476 . 153199) (-3477 . 153062) (-3478 . 152785) (-3479 . 152718) (-3480 . 152633) (-3481 . 152551) (-3482 . 152461) (-3483 . 152336) (-3484 . 151937) (-3485 . 151357) (-3486 . 151072) (-3487 . 150853) (-3488 . 150767) (-3489 . 150393) (-3490 . 150338) (-3491 . 150263) (-3492 . 150111) (-3493 . 149979) (-3494 . 149807) (-3495 . 149715) (-3496 . 149666) (-3497 . 149386) (-3498 . 149264) (-3499 . 148571) (-3500 . 148496) (-3501 . 148192) (-3502 . 147240) (-3503 . 147071) (-3504 . 146987) (-3505 . 146855) (-3506 . 146489) (-3507 . 146374) (-3508 . 146321) (-3509 . 146236) (-3510 . 146185) (-3511 . 146083) (-3512 . 145912) (-3513 . 145750) (-3514 . 145660) (-3515 . 145497) (-3516 . 145383) (-3517 . 145251) (-3518 . 145185) (-3519 . 145114) (-3520 . 144715) (-3521 . 144659) (-3522 . 144446) (-3523 . 144344) (-3524 . 144240) (-3525 . 144078) (-3526 . 143880) (-3527 . 143807) (-3528 . 143653) (-3529 . 142841) (-3530 . 142727) (-3531 . 142693) (-3532 . 142420) (-3533 . 141760) (-3534 . 141199) (-3535 . 141095) (-3536 . 140632) (-3537 . 140545) (-3538 . 140409) (-3539 . 140271) (-3540 . 140136) (-3541 . 139965) (-3542 . 139892) (-3543 . 139840) (-3544 . 139742) (-3545 . 139651) (-3546 . 139418) (-3547 . 139344) (-3548 . 139307) (-3549 . 139222) (-3550 . 138864) (-3551 . 138594) (-3552 . 138501) (-3553 . 138357) (-3554 . 138142) (-3555 . 138051) (-3556 . 137813) (-3557 . 137738) (-3558 . 137658) (-3559 . 137524) (-3560 . 137398) (-3561 . 137342) (-3562 . 137148) (-3563 . 137063) (-3564 . 136957) (-3565 . 136836) (-3566 . 136741) (-3567 . 136593) (-3568 . 136417) (-3569 . 136267) (-3570 . 136218) (-3571 . 136165) (-3572 . 135947) (-3573 . 135787) (-3574 . 135735) (-3575 . 135565) (-3576 . 135235) (-3577 . 135130) (-3578 . 135077) (-3579 . 134979) (-3580 . 134850) (-3581 . 134622) (-3582 . 134479) (-3583 . 134427) (-3584 . 134284) (-3585 . 134184) (-3586 . 134036) (-3587 . 133787) (-3588 . 133661) (-3589 . 133391) (-3590 . 133184) (-3591 . 133029) (-3592 . 132178) (-3593 . 131975) (-3594 . 131850) (-3595 . 131711) (-3596 . 131128) (-3597 . 131039) (-3598 . 130939) (-3599 . 130516) (-3600 . 130424) (-3601 . 130298) (-3602 . 130187) (-3603 . 129893) (-3604 . 129789) (-3605 . 129372) (-3606 . 129220) (-3607 . 129084) (-3608 . 129018) (-3609 . 128900) (-3610 . 128833) (-3611 . 128709) (-3612 . 128587) (-3613 . 128311) (-3614 . 128223) (-3615 . 127903) (-3616 . 127609) (-3617 . 127500) (-3618 . 127406) (-3619 . 127113) (-3620 . 127029) (-3621 . 125895) (-3622 . 125789) (-3623 . 125612) (-3624 . 125470) (-3625 . 125380) (-3626 . 125245) (-3627 . 125151) (-3628 . 125073) (-3629 . 124889) (-3630 . 124738) (-3631 . 124636) (-3632 . 124472) (-3633 . 124406) (-3634 . 124114) (-3635 . 123983) (-3636 . 123807) (-3637 . 123779) (-3638 . 123677) (-3639 . 123350) (-3640 . 123214) (-3641 . 123101) (-3642 . 122949) (-3643 . 122878) (-3644 . 122806) (-3645 . 118122) (-3646 . 118094) (-3647 . 117916) (-3648 . 117835) (-3649 . 117683) (-3650 . 117536) (-3651 . 117384) (-3652 . 117057) (-3653 . 116573) (-3654 . 116500) (-3655 . 116256) (-3656 . 116203) (-3657 . 116145) (-3658 . 116092) (-3659 . 115970) (-3660 . 115899) (-3661 . 115808) (-3662 . 115642) (-3663 . 115473) (-3664 . 115332) (-3665 . 115178) (-3666 . 115060) (-3667 . 114960) (-3668 . 114789) (-3669 . 113760) (-3670 . 113440) (-3671 . 113316) (-3672 . 113207) (-3673 . 113100) (-3674 . 112799) (-3675 . 112680) (-3676 . 112602) (-3677 . 112498) (-3678 . 112363) (-3679 . 112203) (-3680 . 112053) (-3681 . 111436) (-3682 . 111239) (-3683 . 110695) (-3684 . 110602) (-3685 . 110428) (-3686 . 110319) (-3687 . 110266) (-3688 . 108257) (-3689 . 107975) (-3690 . 107098) (-3691 . 107004) (-3692 . 106816) (-3693 . 106683) (-3694 . 106353) (-3695 . 105809) (-3696 . 105683) (-3697 . 105655) (-3698 . 105416) (-3699 . 105385) (-3700 . 105246) (-3701 . 105134) (-3702 . 104971) (-3703 . 104435) (-3704 . 104152) (-3705 . 104079) (-3706 . 103242) (-3707 . 102698) (-3708 . 102495) (-3709 . 101230) (-3710 . 100749) (-3711 . 100658) (-3712 . 100554) (-3713 . 100392) (-3714 . 100277) (-3715 . 100224) (-3716 . 100009) (-3717 . 99928) (-3718 . 99865) (-3719 . 99321) (-3720 . 99131) (-3721 . 99053) (-3722 . 98931) (-3723 . 98781) (-3724 . 98698) (-3725 . 98646) (-3726 . 98584) (-3727 . 98503) (-3728 . 98264) (-3729 . 98166) (-3730 . 98093) (-3731 . 97549) (-3732 . 97449) (-3733 . 97371) (-3734 . 97220) (-3735 . 97103) (-3736 . 96848) (-3737 . 96796) (-3738 . 96725) (-3739 . 96607) (-3740 . 96430) (-3741 . 96371) (-3742 . 96273) (-3743 . 96142) (-3744 . 96042) (-3745 . 95908) (-3746 . 95626) (-3747 . 95495) (-3748 . 95414) (-3749 . 95331) (-3750 . 95178) (-3751 . 95030) (-3752 . 94936) (-3753 . 94838) (-3754 . 94680) (-3755 . 89490) (-3756 . 89391) (-3757 . 89310) (-3758 . 89039) (-3759 . 88918) (-3760 . 88524) (-3761 . 88435) (-3762 . 88231) (-3763 . 88143) (-3764 . 88115) (-3765 . 88054) (-3766 . 87677) (-3767 . 87496) (-3768 . 87351) (-3769 . 87233) (-3770 . 86865) (-3771 . 86775) (-3772 . 86673) (-3773 . 86639) (-3774 . 86583) (-3775 . 86144) (-3776 . 85973) (-3777 . 85616) (-3778 . 85563) (-3779 . 85416) (-3780 . 85229) (-3781 . 85147) (-3782 . 84943) (-3783 . 84573) (-3784 . 84500) (-3785 . 84165) (-3786 . 83832) (-3787 . 83583) (-3788 . 83384) (-3789 . 83269) (-3790 . 83158) (-3791 . 82624) (-3792 . 82570) (-3793 . 82316) (-3794 . 82238) (-3795 . 82136) (-3796 . 82017) (-3797 . 81836) (-3798 . 81718) (-3799 . 81666) (-3800 . 81263) (-3801 . 81172) (-3802 . 80864) (-3803 . 80714) (-3804 . 80509) (-3805 . 80428) (-3806 . 79649) (-3807 . 79494) (-3808 . 79416) (-3809 . 79256) (-3810 . 79099) (-3811 . 79027) (-3812 . 78917) (-3813 . 77590) (-3814 . 77312) (-3815 . 77238) (-3816 . 77186) (-12 . 77031) (-3818 . 76956) (-3819 . 76713) (-3820 . 75614) (-3821 . 75451) (-3822 . 75335) (-3823 . 75084) (-3824 . 74867) (-3825 . 74522) (-3826 . 74189) (-3827 . 73881) (-3828 . 73782) (-3829 . 73716) (-3830 . 73239) (-3831 . 73149) (-3832 . 73026) (-3833 . 72920) (-3834 . 72749) (-3835 . 72681) (-3836 . 72380) (-3837 . 72304) (-3838 . 72245) (-3839 . 72154) (-3840 . 72016) (-3841 . 71418) (-3842 . 71328) (-3843 . 71202) (-3844 . 71091) (-3845 . 70951) (-3846 . 70899) (-3847 . 70647) (-3848 . 70416) (-3849 . 70050) (-3850 . 69925) (-3851 . 69897) (-3852 . 69399) (-3853 . 69323) (-3854 . 69071) (-3855 . 68728) (-3856 . 68597) (-3857 . 68511) (-3858 . 68459) (-3859 . 68409) (-3860 . 67966) (-3861 . 67910) (-3862 . 67829) (-3863 . 67622) (-3864 . 67466) (-3865 . 67411) (-3866 . 67356) (-3867 . 67045) (-3868 . 66956) (-3869 . 66632) (-3870 . 66452) (-3871 . 66342) (-3872 . 66212) (-3873 . 66103) (-3874 . 65958) (-3875 . 65760) (-3876 . 65612) (-3877 . 65477) (-3878 . 65406) (-3879 . 65250) (-3880 . 65218) (-3881 . 65085) (-3882 . 64737) (-3883 . 64557) (-3884 . 64491) (-3885 . 64425) (-3886 . 64391) (-3887 . 64310) (-3888 . 64261) (-3889 . 64087) (-3890 . 63825) (-3891 . 63752) (-3892 . 63681) (-3893 . 63609) (-3894 . 63536) (-3895 . 63469) (-3896 . 63193) (-3897 . 63073) (-3898 . 62925) (-3899 . 62664) (-3900 . 62611) (* . 58280) (-3902 . 58228) (-3903 . 58088) (-3904 . 57972) (-3905 . 56841) (-3906 . 56578) (-3907 . 56529) (-3908 . 56478) (-3909 . 56342) (-3910 . 56268) (-3911 . 55568) (-3912 . 55365) (-3913 . 55310) (-3914 . 55145) (-3915 . 55079) (-3916 . 55001) (-3917 . 54964) (-3918 . 54759) (-3919 . 54693) (-3920 . 54562) (-3921 . 54426) (-3922 . 54322) (-3923 . 53959) (-3924 . 53608) (-3925 . 53457) (-3926 . 53252) (-3927 . 53128) (-3928 . 53062) (-3929 . 52873) (-3930 . 52807) (-3931 . 52715) (-3932 . 52514) (-3933 . 52432) (-3934 . 52127) (-3935 . 52075) (-3936 . 51992) (-3937 . 51891) (-3938 . 51700) (-3939 . 51432) (-3940 . 51342) (-3941 . 51176) (-3942 . 51078) (-3943 . 50912) (-3944 . 50750) (-3945 . 50679) (-3946 . 50474) (-3947 . 50403) (-3948 . 50300) (-3949 . 50230) (-3950 . 50087) (-3951 . 49893) (-3952 . 49811) (-3953 . 49720) (-3954 . 49608) (-3955 . 49458) (-3956 . 49405) (-3957 . 49251) (-3958 . 49000) (-3959 . 48860) (-3960 . 48748) (-3961 . 48720) (-3962 . 48653) (-3963 . 48600) (-3964 . 48487) (-3965 . 48368) (-3966 . 48313) (-3967 . 48224) (-3968 . 48165) (-3969 . 48061) (-3970 . 48008) (-3971 . 47793) (-3972 . 45654) (-3973 . 45605) (-3974 . 45556) (-3975 . 45493) (-3976 . 45412) (-3977 . 45220) (-3978 . 44939) (-3979 . 44679) (-3980 . 44608) (-3981 . 44463) (-3982 . 43356) (-3983 . 43204) (-3984 . 42954) (-3985 . 42900) (-3986 . 42847) (-3987 . 42698) (-3988 . 42403) (-3989 . 42344) (-3990 . 42142) (-3991 . 41695) (-3992 . 41621) (-3993 . 41548) (-3994 . 41240) (-3995 . 40679) (-3996 . 40565) (-3997 . 40416) (-3998 . 40225) (-3999 . 40197) (-4000 . 40047) (-4001 . 39988) (-4002 . 39893) (-4003 . 39784) (-4004 . 39687) (-4005 . 39432) (-4006 . 39376) (-4007 . 39321) (-4008 . 39224) (-4009 . 39069) (-4010 . 38934) (-4011 . 38832) (-4012 . 38774) (-4013 . 37937) (-4014 . 37483) (-4015 . 37257) (-4016 . 37049) (-4017 . 36997) (-4018 . 36941) (-4019 . 36783) (-4020 . 36567) (-4021 . 36222) (-4022 . 36034) (-4023 . 35975) (-4024 . 35854) (-4025 . 35758) (-4026 . 35616) (-4027 . 35345) (-4028 . 35265) (-4029 . 33412) (-4030 . 33316) (-4031 . 32816) (-4032 . 32627) (-4033 . 32554) (-4034 . 32234) (-4035 . 32138) (-4036 . 32039) (-4037 . 31866) (-4038 . 31822) (-4039 . 31687) (-4040 . 31588) (-4041 . 31217) (-4042 . 31086) (-4043 . 31013) (-4044 . 30936) (-4045 . 30784) (-4046 . 30616) (-4047 . 30512) (-4048 . 29938) (-4049 . 29816) (-4050 . 29764) (-4051 . 29593) (-4052 . 29456) (-4053 . 29213) (-4054 . 29102) (-4055 . 28985) (-4056 . 28841) (-4057 . 26702) (-4058 . 26330) (-4059 . 26219) (-4060 . 26083) (-4061 . 26012) (-4062 . 25815) (-4063 . 25679) (-4064 . 24875) (-4065 . 24613) (-4066 . 24358) (-4067 . 24199) (-4068 . 24115) (-4069 . 23922) (-4070 . 23870) (-4071 . 23787) (-4072 . 23610) (-4073 . 23506) (-4074 . 22641) (-4075 . 22560) (-4076 . 22137) (-4077 . 22047) (-4078 . 21981) (-4079 . 21826) (-4080 . 21752) (-4081 . 21664) (-4082 . 21566) (-4083 . 21460) (-4084 . 21319) (-4085 . 21240) (-4086 . 21129) (-4087 . 21011) (-4088 . 20918) (-4089 . 20763) (-4090 . 20498) (-4091 . 20424) (-4092 . 20249) (-4093 . 19906) (-4094 . 19610) (-4095 . 19508) (-4096 . 19321) (-4097 . 19250) (-4098 . 19165) (-4099 . 19002) (-4100 . 18847) (-4101 . 18785) (-4102 . 18636) (-4103 . 18343) (-4104 . 18219) (-4105 . 18126) (-4106 . 18052) (-4107 . 17955) (-4108 . 17874) (-4109 . 17789) (-4110 . 17736) (-4111 . 17581) (-4112 . 16762) (-4113 . 16725) (-4114 . 15592) (-4115 . 15494) (-4116 . 13765) (-4117 . 13615) (-4118 . 12909) (-4119 . 12833) (-4120 . 12748) (-4121 . 12659) (-4122 . 12583) (-4123 . 12490) (-4124 . 12356) (-4125 . 12322) (-4126 . 12224) (-4127 . 12069) (-4128 . 12019) (-4129 . 11945) (-4130 . 11794) (-4131 . 11662) (-4132 . 11329) (-4133 . 11196) (-4134 . 11105) (-4135 . 11013) (-4136 . 10961) (-4137 . 10911) (-4138 . 10774) (-4139 . 10717) (-4140 . 9912) (-4141 . 9787) (-4142 . 9732) (-4143 . 9600) (-4144 . 9545) (-4145 . 9285) (-4146 . 9167) (-4147 . 9114) (-4148 . 9003) (-4149 . 8798) (-4150 . 8530) (-4151 . 1988) (-4152 . 1387) (-4153 . 1255) (-4154 . 1144) (-4155 . 604) (-4156 . 409) (-4157 . 338) (-4158 . 253) (-4159 . 120) (-4160 . 30)) \ No newline at end of file